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Abstract. Motivated by recent applications of pushdown systems to
computer security problems, we present an efficient algorithm for the
reachability problem of alternating pushdown systems. Although the al-
gorithm is exponential, a careful analysis reveals that the exponent is
usually small in typical applications. We show that the algorithm can be
used to compute winning regions in pushdown games. In a second con-
tribution, we observe that the algorithm runs in polynomial time for a
certain subproblem, and show that the computation of certificate chains
with threshold certificates in the SPKI/SDSI authorization framework
can be reduced to this subproblem. We present a detailed complexity
analysis of the algorithm and its application, and report on experimen-
tal results obtained with a prototype implementation.

1 Introduction

Pushdown systems are a concept from formal-language theory that has turned
out to be useful in computer-aided verification. They naturally model the be-
haviour of programs with possibly recursive procedures, and therefore model-
checking for pushdown systems has been the subject of recent research. Burkhard
and Steffen [1] and Walukiewicz [2] have studied the problem for the modal μ-
calculus. Other papers [3–5] have investigated specialised algorithms for LTL
model checking and both forward and backward reachability on pushdown sys-
tems. Concrete algorithms for these tasks with a precise complexity analysis were
proposed in [5] and subsequently implemented in the Moped tool. Moreover, [3]
has shown that a similar approach can be used to solve the backward reacha-
bility problem in alternating pushdown systems. This can be used to solve the
model-checking problem for the alternation-free μ-calculus on (non-alternating)
pushdown systems.

More recently, pushdown systems have also been applied in the field of com-
puter security. In the authorization framework SPKI/SDSI [6], certificates are
used to assign permissions to groups of principals, which are defined using local,
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hierarchical namespaces. In order to prove that a principal may access a certain
resource, he/she needs to produce a chain of certificates that, taken together,
provide a proof of authorisation. Jha and Reps [7] showed that a set of cer-
tificates can be seen as a pushdown system, and that certificate-chain discovery
reduces to pushdown reachability. The SPKI/SDSI specification also provides for
so-called threshold certificates, allowing specifications whereby a principal can be
granted access to a resource if he/she can produce authorisations from multiple
sources. We observe that this extension reduces to reachability on alternating
pushdown systems.

Motivated by the applications in verification and authorisation, we study
reachability algorithms for alternating pushdown systems (APDS) in more detail.
The algorithm proposed in [3] is abstract (i.e. only the saturation rule is given),
and its complexity is given as “exponential”, without further details. Here, we
provide a concrete algorithm for solving the problem together with a precise
complexity analysis. Moreover, inspired by the work of [7], we show that the
algorithm is very efficient for a special class of instances. Then, we consider
two applications. The first one is straightforward: We show that the algorithm
immediately leads to a procedure for computing winning regions in pushdown
reachability games, and derive a complexity bound improving a previous analysis
by [8]. The second application is perhaps more interesting. In [7], Jha and Reps
observed that, for a restricted form of threshold certificates, the certificate-chain-
discovery problem can be solved in polynomial, rather than exponential time. We
prove this result again by showing that the existence of certificate chains can be
reduced to the special class of instances of the reachability problem that we have
identified. We perform a detailed complexity analysis, and report on a prototype
implementation on top of the Nexus platform for context-aware systems [9].

We proceed as follows: Section 2 introduces alternating pushdown systems
and other concepts used in the paper. Section 3 presents an algorithm for solv-
ing the reachability problem on APDS and analyzes its complexity. Section 4
studies the special class of instances mentioned above. Section 5 presents new
upper bounds for computing winning regions in reachability pushdown games.
Section 6 presents our application to certificate-chain discovery, and Section 7
reports experimental results.

2 Preliminaries

An alternating pushdown system (APDS) is a triplet P = (P, Γ, Δ), where
P is a finite set of control locations, Γ is a finite stack alphabet, and Δ ⊆
(P × Γ ) × 2(P×Γ∗) is a set of transition rules. A configuration of P is a pair
〈p, w〉, where p ∈ P is a control location and w ∈ Γ ∗ is a stack content. If
((p, γ), {(p1, w1), . . . , (pn, wn)}) ∈ Δ, we write 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉}
instead. We call a rule alternating if n > 1, or non-alternating otherwise. We also
write 〈p, γ〉 ↪→ 〈p1, w1〉 (braces omitted) for a non-alternating rule. Moreover,
for every w ∈ Γ ∗, the configuration 〈p, γw〉 is an immediate predecessor of the
set {〈p1, w1w〉, . . . , 〈pn, wnw〉}.



A computation tree of P is a directed tree whose nodes are labelled by con-
figurations and where every node n is either a leaf or an internal node labelled
with c such that n has one outgoing hyperedge whose set of target nodes is
labelled with configurations C = {c1, . . . , cn}, where c is an immediate prede-
cessor of C. We define the reachability relation ⇒ as c ⇒ C if there exists a
computation tree such that c labels the root and C is the set of labels of the
leaves. If c ⇒ C, then C is reachable from c. Given a set of configurations C,
we define the set of predecessors, pre∗(C) = {c | ∃C′ ⊆ C : c ⇒ C′}, as the
set of configurations that are reachable backwards from subsets of C via the
reachability relation.

Let us fix an APDS P = (P, Γ, Δ). An alternating P-automaton is a quintuple
A = (Q, Γ, δ, P, F ), where Q ⊇ P is a finite set of states, F ⊆ Q is the set of
final states, and δ ⊆ Q×Γ ×2Q is a set of transitions. The initial states of A are
the control locations of P . We define the transition relation → ⊆ Q × Γ ∗ × 2Q

as the smallest relation satisfying:

– q ε−→ {q} for every q ∈ Q,
– if (q, γ, Q′) ∈ δ then q

γ−→ Q′, and
– if q w−−→ {q1, . . . , qm} and qi

γ−→ Qi for each 1 ≤ i ≤ m, then q
wγ−−→

(Q1 ∪ . . . ∪ Qm).

A accepts or recognizes a configuration 〈p, w〉 if p
w−−→ Q′ for some Q′ ⊆ F . The

set of configurations recognized by A is denoted by L(A).
In [3], it has been shown that given a set of configurations C of P , recognized

by an alternating automaton A, we can construct another automaton Apre∗ such
that L(Apre∗) = pre∗(C).

The procedure of [3] assumes w.l.o.g. that A has no transition leading to an
initial state. Apre∗ is computed by means of a saturation procedure, which adds
new transitions to A, according to the following rule:

If 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} ∈ Δ and p1
w1−−→ P1,. . . , pm

wm−−−→
Pm holds, then add p

γ−→ (P1 ∪ . . . ∪ Pm).

3 An Implementation for pre∗

In this section we present an implementation, as shown in Fig. 1, of the abstract
algorithm from Sect. 2. Without loss of generality, the algorithm imposes two
restrictions on every rule 〈p, γ〉 ↪→ R in Δ:

(R1) if R = {〈p′, w′〉}, then |w′| ≤ 2, and
(R2) if |R| > 1, then |R| = 2 and ∀〈p′, w′〉 ∈ R : |w′| = 1.

Note that any APDS can be converted into an equivalent one that satisfies
(R1) and (R2) with only a linear increase in size (i.e. the converted automaton
executes the same sequences of actions, modulo the fact that one step may be
refined into a sequence of steps).

In the rest of the paper we conduct a careful analysis in terms of certain
parameters of the input, which are listed below:



– Δa, Δ0, Δ1, Δ2 denote the sets of alternating rules and non-alternating rules
with 0, 1, 2 stack symbols in their right-hand side, respectively.

– The set of pop control locations, denoted by Pε, is the set of control locations
p1 ∈ P such that Δ0 contains some rule 〈p, γ〉 ↪→ 〈p1, ε〉.

– Given an alternating automaton, we define Qni as the set of its non-initial
states, i.e., Qni = Q \ P .

Algorithm 1 computes Apre∗ by implementing the saturation rule. The sets
rel and trans contain the transitions that are known to belong to Apre∗ ; rel con-
tains those that have already been examined. Lines 1–4 initialize the algorithm.
The rules 〈p, γ〉 ↪→ 〈p1, ε〉 are dealt with first, as in the pre∗ algorithm of the
non-alternating case [5]. All rules are copied to Δ′ (line 3), and the auxiliary
function F(r) is assigned to set of empty set for each rule r (line 4). The al-
gorithm then proceeds by iteratively removing transitions from trans (line 6),
adding them to rel if necessary (lines 7–8), and examining whether they generate
other transitions via the saturation rule (lines 9–22). The idea of the algorithm is
to avoid unnecessary operations. Imagine that the saturation rule allows to add
transition t if transitions t1 and t2 are already present. Now, if t1 is taken from
trans but t2 has not been added to Apre∗ , we do not put t1 back to trans but
store the following information instead: if t2 is added, then we can also add t. It
turns out that these implications can be stored in the form of “fake pushdown
rules” (like those added in line 18 or 21) and in the form of the auxiliary sets
F(r).

Let us now look at the lines 9–22 in more detail. Lines 9–10 are as in [5].
Push rules (lines 11–19) and alternating rules (lines 20–22), however, require a
more delicate treatment. At line 11 we know that q

γ−→ Q′ is a transition of
Apre∗ (because it has been popped from trans) and that 〈p1, γ1〉 ↪→ 〈q, γγ2〉 is
a rule of the APDS. So we divide the states q′ ∈ Q′ into those for which there
is some rule q′ γ2−−→ Q′′ in rel and the rest. If there is no rest then we can add
new rules to trans (lines 14–15). Otherwise we add the “fake rule” of line 18. At
line 20 we know that q

γ−→ Q′ is a transition of Apre∗ and 〈p1, γ1〉 ↪→ {〈q, γ〉}∪R
is an alternating rule. So we add the “fake rule” 〈p1, γ1〉 ↪→ R.

Note that the algorithm obviously runs with exponential time, since the num-
ber of transitions of Apre∗ can be exponential in the number of states. However,
a closer look at the complexity reveals that the algorithm is exponential only in
a proper subset of states, which can be small depending on the instance.

Lemma 1. Algorithm 1 takes O(|δ0|+ |Δ0|+ |Δ1|2n + (|Δ2|n + |Δa|)4n) time,
where n = |Pε| + |Qni|.

In typical applications, we start with a small automaton, i.e. δ0 and Qni will
be small. In that case, n will be dominated by |Pε|, therefore the complexity can
be simplified to O(|Δ0| + |Δ1|2|Pε| + (|Δ2||Pε| + |Δa|)4|Pε|)

Theorem 1. Let P = (P, Γ, Δ) be an alternating pushdown system and A =
(Q, Γ, δ0, P, F ) be an alternating automaton. There exist an alternating automa-
ton Apre∗ that recognizes pre∗(L(A)). Moreover, if the restrictions R1 and R2



Algorithm 1
Input: an APDS P = (P, Γ, Δ);

an alternating P-automaton A = (Q,Γ, δ0, P, F ) without transitions into P
Output: the set of transitions of Apre∗

1 rel := ∅;
2 trans := δ0 ∪ { (p, γ, p′) | 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ } ∪ { (p, γ, ∅) | 〈p, γ〉 ↪→ ∅ ∈ Δ };
3 Δ′ := Δ;
4 F := λx.{∅};
5 while trans �= ∅ do
6 pop t := (q, γ, Q′) from trans;
7 if t /∈ rel then
8 add t to rel ;
9 for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ′ and Q′′ ∈ F(r) do

10 add (p1, γ1, Q
′ ∪ Q′′) to trans ;

11 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ Δ′ do
12 S := { q′ ∈ Q′ | ∃Q′′ : (q′, γ2, Q

′′) ∈ rel };
13 Q1 := {S

q′∈S Qq′ | ∀q′ ∈ S : (q′, γ2, Qq′) ∈ rel };
14 if S = Q′ then
15 add {(p1, γ1, Q1) | Q1 ∈ Q1} to trans ;
16 else
17 r := 〈p1, γ1〉 ↪→ {〈q′, γ2〉 | q′ ∈ Q′ \ S};
18 add r to Δ′ ;
19 add Q1 to F(r) ;
20 for all r := 〈p1, γ1〉 ↪→ {〈q, γ〉} ∪ R ∈ Δ′ s.t. R �= ∅ do
21 add 〈p1, γ1〉 ↪→ R to Δ′ ;
22 add {Q′′ ∪ Q′ | Q′′ ∈ F(r)} to F(〈p1, γ1〉 ↪→ R) ;
23 return rel ;

Fig. 1. An algorithm for computing pre∗.

are met, Apre∗ can be constructed in O(|δ0|+ |Δ0|+ |Δ1|2n + (|Δ2|n + |Δa|)4n)
time, where n = |Pε| + |Qni|.

Given an APDS P , a configuration c of P , and a set of configurations C,
the backward reachability problem for P , c, and C is to check whether c ∈
pre∗

P(C). By Theorem 1, the problem is in EXPTIME. The following theorem
shows a corresponding lower bound. It is a rather straightforward modification
of a theorem of [10].

Theorem 2. The backward reachability problem for alternating pushdown sys-
tems is EXPTIME-complete, even if C is a singleton.

4 A Special Case

Recall the saturation rule of the abstract algorithm for the computation of
pre∗: for every transition rule 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pm, wm〉} and every set
p1

w1−−→ P1, . . . , pm
wm−−−→ Pm, add a new transition p

γ−→ (P1 ∪ . . . ∪ Pm). The



exponential complexity of the algorithm is due to the fact that the target of the
new transition can be an arbitrary set of states, and so we may have to add an
exponential number of new rules in the worst case. We now consider a special
class of instances in which a new transition p

γ−→ Q need only be added if Q is a
singleton, and show that a suitable modification of Algorithm 1 has polynomial
running time.

Definition 1. Let P = (P, Γ, Δ) be an APDS, and let R ⊆ PΓ ∗ be a set of
configurations. We say that (P , R) is a good instance for the computation of
pre∗ if for every 〈p, d〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wn〉} ∈ Δ with n ≥ 2 and for every
i ∈ {1, . . . , n}: piwiw ∈ pre∗(R) implies w = ε.

I.e., if the set R can be reached from piwi, then it cannot be reached from any
piwiw, where w is a nonempty word. As mentioned above, we introduce the
following modification to the saturation rule: a new transition p

γ−→ Q is added
only if Q is a singleton.

Theorem 3. Let P = (P, Γ, Δ) and R be a good instance, and let A be a non-
deterministic automaton recognizing R. Assume w.l.o.g. that A has one single
final state. Then, the modified saturation procedure produces a nondeterministic
automaton recognizing the same language as Apre∗.

Algorithm 1 implements the modified procedure after the following change to
line 9: for all r := 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ′ and Q′′ ∈ F(r) ∩ {∅, Q′} do.

Lemma 2. The modified Algorithm 1 takes O(|δ0| + |Δ0| + (|Δ1| + |Δa|)n +
|Δ2|n2) time, where n = |Pε| + |Qni|, when applied to a good instance.

Note that Algorithm 1, when applied to a non-alternating PDS (i.e. one with
Δa = ∅), has the same complexity as the algorithm from [5] that was specially
designed for non-alternating PDS.

5 Computing Attractors in Pushdown Games

In [8] Cachat provided an algorithm for computing the winning positions of a
player in a pushdown reachability game. It is straightforward to reformulate the
algorithm in terms of pre∗ computations for alternating pushdown automata. We
do this, and apply the results of Sect. 3 to provide very precise upper bounds
for the complexity of these problems.

A pushdown game system (PGS) is a tuple G = (P, Γ, ΔG , P0, P1), where
(P, Γ, ΔG) is a PDS and P0, P1 is a partition of P . A PGS defines a pushdown
game graph GG = (V,→) where V = PΓ ∗ is the set of all configurations, and
pγv → qwv for every v ∈ Γ ∗ iff (p, γ, q, w) ∈ ΔG . P0 and P1 induce a partition
V0 = P0Γ

∗ and V1 = P1Γ
∗ on V . Intuititively, V0 and V1 are the nodes at which

players 0 and 1 choose a move, repectively. Given a start configuration π0 ∈ V ,
a play is a maximal (possibly infinite) path π0π1π2 . . . of GG ; the transitions of



the path are called moves; a move πi → πi+1 is made by player 0 if πi ∈ V0;
otherwise it is made by player 1.

The winning condition of a reachability game is a regular goal set of configu-
rations R ⊆ PΓ ∗. Player 0 wins those plays that visit some configuration of the
goal set and also those that reach a deadlock for player 1. Player 1 wins the rest.
We wish to compute the winning region for player 0, denoted by Attr0(R), i.e.
the set of nodes from which player 0 can always force a visit to R or a deadlock
for player 1. Formally [8]:

Attr0
0(R) = R ,

Attri+1
0 (R) = Attri

0(R) ∪ {u ∈ V0 | ∃v : u → v, v ∈ Attri
0(R)}

∪ {u ∈ V1 | ∀v : u → v ⇒ v ∈ Attri
0(R)} ,

Attr0(R) =
⋃

i∈N
Attri

0(R) .

Given a PGS G = (P, Γ, ΔG , P0, P1), we define an APDS P = (P, Γ, Δ) as follows.
For every p ∈ P and γ ∈ Γ : if p ∈ P0, then for every rule 〈p, γ〉 ↪→ 〈q, w〉 of ΔG
add the rule 〈p, γ〉 ↪→ {〈q, w〉} to Δ; if p ∈ P1 and S is the set of right-hand-side
configurations of rules with 〈p, γ〉 as left-hand-side, then add 〈p, γ〉 ↪→ S to Δ. It
follows immediately from the definitions that Attr0(R) = pre∗P(R) (intuitively,
if c ∈ pre∗

P(R) then c ⇒ C for some C ⊆ R, and so player 0 can force the play
into the set C). So we can use Algorithm 1 to compute Attr0(R). To derive the
complexity bound, we apply Lemma 1:

Theorem 4. Let G = (P, Γ, ΔG , P0, P1) be a PGS and a goal set R recognized
by an alternating automaton AR = (Q, Γ, δ0, P, F ). An alternating automaton
accepting the winning region can be computed in O(|δ0|+|Δ0|+|Δ1|2n+(|Δ2|n+
|Δa|)4n) time, where n = |Pε| + |Qni|.

In [8] an upper bound of O(|Δ| · 2c·|Q|2) is given. Our algorithm runs in
O(|Δ| ·2c·|Q|) time, and in fact Theorem 4 further reduces the exponent c · |Q| to
|Pε| + |Qni|. Typically, |Pε| + |Qni| is much smaller than |Q|. First, recall that,
because of the definition of P-automaton, we have P ⊆ Q. Moreover, goal sets
often take the form p1Γ

∗ ∪ . . . ∪ pnΓ ∗, i.e., player 0 wins if the play hits one of
the control states p1, . . . , pn. In this case we can construct AR with |Qni| = 1.
Since |Pε| is typically much smaller than |P |, the parameter n is much smaller
than |Q|.

6 Computing Certificate Trees in SPKI/SDSI

In access control of shared resources, authorization systems allow to specify a
security policy that assigns permissions to principals in the system. The autho-
rization problem is, given a security policy, should a principal be allowed access
to a specific resource? In frameworks such as SPKI/SDSI [6] and RT0 [11], the
security policy is expressed as a set of certificates, and the authorization problem



reduces to discovering a subset of certificates proving that a given principal is
allowed to access a given resource.

The SPKI/SDSI standard provides for so-called threshold certificates. Jha
and Reps already observed in [7] that the authorization problem in the presence
of such certificates can be reduced to the APDS reachability problem, and that a
special case had polynomial complexity. In this paper, we observe that the special
case corresponds to good instances of APDS reachability, as defined in Sect. 4,
and provide a detailed complexity analysis. Moreover, we report on experimental
results for a prototype implementation of the algorithm as an extension of the
Nexus platform [9] with distributed access control.

We proceed in two steps. First, we consider “simple” SPKI/SDSI, a subset
of SPKI/SDSI that has been considered in most of the work on this topic. Sim-
ple SPKI/SDSI does not handle threshold certificates, which we present in the
second part. Finally, in Sect. 6.3, we discuss the application of our algorithms
to RT0.

6.1 Simple SPKI/SDSI

In this paper, we introduce only the basic notations that are required to under-
stand SPKI/SDSI and its connections with alternating PDS. A more thorough
explanation can be found in [7].

In SPKI/SDSI, the principals (individuals, resources, or any other entities)
are represented by their public keys. We denote by K the set of public keys (or
principals), specific keys are denoted by K, KA, K ′, etc. An identifier is a word
over some alphabet Σ (usually denoted by typewriter font such as A, B, . . . ).
The set of identifiers is denoted by A. A local name is of the form K A, where
K ∈ K and A ∈ A. For example, KX Customer is a local name. A term is a key
followed by zero or more identifiers. For example, K Area Customer is a term.
SPKI/SDSI has two types of certificates, or “certs”:

Name Certificates A name cert provides a definition of a local name in the
issuer’s local name space. Simply speaking, it can be understood as a rewrite
rule of the form K A → S, where K A is a local name and and S is a term.
Intuitively, this defines a meaning for A in the local name space of principal K,
and only K may issue and sign such a cert.

Imagine, for instance, that X is a telecommunication company with multiple
divisions, including the mobile phone division Xm. Alice is a customer with the
mobile phone division. Consider the following certificates:

KXm customer→ KAlice (1)
KX customer→ KXm customer (2)

Here, (1) intuitively declares Alice to be a customer of Xm, while (2) says that
customers of Xm are also customers of the company X as a whole.



Authorization Certificates An auth cert grants or delegates a specific authoriza-
tion from an issuer to a subject. It can be understood as a rewrite rule of the form
KR � → S b, where b ∈ {�, �}. If KR is the owner of some resource R, then
this certificate grants access to R to all principals described by term S. Only KR

may issue such a certificate. If b = �, then authorized principals may delegate
this authorization to other principals, otherwise delegation is not permitted. The
following certificate grants access to resource R to all of X ’s customers, without
delegation:

KR � → KX customers � (3)

Certificate Chains In order for Alice to prove that she has access to some re-
source, she needs to provide a list of certificates that lead from the public key
to herself by applying left-prefix rewriting. Such a list of certificates is called a
certificate chain. In the example, Alice is granted authorisation to access R if
she can produce the certificate chain (3),(2),(1), because applying them (in this
order) shows that:

KR � (3)→ KX customers � (2)→ KXm customers � (1)→ KAlice �

Since this chain leads from KR � to KAlice �, Alice is authorised to access R,
the “�” indicating that she is unable to delegate that access further.

It was observed in [7] that a set of name and auth certs can be interpreted as
a pushdown system; therefore, the authorization problem reduces to the problem
of pushdown reachability and can be solved using the algorithms from [3, 5].

6.2 SPKI/SDSI with Threshold Certificates

The SPKI/SDSI standard [6] provides for so-called threshold subjects. A thresh-
old subject is a pair (S, k) where S is a set of terms and k ≤ |S|. A threshold
certificate is a name or auth cert where the right-hand side is a threshold sub-
ject. If threshold certificates are involved, proofs of authorisation can no longer
be done purely by certificate chains. Instead, a proof of authorisation for Alice
to access resource R becomes a certificate tree, where the nodes are labelled with
terms and the edges are labelled with rewrite rules that can be applied to the
term labelling their source nodes. The root is KR �, and if K A → (S, k) is used
to rewrite a node n, then the children of n are the elements of S. The tree is
considered a valid proof of authorisation for Alice if at least k of the children
can be rewritten to KAlice b, where b ∈ {�, �}.

We observe that it is sufficient to consider threshold certificates with subject
(S, k) such that k = |S|. (Any certificate where k < |S| can be simulated by

(|S|
k

)

threshold certificates for each subset of S with exactly k elements.) Therefore,
we will omit the number k from now on, silently assuming that it is equal to the
cardinality of S.

It can now easily be seen that in the presence of threshold certificates, the
certificate set can be interpreted as an alternating pushdown system, and that



the authorisation problem reduces to APDS reachability. In other words, Alice is
granted access to resource R if she can prove that KR � ⇒ {KAlice �, KAlice �}.

In [12, 7] the use of threshold subjects is restricted to just authorization cer-
tificates, claiming that the use of threshold subjects in name certificates would
make the semantics “almost surely too convoluted”. Moreover, [7] observes that
under this restriction the authorisation problem can be solved without incurring
(asymptotic) run-time penalties for threshold subjects and gives an informal al-
gorithm. Within our framework, we note that the restriction of threshold subjects
to auth certs allows one to obtain a good instance and to apply the algorithm
from Sect. 4 to solve the authorisation problem.

Theorem 5. Let Ct, C0, C1, and C2 be sets of certificates, where Ct contains
the auth certs with threshold subjects, C0 contains the name certs in which terms
have zero identifiers, C1 contains the name and auth certs in which terms have
one and zero identifiers, respectively, and C2 consists of the rest. Let n be the
number of different terms in C0. The authorization problem can be solved in
O(|C0| + (|C1| + |Ct|)n + |C2|n2) time.

6.3 APDS reachability and RT0

The RT0 framework was proposed in [11], along with algorithms for solving
its associated authorization problem. The expressiveness of RT0 is very similar
to that of SPKI/SDSI and allows for role intersection (similar to the threshold
certificates of SKPI/SDSI). It is straightforward to assign a pushdown semantics
to RT0; therefore, our algorithms may serve as an alternative to the specialised
algorithms in [11]. Let us regard this aspect in more detail.

The basic concepts in RT0 are entities and role names, corresponding to
“principals” and ”identifiers” in SPKI/SDSI. A role is a tuple of the form A.r,
where A is a principal and r is a role name, and corresponds to a local name in
SPKI/SDSI. Certificates (or credentials in [11]) can be of the following types,
where A, B are entities and r, r1, r2 are role names: (i) A.r ← B, (ii) A.r ← B.r1,
(iii) A.r ← A.r1.r2, and (iv) A.r ← f1 ∩ · · · ∩ fk, for any k ≥ 1, where f1, . . . , fk

are roles.1

Unlike SPKI/SDSI, RT0 does not distinguish between auth certs and name
certs; in fact, all certs in RT0 can be understood as name certs, including those
that deal with role intersection. The semantics of a set of certs, then, is a mapping
Mem of roles to the sets of entities, i.e. the least fixpoint satisfying the following
equations:

(i) if A.r ← B is a cert, then B ∈ Mem(A.r);
(ii) if A.r ← B.r1 is a cert, then Mem(B.r1) ⊆ Mem(A.r);
(iii) if A.r ← A.r1.r2 is a cert, then

⋃
B∈Mem(A.r1)

Mem(B.r2) ⊆ Mem(A.r);
(iv) if A.r ← f1 ∩ · · · ∩ fk is a cert, then

⋂n
i=1 Mem(fi) ⊆ Mem(A.r).

1 In fact, [11] permits f1, . . . , fk to be any of the expressions allows on the right-hand
side of rules (i), (ii), or (iii); however, our restriction allows for an easier presentation
of the semantics without restricting the expressiveness of the framework.



The membership problem in RT0 is to determine, given a role A.r and an entity B,
whether B ∈ Mem(A.r). RT0 does not provide for auth certs; the underlying
assumption is that permissions can be assigned to roles by external means.

It can easily be seen that rules of type (i), (ii), and (iii) can be given a (non-
alternating) pushdown semantics such that the resulting PDS satisfies 〈A, r〉 ⇒
{〈B, ε〉} if and only if B ∈ Mem(A.r). Thus, the membership problem for RT0

without certs of type (iv) can be solved using algorithms for (non-alternating)
pushdown reachability [5].2

A straightforward translation of rules of type (iv) to alternating pushdown
rules fails, however. It turns out that the semantics of type-(iv) rules is subtly
restrictive, making RT0 less expressive than APDS. For instance, consider the
following set of RT0 credentials:

A.a ← A.b.c, A.b ← B.d ∩ C.e, B.d ← D, C.e ← E, D.c ← F, E.c ← F

We have Mem(B.d) = {D} and Mem(C.e) = {E}, therefore Mem(A.b) = ∅,
and consequently Mem(A.a) = ∅. It is tempting to translate the rule A.b ←
B.d ∩ C.e to the alternating pushdown rule 〈A.b〉 ↪→ {〈B.d〉, 〈C.e〉}. But then,
the resulting APDS satisfies 〈A.a〉 ⇒ {〈F, ε〉}, which is at odds with the RT0

semantics Mem(A.a) = ∅.
However, the following relationship holds: Let C be a set of RT0 credentials,

and let P be the APDS derived from C in the manner described above. Let R =
{〈B, ε〉} be a singleton set of configurations for some entity B. Then, for any role
A.r, it holds that B ∈ Mem(A.r) if and only if 〈A, r〉 ⇒ R provided that (P , R)
is a good instance. Notice that the APDS resulting from the previous example
and the set {〈F, ε〉} do not form a good instance because the APDS contains
a rule 〈A, b〉 ↪→ {〈B, d〉, 〈C, e〉}, but 〈B, dc〉 and 〈C, ec〉 are both contained in
pre∗({〈F, ε〉}).

Previous algorithms for solving membership queries were proposed in [11]
and [13]. The algorithms in [11] are based on the concept of so-called credential
graphs, whereas [13] employs logic programs. However, the best known time
bounds for the membership problem given in [11, 13] are cubic in the number of
credentials. The algorithm provided in Sect. 4 can solve the membership problem
with only linear time in the number of credentials and quadratic only in the
number of entities that are the target of a type (i) credential.

7 Implementation and Experiments

We have implemented a prototype of the pre∗ algorithm for APDS (in fact, a
dedicated version for good instances) inside the Nexus platform [9]. An applica-
tion can use Nexus “middleware” in order to obtain context data about mobile
objects registered at the platform, like the position of an object or whether it
enjoys a given relation to another object.

2 This fact was already mentioned in [13].



Nexus is based on an Augmented World Model (AWM). AWM can contain
both real world objects (e.g. rooms or streets) and virtual objects (e.g. websites).
Furthermore, Nexus defines a language called Augmented World Modeling Lan-
guage (AWML). This XML-based language is used for exchanging Nexus objects
between the platform and data repositories.

Our prototype extends the AWM and AWML with name and authorization
relations, which can be viewed as name and authorization certificates in the
case of SPKI/SDSI, respectively. In other words, we model relations as virtual
objects in the Nexus context. Moreover, we extend the platform so that it can
serve applications querying relations between entities. Note that, normally, the
base information about objects is contained in a Nexus database (the so-called
context server) and returned in the form of AWML documents. Our prototype is
not yet connected to such a database; instead, all data is kept directly in AWML.

7.1 A Scenario

Consider a scenario where company X takes part in a trade fair. The exhibition
center consists of 2 exhibitions. An exhibition’s area is a hierarchical structure
with 3 exhibition halls, divided into 4 floors with 5 booths each. The structure
can be written by pushdown rules as follows, given that 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, 1 ≤
k ≤ 4, 1 ≤ l ≤ 5:

Ei Area → Ei Hall Floor Booth (4)
Ei Hall → H[i,j] (5)
H[i,j] Floor → F[i,j,k] (6)
F[i,j,k] Booth → B[i,j,k,l] (7)

Now, company X launches a promotion for visitors of the exhibition center
to freely download ringtones for their mobile phones. The following visitors are
allowed to download: (1) customers of X who are currently in the area of exhi-
bition 1; (2) non-customers to whom the right has been delegated by one of X ’s
customers; (3) customers who are currently not in the area of exhibition 1, but
have received delegation from another visitor of exhibition 1. This is expressed
by the following rule:

KX � → {E1 Area Visitor �, KX Customer �} (8)

The facts that Alice is visiting a booth in exhibition 1, and that she delegates
her right to Bob, who is a customer of X , can be written as:

B[1,j,k,l] Visitor→ KAlice, for some j, k, l (9)
KAlice � → KBob � (10)
KX customer→ KBob (11)

When Bob wants to download a ringtone, we can efficiently compute the
set pre∗({〈KBob, �〉, 〈KBob, �〉}) by noting the fact that the rules (4)–(11) and



{〈KBob, �〉, 〈KBob, �〉} form a good instance. Bob’s request is granted in this
case because 〈X, �〉 ∈ pre∗({〈KBob, �〉, 〈KBob, �〉}). Note that Bob can only
download as long as Alice stays in booths in the exhibition 1. As soon as she
moves away (i.e. the rule (9) is removed), a request from Bob can no longer be
granted even though he is a customer of X .

7.2 Experiments

The scenario explained above is implemented as an application of the Nexus
platform. We report on the running time for some experiments. The experiments
should give a rough idea of the size of problems that can be handled in reasonable
time.

We randomly add visitors to the exhibition center, and let them randomly
issue certificates. We consider a base case with 1000 visitors in the exhibition
center, 100 of them are customers of the company X , and the visitors issue 1000
authorization certificates. The issuer of a certificate decides randomly whether
the right can be further delegated or not. The series were conducted on a 2 GHz
PC with 256MB RAM.

7.3 Experiment 1

In the base case, 10% of visitors are customers of X , and a visitor issues one cer-
tificate on average. In our first experiment we keep these two ratios constant, and
increase the number of visitors (for example, if there are 2000 visitors, there will
be 200 customers that authorize 2000 times). We ran the experiment five times
for each set of parameters. In each run 1000 random download requests are made.
Table 1 displays the average results for 1000, 2000, 5000, and 10000 visitors (V).
The table shows how often the request was granted (G) and rejected (R), the
average time of a certificate search (T), and average time for granted (T(G))
and rejected (T(R)) searches. All measurements are in milliseconds.

In a realistic scenario, solving the authorisation problem requires to query
databases (e.g. databases containing the positions of objects) and transmit data
over a network, which are comparatively expensive operations. We kept relations
of various types in different AWML files and whenever a piece of data was needed,
we retrieved it from there. Since opening and reading files is also a comparatively
expensive operation, this gives some insight as to the overhead such operations
would incur in practice. The table shows the number of times AWML files (F)
needed to be opened in average. For comparison, the numbers for granted (F(G))
and rejected (F(R)) requests are also displayed.

This experiment allows to draw a first conclusion: The average time of a
search does not depend on the number of visitors per se. When a visitor requests
a download, the algorithm has to search for the issuers of its certificates. Since
the number of certificates is equal to the number of visitors, each visitor has one
certificate in average.



Table 1. Results of Experiment 1

V G R T T(G) T(R) F F(G) F(R)

1000 229.8 770.2 18.71 29.09 15.49 13.84 22.54 11.19
2000 195.6 804.4 19.23 28.76 16.92 13.14 21.25 11.16
5000 202.2 797.8 18.62 29.33 15.90 12.99 21.10 10.93

10000 199.4 800.6 24.90 38.25 21.60 13.00 22.00 10.77

7.4 Experiment 2

In this experiment, we kept the number of visitors constant, and increased the
number of certificates they issue, shown in column C in Table 2. The other
columns are as in Experiment 1. Again, we ran the experiment five times for
each value of C. Each run consisted of 100 random requests.

Table 2. Results of Experiment 2.

C G R T T(G) T(R) F F(G) F(R)

1000 23.0 77.0 18.71 29.09 15.49 13.84 22.54 11.19
2000 56.2 43.8 120.72 193.93 21.96 74.68 118.50 15.83
3000 86.4 13.6 1477.35 1704.21 33.66 625.41 721.69 12.91
4000 95.2 4.8 2279.13 2393.81 13.40 898.01 942.94 9.64

We see that the running time grows rapidly with the number of certificates
issued. The explanation is the larger number of certificates received by each vis-
itor, which leads to many more certificate chains. Observe also that the number
of granted requests increases.

The overall conclusion of the two experiments is that the algorithm scales
well to realistic numbers of visitors and certificates. Notice that in the intended
application a user will be willing to wait for a few seconds.

8 Conclusions

We have provided an efficient implementation of the saturation algorithm of [3]
for the computation of pre∗ in alternating pushdown systems. Following [8], we
have applied the algorithm to the problem of determining the winning region in
reachability pushdown games, improving the complexity bound of [8]. We have
shown that the algorithm has very low complexity for certain good instances, and
provided an application: The computation of certificate chains with threshold
subjects in the SPKI/SDSI authorization framework can be reduced to these
instances. We have implemented the algorithm within the Nexus platform [9],
and shown that it scales up to realistic scenarios.
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Appendix

We now show that Algorithm 1 correctly implements the saturation procedure
from [3], and analyse its complexity. The results are summarized in Theorem 1,
however we need the following three lemmata:

Lemma A1. Algorithm 1 terminates.

Proof. Since rel is initially empty and Q, Γ are finite sets, rel is a finite set.
Therefore, the block at lines 8–22 can only be executed finitely many times. Δ′

is finite, since Δ is finite and only finitely many rules are added to Δ′. Hence, all
loops after line 8 terminate, and only finite number of elements can be added to
trans. Once rel can no longer grow, trans can no longer grow and will be empty
eventually. This causes the algorithm to terminate. ��

Lemma A2. Upon termination of Algorithm 1, rel is equal to the set δ of tran-
sitions of Apre∗ .

Proof. We divide the proof into two parts:



“⊆”: We show that throughout the algorithm rel ⊆ δ holds. In Sect. 2, δ was
defined to contain δ0 and satisfy the saturation rule. rel contains only ele-
ments from trans, so we inspect the lines that change trans , and show that
all additions to trans satisfy saturation rules:

• Line 2: trans is initialized to δ0, and also the saturation rule is directly
modelled here.

• Line 15: models the saturation rule in the case of 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ Δ′

(line 11), (q, γ, Q′) ∈ trans (line 6), and S = Q′ (line 14), where S is the
set of control locations q′ from Q′ such that (q′, γ2, Q

′′) was in trans for
some Q′′ (line 12). At line 13 Q1 keeps unions of Q′′ for each different
element from S. When S = Q′, it means that every element in Q′ has
outgoing transitions labelled with γ2. Line 15 add (p1, γ1, Q1) to trans
for every Q1 ∈ Q1. Thus, it models the saturation rule.

• Line 10: The rule 〈p1, γ1〉 ↪→ 〈q, γ〉 was added to Δ′ because of either of
the following three reasons:
1. The rule was added to Δ′ at line 3, i.e. 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ and

F(〈p1, γ1〉 ↪→ 〈q, γ〉) = ∅. The saturation rule directly applies.
2. The rule was added to Δ′ at line 18, which implies that r at line 17

was 〈p1, γ1〉 ↪→ 〈q, γ〉, and the loop at line 11 was entered with some
p′′, γ′, and Q′ such that 〈p1, γ1〉 ↪→ 〈p′′, γ′γ〉 ∈ Δ and (p′′, γ′, Q′) ∈
trans . Since r := 〈p1, γ1〉 ↪→ 〈q, γ〉, we know that S = Q′ \ {q}
at line 12, and Q1 gets unions of Q′′ such that (q′, γ, Q′′) was in
trans for each different q′ ∈ S at line 13. Q1 was added to F(r) at
line 19. Then, when r is considered at line 10 because of the transition
(q, γ, Q′), we add transitions (p1, γ1, Q

′ ∪ Q′′) for each Q′′ ∈ F(r)
according to the saturation rule.

3. The rule was added to Δ′ at line 21, which implies that the loop
at line 20 was entered with some q′1, γ′

1, and Q′
1 such that r :=

〈p1, γ1〉 ↪→ {〈q′1, γ′
1〉} ∪ {〈q, γ〉} ∈ Δ′ (i.e. R = {〈q, γ〉}) and the

transition (q′1, γ
′
1, Q

′
1) ∈ trans. The states Q′

1 was saved by adding
to F(〈p1, γ1〉 ↪→ 〈q, γ〉) unions of Q′

1 and Q′′ for each Q′′ ∈ F(r) at
line 22. Now, we consider again where the rule r was added to Δ′.
There are three cases:
3.1 If r was added to Δ′ at line 3, i.e. r ∈ Δ, adding transitions

(p1, γ1, Q
′ ∪ Q′′) for each Q′′ ∈ F(〈p1, γ1〉 ↪→ 〈q, γ〉) therefore

conforms to the saturation rule.
3.2 If r was added to Δ′ at line 18, then r at line 17 was 〈p1, γ1〉 ↪→

{〈q, γ〉, 〈q′1, γ′
1〉}, and the loop at line 11 must be entered with

some p′′, γ′, and Q′ such that 〈p1, γ1〉 ↪→ 〈p′′, γ′γ〉 ∈ Δ and
(p′′, γ′, Q′) ∈ trans. Since r := 〈p1, γ1〉 ↪→ {〈q, γ〉, 〈q′1, γ′

1〉} at
line 17, we know that γ = γ′, S = Q′ \ {q, q′1} at line 12, and
Q1 gets unions of Q′′ such that (q′, γ, Q′′) was in trans for each
different q′ ∈ S at line 13. Q1 was added to F(r) at line 19. Again,
when considering 〈p1, γ1〉 ↪→ 〈q, γ〉, we add (p1, γ1, Q

′ ∪ Q′′) for
each Q′′ ∈ F(〈p1, γ1〉 ↪→ 〈q, γ〉) according to the saturation rule.



3.3 If r was added to Δ′ at line 21, then there must eventually be
〈p1, γ1〉 ↪→ {〈q, γ〉, 〈q′1, γ′

1〉, . . . , 〈q′n, γ′
n〉} ∈ Δ′ for some n ≥ 2

such that this rule was added at line 18. The reason is because
of the restriction (R2), which means only line 18 can add such
a rule to Δ′. We can perform the analysis similar to 3 and 3.2,
and conclude that the addition conforms to the saturation rule.

“⊇”: We show that upon termination rel ⊇ δ holds. Equivalently, we prove that
by the time the algorithm terminates, all possible saturation rules have been
applied. Two cases are considered:

Case 1: Assume 〈p, γ〉 ↪→ 〈p′, w〉 ∈ Δ and there is p′ w−−→ Q in rel .
∗ If w = ε, then Q = {p′} and (p, γ, p′) has been added in line 2.
∗ If w = γ1 and (p′, γ1, Q) ∈ rel , then (p, γ, Q) has been added in

line 10.
∗ If w = γ1γ2, and rel contains transitions t′ = (p′, γ1, Q

′) and t′′j =
(q′j , γ2, Q

′
j) for every q′j ∈ Q′, at line 12 S contains control locations

q′j such that t′′j was already examined, and unions of Q′
j for each

different q′j ∈ S are saved in Q1 at line 13.
· If t′ was examined after all t′′j , then S = Q′, which means

(p, γ,
⋃

j,qj∈S Q′
j) was added in line 15.

· If t′ was examined before t′′j for some j, Δ′ has the rule r :=
〈p, γ〉 ↪→ {〈q′j , γ2〉 | q′j ∈ Q′ \ S} at line 18, and Q1 was added
to F(r) at line 19. When t′′k , where q′k �∈ S, was later examined,
there are two possible cases depending on the number of elements
in the right-hand-side set of the rule.
1. If there is more than one element in the set, line 21 adds a rule

without 〈q′′k , γ2〉 in the right-hand-side set to Δ′, and Q′
k was

added to F of this new rule at line 22. This step is repeated for
each different t′′k until there is one element in the right-hand-
side set.

2. If there is one element in the set, then (p, γ, Q′ ∪Q′′) is added
for each Q′′ ∈ F(r) at line 10.

Case 2: Assume 〈p, γ〉 ↪→ {〈q1, γ1〉, 〈q2, γ2〉} ∈ Δ, rel contains t1 = (q1, γ1, Q1),
and t2 = (q2, γ2, Q2).
∗ If t1 was examined before t2, Δ′ has the rule r = 〈p, γ〉 ↪→ 〈q2, γ2〉

at line 21, and F(r) contains Q1 at line 22. When t2 was examined,
(p, γ, Q1 ∪ Q2) was added in line 10.

∗ If t2 was examined before t1, the proof is analogous.
��

Lemma 1. Algorithm 1 takes O(|δ0|+ |Δ0|+ |Δ1|2n + (|Δ2|n + |Δa|)4n) time,
where n = |Pε| + |Qni|.
Proof. Let ν be the smallest set of states such that for every transition (q, γ, Q′)
that is added to trans at any any point during the algorithm, Q′ only contains
states of ν. Because of line 2 of the algorithm, we have Pε ∪ Qni ⊆ ν. However,
the other lines that add transitions to trans (namely, 10 and 15) do not add more



elements to ν, since every transition (q, γ, Q′) they add, Q′ must be a union of
Q′′ from some (q′, γ′, Q′′) that were in trans. So, ν = Pε ∪ Qni.

Because of the definition of ν, the number of sets Q′ ⊆ Q for which after
termination of the algorithm rel contains a transition of the form (q, γ, Q′) is
2|ν| = 2n.

We now consider the number of times the statements inside the main loop are
executed. Line 12 is executed once for each combination of 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈
Δ2 and (q, γ, Q′), i.e. O(|Δ2|2n) times. Thus, line 18 is executed O(|Δ2|2n) times.
The alternating rules inside Δ′ only come from Δa and line 18, hence there are
O(|Δa| + |Δ2|2n) of them. Line 21 is executed once for each combination of
alternating rule 〈p1, γ1〉 ↪→ R ∪ {〈q, γ〉} ∈ Δ′ and (q, γ, Q′). Therefore, line 21 is
executed O(|Δa|2n + |Δ2|4n) times. Moreover, since Q′ and γ2 are fixed, line 15
is executed O(|Δ2|4n) times.

Line 10 is executed once for each combination of non-alternating rule in
Δ′ and (q, γ, Q′). Since the size of Δ′ of this form is O(|Δ1| + |Δ2|n + |Δa|)
and f(r) has at most 2n elements for each rule r �∈ Δ1, line 10 is executed
O(|Δ1|2n + (|Δ2|n + |Δa|)4n) times.

We now count the iterations of the main loop, i.e. how often line 6 is executed.
This directly depends on the number of elements added to trans. Initially, trans
has |δ0| + |Δ0| elements from lines 1 and 2. The time complexity can then be
concluded from the fact that all addtions to trans are no more than O(|δ0| +
|Δ0| + |Δ1|2n + (|Δ2|n + |Δa|)4n) in number. ��
Theorem 2. The backward reachability problem for alternating pushdown sys-
tems is EXPTIME-complete, even if C is a singleton.

Proof. We use a reduction from the acceptance problem for alternating Turing
machines.

More specifically, let M = (Q, Σ, δ, q0) be an alternating Turing machine,
where the control states Q are partitioned into existential, universal, accepting,
and rejecting states, and where δ : Q × Σ → 2Q×Σ×{L,N,R} is the transition
function.

Let us assume that, when started on the input w, M uses at most p(|w|)
space on the tape, where p is some polynomial independent of w. Thus, a con-
figuration of M can be represented by a word from Σ∗QΣΣ∗ of length p(|w|).
In a configuration uqv, u is are the tape contents to the left of the head, q is the
current state, and v are the tape contents under and to the right of the head,
including blanks for cells that have not yet been visited. The initial configuration
for input w is q0w (padded with blanks as needed).

The computation of M on an input w is a tree whose nodes are the tape
configurations of M, rooted at the initial configuration and where the children
of each configuration are its successor configurations (w.r.t. δ). If α is a config-
uration of M, we denote by Tα the subtree rooted at α. A subtree Tα, where q
is the control state of α, is called accepting if either

– q is accepting,
– or q is existential and there is a successor β of α such that Tβ is accepting;



– or q is universal and for any successor β of α, Tβ is accepting.

The problem to check whether the computation of M on w is accepting is
well-known to be EXPTIME-complete [10].

Given M and w, we now construct an APDS P and configurations c, c′ such
that c ∈ pre∗

P({c′}) if and only if the computation of M on w is accepting.
This proves that the backward reachability problem is EXPTIME-hard, and
together with Theorem 1, EXPTIME-complete.

The stack alphabet of P is Q ∪ Σ ∪ {#, L, N, R}. A run of P works in two
phases. In the first phase, P begins at a configuration 〈Start , #〉, then nondeter-
ministically pushes a word #c0#t1#c1#t2#c2#t3 · · · onto the stack, where c0 is
the initial configuration of M on w, c1, c2, . . . are arbitrary configurations of M,
and ti, i ≥ 1, represents a transition of M from ci−1 to ci. A transition ti is con-
structed as follows: After pushing ci−1, P first chooses a pair (q, a) ∈ Q×Σ and
writes qa to the stack. Then, if q is accepting, P goes to a control state Test and
enters the second phase (see below). If q is existential, P nondeterministically
chooses a triple (q′, a′, m) from δ(q, a), pushes q′a′m to the stack and continues
with ci. If q is universal, and |δ(q, a)| = n, then P executes an alternating rule
with branching degree n, where each branch writes a distinct element of δ(q, a)
to the stack, and then continues with ci.

Notice that in the first phase, there is no guarantee that ci−1, ti, and ci

are correctly related to each other. Consider a run of P where each branch has
entered the control state Test , and assume (for a moment) that the choices of
subsequent configurations and transitions along each branch correctly represent
steps in M. Since the branching behaviour of the run corresponds to the branch-
ing behaviour of the transitions chosen along each branch, and each branch has
entered an accepting state, such a run is possible if and only if the computation
of M on w is accepting. All that remains is to check (on each branch) whether
the configurations and transitions are correctly related to each other. This is
done in the second phase.

In the second phase, P checks (for each branch) whether the following holds:

(i) for each pair ci−1, ti, where i ≥ 1 and ti = qa . . ., ci−1 has the form uqav for
some u, v ∈ Σ∗;

(ii) for each triple ci−1, ti = qaq′a′m, ci, where i ≥ 1, the control state in ci is
q′, and its position is correct w.r.t. the position of the control state in ci−1

and m;
(iii) for each triple ci−1, ti, ci, where i ≥ 1, and each j ∈ {1, . . . , p(|w|)}, the

symbol on the j-th tape cell in ci is correct w.r.t. the j-th tape symbol in
ci−1 and ti.

To perform these checks, the second phase can be seen to consist of a ‘popping
thread’ that pops the stack contents and forks off a ‘checking thread’ at each
position where a check is required. The popping thread can be implemented by an
alternating rule of the kind 〈Test , γ〉 ↪→ {〈Test , ε〉, 〈Check , γ〉}, where 〈Test , ε〉
is the continuation of the ‘popping thread’, and 〈Check , γ〉 is the beginning of
the ‘checking thread’.



The checking thread for condition (i) is simple to implement: the thread
pops (q, a) from the stack, enters a control state Check1(q, a), then removes the
configuration ci−1 from the stack, checking whether condition (i) is met.

The checking thread for condition (ii) is similar, except for the fact that the
thread needs a counter up to p(|w|) to check that the position is correct.

The checking thread for condition (iii) remembers the symbol of ci at position
j and whether the head is at position j − 1, j, j + 1, or somewhere else, then
removes the rest of ci and reads ti. From this information it can conclude which
symbol position j in ci−1 should have had. It then removes part of ci−1 up to
position j and checks whether it contains the correct symbol. Again, a counter
up to p(|w|) is needed.

Assume that all successful checking threads continue to remove the stack
contents and then enter a control state End , and that the same holds for the
popping thread. Then, all threads become 〈End , ε〉 if and only if all branches of
P in the first phase represented correct computations of M. Putting it differ-
ently, 〈Start , #〉 ∈ pre∗P({End , ε}) if and only if the computation of M on w is
accepting. The number of control states in P is O(p(|w|) · |Q| · |Σ|). ��
Theorem 3. Let P = (P, Γ, Δ) and R be a good instance, and let A be a non-
deterministic automaton recognizing R. Assume w.l.o.g. that A has one single
final state. Then, the automaton resulting from the modified saturation procedure
is nondeterministic and recognizes the same language as Apre∗.

Proof. Because of the modification in the rule, the modified saturation procedure
never adds an alternating rule, and so it yields a nondeterministic automaton.

We claim that if Apre∗ contains a transition p
γ−→i+1 (P1∪. . .∪Pm) such that

P1 ∪ . . .∪Pm is not a singleton, then at least one Pi contains a redundant state,
i.e., a state from which no word can be accepted. It follows that the transition
need not be added.

To prove the claim, observe that p
γ−→i+1 (P1 ∪ . . . ∪ Pm) is obtained from

some rule 〈p, γ〉 ↪→ {〈p1, w1〉, . . . , 〈pn, wm〉} ∈ Δ and a set of paths p1
w1−−→i

P1, . . . , pm
wm−−−→i Pm in Ai. Let qf be the final state of A. If Pi �= {qf} for

some i ∈ {1, . . . , m}, then Pi contains a non-final state q of A. If q is non-
redundant in Apre∗ then Apre∗ recognizes a word piwiw where w �= ε. But then
piwiw ∈ pre∗(R), contradicting the assumption that P , R is a good instance. ��
Lemma 2. The modified Algorithm 1 takes O(|δ0| + |Δ0| + (|Δ1| + |Δa|)n +
|Δ2|n2) time, where n = |Pε| + |Qni|, when applied to a good instance.

Proof. The proof is similar to the one of lemma 1. Let ν be the set of states such
that for every transition (q, γ, q′) ∈ trans at any point of the algorithm, q′ ∈ ν.
Line 2 adds |Pε| + |Qni| elements to ν. Since no other lines add more elements
to ν, at the end of the algorithm, the size of ν is |Pε|+ |Qni| = n. Therefore, the
resulting rel contains at most n possible states in its right-hand side.

At line 18, Δ′ has size O(|Δ2|n). Line 21 considers alternating rules, which
can only come from line 3, so it contributes O(|Δa|) elements to Δ′. Line 15 is
executed O(|Δ2|n2) times, since q′, γ2 are fixed. Also, the modification of line 9



causes line 10 to be executed O(|Δ1|n+ |Δ2|n2+ |Δa|n) times. Totally, additions
to trans are no more than O(|δ0| + |Δ0| + (|Δ1| + |Δa|)n + |Δ2|n2) in number,
and this concludes the time complexity. ��


