
Complexity Results and the Growths of Hairpin

Completions of Regular Languages

Volker Diekert and Steffen Kopecki

Universität Stuttgart,

Institut für Formale Methoden der Informatik

Universitätsstr. 38, D-70569 Stuttgart, Germany

{diekert,kopecki}@fmi.uni-stuttgart.de

June 28, 2010

Abstract

The hairpin completion is a natural operation on formal languages
which has been inspired by molecular phenomena in biology and by DNA-
computing. In 2009 we presented in [6] a (polynomial time) decision
algorithm to decide regularity of the hairpin completion. In this paper
we provide four new results: 1.) We show that the decision problem is
NL-complete. 2.) There is a polynomial time decision algorithm which
runs in time O(n8), this improves [6], which provided O(n20). 3.) For
the one-sided case (which is closer to DNA computing) the time is O(n2),
only. 4.) The hairpin completion is unambiguous linear context-free. This
result allows to compute the growth (generating function) of the hairpin
completion and to compare it with the growth of the underlying regular
language.

1 Introduction

The hairpin completion is a natural operation of formal languages which has
been inspired by molecular phenomena in biology and by DNA-computing. An
intramolecular base pairing, known as a hairpin, is a pattern that can occur
in single-stranded DNA and, more commonly, in RNA. Hairpin or hairpin-free
structures have numerous applications to DNA computing and molecular ge-
netics, see [5, 7, 8, 12, 13] and the references within. For example, an instance
of 3-Sat has been solved with a DNA-algorithm and one of the main concepts
was to eliminate all molecules with a hairpin structure, see [17].

In this paper we study the hairpin completion from a purely formal language
viewpoint. The hairpin completion of a formal language was first defined in
[4]; here we use a slightly more general definition which was introduced in [6].
The formal operation of the hairpin completion on words is best explained in
Figure 1. In that picture as in the rest of the paper we mean by putting a
bar on a word (like α) to read it from right-to-left in addition to replacing a
with the Watson-Crick complement a for letters. The hairpin completion of
a regular language is linear context-free [4]. For some time it was not known

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147541165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

γ α β α annealing

γ
α

β

α lengthening

γ
α

β

α
γ

strand hairpin hairpin completion

Figure 1: Hairpin completion of a DNA-strand (or a word).

whether regularity of the hairpin completion is decidable. It was only in 2009
when we presented in [6] a decision algorithm. The runtime of that algorithm
is in O(n20), hence polynomial.

Here we present a modified approach to solve the decision problem. The new
approach leads to improved complexity results and a new structure theorem. We
show that the decision problem is NL-complete (Theorem 3.1). We show that
there is a polynomial time decision algorithm which runs in time O(n8) (Theo-
rem 3.2, i.). So, the improvement is from O(n20) down to O(n8). Moreover, in
the biological model the one-sided hairpin completion is of particular interest,
and in that special case we need quadratic time, only (Theorem 3.2, iii.). We
also argue why the time bounds might be optimal in the worst case.

A byproduct of the method yields that the hairpin completion of a regular
language is unambiguous linear context-free (Theorem 3.7). The result about
unambiguity allows to compute the growth (generating function) of the hairpin
completion and to compare it with the growth of the underlying regular language
(Theorem 3.3 and Corrolary 3.8).

This takes us back to a challenging open problem in formal languages. Reg-
ularity of linear context-free languages is undecidable in general [1, 10]. But
the situation for unambiguous context-free languages is open for more than 40
years. Hence, we have new a positive result within the classical context of de-
ciding regularity within a class of unambiguous (linear) context-free languages.

2 Preliminaries and Notation

We assume the reader to be familiar with the fundamental concepts of formal
language theory, automata theory, and complexity theory, see [11,16]. By NL we
mean the complexity class NLOGSPACE, which contains the problems which
can be decided with a non-deterministic algorithm using O(log n) space. We
heavily rely on the well-known result that NL is closed under complementation.
We also use the fact that if L can be reduced to L′ via some single-valued non-
deterministic transduction in O(log n) space and L′ ∈ NL, then we have L ∈
NL, too. This reduction is performed by a non-deterministic log-space Turing
machine. In case the machine stops on input w, the output is always the same,
independently of non-deterministic moves during the computation. So, we can
call the output r(w). The reduction property tells us w ∈ L if and only if both,
the machine sometimes stops on input w and r(w) ∈ L′.

2

By Σ we denote a finite alphabet with at least two letters which is equipped
with an involution ¯ : Σ → Σ. An involution for a set is a bijection such that
a = a. We extend the involution to words a1 · · · an by a1 · · · an = an · · · a1. (Just
like taking inverses in groups.) For languages L denotes the set {w | w ∈ L}.
The set of words over Σ is denoted Σ∗; and the empty word is denoted by 1.
Given a word w, we denote by |w| its length and w(m) ∈ Σ its m-th letter. By
Σ≤m we mean the set of all words with length at most m. If w = xyz for some
x, y, z ∈ Σ∗, then x and z are called prefix and suffix, respectively. The prefix
relation between words x and y is denoted by x ≤ y.

Throughout the paper L1, L2 mean two regular languages in Σ∗ and by k
we mean a (small) constant, say k = 10. We define the hairpin completion
Hk(L1, L2) by

Hk(L1, L2) = {γαβαγ | (γαβα ∈ L1 ∨ αβαγ ∈ L2) ∧ |α| = k} .

Three cases are of main interest: 1.) L1 = L2, 2.) L1 = L2, and 3.) L1 = ∅ or
L2 = ∅. Compared to the definition of the hairpin completion in [4, 15], case
1.) corresponds to the the two-sided hairpin completion and case 3.) to the one-
sided hairpin completion. Since we have better time complexities for 2.) and 3.)
than for 1.) or in the general case we make the time bounds rather precise.

A regular languages can be specified by a non-deterministic finite automaton
(NFA) A = (Q,Σ, E, I,F), where Q is the finite set of states, I ⊆ Q is the set
of initial states, and F ⊆ Q is the set of final states. The set E contains labeled
edges (or arcs), it is a subset of Q×Σ×Q. For a word u ∈ Σ∗ we write p

u−→ q,
if there is a path from state p to q which is labeled by the word u. Thus, the
accepted language becomes

L(A) =
{
u ∈ Σ∗

∣∣∣ ∃p ∈ I, ∃q ∈ F : p
u−→ q

}
.

Later it will be crucial to use also paths which avoid final states. For this
we introduce a special notation. First remove all arcs (p, a, q) where q ∈ F is a
final state. Thus, final states do not have incoming arcs anymore in this reduced
automaton. Let us write p

u
=⇒ q, if there is a path in this reduced automaton

from state p to q which is labeled by the word u. Note that for such a path
p

u
=⇒ q we allow p ∈ F , but on the path we never meet any final state again.

An NFA is called a deterministic finite automaton (DFA), if it has one initial
state and for every state p ∈ Q and every letter a ∈ Σ there is exactly one arc
(p, a, q) ∈ E. In particular, a DFA in this paper is always complete, thus we

can read every word to its end. We also write p ·u = q, if p
u−→ q. This yields a

(totally defined) function Q× Σ∗ → Q, which defines an action of Σ∗ on Q on
the right.

In the following we need a DFA accepting L1 as well as a DFA accepting L2,
but the DFA for L2 has to work from right-to-left. Instead of introducing this
concept we use a DFA (working as usual from left-to-right), which accepts L2.
This automaton has the same number of states (and is structurally isomorphic
to) as a DFA accepting the reversal language of L2.

As input we assume that the regular languages L1 and L2 are specified by
DFAs with state set Qi, state q0i ∈ Qi as initial state, and Fi ⊆ Qi as final
states. We fix ni = |Qi| to be the number of states, i = 1, 2. By n we mean
max{n1, n2}. The input size is therefore the number n.

3

We also need the usual product DFA with state space

Q = {(p1, p2) ∈ Q1 ×Q2 | ∃w ∈ Σ∗ : (p1, p2) = (q01 · w, q02 · w)} .

The action is given by (p1, p2) · a = (p1 · a, p2 · a). We let n12 = |Q|. Hence,
n ≤ n12 ≤ n1 ·n2 ≤ n2, and n = n1 = n12 if L2 = ∅ or L1 = L2. In the following
we work simultaneously in all three automata defined so far. Moreover, in Q1

and Q2 we have to work backwards. This leads to nondeterminism. Our first
new construction concerns a special NFA in Section 3.1.

3 Main results

The complexity results of this paper are the following:

Theorem 3.1. The problem whether the hairpin completion Hk(L1, L2) is reg-
ular is NL-complete.

Theorem 3.2. i.) The problem whether the hairpin completion Hk(L1, L2)
is regular can be decided in time O(n8).

ii.) For L1 = L2 it can be decided in time O(n6).

iii.) For L2 = ∅ it can be decided in time O(n2).

An algorithm solving this problem is sketched in Section 3.3 and the time
complexity is proved in Section 3.4.

The growth or generating function gL of a formal language L is defined as:

gL(z) =
∑
m≥0

∣∣L ∩ Σ≤m
∣∣ zm.

We can view gL as a formal power series or as an analytic function in one
complex variable where the radius of convergence is strictly positive. The radius
of convergence is at least 1/ |Σ|.

It is well-known that the growth of a regular language L is effectively ra-
tional, i.e., a quotient of two polynomials. The same is true for unambiguous
linear context-free languages. In particular, the growth is either polynomial or
exponential. If the growth is exponential, then we find an algebraic number
ρ ∈ R such that

∣∣L ∩ Σ≤m
∣∣ behaves essentially as ρm, see [2, 3, 9].

It was shown in [4] that Hk(L1, L2) is an linear context-free language. As a
byproduct to our techniques to prove the complexity results above we find that
Hk(L1, L2) is unambiguous, and hence its growth (i.e., generating function) is
a rational function, see e.g. [14] for this well-known fact. We obtain:

Theorem 3.3. The hairpin completion Hk(L1, L2) is an unambiguous linear
context-free language with an effectively computable rational growth function.

This result is proved of Section 3.2.

4

3.1 The NFA A
In this section we define a certain NFA which is called simply A. Almost all
further results are done by exploring properties of this NFA. The NFA is a sort
of product automaton over Q×Q1 ×Q2 ⊆ Q1 ×Q2 ×Q1 ×Q2 where Q1,Q2

and Q are defined as in Section 2. The size of this automaton is O(n4) in the
worst case, and our decision algorithm will take into account all pairs of states
in this NFA. Hence, O(n8) might be an optimal time bound and the decision
algorithm is not worse than quadratic in the size of the NFA A.

For every quadruple (p1, p2, q1, q2) ∈ Q1×Q2×Q1×Q2 we define a regular
language B(p1, p2, q1, q2) as follows:

B(p1, p2, q1, q2) = {w ∈ Σ∗ | p1 · w = q1 ∧ p2 · w = q2} .

We say that (p1, p2, q1, q2) is a basic bridge if B(p1, p2, q1, q2) 6= ∅. The
idea behind of this notation is that B(p1, p2, q1, q2) closes a gap between pairs
(p1, p2) and (q1, q2) (which are on different sides). For a letter a ∈ Σ we call
(p1, p2, q1, q2) an a-bridge if B(p1, p2, q1, q2) ∩ aΣ∗ 6= ∅.

Lemma 3.4. The number of basic bridges and a-bridges is bounded by O(n21n
2
2).

A table containing all these bridges can be computed in time O(n21n
2
2) ⊆ O(n4),

and there is a single-valued non-deterministic transduction working in O(log n)
space which outputs this table.

Proof. To compute the basic bridges amounts to compute the transitive closure
in some graph where the number of nodes and edges is in O(n1n2). This gives
the time bound. Once we have the bridges we can compute the a-bridges in
time O(n21n

2
2).

If (p1, p2, q1, q2) is a basic bridge, we can verify this property in NL. Since
NL is closed under complementation, we can output the whole table by a single-
valued non-deterministic transduction in O(log n) space.

We also need levels for 0 ≤ ` ≤ k, hence there are k + 1 levels. By [k] we
denote in this paper the set {0, . . . , k}. Define

{((p1, p2), q1, q2, `) ∈ Q×Q1 ×Q2 × [k] | (p1, p2, q1, q2) is a basic bridge}

as the state space of an NFA called A. Its size is bounded by N · (k + 1) ∈
O(N) ⊆ O(n4), where N = n12n1n2. We have N = n2 for L2 = ∅, and N = n3

for L2 = L1.
By a (slight) abuse of languages we call a state ((p1, p2), q1, q2, `) a bridge, and

we keep in mind that there exists a word w such that p1 ·w = q1 and p2 ·w = q2.
Bridges are frequently denoted by (P, q1, q2, `) with P = (p1, p2) ∈ Q, qi ∈ Qi,
i = 1, 2, and ` ∈ [k]. Bridges are a central concept in the following.

The a-transitions in the NFA for a ∈ Σ are given by the following arcs:

(P, q1 · a, q2 · a, 0)
a−→ (P · a, q1, q2, 0) for qi · a /∈ Fi, i = 1, 2,

(P, q1 · a, q2 · a, 0)
a−→ (P · a, q1, q2, 1) for q1 · a ∈ F1 or q2 · a ∈ F2,

(P, q1 · a, q2 · a, `)
a−→ (P · a, q1, q2, `+ 1) for 1 ≤ ` < k.

Observe that no state of the form (P, q1, q2, 0) with q1 ∈ F1 or q2 ∈ F2

has an outgoing arc to level zero; we must switch to level one. There are no

5

outgoing arcs on level k, and for each (a, P, q1, q2, `) ∈ Σ×Q×Q1×Q2× [k−1]

there exists at most one arc (P, q′1, q
′
2, `)

a−→ (P · a, q1, q2, `′). Indeed, the triple
(q′1, q

′
2, `
′) is determined by (q1, q2, `) and the letter a. Not all arcs exist because

(P, q′1, q
′
2, `) can be a bridge whereas (P · a, q1, q2, `′) is not. Thus, there are at

most |Σ| ·N · k ∈ O(N) arcs in the NFA.
The set of initial states I contains all bridges of the form (Q0, q

′
1, q
′
2, 0) with

Q0 = (q01, q02). The set of final states F is given by all bridges (P, q1, q2, k) on
level k.

For an example and a graphical presentation of the NFA, see Figure 2.

Remark 3.5. The NFA A can be computed by Lemma 3.4 in time O(n21n
2
2)

and by a single-valued non-deterministic transduction in O(log n) space. Thus
for both the polynomial time and the NL algorithm we can have direct access to
A and we can assume that A is written on the input tape.

q01 p1 f1

∅1

L1 = a∗(b+ b)a

a

b, b

a

a

a, b, b

Σ

Σ

q02 p2 f2

∅2

L2 = a∗ba

a

b

a, b

a

a, b, b

Σ

Σ

(Q0, ∅1, ∅2, 0) (Q0, f1, f2, 0) (Q0, p1, p2, 1) B(q01, q02, p1, p2) = b

(Q0, f1, ∅2, 0) (Q0, p1, ∅2, 1) B(q01, q02, p1, ∅2) = aa+b+ a∗b

(Q0, p1, f2, 1) B(q01, q02, p1, f2) = ab

(Q0, ∅1, f2, 0) (Q0, ∅1, p2, 1) B(q01, q02, ∅1, p2) = baa+

(Q0, f1, p2, 1) B(q01, q02, f1, p2) = ba

A:

a

a

a

a

a

a

a

a

a

Figure 2: DFAs for L1 and L2 and the resulting NFA A with 4 initial states
and 5 final states associated to the (linear context-free) hairpin completion
Hk(L1, L2) = a+ba+ ∪ {asbat | s ≥ t ≥ 1} with k = 1.

The next result shows the unambiguity of paths in the automaton A.

Lemma 3.6. Let w ∈ Σ∗ be the label of a path in A from a bridge A =
(P, p1, p2, `) to A′ = (P ′, p′1, p

′
2, `
′), then the path is unique. This means that

B = B′ whenever w = uv and

A
u−→ B

v−→ A′, A
u−→ B′

v−→ A′.

Proof. It is enough to consider u = a ∈ Σ. Let B = (Q, q1, q2,m). Then we
have Q = P · a and qi = p′i · v. If ` = 0 and pi /∈ Fi for i = 1, 2, then m = 0,
too; otherwise m = `+ 1. Thus, B is defined by A, A′, and u, v. We conclude
B = B′.

6

3.2 Structure theorem and rational growth

For languages U and V we define the language V U as follows:

V U = {uvu | u ∈ U, v ∈ V } .

Clearly, if U and V are regular, then V U is linear context-free. We are interested
in a disjoint union of languages V U where for w ∈ V U the factorization w = uvu
with u ∈ U and v ∈ V is unambiguous.

Theorem 3.7. Let T = I × F . For each pair τ = (I, F) ∈ T with F =
((d1, d2), e1, e2, k) let Rτ be the (regular) set of words which label a path from
the initial bridge I to the final bridge F and let Bτ = B(d1, d2, e1, e2). The
hairpin completion is a disjoint union

Hk(L1, L2) =
⋃
τ∈T

BRττ .

Moreover, for each word in some w ∈ BRττ there is a unique factorization w =
ρβρ with ρ ∈ Rτ and β ∈ Bτ .

Proof. Let w ∈ Hk(L1, L2). There exists exactly one factorization w = γαβαγ
such that |α| = k and there are runs in the DFAs

L1 : q01
γ−→ c1

α−→ d1
β−→ e1

α−→ f1
γ

=⇒ q′1,

L2 : q02
γ−→ c2

α−→ d2
β−→ e2

α−→ f2
γ

=⇒ q′2

where f1 ∈ F1 or f2 ∈ F2 (or both). In other words, γαβα is the longest prefix
of w belonging to L1 or αβαγ is the longest suffix of w belonging to L2.

In the NFA A we find the run

(Q0, q
′
1, q
′
2, 0)

γ−→ ((c1, c2), f1, f2, 0)
α−→ ((d1, d2), e1, e2, k).

Now let I = (Q0, q
′
1, q
′
2, 0), F = ((d1, d2), e1, e2, k), and τ = (I, F). Obviously,

we have γα ∈ Rτ and β ∈ Bτ .
Conversely, for every τ ∈ T , ρ = γα ∈ Rτ with |α| = k, and β ∈ Bτ , we find

runs in the DFAs as above, hence ρβρ ∈ Hk(L1, L2). Since the states di, ei, and
q′i (i = 1, 2) on the runs are uniquely defined by the word ρβρ, we cannot have

that τ 6= τ ′ ∈ T exists and ρβρ ∈ BRτ′τ ′ .

Corollary 3.8. The hairpin completion Hk(L1, L2) is an unambiguous linear
context-free language and it has a rational growth function. The growth can be
directly calculated by the growth of the regular languages Rτ and Bτ .

Corollary 3.8 allows to compare the growth of L1 and L2 with the growth of
their hairpin completion Hk(L1, L2). It is also a slightly more precise version of
Theorem 3.3.

3.3 Complexity for testing the regularity of Hk(L1, L2)

3.3.1 First Test

The automaton A accepts the union of the languages Rτ as defined in Theo-
rem 3.7. If the accepted language is finite then all Rτ are finite and hence all
BRττ are regular. This leads to the following result:

7

Proposition 3.9. i.) If the accepted language of the NFA A is finite, then
the hairpin completion Hk(L1, L2) is regular.

ii.) If L1 or L2 is finite, but the accepted language of A is infinite, then the
hairpin completion Hk(L1, L2) is not regular.

Proof. The first statement follows directly from Theorem 3.7.
For the second statement, assume L(A) is infinite. We find a long word

uvwα with |α| = k and v 6= 1 such that all uviwα label some path in A from
an initial bridge ((q01, q02), q′1, q

′
2, 0) to a final bridge ((d1, d2), e1, e2, k). We

obtain for β ∈ B(d1, d2, e1, e2) that uviwαβαwviu ∈ Hk(L1, L2) for all i ≥ 0. If
Hk(L1, L2) is regular, by pumping, there exists s ∈ N and infinitely many t ∈ N
such that πt = uvswαβαwvtu ∈ Hk(L1, L2). By the construction of the NFA
A, for πt we find the run

q01
uvswαβ−→ d1

α−→ f1
wvtu
=⇒ q′1

in the DFA for L1. Hence, the longest prefix of πt belonging to L1 is always a
prefix of uvswαβα. This is far too short to create the hairpin completion if t
becomes huge. Thus we must use a suffix belonging to L2 and which has at least
half the length of πt to do the job. Hence, L2 is infinite and, by a symmetric
argument, L1 is infinite, too.

Test 1: Check either by some NL-algorithm or in time O(N) ⊆ O(n4) whether
the accepted language of the NFA A is finite. If “yes” (=L(A) is finite), then
output that Hk(L1, L2) is regular. If “no”, but L1 or L2 is finite, then output
that Hk(L1, L2) is not regular.

Remark 3.10. If L1 or L2 is empty, we have O(N) ⊆ O(n2). In that case it
suffices to perform Test 1 in order to decide the regularity of Hk(L1, L2). This
proves iii.) of Theorem 3.2.

3.3.2 Second Test

From now on we may assume that the automaton A accepts an infinite lan-
guage and both L1 and L2 are infinite as well. We assume that all states are
reachable from initial bridges and lead to some final bridges. (Recall that graph
reachability can be checked in NL.)

Let K be the set of non-trivial strongly connected components of the au-
tomaton A (read as a directed graph). For κ ∈ K let Nκ = |κ| the number
of states in the component κ. Let us choose some Aκ ∈ κ and some shortest
non-empty word vκ ∈ Σ+ such that there is a path in A labeled by vκ from Aκ
to Aκ.

The next lemma tells us that for a regular hairpin completion Hk(L1, L2)
the word vκ is uniquely defined by Aκ, its length is Nκ, and its conjugacy class
depends only on κ.

Lemma 3.11. Assume that the hairpin completion Hk(L1, L2) is regular.

1.) Let Aκ
vκ−→ Aκ as above and Aκ

w−→ C be a path in A to some final bridge.
Then the word w is a prefix of some word in v+κ .

8

2.) The word vκ and the loop Aκ
vκ−→ Aκ are uniquely defined by the state Aκ

and we have |vκ| = Nκ.

3.) The loop Aκ
vκ−→ Aκ visits every other state B ∈ κ exactly once. Thus, the

loop defines an Hamiltonian cycle of κ.

Proof. Let A = Aκ and v = vκ. As A
v−→ A is a non-trivial loop, we see

that A is on level zero. Consider a path labeled by w from A to a final bridge
((p1, p2), q1, q2, k). By assumption, all states in A are reachable from some
initial state. Thus, we find a word u such that the automaton A accepts uviw
for all i ≥ 0. We see next that uviwβwviu ∈ Hk(L1, L2) for all i ≥ 0 and all
β ∈ B(p1, p2, q1, q2). AsHk(L1, L2) is regular there are s, t with uvswβwvs+tu ∈
Hk(L1, L2) and t > |wβ|. This means that the hairpin completion is forced to
use a suffix in L2, and due to the definition of A we conclude that uvsw must
be a prefix of uvs+tw. This implies that w is a prefix of vt, and it proves the
first assertion.

For the second one, observe first that |v| ≤ Nκ is trivial. Now, let A 6= B ∈ κ
and A

v′−→ B
v′′−→ A. For some i, j > 0 we have

∣∣vi∣∣ =
∣∣(v′v′′)j∣∣. Thus, vi =

(v′v′′)j by the first property. By the unique-path-property stated in Lemma 3.6

we obtain that the loop A
(v′v′′)j−→ A just uses the shortest loop A

v−→ A several
times. If |v| = |v′v′′|, then we conclude v = v′v′′. Moreover, for each A 6= B ∈ κ
we find A

v′−→ B
v′′−→ A. In particular, B is on the shortest loop around A. This

yields |v| ≥ Nκ and hence the second and third assertion.

Example 3.12. In the example given in Figure 2 the state (Q0, ∅1, ∅2, 0) forms
the only strongly connected component and the corresponding path is labeled with
a. As one can easily observe the automaton A satisfies condition 1.) to 3.) of
Lemma 3.11 even though the hairpin completion is not regular.

Remark 3.13. We decompose the automaton A in its strongly connected com-
ponents by the algorithm of Tarjan in time O(N). (Note that we have K 6= ∅
since |L(A)| is infinite.) This is also possible by some single-valued non-deter-
ministic transduction. Putting some linear order on the set of bridges, we can
assign to each κ ∈ K the least Aκ ∈ κ. If Hk(L1, L2) is regular, then (by
Lemma 3.11) we can output the uniquely defined words vκ for all κ ∈ K. We
observe that ∑

κ∈K
|vκ| =

∑
κ∈K

Nκ ≤ N.

So, the list of all vκ is computable in time O(N) and also by some single-valued
non-deterministic transduction, in case Hk(L1, L2) is regular.

Test 2: It has two parts. Part I: For each strongly connected component κ ∈ K
compute a shortest word v with 0 < |v| ≤ Nκ such that Aκ

v−→ Aκ is a loop
in the automaton A. If |v| 6= Nκ, then stop and output that Hk(L1, L2) is not
regular. Part II: If |v| = Nκ for all κ, then let Lκ be the accepted language of
A when the bridge Aκ is used as initial state. Let Pref(v+) be the language of
prefixes of words in v+. (Note that a DFA for the complement of Pref(v+) has
Nκ + 1 states.) If we do not find Lκ ⊆ Pref(v+), then stop and output that
Hk(L1, L2) is not regular.

9

Part I can be done in time O(
∑
κ∈K Nκ) ⊆ O(N). Part II can be done in

time O(
∑
κ∈K Nκ · N) ⊆ O(N2) ⊆ O(n8). The NL-algorithm is based on the

fact that we can guess a position m where the m-th letter of w ∈ Lκ differs from
the (m mod Nκ)-th letter of a word v which labels a path Aκ

v−→ Aκ.

Henceforth we may assume that Test 2 was successful and following Re-
mark 3.13 we assume that the list of all words vκ is available. Thus, we can
think that the list (vκ;κ ∈ K) is written on the input tape. For the NL-
algorithm we perform another single-valued non-deterministic transduction to
achieve this.

3.3.3 Third and Fourth Test

We fix a strongly connected component κ ∈ K of A. We let A = Aκ =
((p1, p2), q1, q2, 0) and v = vκ as above. By u we denote some word leading
from an initial bridge ((q01, q02), q′1, q

′
2, 0) to A. (The following tests do not rely

on the choice of u.) The main idea is to investigate runs through the DFAs for
L1 and L2 where s, t ≥ n.

L1 : q01
u−→ p1

vs−→ p1
xy−→ c1

z−→ d1
x−→ e1

vn1

=⇒ q1
v∗

=⇒ q1
u

=⇒ q′1

L2 : q02
u−→ p2

vt−→ p2
x−→ c2

z−→ d2
yx−→ e2

vn2

=⇒ q2
v∗

=⇒ q2
u

=⇒ q′2

We investigate the case where uvsxyzxvtu ∈ Hk(L1, L2) for all s ≥ t and where
(by symmetry) this property is due to the longest prefix belonging to L1.

The following lemma is the most technical one in our paper.

Lemma 3.14. Let x, y, z ∈ Σ∗ be words and (d1, d2) ∈ Q1 × Q2 with the
following properties:

1.) k ≤ |x| < |v|+ k and x is a prefix of some word in v+.

2.) 0 ≤ |y| < |v| and xy is the longest common prefix of xyz and some word in
v+.

3.) z ∈ B(c1, c2, d1, d2), where c1 = p1 · xy and c2 = p2 · x.

4.) q1 = d1 · xvn1 and during the computation of d1 · xvn1 we see after exactly
k steps a final state in F1 and then never again.

5.) q2 = d2 · yxvn2 and, let e2 = d2 · yx, during the computation of e2 · vn2 we
do not see a final state in F2.

If Hk(L1, L2) is regular, then xyzxv = µδβδµ where |δ| = k and δβδµu ∈ L2.

Proof. The conditions say that uvsxyzxvtu ∈ Hk(L1, L2) for all s ≥ t ≥ n.
Moreover, by 4.) the hairpin completion can be achieved with a prefix in L1,
and the longest prefix of uvsxyzxvtu belonging to L1 is a prefix of uvsxyzx.

If Hk(L1, L2) is regular, then we have uvsxyzxvs+1u ∈ Hk(L1, L2), too, as
soon as s is large enough, by a simple pumping argument. For this hairpin
completion we must use a suffix belonging to L2. This follows from |y| < |v|
and a case distinction whether or not z is empty. For z 6= 1 we need condition
2.) to see this.

10

By 5.) the longest suffix of uvsxyzxvs+1u belonging to L2 is a suffix of
xyzxvs+1u. Thus, we can write

uvsxyzxvs+1u = uvsxyzxvvsu = uvsµδβδµvsu

where δβδµvsu ∈ L2 as soon as s is large enough.
(Recall that our second DFA accepts L2.) Hence, as p2 = q02 · u and p2 =

p2 · v, we see that δβδµvsu ∈ L2 if and only if δβδµu ∈ L2. Thus, if Hk(L1, L2)
is regular, then δβδµu ∈ L2.

Example 3.15. Let us take a look at Figure 2 again. Let Aκ = (Q0, ∅1, ∅2, 0),
vκ = a and u = 1. If we choose x = a, y = 1, z = b and (d1, d2) = (p1, p2)
we can see, that conditions 1.) to 5.) of Lemma 3.14 are satisfied but there is
no factorization abaa = µδβδµ with |δ| = k such that δβδµu ∈ L2. Hence, the
hairpin completion is not regular.

Lemma 3.16. The existence of words x, y, z ∈ Σ∗ and states (d1, d2) ∈ Q1×Q2

satisfying 1.) to 5.) of Lemma 3.14, but where for all factorizations xyzxv =
µδβδµ we have p2 · µδβδ /∈ F2 (and accordingly δβδµu /∈ L2), can be decided in
time O(n212n

2
1n

2
2) ⊆ O(n8) and in NL.

Proof. It is enough to perform Test 3 and 4 below and to prove the complexity.
The tests distinguish whether the word z is empty or non-empty.

Test 3: Decide the existence of words x, y, z ∈ Σ∗ with z 6= 1 and states
(d1, d2) ∈ Q1 ×Q2 satisfying 1.) to 5.) of Lemma 3.14, but where for all factor-
izations xyzxv = µδβδµ we have p2 · µδβδ /∈ F2. If we find such a situation,
then stop and output that Hk(L1, L2) is not regular.

Test 4: Decide the existence of words x, y ∈ Σ∗ and states (d1, d2) ∈ Q1 ×Q2

satisfying 1.) to 5.) of Lemma 3.14 with z = 1, but where for all factorizations
xyxv = µδβδµ we have p2 · µδβδ /∈ F2. If we find such a situation, then stop
and output that Hk(L1, L2) is not regular.

The correctness of both tests follows by Lemma 3.14, but even termination
of Test 3 is not completely obvious. Termination is due to condition that xy is
the longest common prefix of xyz and some word in v+. This means, if z 6= 1,
then there exists a letter a such that z ∈ aΣ∗ and xya is no prefix of any word
in v+. Now |y| < |v|, hence we see that xyzxv = µδβδµ implies µδ ≤ xy.

Thus it is enough to check the computation starting in state d2 ∈ Q2 when
reading the word yx. Test 3 yields “not regular” if we find such a computation
which after more than k−1 steps does not meet any final state in F2. We do not
need the word z, we just have to know that (c1, c2, d1, d2) is in the precomputed
table of a-bridges (cf. Lemma 3.4) where a is a letter such that xya is no prefix
of any word in v+. It is obvious that Test 3 can be performed in polynomial
time as well as in NL.

Test 4 is for z = 1, so in any case the number of factorizations xyxv = µδβδµ
is polynomial. It is again obvious that Test 4 can be performed polynomial time
as well as in NL.

For the exact time complexity we refer to Section 3.4.

The following lemmas complete the proof of Theorem 3.1 and 3.2.

11

Lemma 3.17. Suppose no outcome of Tests 1, 2, 3, and 4 is “not regular”.
Then the hairpin completion Hk(L1, L2) is regular.

Proof. Let π ∈ Hk(L1, L2). Write π = γαβαγ with |γ| minimal such that either
γαβα ∈ L1 or αβαγ ∈ L2. By symmetry we assume γαβα ∈ L1. We may
assume that |γ| > n4. We can factorize γ = uvw with |uv| ≤ n4 and |v| ≥ 1
such that there are runs as follows:

1.) q01
u−→ p1

v−→ p1
wαβα−→ f1

w
=⇒ q1

v
=⇒ q1

u
=⇒ q′1,

2.) q02
u−→ p2

v−→ p2
wαβα−→ f2

w
=⇒ q2

v
=⇒ q2

u
=⇒ q′2,

3.) f1 ∈ F1.

We infer from Test 1/2 that wα is a prefix of some word in v+. Hence, we can
write wαβ = vmxyz with m ≥ 0 such that vmxy is the maximal common prefix
of wαβ and some word in v+, wα ∈ v∗x with k ≤ |x| < |v|+ k, and |y| < |v|.

We see that for some s ≥ t ≥ 0 we can write

π = uvsxyzxvtu.

Moreover, uvsxyzxvtu ∈ Hk(L1, L2) for all s ≥ t ≥ 0. There are only finitely
many choices for u, v, x, y (due to the lengths bounds) and for each of them
there is a regular set Rz in a finite collection of regular sets such that

π ∈
{
uvsxyRzxv

tu
∣∣ s ≥ t ≥ 0

}
⊆ Hk(L1, L2).

Note that the sets
{
uvsxyRzxv

tu
∣∣ s ≥ t ≥ 0

}
need not to be regular, in

general. If we bound however t by n then the finite union⋃
0≤t≤n

{
uvsxyRzxv

tu
∣∣ s ≥ t}

is regular. Thus, we may assume that t > n. Let e2 = p2 · xzyx. We have
e2 · vn = q2 and, if we see a final state during the computation of e2 · vn, then
for all t ≥ s ≥ n and z ∈ Rz we see that uvsxyzxvtu ∈ Hk(L1, L2), due to a
suffix in L2 and, uvnv+xyRzxv

+vnu ⊆ Hk(L1, L2).
Otherwise Test 3/4 tells us that for all z ∈ Rz the word xyzxv has a factor-

ization µδνδµ such that |δ| = k and δνδµu ∈ L2. The paths q02 · u = p2 and
p2 · v = p2 yield δνδµv+u ⊆ L2 and, again, uvnv+xyRzxv

+vnu ⊆ Hk(L1, L2).
Hence, the hairpin completion Hk(L1, L2) is a finite union of regular lan-

guages.

Lemma 3.18. It is NL-hard to decide whether the hairpin completion Hk(L1, ∅)
is regular.

The well-known NL-complete Graph-Accessibility-Problem can easily be re-
duced to the following decision problem for DFAs.

• Input: A DFA where the accepted language L satisfies L ⊆ b(ab + ba)∗

with a 6= b.

• Problem: L = ∅?

Now, for L as above and k > 2 consider L′ = a+Lak. Then

Hk(L′, ∅) =
{
a`wam

∣∣ w ∈ L ∧ ` ≥ m ≥ k} .
Hence, Hk(L′, ∅) is regular if and only if L = ∅.

12

3.4 Time Complexity

Let us recall that the construction of the NFA A, Test 1, and Test 2 can be
performed in time O(N2). This is O(n8) in the general case and O(n6) for
L1 = L2. In this section we will sketch how Test 3 and 4 can be implemented
in order to meet the same time bounds.

3.4.1 Test 3

Let κ ∈ K be fixed, let v = vκ, A = Aκ = ((p1, p2), q1, q2, 0) and u be some
word leading from an initial bridge to A.

In order to perform Test 3 we create two tables T1 and T2. The table T1
holds all pairs (c2, d1) ∈ Q2 ×Q1 such that a word x exists with

1.) k ≤ |x| < |v|+ k and x is a prefix of a word in v+,

2.) p2 · x = c2,

3.) d1 · xvn1 = q1, and during the computation of d1 · xvn1 we see a final state
after exactly k steps and then never again.

We call x a witness for (c2, d1) ∈ T1.
The table T2 holds all triples (c1, d2, a) ∈ Q1 × Q2 × Σ such that a prefix

y′ < v exists with

1.) y′a is no prefix of v,

2.) p1 · y′ = c1,

3.) d2 · y′vn2 = q2, and during the computation of d2 · y′vn2 we do not see a
final state after more than k − 1 steps.

We call y′ a witness for (c1, d2, a) ∈ T2.
By backwards computing in the second component, the tables T1 and T2 can

be created in O(Nκn
2
1) and O(Nκn

2
2), respectively.

Lemma 3.19. The outcome of Test 3 is “not regular” if and only if there exists
a pair (c2, d1) ∈ T1 and a triple (c1, d2, a) ∈ T2 such that (c1, c2, d1, d2) is an
a-bridge.

Proof. Assume (c2, d1) ∈ T1, (c1, d2, a) ∈ T2, and (c1, c2, d1, d2) is an a-bridge.
Let x and y′ be the the witnesses for (c2, d1) ∈ T1 and (c1, d2, a) ∈ T2, respec-
tively. Choose z ∈ B(c1, c2, d1, d2) ∩ aΣ∗ and y such that xy is a prefix of some
word in v+, |xy| ≡ |y′| (mod |v|), and |y| < |v|. Verify that x, y, z and (d1, d2)
satisfy the conditions 1.) to 5.) of Lemma 3.14.

For any factorization xyzxv = µδβδµ with |δ| = k, the word µδ has to be a
prefix of xy, since xya is no prefix of vx. During the computation of d2 · y′vn2

we do not see a final state after more than k − 1 steps. The same holds for the
computation of d2 · yxvn2 . Hence, δβδµu is not included in L2.

Now assume that x, y, z ∈ Σ∗, z 6= 1 and (d1, d2) ∈ Q1 × Q2 exist, which
satisfy the conditions 1.) to 5.) of Lemma 3.14 but where for all factorizations
xyzxv = µδβδµ we have δβδµu /∈ L2. Choose y′ < v such that |xy| ≡ |y′|
(mod |v|). Let c2 = p2 · x, c1 = p1 · y′ and a ∈ Σ be the first letter of z.
(c1, c2, d1, d2) is an a-bridge. If we saw a final state after more than k − 1

13

steps during the computation of d2 · y′vn2 , then a factorization xyzxv = µδβδµ
with δβδµu ∈ L2 would exist. Hence, y′ is a witness for (c1, d2, a) ∈ T2 and,
obviously, x is a witness for (c2, d1) ∈ T1.

The set of all first components of T1 (T2) is bounded by both, the size
of Nκ and n2 (resp. n1). Therefore it is of size O(n1 · min(Nκ, n2)) (resp.
O(n2 · min(Nκ, n1))). By symmetry, assume n2 ≤ n1. Since the table of a-
bridges is precomputed, we can perform Test 3 in

O

(∑
κ∈K

(
Nκn

2
1 +Nκn

2
2 + n1n2 ·min(Nκ, n1) ·min(Nκ, n2)

))
⊆

O

n12n31n2 + n12n1n
3
2 +

∑
κ∈K,Nκ≥n2

n21n
2
2 +

∑
κ∈K,Nκ<n2

N2
κn1n2

(Recall that n1 ≤ n ≤ n12 ≤ n1n2 ≤ n2 and

∑
κ∈K Nκ ≤ N = n12n1n2.)

Since there are at most n12n1 strongly connected components with a size of
more than n2 states, we have∑

κ∈K,Nκ≥n2

n21n
2
2 ≤ n12n31n22.

For the last term we can use the approximation∑
κ∈K,Nκ<n2

N2
κn1n2 ≤

∑
κ∈K,Nκ<n2

Nκn1n
2
2 ≤ n12n21n32.

Test 3 can be performed in time O
(
n12n

3
1n

2
2

)
⊆ O(n7) in the general case

and in time O(n6) for L1 = L2.

3.4.2 Test 4

Let κ ∈ K be fixed, let v = vκ, A = Aκ = ((p1, p2), q1, q2, 0) and u be some
word leading from an initial bridge to A. For the final test we have to compute
all words x and y such that there are runs

p1
xy−→ d1

xvn1

−→ q1 and p2
x−→ d2

yxvn2

−→ q2

and together with z = 1 the conditions 1.) to 5.) of Lemma 3.14 are satisfied.
Moreover, in addition and similar as in Test 3 we demand that in the computa-
tion of d2 ·yxvn2 we do not meet any final state after more than k−1 steps. (In
case such a final state exists, either condition 5.) is breached or a factorization
xyxv = µδβδµ with |δ| = k and δβδµu ∈ L2 exists.) In time O(N2

κ) we compute
all pairs (x, xy) satisfying these conditions.

We also compute at this stage a number 0 ≤ `(x) ≤ Nκ + |x|+ k as follows.
Let xx′ be the prefix of some word in v+ of length |x|+ k. (Thus, |x′| = k.) On
the run p2 · vxx′ we let `(x) = |x′′| such that x′′ ≤ vxx′ is the maximal prefix
where p2 · x′′ ∈ F2 is a final state. If there is no final state on this run, we let
`(x) = 0. If a factorization xyxv = µδβδµ with |δ| = k and δβδµu ∈ L2 exists,
then the value `(x) gives us the lower bound |xyxv| − `(x) for the length of µ.
(Note that |xyxv| ≥ `(x).)

14

Let m(x, xy) be the length of the longest µ ≤ vx such that a factorization
xyxv = µδβδµ with |δ| = k exists (without the condition δβδµu ∈ L2). The
outcome of Test 4 is negative if and only if m(x, xy) ≥ |xyxv| − `(x) and `(x)−
k ≥ |xyxv| /2.

We need to precompute the values m(x, xy) efficiently, which turns out to
be a little bit tricky.

First let us fix x and write vx = xv′. We wish to match positions in v′v′

with positions in v2. let us mark those 1 ≤ j ≤ |v|+k where the jth letter v′(j)
in v′ is equal to the j-th letter v(j) in v2. For each x one scan through v′ and
v2 is enough. Having stored these marked positions in a table of size Nκ + k we
can compute for each 1 ≤ j ≤ |v| the maximal value m such that all positions
j, . . . , j +m are marked. This is possible in O(N2

κ).
All in all Test 4 can be performed in

O

(∑
κ∈K

N2
κ

)
⊆ O(N2).

References

[1] B. S. Baker and R. V. Book. Reversal-bounded multi-pushdown machines.
Foundations of Computer Science, Annual IEEE Symposium on, 0:207–211,
1972.

[2] J. Berstel and C. Reutenauer. Rational series and their languages. Springer-
Verlag New York, Inc., New York, NY, USA, 1988.

[3] T. Ceccherini-Silberstein. On the growth of linear languages. Advances in
Applied Mathematics, 35(3):243 – 253, 2005.

[4] D. Cheptea, C. Martin-Vide, and V. Mitrana. A new operation on words
suggested by DNA biochemistry: Hairpin completion. Transgressive Com-
puting, pages 216–228, 2006.

[5] R. Deaton, R. Murphy, M. Garzon, D. Franceschetti, and S. Stevens. Good
encodings for DNA-based solutions to combinatorial problems. Proc. of
DNA-based computers DIMACS Series, 44:247–258, 1998.

[6] V. Diekert, S. Kopecki, and V. Mitrana. On the hairpin completion of
regular languages. In M. Leucker and C. Morgan, editors, ICTAC, volume
5684 of Lecture Notes in Computer Science, pages 170–184. Springer, 2009.

[7] M. Garzon, R. Deaton, P. Neathery, R. Murphy, D. Franceschetti, and
E. Stevens. On the encoding problem for DNA computing. The Third
DIMACS Workshop on DNA-Based Computing, pages 230–237, 1997.

[8] M. Garzon, R. Deaton, L. Nino, S. Stevens Jr., and M. Wittner. Genome
encoding for DNA computing. Proc. Third Genetic Programming Confer-
ence, pages 684–690, 1998.

[9] P. Gawrychowski, D. Krieger, N. Rampersad, and J. Shallit. Finding the
growth rate of a regular or context-free language in polynomial time. In
Developments in Language Theory, pages 339–358, 2008.

15

[10] S. A. Greibach. A note on undecidable properties of formal languages.
Mathematical Systems Theory, 2(1):1–6, 1968.

[11] J. E. Hopcroft and J. D. Ulman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[12] L. Kari, S. Konstantinidis, E. Losseva, P. Sośık, and G. Thierrin. Hair-
pin structures in DNA words. In A. Carbone and N. A. Pierce, editors,
DNA, volume 3892 of Lecture Notes in Computer Science, pages 158–170.
Springer, 2005.

[13] L. Kari, K. Mahalingam, and G. Thierrin. The syntactic monoid of hairpin-
free languages. Acta Inf., 44(3-4):153–166, 2007.

[14] W. Kuich. On the entropy of context-free languages. Information and
Control, 16:173–200, 1970.

[15] F. Manea, V. Mitrana, and T. Yokomori. Two complementary operations
inspired by the DNA hairpin formation: Completion and reduction. Theor.
Comput. Sci., 410(4-5):417–425, 2009.

[16] C. H. Papadimitriou. Computatational Complexity. Addison Wesley, 1994.

[17] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori,
and M. Hagiya. Molecular Computation by DNA Hairpin Formation. Sci-
ence, 288(5469):1223–1226, 2000.

16

	Introduction
	Preliminaries and Notation
	Main results
	The NFA A
	Structure theorem and rational growth
	Complexity for testing the regularity of Hk(L1,L2)
	First Test
	Second Test
	Third and Fourth Test

	Time Complexity
	Test 3
	Test 4

