
Partially Ordered Two-way Büchi Automata∗

Manfred Kufleitner Alexander Lauser

FMI, Universität Stuttgart, Germany
{kufleitner, lauser}@fmi.uni-stuttgart.de

June 14, 2010

Abstract

We introduce partially ordered two-way Büchi automata over infinite words. As for finite
words, the nondeterministic variant recognizes the fragment Σ2 of first-order logic FO[<]
and the deterministic version yields the ∆2-definable ω-languages. As a byproduct of
our results, we show that deterministic partially ordered two-way Büchi automata are
effectively closed under Boolean operations.

In addition, we have coNP-completeness results for the emptiness problem and the
inclusion problem over deterministic partially ordered two-way Büchi automata.

Keywords. infinite words; partially ordered two-way Büchi automaton; first-order logic

1 Introduction

We combine partially ordered two-way (po2) automata with the Büchi acceptance condition.
For this new subclass of two-way Büchi automata, we characterize the expressive power of the
nondeterministic and the deterministic versions. Moreover, we show that nondeterministic
po2-Büchi automata have a small model property. This leads to NP-completeness results of
the non-emptiness problem for both nondeterministic and deterministic po2-Büchi automata,
and to the coNP-completeness of the inclusion problem for deterministic po2-Büchi automata.

Büchi automata have been introduced in order to decide monadic second-order logic over
infinite words [2]. Today, they have become one of the most important tools in model-checking
sequential finite state systems, see e.g. [1, 3]. Büchi automata are nondeterministic finite
automata, accepting infinite words if there exists an infinite run such that some final state
occurs infinitely often. A generalization are two-way Büchi automata; Pécuchet has shown
that they have the same expressive power as ordinary Büchi automata [9]. Alternating two-
way Büchi automata have been used for model checking of temporal logic formulas with
past modalities [6, 15]. These automata, too, can recognize nothing but regular ω-languages.
With the usual padding technique, the succinctness result for two-way automata over finite
words [5] immediately yields an exponential lower bound for the succinctness of two-way Büchi
automata.

We characterize the expressive power of po2-Büchi automata in terms of fragments of
first-order logic FO[<]. The fragment Σ2 consists of all FO[<]-sentences in prenex normal
form with one block of existential quantifiers followed by one block of universal quantifiers
followed by a propositional formula. The fragment Π2 contains the negations of Σ2-formulas.

∗This work was supported by the German Research Foundation (DFG), grant DI 435/5-1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147541163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By abuse of notation, we identify logical fragments with the classes of ω-languages they define.
Hence, it makes sense to define ∆2 = Σ2 ∩ Π2, i.e., an ω-language is ∆2-definable if it is Σ2-
definable and Π2-definable. Therefore, ∆2 is the largest subclass of Σ2 (or Π2) which is closed
under complementation. Various characterizations of Σ2 and of ∆2 over infinite words are
known [14, 4]. Note that it makes a difference whether we require that a Σ2-formula and a Π2-
formula have the same ω-word models, or whether they coincide on finite word models. In some
sense, ∆2 over infinite words is weaker than ∆2 over finite words. For example over finite words,
∆2 has the same expressive power as first-order logic with only two variables [13], whereas
over infinite words, ∆2 is weaker than first-order logic with two variables [4]. Moreover, ∆2

over finite words coincides with a language class called unambiguous polynomials [10], whereas
over infinite words, only some restricted variant of unambiguous polynomials is definable in
∆2 [4].

Schwentick, Thérien, and Vollmer introduced po2-automata over finite words [11]; cf. [7]
for further characterizations of such automata. A po2-automaton is a two-way automaton
with the property that once a state is left, it is never entered again. Every such automaton
admits a partial order on its states such that transitions are non-decreasing. In fact, one could
use a linear order on the states, but this would distort the length of a longest chain, which
in some cases is a useful parameter. Nondeterministic po2-automata recognize exactly the
Σ2-definable languages over finite words whereas deterministic po2-automata correspond to
∆2-definable languages [11].

In this paper, we present analog results over infinite words. More precisely, for L ⊆ Γω we
show that

• L is recognized by some nondeterministic partially ordered two-way Büchi automaton if
and only if L is definable in Σ2 (Theorem 1),

• L is recognized by some deterministic partially ordered two-way Büchi automaton if and
only if L is definable in ∆2 (Theorem 3).

In particular, nondeterministic po2-Büchi automata are more powerful than deterministic
po2-Büchi automata, and nondeterministic po2-Büchi automata are not closed under comple-
mentation. The proof of Theorem 1 is a straightforward generalization of the respective result
for finite words. It is presented here for the sake of completeness. The proof of Theorem 3 is
new. It is based on a language description from [4] rather than on so called turtle languages as
in [11]. The main step in our proof is to show that deterministic po2-Büchi automata are effec-
tively closed under Boolean operations (Theorem 2). This is non-trivial, since the approach of
starting a second automaton after the first one has completed its computation does not work
for Büchi automata. To this end, we simulate two deterministic po2-Büchi automata simulta-
neously, and we have to do some bookkeeping of positions if the two automata walk in different
directions. In Section 5, we show that various decision problems over po2-Büchi automata are
coNP-complete: the emptiness problem for deterministic and for nondeterministic po2-Büchi
automata; and the universality, the inclusion, and the equivalence problem for deterministic
po2-Büchi automata. Note that for (non-partially-ordered) one-way Büchi automata, both
the inclusion problem and the equivalence problem are PSPACE-complete [12].

2

2 Preliminaries

Throughout this paper, Γ denotes a finite alphabet. For A ⊆ Γ, the set of finite words over A
is A∗ and the set of infinite words over A is Aω. If we want to emphasize that α ∈ Γω is an
infinite word, then we say that α is an ω-word. The empty word is ε. We have ∅∗ = {ε} and
∅ω = ∅. The length of a finite word w ∈ Γ∗ is denoted by |w|, i.e., |w| = n if w = a1 · · · an
with ai ∈ Γ. We set |α| = ∞ if α ∈ Γω. The alphabet of a word α = a1a2 · · · ∈ Γ∗ ∪ Γω is
denoted by alph(α). It is the set of letters occurring in α. We say that a position i of α is an
a-position of α if ai = a.

A language is a subset of Γ∗ or a subset of Γω. As for ω-words, we emphasize that
L ⊆ Γω contains only infinite words by saying that L is an ω-language. A monomial (of degree
k) is a language of the form A∗1a1 · · ·A∗kakA∗k+1. It is unambiguous if each word w in the
monomial has a unique factorization w = u1a1 · · ·ukakuk+1 with ui ∈ A∗i . Similarly, an ω-
monomial is an ω-language of the form A∗1a1 · · ·A∗kakAωk+1 and it is unambiguous if each word
α ∈ A∗1a1 · · ·A∗kakAωk+1 has a unique factorization u1a1 · · ·ukakβ with ui ∈ A∗i and β ∈ Aωk+1.
A restricted unambiguous ω-monomial is an unambiguous ω-monomial A∗1a1 · · ·A∗kakAωk+1

such that {ai, . . . , ak} * Ai for all 1 ≤ i ≤ k. A polynomial is a finite union of monomials and
an ω-polynomial is a finite union of ω-monomials. A restricted unambiguous ω-polynomial is
a finite union of restricted unambiguous ω-monomials.

By FO[<] we denote the first-order logic over words interpreted as labeled linear orders.
As atomic formulas, FO[<] comprises > (for true) and ⊥ (for false), the unary predicate
λ(x) = a for a ∈ Γ, and the binary predicate x < y for variables x and y. The idea is that
variables range over the linearly ordered positions of a word and λ(x) = a means that x is an a-
position. Apart from the Boolean connectives, we allow quantifications over position variables,
i.e., existential quantifications ∃x : ϕ and universal quantifications ∀x : ϕ for ϕ ∈ FO[<]. The
semantics is as usual.

Every formula in FO[<] can be converted into a semantically equivalent formula in prenex
normal form by renaming variables and moving quantifiers to the front. This gives rise to the
fragment Σ2 (resp. Π2) consisting of all FO[<]-formulas in prenex normal form with only two
blocks of quantifiers, starting with a block of existential quantifiers (resp. universal quantifiers).
Note that the negation of a formula in Σ2 is equivalent to a formula in Π2 and vice versa. The
fragments Σ2 and Π2 are both closed under conjunction and disjunction.

A sentence in FO[<] is a formula without free variables. Since there are no free variables
in a sentence ϕ, the truth value of α |= ϕ is well-defined. The ω-language defined by ϕ is
L(ϕ) = {α ∈ Γω | α |= ϕ}. We frequently identify logical fragments with the respective classes
of languages. For example, ∆2 = Σ2∩Π2 consist of all languages L such that L = L(ϕ) = L(ψ)
for some ϕ ∈ Σ2 and ψ ∈ Π2, i.e., a language L is ∆2-definable if there are equivalent formulas
in Σ2 and in Π2 defining L. The notion of equivalence depends on the models and it turns
out to be a difference whether we use finite or infinite words as models, cf. [4, 13]. Unless
stated otherwise, we shall only use infinite word models. In particular, for the remainder of
this paper ∆2 is a class of ω-languages.

2.1 Partially Ordered Two-way Büchi Automata

In the following, we give the Büchi automaton pendant of a two-way automaton. This is
basically a Büchi automaton that may change the direction in which it reads the input. A
two-way Büchi automaton A = (Z,Γ, δ,X0, F) is given by:

3

• a finite set of states Z = X ∪̇ Y ,

• a finite input alphabet Γ; the tape alphabet is Γ ∪̇ {.}, where the left end marker . is a
new symbol,

• a transition relation δ ⊆ (Z × Γ× Z) ∪ (Y × {.} ×X),

• a set of initial states X0 ⊆ X, and

• a set of final states F ⊆ Z.

The states Z are partitioned into “neXt-states” X and “Yesterday-states” Y . The idea is that
states in X are entered with a right-move of the head while states in Y are entered with a left-
move. For (z, a, z′) ∈ δ we frequently use the notation z a z′. On input α = a1a2 · · · ∈ Γω

the tape is labeled by .α, i.e., positions i ≥ 1 are labeled by ai and position 0 is labeled by ..
A configuration of the automaton is given by a pair (z, i) where z ∈ Z is a state and i ∈ N is
the current position of the head. A transition (z, i) ` (z′, j) on configurations (z, i) and (z′, j)
exists, if

• z a z′ for some a ∈ Γ ∪ {.} such that i is an a-position, and

• j = i+ 1 if z′ ∈ X, and j = i− 1 if z′ ∈ Y .

The .-position can only be encountered in a state from Y and left via a state from X. In
particular, A can never overrun the left end marker .. Due to the partition of the states Z,
we can never have a change in direction without changing the state. A configuration (z, i)
is initial, if z ∈ X0 and i = 1. A computation of A on input α is an infinite sequence of
transitions

(z0, i0) ` (z1, i1) ` (z2, i2) ` · · ·

such that (z0, i0) is initial. It is accepting, if there exists some state y ∈ F which oc-
curs infinitely often in this computation. Now, A accepts an input α if there is an ac-
cepting computation of A on input α. As usual, the language recognized by A is L(A) =
{α ∈ Γω | A accepts α}.

A two-way Büchi automaton is deterministic if |X0| = 1 and if for every state z ∈ Z
and every symbol a ∈ Γ ∪ {.} there is at most one z′ ∈ Z with z a z′. A two-way Büchi
automaton is complete if for every state z ∈ Z and every symbol a ∈ Γ there is at least one
z′ ∈ Z with z a z′, and for every z ∈ Y there is at least one z′ ∈ X with z . z′.

We are now ready to define partially ordered two-way Büchi automata. We use the abbre-
viation “po2” for “partially ordered two-way”. A two-way Büchi automaton A is a po2-Büchi
automaton, if there is a partial order 4 on the set of states Z such that every transition is
non-descending, i.e., if z a z′ then z 4 z′. In po2-Büchi automata, every computation enters
a state at most once and it defines a non-decreasing sequence of states. Since there can be no
infinite chain of states, every computation has a unique state z ∈ Z which occurs infinitely
often and this state is maximal among all states in the computation. Moreover, z ∈ X since
the automaton cannot loop in a left-moving state forever. We call this state z stationary. A
computation is accepting if and only if its stationary state z is a final state. In particular, we
can always assume F ⊆ X in po2-Büchi automata.

4

3 Nondeterministic po2-Büchi Automata

In this section, we show that nondeterministic po2-Büchi automata recognize exactly the class
of Σ2-definable languages. Moreover, it turns out that nondeterministic po2-Büchi automata
and nondeterministic partially ordered one-way Büchi automata (i.e., Y = ∅ in our definition
of nondeterministic po2-Büchi automata) have the same expressive power. The proof is a
straightforward extension of the respective result for finite words [11]. It is presented here
only for the sake of completeness.

Theorem 1 Let L ⊆ Γω. The following assertions are equivalent:

1. L is recognized by a nondeterministic po2-Büchi automaton.

2. L is Σ2-definable.

3. L is recognized by a nondeterministic partially ordered Büchi automaton.

Proof: “1⇒ 2”: Let A be a partially ordered two-way Büchi automaton. It suffices to
show that L(A) is an ω-polynomial, since every ω-polynomial is Σ2-definable. This fol-
lows from Lemma 1 below (with A = B). “2⇒ 3”: Every Σ2-definable ω-language is an
ω-polynomial [14]. The ω-monomial A∗1a1 · · ·A∗kakAωk+1 is recognized by the following Büchi
automaton:

x1 · · · xk xk+1

A1

a1 ak−1

Ak

ak

Ak+1

Now, every ω-polynomial can be recognized by a finite union of such automata. “3⇒ 1”:
Every partially ordered one-way Büchi automaton is a special case of a po2-Büchi automaton.

�

Lemma 1 Let A and B be complete po2-Büchi automata and let nA and nB be the lengths of
the longest chains in the state sets of A and B, respectively. Then for every α ∈ L(A)∩L(B)
there exists an ω-monomial Pα of degree at most nA+nB−2 such that α ∈ Pα ⊆ L(A)∩L(B).
In particular,

L(A) ∩ L(B) =
⋃

α∈L(A)∩L(B)

Pα

is an ω-polynomial, since there are only finitely many ω-monomials of degree at most nA +
nB − 2.

Proof: Let α ∈ L(A) ∩ L(B) and consider an accepting computation of A and an accepting
computation of B. For these computations, we define the factorization α = u1a1 · · ·ukakβ with
ai ∈ Γ, ui ∈ Γ∗, and β ∈ Γω such that the positions of the markers ai are exactly those where
a state change happens in at least one of the computations. In each traversal of one of the
factors ui and β, the letters in these factors correspond to self-loops on the respective states
in both computations. Hence, Pα = A∗1a1 · · ·A∗kakBω with Ai = alph(ui) and B = alph(β)
satisfies α ∈ Pα, Pα ⊆ L(A), and Pα ⊆ L(B). �

5

4 Deterministic po2-Büchi Automata

This section contains the main contribution of our paper, namely that the class of languages
recognizable by deterministic po2-Büchi automata is exactly the fragment ∆2 of first-order
logic. Our proof relies on a characterization of ∆2 in terms of restricted unambiguous ω-
polynomials [4].

As an intermediate step, we show in Theorem 2 that deterministic po2-Büchi automata are
effectively closed under Boolean operations. The proof is split into two parts: First, we show
the closure under complementation in Lemma 2. This result is surprising in the sense that for
general deterministic one-way Büchi automata (not necessarily partially ordered), the same
result does not hold. Proposition 1 gives an effective construction on deterministic po2-Büchi
automata recognizing the union and the intersection of two languages given by deterministic
po2-Büchi automata.

Theorem 2 The class of languages recognized by deterministic po2-Büchi automata is effec-
tively closed under complementation, union, and intersection.

Proof: Effective closure under complementation of po2-Büchi automata will be shown in
Lemma 2. Effective closure under positive finite Boolean combinations is Proposition 1. �

Lemma 2 The class of languages recognized by deterministic po2-Büchi automata is effec-
tively closed under complementation. Moreover, the complement automaton has at most one
additional state and it can be computed in polynomial time.

Proof: Let A be a complete deterministic po2-automaton. For every word α we have a unique
computation. Therefore, every word α uniquely determines a stationary state xα, and α is
accepted by A if and only if xα is final. Thus complementing the set of final states yields
a deterministic po2-automaton A with L(A) = Γω \ L(A). We note that complementing F
with respect ot the right-moving states X instead of all states Z is sufficient. Obviously, the
necessary computations can be done in polynomial time. We might need to add one state in
order to make A complete. �

Proposition 1 The class of languages recognized by deterministic po2-Büchi automata is ef-
fectively closed under union and intersection.

Proof: Let A1 and A2 be complete deterministic po2-Büchi automata. We give a product
automaton construction A recognizing L(A1) ∩ L(A2). With a different choice of the final
states, the same automaton also recognizes L(A1) ∪ L(A2). We start with a description of
the general idea of our construction. Details are given below. The automaton A operates in
two modes: the synchronous mode and the asynchronous mode. In the synchronous mode A
executes both automata at the same time until at least one of them changes to a left-moving
state. Then A changes to the asynchronous mode by activating a left-moving automaton
and suspending the other one. The position where this divergence happens is called the
synchronization point. We stay in the asynchronous mode until the synchronization point is
reached again. In a complete partially ordered automaton this must happen eventually. If the
two automata now agree on going to the right, we switch back to the synchronous mode; else
the process is repeated.

6

In order to recognize the synchronization point while executing the active automaton in
the asynchronous mode, A administers a stack of letters and a pointer on this stack. The stack
records the letters which led to a state change during synchronous mode in at least one of the
automata. The corresponding positions of the word are called marker positions and its labels
are markers. Let a1 · · · am be the sequence of markers encountered during the computation
and let p1 < · · · < pm be the respective marker positions. Changing from synchronous mode to
asynchronous mode involves a state change of one of the automata A1 and A2. In particular,
if A is in the asynchronous mode, then am is the label of the synchronization point pm. Since
both automata are deterministic, we have that for every 1 ≤ k ≤ m the prefix of the input of
length pk is the shortest prefix admitting a1 · · · ak as a (scattered) subword. Our construction
takes advantage of this observation for detecting the synchronization point and in order to
keep the pointer up to date while simulating the active automaton. The semantics of the
pointer is as follows: If it points to a marker ak then the current position q of A is in the
interval [pk−1; pm] and moreover, ak · · · am is a scattered subword of the factor induced by the
interval [q; pm]. Here, we set p0 = 0 to be the position of the left end marker . for convenience.
If the head is on an am-position and the pointer points to this marker, i.e., to the top of the
stack, then we can deduce q = pm, i.e., that we have reached the synchronization point. Now,
if A is at an ak−1-position and moves to the left afterward, then it is quite possible that we are
to the left of pk−1. But we cannot be to the left of pk−2 and we know that now the subword
ak−1 · · · am appears before pm. Thus we adjust the pointer to ak−1. On the other hand, if we
scan ak, then we know that we are at a position ≥ pk since ak cannot appear in the interval
(pk−1; pk). Moreover, the subword ak+1 · · · am still appears before pm. Therefore, we adjust
the pointer to ak+1, if after reading ak the automaton moves to the right.

What follows are the technical details of this construction. For i ∈ {1, 2} let Ai =
(Zi,Γ, δi, x

0
i , Fi) with Zi = Xi ∪̇ Yi. We construct A = (Z,Γ, δ, x0, F) with Z = X ∪̇ Y

satisfying the following constraints:

• Z ⊆ (Γ∗×X1×X2)∪ (Γ∗×Z1×Z2×N×{A1,A2}). The states of the first term in the
union are for the synchronous mode. The first component is the stack of markers. Its
size is bounded by |X1|+ |X2|. For the asynchronous states, the fourth component is the
pointer to the stack of markers and the fifth component specifies the active automaton.

• Y = Z ∩
(
(Γ∗ × Y1 × Z2 × N × {A1}) ∪ (Γ∗ × Z1 × Y2 × N × {A2})

)
and X = Z \ Y .

So the left-moving states of A are exactly those where in asynchronous mode the active
component is left-moving.

• x0 = (ε, x01, x
0
2), i.e., at the beginning A is in the synchronous mode, the stack of markers

is empty, and both automata are in their initial state.

• For recognizing the intersection we set F = Z ∩ (Γ∗ × F1 × F2). For recognizing the
union we set F = Z ∩

(
(Γ∗ × F1 ×X2) ∪ (Γ∗ ×X1 × F2)

)
.

Next, we describe the transitions z a z′ of A. Let z = (w, z1, z2) when A is in synchronous
mode, and z = (w, z1, z2, k, C) otherwise. Furthermore, let z1 a z′1 in A1 and let z2 a z′2 in
A2. Suppose that A is in synchronous mode, i.e., z ∈ Γ∗ ×X1 ×X2. Let

w′ =

{
w if z′1 = z1 and z′2 = z2,
wa else,

7

i.e., push the symbol to the stack if the state of at least one automaton changes. We set

(w, z1, z2) a

(w′, z′1, z

′
2) if z′1 ∈ X1 and z′2 ∈ X2,

(w′, z′1, z2, |w′|,A1) if z′1 ∈ Y1,
(w′, z1, z

′
2, |w′|,A2) else,

i.e., we stay in synchronous mode if both automata agree on moving right for the next step, we
suspend the second automaton if A1 wants to move to the left (independent of the direction
of A2), and we suspend the first automaton when it wants to move to the right but A2 wants
to move to the left. Consider now an asynchronous state z ∈ Γ∗ × Z1 × Z2 × N × {A1,A2}.
First we deal with the special case of reading the last remaining letter of the stack, i.e., a is
the last letter of w and the pointer is |w|:

(w, z1, z2, |w|, C) a

(w, z′1, z

′
2) if z′1 ∈ X1 and z′2 ∈ X2,

(w, z′1, z2, |w|,A1) if z′1 ∈ Y1,
(w, z1, z

′
2, |w|,A2) else.

The first case is that both automata now agree on the direction of moving to the right and
then we change to synchronous mode. If not, the right-moving automaton is suspended. If
both are left-moving, then A2 is suspended. For the other situations we only consider the case
of C = A1 being active. The case C = A2 is similar.

(w, z1, z2, k,A1) a

(w, z′1, z2, k − 1,A1) if z′1 ∈ Y1 and ak−1 = a,
(w, z′1, z2, k + 1,A1) if z′1 ∈ X1 and ak = a,
(w, z′1, z2, k ,A1) else.

Since A1 is active, we simulate this automaton. The fourth component never gets greater
than |w|, since scanning the last remaining symbol is treated differently.

One can verify that A is partially ordered. The main idea is that between any increase
and any decrease of the pointer (and also between any decrease and any increase), the state
of the active automaton changes.

Let n1 and n2 be the length of a maximal chain of states in X1 and X2, respectively.
The size of the stack in the first component is bounded by n = n1 + n2 − 2. Therefore,
the construction can be realized by an automaton with at most |Γ|n|Z1||Z2|(1 + 2n) states.
Moreover, the construction is effective. �

Proposition 2 Every restricted unambiguous ω-monomial is recognized by a deterministic
po2-Büchi automaton.

Proof: Let L = A∗1a1 · · ·A∗kakAωk+1 be unambiguous such that {ai, . . . , ak} 6⊆ Ai for all 1 ≤
i ≤ k. This implies ai 6∈ A1 for some i ≥ 1. Let i be minimal with this property. For each
α ∈ L we consider the factorization α = uaiβ with ai 6∈ alph(u). There are two cases:

u ∈ A∗1a1 · · ·A∗i , β ∈ A∗i+1ai+1 · · ·A∗kakAωk+1 or
u ∈ A∗1a1 · · ·A∗j , ai ∈ Aj , β ∈ A∗jaj · · ·A∗kakAωk+1

with 2 ≤ j ≤ i. In each case, the expression B = A∗jaj · · ·A∗kakAωk+1 is unambiguous, because
L is. Moreover, it is shorter than the expression for L, and we have {a`, . . . , ak} 6⊆ A` for

8

all j ≤ ` ≤ k. By induction, B is recognized by some complete deterministic po2-Büchi
automaton B.

The unambiguous monomials A = A∗1a1 · · ·A∗j ∩ (Γ\{ai})∗ are accepted by a deterministic
po2-Büchi automaton A operating on finite words [11]. We modify this automaton in order
to use the letter ai instead of / as a right end marker.

From these two automata, we now construct a new automaton C accepting the ω-language
AaiB. First, C checks whether there exists some ai-position. If so, C returns to the first letter
of the word and starts a simulation of A. If this automaton accepts the word, i.e., u ∈ A,
then C moves its head to the position after the first ai-position and starts an automaton B′.
The automaton B′ simulates B but ensures that left-scanning for a letter is only successful if
this letter is found before the first ai, i.e., if there is still an ai on the left. There are at most
i cases from above for a word α ∈ L and therefore, L is a union of finitely many languages
of the form AaiB recognized by deterministic po2-Büchi automata. Using Proposition 1 the
statement follows.

In the following, we describe the construction of B′ from B. The basic idea is that before
we make a transition from a left-moving state to a right-moving state, we verify that there is
an ai on the left-hand side. If this verification is successful, then the automaton returns to the
position from where it started the verification (this is possible since B is deterministic), and
finally, the automaton makes the original transition of B. Note that in a left-moving state,
there must eventually be a transition to a right-moving state, since B is complete.

For a state z of B, we define Bz to be the automaton induced by all states which occur in
some path from the initial state to z. Consider a transition y b x from y ∈ Y to x ∈ X in
B. We replace this transition by a sequence of transitions checking that there is an ai to the
left of the current position. If this is successful, we return to the first ai and give control to
By which brings the automaton directly to the position where the procedure started (without
any occurrence checking of ai involved). Finally, we add a transition ŷ b x where ŷ is the
state corresponding to y in By. This transition is eventually performed in B′ if the transition
y b x is performed in B and thereafter B′ continues simulating B. �

The following lemma shows the converse of Proposition 2. Our proof reuses techniques
from the proof of Lemma 1 which in turn yields a different proof as the one for finite words
in [11].

Lemma 3 Let A be a deterministic po2-Büchi automaton. Then L(A) is a restricted unam-
biguous ω-polynomial.

Proof: Let α ∈ L(A) and consider the accepting computation of A on α. For this computation,
we define the factorization α = u1a1 · · ·ukakβ with ai ∈ Γ, ui ∈ Γ∗, and β ∈ Γω such
that the positions of the markers ai are exactly those where a state change happens in the
computation. In each traversal of one of the factors ui and of the suffix β, the letters in
these factors correspond to self-loops on the respective states in the accepting computation.
Hence Pα = A∗1a1 · · ·A∗kakBω ⊆ L(A) for Ai = alph(ui) and B = alph(β). Moreover, Pα is
unambiguous, since A is deterministic. When moving from the starting position 1 to some
ai-position with a state change, then there exists a state change at some marker aj with j ≥ i
and aj 6∈ alph(ui), otherwise there would be no marker positions after the factor ui. Hence,
Pα is a restricted unambiguous ω-monomial. It follows

L(A) =
⋃

α∈L(A)

Pα

9

and this union is finite, since the degree of each ω-monomial Pα is bounded by the number of
states in A and there are only finitely many ω-monomials of bounded degree. �

Theorem 3 Let L ⊆ Γω. The following assertions are equivalent:

1. L is recognized by a deterministic po2-Büchi automaton.

2. L is ∆2-definable.

Proof: An ω-language L is ∆2-definable if and only if L is a restricted unambiguous ω-
polynomial [4]. The implication “1 ⇒ 2” is Lemma 3. For “2 ⇒ 1” let L be a restricted un-
ambiguous ω-polynomial, i.e., a finite union of restricted unambiguous ω-monomials. Propo-
sition 2 shows that each of these ω-monomials is recognized by a deterministic po2-Büchi
automaton, and Proposition 1 yields an automaton for their union. �

Example 1 The ω-language L = {a, b}∗ a ∅∗c {c}ω is a restricted unambiguous ω-monomial.
By Theorem 3 it is recognized by a deterministic po2-Büchi automaton. Moreover, L is not
recognizable by a deterministic partially ordered one-way Büchi automaton. Hence, the class
of ω-languages recognizable by deterministic partially ordered one-way Büchi automata is a
strict subclass of the class recognizable by deterministic po2-Büchi automata. ♦

5 Complexity Results

In this section, we prove some complexity results for the following decision problems (given
po2-Büchi automata A and B):

• Inclusion: Decide whether L(A) ⊆ L(B).

• Equivalence: Decide whether L(A) = L(B).

• Emptiness: Decide whether L(A) = ∅.

• Universality: Decide whether L(A) = Γω.

Theorem 4 Emptiness is coNP-complete for both nondeterministic and deterministic po2-
Büchi automata. Inclusion, Equivalence and Universality are coNP-complete for de-
terministic po2-Büchi automata; for Inclusion this still holds for nondeterministic A.

Lemma 4 Inclusion is in coNP for nondeterministic A and deterministic B.

Proof: Let ZA and ZB be the states ofA and B, respectively. We have L(A) ⊆ L(B) if and only
if L(A)\L(B) = ∅. By Lemma 2 we see that we can easily compute a deterministic po2-Büchi
automaton B such that L(B) = Γω \ L(B). If L(A) ∩ L(B) 6= ∅, then, by Lemma 1, there is a
word u with |u| ≤ |ZA|+ |ZB| and a letter a ∈ Γ such that uaω ∈ L(A)∩L(B) = L(A)\L(B).
We might have to add one state in each of A and B for making them complete. Therefore,
in order to test L(A) 6⊆ L(B), it suffices to guess a word u of length at most |ZA| + |ZB|
and a letter a ∈ Γ with uaω ∈ L(A) ∩ L(B). Hence, non-inclusion can be verified in NP, i.e.,
Inclusion is in coNP. �

10

Lemma 5 Emptiness is coNP-hard for deterministic po2-Büchi automata.

Proof: We shall reduce the complement of satisfiability to Emptiness. Let ϕ be a proposi-
tional formula and let v1, . . . , vm be the variables used in ϕ. We give the construction of a
deterministic po2-automaton Aϕ over the alphabet {0, 1} such that L(Aϕ) = ∅ if and only
if there is no valuation satisfying ϕ. The idea is that we identify the position i of the input
with the valuation of variable i for 1 ≤ i ≤ m. The rest of the input has no effect on the
computation.

Inductively we construct an automaton with the following characteristics: There are two
distinguished states xt and xf with a loop for both letters 0 and 1. No other right-moving
state has a self-loop. The state xt is eventually entered if ϕ evaluates to true under the input,
else xf is eventually entered. Moreover, xt and xf are only entered by transitions reading .
and xt is the sole final state. Hence an input is accepted if and only if eventually xt is entered,
i.e., the input defines a satisfying valuation of ϕ. In case it is rejected it eventually enters xf .

For variables vi the automaton Avi skips the first i − 1 letters of the input, remembers
the letter ai at position i and returns to the beginning of the word. If ai = 1 then A enters
xt else it enters xf . For the negation we simply swap the states xf and xt. For ϕ ∧ ψ we
compose the automata Aϕ and Aψ in the following way: The states xt and xf of Aϕ are
deleted. Transitions of Aϕ leading into state xf are redirected to the corresponding state
xf of Aψ; transitions leading into state xt are redirected to the initial state of Aψ. With a
similar composition, we get an automaton for ϕ ∨ ψ. All these constructions can be done in
polynomial time in the size of the input formula. �

Proof (Theorem 4): Taking L(B) = ∅, Lemma 4 yields that Emptiness is in coNP for
nondeterministic po2-Büchi automata. Lemma 5 shows that Emptiness is coNP-hard even
for deterministic po2-Büchi automata.

From Inclusion ∈ coNP for deterministic po2-Büchi automata, we immediately get
that Equivalence and Universality are in coNP. Moreover, the trivial reductions from
Emptiness to Universality to Equivalence and from Emptiness to Inclusion show
that all problems under consideration are coNP-hard for deterministic po2-Büchi automata.

For nondeterministic A and deterministic B, Lemma 4 shows that Inclusion is in coNP
and of course it is coNP-hard since this is already true if both automata are deterministic. �

6 Conclusion

In this paper, we introduced partially ordered two-way Büchi automata (po2-Büchi automata).
The nondeterministic variant corresponds to the fragment Σ2 of first-order logic, whereas the
deterministic variant is characterized by the fragment ∆2 = Σ2 ∩Π2. The characterization of
nondeterministic automata uses similar techniques as for finite words [11]. For deterministic
automata, our proof uses new techniques and it relies on a novel language description of ∆2

involving restricted unambiguous ω-polynomials [4]. As an intermediate step it turns out that
the class of ω-languages recognized by deterministic po2-Büchi automata is effectively closed
under Boolean operations.

The complexity of the Emptiness problem for both deterministic and nondeterministic
po2-Büchi automata is coNP-complete. For deterministic po2-Büchi automata the decision
problems Inclusion, Equivalence, and Universality are coNP-complete. To date, no

11

non-trivial upper bounds are known for these decision problems over nondeterministic au-
tomata. Moreover, the complexity of the decision problems for general two-way Büchi au-
tomata as well as the succinctness of this model have not yet been considered in the literature.

Considering fragments with successor would be a natural extension of our results. An
automaton model for the fragment ∆2 with successor over finite words has been given by
Lodaya, Pandya, and Shah [8] in terms of deterministic partially ordered two-way automata
with look-around. We conjecture that extending such automata with a Büchi acceptance
condition yields a characterization of ∆2 with successor over infinite words.

References

[1] Ch. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[2] J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. Int.
Congr. for Logic, Methodology, and Philosophy of Science, pages 1–11. Stanford Univ.
Press, 1962.

[3] E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.

[4] V. Diekert and M. Kufleitner. Fragments of first-order logic over infinite words. STACS
2009, volume 09001 of Dagstuhl Seminar Proceedings, pages 325–336, 2009.

[5] Ch.A. Kapoutsis. Removing bidirectionality from nondeterministic finite automata.
MFCS 2005, volume 3618 of LNCS, pages 544–555. Springer, 2005.

[6] O. Kupferman, N. Piterman, and M.Y. Vardi. Extended temporal logic revisited. CON-
CUR 2001, pages 519–535, 2001. Springer.

[7] K. Lodaya, P.K. Pandya, and S. S. Shah. Marking the chops: an unambiguous temporal
logic. IFIP TCS, 273:461–476, 2008.

[8] K. Lodaya, P.K. Pandya, and S. S. Shah. Around dot depth two. DLT 2010, volume
6224 of LNCS, pages 305–316, 2010.

[9] J.-P. Pécuchet. Automates boustrophédon et mots infinis. Theoretical Computer Science,
35:115–122, 1985.

[10] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of Com-
puting Systems, 30(4):383–422, 1997.

[11] Th. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A
new characterization of DA. DLT 2001, volume 2295 of LNCS, pages 239–250. Springer,
2001.

[12] A. P. Sistla, M. Y. Vardi, and P. L. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2-3):217–
237, 1987.

[13] D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier
alternation. STOC 1998, pages 234–240, 1998.

[14] W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and
System Sciences, 25:360–376, 1982.

[15] M.Y. Vardi. Reasoning about the past with two-way automata. ICALP 1998, pages
628–641, 1998. Springer.

12

	Introduction
	Preliminaries
	Partially Ordered Two-way Büchi Automata

	Nondeterministic po2-Büchi Automata
	Deterministic po2-Büchi Automata
	Complexity Results
	Conclusion

