
Universität Stuttgart

Institut für Formale Methoden der Informatik

Abteilung Sichere und Zuverlässige Softwaresysteme

Fakultät Informatik, Elektrotechnik und Informationstechnik

Universitätsstr. 38, 70569 Stuttgart

Technical Report No. 2004/08

A Case Study: Verifying a

Mutual Exclusion Protocol

with Process Creation using

Graph Transformation Systems

Fernando Lúıs Dotti Barbara König
Osmar Marchi dos Santos Leila Ribeiro

CR Classification: D.2.4, D.4.1, F.3.1, F.4.2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Case Study: Verifying a Mutual Exclusion

Protocol with Process Creation using Graph

Transformation Systems?

Fernando Lúıs Dotti1, Barbara König2, Osmar Marchi dos Santos3, and Leila
Ribeiro4

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
2 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

3 Department of Computer Science, University of York, UK
4 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract. We verify a mutual exclusion protocol with dynamic process
creation based on token passing. The protocol is specified using object-
based graph grammars. We introduce the protocol and show how the
mutual exclusion property and other properties can be verified using the
tool Augur, a verification tool for graph transformation systems based
on an approximated unfolding technique.

1 Introduction

Mobile and dynamic systems are becoming more and more common and their
influence on our daily life is increasing dramatically. These systems are typically
characterized by an infinite state space, dynamic object creation and deletion,
mobility and a variable topology. Modelling and analyzing such systems has
become a challenging task in the software development process. While there are
several promising approaches for modelling dynamic systems, such as Petri nets
[Rei80], graph transformation systems [Roz97] or process calculi [SW01], the
state of the art in analysis and verification is much less advanced. But analysis
methods are crucial in order to ensure safety and reliability of software systems.

In this paper we are working with an analysis technique for graph trans-
formation systems, that (over-)approximates graph transformation systems by
Petri nets, allowing us to automatically prove system properties [BCK01]. We
use a software tool called Augur5 which is based on this technique.

We conduct a case study, analyzing a mutual exclusion protocol, which has
the added feature of dynamic process creation, i.e., the set of processes is not
fixed a priori. The example has originally been specified in the framework of
object-based graph grammars [DR00], based on message passing. We are able to
show that mutual exclusion is indeed ensured and that messages arrive at their
correct destinations.

? Supported by the FAPERGS/BMBF project DACHIA and DFG project SANDS.
5 See http://www.fmi.uni-stuttgart.de/szs/tools/augur/



2 A Mutual Exclusion Protocol

The following mutual exclusion protocol is specified in the framework of object-
based graph grammars [DR00], a specific variant of graph transformation sys-
tems. We will not explain the framework in any great detail, but we will give
a brief overview: graph transformation rules consist—like all other rewriting
rules—of a left-hand and a right-hand side. In object-based graph grammars
the left-hand side contains an object and a message sent to this object, the rule
describes the reaction of the object upon the reception of the message. This re-
action might be the creation of further messages and objects. The left-hand side
also contains neighbouring objects in order to be able to correctly describe the
embedding of the right-hand side into the graph.

Fig. 1. Initial graph.

Fig. 2. RingEnv type graph.

2



Fig. 3. Rules for RingEnv entity.

Fig. 4. RingRes type graph.

Fig. 5. Rules for RingRes entity.

Figures 1–7 describe the protocol from the point of view of the three entities
RingEnv (the environment), RingNode and RingRes (the resource). Figure 1

3



Fig. 6. RingNode type graph.

depicts the initial graph which consists of a ring consisting of one node only—
hence the next-connection originating from this node is pointing back to itself.
The environment has two connections to the first and second node of a ring,
which in this case coincide, and furthermore there exists a resource known to
the node and the environment.

While the system runs new nodes will be created and inserted into the ring by
the ring environment. Furthermore a token is passed around and a node which
is in possession of the token can access the shared resource.

Hence if the ring environment receives the message Proceed , it might create
a new RingNode and send to it a message Init in order to initialize it. Upon
reception of Init , the RingNode creates connections to its neighbours and to the
environment, to which it sends message Done. The environment receives Done

and sends Update to the first neighbour in order to complete the insertion.
The rest of the protocol is concerned with assigning the resource to the ring

nodes. A ring node in possession of message Token may pass the token on or send
a message Request to the resource. The resource acknowledges with Response.

The rules are grouped according to the entitities they belong to. Furthermore
for every entity there exists a type graph—a subgraph of the type graph of the
entire system—specifying arriving messages and possible connections.

A central question in the analysis of this protocol is whether mutual exclusion
is guaranteed.

3 Analyzing the Protocol

We rely on a technique introduced in [BCK02,BK02,BCK01], which “unfolds”
a graph transformation system, beginning with the start graph and producing a
branching structure by adding all possible evolutions of the system. The result
is a so-called Petri graph, containing both the graph structure of the system
and a Petri net, describing object or message creation and deletion. Since the
emerging Petri graph is usually infinite, additional over-approximating folding
steps are introduced, keeping the unfolding finite.

4



Fig. 7. Rules for RingNode entity.

3.1 Translating the Protocol

In order to be able to use the approximated unfolding technique described above,
we first have to translate the mutual exclusion protocol described in Figures 1–7
into hypergraph rewriting. A hypergraph in our setting consists of unlabelled
nodes and labelled hyperedges, where a hyperedge can be connected to an arbi-
trarily long sequence of nodes.

The translation process is mostly mechanical. The nodes of the object-based
graph grammar are converted into hyperedges, whereas the connections between
nodes become nodes in the hypergraph.

5



The initial graph of Figure 1, for instance, is converted into the hypergraph
depicted in Figure 8. The 0-th tentacle of every hyperedge connects the hyper-
edge to a node representing its “identity”. The rest of the tentacles represent
the connections present in the framework of object-based graph grammars.

RingNode

tokenRingRes

proceed

RingEnv

0 1

2

0

1 2 3

Fig. 8. The initial hypergraph.

Graph transformation rules are translated in a similar way. For instance Fig-
ure 9 depicts rule InsertNode. The dashed lines represent the embedding. Note
that since in the framework of hypergraph rewriting, the number of tentacles of
a hyperedge is determined by its label, we have to introduce a new hyperedge
labelled RingNodeNew in order to represent uninitialized ring nodes.

RingEnv RingEnv RingNodeNew

0

1 2 3

proceed
0

1 2 3

init
3

0

21

Fig. 9. Translation of rule InsertNode.

6



The approximated unfolding algorithm is implemented in a tool called Au-

gur, a verification tool for graph transformation systems, which accepts input
files in GXL (Graph Exchange Language), an XML standard for the exchange
of graph transformation systems.6

Below, we show how the initial hypergraph is represented in GXL syntax.
The keyword rel (= relation) defines a hyperedge, whereas relend introduces
the tentacles of a hyperedge. Additional syntactic constructs are used to describe
graph transformation rules.

<Graph edgeids="true" hypergraph="true" edgemode="undirected">

<node id="rnid" />

<node id="envid" />

<node id="resid" />

<rel>

<attr name="label">

<string>RingNode</string>

</attr>

<relend target="rnid" startorder = "0" /> <!-- RingNode id -->

<relend target="rnid" startorder = "1" /> <!-- next RingNode -->

<relend target="resid" startorder = "2" /> <!-- RingEnv id -->

</rel>

<rel>

<attr name="label">

<string>RingEnv</string>

</attr>

<relend target="envid" startorder = "0" /> <!-- RingEnv id -->

<relend target="rnid" startorder = "1" /> <!-- first RingNode -->

<relend target="rnid" startorder = "2" /> <!-- second RingNode -->

<relend target="resid" startorder = "3" /> <!-- RingRes id -->

</rel>

<rel>

<attr name="label">

<string>RingRes</string>

</attr>

<relend target="resid" startorder = "0" /> <!-- RingRes id -->

</rel>

<rel>

<attr name="label">

<string>proceed</string>

</attr>

<relend target="envid" startorder = "0" />

</rel>

<rel>

<attr name="label">

6 See http://www.gupro.de/GXL/

7



<string>token</string>

</attr>

<relend target="rnid" startorder = "0" />

</rel>

</Graph>

3.2 Computing the Petri Graph

Augur computes the Petri graph, approximating the original system. The out-
put is again a GXL file describing the Petri graph, with additional nodes standing
for transitions and additional tentacle types connecting transitions to hyper-
edges, which is at the same time a place in the Petri net. The following excerpt
from a GXL file shows a Petri graph containing three (graph) nodes, a hyperedge
(rel) and a node representing a transition.

<?xml version="1.0"?>

<gxl>

<graph id="result" hypergraph="true" edgemode="undirected">

<node id="_509">

<attr name="vertex"/>

</node>

<node id="_510">

<attr name="vertex"/>

</node>

<node id="_511">

<attr name="vertex"/>

</node>

[...]

<rel id="_513">

<attr name="label">

<string>response</string>

</attr>

<relend target="_509" role="vertex" startorder="0"/>

<relend target="_537" role="postset">

<attr name="weight">

<int>1</int>

</attr>

</relend>

<relend target="_539" role="preset">

<attr name="weight">

<int>1</int>

</attr>

</relend>

</rel>

8



[...]

<node id="_539">

<attr name="transition"/>

<attr name="rule">

<string>PassToken2</string>

</attr>

</node>

</graph>

</gxl>

In order to be able to draw the entire Petri graph, we split it into its graph
component (depicted in Figure 10) and its Petri net component (see Figure 11).
These structures can be computed and visualized directly using Augur (see
Figure 12 and Figure 13).

Note that the hyperedges of the graph are at the same time the places of the
Petri net, marked by the same numbers. The numbers are the unique identities
of nodes, hyperedges and transitions, taken directly from the GXL output of
the analysis tool. Although a ring might consist of several ring nodes, each with
its own identity, these identities have been fused in the approximation and are
represented by node 512.

The Petri graph P approximates the original graph transformation systems
in the following sense: For every reachable graph G in the system, there exists
a reachable marking m in the Petri net with the property that the graph G′

obtained by duplicating every hyperedge of P according to its multiplicity in
m is a homomorphic image of G. For instance the initial marking—which is
indicated by bold lines—induces a subgraph into which the initial graph (see
Figure 8) can be mapped. In this case the mapping is injective, however, due
to approximation this need not necessarily be the case. (For more details see
[BCK01].)

This implies that we can draw the following conclusions from a Petri graph:

– If two edges with specific edge labels are not connected in the Petri graph,
then such edges will also never be connected in a reachable graph.

– Upper bounds for the number of tokens in a place can be seen as upper
bounds for the number of edges with a specific label.

In general, properties of a much more complex nature can be verified by
combining both the graph structure and the Petri net structure. For instance
[BKK03] describes how to translate formulas in a second-order monadic graph
logic into formulas on Petri net markings. For our present purposes, the two
conclusions described above suffice.

3.3 Analyzing Structural Properties

Directly from the graph structure depicted in Figure 10, we can infer information
about the possible targets of a message.

9



509

response

token

update

RingNode RingNodeNew

proceed

request

RingEnv RingEnv

RingRes

init

510

511

0

0

0

1

0

1

0

1

0

2

0

2

2

1

1

332
1

3

2

1

515

523

522

513

517

518

519521

516

514

512

520

done

Fig. 10. The graph underlying the computed Petri graph.

10



response
513

token
514

request
516

RingRes
515

RingNodeNew
522

UpdateNode
535

PassToken2
539

update
517

proceed
518

init
523

done
520

UseResource
537

UseToken
536

RingEnv RingEnv
519521

UpdateRing
534

InsertNode
532

NewNode
533

RingNode
PassToken1

538

512

F
ig

.
1
1
.
T

h
e

P
etri

n
et

u
n
d
erly

in
g

th
e

co
m

p
u
ted

P
etri

g
ra

p
h
.

11



RingNode
_512

0
1

2

response
_513

0

token
_514

0

RingRes
_515

0

request
_516

1

0

update
_517

2
0

1

proceed
_518

0

RingEnv
_519

12

3
0

done
_520 1

0

RingEnv
_521

12
3

0

RingNodeNew
_522

0

init
_523

03

12

Fig. 12. The graph underlying the computed Petri graph (output of the tool Augur).

entity receives at most the following messages
RingEnv proceed , done

RingRes request

RingNode response, token, update, init

This is consistent with their intended purpose.

3.4 Analyzing Multiplicities

More important than the information obtained above is to check that mutual
exclusion is guaranteed. Specifically, we want to check that at most one request

message is sent to the resource at any given moment in time, i.e., we want to
establish an upper bound of one token for the place request .

We do this by computing the coverability graph of the Petri net in Figure 11,
using the Petri net tool LoLA [Sch00]. For this we first convert the Petri net
under consideration into the LoLA input syntax, an excerpt can be found below.
This conversion into LoLA syntax is automatically performed by Augur.

PLACE RingNode_512,RingRes_515,request_516,response_513,token_514,

update_517,init_523,done_520,RingNodeNew_522,proceed_518,

RingEnv_521,RingEnv_519;

MARKING RingNode_512: 1,RingRes_515: 1,token_514: 1,proceed_518: 1,

RingEnv_521: 1;

TRANSITION UseResource_537

CONSUME RingRes_515: 1,request_516: 1;

PRODUCE RingRes_515: 1,response_513: 1;

[...]

12



RingNode
_512

UpdateNode
_535

1

UseToken
_536

1

PassToken1
_538

1

PassToken2
_539

1

NewNode
_533

1

done
_520

1

1

proceed
_518

1

1

request
_516

1

1

token
_514

1

1

1

response
_513

1

UseResource
_537

1

RingRes
_515

1

1

1

1

1

update
_517

1

UpdateRing
_534

1

RingEnv
_521

1

InsertNode
_532

1

RingEnv
_519

1

RingNodeNew
_522

1

init
_523

1

1

1

1

1
1

Fig. 13. The Petri net underlying the computed Petri graph (output of the tool Au-

gur).

13



Parts of the coverability graph consisting of states and transitions computed
by LoLA are shown below. We do not show the entire graph here, which con-
sists of 24 states and 56 edges. But we remark that in every state, the place
request_516 representing all hyperedges with label request always contains at
most one token, which establishes the mutual exclusion property.

[...]

STATE 1

RingEnv_521 : 1,

RingRes_515 : 1,

proceed_518 : 1,

request_516 : 1,

RingNode_512 : 1

UseResource_537 -> 2

InsertNode_532 -> 23

STATE 0

token_514 : 1,

RingEnv_521 : 1,

RingRes_515 : 1,

proceed_518 : 1,

RingNode_512 : 1

UseToken_536 -> 1

PassToken1_538 -> 0

InsertNode_532 -> 22

4 Extensions

Another property we would like to analyze is fairness. Is it possible to show
that every ring node will—at some point in time—be able to obtain the token
and access the resource? Fairness is in general difficult to show with abstract
interpretation, because of the over-approximation involved. With the present
approximation we can not ensure that the token is passed on to the next ring
node as soon as it has been used.

A possible solution would be to first create a ring of ring nodes. As soon as
a ring node has obtained the resource, it will change its state. Then it should
be possible to reformulate the fairness condition by demanding that every ring
node changes its state eventually.

5 Conclusion

In the future we plan to conduct more case studies, treating more complex pro-
tocols specified by object-based graph grammars as well as algorithms working

14



on pointer structure. One such case study which has already been concluded is
the static analysis of red-black trees, a variant of balanced search trees.

Future research in this area will involve the further development of techniques
for abstraction refinement that show a way of dealing with over-approximations
that are too coarse. Some preliminary work in this direction has already been
presented in [BK02]. Furthermore we plan to investigate the verification of con-
nectivity information—so far we can only show that two components are not

connected—and the further study of logics and specification languages (see also
[BKK03]).

Acknowledgements: The second author would like to thank Paolo Baldan and
Andrea Corradini for many discussions on approximated unfoldings and Vitali
Kozioura, Ingo Walther and Lars Heinemann for implementing the Augur tool.

References

[BCK01] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis tech-
nique for graph transformation systems. In Proc. of CONCUR ’01, pages
381–395. Springer-Verlag, 2001. LNCS 2154.

[BCK02] Paolo Baldan, Andrea Corradini, and Barbara König. Static analysis of
distributed systems with mobility specified by graph grammars—a case study.
In H. Ehrig, B. Krämer, and A. Ertas, editors, Proc. of IDPT ’02 (Sixth
International Conference on Integrated Design & Process Technology). Society
for Design and Process Science, 2002.

[BK02] Paolo Baldan and Barbara König. Approximating the behaviour of graph
transformation systems. In Proc. of ICGT ’02 (International Conference on
Graph Transformation), pages 14–29. Springer-Verlag, 2002. LNCS 2505.

[BKK03] Paolo Baldan, Barbara König, and Bernhard König. A logic for analyzing
abstractions of graph transformation systems. In Proc. of SAS ’03 (Inter-
national Static Analysis Symposium), pages 255–272. Springer-Verlag, 2003.
LNCS 2694.

[DR00] F. L. Dotti and L. Ribeiro. Specification of mobile code systems using graph
grammars. In 4th International Conference on Formal Methods for Open
Object-Based Distributed Systems, volume 177 of IFIP Conference Proceed-
ings, pages 45–64, USA, 2000. Kluwer Academic Publishers.

[Rei80] W. Reisig. A graph grammar representation of nonsequential processes. In
H. Noltemeier, editor, Graphtheoretic Concepts in Computer Science, pages
318–325. Springer-Verlag, 1980. LNCS 100.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol.1: Foundations, volume 1. World Scientific,
1997.

[Sch00] Karsten Schmidt. LoLA: A low level analyser. In Proc. of ATPN (Application
and Theory of Petri Nets), pages 465–474. Springer, 2000. LNCS 1825.

[SW01] Davide Sangiorgi and David Walker. The π-calculus—A Theory of Mobile
Processes. Cambridge University Press, 2001.

15


