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Vorwort 

 
Drahtlose Sensornetze bestehen aus einer großen Zahl von kleinen Rech-
nersystemen (Sensorknoten), die in der Regel mittels einer drahtlosen 
Kommunikationstechnologie miteinander vernetzt sind. Jeder Sensorkno-
ten ist dabei mit einem eigenen Prozessor, Speicher und anwendungsab-
hängigen Sensoren ausgestattet. Die Eigenschaften dieser Sensorknoten 
und Netze implizieren eine Vielzahl von neuartigen Herausforderungen, 
die sich in einer regen Forschungsaktivität widerspiegeln. 
Die GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (KuVS) 
hat deshalb das Fachgespräch Sensornetze ins Leben gerufen, um Wissen-
schaftlerinnen und Wissenschaftler besonders aus dem deutschsprachigen 
Raum eine Gelegenheit zum Gedankenaustausch zu bieten. Der Fokus auf 
Diskussionen und der eher informelle Charakter dieser Veranstaltung er-
öffnen zusätzliche Möglichkeiten der Kooperation in diesem noch weitge-
hend US-amerikanisch geprägten Forschungsbereich. Diese Reihe wird 
durch das Leitungsgremium bestehend aus Dr. Thomas Fuhrmann (Uni-
versität Karlsruhe), Prof. Dr. Kurt Geihs (Universität Kassel), Prof. Dr. Hol-
ger Karl (Universität Paderborn), Prof. Dr.-Ing. Friedemann Mattern (ETH 
Zürich) und Dr. Hartmut Ritter (FU Berlin) organisiert. 
Das bereits fünfte Treffen dieser Reihe findet in Stuttgart statt. Mit einem 
Programm, das einen Bogen von der Hardware über die Themen Routing, 
Middleware und Lokalisierung bis hin zu Programmierabstraktionen und 
Modellierung spannt, ist es gelungen, einen großen Bereich an Fragestel-
lungen abzudecken. Wir bedanken uns deshalb ganz besonders bei den 
zahlreichen Autoren und Vortragenden aber auch den Diskussionsteil-
nehmern, die eine interessante Veranstaltung ermöglichen. 
 

Stuttgart, im Juli 2006 
Pedro José Marrón 
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Supporting WSN Application Development
Using Data type-centric Middleware Synthesis
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Abstract. Writing applications for wireless sensor networks presents a
complex domain that requires expertise from various fields. Existing mid-
dleware frameworks alleviate this problem by hiding low-level networking
aspects but are neither comprehensive nor flexible enough. Our system
called Fabric addresses this problem by proposing a data type-centric
middleware synthesis framework for heterogeneous devices. While hiding
networking aspects and complexity of distributed systems, it still offers
the required flexibility because data handling can be differentiated on
a per-type basis. This approach especially addresses the unique require-
ments of resource constrained devices. In addition, Fabric supports a
clear separation between application and framework development, thus
supporting a less error-prone development process.

Introduction

Developing applications for distributed systems challenges the developer with
a number of peculiar problems. This is especially true for large, complex dis-
tributed systems. Hence, hiding these intricate communication aspects from the
developer is beneficial in order to reduce the overall design complexity of appli-
cations.

This led to the development of a large number of function or service oriented
middleware concepts like CORBA. They often rely on the client-server paradigm
and a stable communication infrastructure. With the advent of ad-hoc networks,
these assumptions were no longer valid and especially for wireless sensor networks
(WSNs) data-centrism has proven to be advantageous [1]. As a result different
middleware concepts were adapted to the needs of WSNs. However, as we discuss
in [2], these are either not comprehensive or not flexible enough.

The authors believe that especially on resource-constrained devices like wire-
less sensor nodes, the handling of data including its communication should be
varied according to its semantics, i.e. its meaning to the application. However,
semantics are difficult to describe, vary between applications and after all are
only known to the developer.

Consequently, we here propose differentiated data handling based on the type
of data. The underlying idea is that data of certain semantics is of a particular,



usually complex type. The developer can now annotate the corresponding data
type definitions with treatment aspects like reliable transport or confidentiality.

Conceptually we distinguish so called domains that embrace related aspects.
Apart from the aforementioned (reliability and security), arbitrary other annota-
tion domains can be supported. Examples are data aggregation or routing mech-
anisms. The annotations of the type definitions, which we favor to be written in
the W3C Schema definition language, determines the way data is treated. For
each annotatable aspect, a number of modules provide the corresponding func-
tionality. Modules of the same aspect may target different hardware platforms,
programming languages or be of different complexity. For a given annotated
type definition, the framework picks the best modules based on each modules
self-description. A code generation processor reads the schema, and passes both
type definitions and annotation attributes to a set of selected modules. These
then generate source code for the functionality they are in charge of, e.g. reliable
messaging or security.

The key advantage of the generation of custom middleware code for each
application is that it results in lean code featuring exactly the required anno-
tated functionalities for the defined data types. This is especially desirable for
resource constrained devices like wireless sensor nodes because their program
memory is much too small to contain the full extent of most comprehensive
static middleware solutions.

The remainder of this paper is structured as follows. Section 1 presents our
approach to a type-centric middleware synthesis framework we call Fabric. Sec-
tion 2 shows how Fabric supports the development of sensor network applica-
tions. The paper is concluded by a summary.

1 Architecture

Fabric significantly eases the development process of sensor network applica-
tions by relieving the application developer from dealing with low-level network-
ing issues without sacrificing data type specific treatment. Instead, high-level
data management operations are available for transmitting and receiving appli-
cation data structures. Unlike other middleware systems, the Fabric framework
is capable of customizing the generated middleware code on the basis of individ-
ual type definitions. A high-level data type description language is complemented
with annotations (a concept we call type annotation) to parameterize the syn-
thesis process.

Figure 1 shows an overview of the Fabric architecture. It has been designed
to support multiple hardware architectures, heterogeneous environments and the
interconnection of them by synthesizing application-layer gateway functionality.
We distinguish between two roles: an application developer and a framework
developer. An application developer’s primary interest is an easy to use, flexible
system. The framework developer customizes the generic Fabric-system and
implements modules that provide the functionality available to the application
developer.
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Fig. 1. The Fabric architecture

A code generation step transforms the type annotations into customized mid-
dleware source code such that the resulting code complies to the given target
specification. The generation process consists of two major steps: first the appro-
priate modules for each data type are selected and second they are invoked to
actually generate source code. In this paper we focus on the application devel-
oper’s role, Fabric’s internal mode of operation and the tasks of the framework
developer are presented in detail in [2].

2 Data type-centric application development

From the application development view the system needs the following input:
the annotated type definitions and a target specification describing the target
hardware platform. Next, the Fabric-generator synthesizes the middleware func-
tionality including the API functions that can be compiled, linked together with
application code, library functions as well as the OS or the firmware of sensor
nodes. We will have a look at these input sources in more detail.

As mentioned above, annotation aspects are grouped into domains. Data
type definitions are annotated with aspects that then influence the treatment
of each individual data type by the synthesized middleware. Figure 2 depicts
this process with the two type definitions with exemplary aspect annotations:
“confidential” and “public” from the domain “security” and “(un)reliable” from
“tx”. The set of annotatable aspects is completely customizable, yet for a concrete
Fabric-system it is given by the framework developer.

The above example is representative for two distinct annotation cases. The
Temp data type has at most one annotation per domain (domain security: public,
domain tx:reliable) while the Location data type has more than one annotation
for one domain (domain security: confidential and public). The first case specifies
unambiguously how this data type is treated by the generated middleware and
no run-time decisions are necessary. Yet, in second case, run-time decisions on
data treatment are possible. The generated middleware will contain code for
both security schemes and options for selecting the active one. It is then up to
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<xsd:complexType name="Location">

<xsd:sequence>

<xsd:element name="x" type="xsd:double"/>

<xsd:element name="y" type="xsd:double"/>

</xsd:sequence>

<xsd:annotation><xsd:appinfo>

<Domain name="security">

<Aspect>confidential</Aspect>

<Aspect>public</Aspect>

</Domain>

<Domain name="tx">

<Aspect>unreliable</Aspect>

</Domain>

</xsd:appinfo></xsd:annotation>

</xsd:complexType>

<xsd:complexType name="Temperature">

<xsd:element name="value" type="xsd:double"/>

<xsd:annotation><xsd:appinfo>

<Domain name="security">

<Aspect>public</Aspect>

</Domain>

<Domain name="tx">

<Aspect>reliable</Aspect>

</Domain>

</xsd:appinfo></xsd:annotation>

</xsd:complexType>

...

Fig. 2. XML-Schema annotation

the application developer to select the appropriate method depending on the
context.

The type annotation concept requires a data type definition language and the
ability to annotate each data type. Our current implementation uses XML and
XML Schema technologies for the type definitions, the annotation specification,
the annotations and the target specification. XML Schema is a widely accepted
standard that allows for a convenient type definition by the developer and a
coherent realization of the type annotation concept. Complex type definitions
specify the application data types, which may be arbitrarily structured, though
the current implementation does not yet feature local complex type definitions
and nested annotations.

XML Schema permits an annotation of nearly all schema-elements with user-
defined tags. We exploit this feature by attaching XML documents to each data
type definition containing the annotation for each data type. To achieve ex-
tensibility and to ensure the presence of required annotations, the annotation
grammar is given by an XML Schema supplied by the framework developer.

An example how the application developer specifies the annotated data types
is depicted in figure 2: the data types “Location” with x and y coordinates and
“Temp” with a single value are defined using complex-type definitions. These
additionally incorporate an XML document with annotations per data type.
Note that the annotation data is only used for code generation at compile-time
and does not have to be stored on the devices at run-time.
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In addition to the annotated data types, the generator needs a target spec-
ification in order to produce the adequate code for the target. It consists of so
called natures (e.g. the platform, programming language, etc.). From these and
the annotations the generator determines the best fitting modules from the set
of available ones (for details see [2]).

Finally the application developer writes the code for his target application
and benefits from the type-specific API of the middleware. Without the need to
change a single line of application code, the treatment of a data type can be al-
tered by simply changing its annotation. A set of basic functions for sending and
receiving instances of the individual data types, selecting the run-time options
described above and possibly parametrization methods for some aspects is avail-
able in the generated API. This allows for easy application development where
the developer is relieved from dealing with error-prone issues like serialization,
security or packetization of the data type. The concrete generated API may look
different depending on the target specification and the features available in the
corresponding programming language, hence we do not present the interface for
a specific language here.

3 Conclusions and Future Work

In this paper we present how the development of applications for wireless sensor
networks can be supported by Fabric, a framework that provides data type-
centric middleware synthesis for heterogeneous devices. While hiding network-
ing aspects and complexity arising from distribution, it still offers the required
flexibility because data handling can be differentiated on a per-type basis. Start-
ing from an XML Schema data type definitions augmented with annotations,
application scenario specific code is generated.

This incorporation of application knowledge results in lean, custom tailored
code. It also speeds up the development process by allowing high level data mod-
eling. Fabric supports a clear separation between application and framework
development. The application developer defines the application data types and
the annotations in a high-level language, while the framework developer backs
this information with target platform specific modules. By supporting several
targets, application developers benefit from platform independent development
because his code can remain virtually unchanged.

We are currently finalizing the core implementation of Fabric and plan to
support platforms such as the Mica2 and ESB wireless sensor nodes in near
future.
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Abstract. Wireless sensor networks could be used for sensing tasks in
industrial automation and process control. For becoming attractive to in-
dustrial developers, however, more abstract and more powerful program-
ming models are required to provide standardized and portable system
abstractions. This programming model is best realized as a middleware
layer shielding the operating system basics and offering advanced services
to the application. In this paper, we first identify several decisive require-
ments for such a middleware in an industrial context. These requirements
are then compared with numerous existing middleware approaches that
we have analyzed. Finally we propose key design elements based on these
considerations that could be guidelines for future investigations on the
way to an industrial adoption of sensor networks.

1 Introduction

Today wireless sensor networks (WSNs) are in a transition state from
research prototypes to practical and commercial usage. A lot of research
has been conducted to make those networks more flexible and reliable.
The WSN paradigm assumes that a WSN consists of a dozen to hundreds
of individual nodes (called ”motes”), connected wirelessly, sharing their
data in a multi-hop manner.
At the same time there is the huge market of automation and industrial
production where a plethora of different sensor types is currently in use.
Most of these sensors are wired to a machine or factory floor network;
some of them are already connected wirelessly. Of course, the wireless
sensors in automation do not follow the WSN paradigm at the moment.
Industrial sensors can reside in nodes with own processors and memory,
but are typically connected in star or bus topology. Each of them has
one designated task, whereas the power of a wireless sensor network is
only unleashed in mesh networks combining measurements from several
nodes.
The contemporary research activities in WSN focus on gathering and
forwarding data, usually allowing just one application for the entire net-
work. In these cases, the protocols and applications are built by the same
team, following a common and thus closely coupled design idea. The
fundamental services that the TinyOS [1] operating system provides, for



example, are just enough to set up a very simple network. Any more so-
phisticated routing procedure or energy-saving strategy must be selected
individually and added as a module. However, if wireless sensor networks
should be attractive for industrial users, an out-of-the-box readiness has
to be achieved. We believe that the practical and wide-spread adoption
of sensor networks need powerful and robust software services running
on the nodes. This software should offer a much more abstract program-
ming model such that the industrial developer can concentrate on his
own application, without needing to know about all the hardware and
protocol details of the mote.
There are some of the specific characteristics of sensor networks that
are less important in industrial contexts. One of them is mobility. As
production equipment is generally stationary, the sensors are not sup-
posed to move around in a large radius. They may be mounted on a
moving part of a machine, but these normally have just a range of a few
meters. In some cases, however, like item tracking between production
lines, mobility can be an issue.
Factories are well-guarded buildings or sites to which only authorized
personnel has access. So data access control and encryption on the air
link is also of minor importance. Transmissions of automation data must
usually not fear hacker interference, apart from acts of sabotage.
Moreover, the production equipment needs lots of electrical power. Hence
it is in most cases no problem to provide the sensor nodes with a power
supply. The classical concern of mote design, energy efficiency, is thus
uncritical for most industrial applications.

2 Requirements on Middleware Systems

As discussed earlier [2]-[4], middleware systems for wireless sensor net-
works must meet several functional and non-functional requirements.
Most of them are not really specific to WSNs, but apply to any highly
distributed computing system. Some applications may do without one or
another condition, but as a middleware should as generic as possible, an
all-purpose view is desirable.
We list only the most important requirements here, dividing them in
three groups. The first group comprises general requirements that a dis-
tributed system should fulfill to make it usable in professional environ-
ments:

– Performance: In general, the middleware should introduce a de-
lay to the overall communication chain that is in the same order
of magnitude as the operational performance without this software
layer.

– Adaptability: The middleware system should be adaptable to changes
in applications’ and users’ requirements or changes within the net-
work (e.g. a different transport protocol).

– Maintainability: The middleware shall make it possible to improve
it and correct errors or software failures as easy as possible.

– Scalability: The system should be scalable to the number of motes
and number of users/traffic.
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The second group lists some requirements that lead to additional func-
tionality, but are only considered as optional:
– Location awareness: It means the ability of the middleware (and

the programs running on a particular mote in general) to determine
its location. This can be done topologically, i.e. relative to the other
nodes of the network, or geographically, i.e. in terms of an absolute
geographical position.

– Addressing: The middleware should be aware of the addressing
scheme employed in the network. If there is not enough support by
the underlying base functions or the employed concept is insufficient,
the middleware may introduce its own alternative addressing scheme
and use it consistently on all participating motes.

Moreover, there are some requirements that are usually not brought in
connection with WSNs, but which we regard as crucial to gain industrial
acceptance.
– Monitoring/Logging: The middleware should provide services that

enable an effective monitoring of the application. This surveillance
should be possible in real-time, i.e. during operation, and a poste-
riori, i.e. after operation by creating and analyzing log files. The
monitoring should not be limited to any individual node nor should
it require to investigate each node separately; it should instead allow
to look at the operation of network as a whole.

– Updatability: Installation and replacement of application software
over the air, taking the available applications and versions into ac-
count. The update should be able to be initiated from a gateway
node and to be resumed if the connection to a mote has been inter-
rupted.

– Task sharing/network partitioning: The motes in the network
should be able to switch from one application to another if necessary.
After deployment the network could work as a whole, but should also
support partitioning in the sense that some parts of the network
perform different tasks than the others.

– Support of role concept: Various roles can be assigned to the
nodes, either for establishing hierarchies for a more efficient node
management and networking (vertical role assignment) or for sup-
porting different tasks of the motes in terms of sensor equipment or
software components (horizontal role assignment).

3 Middleware Classification

The research in wireless sensor networks led to various approaches of
middleware software, but only a few are really applicable. We analyzed
more than 50 middleware systems from nearly ten years of research. Most
works were only for educational or research purposes, hence they are only
publicly available in paper form. We classified the different approaches
in four main categories (figure 1).
The family of low-level middleware only capsules certain functionalities
of the underlying operating system or plays the role of an operating sys-
tem. These middleware programs simply try to make common function-
alities like routing, energy awareness, data storage, as well as aggregation

Designing Industry-grade Middleware Services for Wireless Sensor Networks       9



Fig. 1. Categorization of middleware systems.

easier and offer well-defined interfaces. They can be used in nearly any
system, but they are very hardware specific. Since they are designed on
a low level, the functionality of a higher middleware (e.g. abstraction of
objects) never can be reached. Such middleware can also be the lowest
tier of a bigger middleware system. Current projects of low-level mid-
dleware are for example Deluge [5], CoCo/Mo [6] and MoteWorks from
Crossbow Inc.

Virtual Machines give the user the ability to replace code on the motes
and therefore they are predestined for agent-based approaches. Never-
theless message- or service-oriented applications are also possible. The
main benefit is the use of an interpreted language, so the code can be
improved on a running system. This is a big difference to the low-level
approach of the bootloader, where only compiled images can be updated.
As mentioned before, an agent-based middleware takes most advantage of
this behavior. This architecture is most applicable in homogeneous, but
unstable networks with moving nodes, supporting more than one task.
By the distribution of the agents, applications can move to the subnet-
works where they are needed. Maté [7] and its TinyOS port Bombilla,
developed at UC Berkeley, can be seen as the standard virtual machine
for wireless sensor networks. Agilla [8] is the agent-based approach of a
middleware built upon Bombilla and Deluge. It is a very active project
with first application examples.

The classic message-oriented approach is also represented. Here the
middleware provides interfaces for the underlying system and message
structures. It also can help to do some automated actions like changing
routing algorithms. This approach bears some problems within highly
distributed or strongly collaborating networks. Here the vast amount
of messages that need to be sent can lead quickly to communication
blockings. Examples of message-oriented middleware are Hood [9] and
Dynamo [10].

The last family consists of the service-oriented middleware. Here the
middleware provides functions to publish and subscribe to services. Sen-
sor readings, data storage and aggregation can then be implemented in
services to which any mote in need can subscribe. This is a quite con-
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servative way of a middleware which has formerly been developed for
wired distributed systems. Therefore this approach is well known, but
it does not take the whole advantages of a WSN. Static heterogeneous
networks would be the best environments for such a middleware. The
service-oriented paradigm is followed by Spatial Views [11], TinyLime
[12], TinyCubus [13], and the GREEN middleware [14] of the RUNES
project. Most commercial projects also use this strategy (Octavex by
Octave Technology, PLASMA by IHP, and eZeeNet by Meshnetics).
There are also some hybrid middleware programs which belong to more
than one class providing more functionality and flexibility.
Summarizing it can be said, that most of the work is done for research
and educational reasons. Only a very very small part has reached a com-
mercial state yet.

4 Design Challenges

To design and implement middleware services that fulfill all or most of
the requirements stated in sec. 2 is still a lot of work – even when starting
with one of the open available systems mentioned above. We sketch some
concrete issues here that are crucial for architecture and design (see [3]
for related aspects).
– Partition control and role concept: To support a flexible net-

work architecture with dynamic task sharing, distributed self-confi-
guring cluster mechanisms are necessary. Each node should be able
to switch between several roles, depending on the current network
configuration. Protocols for cluster forming have to developed that
activate sleeping nodes, distribute the characteristics of the cluster,
and perform ”load balancing” in terms of task sharing.

– Versioning of applications: For dynamic updates and multiple
applications, formal descriptions have to be specified representing
the capabilities and status of an individual node.

– Resource allocation and management: As each application needs
different resources, an automatic way of detecting and reserving
available resources like processing power, energy, or memory has to
found. In addition, the partitions/clusters must be able to coordinate
each other, as they ultimately might use the same communication
resources on their connections to gateways and other central units.

– Monitoring: For a precise monitoring, different levels of on-line
and off-line surveillance have to be supported on each node. The
forwarding of monitoring data must interfere the network in such
an extent that the operation is completely different to the normal
case. Moreover, the memory on the nodes is very limited, so the
efficiency of the logging has to be very high. Both issues require a
lot of theoretical work on protocols and operating system scheduling.

5 Conclusion

For leveraging the usage of wireless sensor networks in industrial au-
tomation and process control, the development of respective middleware
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systems is absolutely necessary. But the requirements arising from this
field call for much more abstract, flexible, and adaptive services than
available today. The virtual machine model, followed by systems like
Bombilla, is a very promising approach for application switching and
role models. The challenges in designing industry-grade middleware as
mentioned above still mean significant work in solving all conceptual and
technical issues before a commercial roll-out of the WSN technology can
commence.
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Abstract. The “Internet of Things” intends to enhance items of our everyday life
with information and/or processing and interconnect them, so that computers can
sense, integrate, present, and react on all kinds of aspects of the physical world.
As this implies that enormous numbers of data sources need to be connected
and related to each other, flexible and dynamic middleware support essentially
providing zero-programming deployment is a key requirement to cope with the
sheer scale of this task and the heterogeneity of available technologies. In this pa-
per we briefly overview our Global Sensor Networks (GSN) middleware which
supports these tasks and offers a flexible, zero-programming deployment and in-
tegration infrastructure. GSN’s central concept is the virtual sensor abstraction
which enables the user to declaratively specify XML-based deployment descrip-
tors in combination with the possibility to integrate sensor network data through
plain SQL queries over local and remote sensor data sources. The GSN imple-
mentation is available from http://globalsn.sourceforge.net/.

1 Introduction

In the sensor network domain most of the ongoing work focuses on energy efficient
routing, aggregation, and data management algorithms inside a single sensor network.
The deployment, application development, and standardization aspects received little
attention so far. However, as the price of sensors diminishes rapidly we can soon ex-
pect to see very large numbers of heterogeneous sensor devices and sensor networks
being deployed to support the vision of the “Internet of Things” [1]. Major challenges
in this “Sensor Internet” environment are (1) minimizing the development and deploy-
ment efforts which are key cost factor in large-scale systems and (2) the data-oriented
integration of very large numbers of data sources. Despite the heterogeneity of the avail-
able platforms, their requirements for processing, storing, querying and publishing data,
however, are similar and the main differences among various software platforms are the
different abstractions for the sensors and sensor networks.

Our Global Sensor Networks (GSN) middleware addresses these problems and pro-
vides a uniform platform for fast and flexible integration and deployment of heteroge-
neous sensor networks. The design of GSN follows four main design goals: Simplicity
(a minimal set of powerful abstractions which can be easily configured and adopted),
adaptivity (adding new types of sensor networks and dynamic (re-) configuration of

�
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data sources has to be supported during run-time), scalability (peer-to-peer architec-
ture), and light-weight implementation (small memory foot-print, low hardware and
bandwidth requirements, web-based management tools).

In the following, we will give a concise overview of GSN and how it provides an
infrastructure to support the “Internet of Things”. Section 2 discusses the virtual sen-
sor abstraction, Section 3 highlights GSN’s data stream processing functionalities, and
Section 4 describes its architecture. For a detailed description of these issues we refer
the reader to [2]. Section 5 then discusses GSN’s dynamic plug-and-play functionali-
ties which rely on simple semantic descriptions based on the IEEE 1451 standard [3] to
identify sensors and dynamically integrate them into GSN. This is a key enabling tech-
nology in GSN supporting fully dynamic and zero-programming integration of data
sources in GSN.

2 Virtual sensors
The key abstraction in GSN is the virtual sensor. Virtual sensors abstract from im-
plementation details of access to sensor data and they are the services provided and
managed by GSN. A virtual sensor corresponds either to a data stream received directly
from sensors or to a data stream derived from other virtual sensors. A virtual sensor can
have any number of input streams and produces one output stream. The specification of
a virtual sensor provides all necessary information required for deploying and using it,
including:

� metadata used for identification and discovery
� the structure of the data streams which the virtual sensor consumes and produces
� an SQL-based specification of the stream processing performed in a virtual sensor
� functional properties related to persistency, error handling, life-cycle management,

and physical deployment
To support rapid deployment, these properties of virtual sensors are provided in a

declarative deployment descriptor. Figure 1 shows a fragment of a virtual sensor defini-
tion which defines a sensor returning an averaged temperature from a remote virtual sen-
sor (wrapper="remote") which is accessed via the Internet through another GSN
instance (GSN instances cooperate in a peer-to-peer fashion).

�

�

�

�

...
<life-cycle pool-size="10" />
<output-structure>

<field name="TEMPERATURE" type="integer"/>
</output-structure>
<storage permanent-storage="true" size="10s" />
<input-stream name="dummy" rate="100" >

<stream-source alias="src1" sampling-rate="1" storage-size="1h">
<address wrapper="remote">
<predicate key="type" val="temperature" />
<predicate key="location" val="bc143" />

</address>
<query>select avg(temperature) from WRAPPER</query>

</stream-source>
<query>select * from src1</query>

</input-stream>
...

Fig. 1. Virtual sensor definition (fragment)
To specify the processing of the input streams we use SQL queries which refer to the

input streams by the reserved keyword WRAPPER. The <input-stream> element
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provides all definitions required for identifying and processing an input stream of the
virtual sensor. The <life-cycle> element defines deployment aspects such as the
number of threads available for processing, the <storage> element controls how
stream data is stored persistently (among other attributes this controls the temporal
processing), and <output-structure> defines the structure of the produced output
stream. A detailed description of virtual sensors is provided in [2].

3 Data stream processing

In GSN a data stream is a sequence of timestamped tuples. The order of the data stream
is derived from the ordering of the timestamps and the GSN container provides basic
support to manage and manipulate the timestamps. These services essentially consist
of the following components: (1) a local clock at each GSN container, (2) implicit
management of a timestamp attribute, (3) implicit timestamping of tuples upon arrival at
the GSN container (reception time), and (4) a windowing mechanism which allows the
user to define count- or time-based windows on data streams. Multiple time attributes
can be associated with data streams and can be manipulated through SQL queries. The
production of a new output stream element of a virtual sensor is always triggered by the
arrival of a data stream element from one of its input streams. Informally, the processing
steps then are as follows:
1. The new data stream element is timestamped using the local clock.
2. Based on the timestamps for each input stream the stream elements are selected

according to the definition of the time window and the resulting sets of relations
are unnested into flat relations.

3. The input stream queries are evaluated and stored into temporary relations.
4. The output query for producing the output stream element is executed based on the

temporary relations.
5. The result is permanently stored if required and all consumers of the virtual sensor

are notified of the new stream element.
GSN’s query processing approach is related to TelegraphCQ as it separates the time-

related constructs from the actual query. Temporal specifications, e.g., the window size,
are provided in XML in the virtual sensor specification, while data processing is speci-
fied in SQL with the full range of operations allowed by the standard syntax.

4 GSN architecture

GSN follows a container-based architecture and each container can host and manage
one or more virtual sensors concurrently. The container manages every aspect of the
virtual sensors at runtime including remote access, interaction with the sensor net-
work, security, persistence, data filtering, concurrency, and access to and pooling of
resources which enables on-demand use and combination. Virtual sensor descriptions
hold user-definable key-value pairs which are published in a peer-to-peer directory so
that virtual sensors can be discovered and accessed based on any combination of their
properties, i.e., this provides a simple model of identification and discovery of virtual
sensors through metadata. GSN nodes communicate among each other in a peer-to-peer
fashion. Figure 2 depicts the internal architecture of a GSN node.
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Fig. 2. GSN container architecture

The virtual sensor manager (VSM) is responsible for providing access to the virtual
sensors, managing the delivery of sensor data, and providing the necessary administra-
tive infrastructure. Its life-cycle manager (LCM) subcomponent provides and manages
the resources provided to a virtual sensor and manages the interactions with a virtual
sensor (sensor readings, etc.) while the input stream manager (ISM) manages the input
streams and ensures stream quality (disconnections, unexpected delays, missing values,
etc.). The data from/to the VSM passes through the storage layer which is in charge of
providing and managing persistent storage for data streams. Query processing is done
by the query manager (QM) which includes the query processor being in charge of SQL
parsing, query planning, and execution of queries (using an adaptive query execution
plan). The query repository manages all registered queries (subscriptions) and defines
and maintains the set of currently active queries for the query processor. The notifica-
tion manager deals with the delivery of events and query results to the registered clients.
The notification manager has an extensible architecture which allows the user to cus-
tomize it to any required notification channel. The top three layers deal with access
mechanisms, access control, and integrity and security.

5 Zero-programming deployment
As described before, GSN reduces deployment to writing an XML file describing the
sensor-dependent properties. While having a single XML file (30-50 lines) describing
a virtual sensor is much simpler than low-level device-dependent programming, human
intervention is still required. To overcome this step, GSN uses the IEEE 1451 standard
[3] for automatic detection, configuration and calibration. An IEEE 1451-compliant
sensor provides a Transducer Electronic Data Sheet (TEDS) which is stored inside the
sensor. The TEDS provides a simple semantic description of the sensor, i.e., it describes
the sensor’s properties and measurement characteristics such as type of measurement,
scaling, and calibration information. A large number of sensors is already compliant to
IEEE 1451 and this number is growing steadily.

To support truly zero-programming, GSN uses the TEDS self-description feature
for the dynamic generation of virtual sensor descriptions by using a virtual sensor de-
scription template and deriving the sensor-dependent fields of the template from the
data extracted from the TEDS as shown in Figure 3(a).



(a) Automatic generation (b) Setup
Fig. 3. Zero-programming deployment

The node setup to support plug-and-play deployment is shown in Figure 3(b). At
least one base station capable of interacting with sensing devices (e.g., mica2, mica2dot,
BTnode) is needed. When a sensor node enters a detection area (depicted by an antenna
in the figure), GSN detects it, requests its TEDS, and dynamically instantiates a new
virtual sensor based on the TEDS. This means that by using TEDS GSN can detect,
identify, and automatically deploy sensors without human intervention. The generated
virtual sensor description is immediately included into the detecting GSN node’s repos-
itory and all processing dependent on the new sensor is executed. This is done on-the-fly
while GSN is running. At the moment TEDS provides only that information on a sensor
which enables interaction with it. Thus for some parts of the generated virtual sensor
description, e.g., security requirements, storage and resource management, etc., we use
default values.

The deployment of a sensor (network) in GSN implies making the produced data
accessible through the Internet via web services and a web interfaces. Thus also all
remote processing dependencies at any other node in the network of GSN nodes are
triggered. This enables truly global integration of mobile sensors. GSN periodically
asks for TEDS from all sensors to ensure that they are alive. If no response is provided
by a sensor GSN removes the previously created virtual sensor, frees the associated
resources and notifies dependent query and nodes.

6 Conclusions
GSN provides a flexible middleware for deployment of sensor networks meeting the
challenges that arise in real-world environments. Its plug-and-play deployment func-
tionality makes it specifically interesting as an infrastructure for the “Internet of Things,”
enabling completely new types of applications. For example, users or things could
be equipped with RFID tags not only holding static data but also specifying data-
processing tasks (queries), which GSN can recognize and include into its stream pro-
cessing. This provides data processing dynamicity besides physical mobility without
additional efforts for deployment. The GSN implementation is available from http:
//globalsn.sourceforge.net/ and a detailed description of GSN in provided in [2].
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Abstract. In this paper we present an approach to automated program code 
generation for sensor nodes and other small devices. Using Genetic 
Programming, we are able to discover algorithms that solve certain problems. 
Furthermore, non-functional properties like code size, memory usage, and 
communication frequency can be optimized using multiobjective search 
techniques. The evolution of algorithms requires program testing, which we 
perform using a customized simulation environment for sensor networks. The 
simulation model takes into account characteristic features of sensor nodes, 
such as unreliable communication and resource constraints. An application 
example is presented that demonstrates the feasibility of our approach and its 
potential to create robust and adaptive code for sensor network applications. 

1 Introduction 

Today we experience a growing demand for distributed systems consisting of sensor 
nodes [1]. As explained in [2], such devices are restricted in resources like memory 
size, processing speed, and battery power. The communication among them is costly 
in terms of energy and not reliable either. Furthermore, the topology of sensor 
networks is volatile and usually cannot be determined a priori, enforcing self 
organization. Algorithms and protocols normally applied to distributed systems are 
therefore often insufficient and need to be replaced with specialized counterparts. 

These requirements make programming sensor nodes a demanding task for 
software developers because the design of sensor network applications must pay 
attention to aspects that are not directly related to the application functionality itself. 
We claim that Genetic Programming techniques are an effective means to 
automatically discover powerful programming solutions for sensor networks. Clearly, 
Genetic Programming is not suited to produce very large programs for general 
application tasks. However, we view sensor nodes as ideal targets for Genetic 
Programming since these nodes can only perform a limited functionality due to their 
resource constraints. 

In this paper we introduce DGPF, the Distributed Genetic Programming 
Framework [3], which allows us to automatically discover distributed algorithms for 
given problems. Additionally, such algorithms can be optimized in various ways, 
taking energy consumption into account as well as memory usage or code size. In the 
next section we describe how Genetic Programming can be applied to sensor 
networks followed by an example in the third section. At the end of the paper, a short 



summary of related work is given along with future work and a conclusion. 

2 Genetic Programming and Sensor Networks 

For a long time, Genetic Algorithms have been used in science to derive solutions for 
any type of problems, from construction of wind turbines to pattern-recognition 
systems. The application of Genetic Algorithms with the goal to evolve computer 
programs is called Genetic Programming. This section will give a brief overview on 
how Genetic Algorithms work in common and how they can be applied to sensor 
networks. 

2.1 Genetic Algorithms 

As shown in Fig. 1, Genetic Algorithms start with an initial population of random 
solution candidates called individuals. In our case, the individuals are small programs 
that can be executed on sensor nodes. As in nature, the population will be refined step 
by step in a cycle of computing the fitness of its individuals, selecting the best 
individuals and creating a new generation derived from these. If a reasonable good 
solution has evolved, the algorithm will terminate. 

Randomized optimization algorithms are called “multiobjective” if they permit the 
specification of more than one optimization objective. Using our DGPF, several 
fitness functions can be defined, allowing us to optimize programs not only for 
functionality but also for nonfunctional requirements like energy consumption and 
communication frequency. Furthermore, different search algorithms like randomized 
Hill Climbing and Genetic Algorithms can be combined to speed up the optimization 
process. 

 

create new individuals from
th e s elected  on es  b y
crossover and mutation

Selection
select the fittest individuals
for reproduction

Evaluation
co mp u te th e  fi tn ess
values of the individuals

Control
gather statistical data and
check if we found a good
enough solution to stop

Initial Population
create an initial population
of random individuals

 
Fig. 1. Common cycle of Genetic Algorithms. 

In our case the individuals that are being evolved are algorithms in the form of small 
programs. The functionality and effectiveness of such an algorithm can be determined 
by simulating it on a virtual hardware representing a single sensor node. In terms of 
distributed algorithms, it is not sufficient to simulate only one sensor node. Thus 
multiple instances of the program will be executed in a network simulator in parallel. 
The following two subsections describe the virtual hardware and the network model 
used in our simulations. 
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2.2 Virtual Hardware 

A sensor node is modeled as an automaton that consists of a virtual hardware holding 
its execution state and a program running on that hardware. Unlike most other 
approaches in Genetic Programming which grow stateless functions, we have 
developed an architecture with a fixed-sized memory. The instruction set can be 
reduced to the one introduced by Teller [4], granting the Turing completeness needed 
to model real distributed algorithms or network protocols. Like real microprocessors, 
direct and indirect memory access and a collection of arithmetic expressions are 
included in the instruction set as well as conditional jumps. Communication is also 
modeled with primitive directives which allow storing memory words in an output 
buffer and transmitting the buffered data. A single message can be received into the 
input buffer and will be processed by reading the received words sequentially. Newly 
incoming messages get lost if the input buffer is already occupied. 
The example in the next section displays some of the available instructions (see Fig. 
2). 

2.3 Simulation 

The network simulation provides additional statistical data for each automaton, 
holding information on the number of messages sent, lost, and successfully processed. 

As in real networks, many automata run asynchronously at approximately the same 
speed which, however, might differ from node to node and cannot be regarded as 
constant either. To grant realistic simulations, the network model has the following 
properties: 

 

1. The links between the nodes are randomly created, yet it will be ensured that
 there are no network partitions.  

2. Messages are simple word sequences with no predefined structure. 
3. Messages cannot be sent directly. Like radio broadcasts they will be received 

by any node in transmission distance. Finding out which message is of 
concern will be in the responsibility of each node. 

4. Messages can get lost without special cause. 
5. Transmissions may take a random time until they reach their target. 
6. The collision of two transmissions underway leads to the loss of both 

messages. 

3 Example Algorithm 

One example problem that we have solved with the DGPF is the so-called election 
problem. This problem is well known in the area of distributed computing and 
therefore we have used it to validate our approach. Election means to select one node 
out of a group of nodes, for instance to act as a communication relay. 

Each node owns a unique identifier and all nodes must know the ID of the elected 
node after the election algorithm has terminated. One method to perform such an 
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election would be to select the node with the maximum ID. We therefore introduce a 
functional fitness function that evaluates how many nodes know the maximum ID 
after a given amount of time. Additionally, we enter three non-functional fitness 
functions into the evolution: parsimony pressures for minimum code size, minimum 
memory size and a minimum transmission count. Each automaton is initialized with 
its own ID in its memory cell. 

It took several hours to obtain the solution depicted in Fig. 2 using an older version 
of our framework on a 3 GHz Pentium 4 PC. Most time was spent on the network 
simulation. Due to many optimizations, the current version of the DGPF runs 
significantly faster and also incorporates various new distribution schemes [3] for 
Genetic Algorithms resulting in further speedup, depending on the number of 
available computers. 

The discovered algorithm seems to be simple and quite efficient for the problem 
definition: The nodes initially send the contents of their first memory cell (their ID) to 
all neighbors. If and only if a node then receives a greater ID, it stores it in the first 
memory cell and starts the cycle again. Otherwise, no message is sent which pays 
respect to the parsimony pressure for minimum transmission count. The node waits 
instead for incoming transmissions.  

 

@0:
  Send mem[0]
@1:  
  mem[1]=Receive
  If(mem[1]<=mem[0]) Goto @1
@2:
  mem[0]=mem[1]
  Goto @0

 
Fig. 2. The genetically evolved election algorithm. 

4 Related Work 

Although Genetic Programming was invented almost 20 years ago by Koza [5] , it is a 
novel idea to employ it for finding distributed algorithms, in particular for sensor 
networks. In protocol engineering, Genetic Protocol design has already proven to be a 
useful and promising technology in several independent research projects [6], [7], [8]. 
In contrast to these approaches, our framework is not just bound to communication 
protocol synthesis but is able to evolve functional programs together with a dedicated 
protocol. 

The idea of multiobjective optimization using Genetic Algorithms reaches back to 
the 1960s but is generally contributed to Schaffner. His VEGA-algorithm [9], 
although not very efficient, was the first real evolutionary algorithm which considered 
multiple optimization criteria in a non-trivial manner. A few years later, Zitzler et. al. 
showed that their advanced multiobjective evolutionary algorithm SPEA2 
outperforms singleobjective GA in code size reduction by far [10]. Extending this 
idea, we optimize not only for code size, but also for other non-functional criteria. 
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5 Future Work and Conclusion 

In the near future, a graphical user interface will be provided to ease the work with the 
DGP Framework. The quality of the results and the speed of the evolutionary process 
will be increased by integrating additional optimization techniques. In terms of sensor 
network programming, we will implement a port to the MSP430 instruction set. This 
will allow us to test the evolved programs on real sensor nodes like the ESBs of the 
ScatterWeb platform [11]. 

In this paper we have presented a method and a framework for automated creation 
of efficient algorithms for sensor networks based on Genetic Programming. We have 
shown the viability of the approach for a simple example. Our new framework and all 
results are provided as open source to the research community under the LGPL 
license. More information on our research as well as the fully documented Java 
source code of the DGPF can be found at http://dgpf.sourceforge.net. 

6 References 

[1] Jürgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mattern, Michael Rohs: 
"Disappearing Computers Everywhere - Living in a World of Smart Everyday Objects", New 
Media, Technology and Everyday Life in Europe Conference, 2003, London, UK 

[2]  Holger Karl, Andreas Willig: "A Short Survey Of Wireless Sensor Networks", Technical 
Report, Telecommunication Networks Group, Technische Universität Berlin, 2003 

[3] Thomas Weise, Kurt Geihs: “DGPF - An Adaptable Framework for Distributed Multi-
Objective Search Algorithms Applied to the Genetic Programming of Sensor Networks”, 
submitted to BIOMA 2006, The 2nd International Conference on Bioinspired Optimization 
Methods and their Applications 9 - 10 October 2006, Ljubljana, Slovenia 

[4]  Astro Teller, "Turing completeness in the language of genetic programming with indexed 
memory", Proceedings of the 1994 {IEEE} World Congress on Computational Intelligence 
Volume 1, IEEE Press, 1994 

[5] John R  Koza: “Non-Linear Genetic Algorithms for Solving Problems”. United States Patent 
4,935,877. Filed May 20, 1988. Issued June 19, 1990. 

[6]  Khaled El-Fakihy, Hirozumi Yamaguchiz, Gregor v. Bochmann: “A Method and a Genetic 
Algorithm for Deriving Protocols for Distributed Applications with Minimum Communication 
Cost”, Proceedings of Eleventh IASTED International Conference on Parallel and Distributed 
Computing and Systems, November 3-6, 1999, Boston, USA 

[7]  Lidia Yamamoto, Christian Tschudin, "Genetic Evolution of Protocol Implementations and 
Configurations", IFIP/IEEE International workshop on Self-Managed Systems and Services 
(SelfMan 2005), Nice, France 

[8] F. Comellas, G. Gimenez: “Genetic Programming to Design Communication Algorithms for 
Parallel Architectures", in Parallel Processing Letters, 1998 

[9] J. David Schaffner: “Multiple objective optimization with vector evaluated genetic 
algorithms”, in Genetic Algorithms and their Applications: Proceedings of the First 
International Conference on Genetic Algorithms, pp.31-100, Lawrence Erlbaum, 1985 

[10] Bleuler, S., Brack, M., Thiele, L. Zitzler, E.: "Multiobjecive Genetic Programming: Reducing 
Bloat using SPEA2", In Proceedings of the 2001 Congress on Evolutionary Computation 
CEC2001. IEEE Press (2001) 536-543 

[11] ScatterWeb, hard- and software platform for sensor networks, including Embedded Sensor 
Board with TI MSP430 controller, see http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/ 

Genetic Programming Techniques for Sensor Networks       25



 



Efficient Flash-based Virtual Memory for

Sensor Networks

Andreas Lachenmann, Pedro José Marrón, Kurt Rothermel
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Abstract. In this paper we present a virtual memory system for sensor
networks that uses flash-memory to extend the amount of RAM available
on each node. By analyzing access traces from simulation tools it creates
an efficient memory layout that makes virtual memory viable despite the
resource constraints typical for sensor networks.

1 Introduction

Most sensor nodes are equipped with just a few kilobytes of RAM. Therefore,
main memory is usually a very scarce resource when developing sensor network
applications. In fact, several applications already require more memory than
available on current sensor nodes. For instance, TinyDB [1] requires the user to
select at compile-time which functionality to include in the code image.

As applications for sensor networks increase in complexity, RAM limitations
will continue to cause difficulties for developers. In traditional computing sys-
tems, virtual memory [2,3] has been widely used to address this problem. With
virtual memory, parts of the contents of RAM are written to secondary stor-
age when they are not needed. This mechanism is easy to use, since the system
takes care of managing the memory pages. However, current operating systems
for sensor networks (e.g., [4, 5]) do not include support virtual memory.

Sensor nodes are equipped with flash memory as secondary storage, which is
much larger than main memory (between 512 kB and 1 MB). It is organized in
pages of several hundred bytes that have to be written en bloc. Accessing it is
much more expensive than accessing RAM: it takes several milliseconds to read
or write a flash page whereas variables in RAM can be accessed in a few processor
cycles. In addition, accesses to flash memory are comparatively energy expen-
sive. Nevertheless, this type of memory is appropriate for the implementation of
virtual memory on sensor nodes.

In this paper we present ViMem, a virtual memory system for TinyOS-based
sensor networks that uses flash memory to extend the size of RAM available to
the application. Since energy is a limited resource in sensor networks, ViMem

tries to minimize the number of flash memory operations. It uses variable access
traces obtained from simulations to rearrange variables in virtual memory at
compile-time so that only a small number of flash accesses is necessary.



2 Design Overview

ViMem consists of two main parts: a compiler extension and a runtime compo-
nent, which are described in this section.

Application developers should be able to use variables in virtual memory just
like those in RAM. However, since sensor network hardware does not directly
support virtual memory, all access to data in virtual memory must be redi-
rected to ViMem’s runtime component. Our system accomplishes this by using
a pre-compiler that modifies all such variable accesses. This pre-compiler changes
source code written in nesC [6], the programming language used by TinyOS [4].
We have selected nesC and TinyOS because of their active research community
that has developed a large number of application and system components.

The developer maintains full control of which variables are kept in RAM
and which ones are stored in virtual memory. Only those tagged with a spe-
cial attribute are put into virtual memory. This way, variables that are used in
interrupt handlers and other performance-critical functions can always be kept
in RAM. The pre-compiler executes the memory layout algorithm described in
Section 3 to place variables on pages in virtual memory.

ViMem’s runtime system is responsible for the management of memory pages
kept in RAM and for the provisioning of data to the application. The challenge
here is to determine which memory page has to be replaced when another one is
loaded from flash memory. Therefore, the algorithm has to predict which pages
are most likely used again in the future. In addition, it has to consider the costs
for replacing a page (writing modified pages is more expensive than just reading).

This algorithm was not the main focus of our research. Therefore, for ViMem’s
replacement policy we have adapted the Enhanced Second-Chance Algorithm [3],
which approximates a least-recently used (LRU) page replacement strategy.

3 Memory Layout Algorithm

This section describes our memory layout algorithm that determines the place-
ment of variables in virtual memory. It is the core part of our approach to reduce
the number of flash accesses and, thus, improve on efficiency. The algorithm has
two main goals: First, it aims to reduce the overall number of page replacements.
Second, it puts special effort in decreasing the number of write accesses to flash
memory.

3.1 Use of Variable Access Traces

In general, finding an optimal memory layout is not possible since the exact
order in which variables are accessed at runtime depends on many factors. For
example, in sensor networks data gathering requests from users as well as sensory
input and packets received from other nodes may influence the application flow.
Therefore, our memory layout algorithm can only provide a heuristic that does
not necessarily find the best solution for each execution path.
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Although the specific order of data accesses is not predictable, there are typi-
cally patterns that recur. Our algorithm uses simulation traces to determine such
patterns for variables stored in virtual memory. Gathering information about
variable accesses using simulation does not introduce any overhead at runtime
and, thus, does not alter the behavior of the application itself.

If no simulation data is available (e.g., when building a new application), the
ViMem pre-compiler uses the variable references in the source code to estimate
the number of accesses. Obviously, this information can be inaccurate because
it is unclear how often a function is called or which branch of an if-statement is
selected at runtime, for example.

The pre-compiler splits up complex variables, such as arrays and structs, and
examines each part individually. For example, the first elements of an array might
be accessed more frequently than the last ones. Therefore, instead of recording
the access just for complex variables as a whole, all data accesses are associated
with individual data elements. We define as such a data element an atomic part
of a complex variable with a simple data type like “int”.

3.2 Grouping of Data Elements

Having gathered information about accesses to data elements, the memory layout
algorithm forms groups of those that are often accessed together. When reading
an access trace the pre-compiler calculates the weights of a fully-connected graph
G = (V,E, f, g), where the nodes V are the data elements and the edges E
represent the relationship between the data elements. In this graph both the
nodes and edges are weighted: The weight of a node, given by f : V → IR,
indicates how often the corresponding data element has been accessed, and the
weight of an edge, defined by g : E → IR, gives information about the proximity
of two data elements.

For each sensor node in the network, the pre-compiler maintains an ordered
list of data elements that have been accessed recently. Each data element appears
in this list at most once with only its most recent access being present. The sum
of the sizes of all these elements may not exceed the size of a flash page. Thus,
these elements represent those that should be preferably in RAM when the new
element is accessed. When the ViMem pre-compiler adds a data access from the
trace, it increments both the access count in the data element’s node and the
proximity value of all data elements accessed previously.

Fig. 1 shows an example of how an access trace is processed. The figure
displays parts of an access trace for one node, the graph G, and the list of
recently accessed elements. For simplicity, it assumes that the size of a memory
page is just 8 bytes. The figure shows the simple variables “a”, “b”, and “c”
as well as struct “s”. As described above, the algorithm splits up the parts of
the struct and examines each field individually. In the example the last line of
the access trace has been processed, which leads to the following changes. First,
the element is added to the list of recently accessed data elements (I). Since the
total size of the elements in this list is greater than the page size, the algorithm
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Fig. 1. Example for processing an access trace

removes the oldest element (“s.x”, II). Then it increments the weights of “s.y”
(III) and of all its edges to elements in the list (IV and V).

After reading the complete access trace, ViMem’s pre-compiler traverses the
graph G using a breadth-first search that takes into account the proximity values.
It begins with one of the nodes from which the edge with the maximum proximity
value starts. Being at node v, the search follows an edge e only if g(e)/f(v) > k,
where k is a threshold that indicates which data elements should be definitely
put on one page of flash memory. The search is aborted if the elements reached
no longer fit on a single page. All data elements that are reached using this
search mechanism are grouped in order to be placed on the same memory page.

3.3 Data Placement

After determining the groups of data elements used together, the memory layout
algorithm places them on actual memory pages. This part of the algorithm pro-
cesses the elements in the order of their access frequencies and places them with
a first-fit strategy. This way data elements that are accessed often are placed on
the same memory page, which can probably stay in RAM for most of the time.

The algorithm uses two sets of pages: one with elements that are mostly read
and one with those that are modified more often. If a “mostly-read” page has
to be removed from RAM, this approach makes it more likely that it does not
have to be written back to flash memory.

4 Simulation Results

We modified TinyDB to make use of ViMem and obtained simulation results
with the Mica2 simulator Avrora [7]. In Fig. 2 we show the number of page
faults, i.e., the number of read accesses from secondary storage. In many cases
ViMem’s memory layout algorithm greatly reduces the number of accesses to
flash memory. Using only the data references from the source code it is already
able to decrease the percentage of accesses leading to page faults by more than
60%. Nevertheless, memory layouts that have been optimized for a given scenario
can reduce the percentage of page faults even further by additional 80%.
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5 Summary

In this paper we have described ViMem, our virtual memory system for TinyOS-
based sensor nodes. It uses a compile-time approach to create an efficient memory
layout based on data access traces obtained from simulation. We have presented
results that show that this algorithm reduces the overhead of virtual memory
significantly. The remaining overhead does not hinder the implementation of
complex applications for sensor networks. Therefore, using ViMem the memory
limitations of sensor nodes are not as strict as before.
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Abstract. In an attempt to employ sensor network technology for animal obser-
vation, in particular of wild rats, we identified several restrictive shortcomings
in existing sensor network research. In this paper, we present modular and flexi-
ble communication protocols as an efficient substrate to address these shortcom-
ings. Their modularity allows recomposing a protocol dynamically at runtime and
adapting it to the changing needs of a deployed sensor network.

1 Introduction

One of the core motivations for the research in sensor networks is the vision of deploy-
ing sensor networks in nature to observe environmental phenomena. Typically, environ-
mental phenomena are observed to study them. The knowledge about them is limited
and the researcher hopes to reveal some unknowns, i.e. during the observation the re-
searcher learns about the specifics of the phenomena. Thus, during the deployment the
measurement and data aggregation schemes of the sensor nodes need to be adapted to
changing application needs.

However, once the sensor network is deployed it is generally very challenging to
regain physical access to the sensor nodes and to reprogram these according to the
changed application needs. For example, we are currently equipping rats with standard
sensor nodes (mica2dot) and a sensor suite consisting of light, audio, and acceleration
sensors. A sensor is attached to a lab rat via a special leather jacket, which has a pocket
fitted for this equipment. This jacket has openings for the front legs and wraps around
the rib cage and the back. Rats live in underground burrows. Thus, once these sensor
nodes are deployed on the rats regaining access involves a major digging afford.

In this paper we discuss the case of reconfigurable communication protocols for
sensor networks and our ongoing work in this area. Furthermore, we argue that other
components of the sensor network operating system do not require such an amount
of flexibility. Thus, compared to the SOS [3] operating system we do not propose a
modular scheduler or memory management.

The remainder is structured as follows: Section 2 discusses the case of modular
communication protocols. Next, section 3 introduces our fine grained modules for pro-
tocol building. Section 4 discusses related work and section 5 concludes.

2 The Case for Modular Protocols in Sensor Networks

In this section we motivate the use of modular and reconfigurable communication pro-
tocols in sensor networks, see fig. 1. Commonly, sensor network deployment and main-



tenance consists of several steps: (1) The sensor network is deployed: Via flooding a
sensor node determines its position in the network and announces its existence to the
surrounding nodes. (2) Based on its position in the network, various tasks are assigned
to a node: while data collection and forwarding are commonly assigned to a huge num-
ber of nodes, selected nodes take care of data aggregation [4, 6] or act as routing bea-
cons [1, 2]. (3) During deployment the conditions change. Due to node failure or other
environmental influences – such as changing radio propagation – nodes take over tasks
from other nodes. Furthermore, nodes are re-tasked based on data sampled in previ-
ous measurements to adapt their functionality to new upcoming needs, as discussed in
section 1.

Today’s sensor node operating systems [5] and their applications are statically linked
at compile time. This approach allows to use code optimization and resource facilita-
tion analysis. However, all functionality that might be used during deployment needs
to be compiled into the binary at compile time. Furthermore, updates while a sensor
network is deployed become very costly, as a whole binary needs to be redistributed.
Thus, modular communication protocols can be of high benefit for sensor networks.

3 The Modules

In this section we discuss the modules that are used to compose a communication proto-
col. When analyzing various communication protocols we identified the following key
properties: (1) A module shall present protocol independent functionality, for example
to set certain bytes in a packet. (2) A configuration string at runtime or compile time
specifies the exact functionality, making a component protocol dependent. (3) All com-
ponent interfaces (in- and out-ports) are standardized to ensure that components can be
combined arbitrarily.

Based on these above described properties, we designed our modular communica-
tion protocols. The components can be grouped into five main groups: Source, sink,
operational, validation and de-multiplex. In the source group are all components that
emit packets into the protocol, i.e. the incoming network interface, the application, and
timers which omit packets at certain intervals. Similar, the sink class represents out-
going network interfaces, the application and packet droppers. The operational com-
ponents change the packet’s header, payload or additional options like the outgoing
device. Validation components check certain parts of a packet, based on the result they
emit it to one of their outgoing ports. This class of components splits a packet flow into
multiple flows. The de-multiplex component merges flows.

Fig. 1: Modular and reconfigurable protocols allow for dynamic changes.
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From these component classes we derived the individual components. Thus, each
component has dedicated functionality which ranges from setting bits or bytes and com-
puting a checksum to storing the system state in a so called blackboard.

Compound modules are used to group components into functional and semantic
groups. Compound modules are either protocol dependent or protocol independent. A
protocol independent compound for example is a loop, which parses a packet for a
certain bit or byte pattern. In the case of the IP protocol it can be used to parse for IP-
options. Protocol dependent compounds are used to group functionality and make the
protocol description more readable. A typical compound is a compound which builds a
protocol header, see fig. 2.

To allow for easy component and protocol development, we have implemented a
compiler and GUI which derive from a meta language the right modules to use and con-
catenate and configure these accordingly. Space limitations prevent us from discussing
these features in more detail.

The work discussed in this paper is ongoing work. As today’s sensor network pro-
tocols are kept quite simple, we derived our modules from the more complex Internet
protocols, e.g. IP and TCP. Currently we use the modules derived from the Internet
protocols to build sensor network protocols ranging from tree-based routing to data
aggregation.

4 Related Work

In this section we discuss the existing works on modular communication protocols and
compare our work to them. Modular protocols have been previously presented for the
use in the internet. Click [8] is a modular software router. However, most of the Click
modules present IP specific functionality. In our approach modules are protocol inde-
pendent, a configuration at run- or compile-time makes their behavior protocol specific.
As result, our modules can be reused for various protocols. KIDS [9] provides a mod-
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ular QoS system, similar to Click it focuses on a certain protocol type, in this case on
QoS functionality.

The Sensor Operating System (SOS) [3] and FlexCup [7] introduce a modular op-
erating system for sensor nodes. It allows to change major parts of the OS dynamically
at run-time. However, from our point of view, OS components like the scheduler do not
need to be changed at runtime. Thus, we propose a more lightweight approach. Fur-
thermore, as our approach focuses on protocols only, it provides a more fine grained
approach.

5 Conclusion

In this paper we presented our ongoing work on modular communication protocols
for sensor networks. We introduced our fine grained approach to protocol independent
modules which makes it applicable to wide range of different communication protocols.

Next to the implementation of various sensor network protocols our ongoing im-
plementation efforts focus on two topics. First, it might be interesting to implement the
modules on various platforms and even add a platform abstraction layer. Thus, the mod-
ules can be run on various systems. As a result, one can test a protocol by using modules
implemented for a simulator and then use the same already evaluated and tested config-
uration for a sensor network. Furthermore, we consider it highly interesting to evaluate
how protocol verification techniques can be applied to the meta language describing
component configuration and concatenation.
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Abstract. At the current state of a�airs it is hard to obtain a pre-
dictable performance from wireless sensor networks, not to mention per-
formance guarantees. In particular, a widely accepted and established
methodology for modeling the performance of wireless sensor networks
is missing. In the last two years we have tried to make a step into the
direction of an analytical framework for the performance modeling of
wireless sensor networks based on the theory of network calculus, which
we customized towards a so-called sensor network calculus [1]. We believe
the sensor network calculus to be especially useful for applications which
have certain timing requirements. Examples for this class of applications
are factory control, nuclear power plant control, medical applications,
and any alerting systems. In general whenever the sensed input may ne-
cessitate immediate actions the sensor network calculus may be the way
to go. In this paper we summarize these activities and discuss the open
issues for such a an analytical framework to be widely accepted.

1 Introduction
Decisions in daily life are based on the accuracy and availability of information.
Sensor networks can signi�cantly improve the quality of information as well as
the ways of gathering it. For example, sensor networks can help to get higher
�delity information, acquire information in real time, get hard-to-obtain informa-
tion, and reduce the cost of obtaining information. Application areas for sensor
networks might be production surveillance, tra�c management, medical care, or
military applications. In these areas it is crucial to ensure that the sensor net-
work is functioning even in a worst case scenario. If a sensor network is used for
example for production surveillance, it must be ensured that messages indicating
a dangerous condition are not dropped. If functionality in worst case scenarios
cannot be proven, people might be in danger and the production system might
not be certi�ed by authorities.

As it may be di�cult or even impossible to produce the worst case in a real
world scenario or in a simulation in a controlled fashion, an analytical framework
is desirable that allows a worst case analysis in sensor networks. Network calcu-
lus [2] is a relatively new tool that allows worst case analysis of packet-switched
communication networks. In [1] a framework for worst case analysis of wire-
less sensor networks based on network calculus is presented and called sensor
network calculus. This framework has further been extended towards random



deployments [3] and the case of multiple sinks in [4]. The goal of this paper
is to summarize these activities and show the usefulness of the sensor network
calculus as well as opportunities for future work along this avenue.

2 Sensor Network Calculus: A Brief Walk-Through

In this section we use the notation and the basic results provided in [1], further-
more a single sink communication pattern is assumed. It is assumed that the
routing protocol being used forms a tree in the sensor network. Hence N sensor
nodes arranged in a directed acyclic graph are given.

Each sensor node i senses its environment and thus is exposed to an input
function Ri corresponding to its sensed input tra�c. If sensor node i is not a
leaf node of the tree then it also receives sensed data from all of its child nodes
child(i, 1), . . . , child(i, ni), where ni is the number of child nodes of sensor node
i. Sensor node i forwards/processes its input which results in an output function
R∗i from node i towards its parent node.

Now the basic network calculus components, arrival and service curve, have
to be incorporated. First the arrival curve ᾱi of each sensor node in the �eld has
to be derived. The input of each sensor node in the �eld, taking into account its
sensed input and its childrens' input, is:

R̄i = Ri +
ni∑

j=1

R∗child(i,j) (1)

Thus, the arrival curve for the total input function for sensor node i is:

ᾱi = αi +
ni∑

j=1

α∗child(i,j) (2)

2.1 Maximum Sensing Rate Arrival Curve

The simplest option in bounding the sensing input at a given sensor node is
based on its maximum sensing rate which is either due to the way the sensing
unit is designed or limited to a certain value by the sensor network application's
task in observing a certain phenomenon. For example, it might be known that
in a temperature surveillance sensor system, the temperature does not have to
be reported more than once per second at most. The arrival curve for a sensor
node i corresponding to simply putting a bound on the maximum sensing rate
is

αi(t) = pit = γpi,0(t) (3)

This arrival curve can be used in situations where all sensor nodes are set up
to periodically report the condition in a sensor �eld. The set of sensible arrival
curve candidates is certainly larger than the arrival curves described above. The

38       Jens B. Schmitt



more knowledge on the sensing operation and its characteristics is incorporated
into the arrival curve for the sensing input the better the performance bounds
become.

2.2 Rate-Latency Service Curve
Next, the service curve has to be speci�ed. The service curve depends on the
way packets are scheduled in a sensor node which mainly depends on link layer
characteristics. More speci�c, the service curve depends on how the duty cycle
and therefore the energy-e�ciency goals are set.

The service curve captures the characteristics with which sensor data is for-
warded by the sensor nodes towards the sink. It abstracts from the speci�cs and
idiosyncracies of the link layer and makes a statement on the minimum service
that can be assumed even in the worst case. A typical and well-known example
of a service curve from traditional tra�c control in a packet-switched network is

βR,T (t) = R [t− T ]+ (4)
where the notation [x]+ equals x if x ≥ 0 and 0 otherwise. This is often

also called a rate-latency service curve. The latency term nicely captures the
characteristics induced by the application of a duty cycle concept. Whenever
the duty cycle approach is applied there is the chance that sensed data or data
to be forwarded arrives after the last duty cycle (of the next hop!) is just over
and thus a �xed latency occurs until the forwarding capacity is available again.
In a simple duty cycle scheme this latency would need to be accounted for for
all data transfers. For the forwarding capacity it is assumed that it can be lower
bounded by a �xed rate which depends on transceiver speed, the chosen link
layer protocol and the duty cycle. So, with some new parameters the following
service curve at sensor node i is obtained:

βi(t) = βfi,li(t) = fi[t− li]+ (5)
Here fi and li denote the forwarding rate and forwarding latency for sensor

node i.

2.3 Network Flow Analysis
Finally, the output of sensor node i, i.e. the tra�c which it forwards to its parent
in the tree, is constrained by the following arrival curve:

α∗i = ᾱi ® βi =


αi +

ni∑

j=1

α∗child(i,j)


® βi (6)

In order to calculate a network-wide characteristic like the maximum informa-
tion transfer delay or local bu�er requirements especially at the most challenged
sensor node just below the sink (which is called node 1 from now on) an iterative
procedure to calculate the network internal �ows is required:
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1. Let us assume that arrival curves for the sensed input αi and service curves
βi for sensor node i, i = 1, . . . , N , are given.

2. For all leaf nodes the output bound α∗i can be calculated according to (6).
Each leaf node is now marked as �calculated�.

3. For all nodes only having children which are marked �calculated� the output
bound α∗i can be calculated according to (6) and they can again be marked
�calculated�.

4. If node 1 is marked �calculated� the algorithm terminates, otherwise go to
step 3.

After the network internal �ows are computed according to this procedure, the
local per node delay bounds Di for each sensor node i can be calculated according
to a basic network calculus result [2, chapter 1]:

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}} (7)

To compute the total information transfer delay D̄i for a given sensor node
i the per node delay bounds on the path P (i) to the sink need to be added:

D̄i =
∑

i∈P (i)

Di (8)

The maximum information transfer delay in the sensor network can then
obviously be calculated as D̄ = maxi=1,...,N D̄i. Note that this kind of analysis
assumes FIFO scheduling at the sensor nodes which however should be the case
in most practical cases.

3 Advanced Sensor Network Calculus

After this brief walk-through the sensor network calculus basics, we will discuss
some of the more advanced techniques we have developed to further customize
network calculus to the wireless sensor network setting as well as some of the
applications of the framework we have proposed.

We have seen in the previous section how the single sink communication pat-
tern typically found in wireless sensor networks was used to iteratively work out
the internal tra�c �ow bounds inside the network and use these to calculate
delay bounds in an additive fashion. However, one of the strengths of network
calculus is its powerful concatenation result which allows in general to achieve
better bounds when a tandem of servers is �rst min-plus convoluted to a single
system compared to an additive analysis of the separate servers. This concate-
nation result is not directly applicable in a wireless sensor network scenario even
when only considering the simple single sink case. Therefore, we have generalized
the concatenation result for general feedforward networks in [5], introducing a
principle called �pay multiplexing only once� which makes optimal use of sub-
paths shared between �ows and achieves improvements over the additive bounds
which may be on the order of magnitudes depending on the scenario. A further
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extension of the basic sensor network calculus which we also describe in [5] is the
integration of maximum service curves into the sensor network calculus which
allows to improve the bounds on the network-internal �ows and thus in turn low-
ers the performance bounds, again often very considerably. All these techniques,
among other general network calculus techniques, have been implemented in the
so-called DISCO Network Calculator. As we believe that tool support is of great
importance for a wide acceptance of the sensor network calculus we provide the
DISCO Network Calculator in the public domain1.

Apart from trying to push the sensor network calculus forward methodwise,
we have also illustrated how to apply it for several design and control issues
in wireless sensor networks. In [1] we have shown how a bu�er dimensioning of
the sensor nodes may be performed based on the worst case analyses of sensor
network calculus such that no information is lost due to bu�er over�ow inside
the network. Furthermore, we also discussed in [1] how di�erent choices of duty
cycles a�ect the information transfer delay. In [3], we considered the case of a
randomly deployed sensor network and how this further dimension of uncertainty
can be factored into the sensor network calculus. In particular we discussed
how constraints from topology control may be used to improve the performance
bounds from the sensor network calculus. Thus we proposed to guide topology
control decisions based on the sensor network calculus models. In [4] we used
the advanced sensor network calculus result discussed in the previous paragraph
to investigate scenarios with multiple sinks. In particular we demonstrated how
sensor network calculus can be used to dimension the number of sinks as well as
their placement in the sensor �eld.

4 Open Issues and Future Work Items

While we believe the sensor network calculus to have potential, there are still
many open issues and correspondingly opportunities for future work. One im-
mediate issue arising from the use of a deterministic analytical framework is
the question how to capture the inherently stochastic nature of wireless commu-
nications. Here, we plan to integrate lately upcoming stochastic extensions of
network calculus [6], which however again need to be customized for the sensor
network case. Another issue is how to take in-network processing as is frequently
proposed for wireless sensor networks into account. In [7] we have proposed a net-
work calculus that allows for the scaling of data �ows. This development should
enable modelling of typical in-network processing techniques as for example ag-
gregation of information. Furthermore, it should also be possible to accomodate
the mobility of sensor nodes and/or sinks. As in many scenarios this is a kind of
controlled mobility there is hope to capture even this di�cult characteristic of
advanced wireless sensor network scenarios.

Apart from these fundamental issues for the sensor network calculus, it is also
important to demonstrate its usefulness in further applications. At the moment
1 See http://disco.informatik.uni-kl.de/content/Downloads.
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we design a task admission control scheme based on sensor network calculus for
sensor networks that may have several concurrent tasks. Another work item could
be a scheme where sleeping nodes are activated such that certain performance
bounds can still be satis�ed. Apart from these issues the presented framework
should also be validated by packet-level simulations in order to increase the
�delity in the predictive power of our models. Especially this last point deserves
our immediate attention and is already currently under investigation.
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Abstract. Many sensor network applications are concerned with discovering in-
teresting patterns among observed real-world events. Often, only limited apriori
knowledge exists about the patterns to be found eventually. Here, raw streams of
sensor readings are collected at the sink for later offline analysis – resulting in a
large communication overhead. In this paper, we explore the use of in-network
data mining techniques to discover frequent event patterns and their spatial and
temporal properties. With that approach, compact event patterns rather than raw
data streams are sent to the sink. We also discuss issues with the implementation
of our proposal and report our experience with preliminary experiments.

1 Introduction

Wireless sensor networks have been successfully applied for detailed observation of a
variety of real-world phenomena. Many of these applications are of a highly exploratory
nature, where only a very rough idea of the expected findings exists before the exper-
iment. In this case, streams of raw sensor readings from every node are typically de-
livered to a central sink for later offline analysis in order to find interesting patterns in
the data – resulting in a large data volume that has to be delivered through the network
(e.g., [5]).

A similar approach is used in the context of monitoring and debugging sensor net-
works [4]. Experience has shown that subtle real-world influences and large scale are
the cause of numerous bugs and indeterministic behavior of sensor networks. Again,
since the nature of these problems is often unknown in advance, testbeds and deploy-
ment support networks have been proposed to deliver high-volume event logs from
every sensor node to a central sink for offline analysis in order to identify patterns that
lead to failure.

In the above cases, missing advance knowledge about the patterns to be found even-
tually in the data limits the applicability of sophisticated in-network data processing
and reduction techniques. Rather, raw data streams are delivered to the sink for later
analysis. The resulting large data volume is a serious obstacle for deploying long-lived
and large-scale sensor networks.

In this position paper, we explore the use of distributed data mining techniques to
discover potentially interesting data patterns in a sensor network for the above type

? The work presented in this paper was supported (in part) by the Swiss National Science Foun-
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of applications. Rather than transmitting raw data streams from every sensor to the
sink, only compact patterns mined at sensor nodes are transmitted to the sink, thus
contributing to long-lived and large-scale sensor network deployments.

2 Approach

With our approach, a user can pose amining queryto the sensor network. This query is
executed by a distributed runtime system in the sensor network. As a result, the user will
receive at regular (but long) intervals a set of discovered event patterns from each node.
An event pattern is a frequently occurring set of events observed at different nodes in
the network.

A mining query specifies the types of events a user is interested in. The notion
of event refers to a user-specified state change at a sensor node (e.g., sudden drop of
temperature as measured by a sensor). In the context of our work, an event is simply
an identifier (e.g., “temperature-drop”) plus a timestamp when this event occurred ac-
cording to some global time scale. We assume that time is partitioned into equal-sized
epochs.

In addition, a mining query contains a number of constraints on the event patterns
the system should look for. These are needed to limit the huge search space of potential
event patterns.

The distributed mining algorithm then proceeds as follows. Every node in the net-
work continuously collects event notifications from nodes in a user-defined network
neighborhood(the size of which is specified by the mining query) using in-network
aggregation techniques. The events that have been collected in this way during a user-
defined amount of time calledhistory(the duration of which is specified by the mining
query as an integral number of epochs) are then fed to a mining algorithm. This algo-
rithm executed at noden mines patterns of the following form:

A1 ∧ ... ∧Am ⇒ E [S, C] (1)

meaning that an event of typeE occurred at noden with supportS and confidenceC
given that antecedentsAi all hold true. Every antecedentAi is of the form

Ai = (Ei, Di, Ti, Ni) (2)

meaning thatAi is true iff a certain type of eventEi occurredNi times at a distanceDi

from noden andTi time units beforeE. Di, Ti, andNi usually denote intervals such
asTi = “more than five minutes ago”, Di = “less than 20 meters away”, or Ni =
“between one and five times”.

SupportS is a number between 0 and 1 indicating how often this pattern could be
found over time. ConfidenceC is a number between 0 and 1 indicating how strong the
implication⇒ is. Note that the above patterns are a specific instance ofassociation
rules[1].

An example pattern discovered by this approach would be:

(tempdrop, [0, 10m], [0, 5min], [3, inf]) ⇒ tempdrop[0.95, 0.8] (3)
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meaning that noden observed a “temperature drop” event with support 0.95 and con-
fidence 0.8 if at least 3 nodes no more than 20 meters away fromn did also observe
a “temperature drop” event during the last 5 minutes. The following sections contain
details on some selected aspects of the basic approach described above.

2.1 Mining Queries

A mining query contains the following information:

– epochlen: the duration of an epoch in seconds.
– neighborhood: the radius of the neighborhood around a node given in network

hops or meters.
– history: the length of the history given in epochs.
– minimum support: a number between 0 and 1 indicating the minimum frequency

required for reported patterns.
– minimum confidence: a number between 0 and 1 indicating the minimum confi-

dence for the implication⇒ required for reported patterns.
– distance quantization: quantization of Euclidean distance between nodes into a

small set of partitions. Each partition is assigned a name (e.g., near=(0m,5m],
far=(5m,∞]).

– time quantization: quantization of time between events into a small set of parti-
tions. Each partition is assigned a name (e.g., now=0, recent=[1, 5epochs], old=(5epochs,
∞]).

– event frequency quantization: quantization of number of events into a small set
of partitions. Each partition is assigned a name (e.g., none=0, some=[1,∞]).

The purpose of quantization is to cut down the search space to be considered by the
mining algorithm by binning event occurrences into a small number of “partitions”.
Note that quantization is a critical issue as it affects the patterns that will be found
eventually.

2.2 Event Collection

As stated earlier, each node in the network collects event notifications from nodes in a
neighborhood. This can be achieved by applying a framework that supports neighbor-
hood abstractions such as Abstract Regions [6]. These tools allow a node in the network
to define aneighborhoodthat consists of a set of nodes that fulfill certain conditions
such as to be within a given distance of the node. Primitives for collecting data from
the nodes in a neighborhood are provided. Using the quantization of distance discussed
in the previous section, in-network data aggregation is applied to collect the frequency
of each event for each distance partition in the neighborhood of the node. Using the
example partitions from the previous section, we would count the occurrence of each
event at distances “near” and “far” using in-network aggregation.
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2.3 Mining Algorithm

The overall approach we apply is to transform the set of events collected from the
neighborhood during history into an assignment of{TRUE, FALSE} to a small set of
binary variables. The values of these variables characterize the collected events in a
compact way and serve as the input for the data mining algorithm.

For the transformation, we make use of the quantization of distances, time, and
event frequencies specified by the mining query. Essentially, there is one binary variable
< E > . < D > . < T > . < N > for each possible combination of an event< E >,
a distance partition< D >, a time partition< T >, and an event frequency partition
< N >. For example, the variabletempdrop.near.now.some would beTRUE, iff
event “temperature drop” was observed by at least one node (partition “some”), during
this epoch (partition “now”), not more than 5 meters away (partition “near”).

In addition, we include a binary variable< E > for each possible event< E > that
is TRUEiff this event occurred at the node executing the mining algorithm in the current
epoch. For example, the variabletempdrop would beTRUEiff the node executing the
mining algorithm observed a “temperature drop” event in the current epoch.

By applying this transformation, we obtain the set of binary variables with value
TRUEfor each epoch. Over time, this results in a stream of sets of binary variables with
valueTRUE.

To discover event patterns matching the mining query, we need to find sets of the
above binary variables that occur with a minimum frequency in the stream. This lower
frequency bound is given by the minimum support value in the mining query. Among
the resulting frequent candidate sets, the ones satisfying the minimum confidence re-
quirement are selected. The remaining sets can then be easily transformed into patterns
of the form given in Equation 1.

Discovering such frequent sets of binary variables from a stream is a standard data
mining task. In the literature, this problem is referred to asmining of frequent itemsets
(each binary variable can be considered as an item that is either present in the set or
not). In the recent past, various algorithms have been proposed to solve this problem
with constrained resources over streams of itemsets (e.g., [2, 3]). From the resulting
frequent itemsets, the ones satisfying the minimum confidence requirement are selected
as in [1].

3 Implementation Issues

Clearly the major challenge in implementing our proposal is that of fitting the mining
approach described in the previous section into the constrained communication, compu-
tational, and memory resources of a sensor node. One of the most challenging aspects
is to implement the mining algorithm within the constrained memory resources of a
sensor node. The BTnode [7] platform, for example, offers 256 kB of bank-switched
RAM.

The memory footprint of algorithms for mining frequent itemsets is largely a func-
tion of the number of frequent itemsets discovered from the data stream. To examine the
number of such frequent itemsets for a practical application, we performed an experi-
ment using sensor data collected during one month from 54 sensor nodes in the Intel
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Research Lab Berkeley [8]. This dataset was collected with an epoch duration of about
30 seconds (resulting in a total of about 65000 epochs) and contains, among others,
temperature and light readings.

In our experiment, we consider two types of events:temperatureand light events.
Each sensor node with a temperature reading> 23 degrees Celsius in an epoch emits a
temperature event in this epoch. Every sensor node with a light reading> 300 Lux emits
a light event. Otherwise, we use the quantization from the example given in Sect. 2.1
with a neighborhood size of 10 meters and a history duration of 10 epochs.
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Fig. 1.Number of discovered maximal itemsets for different support values.

For our experiment, we consider the mining algorithm that would be executed on
mote with ID 1 in the dataset. With the above settings, mote 1 generates a temperature
event in about 23% of all epochs and a light event in about 14% of all epochs. We would
expect a strong correlation of the occurrence of these events on mote 1 with the light
and temperature events in the neighborhood of the mote.

Applying the method given in Sect. 2.3, we create a stream of itemsets which is then
fed to an algorithm to discover maximal itemsets (a variant of [1]) for different values
of minimum support. Here, a maximal itemset is a frequent itemset that has no proper
supersets that are also frequent.

The results shown in Figure 3 are encouraging as the number of maximal itemsets is
very small over the whole range of considered support values. Note that a single itemset
in this experiment can be represented with 26 bits, since there are 26 different binary
variables.

For a minimum support of 0.9 we obtain two maximal itemsets that result in the
following patterns for node 1 in the format of Eq. 1:

(t, now, far, some) ∧ (t, recent, ∗, some) ∧ (t, old, ∗, some) ⇒ t [0.96, 0.38]

(t, ∗, far, some) ∧ (l, now, far, some) ∧ (l, {old, recent}, ∗, some) ⇒ l [0.92, 0.32]
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Here, “t” and “l” refer to temperature and light events as defined above. The notations
“{...,...}” and “*” mean that the enclosing antecedent is valid for the set of given par-
tition identifiers or for all possible partition identifiers, respectively. The rules indicate
that – as expected – the occurrence of temperature/light events at mote 1 is correlated
with the occurrence of these events in the neighborhood of the node.

4 Conclusions and Future Work

We have examined the use of data mining techniques to discover frequent event patterns
and their spatio-temporal relationships within a sensor network, such that compact pat-
terns rather than raw data streams would have to be transmitted from nodes to the sink.
In particular, such a system would be helpful to support exploratory settings, where
only a rough idea of the actual findings exists before the experiment.

We have also discussed challenges in implementing this proposal on sensor nodes.
In particular, we have identified the memory consumption of itemset discovery algo-
rithms. We have performed an experiment with real-world data to motivate that an
implementation is feasible. The work reported in this paper is a first step towards a
distributed event-pattern-mining system for sensor networks.
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Abstract. Various applications rely on a continuous processing of data
streams originating from a network of interconnected and collaborated
sensors. The processing of those streams has turned out to be a difficult
task as sensors only have limited resources and the data they produce
is inherently uncertain and unreliable. In order to bridge the gap from
raw, uncertain sensor readings to a meaningful model of the physical
phenomenon observed, statistical modeling techniques have proved to be
an adequate approach. By means of a statistical model, a wide range of
sensor network related topics can be covered. In this work, we present
an initial approach to tackle an important problem in sensor processing,
namely the detection of outliers, with a statistical model.

1 Introduction

Recent advances in hardware technology combined with decreasing production
cost for lightweight devices have facilitated the application of wireless sensor
networks for monitoring entities in a plethora of real-world scenarios, e.g. en-
vironment monitoring, industry monitoring. In these scenarios, a large number
of sensors is deployed and each one continuously monitors physical entities like
temperature and air pressure. The raw sensor readings are typically transmitted
to a central backend that provides an interface to query the sensor network.

The configuration of a sensor network comprises suitable settings for network
topology, routing, and communication protocols [1]. Since the resources of a
sensor are limited, the energy efficiency is a crucial factor in this configuration.
Besides these low-level problems, a sensor network also has to cope with high-
level problems: First, a sensor network produces huge amounts of data in form of
transient streams. The time-critical nature of most applications combined with
limited resources requires to give up the paradigm of exact answers and to use
approximate answers instead [2]. Second, even if we could store all data, we must
take the inherent uncertainty and unreliability of the data into account [3]. This
uncertainty is due to the facts that a sensor can only provide discrete samples
of a (continuous) physical phenomenon and that it is additionally subject to
interfering effects like noise, hardware failures, inaccuracies. Hence, the querying
of the raw sensor readings may produce misleading or even wrong answers.



Recently, the database research community has addressed those high-level
problems. Especially research in data stream processing has come to the fore [2].
The processing of data streams is challenging as their requirements render the
application of common database technologies unfeasible [4]. The processing of
sensor data streams is even more challenging due to their inherent characteris-
tics: data uncertainty, intra- and inter-stream correlations, sensitivity to energy
consumption [5].

A promising approach that takes those characteristics into account is to incor-
porate statistical modeling techniques into sensor network processing. To convey
a notion of the benefits of statistical models in sensor networks, let us sketch
some recently proposed approaches: One, for example, is to equip query answers
with probabilistic estimates of their validity to cope with imprecise sensor data
[6]. In order to clean noisy sensors, [7] combines prior knowledge with noise char-
acteristics of the sensor to obtain more accurate sensor readings. [3] also tackles
the cleaning of sensor streams by exploiting temporal and spatial correlations of
the sensor readings. The approach presented in [8] provides a statistical model
for the complete sensor network that allows to query the network while acquiring
new sensor readings only if necessary.

The above approaches share the property that they develop a statistical
model for the distribution of the streams generated in a sensor network. The
main assumption is that the sensor readings are samples of different physical
phenomena under observation. If we describe the entirety of phenomena in terms
of random variables, we have a variety of convenient statistical estimation tech-
niques at our disposal. In this context, it is vital for further analysis to reveal
the distribution of a random variable, more specifically its probability density
function [9]. In [4], [10], we presented solutions to this problem for transient data
streams. As these techniques particularly suit for the sensor stream scenario, we
propose to use the statistical models they provide as point of origin for further
analysis of the sensors. In this work, we present an initial approach to tackle
outlier detection, an important task in almost every application on top of sensor
networks, with the help of these statistical models. Before going into details,
we will give a brief overview of the development of statistical models for sensor
networks.

2 Statistical Modeling of Sensor Data

A sensor network acquires samples of physical phenomena with sensors located
at the network nodes. We assume that each sensor measures at each time in-
stant a single, real-valued attribute Xi, e.g. temperature. The sensor transmits
the raw readings to a central basestation. With respect to the aforementioned
unreliability of those readings, the basestation serves as an intermediate pre-
processor. In the preprocessing step, the raw sensor readings are transformed
into a meaningful statistical model of the complete sensor network. This model
is continuously published to the query processing module. This module executes
the posed queries with respect to the statistical model. For example, one possible
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query is to determine all nodes whose reported temperatures are labeled as out-
liers with respect to the statistical model. The general architecture for the sensor
stream processing is illustrated in Fig. 1. In the following, we will concentrate

Fig. 1. processing architecture

on the computation of the statistical model within the preprocessor.
Point of origin is to model the set of attributes X1, ..., Xn as an n-dimensional

random variable X = (X1, ..., Xn), i.e., we assume that the sensor readings
are samples of the random variable X. Given the probability density function
(pdf) f(X1, ..., Xn), we can determine the distribution of X in terms of the
probabilities of arbitrary attribute constellations:

P (X1 ∈ [a1, b1], ..., Xn ∈ [an, bn]) =

b1∫
a1

...

bn∫
an

f(X1, ..., Xn)dx1...dxn. (1)

The knowledge of the pdf is crucial as it gives a comprehensive summary of the
process described by the random variable. Not only can we determine the above
probabilities, but also determine meaningful characteristics like mean, variance,
quantiles, correlations.

Let us give an example: For two sensors that measure temperature and air
pressure respectively, we could conclude with their pdf that the probability of a
temperature above 25 degrees celcius and an air pressure lower than 1000 hPa is
extremely low. We also could determine the mean temperature or the correlation,
i.e. the degree of linear dependency, between temperature and air pressure.

However, the question remains how we determine the pdf for a given set of
measured attributes? In real-world scenarios, we must assume that we have no
prior knowledge of the sensor stream distributions; we only have the raw sensor
readings. One approach is to assume that the unknown pdf belongs to an a
priori known class of densities, e.g. Gaussians. Given a Gaussian distribution, it
remains to estimate its mean and variance with the help of the sensor readings.
Due to its simplicity, this is a practically relevant approach, e.g. [7]. However, if
the random variable does not follow the preset distribution, the resulting model
is likely to be useless.
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On account of this, we have concentrated in our work on so-called assumption-
free density estimation techniques provided by mathematical statistics [9]. Those
techniques are very appealing as they let the data speak strictly for themselves
without any assumptions. As the computational complexity of these techniques
prevents their direct application to data streams, we developed adaptations [4],
[10] based on kernels and wavelets respectively. Both techniques continuously
provide - with computational low cost - suitable density estimates that keep
pace with current trends in the stream. With those density estimates as sta-
tistical model of the streams in a sensor network, we can gain insight into the
physical phenomena observed by this network. In the following, we will illustrate
this with their application to outlier detection.

3 Outlier Detection for Sensor Data

The detection of outliers in a timely fashion is an important task for virtually
all applications on top of sensor networks. In facility monitoring, for example,
an alert shall be triggered in case of exceptionally high temperatures. Another
example is the food industry where perishable items shall be timely detected.

Generally, outlier detection has a long history in statistics and database re-
search and there are many ways to define an outlier. Intuitively, we expect an
outlier to be unusual or unexpected in comparison to a given data set; its oc-
currence is ’improbable’. Given the terminology introduced above, we label a
point as an outlier if it lies in a region with low probability. This informal defi-
nition includes two important aspects: First, we consider the region around the
outlier, quasi its neighborhood, and found the decision on the probability of the
region. Second, we set a threshold for this probability. This threshold determines
the sensitivity of the outlier classification. We incorporate both aspects in the
following formal definition of an outlier:

Definition 1 Let f be a pdf with support [a, b] and ε, δ ∈ (0, 1). A point x is an
outlier, if P (X ∈ [x− ε(b−a)

2 , x + ε(b−a)
2 ]) ≤ δ holds.

The parameter ε determines the width of the region while δ determines the rate
of false positives and false negatives. The higher δ is set, the more ’normal’
points will be labeled as outliers. The lower it is set, the more outliers will not
be detected. The explicit setting of the parameters depends on the concrete ap-
plication. For illustrative purposes, Fig. 2 presents an example for the definition
of outliers.

With the above definition, we can develop an online algorithm to detect
outliers in sensor streams. The chief part of the algorithm is the maintenance of
a density estimate with the techniques mentioned above. Based on this estimate,
we label a new sensor reading either as outlier or not. Except the reading is
definitely not possible, e.g. negative velocities, we incorporate it into the density
estimate. This ensures that we do not label values becoming more frequent always
as outliers. The more often they appear, the more this will be reflected in the
density estimate, i.e., their probability increases and consequently the probability
of being labeled as outlier decreases.

52       Christoph Heinz, Bernhard Seeger



Fig. 2. detection of outliers

4 Conclusions

In this work, we investigated the augmentation of sensor network querying by
meaningful statistical models. Instead of exploring the raw sensor readings, a
statistical model offers a more reliable way to gain insight into the physical phe-
nomena observed. A key ingredient of statistical models is the probability density
function as it provides a comprehensive summary. Based on online computable
estimates of the probability density function, we presented an initial approach to
detect outliers in streaming sensor data. However, outlier detection is only one of
many possibilities to enrich sensor querying with statistical modeling techniques.
In fact, we expect this research direction to become highly relevant in future.
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Abstract This technical report presents the architecture of the ultra low power
sensor nodeSNoW5 for ad hoc wireless sensor networking (WSN).SNoW5 was
developed at the University of Wuerzburg and aims on WSN research, educa-
tional and commercial applications. An overview over the basic concept, its hard-
ware design and a tabular comparison to other existing nodes will be given. We
conclude this technical report with a survey of our research so far and a short look
on future works.

1 Introduction

Powerful information technology is already an inherent part of everybody’s daily life.
Unfortunately, most systems are rather large in size and depend on static and inflexible
infrastructures. Therefore, current research focuses on small-sized and mobile devices
which will be deployable into almost any object to directly support humans as well as
machines. Carefully designed networks of flexible autonomous devices will lead to in-
creased convenience, performance, security, etc. However, one must always take into
concern, that minimalistic computers have low performance due to very restrictive re-
quirements like ultra low power consumption. Thus, the demand for wireless networks
of small autonomous devices increased heavily within the last few years. These wireless
sensor networks (WSN) use the combined power of many small devices to solve even
complex problems under exceptional circumstances for which a single device was too
weak. Nevertheless, the successful coordination and interaction of these sensor nodes is
a hard problem, comprising research areas like communication, self-organization, fault-
tolerance, distributed algorithms and low-power design in both hardware and software.

Several sensor nodes are already available for research and commercial applications
but after careful examination of these nodes we decided to develop a new one from
scratch to meet our requirements more exactly. The most detailed knowledge of all
software and hardware concepts combined with the large amount of features allows us
to precisely observe theoretical considerations under hard real-life conditions. Thus, this
technical report describes which hardware components were selected to makeSNoW5

as versatile as possible (see Figure 1).

2 SNoW5 specifications, features and extensions

This section describes the hardware components used forSNoW5 in detail and illu-
minates why each one was chosen (see Figure 2). As already mentioned, some other



sensor boards already exist. Table 1 shows a detailed summary over the specifications
and features ofSNoW5 and compares it to a few other nodes available. As you can see,
the named sensor nodes are somewhat similar in some points. In some other points the
differences are rather large.

Figure 1. TheSNoW5 main board (left) and with one stacked daughter board (right)

As energy efficiencyis an important aspect, power consumption was minimized
to makeSNoW5 work for a long time even with limited power supply like a simple
battery. The usage of renewable power supplies via solar panels and Piezo elements is
planned for the near future. Therefore not only ultra low power components but also
extended support for energy saving modes was required in both hardware and software.
Special power saving concepts were implemented within our operating system and the
communication protocols for example.

A powerful core MCUwas another important issue. After careful comparison of
quite a number of architectures, we selected TI’s16 bit ultra low power MCU family
MSP430x16xx [1]. The device we prefer is the MSP430F1611 with48 kB of flash
memory,10 kB of RAM and five operation modes with different power consumptions
from 0.2 µA up to9 µA at 8 MHz (software adjustable). In addition, various on chip
peripherals are provided by the MSP430 and can be used on board or through the node’s
pin headers: 8× 12 bit ADC, 2× 12 bit DAC, 2× 16 bit timer with capture/compare,
brownout detector, hardware multiplier, 6× 8 bit general purpose digital I/O ports
and integrated bus protocols for serial communication like SPI, I2C and RS232. These
features allow comfortable usage of external analog and digital components like sensors
and actors.

Another goal wasmodularityandcustomizability. As the support for a large variety
of additional digital and analog devices is very important for our research, we decided
to pursue a stackable design where sensors and actors can be easily attached to each
node. Therefore we made all relevant digital and analog signals of the onboard devices
available on pin headers. In this way it is not only possible to plug several expansion
boards on a node at the same time to expand its capabilities as required by the specific
application, this concept also allows us to avoid placing any sensors directly on the main
board as this would restrict the versatility ofSNoW5 due to preassigned I/O signals that
could be used wiser within some other applications. This concept even permits buses
for connecting devices on different expansion boards. We preserve the option to mount
sensors on the case of the node where they are in direct contact with the environment.

Quite a number of expansion boards are already available or under development pro-
viding the possibility to attach resistive sensors for example. An ultrasonic transceiver
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for distance measurement is supported as well as an acoustic amplifier for audio appli-
cations. In the near future special communication boards with IR, USB, WLAN, GPRS
and extensions for orientation and movement detection can be expected.

Figure 2. SNoW5 – a rough overview

A compact designwas possible by careful selection of small devices. Nevertheless
we rated convenient debugging and adaptability more important than small dimensions.
For the benefit of easy and rapid prototyping of expansion boards we decided to use a
2.54 mm grid for the headers. Though this increases the overall size of the nodes we
support standard bread boards and allow comfortable debugging via scopes and logic
analyzers. For specific applications, the node’s dimension can be easily reduced to about
50% of size by omitting debugging headers.

The next focus was onflexible communication. As long distance wireless commu-
nication is essential within any WSN we decided to use the highly configurable multi
channel radio transceiver ChipCon CC1100 [2] with adjustable base frequency (see
Table 1). This is of special interest for researching various wireless communication
protocols. Some special features of the CC1100 are SPI interface, Wake-on-Radio RX
(≥ 1.8 µA), integrated hardware address check and its digital RSSI/LQI output. The
latter can be used to adjust TX power for dynamic cell sizes or even to roughly lo-
calize a node relative to its neighbour nodes as proposed in [3]. Its data rate ranges
from 1.2− 500 kbit/s and the two64 byte RX/TX buffers allow MCU-independent
reception and transmission. For increased versatility in communication and application
debugging we added two serial ports which can be individually enabled on demand and
extended via USB. The reason for actually providing a RS232 interface was not only
the additional debug/communication channel but the possibility to easily attach ready-
made devices like GPS modules toSNoW5 (not yet available as expansion boards).
Consequently it is no problem to use a single node as gateway from a PC to the wireless
network. A JTAG port allows convenient programming and in-circuit-debugging of the
applied MSP430 MCU.

Although cooperation between the nodes of a WSN accounts for its overall perfor-
mance, we decided to facilitatecomplete autonomous and network independent opera-
tion. SNoW5 is able to compute or collect environmental data over a long period without
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communicating with other nodes. To store even a large amount of information (logs,
measured values, etc.) the non-volatile data flash Atmel AT45DB161B [4] is available
on board. This byte addressable16 Mbit memory also holds the node’s basic configu-
ration like its unique ID and communication parameters. The reason for selecting this
very device were the two528 byte data buffers allowing a very smart implementation
of an embedded file system [5] that saves valuable RAM within the MSP430 MCU and
has some other interesting features.

Finally, thesmall but powerful operating system YaOSwas designed to handle all
attached devices and to provide a simple to use interface for the application running.

Sensor Node Mica2 MPR410CB [6] BTnode [7] ESB ScatterWeb[8] EYES [9] Telos[10] SNoW5

Developer Crossbow ETH Zurich FU Berlin Univ. of Twente UC Berkeley Univ. of Wuerzburg
Date 2002 2004 2005 2003 2004 2005

Microcontroller unit

IC ATMega128L ATMega128L MSP430F149 MSP430F149 MSP430F1611 MSP430F1611 / F16xx
Speed (MHz) 7.37 7.37 ? 5 0.4 - 8 0.4 - 8
Architecture 8 bit RISC 8 bit RISC 16bit RISC 16bit RISC 16bit RISC 16bit RISC
Flash ROM / RAM (kB) 128 / 4 128 / 4 60 / 2 60 / 2 48 / 10 48 / 10
Power, active(mA) / sleep(µA) 8 / 15 8 / 15 3.2 / 1.6 3.2 / 1.6 4 / 2 4 / 2
Wakeup time (µs) 180 180 6 6 6 6

Onboard memory

IC AT45DB041B 62S2048U MC 24LC64 ST M25P40 ST M25P80 AT45DB161B

Type / Interface Flash / SPI SRAM / ? EEPROM / I2C Flash / SPI Flash / SPI Flash / SPI
Non-volatile yes no yes yes yes yes
Size (kB) 512 240 64 512 1024 2048
Power, idle (µW) 5 ? 0.03 150 150 5
Power, read / write (mW) 10 / 37.5 ? / ? 0.15 / 0.3 12 / 45 12 / 45 10 / 37.5

Primary wireless communication

IC CC1000 CC1000 TR1001 TR1001 CC2420 CC1100
Interface SPI SPI non-SPI non-SPI SPI SPI
Data rate (kbit/s) 38.4 38.4 19.2 57.6 250 500
Modulation FSK FSK OOK,ASK OOK,ASK O-QPSK 2FSK,GFSK,ASK,OOK,MSK,QPSK
Frequency (MHz) 433 433-915 868 868 2400 315, 433, 868, 915
HW addr. check, dig. RSSI/LQI no no no no yes yes
RX / TX @ 0 dBm (mA) 7.4 / 10.4 7.4 / 10.4 3.8 / 12 3.8 / 12 18.8 / 17.4 14.5 / 16.1
Low power RX / sleep (µA) 74 / 0.2 74 / 0.2 1800 / 0.7 1800 / 0.7 – / 1 15 / 0.4

Interfaces / Sensors / Misc

PC Communication RS232 Bluetooth / JTAG RS232 / JTAG RS232 / JTAG USB RS232 / JTAG
Extension pins / DC ports 51 / 1 55 / 1 24 / 1 14 / 1 16 / 1 67 / 1+2 (free for expansion)
Digital I/O / ADC / DAC ? / ? / 0 21 / 2 / 0 8 / 0 / 0 8 / 8 / 0 13 / 6 / 2 41 / 8 / 2

Accessible buses SPI, I2C SPI, I2C SPI – SPI, I2C SPI, I2C
Overall DC / physical specifications

Size (mm×mm) 32× 58 32× 58 ≈ 45× 54 ≈ 32× 92 32× 65 50× 85
Supported operation voltage (V) 2.7 - 3.3 3.3 or 3.8 - 5 3 - 26 3 1.8 - 3.6 1.8 - 20
Regulated supply no yes yes no no yes
Power, active mode (mA) 30 ≈ 33 12 ? 14 8

Table 1.Node comparison table

3 Applications

SNoW5 pursues two basic concepts: due to its small, customizable and energy efficient
design paired with various communication channels it is ideal for various demanding
applications. In addition, modularity and easy debugging enables our node for research
and education. So, recommended fields of application are role-based scenarios where
differently equipped nodes cover distinct areas of a comprising complex task.

One example is the supervision of territories and buildings for security, informa-
tional and controlling aspects. This is even possible in dangerous and misanthropical
environments where no communication infrastructure is available and ad hoc network-
ing is mandatory. Another reason for usingSNoW5 is its easy adaptability to the require-
ments given. This is especially interesting for task forces like firefighters employing a
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node in a large variety of situations. Here it can be used for measuring gas concentra-
tions, locating persons and finding escape routes.

Its profits for research and education is the easy accessibility via serial interfaces
and JTAG from a workstation. This allows development and analysis of embedded
software/middleware like distributed and low power algorithms, operating systems and
communication protocols. Functionality of sensors and actors can also be explored.

4 Conclusion and future work

In this technical report we have initially defined our demands on nodes of a WSN.
According to these requirements we developed theSNoW5 node, whose architecture and
features were outlined. Differences to other nodes were shown as detailed table. Some
examples of particularly suitable applications forSNoW5 in commercial and research
areas close this technical report.

The successful establishment of a wireless sensor network usingSNoW5 finally en-
ables us to evaluate theoretical assumptions under hard real-world conditions. Thus we
are currently researching on theoretical problems like self-organizing and fault-tolerant
systems. Underlying aspects will be network protocols, routing, time synchronization,
power saving concepts, localization and embedded systems software design. Future
work will also lead to several daughter boards for sensors and actors in addition to those
mentioned above. We will also look for hardware improvements and miniaturization of
the SNoW5 main board. Our long-term objective is the specification of hardware and
software requirements leading to a mass market SOC design for generic WSN nodes.
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Abstract. Energy consumption and power supply are important as-
pects of mobile devices. To determine the operation time, knowledge
about the energy consumption of the mobile device and the capacity of
the battery are needed. By using energy saving techniques and grace-
ful degradation, we can extend the life time significantly. To use these
techniques efficiently with respect to response time and functions of the
device, measurements on the device and the battery are required.

1 Introduction

Mobile devices are often powered by batteries. Manufacturer of rechargeable
batteries specify the capacity of the cell, which is determined using measurements
on a certain load. For lithium polymer batteries this load is often relatively
high compared to the consumption of a small device. The usable capacity of a
battery depends mainly on the minimum operational voltage needed by a device,
the current and the temperature. To determine the runtime of a mobile device,
there are two things necessary: the useable capacity of the battery and the
energy consumption of the mobile device. Since the device can be in idle state,
computing, transmitting or in some energy saving state, its energy consumption
varies.

If the device is never idle, it is hard to save energy by using the standard
saving techniques, i.e. switching to energy saving mode in idle period. Even
if these modes should be used, the problem is that the microcontroller of the
MicaZ provides six energy save modes to choose from. We propose a graceful
degradation of functionality if the battery is running low. Graceful degradation
is the degradation of a system in such a manner that it continues to operate,
but provides a reduced level of service rather than failing. For example consider
a device with some core functions and additional functions, that works for some
time t. If the battery is getting low, the additional functions are degraded, which
means they are not switched off abruptly, but their runtime is shortened and
finally set to zero. Even the core functions may have parts that can still work
with less runtime or the execution frequency can be degraded. During the new
idle periods it is now possible to switch to sleep modes and save energy. To
determine when the battery is at a low level, measurements for the used battery
are required.

Switching to save modes has some side-effects, i.e. stopping the CPU, stop-
ping of timers or discarding external events. Therefore the requirements of the



application running on the device need to be considered as well as the consumed
energy.

2 Related Work

For the Mica2 node, an earlier version of sensor nodes from Crossbow, there exist
a few measurements [1] and an integration of these measurements into AVRORA
[2], a simulator for ATMEL AVR microcontrollers. Since the Mica2 node uses
a different transceiver than the MicaZ node, at least measurements of the new
transceiver are required. Since the redesign of the node for the new transceiver
can have influence on the energy consumption, the other components have to be
measured too.

Lithium polymer batteries are often used for high current purposes, so there
exist measurements with high loads (some amperes). We have only low current
(a few mili-amperes), so we cannot rely on the specifications of the manufacturer
of the batteries.

3 Measurements of a Lithium Polymer (LiPo) Battery

For most applications, it is necessary to know when the battery capacity is below
a certain level. If the battery is below that level, a warning can be given or a
controlled shutdown of the device can be made. We chose the LiPo batteries,
because mobile devices should have low weight energy source with high energy
density. For the used LiPo batteries there exist only a few discharging curves
and most of them use a discharge current at a level multiple of the capacity [3].
The reason for this is, that they are often used in model aircrafts, where high
current is needed. In our case, where no appropriate curve is available, we have
to make the measurements on our own.

3.1 Experiment Setup

For the experiment, we use a lithium polymer rechargeable battery from Kokam
[4] with a nominal capacity of 1.5Ah and a nominal voltage of 3.7V. We did
the discharge at a constant current of 37.8mA which is ensured by an added
DC/DC regulator and a constant resistor. The voltage of the battery, as well as
the output voltage of the DC/DC regulator are recorded by a digital oscilloscope
[5].

3.2 Experiment Results

The result of the experiment is shown in Figure 1. On the x-axis, the time is in
units of 30 seconds, on the y-axis the voltage of the battery and the output of
the DC/DC regulator is drawn. The curve can be divided in four parts. The first
section, till 250 time units, is decreasing slightly faster than the middle section.
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In both sections, the relationship between voltage and time is nearly linear. Only
in the last section, at about 3250 time units, the voltage is roughly constant for
a small amount of time and afterwards decreasing really fast to the shutdown
point of the voltage regulator at t = 3816.
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Fig. 1. Battery discharge at 37.8 mA

The useable capacity can be calculated to 3816·30s
3600 s

h

· 37.8mA = 1202mAh.

The important result of this experiment are the voltage changes at discharge.
Due to the correlation between current battery voltage and the capacity left in
the battery it is sufficient to measure the current voltage. This fact is interest-
ing, because the voltage can be determined by the MicaZ using its built-in AD
converter.

4 Measurements of the MicaZ Node

To determine the operating time of the MicaZ node [6], exact measurements
on its energy consumption are needed. The MicaZ node consists of a microcon-
troller [7], a transceiver (transmitter/receiver) [8], three light emitting diodes
(LED) and a few other components that are not relevant here. All components
can be switched on, off or have some energy saving mechanisms. For most of
these electrical components, we can find the energy consumption in their data
sheets. The sum of all these ratings may differ from the real value, due to addi-
tional components like resistors etc. Another problem is that for some functions,
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e.g. sleep modes, no power consumption is given. In the master’s thesis of Do-
minik Domis [9], measurements of another node called particle [10] show that
there can be a big gap between the data presented in the data sheet and the
measured value. According to this, measurements of the microcontroller in dif-
ferent operation modes, the transceiver and the LEDs were performed. Since the
node is considered as a whole inseparable node, the measurements were taken
with the whole node. To get better results, each unused component in a specific
measurement is put into its highest energy save mode.

4.1 Experiment Setup

For this experiment, we use the same DC/DC regulator as in the prior experi-
ment to reduce the voltage to 3.1V for the MicaZ. At the output of the regulator
we add the MicaZ. For the measurement, the current of the MicaZ and the reg-
ulator as well as the voltage of the battery are recorded by a digital oscilloscope
[5].

4.2 Experiment Results

For each of these states, we did measurements of the energy consumption of the
MicaZ. Since the MicaZ needs to be considered as a whole, the consumption of
the node with all components shutdown is the minimum energy consumption of
the node, even if no program is running on it. We perform our measurements
including the DC/DC regulator, because it is needed for a proper functionality
of the node.

Microcontroller

The microcontroller of the MicaZ is an ATMEL ATMega 128L, which has vari-
ous functions to save energy. The obvious ones are the six different energy saving
modes. Another one is to decrease the operation frequency by the built-in fre-
quency scaler. Figure 2 shows the different save modes and their consumption.
Before entering any of these modes, the program waits a while to stabilize the
consumption, which can be seen in the figure.

The first three measurements concern normal operation mode. Two of them
represent duty cycles, while the third one is an idle loop. Both busy loops have
a high consumption, while the NOP loop has a lower consumption of 1mA. All
other measurements show energy saving modes. The idle mode has the lowest
savings, but has the advantage that almost all parts of the microcontroller still
work. All other modes, save more energy, but have side-effects resulting from
disabling more parts of the microcontroller. In this measurement, the standby
and the powerdown mode have not been considered. These two modes stop the
main clock, so a wake up is not possible after a defined time, which is needed for
our future work. Only an external interrupt can wake up the device. In Table 1,
the average consumption of the microcontroller in every mode is listed. Details
on different modes are given in the data sheet [7, p. 44].
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The second way for saving energy is decreasing the internal operation fre-
quency. If the next task should be executed at time t, the frequency can be
decreased to a level where the current task ends at time t. Therefore no waiting
or switch to a energy save mode is needed. An example for this is given in Figure
3. By measurement we determined that the consumption at speed

32
is not P

32
, but

it is ∼
1
8
P . Considering this, the expected consumption in example in Figure 3

can be calculated to 13.8 J. So there is no energy saving anymore. Nevertheless,
if we cannot use a sleep mode, this technique can have some benefit. Consider
the CPU is waiting for some external event by using a busy loop, or timers are
running, thus entering a deep sleep mode is not possible. In many sleep modes
the CPU or the timers except timer 0 are stopped, so entering any sleep mode
is impossible. In this case, one can scale down the frequency i.e. by 16 and enter
the idle mode. Since we have nothing to compute and are only waiting for an
event, the energy consumption for the same time of waiting is lower, without
entering a save mode. By comparing both values in Table 1 one can see, that
the consumption at Speed/16 in combination with idle mode is even lower than
in ADC mode.

Transceiver

The transceiver is a component which has the highest energy consumption of
all relevant components of the MicaZ. This component has four different states:
down, idle, send and receive. According to the data sheet, the receive mode
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Operation Mode average current [mA]

Busy (mul) 8.65
Busy (jmp) 8.73
NOP 7.69
Idle 3.88
ADC 1.32
Extended Standby 0.25
Save 0.14

Speed Level average current [mA]

1/2 4.96
1/4 3.57
1/8 2.73
1/16 1.65
1/127 0.76
1/2 + Idle mode 2.23
1/16 + Idle mode 0.84

Table 1. Average energy consumption

Fig. 3. Theoretical benefit of decreasing frequency on ATMega 128L

should have a higher consumption than the send mode. By measurement we
determined the current in both modes to 20mA. The idle mode has a lower
power up delay and the consumption is about 0.4mA higher than in down mode.

Figure 4 shows the mentioned measurements. For this measurement, the
current of the microcontroller is not interesting and should be low to get higher
precision. Therefore the frequency is set to 1

16
. The transceiver initializes and is

set to receive mode. After this period a send operations is started, which can not
be seen by measurement and finally the transceiver is automatically set back to
receive mode. After the measurement the transceiver is set to down state again.

LEDs

For each of the LEDs we determined an average consumption of 10.2mA in-
cluding the processor. By subtracting the NOP consumption (7.69mA) of the
microcontroller, as stated in Table 1, the consumption of a LED is 2.5mA.

Other Components

The other components on the MicaZ, like the serial data logger or the unique
identifier, are not interesting for our research or only used once at start-up and
therefore have not been analyzed.

5 Conclusion

Measurements on LiPo batteries have shown, that there is a good relation be-
tween the capacity left in the battery and the current measured voltage. There-
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fore it is easy to determine the current battery level. Hence it is now possible
to achieve a graceful degradation of functionality of the device. With the mea-
surements of the device, we can determine how much energy is consumed in
each mode. Some power saving modes that seemed useful while reading the
data sheet cannot be used to save energy. However, the promising method of
frequency-scaling can be used for power saving whenever the sleep mode is not
applicable.

Using these measurement results, we can improve the precision of the en-
ergy component of the AVRORA simulator. Thereby we can simulate energy
scheduling techniques without measurement. In the next step we will develop
a dynamic scheduler, which will on the one hand schedule tasks based on the
current energy level, the respective power consumption of the tasks and their
priorities to enable graceful degradation. On the other hand, we will be able to
decrease the frequency of the microcontroller to execute the tasks in time but
with minimized energy consumption.
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Abstract. Energy savings and topology control are inherent tasks of
many wireless sensor networks. Sensors are assumed to be randomly de-
ployed and shall organize themselves independently after deployment.
Moreover, sensor networks shall operate as long as possible warranting
network connectivity. To deal with these tasks we propose the mainte-
nance of a virtual backbone where a fuzzy logic control (FLC) engine
is proposed to handle the local backbone access over time. Nodes not
participating in the backbone shutdown their radios and go to sleep for
a certain time.

1 Introduction

A distributed event detection and tracking framework intrinsically performs ap-
plication specific tasks such as distributed localization, observer determination,
in-network processing, etc. Additionally, such a application needs topology con-
trol and routing to supply a communication infrastructure that runs as energy
efficient as possible. To support this communication infrastructure we propose
the maintenance of a virtual backbone built by a connected dominating set
(CDS). The CDS thereby adapts itself to local energy distributions and node
conditions in the network. A fuzzy logic control (FLC) engine is proposed to
handle the local backbone access over time. Nodes not participating in the back-
bone shutdown their radios and go to sleep for a predefined long sleep period.
In this work we discuss our current approach and outline directions of future
research.

The new idea of our approach is to consider multiple properties of the nodes,
such as their movement pattern, energy level, and distance to known backbone
nodes and make local decisions based on that information.

⋆ The work presented in this paper was supported by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation under grant number
5005-67322.



2 Related work

There exist a number of approaches that enable the selective disconnection of
redundant nodes. ASCENT [1] and SPAN [2] both are distributed and random-
ized algorithms where nodes make local decisions on whether to sleep, or to join
a forwarding backbone. Both schemes demand periodical information exchange
among the network nodes to identify the redundant nodes that may go to sleep.
Neither SPAN nor ASCENT do consider the movement patterns of the nodes or
their locations and are thus not able to make advantage of this information. In
GAF [3] nodes form virtual clusters where redundant nodes are timely discon-
nected from the network. The state of the nodes bases on global virtual positions.
The main drawback of GAF is that it does not adapt to the network topology
and the nodes individual energy state.

Another set of algorithms determine a connected dominating set (CDS) of
a given network graph. The algorithm proposed by [4] first determines a CDS
that consists of all nodes which have at least two non-adjacent neighbors. To
reduce this CDS two pruning rules are introduced. In [5] the authors enhance
their algorithm with the possibility of considering a node’s remaining energy
level instead of its link degree. In [6] a CDS is built in two phases. In a first
step a maximal independent set (MIS) is constructed. In a second step a set
of nodes connecting the MIS is determined. The resulting set of nodes builds
a CDS. The approach of [7] converges in only one algorithmic step. Each node
receiving a dominator message determines a timer based on the number of not
yet covered downstream nodes. As soon as a timer expires the node enters the
CDS and broadcasts a dominator message. Nodes that do not reach additional
nodes cancel their timer and become dominated.

3 Receiver-based CDS algorithm

In this section we introduce our approach, discuss the current state and outline
future research directions. In order to set up a virtual backbone nodes have to
periodically exchange control messages with each other. The control messages
may thereby be enhanced with the node’s ID, link degree, position, energy level,
and velocity. Based on this information, nodes make decisions like accessing the
backbone or determining neighbors to take over their operation in the backbone.

3.1 Preliminaries

A dominating set (DS) of a graph G = (V, E) is a subset V ′

⊂ V where each node
in V − V ′ is adjacent to some node in V ′. A connected dominating set (CDS)
is a dominating set which builds a connected subgraph of G. To minimize the
number of set members it is desirable to find a minimum connected dominating
set (MCDS) of G what is however shown to be NP-complete [8]. Moreover,
the MCDS does not reflect energy distributions and need of updates within
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the network. We propose a distributed approximation algorithm that aims on
efficiency and network adaptivity.

The decision whether a node enters the CDS is done in a distributed manner
based on a fuzzy logic control engine (FLC). The advantage of using a FLC
engine is that energy distributions, node movement patterns, etc. are included
in the dominator election. Thus, we hope to get a more flexible algorithm that
adopts to the current network state and allows the election of the most appropri-
ate nodes in the backbone. Including the movement patterns of the nodes we can
prioritize nodes moving at slow speed, thus prematurely excluding nodes with an
increased probability of affecting the backbone connectivity in the near future.
To derive a node’s speed pattern we need the support of location information
what we assume to be satisfied by most sensor network applications as they are
intrinsically location dependent.

3.2 Setting up the connected dominating set

In this section we describe the CDS algorithm. The FLC engine in not yet
implemented and we discuss the CDS construction solely based on the node
degree. In the future we will substitute this operations with a FLC engine.

The CDS setup is considered as a graph coloring problem. Initially, all nodes
are white. The base station starts the CDS algorithm, coloring itself black and
broadcasting a DOMINATOR message. This message contains the node’s ID
and a list of its neighbors. Thus, each node receiving the DOMINATOR mes-
sage is able to check if it covers additional nodes. Each node overhearing this
DOMINATOR message broadcasts a DOMINATEE message containing a copy
of the DOMINATOR message. All nodes that are two hops away from the last
elected dominator and overhear a DOMINATEE message compare their

Fig. 1: Receiver-based CDS construction: Colors indicate different node states. Green
nodes are dominators, red nodes dominated.
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own neighborhood information with the neighborhood information of the
last dominator. Based on that information they determine one of their upstream
neighbors as dominator, prioritize it, and schedule a DOMINATOR ELECTED
message for it. This message is delayed according to the priority of the elected
node. Nodes with only one path to the last dominator are favored and therefore
get a higher priority. If multiple paths exist one of them is randomly chosen.

The algorithm terminates as soon as no white nodes remain. Our algorithm
is receiver-based and an approximation of the MPR protocol [9] which is used for
an efficient broadcast in the OLSR routing protocol [10]. In contrast to MPR our
CDS algorithm does not depend on the knowledge of any two-hop neighborhood
information. The algorithm described so far is implemented in the OMNeT++
network simulator [11]. An example is depicted in Fig. 1.

Currently we are implementing the replacement of the link based election
scheme with the FLC-based election scheme. The link based dominator election
seems to have a good MCDS approximation factor. However, the algorithm is
inflexible in terms of energy distributions and node movement patterns. To deal
with these conditions we expect good results applying a FLC engine.

3.3 Local Path adaptation

In this section we propose a local path adaptation scheme to support local back-
bone updates. After the CDS setup, all dominated nodes go to sleep for a given
amount of time. After this sleep period a dominator may decide to maintain or
abandon its work in the backbone. To ensure network connectivity, neighboring
dominators that intend to release their backbone job concurrently have to ne-
gotiate who remains in the backbone and who goes to sleep. This is achieved
using a timer depending on the node’s priority. The priority is again derived
from the FLC engine that considers the node’s speed, location, node degree, etc.
The dominator with the shortest delay informs its neighbors and determines the
nodes that take over its dominator function in the CDS. Three cases may occur:

1. If there exists a node with a high priority that interconnects all neighboring
dominators it is elected and all relevant nodes are informed about the new
status.

2. If there is no node with a high priority that connects to all dominators,
but there is a set of nodes that interconnect all dominators, chose the most
appropriate subset and inform all affected nodes about that election.

3. If there exists at least one dominator that is no longer covered after the
disconnection of the node inform the base station to reinitiate the whole
CDS algorithm.

A node estimates the connectivity among neighbor nodes by knowing their coor-
dinates. Thus, a node does not need to know its two-hop neighborhood informa-
tion, which implies high overhead for many applications. A further advantage
of applying fuzzy logics is the possibility to ’weaken’ nodes that are close to
the transmission range. As we base our local update computations on the as-
sumption of circular transmission ranges we may run into problems when having
irregular transmission ranges.
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4 Conclusions and future work

One of the reasons to propose a topology control mechanism is the need of
having an energy efficient backbone structure that supplies routing information
for our event detection framework [12]. In the current state it seems that the
CDS algorithm is performed efficiently and the MCDS approximation factor of
the algorithm looks promising. In our future work we will implement the FLC
engine and substitute the current link-based decision making process with it.
We will furthermore analyze and evaluate the resulting simulations and refine
our protocol based on these insights. To get indications on the performance of
our approach we will implement other approaches and compare them to ours.
Finally, we will implement the whole event detection and tracking framework,
including the virtual backbone, in a real testbed and investigate the impacts and
the performance under real world conditions.
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Abstract. Using self-organizing wireless sensor networks for object track-
ing requires ordering events with regard to time and location. In labyrinth-
shaped topologies, one-dimensional ordering suffices within the different
parts of the network. We present an algorithm to derive this ordering
without the use of location information. Local order knowledge in the
nodes can then be additionally used to detect junctions.

1 Introduction

An important aspect of wireless sensor networks is the logical partitioning into
sub-networks. This aspect is fundamental for a lot of location-aware applications.
Furthermore, applications often require an ordering of the nodes with respect to
their environment, e.g. for object tracking. Computation of such location infor-
mation can either be done at a central point or by the nodes themselves. The
latter is beneficial in order to reduce the amount of transmitted data. Since the
energy consumption decreases with decreasing amount of data transmissions, a
localized algorithm helps to increase the overall lifetime of the network [1],[2]. We
assume that the wireless sensor network consists of a topological structure resem-
bling road networks or corridors in buildings and that the devices are equipped
with motion detectors. In [3] a method for topology recognition is described,
particularly with regard to border and junction detection, but while this paper
deals with extreme high densities, we assume rather sparse networks. The prob-
lem requires detecting the one-dimensional spatial ordering of neighbors within
the communication range. Since passing objects cause ordered chains of mo-
tion detection events, movement directions can be inferred by mapping object
detection events to this spatial order of the nodes.

2 Our approach

This section describes our localized algorithm to detect the one-dimensional
ordering of a node and its neighbors. Let N be the node computing its local
topology, i.e. the ordering of its neighbors. Our algorithm comprises 3 steps: 1.
Detection of border nodes, i.e. far away nodes near the maximum communica-
tion distance 2. Computation of chains from border nodes to N 3. Mapping the



remaining nodes onto the path nodes Note that N only needs information of
its direct neighbors, which minimizes the communication costs. Figure 1 shows
exemplarily the three steps of the algorithm.

1.

2.

3.

Fig. 1. Algorithm steps

First, N has to detect its border nodes. We base this detection of border
nodes on the number of common neighbors. Border nodes have fewer neighbors
in common with N than nodes closer to N. With an exchange of the neighbor-
hood lists a counting of the common neighbors becomes possible. So N counts
these numbers and selects border nodes using a threshold, e.g. all nodes which
can communicate to less than the half of its neighbors. Second, N orders these
selected border nodes into groups by estimating the distances between them. The
distance estimates are also based on the number of common neighbors. Border
nodes are sorted into the same group if they are close to each other, i.e. if they
have many neighbors in common. For each group N determines one represen-
tative node, preferably the most distant one. Then, N computes chains from
the representative nodes to itself by searching a path from the representatives
to it. Third, nodes which are not within one of the computed chains will be
mapped onto the nearest chain node, i.e. if a remaining node detects a motion
event it is considered as if the corresponding chain node had detected it. The
topology recognition depends on the quality of distance estimation. Here it is
not important to get correct absolute values but correct distance relations, i.e.
the estimated distance to a closer neighbor must be smaller than the estimated
distance to a far away neighbor. Otherwise nodes are mapped in a wrong way.
For this reason, we use an estimation method that does not rely on unreliable
measurements of physical wireless communication properties. Radio interferom-
etry features promisingly low errors but brings in specific requirements to the
RF chip [4]. A disadvantage of using the number of common neighbors is that it
assumes a uniform node distribution. Local differences in the node density result
in failing detection of representatives as depicted in figure 2. Hence node density
fluctuations must be detected and compensated.
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Fig. 2. Failing detection of border nodes

3 Analysis

We chose SHAWN [5] for a simulative analysis and conducted studies both, grid-
based and uniform distributed arrangements. For each distribution we evaluated
our algorithm with exact, random error afflicted and estimated distances. Figure
3 shows the evaluation results. The values signify the correctness of the computed
chains, i.e. the percentage of correctly ordered nodes.

Fig. 3. 82 nodes with 12 neighbors per node on the average

The results using the estimated distances (right) are nearly as good as with
the exact distances (left) although prone to estimation errors of 12% to 20%
of the original distance. This dates back to the preserved distance relations in
contrast to estimates afflicted with the random error of 20% (center). Here the
nodes compute not only wrong paths but also wrong mappings. Furthermore,
the results of the simulations based on the uniform distributions are nearly as
good as the grid-based ones.

In addition, we executed simulations with different node densities. While low
node density causes short chains and hence more fragile object detection and
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tracking, high density causes an increased fraction of nodes mapped to chain
nodes as illustrated in figure 4. This leads to less significant chains because of
mapping errors.

Fig. 4. 82 nodes with 12 neighbors per node on the average

This paper proposes a localized algorithm to detect the one-dimensional spa-
tial ordering of nodes within the communication range. We have shown that it
provides rather good results in spite of error afflicted distance estimates. For the
algorithm it is less important to work with exact distance values. It only matters
that the distance relations are preserved. Furthermore we have seen that high
densities cause relatively more mappings, so it is not reasonable to increase the
node density more than an appropriate quantity. Our research shows promising
results for detecting network topologies in simulated environments. Future work
will focus on the one hand on grouping the nodes according to the network part
they belong to. On the other hand we want to evaluate the algorithm within a
real world study.

4 Conclusion

This paper proposes a localized algorithm to detect the one-dimensional spatial
ordering of nodes within the communication range. We have shown that it pro-
vides rather good results in spite of error afflicted distance estimates. For the
algorithm it is less important to work with exact distance values. It only matters
that the distance relations are preserved. Furthermore we have seen that high
densities cause relatively more mappings, so it is not reasonable to increase the
node density more than an appropriate quantity. Our research shows promising
results for detecting network topologies in simulated environments. Future work
will focus on the one hand on grouping the nodes according to the network part
they belong to. On the other hand we want to evaluate the algorithm within a
real world study.
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Abstract. The routing of messages between mobile nodes and a sensor
network is an important but challenging task. In this paper we present
our approach for this problem that is based on the use of symbolic coor-
dinates and that divides the task among client and sensor nodes.

1 Introduction

Sensor networks have the potential to play an important role in ubiquitous com-
puting scenarios as sources of environmental data and context information. A
variety of such data is required by typical ubiquitous computing applications for
providing their services to the user. However, the expected large number of nodes
in deployed sensor networks as well as their strong resource constraints make the
interaction with the mobile ubiquitous computing devices a challenging task.

One fundamental problem is the communication between the mobile client
devices and the sensor nodes. The client devices should be able to address a
specific area of the network and the sensor nodes should then efficiently route
such request messages to the appropriate nodes. Global routing tables are not
well suited to this task due to the potentially large size of the network, the
limited resources of the sensor nodes and due to the frequent topology changes.
Flooding the network with request messages and building routing structures
on-demand as done by classic source routing approaches [1] also conflicts with
scalability requirements and resource constraints.

In this paper we present our approach for routing messages between mobile
client nodes and sensor networks that is based on the use of symbolic coordinates.
The basic idea is to have the client nodes calculate and provide a symbolic route
to the destination and then let the sensor nodes transform this symbolic route
into individual node-to-node routing steps.

Symbolic coordinates – in contrast to geographic coordinates – do not repre-
sent exact geographic locations but rather certain geographic areas of different
sizes. In many cases, symbolic coordinates represent areas which are directly
meaningful to applications like rooms in a building or streets and buildings in
a city scenario. However, symbolic coordinates by themselves do not allow to
infer spatial information like the distance or the spatial relationship between
two coordinates. For such tasks, a symbolic location model is required.



In the rest of this paper we first give a short overview of related work and
then describe our routing algorithm, its advantages and problem fields and some
solution approaches for the problems.

2 Related Work

The use of symbolic coordinates has been widely discussed in the area of ubiq-
uitous computing and different symbolic location models have been developed
[2][3][4]. Our approach is largely independent of the specific location model and
its properties so that most of these location models can be used.

Using symbolic coordinates in sensor networks has received much less atten-
tion so far. The general idea has been formulated by Fekete et al. [5] who propose
to automatically create clusters and organize these clusters in a weighted graph
structure expressing their neighborhood relations. They argue that such graphs
of symbolic coordinates should in most cases be small enough to allow the dis-
tribution and use in all nodes of the network. This provides the nodes with some
abstract location awareness based on the position of their cluster in the graph.
The authors describe routing as one possible application of graphs of symbolic
coordinates. However, they do not elaborate on how routing to specific nodes or
areas could be achieved.

One alternative routing approach quoted in many sensor network publica-
tions is geographic routing [6]. However, geographic routing can only be used
when all nodes in the network know their exact geographic coordinates. The
required precision of this location information rises with the node density in the
network. In many cases requests also first need to be mapped to a destination
coordinate with some kind of location service before sending out messages.

3 Routing with Symbolic Coordinates

Assumptions We build upon a small set of assumptions concerning the system
model. First, we assume that there is a symbolic location model available in the
system that allows determining symbolic coordinates for all locations covered
by the sensor network. We do not require special properties of the location
model other than the availability of some kind of neighborOf-relationship among
symbolic coordinates.

Concerning the sensor network, we only assume that the sensor nodes are able
to maintain local neighborhood information without any knowledge of the global
topology. Additionally, we require each sensor node to store its own symbolic
coordinate. Note that aquiring this coordinate should be much simpler than
determining the exact geographical coordinate making it relatively easy to, for
example, assign the coordinate at deployment time. We are currently working
on different methods for semi-automatically assigning symbolic coordinates to
sensor nodes.

Mobile nodes are typically less resource-constrained than the nodes of a sen-
sor network. For that reason, it is reasonable to assume that mobile nodes have
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access to the symbolic location model either by storing model data on the node
or by dynamically loading required information from an infrastructure. They are
also able to process and use this information for querying the sensor network.

Mobile client nodes and sensor nodes share a common communication inter-
face so that a mobile node is able to communicate with any sensor node in its
direct neighborhood.

Basic concept The basic idea of our approach is to divide the task of rout-
ing messages from mobile nodes to specific areas in the sensor network among
clients and sensor nodes. The mobile client nodes are responsible for the global
routing task whereas the sensor nodes manage the local node-to-node routing of
messages.

All sensor nodes periodically exchange beacon messages that contain their
own symbolic coordinate and hop distance information to neighboring symbolic
coordinates they have heard of. Based on such beacon messages received from
neighbors, a sensor node fills a routing table with next-hop (and distance) in-
formation to symbolic coordinates in the neighborhood of the node’s symbolic
coordinate. Note that this list of neighboring coordinates isn’t preconfigured but
only learned from beacon messages.

When a client node wants to send a message to a specific symbolic area of
the network it first has to calculate the symbolic route from its current position
to the destination coordinate based on the stored symbolic location model. The
client node then includes this route information in the message and passes it to
an arbitrary sensor node in its neighborhood.

When a sensor node receives a message from a neighboring node it investi-
gates the symbolic route stored in the message header. Based on its own sym-
bolic coordinate, the node can retrieve the next symbolic coordinate the message
should visit. It then queries its local routing table to retrieve the next-hop node
on the route to this next-hop symbolic coordinate and forwards the message to
this node.

When the message reaches the first node lying in the destination area three
different message distribution semantics are possible: The message can be deliv-
ered to this node only (area anycast), to all nodes in the area (area broad-

cast), or to a specific node identified by a node identifier (area unicast). Area
broadcast and area unicast can be implemented using a broadcast limited to the
respective symbolic area.

Figure 1 shows an example of a query forwarded from symbolic coordinate
“Room 6” to coordinate “Room 4”. At the bottom it also shows as an example
the local routing table of node 3.

Advantages The main advantage of our approach is the division of the routing
task among client and sensor nodes with both parties contributing based on
their respective strengths. Sensor nodes do not have maintain global routing
information as they only have to perform local routing decisions. The amount
of state a single sensor node has to manage neither depends on the size of the
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Room 6 Node 2
Symbolic route: "Room 6 −−> Room 4 −−> Room 2"
Query: "Temperature values from room 2"

Node 4

Node 3

Node 2

Node 3:

Fig. 1. Message routing example

network nor on the number of nodes in its neighborhod but only on the number
of symbolic areas adjacent to the symbolic area the node resides in.

From the client’s point of view, the main advantage is that the routing can
be done independent of knowledge about the current sensor network topology.
The failure of nodes or communication links only affects local routing within the
respective area. The global routing from a client to a symbolic destination area
does not change and is therefore relatively insensitive to node failures.

Problem Fields Three types of problems can prevent a successful communica-
tion when using the basic algorithm described above. First, not all neighbor-
ing symbolic areas have to be connected by sensor node communication links
(communication hole). Secondly, complete symbolic areas might lack coverage
by sensor nodes (coverage hole). Thirdly, the subgraph formed by the nodes
inside of a symbolic coordinate might be disconnected although the complete
graph is connected (area partitionings). In all three cases message forwarding
can fail because the next-hop symbolic coordinate cannot be reached. Cover-
age holes and area partitionings can also prevent successful completion of area
broadcasts and area unicasts once the destination coordinate is reached.

Figure 2 shows examples of all three types of problems with a communica-
tion hole between room 1 and room 2, a coverage hole in room 6 and an area
partitioning in room 4.

Several ways of preventing or reacting to these problems are possible. The
most simple way of preventing holes and partitionings is to assume or rather re-
quire an extremely dense topology that makes holes or partitionings extremely
unlikely. Alternatively, static information about holes and partitionings might
be available in the location model so that the client can plan its routes accord-
ingly. A related method is to maintain weight values for all symbolic areas that
represent the (expected) density of nodes in this area. The larger the accumu-
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Fig. 2. Example showing communication holes, coverage holes and area partitionings

lated weight of a symbolic route the higher the probability that a message can
be forwarded to the destination without getting stuck in holes and partitionings.

If none of the prevention methods works or the required information is not
available then the sensor network must react to communication failures caused
by holes and partitionings. We are working on two possible reactions: First, the
sensor node detecting the problem can send a feedback message to the original
sender of the message by following the symbolic route of the message backwards.
Notified of this routing failure, the original sender is then able to resend the
message specifying an alternative route. It can also buffer information about
where the communication failed so that subsequent messages directly circumvent
the hole. A second possible reaction for the node detecting the problem is to try
to find a by-pass locally. For doing this it needs to broadcast the message to all of
its neighboring symbolic coordinates which can then reinvestigate the symbolic
route and either find the required symbolic next-hop in their neighbor list or
broadcast the message to their neighbors. How deep such a symbolic broadcast
is allowed to propagate determines both the likelihood that the original route
can be taken up again but also the cost for distributing the message in multiple
directions.

4 Conclusions

In this paper we described our approach for the use of symbolic coordinates in
sensor networks. We concentrated on their use for a better integration of sensor
networks in ubiquitous computing scenarios. We presented the basic concept
showing both the advantages as well as potential problem fields. We are currently
working on an in-depth evaluation of the concept including different solutions for
the described problem fields and aim to improve the algorithm based on these
results as part of future work.

Routing in Sensor Networks based on Symbolic Coordinates       85



References

1. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In Imielinski, Korth, eds.: Mobile Computing. Volume 353. Kluwer Academic Pub-
lishers (1996)
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Abstract. Geographic routing algorithms use locations rather than node
addresses as destinations. But since it is not always guaranteed that there
is indeed a node exactly at the destination location, there must exist a
description which nodes shall be allowed to consume a message. In some
cases, the message must not be consumed by a node at another location
(e. g., if the sink is the destination), whereas in other cases, nodes in
the vicinity may also consume it. This has to be chosen by the applica-
tion, so the routing protocol should support different delivery semantics.
Another question is if only one node may consume the message, or if
multiple destination nodes are allowed.
This paper proposes three orthogonal delivery parameters: closeness,
multiplicity, and accept-outside.

1 Introduction

Geographic routing is an important technique for wireless sensor networks, since
it avoids the storage of routing tables or path information in the sensor nodes,
which are usually highly resource-constrained. The presence of information about
the node location (either through GPS or some localization algorithm) and—for
some algorithms—the direct neighbors is sufficient.

Several geographic routing algorithms for sensor networks have been pro-
posed. They use different, but elaborated techniques to forward packets using
location information. One important question, however, that is often neglected
is to describe the conditions under which a node is allowed to declare itself as
destination and consume the message. Since the destination is not a node address
but a location, this is substantially different from traditional routing schemes.
Many algorithms assume that there exists a node exactly at the destination lo-
cation [1, 2], the node locations being published for instance by a distributed
location service like GLS [3]. The location service, however, imposes an extra
overhead. Besides, the destination locations may be incorrect due to location
errors [4]. Additionally, nodes may fail or move, so it is not always possible to
keep track of the current state. Other algorithms perform a limited flooding in
the vicinity of the destination [5], which also requires the sending of many pack-
ets. An interesting alternative is utilized by GHT [6], which takes advantage of
GPSR’s perimeter mode: The destination location is traversed using the right-
hand rule; when the message has looped around the location, the first node that
receives the message for the second time in perimeter mode declares itself as
destination and consumes the message.



Although there are different strategies for finding a suitable destination node,
each algorithm uses only a single strategy. It is, however, dependent on the
specific application if, for example, the destination’s exact location is known by
the sender or if the message should be delivered “somewhere” in the vicinity
of a specific location. In some cases, it is important that at most one node
consumes the message, whereas in other cases it is more important that at least

one destination node is found at all.
Anycast is a well-known technique for routing messages to any out of several

possible destinations. Within the scope of sensor networks, anycast can be used
when multiple sinks exist; messages are routed to the nearest sink [7–9]. However,
anycast routing schemes do not use geographic routing and consequently are
highly application-specific.

Other algorithms include time in delivery semantics. Mobicast [10] is a spa-
tiotemporal multicast scheme that supports moving destination areas. Since the
semantics proposed in this paper are not dependent on time, such schemes are
not covered.

This paper provides a taxonomy of delivery semantics and proposes three
parameters, which can be combined independently. An application that sends
messages can set these parameters according to the specific requirements. A
concrete routing algorithm must then deliver the message with respect to the
desired semantics. The proposed delivery semantics are independent from con-
crete routing algorithms. The implementation of the semantics is beyond the
scope of this paper.

2 Delivery Semantics

Basically, there are three questions that have to be answered when describing
the geographical destination for a message in a sensor network:

1. How close to the destination must a sensor node be in order to consume the
message?

2. Is it acceptable that multiple nodes consume the message, or should only
one node consume it?

3. When the message gets stuck because there is no node that is close enough
to the destination, should the node where the message got stuck drop the
message or consume it if the node is sufficiently close to the destination?

In the following, these questions are discussed in detail.

2.1 Closeness

Assume a sensor network for environmental monitoring, where neither the user
nor the base station know the exact positions of the nodes. The user requests
the sensor data for a specific location and initiates a query, having this location
as destination position. However, he does not know whether there is a sensor
node exactly at this location. Moreover, this is extremely improbable. Hence, it
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should be acceptable that a node consumes the message if its distance to the
destination location lies within a designated limit of tolerance t. Using Euclidean
metrics, the destination area is a circle with radius t. This approach raises the
probability that a destination node is found. The limit can be set depending
on the network density. Assume that the network consists of n nodes spread
uniformly in a field of surface area A. Then the probability that the destination
area is empty is

(

1 −

πt2

A

)n

,

not regarding border effects. If this probability should be less than p, t has to
be set to a value such that

t >

√

A

π

(

1 − p
1

n

)

.

Consider, on the other hand, the case that the measurement message is sent
from the sensor node to the sink that initiated the query. The message is explic-
itly addressed to the sink, so it is known that there is a node at the designated
location. In this case, the limit of tolerance can be set to zero; this also ensures
that no other node than the sink consumes the message.

These examples show that at least two different semantics are needed for
describing destination locations: exact and nearby. In the latter case, a limit of
tolerance has to be given, in the former one, it is zero.

There may be cases in which a circle is not appropriate as destination area,
e. g., when the nodes are distributed in a regular mesh.

2.2 Multiplicity

If the nearby semantics is used, there may be more than one potential destination
node. The routing protocol may take care that only one of these nodes consumes
the message; however, this leads to more overhead, since the nodes must somehow
agree about the winner, which comes at additional communication costs. But this
is not necessary in cases where it is not important that only one node receives the
message. For example, if the sensor node at (or nearby) a specific location shall
be set in an alarming mode, because the user wants to have special attention
to this location, it is not crucial that only one node receives the message. To
account for node failures, it is even better if multiple nodes receive it.

On the other hand, there are cases where only one node shall receive the
message. In general, this is the case when the nodes serve different tasks. For
instance, when the message is addressed to the sink, no other node is allowed to
consume it.

Inspired by RPC semantics, the following semantics are possible for the mul-
tiplicity of the destination:

maybe: the message may reach a node or not,
exactly-one: the message must be consumed by exactly one node,
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at-most-one: the message must be consumed by zero or one node,

at-least-one: the message must be consumed by one or more nodes,

all: the message must be consumed by all nodes meeting the closeness semantics.

Note that these semantics are not meant for describing how many times a
node receives the message. This aspect of delivery semantics is orthogonal to the
ones discussed here. The semantics specify how many nodes receive the message.

2.3 Accept-outside

Consider the case that there is no node that matches the destination description,
but the message has reached a node that is already near the destination. The
destination location is within the transmission range, the current node does not
yet match the destination description, but no closer node can be found, either be-
cause closer nodes do not exist or because they are currently not reachable. Now,
there are two possibilities: Either the message is regarded as non-deliverable and
dropped, or the node where the message got stuck declares itself as destination
and consumes the message. The strategy to be applied depends on what has
higher priority: that a node which exactly matches the destination description
receives the message, or that actually any node receives it at all. For example,
if data at a specific location shall be measured, it may be tolerable if merely
data near this location are measured; however, if the sink is the destination, it
is not acceptable when another node consumes the message. This demands for
a Boolean parameter accept-outside.

This parameter can be used in combination with exact semantics to deliver
the message to the node that is closest to a location. This is not possible with
nearby semantics, since in this mode the message is consumed by any node within
the area of tolerance, not necessarily by the closest one.

Not all combinations of these parameters seem to be useful. For instance, in exact

semantics with accept-outside=false, the semantics at-least-one and exactly-one

seem to yield the same results (when there are not several nodes with identical
positions). However, the routing protocol may act differently; for example, it
may deliver the messages faster or send fewer packets in at-least-one semantics.
Admittedly, the concrete implementation of the semantics is beyond the scope
of this paper.

An important issue is that for some semantics it is not guaranteed that the
same node(s) consume(s) subsequent messages sent to the same location. The
messages may be forwarded on different paths and hence reach different nodes.
Only using exact semantics or all semantics, with accept-outside=false in both
cases, it can be guaranteed that all messages are consumed by the same node(s).

90       Matthias Witt, Volker Turau



3 Conclusion

For geographic routing algorithms it is essential to include a clear description
of the destination. Different applications have different requirements regarding
the node or nodes that shall consume the messages. Therefore, the routing pro-
tocol must support different delivery semantics. In this paper, three orthogonal
parameters have been proposed: closeness, multiplicity, and accept-outside.

Implementations of these semantics are currently investigated by extending
selected geographic routing algorithms.
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5. Heissenbüttel, M., Braun, T., Bernoulli, T., Wälchli, M.: BLR: Beacon-Less Rout-
ing Algorithm for Mobile Ad-Hoc Networks. Elsevier’s Computer Comm. Journal
27(11) (2004) 1076–1086

6. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.:
Data-Centric Storage in Sensornets with GHT, A Geographic Hash Table. Mobile
Networks and Applications 8(4) (2003) 427–442

7. Intanagonwiwat, C., De Lucia, D.: The Sink-based Anycast Routing Protocol for
Ad Hoc Wireless Sensor Networks. Technical Report 99-698, Computer Science
Department, University of Southern California (1999)

8. Thepvilojanapong, N., Tobe, Y., Sezaki, K.: HAR: Hierarchy-Based Anycast Rout-
ing Protocol for Wireless Sensor Networks. In: Proc. 2005 IEEE/IPSJ Int. Sympo-
sium on Applications and the Internet (SAINT’05), Trento, Italy (2005) 204–212

9. Hou, Y.T., Shi, Y., Sherali, H.D.: Optimal Base Station Selection for Anycast
Routing in Wireless Sensor Networks. IEEE Trans. on Vehicular Technology 55(3)
(2006)

10. Huang, Q., Lu, C., Roman, G.C.: Spatiotemporal Multicast in Sensor Networks.
In: Proc. 1st Int. Conference on Embedded Networked Sensor Systems (SenSys’03),
Los Angeles, California (2003) 205–217

Delivery Semantics for Geographic Routing       91



 



Bestimmung Optimaler Startwerte zur Exakten
Lokalisierung mittels Geodätischer Ausgleichung

Alexander Born1, Frank Reichenbach2, Ralf Bill1 und Dirk Timmermann2

1 Universität Rostock
Professur für Geodäsie und Geoinformatik

{alexander.born,ralf.bill}@uni-rostock.de
2 Universität Rostock

Institut für Angewandte Mikroelektronik und Datentechnik
{frank.reichenbach,dirk.timmermann}@uni-rostock.de

Zusammenfassung Knoten in einem Sensornetzwerk werden in den
meisten Fällen zufällig über einem Gebiet verteilt. Um Messungen räum-
lich zuweisen zu können, muss jeder Knoten in der Lage sein, seine Po-
sition zu bestimmen. Aufgrund der limitierten Ressourcen der Knoten
werden energieeffiziente Lokalisierungsalgorithmen benötigt.
In diesem Paper werden Ergebnisse zur geodätischen Ausgleichung von
Sensorknotenpositionen mit Näherungskoordinaten als Eingangswerte aus
approximativen Lokalisierungsmethoden präsentiert. Weiterhin wurde die
Berechnung der Koordinaten so verteilt, dass die komplexeren Rechen-
schritte von den ressourcenreichen Beacons übernommen und so die Sen-
sorknoten vollständig entlastet werden.

1 Einleitung

Sensornetzwerke bestehen aus bis zu hunderten oder tausenden kleiner Sensor-
knoten, welche über einem Gebiet oder innerhalb eines Objektes von Interesse
platziert werden. Ihre Aufgabe besteht im Sammeln und Weiterleiten bestimmter
Informationen, z.B. Temperatur, Luft- oder Bodenfeuchte, etc. Diese Daten wer-
den in der Datensenke gesammelt und, z.B. über das Internet, an den Benutzer
weitergeleitet. Einen umfangreichen Einblick in die Thematik der Sensornetz-
werke gibt [1].
Durch die Entwicklung immer kleiner werdender Sensorknoten sind die Dimen-
sionen des Kommunikationsmoduls und der Batterie besonders kritisch. Folglich
ist die zu Verfügung stehende Energie die knappste Ressource [2]. Aus diesem
Grunde benötigen Sensorknoten energiesparende Bauelemente und energieeffizi-
ente Algorithmen.
Die mehr oder weniger zufällige Verteilung von Sensorknoten durch die Art der
Ausbringung (z.B. mit dem Flugzeug) verhindert eine sofortige Zuordnung des
Messdatums zum Ort der Messung. Aus diesem Grund ist eine Positionsbestim-
mung der Knoten notwendig, die zusätzliche Energie für Datenübertragungen
und Berechnungen auf den einfachen Knoten benötigt.



2 Positionierung

Ein Lokationsbewusstsein des Sensorknotens ist erforderlich, da ein Messdatum
ohne dazugehörige Position nahezu nutzlos ist. Selbstkonfiguration und Selbst-
heilung ermöglichen ein robustes und skalierbares Sensornetzwerk. Mit Stand-
ortinformationen sind diese Funktionen ohne hohen Aufwand zu erreichen. Ein
energiearmes und effizientes Routen der Informationen ist eine der Grundvor-
aussetzungen für drahtlose Sensornetzwerke. Standortinformationen der Knoten
ermöglichen gegenüber klassischen Routingmethoden ein energiearmes, räumli-
ches Routing. Weiterhin ist in einigen Sensornetzwerken die Position des ein-
zelnen Sensorknotens selbst die gesuchte Kenngröße, die es zu ermitteln gilt.
Denkbare Positionierungsmethoden sind einerseits satellitenbasierte Positionie-
rungssysteme wie das Global Positioning System (GPS), zukünftig GALILEO
oder funknetzbasierte Dienste wie das Global System for Mobile Communication
(GSM) [3],[4],[5]. Durch ihre Größe, die hohen finanziellen Kosten und den hohen
Energiebedarf sind diese Systeme nur bedingt für die Positionierung geeignet.
Denkbar wäre der Einsatz auf wenigen, ressourcenstärkeren Sensorknoten, im
Folgenden Beacons genannt.

2.1 Klassifikation

Die Positionsbestimmung in Sensornetzwerken wird in zwei Teilbereiche unter-
schieden: die approximativen und die exakten Lokalisierungsmethoden.
Die approximativen Verfahren zeichnen sich durch einfache und schnelle Berech-
nungen sowie einen geringen Kommunikationsaufwand aus. Der Nachteil liegt
hier allerdings in den relativ großen Positionierungsfehlern. Aufbauend auf der
Schwerpunktbildung [6], durch Einführung von Zwangsbedingungen [7], durch
Flächenüberlagerung [8] oder durch Einführung lokaler Koordinatensysteme [9]
nutzen diese Methoden zumeist nur die Koordinaten von bekannten Knoten zur
Positionsbestimmung, gelegentlich jedoch auch Distanz- und Winkelmessungen.
Im Gegensatz dazu erreichen die exakten Lokalisierungsmethoden durch An-
wendung aller vorliegenden Beobachtungselemente eine sehr hohe Genauigkeit.
Allerdings sind diese mit einem sehr hohen Aufwand für die Berechnung und
Kommunikation verbunden. Zudem werden hohe Anforderungen an die Qua-
lität der Messgrößen, z.B. Signalempfangsstärken (RSSI-Werte) oder Signallauf-
zeitmessungen, gestellt, die sich in der Praxis, z.B. wegen Signalreflexionen an
Wänden etc., oftmals als fehlerhaft bzw. verrauscht erweisen.

2.2 Geodätische Ausgleichung

Für die Koordinatenbestimmung eines unbekannten Sensors P (x, y) in der Ebe-
ne werden mindestens drei Beacons benötigt. Voraussetzung dafür sind aller-
dings exakte Distanzbestimmungen, die in der Realität nicht vorliegen. Da ein
Sensornetzwerk aus einer hohen Anzahl von Knoten besteht, können die dar-
aus resultierenden Distanzen zwischen dem Unbekannten und den Nachbarn für
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eine Ausgleichung verwendet werden. Dadurch können die Genauigkeit und Zu-
verlässigkeit der Ergebnisse gesteigert werden. Den n Beobachtungen stehen da-
mit u gesuchte Größen gegenüber, wobei n ≥ u gilt. Die sich aus zufälligen
Messfehlern ergebenden Widersprüche werden nach der Methode der kleinsten
Quadrate derart verteilt, dass plausible und eindeutige Werte für die Beobach-
tungen und daraus abgeleitete Unbekannte folgen. Stochastisch spricht man von
sogenannten ”bestlinear unbiased estimators“ (BLUE).
Bei Einführung von u Unbekannten ergibt sich das lineare Beobachtungsglei-
chungssystem

l̂ = l + v = Ax̂ (1)

mit

l̂ - ausgeglichene Beobachtungen,
l - fehlerbehaftete Beobachtungen,

x̂ - ausgeglichene Unbekannte.

Die genaueste und widerspruchsfreie Lösung des überbestimmten Gleichungssy-
stems kann nach der Methode der kleinsten Quadrate durch Minimierung der
Zielfunktion vT Pv = Minimum abgeleitet werden. Die Matrix A, auch Konfigu-
rationsmatrix genannt, beinhaltet die geometrischen Zusammenhänge zwischen
den Beobachtungen und Unbekannten in linearisierter Form. Dies führt mit P
als Gewichtsmatrix zum Normalgleichungssystem [10].

AT PAx̂−AT Pl = 0 (2)

Das resultierende Gleichungssystem ist nicht-linear und muss zur Lösung zuvor
linearisiert werden. Eine sehr genaue und robuste Linearisierung steht durch die
Taylorreihenentwicklung zur Verfügung, welche gleichzeitig auch die Standard-
methode ist. Für die Linearisierung ist es dabei ausreichend, wenn nach dem
Glied erster Ordnung die Taylorreihenentwicklung abgebrochen wird. Allerdings
werden Startwerte für die Linearisierung benötigt. Im speziellen Fall der Lo-
kalisierung eines Knotens sind das die Näherungskoordinaten des Sensors. Zur
Berechnung der Näherungswerte für die nachfolgende Ausgleichung eignen sich
folgende Verfahren.

Schwerpunktbestimmung Bei der Schwerpunktbestimmung ist der Schätzwert für
alle Knoten innerhalb einer Überlappungsregion konstant, im Gegensatz zum
Positionierungsfehler. Er ist definiert als Abstand zwischen der geschätzten und
der exakten Position des Unbekannten. Jeder Knoten berechnet seine Positi-
on mit einem Positionierungsfehler aufgrund der Algorithmuseigenschaften. Der
Fehler ist null, wenn die Koordinaten des Knotens mit dem Schwerpunkt al-
ler Nachbarbeacons übereinstimmen. Der Fehler variiert mit den geometrischen
Eigenschaften des Feldes [11].

Gewichtete Schwerpunktbestimmung In einem erweiterten Ansatz betrachten wir
aufbauend auf der Schwerpunktbestimmung zusätzlich Distanzen, um die Präzi-
sion der Positionsbestimmung zu erhöhen. Beim Empfang eines Paketes wird der
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RSSI-Wert mit verhältnismäßig geringem Mehraufwand gemessen. Aufgrund der
oben genanten Signalveränderungen ist er für eine exakte Distanzbestimmung je-
doch nur eingeschränkt brauchbar. Deshalb wird der RSSI-Wert nur als Gewicht
innerhalb einer gewichteten Schwerpunktbestimmung genutzt [12].

Nearest Beacon Hier wird der Beacon mit der kürzesten Entfernung zu dem
Unbekannten genommen. Dabei kann davon ausgegangen werden, dass sich der
nächste Beacon nicht weit entfernt von der tatsächlichen Position des Sensor-
knotens befindet und somit als Näherungswert geeignet scheint.
Im Gegensatz zu den beiden erstgenannten Lokalisierungsmethoden benötigt die
Nearest Beacon-Methode keinen Berechnungsaufwand der Näherungskoordina-
ten. Diese können nach Senden der Beaconpositionen aus der Beaconpositions-
tabelle im Speicher der Knoten entnommen werden.

3 Hybrider Algorithmus zur Lokalisierung

In unseren Simulationen werden die ausgeglichenen Koordinaten mittels einer
iterativen Ausgleichung bestimmt. Dabei untersuchen wir die Qualität der Ein-
gangswerte hinsichtlich der benötigten Iteration für die Ausgleichung. Eine stei-
gende Anzahl Iterationen hat zur Folge, dass die Berechnung der ausgeglichenen
Koordinaten mehr Rechenzeit benötigt und somit energielastiger ist.
Die bereits eingeführten Berechnungsschritte sollen an dieser Stelle in einen ver-
teilten Algorithmus überführt werden. Dabei muss entschieden werden, welche
Knoten welche Teilaufgabe übernehmen. Dazu kommen 3 verschiedene Möglich-
keiten in Betracht.

1. Der Algorithmus kann vollständig zentral auf einen sehr leistungsstarken
Knoten, z.B. der Basisstation, ausgelagert werden. Obwohl hierbei die Ener-
giereserven für die Berechnung nicht ins Gewicht fallen, müssen alle Daten
durch das Netz an die Basisstation geleitet werden, was zu einem unnötig
hohen Kommunikationsaufwand führt. Weiterhin blockiert ein Ausfall der
Basis oder eine fehlerhafte Wegleitung die Funktionsweise des Sensornetz-
werkes.

2. Eine weitere Möglichkeit ergibt sich in der Ausführung des Algorithmus auf
jedem Knoten also vollständig verteilt. Aufgrund der sehr geringen Energie-
reserven auf jedem Knoten, ist diese Möglichkeit jedoch nicht realistisch. Die
Lebenszeit des Sensornetzwerkes würde sich stark verringern. Der Netzwerk-
verkehr wäre jedoch weitestgehend minimiert.

3. Dies führt zur Entwicklung einer hybriden Variante, bei der die Aufgaben
sinnvoll verteilt werden. Ein entsprechender Algorithmus dazu gestaltet sich
wie folgt:
– Phase 0: Initialisierung:

Alle Beacons senden ihre Position B(x, y) zur Basisstation und allen
Knoten in Reichweite.
Die Sensorknoten messen die Distanz zu den Beacons.
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– Phase 1: Näherungskoordinatenberechnung:
Die Sensorknoten berechnen die Näherungskoordinaten nach einer der
aufgeführten Methoden.

– Phase 2: Kommunikationsphase: Die Sensorknoten senden ihre Nähe-
rungskoordinaten und die gemessenen Distanzen an die Basisstation.

– Phase 3: Ausgleichungsphase:
Die Basisstation berechnet die Ausgleichung und führt Qualitätstest
durch.

– Phase 4: Kommunikationsphase (verteilt):
Die Basisstation sendet die ausgeglichenen also fehlerminimierten Koor-
dinaten an die Sensorknoten.

Bei dieser Verteilung übernimmt die Basisstation die komplexere Ausglei-
chung und entlastet die Sensorknoten vollständig.

Legende:

Sensorknoten

Beacon

Basisstation

Unbekannter Knoten

3.)

1.)
2.)

3.)

2.)

1.)

Startwerte:

Knotenposition nach 
Schwerpunktbestimmung

Knotenposition nach 
Gewichteter 
Schwerpunktbestimmung

Knotenposition nach Nearest 
Beacon

Abbildung 1. 1a) Anzahl Iterationen über einer steigenden Anzahl Beacons; 1b) Nähe-
rungskoordinatenbestimmung

Die durchgeführte Simulation umfasste ein Testfeld von 100x100. In der Ab-
bildung 1a sind erste Ergebnisse der Ausgleichung mit Eingangswerten aus den
drei Verfahren zur Näherungskoordinatenbestimmung dargestellt. Dabei ist die
Anzahl Iterationen über einer steigenden Zahl Beacons angegeben. Die Aus-
gleichung mit den Koordinaten aus der Schwerpunktbestimmung benötigt mehr
Iterationen als es bei den anderen Methoden der Fall ist. Die Schwerpunkbestim-
mung liefert ungenauere Näherungswerte für die Koordinaten der Unbekannten.
Das rechte Bild 1b zeigt eine schematische Darstellung eines Sensornetzwerkes
mit den möglichen Startpositionen.
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4 Ausblick

Gegenstand der weiteren Forschung ist die Einbeziehung der Distanzen zwischen
den Sensorknoten, die damit eine weitere Überbestimmung des Gleichungssy-
stems zur Folge haben wird. Ein geeigneter mathematischer Algorithmus zur
energieeffizienten Berechnung des Gleichungssystems ist ebenso Ansatz für wei-
tere Untersuchungen wie auch eine Umsetzung auf reale Sensorplattformen, um
die Ergebnisse in der Praxis zu testen.
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Abstract. In this paper we present a novel approach to distance esti-
mation that does neither depend on special hardware nor on unreliable
measurements of physical wireless communication properties. Instead, it
is inspired by the observation that distant nodes have fewer neighbors in
common than close ones and calculates distances from intersection car-
dinalities of sets of adjacent nodes. We discuss related work and present
the new approach including its mathematical foundations. A first sim-
ulative performance analysis shows that our scheme yields competitive
results.

1 Introduction

Information about distances to other nodes in wireless sensor networks has
proven advantageous not only for location discovery but is also helpful for context-
aware applications in general.

Many different systems for distance estimation (often also called ranging)
have been developed. Nearly all of them employ a sender-receiver-scheme: one
node emits some kind of signal, the other uses a receiver to measure physical
signal properties. Two major approaches can be distinguished: The first one tries
to infer the distance from the received signal strength indicator (RSSI). It tends
to be quite accurate for short ranges if extensive post-processing is employed,
but is imprecise beyond a few meters [1]. At ranges of 20 m and below, simple
radio chips lead to errors of 50% to 100% while more sophisticated ones enable
distance estimates exhibiting errors of about 10% after calibration [2].

The other group of schemes use a technique called ”differential time of ar-
rival” (DTOA). Two signals propagating with different speeds are sent out and
their difference in time of arrival is measured. DTOA systems inherently require
an extra actuator and detector pair which increases cost, size and energy con-
sumption of the hardware platform. They yield accuracies of 0.5% to 10% but
only achieve maximum ranges of 3–15 m [3], [4], [2].

In this paper we present the neighborhood intersection distance estimation
scheme (NIDES). This novel approach to distance estimation does not rely on
special hardware or unreliable measurements of physical signal properties. In-
stead, its operation is based on the observation that nodes that are located close
to each other share many of their neighbors whereas distant nodes share only
few neighbors.



2 Neighborhood-Based Distance Estimation

The basic idea behind NIDES is straightforward: if one assumes that the com-
munication range of a node is represented by a circle with radius r around it,
then the distance between two nodes can be inferred from the intersection of the
circles. If the nodes are very close to each other, the intersection area has nearly
the size of the full circle whereas longer distances lead to smaller intersections.

(a) Theoretic area-based function analytic
approach.

(b) Practical example using neigh-
borhood intersection.

Fig. 1. Mathematical foundation of NIDES.

What is needed for distance estimation is a functional relation that takes the
cardinality of the intersection as its input and yields the distance as its output.
Figure 1(a) depicts the two nodes n1 and n2 and their communication ranges,
where n1 wants to calculate its distance to n2. Let us assume that the solid-line
half circle represents the communication range with radius r of n1. The node n1
is indicated by the black dot at (r, 0). In this idealized plot, the communication
range is given by the graph of the circle function

f(x) =
√

x(2r − x). (1)

The area A (shaded grey) is one quarter of the intersection area of the two
communication circles of n1 and n2 and is described by

F (x) =

∫

f(x) dx =
r2 arcsin(x−r

r
) + (x − r)

√

x(2r − x)

2
+ c (2)

which is f’s antiderivative. We have determined c = πr
2

4
by setting F (0) to 0.

As for distance estimation, we have the situation that the size of the grey area
A is known and that h is to be inferred. In other words, we want to deduce the
value for x that corresponds to a certain integral value. Unfortunately F cannot
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be solved to x. Hence we have approximated F by a Taylor approximation T of
degree 3 around x = r:

T (x) = −

2x3
− 6rx2

− 6r2x + r3(10 − 3π)

12r
. (3)

Now T can be solved to x, which yields three solutions of which the relevant
one is

h = r + 2
√

2r sin





arcsin
(

3
√

2(4A−πr
2)

16r2

)

3



 . (4)

Now the distance between the two nodes can easily be calculated using
d = 2(r − h). Like this, the distance between adjacent nodes can be inferred
from their communication range r and A which represents one quarter of their
communication circles’ intersection area. We premise that the range r (or at least
an upper bound) is known a priori and will be the same for all devices. Hence
we treat it like a constant here.

A is approximated using the heuristic that the size of A is proportional to
the cardinality of the neighbor set intersection of the two nodes. The underlying
assumptions are that the wireless nodes are spread out locally uniformly over
the considered area and that the network is sufficiently dense. To clarify the
underlying heuristic, imagine the nodes were positioned along a grid. Then each
node would represent a quadratic area around it. This basic idea of each node
representing a certain area also works even if nodes are randomly distributed.

Hence, the fraction of its neighbors that a node shares with a particular
neighbor can be used to approximate the size of the area A to A = 0.25 s

n
πr2

where n is the total number of neighbors the node has and s is the number of
neighbors shared with the other node (see Figure 1(b)). Like this, nodes can
estimate the distances to their neighbors using a simple neighbor list exchange
protocol.

3 Simulative Evaluation

To evaluate the distance estimation accuracy of NIDES we ran a set of simula-
tions. We decided not to simulate the actual exchange of data packets because
we wanted to lay the focus of our work on effects that directly influence the
distance estimate rather then on networking aspects. For this reason we chose
SHAWN [5] for our simulations. It can analyze neighborhood relationships very
efficiently and was developed for algorithmic simulations rather than network
stack simulations.

We used the simulation scenario depicted in Figure 2(a). When analyzing the
estimation accuracy, we only considered nodes that were located inside the dotted
inner rectangle. The width of this inner area is 2r smaller than the simulation
area, where r is the communication range. Thus the full communication range
of the considered nodes resides within the simulation area (c.f. node n1). This
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(a) Simulation scenario.
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Fig. 2. Mathematical foundation of NIDES.

avoids edge effects that would be caused by missing neighbors for node n2 on
the left.

For all simulations, the communication range was set to 10. However, the
obtained results are valid for arbitrary communication ranges.

We iterated over all pairs of adjacent nodes inside the inner rectangle, es-
timated their distances using NIDES, and compared these estimates to their
real Euclidean distances. To obtain statistically sound results, we averaged the
results of 100 simulations with the same parameter set.

Figure 2(b) shows an interquartile diagram of the estimation error over the
average neighborhood size. The error is expressed as a fraction of the communi-
cation range r.

In an interquartile diagram, each bar describes a value distribution where
only 25% of the values lie above the upper bound and below the lower bound of
the bar. Figure 2(b) also includes the mean absolute error and the median. For
the earlier the absolute error values were summed up for all considered distances
and divided by their number, while for the latter a value is selected so that half
of the errors are bigger and the other half is smaller. Hence the median indicates
whether the estimates are biased.

The spread of the interquartiles decreases with increasing network densities,
i.e. neighborhood sizes. As expected, the estimates get more exact with bigger
neighborhoods.

With many neighbors, the interquartile of the estimates lies within 0.06r
around the correct distance (i.e. 50% of the estimates feature an error of less
than 6% of the communication range), the mean absolute error is 0.075r. For
densities above 10 the mean absolute error is below 18% of the communication
range. Note that the median error is always very close to zero which means that
NIDES has no tendency to systematically over- or underestimate distances.

Research has shown that the required density depends on the network size.
The more nodes a network consists of, the higher the required density is [6].
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For a network comprising 300 nodes, a density of about 13 is needed. Hence
we consider an average neighborhood size of 15 to be a reasonable choice for
wireless sensor networks. With 15 neighbors, the mean error is about 0.15r with
an interquartile spread of about 0.2. This means that half of the estimates exhibit
an error of 10% of the communication range or less.

4 Conclusion

In this paper we presented the neighborhood intersection distance estimation
scheme (NIDES). This novel approach computes distance estimates from inter-
section cardinalities of sets of adjacent nodes. Through simulations we assessed
the ranging accuracy of NIDES. Because the scheme gets more accurate with
increasing network density, it especially targets dense wireless sensor networks
rather than sparse ones. But also if nodes have no more than 15 neighbors,
NIDES achieves an average error of only about 15% of the communication range.

Thus NIDES categorizes between existing approaches for distance estima-
tion. It achieves a higher accuracy than estimates based on RSSI, and is less
susceptible to reflections, fading and multi-path propagation. Estimates based
on differential time of flight feature a higher accuracy than NIDES but demand
for specific hardware such as ultra sound emitters and receivers. These have
negative effects on cost, size and power consumption, which seems disadvanta-
geous especially for wireless sensor networks. In addition, these have only a very
limited maximum range compared to NIDES.

We are currently deepening the simulative evaluation. In the future, we plan
to extend NIDES to more realistic radio models and evaluate the performance
in real world experiments.
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