
Interprocedural Static Single Assignment Form in Bauhaus

Stefan Staiger Gunther Vogel Steffen Keul
Eduard Wiebe

Institute of Software Technology
University of Stuttgart

{staiger, vogel, keul, wiebe}@informatik.uni-stuttgart.de

Technical Report TR 2007/03

Abstract

In this paper we describe interprocedural static single
assignment form (ISSA) with optimizations as implemented
in the Bauhaus project. We explain our framework which
uses an abstract program representation enabling us to use
different pointer analyses ranging from fast but imprecise
to slow but precise ones. Our implementation includes the
computation of (may and must) side effects and optimiza-
tions like pruning definitions with simple linear-time algo-
rithms. This paper also provides comprehensive test results
and statistics for a large test suite.

1. Introduction

Analyzing programs is an important activity in both
compiler construction (see [23]) and software reengineer-
ing. Such analyses gather information about the program
being compiled or reengineered. Many of these analyses
need to know the data flow in the program. For exam-
ple, wherever a variable is used in the program, we want
to know the assignments (“definitions” in compiler termi-
nology) that could have set the value used there. A first
idea here is to insert pointers from all uses of a variable to
all definitions reaching that use. Static single assignment
(SSA) form [8] simplifies this situation in that every use
of a variable in SSA form refers to exactly one definition.
To achieve this, the construction algorithm for SSA form in-
serts artificial definitions wherever different definitions may
reach a certain point.

In this paper we consider an extension to the classical
SSA form, namely interprocedural SSA form (ISSA). Al-
though much work was published on SSA in the last decade
(e.g. [3, 23, 27]), a clear description of what ISSA form
looks like and how it can be constructed is still missing. To

the best of our knowledge, the only publications mention-
ing this topic are from Liao [20] and focus on a different
application (semi-automatic parallelization).

Constructing ISSA form has to face several challenges.
To stay conservative, it is necessary to include side effects
of subprogram calls in the construction process. Moreover,
since no pointer analysis is superior [13], an implementa-
tion should be able to support different pointer analyses. In
this paper we describe our ISSA implementation which ad-
dresses these problems. We explain our abstract program
representation that serves as an interface to pointer analy-
sis and how it is created. Based on that representation, we
create the graph of definitions and uses. We furthermore
provide a simple and efficient algorithm which prunes ISSA
form and improves side-effect information.

ISSA analysis as described in this paper was imple-
mented in the context of the Bauhaus project [25] which
offers a comprehensive infrastructure of tools and libraries
for program analyses.

The structure of the paper is as follows: Section 2 re-
views basics on SSA and discusses related work and appli-
cations. Section 3 gives an overview of our ISSA analysis
and describes some challenges a real-world implementation
has to cope with. In Section 4 we continue with the de-
scription of our abstract program representation that serves
as an interface to pointer analysis. Section 5 explains how
this program representation can be constructed, including
the computation of side effects. Then Section 6 clarifies
the construction of ISSA form and Section 7 shows use-
ful and fast optimizations which improve precision and re-
duce complexity. Section 8 provides statistics and results
for our test suite. In Section 9 we describe details on our
concrete implementation in Bauhaus before we draw our
conclusions in Section 10. Compared to the conference pa-
per [29], this technical report contains extended sections,
results for a larger test suite, and an additional section on
the implementation in Bauhaus.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147541093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. SSA: basics, variants, and related work

Static single assignment form (SSA) became popular
mostly through the classical paper by Cytron et al. [8]. The
key property of SSA is that every use of a variable refers to
exactly one definition or, equivalently, that the definition of
a variable dominates every use. This means that a variable
is a name of a value (in the mathematical sense) and not of
a storage place and implies correspondence between SSA
and functional programming [2, 16].

To achieve the goal of one definition, it is not enough to
rename a variable with every new definition. Furthermore,
we must introduce artificial definitions wherever two dis-
tinct definitions merge (e.g., at a join point in control flow)
or wherever a potential definition might override another
definition (e.g., an assignment through a pointer). These
artificial definitions are traditionally called φ-nodes or φ-
functions: they take different names of the same variable
(i.e., different reaching definitions) as input and produce a
new definition as output.

Nowadays, we know of different versions of SSA. These
versions differ in the number of φ-nodes they introduce.
Obviously, client analyses using SSA form become faster
and consume less memory if less φ-nodes are produced.
However, reducing the number of φ-nodes slows down the
calculation of SSA form. We thus have to choose the SSA
version that best fits our needs in this trade-off between the
speed of SSA construction and the speed of client analyses
thereafter.

The first SSA version is called minimal [8], although it
produces the most φ-nodes among the versions discussed
here. It inserts such nodes at every control-flow join for all
variables for which different definitions reach that join. This
sometimes inserts nodes that are not live, i.e. the new defini-
tion introduced by such nodes is not used anywhere. These
superfluous φ-nodes are removed in the so-called pruned
SSA version. However, to achieve that, a solution to the
live-variable problem must be computed and thus construct-
ing pruned SSA form takes longer than the construction of
minimal SSA version.

A compromise was invented by Briggs et al. [3] with
the semi-pruned SSA version which removes only those φ-
nodes that belong to variables which are not live at the be-
ginning of any basic block. Determining these variables is
much cheaper than solving live-variable analysis, and es-
pecially compiler-generated variables are only live within
a single basic block and are thus already ruled out by this
simple strategy.

These SSA versions were all described as intraprocedu-
ral analyses; in contrast, our ISSA analysis is interprocedu-
ral, respecting data flow across procedure boundaries.

2.1. Related work

The work that is closest to ours is from Liao [20]. In
contrast to his work on ISSA, we include must-def side-ef-
fect computation, different pointer analyses, optimizations
like pruning ISSA form and comprehensive test results.

Besides SSA form, other data structures were proposed
to capture the data flow in a program. For example,
Singer [27] discusses static single information form (SSI),
which is a symmetric extension of SSA: if there are uses of
a variable in different alternative branches of the CFG, then
this intermediate representation introduces new definitions
for every branch. Muchnick [23] describes Webs, which are
maximal unions of def-use chains sharing a common use.

Ottenstein introduced program dependence graphs
(PDGs) [24] for the use in software development, debug-
ging and compilers. Those graphs represent statements and
predicates of a subprogram as vertices and dependencies
as edges. This permits the formulation of advanced pro-
gram analyses such as slicing [33] as simple graph traver-
sals. Considerable work was done that deals with the con-
struction of those graphs. It is obvious that once the data
(and control) dependencies have been established (e.g. in
SSA form), the construction of PDGs is simple. Krinke [18]
presented a construction method that applies dataflow anal-
yses to establish the def-use relations. Another approach
[11, 12, 21, 22] uses syntax directed methods and interval
analysis but has limitations with unstructured control flow
and can only provide rudimentary support for languages
with pointers.

Horwitz et al. [15] developed system dependence graphs
(SDGs) as an extension of program dependence graphs
which represent a whole program. The general idea is to
use PDGs for the representation of each subprogram and
link those graphs to model the effects of subprogram calls.
For call sites a call edge to the corresponding subprogram
is inserted. Parameter handling is made explicit by special
vertices for formal and actual parameters which are con-
nected by copy-in and copy-out edges. This modelling is
quite common in interprocedural program analyses and is
also used in our ISSA analysis. Also, we use the same con-
cepts for the handling of global variables which are treated
as parameters of subprogram calls.

Horwitz also describes how calling contexts with dif-
ferent alias configurations can be distinguished. With our
framework we are not only able to model contexts for dif-
ferent alias patterns but for arbitrary criteria which might
have an effect on the data dependencies (e.g. constraints
on values of actual parameters or restrictions on the flow of
control in the called subprogram).

Much work was done that shows how to build depen-
dence graphs in the presence of pointers [6, 14, 19] but the
presented methods are always specific to one pointer analy-

2

sis and use restricted languages, e.g. pointers may only refer
to heap objects. In contrast, our framework can be used with
arbitrary pointer analyses and is independent from a specific
source language. We already support full ANSI C and C++.
Frontends for Java are currently being integrated.

Hind identifies characteristics of pointer analyses (flow-
sensitivity, context-sensitivity, heap modeling, aggregate
modeling) in [13]. But until today their impact on scal-
ability as well as precision of client analyses is not fully
understood. Ryder et al. compare the results of side-effect
analyses based on flow and context sensitive pointer anal-
yses and argue that for some applications sensitivity might
be required [26, 31]. Our framework generically supports
all characteristics of Hind and does not impose any limita-
tions on the accuracy of the base analyses. This will help
us to gain more insight into the relationship between base
and client analyses, and it will enable us to optimally select
a base analysis for the application requirements.

2.2. Applications of ISSA

We motivate the consideration of ISSA by presenting
some of the current and intended applications in software
reengineering.

SSA forms can be utilized to find anomalies in the us-
age of variables, e.g. unreferenced variables, uninitialized
variables, and unnecessary assignments where the assigned
value is never read. Many compilers compute intraproce-
dural SSA forms and give warnings when such situations
are detected. But the results are necessarily imprecise be-
cause only one routine is analyzed and no accurate informa-
tion about the side effects of calls is available. In this paper
we describe ISSA form that helps to precisely detect such
anomalies for the whole program.

The data-flow information stored in the ISSA form can
be used to navigate the source code and other program rep-
resentations and helps in gaining a better understanding of
the source code and its inherent relations. The implemen-
tation of program slicing in Bauhaus is based on the ISSA
form. Backward slicing allows us to identify all statements
that affect a given variable at a certain location. Forward
slicing yields all statements that are affected by a certain
statement. Both algorithms perform interprocedural traver-
sals of the ISSA form and take summary edges for the pre-
cise handling of calling contexts into account.

Data-flow information can not only be utilized for de-
bugging and low-level program understanding, but also to
extract global design information. Data dependencies be-
tween two components reveal communication and show that
the components interact. Moreover, component recovery
techniques [17] can benefit from taking data-flow informa-
tion into account by grouping elements with high cohesion
into the same component [5].

Client analyses often suffer from inaccurate results pro-
duced by flow-insensitive base analyses. Those results can
be improved by additionally taking data-flow edges back to
an allocation site into account. For example, the extraction
of object trace graphs for protocol recovery requires locat-
ing all operations on one specific object [10]. Especially for
heap objects, this analysis strongly depends on the quality
of the pointer analysis. With the help of ISSA form, we
can improve flow-insensitive pointer information, improv-
ing both precision as well as efficiency of the client analy-
sis. The computation of the ISSA form itself also suffers
from imprecise pointer analyses because it uses an overesti-
mation of actual accesses to variables. After a first compu-
tation of ISSA form, one can try to gain optimized points-to
information from the ISSA form and use this in a recalcu-
lation of ISSA form. Before as well as after the recalcu-
lation, the ISSA form is consistent and conservative, thus
this scheme can be iterated as often as desired, e.g. until the
improvement is below a specific value.

Our static analysis of graphical user interfaces (GUI)
uses data-flow information to determine which expressions
designate the same widgets [28]. This is needed to detect
the widget hierarchies of which an application’s windows
consist. Similarly, data-flow information is used to asso-
ciate events and attributes with widgets in these hierarchies.
The ISSA form described in this paper is used to infer such
data-flow connections.

3. Overview of ISSA

Classical SSA form only handles local variables. ISSA
is an extension which additionally also handles global vari-
ables and subprogram parameters, respecting the data flow
across procedure boundaries. ISSA as described in this pa-
per stays close to intraprocedural SSA in that we basically
treat global variables and parameters like local variables.
To achieve this, we need to know the side effects a subpro-
gram may transitively (that is, including the effects caused
by subprograms called within that subprogram and so on)
issue on a global variable. Then we can respect the data flow
across procedure boundaries with special actions before and
after call sites and at the beginning and end of subprograms.
Section 6 describes this aspect in more detail.

However, an interprocedural analysis has to cope with
additional problems. First of all, since we need calling rela-
tionships between subprograms, ISSA construction is based
on the callgraph and thus suffers from imprecision related to
function pointers and calls to virtual functions. Moreover,
a well-known problem for interprocedural analyses are un-
realizable paths that might be present in the interprocedural
control-flow graph. Other problems related to control-flow
analysis include explicit halts and exception handling which
introduce further complexity. The ISSA algorithm relies on

3

the results of control-flow analysis and is therefore directly
affected from how that pre-analysis copes with the problems
mentioned and how the results are represented.

Another problem arises from pointers and aliasing “hid-
ing” the elements affected by a statement. To achieve good
precision, it is therefore necessary to cope with pointers and
aliases. However, pointer analysis is a complicated topic of
its own and until today there is no pointer analysis clearly
superior to other pointer analyses. Rather, it seems like dif-
ferent pointer analyses are needed for different programs
and analysis goals. Creating ISSA form should thus be pos-
sible with many different pointer analyses.

A further improvement in the precision can be achieved
if we allow a subprogram to be analyzed in different con-
texts. That is, the ISSA algorithm should have the option
to be context-sensitive. Since the value of such a context-
sensitivity depends on the pointer analysis used, this can be
seen as a noteworthy part of the requirement that we should
be prepared for different pointer analyses.

Finally, another difficulty arises from arrays and struc-
tures. These composite data types make it hard to de-
cide which part of the storage is actually modified or used.
Again, this is a topic for pointer analysis that must be con-
sidered when designing ISSA analysis.

The following sections provide a detailed description of
our framework for ISSA analysis which copes with these
problems. The steps that must be executed for ISSA gener-
ation can in short be summarized as follows:

1. A frontend extracts an annotated abstract syntax graph
for the full source program.

2. A local control-flow analysis creates intraprocedural
control-flow graphs for all subprograms.

3. A pointer analysis is executed that provides approxi-
mations for the effects of pointers and determines the
targets of indirect or dispatching calls.

4. A program representation with abstract variables and
instances of subprograms distinguishing different con-
texts is created.

5. May-def and may-use side effects are computed.

6. Data-flow edges for parameters and global variables
are inserted at call sites.

7. Intraprocedural SSA form is created for every context.

8. Optionally, ISSA form is pruned and must-def side ef-
fects are determined.

4. Abstract program representation for ISSA

ISSA analysis can be combined with different pointer
analyses, e.g. those implemented in Bauhaus: Steensgaard
[30], Das [9], Andersen [1] and Wilson [34]. The program
representation which allows this is conceptually an inter-
procedural control-flow graph (ICFG) with the special fea-
ture that the CFG for a single subprogram can appear mul-
tiple times. That is, we consider instances of subprograms.
These instances are used to distinguish different contexts
in which some subprogram appears. For example, Wil-
son’s pointer analysis computes summaries per alias pat-
tern among the parameters of a subprogram. In our model,
Wilson’s analysis therefore creates a new instance of the
subprogram for every such alias pattern. Note that we can
also handle recursive subprograms for which pointer analy-
sis uses an approximation to avoid infinitely many replica-
tions. We call our variant of the ICFG a context-sensitive
control-flow graph (CS-CFG) and we call the subprogram
instances contexts.

As we can see, the CS-CFG used in our model depends
on the pointer analysis: pointer analysis determines which
contexts are created and how they are connected. Also, dif-
ferent pointer analyses store different results and additional
data per context; that is, the internal data structure for con-
texts is determined by the pointer analysis, too. More details
on this are given in Section 9.

Using instances of subprograms instead of the original
subprogram is one part of our abstraction. The other part
concerns the variables in the program: we replace original
variables with abstract variables called locators. ISSA anal-
ysis considers locators to be atomic; that means they do not
have an internal structure and do not consist of parts. The
key property of these locators is that they do not overlap,
at least locally: the memory locations designated by a lo-
cator are only accessed via this locator; other locators are
no aliases, not even for parts of the memory regions. This
is enforced locally, i.e. for all locators in the same context.
We do not enforce this globally since we want to treat global
variables later on like local ones, using different locators for
one global variable in different contexts. The purpose of the
restriction of (local) alias-freeness is that definitions of a lo-
cator will have no effect on other locators. Other restrictions
are not imposed by our ISSA framework.

Creating locators is based on the pointer analysis but is a
separate phase that can be reused for similar pointer analy-
ses. We can freely choose to collapse several original vari-
ables into one locator or to split structures into several lo-
cators, so long as the key property of local alias-freeness is
guaranteed. A locator can be used to represent any kind of
memory elements, like variables and heap objects. The next
section gives more details about the generation of locators
and the CS-CFG in general.

4

Context−
Call

Parameter

Local Variable/

represents

CallgraphCS−Callgraph

Locator

Context Subprogram

Global Variable

Heap Object

Locator−

Mapping

target

source

for

of

for

target

source

for

source

d
e
c
la

re
d
−

in

a
llo

c
a
te

d
−

in

b
e
lo

n
g
s
−

to

ta
rg

e
t

CS−Representation Source Code

Subprog−
Call

Call−Site

Figure 1. Abstract program representation

ISSA construction also requires that the abstract program
representation distinguishes uses and definitions of locators.
It is, however, enough to provide may-use and may-def ac-
cesses, stronger “must” information is not needed (and can
be inferred later, after ISSA construction; see Section 7).
Providing these access kinds for directly visible effects is
straight-forward. However, for function calls we can not
easily decide which locators are affected and in which way.
It is therefore also necessary to determine may-use and
may-def side effects to come up with a valid program rep-
resentation for ISSA construction.

Figure 1 shows a summary of our representation. On the
right hand side, it shows the relevant entities of the source
code, like subprograms and variables. On the left we can
see the corresponding entities in our context-sensitive rep-
resentation. Here, locators are used as an abstraction for all
sorts of variables, and contexts are used instead of subpro-
grams. The figure also contains the locator mapping needed
in general to map locators between callers and callees.

5. Creating the program representation

This section describes how we generate the program rep-
resentation for ISSA construction sketched in the previous
section. The description given here is based on context- and
field-insensitive pointer analyses. Remarks for other pointer
analyses can be found in Section 5.3.

5.1. Locators for local accesses

Context-insensitive pointer analyses do not distinguish
different contexts for subprograms and thus create a CS-
CFG containing exactly one instance of every subprogram.
In this case, the CS-CFG is identical to the standard ICFG.
We can therefore concentrate on the description of how lo-

cators are generated for pointer analyses like the one by
Steensgaard. In fact, our locator generator is not part of
the pointer analysis and is thus applicable to other, similar
analyses, namely those of Das and Andersen.

The easiest way to create locators would be to create one
locator for every equivalence class of variables determined
by Steensgaard’s analysis. This strategy easily meets our
requirement that no two locators in the same context are
aliases. Another advantage is that all accesses in the pro-
gram then refer to exactly one locator. However, this gen-
eration of locators for each equivalence class is quite im-
precise. The variables can not be further distinguished, e.g.
when one variable is directly accessed.

We call this strategy equivalence-class sensitive. Our ab-
stract program representation allows other strategies to rep-
resent variables (or parts) by locators, listed here in increas-
ing order of precision:

1. equivalence-class sensitive – one locator for multiple
variables

2. variable sensitive – one locator for each variable

3. field sensitive – one locator for each non-aliased part
of a variable

Note that the term equivalence-class sensitive is used to
capture all possible strategies of using one locator for mul-
tiple variables. It therefore also captures the method of only
assigning locators to local aliases: locators are like local
variables of contexts and the requirement of being no alias
to another locator is only needed within a context.

We can achieve better results by generating one locator
for each variable if we make the assumption that no vari-
ables overlap in memory. Now each statement refers to
those locators which might get accessed, in general more
than one locator. We used this strategy for the generation of
our test results (Section 8) as it can easily be adjusted to all
of our context-insensitive pointer analyses.

Field-sensitive locators finally allow an even better pre-
cision by generating one locator for each non-aliased part
of a variable.

5.2. Side effects

A prerequisite for the ISSA algorithm is the knowledge
about side effects on global variables for every subprogram.
For each subprogram the set of all global variables that it
may define or may use, including transitive side effects oc-
curring inside a call issued in the subprogram’s body is cal-
culated. Some pointer analyses like the one by Wilson com-
pute these side effects on their own, but we need a separate
analysis for other analyses like the one by Steensgaard. This
section describes our algorithm for the latter case.

5

procedure V i s i t (V : C o n t e x t) i s
begin
−− l o c a l (non−t r a n s i t i v e) s i d e e f f e c t s
C o m p u t e L o c a l S i d e E f f e c t s (V) ;

Push (V) ;
DFS[V] := Head [V] := Curren t DFS ;
Curren t DFS := Curren t DFS + 1 ;
V i s i t e d [V] := True ;

f o r a l l S ∈ Succ (V) loop
i f not V i s i t e d [S] then

V i s i t (S) ;
Head [V] := Min (Head [V] , Head [S]) ;
−− p r o p a g a t e s i d e e f f e c t s o f S t o V
U p d a t e S i d e E f f e c t s (V, S) ;

e l s i f I s O n S t a c k (S) then
Head [V] := Min (Head [V] , DFS[S]) ;

end i f ;
end loop ;

i f Head [V] = DFS[V] then
−− V i s t h e head o f a SCC
loop

W := Pop () ;
e x i t when W = V;
−− p r o p a g a t e s i d e e f f e c t s o f V t o W
U p d a t e S i d e E f f e c t s (W, V) ;

end loop ;
end i f ;

end V i s i t ;

Figure 2. Computing side effects

Collecting the side effects issued locally in a subprogram
(i.e., without those effects inherited from calls) is a straight-
forward process: a simple intraprocedural analysis walks
over all statements in the body and inspects them for such
effects.

Additionally to those local side effects we propagate ef-
fects from callees to callers. This proposes a postorder
traversal of the callgraph; however, we have to cope with
cycles in that graph in general: a simple postorder traver-
sal would potentially miss some side effects and therefore
would require iterations to achieve correctness. But we note
that a cycle is in fact a simple case: all members of a cycle
transitively issue the same side effects, namely the union
of all local side effects of all subprograms in the cycle,
and those effects inherited from callees that can be reached
from anywhere in the cycle. Therefore, Tarjan’s algorithm
[32] to detect cycles is our basis for side-effect computation
without iterations. Whenever it detects a cycle, we ensure
that all members have the same set of side effects (which
is known at that time as the side effects of the cycle’s root
determined by the algorithm).

Figure 2 presents our algorithm. It shows the core
routine of the recursive depth-first search on the call-
graph corresponding to the CS-CFG. The only mod-
ifications to Tarjan’s algorithm are the additional in-
vocations of Compute_Local_Side_Effects and
Update_Side_Effects. The first of these determines
local side effects, and the second adds side effects propa-

gated from the context given as second argument to those of
the first argument. We call these propagated locators non-
locals. Nonlocals include (for C-style programs) locators
for global variables and for local variables of other subpro-
grams passed by reference (these are detected by pointer
analysis and thus occur in points-to sets).

A call Update_Side_Effects (V,S) will also
generate new locators for nonlocals which are now visible in
context V after the side effects of S have been added. Note
that, to be conservative, whenever a context has a may-def
side effect on a variable, it also has a may-use side effect on
it. This is needed because later the may-def will result in a
φ-node which potentially uses some definition from outside
the subprogram.

The algorithm visits all edges in the callgraph once and
all nodes at most twice. Computing local side effects can be
distributed over the frontend (for direct accesses to globals)
and pointer analysis and therefore adds no costs here. Up-
dating side effects due to propagation requires at worst G
insert operations per update where G is the number of non-
locals. Inserting entries into a set can be done in constant
time for example with the data structure proposed by Briggs
and Torczon [4]. If we have F contexts and E call edges
in the CS-CFG’s callgraph we therefore have total costs of
O(G∗(F+E)). Compared to the classical side-effect algo-
rithm by Cooper and Kennedy [7], we have a simpler algo-
rithm because we computed points-to sets interprocedurally
in advance, respecting reference parameters there. As our
measurements in Section 8 indicate, our algorithm is fast in
practice even for large applications. Computing side effects
has thus total costs linear in the size of the CS-CFG, which
in our example equals the size of the ICFG. The algorithm
is thus linear in the program size.

The propagation is simple and fast since we are only in-
terested in “may” side effects which are never killed in a
caller and thus finally propagate to the callgraph’s root. This
first estimation of side effects is later improved in two ways
(cf. Section 7): first, stronger “must” side effect informa-
tion can be inferred in some cases and second, we can then
also delete (“prune”) some propagated side effects.

5.3. Other pointer analyses

The above description captured pointer analyses with a
rather low precision. Our framework, however, is far more
general and can deal with many other pointer analyses. Go-
ing to field-sensitive analyses, for example, is simply a mat-
ter of locators, and going to context-sensitive analyses can
be done by creating several instances of a subprogram in
the CS-CFG. In Bauhaus we are working on an implemen-
tation of Wilson’s very precise analysis which is field- and
context-sensitive and thus exploits the power of our pro-
gram representation.

6

It is beyond the scope of this paper to also describe
the creation of the program representation for other pointer
analyses. Therefore, let us simply note that this creation
process can of course reuse some parts of the steps de-
scribed above for context-insensitive analyses. It is also
possible that some steps are not needed: Wilson’s analy-
sis for example also determines side effects and thus does
not need an additional side-effect analysis.

6. Interprocedural SSA form

We have now computed a program representation con-
sisting of our CS-CFG and locators, respecting transitive
side effects. The next steps in the analysis chain outlined in
Section 3 compute ISSA form and are described here.

6.1. Nonlocal locators and parameters

We ultimately want to treat nonlocal locators and sub-
program parameters like locals. For this to work, we have
to separately take care of the data flow across procedure
boundaries caused by these entities. Nonlocal locators (for
C-style programs) include global locators and locators for
local variables of other subprograms passed by reference.

The first step converts nonlocals to parameters. Since we
know about transitive side effects of all subprograms, this is
a straight-forward process: if subprogram f may define a
nonlocal g, g becomes an out-parameter of f; and if g is
potentially used, g becomes an in-parameter.

As shown in Figure 3, those artificial parameters are rep-
resented by pairs of Pre Call- and Post Call-nodes at the
call site and Link In- and Link Out-nodes for in- and out-
parameters of a context. Link In-nodes represent a set of
φ-nodes summarizing all in-parameters of all calls to the
same context, while Link Out-nodes act as sets of φ-nodes
summarizing the out-parameters of a call. Inside of a con-
text, Link In-nodes are treated as artificial definitions and
Link Out-nodes as artificial uses.

Note that in general a m : n mapping between locators
of the caller and the callee is necessary. Thus the actual
implementation of that mapping is not always as obvious as
shown in the example.

6.2. Creating SSA form

After preprocessing the program in this way, we can con-
struct SSA form for every subprogram (in the CS-CFG, that
is, in all contexts) in the standard way [8]. Our implementa-
tion for intraprocedural SSA follows the classical approach
and consists of two phases: determine places for φ-nodes
using iterated dominance frontiers and rename variables.
Note that may-def accesses on locators will result in φ-
nodes combining the definition with the previous one.

Paths to a may-use which bypass all definitions (produc-
ing an uninitialized variable) receive an artificial must-def
initialization in the Link In-node as usual in SSA forms.
For uninitialized nonlocals this artificial initialization is au-
tomatically inserted in the callgraph’s root because the may-
use side effect was propagated. Later, pruning is able to
remove those artificial initialization for nonlocals that are
unnecessary (see Section 7).

6.3. Complexity

Handling a parameter takes constant time for the arti-
ficial new assignments and for every call site relevant to
the parameter. Assuming that the number of parameters
per subprogram and the number of locators per variable are
bound by a (typically small) constant, we can bound the to-
tal costs for parameters by O(F + E) where F is the num-
ber of contexts in the CS-CFG and E is the number of call
edges therein. That is, parameter handling is linear in the
size of the CS-CFG’s callgraph. Note that the number of
contexts in a CS-CFG depends on the pointer analysis. For
context-insensitive analyses there is exactly one context per
subprogram, making parameter handling linear in the size
of the program’s callgraph. However, more precise anal-
yses might need a number of contexts exponential in the
program size.

For a nonlocal we need constant time for each subpro-
gram, which has a transitive side effect on it. Additionally,
we have to add constant time per call site for such a sub-
program. The costs for nonlocals can therefore be bound
by O(G ∗ (F + E)) where G is the number of nonlocals.
Finally, we run the classical SSA algorithm for all contexts
in the CS-CFG. If we denote the costs for classical SSA
with S, this adds O(F ∗ S). Therefore, ISSA construction
has total costs of O(F + E + G ∗ (F + E) + F ∗ S) =
O(F ∗ (G + S) + G ∗ E). Note that S, the costs for in-
traprocedural SSA analysis, depend on the number of local
variables, i.e. the number of locators used in the subpro-
gram instances.

7. Optimizations

In this section we consider some optimizations for side-
effect information and the ISSA form. Our algorithm con-
verts may-def accesses into must-defs wherever possible
and adjusts side effects accordingly. Additionally, it re-
moves definitions that are not needed because their result
is never used. This optimization for classical intraprocedu-
ral SSA is known as pruning.

For example, in Figure 3(a), line 9, the assignment to the
variable g is a definitive must-def. In the caller the values
represented by locators main.g and main.e are not used,
therefore the assignment to g is marked to be pruned.

7

1 # inc lude<s t d l i b . h>
2

3 i n t g ;
4

5 void f (i n t ∗x , i n t ∗y)
6 {
7 ∗x = ∗y ;
8 i f (. . .) ∗y = 1 ;
9 g = ∗x + ∗y ;

10 }
11

12

13 i n t main (i n t argc , char ∗a rgv [])
14 {
15 i n t ∗p ;
16 i n t a = 1 ;
17 i n t b = 0 ;
18

19 f (&a , &b) ;
20

21 i f (. . .) p = &a ;
22 e l s e p = m a l l o c (s i z e o f (i n t)) ;
23

24 f (p , &a) ;
25

26 re turn a − b ;
27 }

(a) Example program

Context and flow-insensitive Points-To analysis
Points-to sets

pointer targets
main::p main::a, malloc@l.22
f::x main::a, malloc@l.22
f::y main::a, main::b

Locators and Context-Mapping for both calls
context main context f
main.a f.a
main.b f.b
main.c
main.e f.e
main.f
main.g f.g
main.p

f.x
f.y

(b) Points-To results

(c) ISSA graph

Figure 3. Example ISSA graph

8

Pruning for intraprocedural SSA requires to solve the
standard problem of live variables. In contrast, our imple-
mentation builds on ISSA results and is a simple and fast
marking algorithm. The complete optimization algorithm is
shown in Figure 4. It operates on the graph of definitions
and uses produced by ISSA analysis and has linear time
complexity in the size of this graph. The following sec-
tions explain it. Notice that steps 1 and 2 can be executed
independently, but step 2 will benefit from step 1.

procedure Opt imize i s
begin
−− s t e p 1a : c o n v e r t may−d e f t o must−d e f
f o r a l l m ∈ May Defs loop

C o n v e r t T o M u s t D e f I f P o s s i b l e (m) ;
end loop ;

−− s t e p 1b : p r o p a g a t e must−d e f s
C o n t r a c t C y c l e s ;
f o r a l l m ∈ Must Defs loop

Mark Must Def (m) ;
end loop ;
Expand Cyc les ;

−− s t e p 1 c : c o n v e r t may−d e f s i d e e f f e c t s t o must−d e f
f o r a l l ` ∈ L i n k O u t s loop

i f Marked (`) then
Context(`) has a must-def side effect

end i f ;
end loop ;

−− s t e p 2 : prune u n n e c e s s a r y nodes
f o r a l l m ∈ non−a r t i f i c i a l u s e s loop

Mark Nodes In Use (m) ;
end loop ;
f o r a l l v ∈ Nodes loop

i f not In Use (v) then
Remove v ;
i f v ∈ L i n k I n s then

Remove may-use side effect from Context(v)
end i f ;

end i f ;
end loop ;

end Opt imize ;

−− mark nodes o n l y r e a c h a b l e v i a must−d e f s
procedure Mark Must Def (m) i s
begin

return when ∃ p ∈ p red (m) : not Marked (p) ; −− i n O(1)
Marked (m) := True ;
f o r a l l s ∈ succ (m) loop

Mark Must Def (s) ;
end loop ;

end Mark Must Def ;

Figure 4. Optimization algorithm

7.1. Detecting must-def accesses

ISSA construction as described in Section 6 uses only
may-def accesses on locators. Step 1a of the algorithm in
Figure 4 now first improves the results in that we identify
assignments which were classified as may-defs but are in
fact must-defs. Whenever we find such a case, we can re-
place the φ-node created for the original may-def with a

direct definition, removing an outgoing edge from the pre-
vious definition.

Determining must-def accesses in general has to be con-
servative. A must-def should only be recognized if all previ-
ous definitions are overwritten. Therefore, we restrict our-
selves here to the description of two cases in which a must-
def can be safely identified. These cases are handled by
the function Convert_To_Must_Def_If_Possible
which is not shown in the figure.

The first case occurs when we find a direct assignment
to some variable. If the assignment is a full update of the
variable (it might be not for structures), we can conclude
that it is a must-def access. This case produces most of the
must-defs.

The second case occurs when we find an assignment
to some pointer target where points-to analysis determined
that there is exactly one target. But since points-to infor-
mation is actually only may-point-to information, we have
to check additional requirements here to be sure that it is
indeed a must-def.

The first of these additional requirements is that the tar-
get is not an abstraction for some allocation site, since oth-
erwise it could have been used to summarize several heap
objects. The second additional requirement is that the target
should not be a local variable of some function within a cy-
cle in the callgraph since otherwise many instances of this
variable might exist at the same time while the assignment
only touches one of them. And finally the assignment again
has to be a full update. Only if all requirements are fulfilled
we can conclude that the assignment is a must-def.

We assume that some previously executed analysis has
marked those subprograms that are part of a cycle. Then
every call to Convert_To_Must_Def_If_Possible
takes only constant time.

7.2. Propagating must-def side effects

After the detection of must-defs, we check whether some
subprogram now has a must-def side effect. This is true
for all subprograms for which a may-def side effect was
estimated and which have no control-flow path lacking a
must-def. This is equivalent to the condition that all paths
in ISSA form starting at a Link Out node (see Section 6.1)
contain a must-def before reaching the Link In-node.

Step 1b of the algorithm therefore now marks those
nodes that can only be reached on paths containing a must-
def (shown in Mark_Must_Def in Figure 4) and step 1c
changes a subprogram’s may-def side effect into a must-def
if its Link Out node is marked. Since ISSA form is inter-
procedural, this also captures the propagation of such side
effects.

Cycles in the ISSA form are a small problem in that they
would always stop the marking, but they can be contracted

9

because they behave like a single φ-node: all members of
the cycle have to be marked if and only if all predecessors
of the contracted cycle are marked. When expanding the
cycles again, all members receive the marking state of the
contracted node.

7.3. Pruning ISSA form

The final step then is to prune superfluous nodes, includ-
ing φ-nodes. For this, we simply mark nodes that are used
somewhere and remove those that are left unmarked.

Our approach is simpler than standard interprocedural
live-variable analysis because we make use of ISSA results.
We traverse all uses of a variable, except arguments of φ-
nodes and the artificial uses introduced in Post Call-nodes
(see Section 6.1) at call sites. Optionally, Post Calls in the
callgraph’s root can be treated as uses so that may-def and
must-def side-effect information is not deleted. For every
use, we mark the corresponding definition as live; if that
definition is a φ-node or an artificial node for data flow
across subprogram boundaries, we also mark all predeces-
sors (definitions) for the arguments as live, and so on. That
is, the function Mark_Nodes_In_Use (not shown in Fig-
ure 4) is simply a depth-first search from nodes to predeces-
sors, setting In_Use for every yet unseen node it visits.

At the end, we can remove those definitions and artificial
nodes that are left unmarked. If we remove a Link In node
in this pass, this means that the subprogram has no longer a
may-use side effect. Since the conversion of a may-def into
a must-def disconnects the node from its predecessor, this
correctly prunes artificial nodes and may-use side effects
and also handles the propagation of these side effects.

8. Statistics and test reports

We implemented and tested ISSA analysis in our
Bauhaus project. Table 1 shows the applications which we
used as test suite. For all applications we give the source
lines of code (column sloc) as measured with the SLOC-
Count utility1. Moreover, the number of variables (includ-
ing parameters) is shown in column vars and the number of
global variables among them is presented in column glob-
als. The remaining columns list the characteristics of the
callgraph.

We ran our implementation against the test suite on our
Linux machine (4 Intel Xeon processors with 3 GHz and
16 GB RAM) under normal system load. The results are
presented in Tables 2 and 3. Both tables have three rows per
application of the test suite: for using Steensgaard’s pointer
analysis (row ecr), the one by Das (row das) and the one by
Andersen (row and).

1generated using David A. Wheeler’s SLOCCount

Table 2 on page 14 lists measurements on the interme-
diate representation. The first column shows the number
of locators. Then follow three columns on definitions: the
total number of definitions in the program, the number of
must-definitions, and the number of definitions that could
be pruned. Then follows one column showing the number
of all uses of a locator in the program. Last, there are two
columns on φ-nodes, the total number of φ-nodes, and then
the number of φ-nodes that could be pruned. The numbers
of pruned definitions and pruned φ-nodes also include the
percentages relative to the total number of definitions or φ-
nodes, respectively.

In Table 3 on page 16, runtime and memory consump-
tion are listed for side-effect computation including locator
generation, ISSA analysis, and the optimization phase. As
runtimes we measured the user time. Currently, in our im-
plementation the must-def computation is included in ISSA
analysis, and therefore the time needed for computing must-
defs and must-def side effects is included in the runtime of
ISSA construction.

If we inspect the runtimes we can observe that generat-
ing locators along with may-def and may-use side effects
is faster than ISSA construction and also very fast in abso-
lute numbers. Both ISSA construction and optimization are
also fast with pruning being rarely slower than one minute.
As could be expected, the number of locators directly in-
fluences all runtimes. Often, but not always, Steensgaard’s
analysis creates more locators than the other pointer anal-
yses. This can be explained with larger points-to sets for
may-use and may-def accesses and more call edges for indi-
rect calls (leading to more propagated side effects) produced
with this analysis. The number of φ-nodes increases with
the number of definitions which itself increases with the
number of locators. This means that an imprecise pointer
analysis creates more locators, more definitions, and more
φ-nodes: the size of ISSA form increases inversely with the
precision of pointer analysis. Often, the relative percentage
of pruned nodes is highest for Andersen’s analysis, but there
are some exceptions.

As we can see, our optimizations are worth the effort.
Pruning is able to remove substantial amounts of nodes in
many cases. This reduces memory consumption and run-
time for client analyses. Moreover, we were able to detect
many must-defs which improves the precision of ISSA form
and side effects and also helps to prune even more nodes.

9. Implementation details

We implemented the ideas described in the previous sec-
tions in our Bauhaus tool suite. Whereas the previous sec-
tions gave a conceptual description of our modelling and
algorithms, we now report on some implementation details
that are important to realize the concepts.

10

name sloc vars globals routines direct calls indirect calls

Astro/Astro 5393 534 358 310 429 0
SNNSv4.2/snns2c 83027 152 11 64 509 0
bash-3.1/bash 88655 3256 567 1433 7022 37
bc-1.06/bc 8526 442 94 177 1038 21
bison-2.3/bison 23412 2601 274 1164 3326 209
bluefish-1.0.5/bluefish 40765 3066 210 1590 15919 18
codebreaker-1.2.1/codebreaker 1220 106 15 62 609 0
concepts-0.3f/concepts 3948 388 53 216 651 1
cook-2.26/cook 63099 2053 344 1239 5087 37
dia-0.95.0/dia 123035 7005 667 5566 17602 596
euler-1.60.6fix/euler 24056 3643 412 1029 6988 76
gnuplot-4.0.0/gnuplot 68611 5005 1293 2145 12509 539
gqview-2.0.1/gqview 52998 5557 297 3266 18073 48
grep-2.5.1a/grep 20846 628 132 226 1078 11
gzip-1.3.9/gzip 8606 462 152 243 706 4
make-3.75/make 17424 959 134 410 2146 1
nano-1.2.3/nano 9903 627 82 283 2309 2
screen-4.0.2/screen 37618 1987 250 775 4660 51
sed-4.1/sed 21739 991 72 299 1796 1
soundtracker-0.6.7/soundtracker 33049 2022 565 1139 8620 106
tar-1.16/tar 47249 3162 861 1525 5243 50
tcc-0.9.23/tcc 42390 1156 91 341 2517 3
tcsh-6.15.00/tcsh 50506 2763 677 1421 7657 27
time-1.7/time 1395 57 22 35 141 2
trueprint-5.3/trueprint 8313 459 259 260 1246 25
units-1.86/units 2837 250 50 89 630 3
unzip-5.52/unzip 52701 918 394 272 1240 317
uucp-1.07/uucico 53730 2074 349 1488 4568 78
wget-1.10.1/wget 25925 1724 182 752 3994 23

Table 1. Our test suite

Conceptually, we have (potentially) different contexts
for every subprogram in our CS-CFG. However, the imple-
mentation does not duplicate the abstract representation for
subprograms. Instead, we use a sparse model and anno-
tate all uses and definitions of variables in the subprogram’s
representation with an array of Def_Tables. In this ar-
ray, there is one Def_Table for each context in which the
definition or use may be executed.

Each Def_Table provides a mapping from a locator
to the set of possible previous definitions that might reach
the definition or use. If a definition is a strong (must-) up-
date then the Def_Table is empty. In contrast, for a weak
(may-) update, the Def_Table links to the previous defi-
nitions that may or may not still be live after the definition.
The Def_Table also holds a flag Live for each locator;
it is set if the reaching definition is needed and thus cannot
be pruned.

9.1. ISSA data structures

Our representation uses a number of different classes of
nodes to represent definitions and uses:

Begin Of Lifetime A node is inserted at the point of
the CFG where a local variable’s lifetime begins.
This node acts as an artificial definition. Its pur-
pose is to provide a definition for otherwise unini-
tialized locators. Whenever a previous definition in
some Def_Table references a Begin Of Lifetime-
node then that variable might be uninitialized.

Assignment Nodes of the class Assignment represent all
explicit and implicit assignments to variables includ-
ing initializations. An Assignment-node acts only as a
definition.

11

Join Phi A Join Phi-node is inserted at control flow join
points where different definitions of at least one loca-
tor meet. A Join Phi-node provides the possible pre-
vious definitions for all such locators within a single
Def_Table. It also provides information to deter-
mine in which predecessor basic block (eg. true/false-
predecessor after if-statements) each definition oc-
cured.

Read A Read-node represents the use of the value of an
object. In its Def_Table several locators might be
present (because a variable might consist of several lo-
cators, or because points-to analysis cannot determine
which object is actually used), but each of those loca-
tors has exactly one reaching definition.

Pre Call A Pre Call-node is inserted directly before a call
to a subprogram. It summarizes the reads of all actual
parameters in one node.

Link In A Link In-node represents an artificial definition
of a locator that represents a nonlocal. This is the
first node in every subprogram’s CFG, and in its
Def_Table there are never any previous definitions
annotated. During pruning however, the Link In acts
as a use to the actual parameters. So if all locators
from the callee’s context that map to one specific ac-
tual parameter are pruned, then that actual parameter
can be pruned in its Pre Call-node.

Link Out The Link Out-node is inserted as the last node in
the CFG of a subprogram. It is an artificial read of all
locators that may be side-effects for the subprogram.

Post Call The Post Call-node is inserted directly after a
call. It represents the artificial definition of all locators
in the context of the caller which the called subpro-
gram might have modified. For definitive side-effects,
the Def_Table’s reaching definition-entries refer-
ence no definition, for possible side-effects they refer-
ence the live definition in the local CFG, analogously
to Assignment-nodes. During pruning, a Post Call-
node acts as a read to the Link Out-node of the called
context to propagate liveness into the called context.

9.2. The context-implementation

In our implementation, locators are modelled as integers
that are unique within one context. In order to support dif-
ferent points-to analyses, we model contexts as a class hier-
archy. Each points-to analysis must provide an implemen-
tation of the abstract class Context and redefine methods
that provide the mapping from objects in the source code
to locators and the mapping between locators in different
contexts.

Note that the unique numbers for locators can be used as
indices into arrays to provide efficient access into the data
structures. In fact the Def_Tables mentioned earlier are
implemented as arrays indexed by the number of a locator.

10. Conclusions

In this paper we presented interprocedural SSA form as
an extension to classical SSA. We described our framework
which can be used together with many different pointer
analyses thanks to an abstract program representation con-
sisting of the CS-CFG and locators. Our ISSA analysis in-
cludes the computation of side effects. We explained a sim-
ple and fast algorithm for optimizations; it computes must-
def side effects and creates a pruned ISSA form. Finally,
we reported results for a large test suite.

References

[1] L. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, University of Copen-
hagen, 1994.

[2] A. W. Appel. SSA is Functional Programming. SIGPLAN
Notices, 33(4):17–20, 1998.

[3] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson.
Practical Improvements to the Construction and Destruction
of Static Single Assignment Form. Software Practice and
Experience 28(8), pages 859–881, July 1998.

[4] P. Briggs and L. Torczon. An Efficient Representation for
Sparse Sets. ACM Letters on Programming Languages and
Systems, 2(1-4):59–69, 1993.

[5] D. L. Carver and R. Valasareddi. Object localization in pro-
cedural programs: a graph-based approach. Journal of Soft-
ware Maintenance, 12(5):305–323, 2000.

[6] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. In Proceedings of the ACM SIG-
PLAN 1990 conference on Programming language design
and implementation, pages 296–310. ACM Press, 1990.

[7] K. D. Cooper and K. Kennedy. Interprocedural Side-Effect
Analysis in Linear Time. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 57–66. ACM Press, 1988.

[8] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
F. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transac-
tions on Programming Languages and Systems 13, pages
451–490, 1991.

[9] M. Das. Unification-based Pointer Analysis with Directional
Assignments. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pages 35–46, 2000.

[10] T. Eisenbarth, R. Koschke, and G. Vogel. Static Object Trace
Extraction for Programs with Pointers. Journal of Systems
and Software 77 (3), pages 263–284, 2005.

12

[11] M. J. Harrold, B. A. Malloy, and G. Rothermel. Efficient
construction of program dependence graphs. In Interna-
tional Symposium on Software Testing and Analysis, pages
160–170, 1993.

[12] M. J. Harrold and G. Rothermel. Syntax-Directed Con-
struction of Program Dependence Graphs. Technical Report
OSU-CISRC-5/96-TR32, Ohio State University, 1996.

[13] M. Hind. Pointer analysis: haven’t we solved this problem
yet? In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engi-
neering, pages 54–61. ACM Press, 2001.

[14] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis
for pointer variables. In Proceedings of the ACM SIGPLAN
1989 Conference on Programming language design and im-
plementation, pages 28–40. ACM Press, 1989.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing
Using Dependence Graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26–60, Jan. 1990.

[16] R. A. Kelsey. A Correspondence between Continuation
Passing Style and Static Single Assignment Form. SIGPLAN
Notices, 30(3):13–22, 1993.

[17] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Insti-
tute for Computer Science, University of Stuttgart, 2000.

[18] J. Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universität Passau, 2003.

[19] J. R. Larus and P. N. Hilfinger. Detecting conflicts between
structure accesses. In Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design and Im-
plementation, pages 24–31. ACM Press, 1988.

[20] S.-W. Liao. SUIF Explorer: An Interactive and Interproce-
dural Parallelizer. PhD thesis, Stanford University, 2000.

[21] P. E. Livadas and S. Croll. System Dependence Graph Con-
struction for Recursive Programs. Computer Software and
Applications Conference, pages 414–420, 1993.

[22] P. E. Livadas and S. Croll. System Dependence Graphs
based on Parse Trees and their use in Software Maintenance.
Inf. Sci. Intell. Syst., 76(3-4):197–232, 1994.

[23] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, 1997.

[24] K. J. Ottenstein and L. M. Ottenstein. The program de-
pendence graph in a software development environment.
In ACM SIGSOFT/SIGPLAN, pages 177–184. ACM Press,
1984.

[25] A. Raza, G. Vogel, and E. Ploedereder. Bauhaus – A Tool
Suite for Program Analysis and Reverse Engineering. In
Reliable Software Technologies, Ada Europe 2006 (LNCS
4006), pages 71–82, 2006.

[26] B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R. Al-
tucher. A schema for interprocedural modification side-
effect analysis with pointer aliasing. ACM Transactions
on Programming Languages and Systems, 23(2):105–186,
2001.

[27] J. Singer. Static Program Analysis based on Virtual Register
Renaming. PhD thesis, University of Cambridge, Mar. 2005.

[28] S. Staiger. Reverse Engineering Graphical User Interfaces
using Static Analyses. In Proceedings of the 14th Working
Conference on Reverse Engineering. IEEE Computer Soci-
ety, 2007.

[29] S. Staiger, G. Vogel, S. Keul, and E. Wiebe. Interprocedu-
ral Static Single Assignment Form. In Proceedings of the
14th Working Conference on Reverse Engineering (WCRE),
2007.

[30] B. Steensgaard. Points-to Analysis in Almost Linear Time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 32–
41, 1996.

[31] P. A. Stocks, B. G. Ryder, W. A. Landi, and S. Zhang. Com-
paring flow and context sensitivity on the modification-side-
effects problem. In Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis,
pages 21–31. ACM Press, 1998.

[32] R. E. Tarjan. Depth-First Search and Linear Graph Algo-
rithms. SIAM Journal of Computing 1 (2), pages 146–160,
1972.

[33] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

[34] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive
Pointer Analysis for C Programs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 1–12. ACM Press, 1995.

13

Table 2. Numbers of locators, definitions and uses

name pta locators defs must defs pruned defs uses φ-nodes pruned φ-nodes

Astro and 2255 1131 968 632 (55.88%) 2232 439 155 (35.31%)
Astro das 1793 1061 968 637 (60.04%) 1551 362 149 (41.16%)
Astro ecr 2326 1341 968 615 (45.86%) 2484 469 139 (29.64%)
bash and 100208 141320 7725 31182 (22.06%) 245075 110741 27407 (24.75%)
bash das 293845 854442 7558 140038 (16.39%) 1325306 522392 92480 (17.70%)
bash ecr 204572 508563 7795 58743 (11.55%) 911013 318323 46172 (14.50%)
bc and 2957 11585 1303 881 (7.60%) 21079 6827 1108 (16.23%)
bc das 2255 8410 1294 331 (3.94%) 18792 4525 692 (15.29%)
bc ecr 6384 34709 1438 412 (1.19%) 78642 15010 811 (5.40%)
bison and 27033 65180 4494 5307 (8.14%) 184878 36902 5197 (14.08%)
bison das 30268 105797 4494 4921 (4.65%) 291504 54319 4737 (8.72%)
bison ecr 34273 125984 4491 4221 (3.35%) 374281 60553 4300 (7.10%)
bluefish and 33310 10124 4784 4753 (46.95%) 62676 5333 3729 (69.92%)
bluefish das 25831 5627 4781 765 (13.60%) 51564 4243 2955 (69.64%)
bluefish ecr 27634 31450 4796 8805 (28.00%) 90793 12053 5641 (46.80%)
codebreaker and 255 174 166 11 (6.32%) 720 75 38 (50.67%)
codebreaker das 246 174 166 13 (7.47%) 699 75 38 (50.67%)
codebreaker ecr 274 174 166 11 (6.32%) 793 75 38 (50.67%)
concepts and 3464 6179 712 681 (11.02%) 18028 3026 808 (26.70%)
concepts das 3311 6948 708 368 (5.30%) 20237 3179 576 (18.12%)
concepts ecr 5876 11212 708 667 (5.95%) 30491 4883 896 (18.35%)
cook and 10945 11456 3645 1921 (16.77%) 22667 14712 4359 (29.63%)
cook das 107245 312498 3616 42652 (13.65%) 727283 121782 21349 (17.53%)
cook ecr 102249 256046 3687 21329 (8.33%) 552770 104884 17951 (17.12%)
dia and 32107 18426 7261 7977 (43.29%) 48937 9972 5929 (59.46%)
dia das 279671 655413 7241 120740 (18.42%) 1730164 192228 53466 (27.81%)
dia ecr 367744 662485 7314 148139 (22.36%) 1713405 260564 99513 (38.19%)
euler and 185994 392318 9528 166333 (42.40%) 525786 196513 95544 (48.62%)
euler das 55714 123047 8887 43932 (35.70%) 232300 57758 24804 (42.94%)
euler ecr 273469 713147 9845 183457 (25.72%) 1292219 379223 128111 (33.78%)
gnuplot and 447451 817379 16330 360602 (44.12%) 1451834 772299 376791 (48.79%)
gnuplot das 293075 663190 15986 287109 (43.29%) 1431677 529083 291206 (55.04%)
gnuplot ecr 778697 2804689 16229 759962 (27.10%) 8463732 1945700 624687 (32.11%)
gqview and 72562 73712 7894 32074 (43.51%) 125180 50453 25503 (50.55%)
gqview das 91364 54889 7815 29996 (54.65%) 151379 38025 22131 (58.20%)
gqview ecr 214935 433843 7888 92314 (21.28%) 1005400 199437 60313 (30.24%)
grep and 3760 8891 1597 659 (7.41%) 23647 7475 1372 (18.35%)
grep das 3911 11440 1590 676 (5.91%) 29486 9223 1324 (14.36%)
grep ecr 5618 17449 1597 991 (5.68%) 48005 13897 1564 (11.25%)
gzip and 3109 6272 1789 801 (12.77%) 11112 6196 1127 (18.19%)
gzip das 2912 6695 1784 704 (10.52%) 12121 6352 996 (15.68%)
gzip ecr 4089 9045 1790 1148 (12.69%) 18154 8368 1294 (15.46%)

continued on next page

14

name pta locators defs must defs pruned defs uses φ-nodes pruned φ-nodes

make and 13993 62415 2437 1518 (2.43%) 135694 46390 2491 (5.37%)
make das 11334 59296 2405 1073 (1.81%) 144097 40049 2283 (5.70%)
make ecr 14114 72196 2434 1775 (2.46%) 165124 49518 2618 (5.29%)
nano and 8063 26198 2057 2518 (9.61%) 45160 14298 2058 (14.39%)
nano das 7840 24380 2031 2475 (10.15%) 44654 13704 2046 (14.93%)
nano ecr 9037 31833 2085 3475 (10.92%) 55392 17021 2625 (15.42%)
screen and 163888 971600 6219 89535 (9.22%) 1778390 585444 63925 (10.92%)
screen das 123867 796814 5416 42239 (5.30%) 1662773 447096 30738 (6.88%)
screen ecr 203329 1449372 6349 64264 (4.43%) 3190516 803970 47004 (5.85%)
sed and 13652 52312 1853 357 (0.68%) 149950 37884 2044 (5.40%)
sed das 13742 63596 1840 323 (0.51%) 189158 42407 2017 (4.76%)
sed ecr 23367 80426 1856 402 (0.50%) 250361 58676 2000 (3.41%)
snns2c and 748 1965 302 43 (2.19%) 7378 1381 206 (14.92%)
snns2c das 902 2310 302 43 (1.86%) 11422 1426 206 (14.45%)
snns2c ecr 1015 1711 302 60 (3.51%) 9310 1065 232 (21.78%)
soundtracker and 14519 19256 3901 4858 (25.23%) 40382 10408 4301 (41.32%)
soundtracker das 26800 58870 3892 9300 (15.80%) 120347 28194 7501 (26.60%)
soundtracker ecr 40851 66071 3914 13148 (19.90%) 148042 31941 11150 (34.91%)
tar and 113458 250313 4505 54848 (21.91%) 374475 181508 39043 (21.51%)
tar das 77570 185185 4343 29239 (15.79%) 328482 125402 21716 (17.32%)
tar ecr 200842 567705 4693 71912 (12.67%) 998019 359879 45883 (12.75%)
tcc and 23278 116522 4696 17973 (15.42%) 174005 65184 11745 (18.02%)
tcc das 11012 56486 3205 593 (1.05%) 96507 30766 2344 (7.62%)
tcc ecr 45861 313876 5014 10108 (3.22%) 502298 149952 7098 (4.73%)
tcsh and 426974 1554096 10348 239162 (15.39%) 2556297 986451 154584 (15.67%)
tcsh das 299593 1653364 9867 293577 (17.76%) 2426474 908746 118260 (13.01%)
tcsh ecr 555754 3209897 10453 482712 (15.04%) 4859916 1694488 182247 (10.76%)
time and 179 124 90 44 (35.48%) 393 84 42 (50.00%)
time das 170 124 90 46 (37.10%) 325 84 42 (50.00%)
time ecr 181 124 90 44 (35.48%) 399 84 42 (50.00%)
trueprint and 6961 23801 1585 1684 (7.08%) 31356 13296 1894 (14.24%)
trueprint das 6828 25261 1612 1650 (6.53%) 48354 13395 1686 (12.59%)
trueprint ecr 7489 10084 1582 1522 (15.09%) 30107 9268 1925 (20.77%)
units and 1468 3281 641 185 (5.64%) 6302 2548 435 (17.07%)
units das 916 1527 602 83 (5.44%) 4091 1264 340 (26.90%)
units ecr 2409 6880 650 155 (2.25%) 16303 4347 420 (9.66%)
unzip and 5452 12621 2410 1011 (8.01%) 37462 14737 1400 (9.50%)
unzip das 4651 19308 2389 868 (4.50%) 38837 18266 1101 (6.03%)
unzip ecr 8303 38940 2419 1227 (3.15%) 69674 37978 1558 (4.10%)
uucico and 168488 901366 4656 121307 (13.46%) 1296770 552131 76402 (13.84%)
uucico das 133611 834915 4376 72314 (8.66%) 1252870 458668 43442 (9.47%)
uucico ecr 194026 1110954 4745 134367 (12.09%) 1525546 650133 80729 (12.42%)
wget and 17054 37641 3626 1422 (3.78%) 83985 32097 3246 (10.11%)
wget das 15724 61854 3580 1900 (3.07%) 107014 41779 3148 (7.53%)
wget ecr 35269 132533 3623 3935 (2.97%) 222954 92212 4772 (5.18%)

15

Table 3. Resource consumption for ISSA creation

locator generation ISSA construction ISSA pruning

name pta mem (MB) time mem (MB) time mem (MB) time

Astro and 30.10 130ms 31.20 1s 31.33 90ms
Astro das 30.61 140ms 31.80 1s 31.80 50ms
Astro ecr 30.71 450ms 31.52 1s 31.65 80ms

bash and 77.54 3s 111.55 1m35s 136.93 12s
bash das 98.67 11s 213.95 7m6s 313.79 56s
bash ecr 87.70 20s 160.48 4m11s 226.82 33s

bc and 31.27 300ms 34.35 5s 35.91 710ms
bc das 31.41 220ms 34.32 4s 35.50 470ms
bc ecr 31.42 1s 36.68 11s 40.82 1s

bison and 117.49 13s 136.97 1m57s 143.70 11s
bison das 69.79 8s 95.20 1m20s 104.62 6s
bison ecr 60.59 10s 85.29 1m23s 96.84 7s

bluefish and 90.57 1s 105.16 19s 111.37 1s
bluefish das 94.02 1s 111.59 19s 116.50 1s
bluefish ecr 93.41 4s 109.15 35s 114.63 2s

codebreaker and 26.74 30ms 27.25 610ms 27.25 20ms
codebreaker das 26.75 40ms 27.62 640ms 27.62 10ms
codebreaker ecr 26.87 120ms 27.40 640ms 27.40 30ms

concepts and 28.94 210ms 31.11 2s 32.01 390ms
concepts das 29.32 210ms 31.57 2s 32.49 370ms
concepts ecr 28.97 580ms 31.61 4s 33.43 680ms

cook and 55.32 720ms 62.88 11s 65.46 970ms
cook das 73.62 12s 118.22 1m42s 155.45 19s
cook ecr 64.48 10s 102.52 1m55s 139.32 16s

dia and 162.88 3s 182.25 26s 186.43 1s
dia das 209.80 1m15s 310.30 3m25s 381.32 35s
dia ecr 198.29 1m19s 303.03 5m39s 382.25 40s

euler and 91.41 4s 161.64 4m52s 208.50 25s
euler das 82.39 2s 111.95 50s 127.00 6s
euler ecr 93.88 21s 188.20 4m22s 285.12 59s

gnuplot and 668.23 2m12s 815.27 25m13s 903.69 3m35s
gnuplot das 194.64 54s 332.46 11m12s 392.75 1m5s
gnuplot ecr 166.57 1m51s 619.11 37m15s 963.07 6m9s

gqview and 126.79 3s 160.86 1m10s 175.46 5s
gqview das 139.13 5s 169.67 53s 178.56 3s
gqview ecr 144.28 24s 221.08 3m56s 281.16 27s

grep and 33.51 300ms 37.25 6s 38.29 620ms
grep das 34.16 340ms 38.64 6s 39.93 560ms
grep ecr 33.76 1s 38.31 7s 40.11 830ms

gzip and 29.99 170ms 32.32 3s 33.22 380ms
gzip das 31.02 230ms 34.90 3s 35.83 340ms
gzip ecr 30.50 550ms 33.13 4s 34.42 470ms

continued on next page

16

locator generation ISSA construction ISSA pruning

name pta mem (MB) time mem (MB) time mem (MB) time

make and 53.05 2s 65.66 47s 74.64 5s
make das 40.81 960ms 53.94 32s 61.20 3s
make ecr 40.32 1s 53.60 52s 62.64 4s

nano and 36.06 540ms 42.36 16s 46.96 1s
nano das 35.16 410ms 41.61 14s 45.98 1s
nano ecr 35.06 1s 41.15 17s 46.29 2s

screen and 174.32 28s 324.25 28m17s 424.14 1m32s
screen das 86.28 10s 198.74 7m43s 277.45 50s
screen ecr 80.58 26s 270.08 17m39s 407.40 1m47s

sed and 43.03 1s 55.42 30s 61.07 2s
sed das 41.48 1s 55.17 21s 61.75 3s
sed ecr 40.44 3s 55.31 31s 65.58 5s

snns2c and 26.10 90ms 27.39 1s 27.39 160ms
snns2c das 26.23 100ms 27.63 1s 27.76 150ms
snns2c ecr 26.13 190ms 27.21 1s 27.47 120ms

soundtracker and 73.98 1s 85.67 16s 88.28 1s
soundtracker das 78.50 1s 96.91 27s 103.64 2s
soundtracker ecr 78.55 3s 93.38 28s 102.69 3s

tar and 119.41 10s 164.05 3m53s 195.77 20s
tar das 74.03 4s 108.20 1m38s 130.93 12s
tar ecr 78.09 16s 153.54 4m44s 222.19 39s

tcc and 42.00 780ms 61.33 1m14s 77.07 6s
tcc das 42.52 650ms 54.13 19s 62.38 3s
tcc ecr 43.80 5s 79.31 2m15s 117.11 20s

tcsh and 140.49 14s 352.68 20m19s 577.54 2m40s
tcsh das 100.39 10s 303.48 14m51s 488.27 1m20s
tcsh ecr 103.34 35s 457.26 36m57s 823.18 5m46s

time and 24.19 20ms 24.53 260ms 24.53 20ms
time das 24.19 20ms 24.53 220ms 24.53 10ms
time ecr 24.29 50ms 24.50 210ms 24.50 10ms

trueprint and 37.19 830ms 41.77 11s 44.34 1s
trueprint das 33.84 520ms 40.28 9s 42.79 1s
trueprint ecr 33.32 670ms 37.34 5s 39.45 790ms

units and 27.54 130ms 29.68 4s 30.20 260ms
units das 27.66 100ms 29.67 2s 29.93 140ms
units ecr 27.55 340ms 29.65 4s 30.55 420ms

unzip and 39.41 490ms 44.86 11s 46.72 860ms
unzip das 39.41 500ms 46.11 8s 48.12 850ms
unzip ecr 38.75 1s 45.39 15s 49.72 1s

uucico and 177.21 20s 292.31 15m0s 387.68 1m9s
uucico das 86.60 11s 184.59 3m57s 267.86 34s
uucico ecr 75.84 14s 201.43 12m46s 316.36 1m18s

wget and 63.70 1s 76.83 36s 83.90 3s
wget das 57.77 1s 71.47 28s 79.45 3s
wget ecr 56.88 6s 77.20 1m13s 93.71 7s

17

