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Abstract

We show that for every homomorphism Γ+ → S where S is a finite
semigroup there exists a factorization forest of height ≤ 3 |S|. The proof
is based on Green’s relations.

1 Introduction

Factorization forests where introduced by Simon [5, 7]. An important property
of finite semigroups is that they admit factorization forests of finite height.
This fact is called the Factorization Forest Theorem. It can be considered as
an Ramsey-type property of finite semigroups. There exists different proofs of
this fact of different difficulty and with different bounds on the height. The first
proof of the Factorization Forest Theorem is due to Simon [7]. He showed that
for every finite semigroup S there exists a factorization forest of height ≤ 9 |S|.
The proof relies on several different techniques. It uses graph colorings, Green’s
relations, and a decomposition technique inspired by the Rees-Suschkewitsch
Theorem on completely 0-simple semigroups. In [8] Simon gave a simplified
proof relying on the Krohn-Rhodes decomposition. The bound shown is 2|S|+1−
2. A concise proof has been given by Chalopin and Leung [1]. The proof relies on
Green’s relations and yields the bound 7 |S| on the height. Independently of this
work, Colcombet has also shown a bound of 3 |S| for the height of factorization
forests [2]. He uses a generalization of the Factorization Forest Theorem in
terms of Ramseyan splits. The proof also relies on Green’s relations. A variant
of our proof for the special case of aperiodic monoids has been shown in [3]
with a bound of 3 |S|. The main benefit of that proof is that is uses very little
machinery. The proof in this paper can be seen as an extension of that proof.
The main tool are again Green’s relations. We only require basic results from
the theory of finite semigroups which can be found in standard textbooks such
as [4].

A lower bound of |S| was shown for rectangular bands in [6] and also in
[1]. The same bound has also been shown for groups [1]. Therefore, the upper
bound of 3 |S| reduces the gap between the lower and the upper bound.

2 The Factorization Forest Theorem

Let S be a finite semigroup. A factorization forest of a homomorphism ϕ :
Γ+ → S is a function d which maps every word w with length |w| ≥ 2 to a
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factorization d(w) = (w1, . . . , wn) of w = w1 · · ·wn with n ≥ 2 and wi ∈ Γ+ and
such that n ≥ 3 implies ϕ(w1) = · · · = ϕ(wn) is idempotent in S. The height h
of a word w is defined as

h(w) =

{
0 if |w| ≤ 1
1 + max {h(w1), . . . , h(wn)} if d(w) = (w1, . . . , wn)

We call the tree defined by the “branching” d for the word w the factorization
tree of w. The height h(w) is the height of this tree. The height of a factorization
forest is the supremum over the heights of all words.

Factoriztion Forest Theorem (Simon [7]). Let S be a finite monoid. Every
homomorphism ϕ : Γ+ → S has a factorization forest of height ≤ 3 |S|.

Proof: Let [w] = ϕ(w). We show that for every w ∈ Γ+ there exists a fac-
torization tree of height h(w) ≤ 3 |{x ∈ S | [w] ≤J x}|. First, we perform an
induction on the cardinality of the set {x ∈ S | [w] ≤J x}; then within one J -
class we refine this parameter. Let w ∈ Γ+ with |w| ≥ 2. Then w has a unique
factorization

w = w0a1w1 · · · amwm

with ai ∈ Γ and wi ∈ Γ∗ satisfying the following two conditions:

∀ 1 ≤ i ≤ m : [aiwi] J [w] and ∀ 0 ≤ i ≤ m : wi = ε ∨ [w] <J [wi]

The idea is that we successively choose aiwi ∈ Γ+ from right to left to be the
shortest non-empty word such that [aiwi] J [w]. Let w′i = aiwi for 1 ≤ i ≤ m.
For each 1 ≤ i < m define a pair (Li, Ri) where Li is the L-class of [w′i] and
Ri is the R-class of [w′i+1]. Every such pair represents an H-class within the
J -class of [w]. All H-classes within this J -class contain the same number n of
elements. Let

h′(w) = h(w)− 3 · |{x ∈ S | [w] <J x}|
We can think of h′ as the height of a tree where we additionally allow words
v ∈ Γ+ with [w] <J [v] as leafs. Within the J -class of w we perform an
induction on the cardinality of the set {(Li, Ri) | 1 ≤ i < m} in order to show

h′(w) ≤ 3n · |{(Li, Ri) | 1 ≤ i < m}|

Since n · |{(Li, Ri) | 1 ≤ i < m}| ≤ |{x ∈ S | [w] J x}| this yields the desired
bound for the height h(w). If every pair (L, R) occurs at most twice then we
have m − 1 ≤ 2 · |{(Li, Ri) | 1 ≤ i < m}|. We define a factorization tree for w
by

d(w) = (w0w
′
1, w′2 · · ·w′m)

d(w0w
′
1) = (w0, w

′
1)

d(w′i · · ·w′m) = (w′i, w
′
i+1 · · ·w′m) for 2 ≤ i < m

d(w′i) = (ai, wi) for 1 ≤ i ≤ m

Since [w] <J [wi], by induction every wi has a factorization tree of height
h(wi) < 3 |{x | [wi] ≤J x}| ≤ 3 |{x | [w] <J x}|. This yields:

h′(w) ≤ m ≤ 3n · |{(Li, Ri) | 1 ≤ i < m}|

Note that the height does not increase if some of the wi are empty. Now suppose
there exists a pair (L, R) ∈ {(Li, Ri) | 1 ≤ i < m} occurring (at least) three
times. Let i0 < · · · < ik be the sequence of all positions with (L, R) = (Lij

, Rij
).

By construction we have k ≥ 2. Let ŵj = w′ij−1+1 · · ·w′ij
for 1 ≤ j ≤ k. For all

1 ≤ j ≤ ` ≤ k we have
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• [ŵj · · · ŵ`] ≤L [w′i`
] L [w′i0 ].

• [ŵj · · · ŵ`] ≤R [w′ij−1+1] R [w′i0+1].

• [w′i`
] ≤J [ŵj · · · ŵ`] ≤J [w] J [w′i`

] J [w′i0 ] J [w′i0+1] by assumption on
the factorization.

Thus for all 1 ≤ j ≤ ` ≤ k and 1 ≤ j′ ≤ `′ ≤ k we get

• [ŵj · · · ŵ`] L [w′i1 ] L [ŵj′ · · · ŵ`′ ] and

• [ŵj · · · ŵ`] R [w′i1+1] R [ŵj′ · · · ŵ`′ ] and therefore

• [ŵj · · · ŵ`] H [ŵj′ · · · ŵ`′ ]

Therefore, all [ŵj ] denote elements in the same H-class H and since k ≥ 2 the
class H is a group. We consider the following set of elements in H induced by
proper prefixes

P (ŵ1 · · · ŵk) = {[ŵ1 · · · ŵj ] | 1 ≤ j < k}
For the pair (L, R) we show by induction on |P (ŵ1 · · · ŵk)| that

h′(w) ≤ 3 |P (ŵ1 · · · ŵk)| + 3n |{(Li, Ri) | 1 ≤ i < m}|

Suppose every element x ∈ P (ŵ1 · · · ŵk) ⊆ H occurs at most twice. Then
k − 1 ≤ 2 |P (ŵ1 · · · ŵk)|. We construct the following factorization tree for w:

d(w) = (w0w
′
1 · · ·w′i1 , w′i1+1 · · ·w′m)

d(w0w
′
1 · · ·w′i1) = (w0w

′
1 · · ·w′i0 , ŵ1)

d(w′i0+1 · · ·w′m) = (ŵ2 · · · ŵk, w′ik+1 · · ·w′m)
d(ŵi · · · ŵk) = (ŵi, ŵi+1 · · · ŵk) for 2 ≤ i < k

By induction on the number of pairs (Li, Ri) there exist factorization trees for
the words w0w

′
1 · · ·w′i0 , w′ik+1 · · ·w′m, and all ŵi of height

≤ 3n |{(Li, Ri) | 1 ≤ i < m} \ {(L, R)}| + 3 |{x | [w] <J x}|

This yields

h′(w)− 3n |{(Li, Ri) | 1 ≤ i < m}| ≤ k ≤ 3 |P (ŵ1 · · · ŵk)|

Now suppose there exists an element x ∈ P (ŵ1 · · · ŵk) ⊆ H that occurs at
least three times. Let j0 < · · · < jt be the sequence of all positions with x =
[ŵ1 · · · ŵji ]. By construction we have t ≥ 2. It follows that [ŵji+1 · · · ŵji+1 ] =
e = e2 where e is the neutral element of the group H. Let vi = ŵji−1+1 · · · ŵji

for 1 ≤ i ≤ t. We construct the following factorization tree for w:

d(w) = (w0 · · · ŵi0 , ŵi0+1 · · ·w′m)
d(ŵi0+1 · · ·w′m) = (v1 · · · vt, ŵit+1 · · ·w′m)

d(v1 · · · vt) = (v1, . . . , vt)

We have x ∈ P (ŵ1 · · · ŵk)\P (ŵ1 · · · ŵi0) and xP (ŵji−1+1 · · · ŵji
) ⊆ P (ŵ1 · · · ŵk)

but x 6∈ xP (ŵji−1+1 · · · ŵji
). Hence, by induction on the cardinality of the prefix

sets, there exist factorization forests for w0 · · · ŵi0 , ŵit+1 · · ·w′m and the vi of
height

≤ 3 |P (ŵ1 · · · ŵk)| − 3
+ 3n |{(Li, Ri) | 1 ≤ i < m} \ {(L, R)}|
+ 3 |{x | [w] <J x}|

This yields a factorization tree for w with the desired height bound. 2
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