
Universität Stuttgart

Fakultät Informatik

Visualisierung und
Interaktive Systeme

A Depth-Cueing Scheme Based on

Linear Transformations in Tristimulus Space

Daniel Weiskopf und Thomas Ertl

Bericht Nr. 2002/08

September 2002

Universität Stuttgart
Fakultät Informatik

Abteilung Visualisierung und Interaktive Systeme
Breitwiesenstr. 20–22

D-70565 Stuttgart

email: weiskopf@informatik.uni-stuttgart.de
URL: http://wwwvis.informatik.uni-stuttgart.de/˜weiskopf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Depth-Cueing Scheme Based on
Linear Transformations in Tristimulus Space

Daniel Weiskopf� Thomas Ertl†

Visualization and Interactive Systems Group‡

University of Stuttgart

Abstract

We propose a generic and flexible depth-cueing scheme which sub-
sumes many well-known and new color-based depth-cueing ap-
proaches. In particular, it includes standard intensity depth-cueing
and rather neglected pure saturation depth-cueing. A couple of new
combinations and variations of depth cues are presented. Their
usefulness is demonstrated in many different fields of application,
reaching from non-photorealistic rendering to information visu-
alization. In addition to cues based on a geometric concept of
depth, an abstract visualization approach in the form of semantic
depth-cueing is proposed. Our depth-cueing scheme is based on
linear transformations in the 3D tristimulus space of colors and
on weighted sums of colors. Since all of the required operations
are supported by contemporary consumer graphics hardware, the
depth-cueing scheme can be implemented without performance cut-
backs. Therefore, any real-time rendering application can be en-
riched by sophisticated depth-cueing.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture

Keywords: depth-cueing, visual perception, color, saturation,
non-photorealistic rendering, visualization

1 Introduction

The retina of the human eye is only two-dimensional and therefore
depth cues are essential for the visual perception of spatial struc-
tures. So-called primary and secondary cues can be distinguished.
Primary cues include binocular disparity (stereoscopic viewing),
convergence, and accommodation. On a computer system, these
can only be implemented in the form of specialized hardware, such
as shutter glasses, and are not widely available. Secondary cues in-
clude perspective, relative size, occlusion, shadows, texture, color
gradients, motion parallax, and active movement. A description of
these depth cues can be found, for example, in [17]. These cues
do not rely on a specific hardware and can thus be used to improve
depth perception in computer-generated images.

In this paper, we present a color-based depth-cueing scheme
which is especially appropriate for non-photorealistic rendering
techniques. In this context, the term non-photorealistic rendering
is used in a general sense: It comprises various rendering methods
which are determined by non-physics-based lighting models, such
as technical illustrations, artistic rendering, information visualiza-
tion, terrain visualization, or volume illustrations. Intensity depth-
cueing is a well-known example of a color-oriented technique for
enhancing depth perception. This approach creates an effect sim-
ilar to viewing the scene through haze by dimming the colors of

�weiskopf@informatik.uni-stuttgart.de
†ertl@informatik.uni-stuttgart.de
‡Visualization and Interactive Systems Group, University of Stuttgart,

Breitwiesenstr. 20–22, D-70565 Stuttgart, Germany

far-away objects [9]. Intensity depth-cueing is influenced by the
aerial perspective, which has been used by painters for many cen-
turies. Early examples are the work by the Flemish painter Jan van
Eyck, e.g., [31]. In many drawings, an additional slight color mod-
ulation is noticable—remote objects experience a subtle blue shift
[8]. These depth-cueing techniques can be easily implemented by
exploiting hardware-accelerated fogging on contemporary graphics
chips.

A change in saturation is another effect prominent in aerial
perspective—the colors of far-away objects are less saturated.
Nevertheless, this effect has been widely neglected in computer-
generated imagery, although investigations of the human visual sys-
tem [28] indicate that color gradients at isoluminance affect per-
ceived depth and that a gradient in saturation is particularly effec-
tive. Therefore, changing saturation can be used as a means of
depth-cueing.

In this paper, we introduce a generic depth-cueing scheme which
comprises all of the above color-based cues. Despite of its gener-
ality, our approach is computationally simple and can be directly
mapped to contemporary consumer graphics hardware. It is trans-
parent to the implementation of 3D viewers and can readily be com-
bined with other non-photorealistic rendering or visualization tech-
niques, assisting the idea that graphical excellence is nearly always
multivariate (Tufte [29]). In particular, we would like to promote
the use of saturation gradients as a monocular depth cue. Unlike
intensity-based cueing, saturation depth-cueing leaves intensity and
contrast invariant and therefore preserves features in the scene. This
is close to Tufte’s strategy of the smallest effective difference, mak-
ing visual distinctions as subtle as possible, but still clear and effec-
tive. Because of the flexibility of our scheme even more sophisti-
cated applications become possible, some of which are presented in
this paper. In particular, we show how depth perception is improved
by combining different depth cues. Furthermore, we introduce se-
mantic depth-cueing as an abstract formulation of depth-cueing.

The paper is organized as follows. Section 2 briefly reviews pre-
vious and related work. In Section 3, the basis of our depth-cueing
approach is developed. The subsequent section contains typical
choices of parameters for the generic scheme. In Section 5, the
usefulness of depth-cueing is demonstrated in many different fields
of application, reaching from non-photorealistic rendering to infor-
mation visualization. The mapping of our scheme to graphics hard-
ware and an example implementation is described in Section 6. The
paper ends with a short conclusion. In the appendix, an explicit for-
mulation of the color transformation required for saturation depth-
cueing is included.

2 Previous and Related Work

In recent years, a lot of research has been conducted on perceptional
issues in computer graphics. Interrante et al. [16], Healey et al.
[14], and Tumblin and Ferwerda [30] give a comprehensive presen-
tation of human visual perception and corresponding applications
in computer graphics. Closely related to this paper is a field of



research which deals with physiological, psychological, and usabil-
ity aspects of depth perception. Various depth cues are described,
for example, by Keley [17]. Depth cues are evaluated with respect
to depth-related tasks: For example, Zhai et al. [36] investigate
the partial-occlusion effect produced by semitransparent surfaces;
Hubona et al. [15] evaluate effects of shadows on depth percep-
tion; Mereu and Kazman [20] even use audio feedback to improve
a user’s sense of depth perception.

Troscianko et al. [28] investigate the ability of subjects to judge
depth from various color gradients. Their study reveals that both
saturation and luminance gradients, which occur in natural scenes,
allow depth perception. On the contrary, for example, a red–green
hue gradient, which does not occur in nature, does not affect depth
perception. Troscianko et al.’s work is the psychological motivation
for saturation depth-cueing, which is one of the core applications of
our depth-cueing scheme.

Another field of research related to this paper comprises aspects
of non-photorealistic rendering. In recent years, a lot of research
has been conducted on this topic. Gooch and Gooch [11] and Green
et al. [13] give a comprehensive presentation of the state-of-the-art
in non-photorealistic rendering. A large body of research is fo-
cused on pen-and-ink illustrations [25, 33, 19, 22, 23, 6], which can
be used to combine colored surface rendering and accentuated edge
drawings. Depth perception in these applications can be further
enhanced with our depth-cueing scheme. Other non-photorealistic
rendering techniques make explicit use of color tone variations and
are perfectly suited for color-based depth-cueing. For example,
Curtis et al. [4] imitate the appearance of watercolored images for
non-photorealistic rendering. Gooch and co-workers[10, 12] facili-
tate airbrush techniques for automatic technical illustrations. Ebert
and Rheingans [8] adapt non-photorealistic rendering techniques to
volume illustrations and introduce a variation of intensity depth-
cueing by adding a shade of blue to distant objects.

In a work on scientific visualization, Bailey and Clark [1] em-
ploy texture mapping in order to produce depth-dependent color
transformations for stereo vision based on ChromaDepth glasses.
Finally, the book by Ebert et al. [7] contains a description of atmo-
spheric scattering that is a procedural texturing approach to aerial
perspective.

3 Linear Transformations and Weighted
Sum of Colors

In this section, the basic idea of our generic depth-cueing scheme is
presented. Typical applications are derived in the subsequent sec-
tions. The development of this scheme is guided by the well-known
intensity depth-cueing [9]. This standard model produces a final
color from a weighted sum of an original input color and a user-
specified background color.

In our approach, this model is extended by two new, crucial fea-
tures. First, the weights for the combination of the two colors can
be chosen independently for each of the three color components.
Secondly, the weighted sum does not need to be calculated with re-
spect to a fixed color coordinate system (which would usually be
RGB). In fact, an arbitrary linear transformation of the input colors
is applied before the summation is performed.

The depth-cueing scheme of this paper is based on some fun-
damental concepts of color vision and colorimetry. Here, only
some important relevant aspects are briefly reviewed. More de-
tailed background information on color science can be found, for
example, in the book by Wyszecki and Stiles [35].

A fundamental result of experimental color matching and a key
element of colorimetry is the the so-called trichromatic generaliza-
tion. Trichromatic generalization states that, over a wide range of
observations, many color stimuli can be matched by an additive

mixture of three fixed primary stimuli. All other stimuli have to
be mixed with one or two primary stimuli before a complete match
with the remaining stimuli can be achieved. In the stronger form of
trichromatic generalization, linearity laws of additivity and propor-
tionality are valid, giving rise to a three-dimensional vector space—
the so-called tristimulus space of colors. From a physiological point
of view, this property of color perception is based on the fact that
three different types of receptors—three kinds of cones—are re-
sponsible for color detection in the human eye’s retina. Neglecting
higher levels of processing in the human visual system, signals from
these receptors essentially add up to the finally perceived color.

A couple of different color spaces are in wide use today. One
of these was introduced by the CIE (Commission International de
l’Eclairage) for measurements of their CIE 1931 Standard Col-
orimetric Observer. It consists of the primaries red, green, and
blue as monochromatic stimuli of wavelengths λred = 700 nm,
λgreen = 546:1 nm, and λblue = 435:8 nm. Since the phosphors
of contemporary computer monitors are not identical to these CIE
RGB primaries, related RGB systems may be based on measure-
ments of these phosphors. Another important color system is the
XYZ system, which was introduced as a standard colorimetry sys-
tem by the CIE.

All these color systems are directly based on the vector space
concept of tristimulus space. They just represent different basis
vectors—the primary colors—of the same three-dimensional vector
space. Therefore, a change of basis can be realized by a linear trans-
formation. Suppose that an arbitrary color C is given with respect
to a basis of primary colors, fPi j i = 1;2;3g, and can accordingly
be represented as a three-component tristimulus vector (C1;C2;C3):

C =
3

∑
i=1

Ci Pi :

Let us assume that the old basis fPi j i = 1;2;3g and a new basis
fP̃i j i = 1;2;3g are related by

P j =
3

∑
i=1

Mi j P̃i ;

where Mi j are the elements of a 3� 3 matrix. Then, the color
(C̃1;C̃2;C̃3) represented with respect to the new basis P̃i can be ex-
pressed in terms of the transformation matrix M and the original
tristimulus vector:

C̃i =
3

∑
j=1

Mi j Cj ;

i.e., the linear transformation between different representations is
accomplished by the matrix M.

In this notation, our depth-cueing scheme can be formulated as
follows. As input data, an original color Corig and an admixing
color Cmix shall be given with respect to an arbitrary, but fixed ba-
sis fPig. As contemporary graphics hardware and most modeling
and design software is based on RGB, the basis fPig can usually
be identified with RGB. Furthermore, a second basis fP̃ig or the
transformation matrix M have to be supplied. Appropriate choices
for the second basis are discussed in the following section.

Figure 1 shows the structure of the depth-cueing scheme. The
green part of the process has to be performed only once in a pre-
processing step, whereas the blue part has to be evaluated for each
single pixel in the image plane. In the first step of the process, the
original color Corig and the admixing color Cmix are transformed



Transformation to

Input RGB color

Transformation to

Linear combination

Transformation to
RGB basis

Final color

Corig

basis P
~

basis P

C
Admixing RGB color

mix

~
i i

Figure 1: Structure of the depth-cueing scheme. The green part is
evaluated in a preprocessing step, the blue part is processed for each
single pixel.

into the second basis,

C̃orig;i =
3

∑
j=1

Mi j Corig; j ; (1a)

C̃mix;i =
3

∑
j=1

Mi j Cmix; j : (1b)

The second step accomplishes a weighted sum of these two
transformed colors,

C̃dst;i = fi(d)C̃orig;i +gi(d)C̃mix;i ; (2)

where d is some scalar distance measure depending on the distance
between the camera and the object to be colored. Typical choices
for this distance measure are either the z value (depth value) of the
object or the Euclidean distance between camera and object (i.e.,
radial fog). However, even some abstract “distance” measures may
be useful for specific applications, as described in Section 5. Both
weight functions fi(d) and gi(d) may differ for each color com-
ponent i, allowing for a distinct mixture of the two colors. This
is one of the important differences compared to standard intensity
depth-cueing, which has equal weights for each color component.
In many applications, the weight functions are not independent of
each other, but give rise to an affine combination of the two input
colors, i.e.,

fi(d)+gi(d) = 1 ;

for all valid values of d.
In the third and final step, the blended color Cdst is transformed

into the original basis fPig by means of the inverse matrix M�1,

Cdst;i =
3

∑
j=1

M�1
i j C̃dst; j : (3)

The actual color of that part of the object is then given by (Cdst;i).
The mixing color is constant during the whole rendering process.

Therefore, the corresponding transformation Eq. (1b) needs to be
performed only once in a preprocessing step. Contrarily, Eq. (1a)
has to be processed for each pixel, as its input color Corig might
change from pixel to pixel. As a consequence, Eqs. (2) and (3)
have to be evaluated for each pixel as well.

dmin

0

1

f(d)

distancedmax

exponential

linear

Figure 2: Linear and exponential weight functions.

4 Appropriate Parameters for the Generic
Depth-Cueing Scheme

How can the above scheme facilitate color-based depth-cueing?
What are appropriate choices for the intermediate basis fP̃ig, the
weight functions fi(d) and gi(d), and the admixing color Cmix?
This section gives some useful sets of parameters for the basis vec-
tors and weight functions and establishes the relationship between
these parameters and corresponding physiologically based depth
cues.

Intensity Depth-Cueing

Intensity depth-cueing can be realized by choosing appropriate pa-
rameters for our scheme. Here, colors in the foreground are unal-
tered; objects further away are reduced in intensity, ultimately fad-
ing away into the black background. Therefore, the admixing color
has to be completely black, i.e., (Cmix;i) = (0;0;0). The same posi-
tive weight function is employed for an affine combination of each
color component, i.e., fi(d) = f (d) and gi(d) = 1� f (d). Typical
choices for f (d) represent a linear or exponential behavior within
an interval d 2 [dmin;dmax], cf., for example, the OpenGL reference
[34]. The bounds dmin and dmax can be specified by the user or by
the 3D viewer. For ranges outside [dmin;dmax], f (d) is constant.
Figure 2 shows a plot of linear and exponential weight functions.

For intensity depth-cueing, fi(d) is identical for all color compo-
nents and therefore the weighted sum, Eq. (2), and the basis trans-
formation, Eqs. (1) and (3), are commutative. Consequently, the ba-
sis transformations become superfluous and can be canceled. The
weighted sum can be performed with respect to any basis, even in
the original color system, for example RGB. This application is
usually implemented by standard fogging, but can be represented
in our scheme as well.

Another, almost identical application just replaces black by
white as admixing color. In this way, both the intensity and satura-
tion are changed. This approach is especially useful for illustrations
on a white background. In another variation of this depth-cueing
model, some additional color tone is admixed. Ebert and Rhein-
gans [8], for example, add a bluish tone to enhance the effect of
atmospheric depth-cueing. All these approaches have in common
an identical weight function, independent of the color component.

Figure 4 provides a simple visualization of intensity-based
depth-cueing. Image (a) represents the original yellow object. Im-
age (b) illustrates the effect of depth-cueing by gradually changing
yellow to black from bottom to top. Figure 3 shows depth-cueing
for a 3D example. Image (a) depicts the original test scene, which
consists of differently colored spheres. Image (b) illustrates depth-
cueing by fading to black.

Saturation Depth-Cueing

The following depth-cueing approach is based on a saturation gra-
dient and cannot be reproduced by standard fogging. Here, more



(a) (b)

(c) (d)

Figure 3: Comparison of different depth-cueing approaches. Image (a) shows the test scene without any depth-cueing, (b) visualizes intensity
depth-cueing, (c) shows saturation depth-cueing, and (d) combines saturation and softened intensity depth-cueing.

distant objects are rendered in more desaturated colors; however,
the intensities of their colors should remain constant.

Figure 5 illustrates how such a desaturation can be described ge-
ometrically in RGB tristimulus space. For clarity of the diagram,
the blue axis is removed; it would be perpendicular to the red and
green axes. The new color Csat has to lie on a plane which contains
the original color Csrc and which is perpendicular to the gray axis.
This plane is a hyperplane of isoluminant colors. In this way, the
intensities of Csrc and Csat are identical. Furthermore, Csrc needs to
be shifted towards the gray axis, preventing any hue change. Both
criteria can be met by the following construction. First a linear in-
terpolation of the original color Csrc and a color on the gray axis,
Cgray, is computed. The intermediate result, Cinterpolation, is de-
saturated, but shows a shift in intensity. This change in intensity
is compensated by a subsequent projection of Cinterpolation onto a
plane perpendicular to the gray axis.

The same desaturation effect can be generated within our depth-
cueing scheme. In an appropriate intermediate basis fP̃ig, one basis
vector, for example P̃1, is collinear with the gray axis. The other
two basis vectors should be chosen perpendicular to P̃1; P̃2 and
P̃3 themselves do not need to be perpendicular. This construction
ensures that intensity is only described by the coefficient of P̃1. Hue
and saturation are given by a combination of the coefficients of P̃2
and P̃3. The admixing color Cmix is set to an arbitrary color on the
gray axis, for example, to white or to black. The weight function is
of the form,

f1(d) = 1 ; f2(d) = f3(d) = f (d) ;

where f (d) describes depth dependency, for example, by a lin-
ear or exponential behavior (as in the previous intensity depth-

cueing approach). An affine combination of colors is employed,
i.e., gi(d) = 1� fi(d).

By setting f1(d) identically to one, we ensure that the final color
Cdst always has the same intensity as the input color Corig. By
choosing gray as Cmix, we make sure that the final color lies be-
tween the original color and the gray axis and we prevent any
change in hue. Explicit values for the transformation matrix to and
from fP̃ig are given in Appendix A.

Figure 4 (c) provides a simple visualization of saturation-based
depth-cueing. The weight function is almost identical to the weight
function for intensity depth-cueing in Figure 4 (b), the only dif-
ference is that the first component is f1(d) = 1. Analogously,
Figure 3 (c) shows the 3D test scene with saturation-based depth-
cueing. On one hand, the saturation depth cue is not as strong as
the intensity depth cue, Figure 3 (b). On the other hand, a saturation
gradient does not influence the intensity contrast and therefore al-
lows to visualize even background objects. These far-away objects
are not visible with intensity depth-cueing.

Hue Gradient

So far, depth cues based on brightness and saturation were pre-
sented. The third psychological term is the hue of a color. There-
fore, it seems to be obvious that a hue gradient could be used as
a depth cue as well. Experimental findings [28], however, indi-
cate that a red–green hue gradient does not affect depth perception.
Therefore, we do not consider a hue gradient as an application in
this paper. On the other hand, we do not, by any means, want to
rule out the possibility that some kind of hue gradient might sup-
port depth perception.



Figure 4: Comparison of color-mapping techniques. Image (a)
shows the original test scene, (b) visualizes intensity depth-cueing
(from bottom to top), (c) shows saturation variations, (d) combines
saturation and and softened intensity changes, and (e) shows satura-
tion changes with a superimposed brightness “sawtooth” structure.

From our point of view, hue changes make sense in applications
which visualize features in a more abstract way. For example, hue
changes could be determined by other means than the geometric
distance, such as features or semantics of the scene, in order to
visualize these features.

Combination of Depth Cues

In addition to pure intensity or saturation gradients, flexible combi-
nations of these cues can be readily combined within our frame-
work. Let us consider the parameters as presented above for
intensity-cueing. By choosing different functions for f1(d) and for
f2(d) = f3(d), a great variety of combinations of intensity and sat-
uration depth-cueing can now be achieved. For example, ranges
and scales for the weighting functions can be different, so that sat-
uration cues would be effective in the proximity of the camera and
intensity fading would rather be employed in more remote regions.

Figure 4 (d) visualizes the combination of saturation-based and
intensity-based depth-cueing. Here, the weight function is given by
f1(d) = 1� (1� f (d))=2 and f2(d) = f3(d) = f (d), where f (d) is
the weight function used for intensity depth-cueing in Figure 4 (b).
Figure 3 (d) shows the same depth cue for the 3D test scene. The
weight function has parameters analogous to those in Figure 3 (b).
In Figure 3 (d), the dimming effect is only half of the desaturation
effect, combining the advantages of both approaches: The depth
cue is stronger than in mere saturation-cueing and, in contrast to
intensity-cueing, background objects are still visible.

Figure 4 (e) shows an example of a quite complex combination
of intensity and saturation cues. A saturation gradient as of Fig-
ure 4 (c) is superimposed by a “sawtooth” function for intensity
depth-cueing, i.e., the weight function f1(d) has recurrent maxi-
mum and minimum values that are linearly interpolated. The re-
sulting image allows to identify areas of equal distance from the
camera. In this way, depth-cueing can even facilitate quantitative
distance measures. In the following section, we illustrate how this
choice of parameters supports depth perception in terrain visualiza-
tion.

5 Applications

In this section, we demonstrate the aptitude of the color-based
depth-cueing scheme by means of various applications in non-

green

red

gr
ay

 a
xis Csat

C interpolation

Csrc

grayC

Figure 5: Change of saturation. The new color Csat can be produced
by a weighted sum of the original color, Csrc, and a color on the
gray axis, Cgray, followed by a subsequent projection onto a plane
perpendicular to the gray axis.

photorealistic rendering and visualization. These examples are, of
course, not exhaustive, but show what type of applications can ben-
efit from color-based depth cues.

Figure 6 demonstrates depth-cueing for the non-photorealistic
rendering of technical illustrations. Figure 6 (a) shows the original
engine block. In Figure 6 (b), cool-to-warm tone shading [10] is
applied to enhance the recognition of surface orientation. A cool
(blue) to warm (tan) transition of color tones indicates a change
of the surface normal from left to right. Figure 6 (c) illustrates
cool/warm shading and saturation depth-cueing and Figure 6 (d) il-
lustrates cool/warm shading and intensity depth-cueing. The main
differences between Figures 6 (b)–(d) appear in furthermost parts
of the engine, especially in the upper portion of the images. Satu-
ration depth-cueing causes rather subtle color changes, whereas in-
tensity depth-cueing harshly affects the image by completely fading
away parts of the engine. This example demonstrates that satura-
tion depth-cueing is close to Tufte’s strategy of the smallest effec-
tive difference, making visual distinctions as subtle as possible, but
still clear and effective. In particular, technical illustrations bene-
fit from saturation depth-cueing because all structures—even in the
background—are retained.

Figure 7 shows a typical application in information visualization.
Here, a large amount of hierarchically structured data is given in the
form of a mathematical tree and visualized by a so-called cone tree
[24]. The elements of the tree are represented by boxes and cones
and connected by thin lines. These graphical objects are located and
viewed in 3D space. Therefore, depth perception is quite important
for the understanding of the tree structure. The original rendering
in Figure 7 (a) includes only the standard depth cues in the form
of perspective and occlusion. With the saturation depth cue being
enabled in Figure 7 (b), the depth structure becomes much clearer.
The top and bottom images in the center of Figure 7 show mag-
nified details of the respective renderings. The in-between image
provides a comparison between these two detail images, showing
the differences of saturation levels of the two original images as
gray-scale values.

Figure 8 demonstrates depth-cueing for terrain rendering. Fig-
ure 8 (a) shows the original scene, Figure 8 (b) shows the scene
with saturation depth-cueing, and Figure 8 (c) shows the scene with
intensity depth-cueing. In all the images of Figure 8, depth-cueing
is only applied to the terrain itself, the background sky and ocean
keep their original colors. In Figure 8 (d), saturation depth-cueing
is combined with a “sawtooth” function for intensity depth-cueing,
analogously to the parameters for Figure 4 (e). The resulting image
allows to identify lines of equal distance from the camera. In this
way, depth-cueing even facilitates quantitative distance measures.



(a) (b) (c) (d)

Figure 6: Non-photorealistic rendering of an engine block. Image (a) shows the original scene, (b) cool/warm shading without depth-cueing,
(c) cool/warm shading with saturation depth-cueing, and (d) cool/warm shading with intensity depth-cueing.

This technique is related to classical contour lines (isolines) in to-
pographical relief maps, but is more subtle. It is similar to enridged
contour maps [32] used for height field visualization. It is also in-
fluenced by works by the Flemish painter Jan Brueghel the Elder,
who enhances depth perception by alternate darker and lighter ar-
eas, as in [2]. The “sawtooth” approach is especially useful for
extended objects like terrains. However, it is less suited for scenes
consisting of many small and separate objects because the context
of lines of equal distance is destroyed by the blank regions between
these objects.

In Figure 9, saturation depth-cueing is applied to an abstract “dis-
tance” measure. Figure 9 (a) shows a standard 3D view on a chess
board. In Figures 9 (b) and (c), however, some of the chessmen
are accentuated by using highly saturated colors, whereas the less
important objects take a back seat caused by desaturated colors.
Figure 9 (b) shows an extreme case: The highlighted objects are
fully saturated and the “background” objects are only in gray-scale.
Here, the weight functions f2;3(d) take only the two extreme values
1 and 0 for the “foreground” and the “background” objects, respec-
tively. In the framework of depth-cueing, two different depth values
are assigned to the two groups of objects, depending on their se-
mantic value. In this approach, the “depth” value is determined by
the user or some other outside source, but not by purely geometric
quantities. We call this type of visualization semantic depth-cueing,
similarly to the techniques by Kosara et al. [18] for semantic depth-
of-field.

Figure 9 (c) illustrates that semantic depth-cueing can be com-
bined with geometric depth-cueing. The “foreground” objects are
still completely saturated. The saturation of the “background” ob-
jects, however, is controlled by their Euclidean distance to the cam-
era. On one hand, this combined approach conveys more informa-
tion than mere semantic depth-cueing. On the other hand, the map-
ping from saturation value to semantic value is no longer unique,
so that understanding might be complicated. Therefore, the benefit
of the variations of semantic depth-cueing largely depends on the
available colors, semantics, and depth structure of the scene.

As another application, depth-cueing can be applied to non-
photorealistic volume rendering. Ebert and Rheingans [8] use a
standard fogging approach for depth-cueing in volume illustrations,
which could be replaced by our flexible depth-cueing scheme.

A further field of application is in image-based rendering (IBR).
Recent work [5, 3, 26] deals with real-time processing and ren-
dering of image-based representations by exploiting graphics hard-
ware. Sophisticated depth cues can improve the perception of spa-

tial structures. As a closely related application, range images could
also be visualized.

In a completely different setting, saturation control is required
in virtual reality facilities. In an immersive virtual environment
like a CAVE, luminance values are very low because projection de-
vices are not able to produce very bright images and stereo glasses
further reduce intensity. Very often the user is limited to viewing
conditions in the mesoscopic range, where color perception by the
human visual system is significantly reduced [27]. Therefore, col-
ors are perceived in low saturation in such VR environments. Our
depth-cueing scheme allows to increase the saturation of colors by
supplying negative values and values larger than 1 in the weight
functions, i.e., by shifting colors further away from the gray axis.
In this way, the saturation of the displayed colors can be adjusted to
the viewing conditions in real time.

6 Realization on Graphics Hardware

The presented depth-cueing scheme is quite flexible and allows
many different types and variations of color depth cues. Never-
theless, the required arithmetic operations are—computationally—
not very demanding and low in number. Only a few multiplica-
tions and summations are necessary and, for example, no division
is needed. Therefore, the depth-cueing scheme can be implemented
completely on contemporary consumer graphics hardware. In this
context, we exploit programmable and configurable parts of the
graphics pipeline, in particular, the transform and lighting portion
and flexible fragment blending operations.

The depth-cueing scheme can be implemented transparently to
the user or programmer of a graphics viewer. Our example imple-
mentation runs on nVidia’s GeForce 3 and, based on OpenGL 1.2,
uses the register combiners, vertex program, and
multitexture extensions. All required operations are also
available in the form of similar extensions on ATI’s Radeon 8500,
providing hardware support for sophisticated depth-cueing on this
card as well.

A standard renderer just needs to be extended by an additional
initialization step which loads a vertex and a register combiner pro-
gram described below. Our implementation is based on the Open-
SceneGraph API [21] and requires only minimal extensions to the
standard renderer. Moreover, the implementation comes with (al-
most) no additional rendering costs and therefore allows interactive
applications.



(a) (b)

Figure 7: Cone tree representation in information visualization. The left image shows the original scene; in the right image, saturation
depth-cueing is applied to the same scene. The top and bottom images in the middle show magnified details; the central image visualizes the
difference between the two detail images.

(a) (b)

(c) (d)

Figure 8: Terrain rendering. Image (a) shows the original scene, (b) uses saturation depth-cueing, (c) uses intensity depth-cueing, and (d)
combines saturation depth-cueing with “sawtooth” intensity depth-cueing.



(a) (b) (c)

Figure 9: Semantic depth-cueing. Image (a) shows a standard 3D view on a chess board. In image (b), some chessmen are emphasized by
highly saturated colors. Image (c) illustrates a combination of semantic and geometric depth-cueing.

The only assigned task for the vertex program—besides standard
transform and lighting calculations—is to determine the depth value
d of a vertex and set the texture coordinate of a one-dimensional
texture to this depth value. For the calculation of the Euclidean (ra-
dial) distance between camera and vertex, for example, only four
additional vertex program commands are necessary. Even simpler
is the computation of the standard depth value, i.e., the distance
perpendicular to the image plane. The cool-to-warm tone shading
model for Figure 6 is also implemented in the vertex program, pro-
viding a single pass rendering for both the diffuse cool/warm terms
and the white Phong highlights.

The next change affects the texture fetching unit. Here, one addi-
tional texture lookup for the three components, fi(d), of the weight
function has to be included if an affine combination of colors is im-
plemented. If fi(d) and gi(d) are independent of each other, one
further lookup for gi(d) is required. Multiple texture lookups are
supported by modern graphics hardware; four or even more tex-
ture units are provided without need for multi-pass rendering. Note
that, for the GeForce 3, texture fetches are the only possible way
to attach some kind of depth information to fragments that are pro-
cessed in the subsequent pixel blending stage. Unfortunately, the
GeForce 3 does not provide access to the depth value or fogging
factor in this part of the rendering pipeline. On the other hand,
our texture approach gives much more flexibility in the choice of
blending functions than a simple access to the depth value could
offer, since any kind of weighting functions can be represented as
sampled texture. In particular, non-linear depth functions, such as
exponential functions, are correctly reproduced on a per-pixel basis.

Finally, the pixel blending unit (register combiner stage) is re-
sponsible for the main task, i.e., the transformation and blending of
a fragment color according to Eqs. (1a), (2), and (3). Figure 10 il-
lustrates the structure of the corresponding configuration of register
combiners for the implementation on the GeForce 3. All combiner
stages merely process the RGB portions of a fragment and do not
change the alpha portion.

The first four general combiners are used to transform the in-
put color (Corig;i) from RGB color space to the intermediate basis
P̃i. In the diagram, the input color is represented by primary
color. Combiners 0 and 1 compute dot products between the in-
put color and the three rows of the transformation matrix M, i.e.,
each of these dot products contains one of the three components of
the transformed color. Unfortunately, the result of a dot product is
stored in all components of the output color. Therefore, combiners
2 and 3 compute component-wise multiplication of the results of the
previous dot products with weights (1;0;0), (0;1;0), and (0;0;1),
respectively. In this way, wrong entries are masked out and the final
transformed color is obtained by a sum of the results of these three
multiplications. This summation is also performed in combiners 2

primary color

texture f(d)

texture g(d)

A

B

C

D

intermediate basis
transformation to

general combiners 0,1,2,3

to RGB basis
transformation back

A

B

C

D weighted sum

general combiner 4

AB + CD

A

B

C

D

general combiners 5,6,7
final combiner

final

color

Figure 10: Configuration of register combiners for the transforma-
tion and blending of a fragment color.

and 3.
Combiner 4 implements the weighted sum according to Eq. (2).

It takes one or two texture fragments as input, containing values
for fi(d) or gi(d), respectively. The transformed color from com-
biner 3 is another input parameter and undergoes a component-wise
multiplication with fi(d), yielding the first term of the weighted
sum in Eq. (2). The last input port takes the transformed admix-
ing color C̃mix;i, which is a constant color specified by the user.
In a second component-wise multiplication, the second part of the
weighted sum is computed. Finally, the output of combiner 4 con-
tains the sum of both multiplication, i.e., the complete weighted
sum from Eq. (2). If an affine combination of colors is intended,
the second texture gi(d) is redundant and the corresponding input
port takes 1� fi(d), which can be realized by an input mapping
unsigned invert.

General combiners 5,6,7, and the final combiner implement the
transformation of the blended color back to RGB color space ac-
cording to Eq. (3). The configuration is similar to combiners 0–3;
essentially, the transformation matrix M is replaced by the inverse
matrix M�1. Ultimately, the final combiner provides the intended
color Cdst in RGB color space.

Note that the matrices M and M�1 may have negative elements.



As rows of these matrices have to be transferred to register com-
biners, an input mapping of the form expand normal may be
necessary. In this way, parameters are mapped from the interval
[0;1] to [�1;1], allowing negative entries. Another caveat is the
limited resolution and possible range of values in the register com-
biner pipeline of the GeForce 3. Therefore, the matrix M should
be chosen in a way that allows both its matrix elements and the
components of the transformed color to lie within [-2,2].

All the example images of this paper and for the accompanying
video were generated by our hardware-based implementation. The
frame rates for the depth-cueing application are identical to those of
the original OpenSceneGraph viewer for all example scenes. This
shows that the additional operations in the transform and lighting
part and the register combiner unit do not impair rendering perfor-
mance in typical applications. Only for scenes with extreme ras-
terization demands—such as texture-based volume rendering—the
additional operations in the register combiner unit could decrease
the overall frame rate, depending on the actual properties of the
graphics chip.

In the remaining part of the section, we present another approach
to hardware-based color depth-cueing. The basic idea is to detach
the first color transformation step from the register combiners. In
fact, this transformation to the intermediate color basis, according
to Eq. (1a), could also be implemented in a vertex program. As
vertex programming allows even more complex and a much larger
number of operations than register combiners, original colors Corig
can easily be transformed on a per-vertex basis. Rasterization is
always based on a triangulated surface; and colors are interpolated
linearly within a triangle during scanline conversion. As linear in-
terpolation and a linear transformation via a matrix are commu-
tative, colors may very well be transformed before scanline con-
version. In this way, the rasterization stage could be unburdened
and many unnecessary calculations could be avoided—at the cost
of only three transformations per triangle within the transform and
lighting part of the rendering pipeline.

On current consumer graphics hardware, however, this approach
is not yet feasible. Major problems are caused by a limited range
and resolution of color values on the data path from the transform
and lighting stage to the rasterization unit. In particular, colors are
clamped to values from [0;1]. However, negative values and values
larger than one may occur. As a solution to this problem, colors
could be mapped to [0;1] at the end of the transform and lighting
stage and remapped to the original interval at the beginning of the
rasterization stage. With a limited color depth of usually eight bits,
this causes unacceptable color artifacts. As this is not a fundamen-
tal problem, this kind of implementation might become feasible in
the near future on improved chips with color channels of higher
resolution or wider value range.

7 Conclusion

In this paper, we have proposed a generic and widely applicable
color-based depth-cueing scheme. It rests upon the fundamental
principle of trichromatic generalization of human color perception.
Arbitrary hyperplanes in the 3D tristimulus space of colors can be
specified, and different ways of combining colors can be applied to
color differences in these planes and perpendicular to them.

We have derived parameters for this generic scheme to allow for
well-known intensity depth-cueing and rather neglected saturation
depth-cueing. In addition, we have presented variations and com-
binations of these core approaches to further improve depth per-
ception for different fields of application. Semantic depth-cueing
has been introduced as an abstract depth-cueing approach. Typical
fields of application comprise technical illustrations, artistic ren-
dering, information visualization, terrain visualization, volume il-
lustrations, or image-based rendering.

Although our depth-cueing scheme is very flexible and power-
ful, it requires only a few and simple computational operations—
just two linear transformations of 3D vectors and a weighted sum of
two vectors. All of the operations are supported by contemporary
consumer graphics hardware in single-pass rendering. The imple-
mentation of our scheme needs only a few configurations of the
rasterization as well as transform and lighting units and it is trans-
parent to standard rendering. Existing applications can be easily
enriched by sophisticated depth-cueing without performance cut-
backs. Real-time capability is extremely useful, since it allows
color-based depth cues to be combined with other depth cues—such
as motion parallax, active movement, perspective, and occlusion—
in order to improve depth perception significantly.

A Transformation to Gray Axis

For saturation depth-cueing as described in Section 4, we have to
find an appropriate intermediate basis fP̃ig in which one basis vec-
tor, for example P̃1, is collinear with the gray axis. The other two
basis vectors, P̃2;3, have to be perpendicular to P̃1.

For our implementation, we assume that the gray axis stretches
from black to white in RGB space, i.e., from (0;0;0) to (1;1;1).
Therefore, the gray vector P̃1 is the sum of the RGB basis vectors,
up to an arbitrary scaling factor α, i.e., P̃1 = α∑3

i=1 Pi. The other
two basis vectors are chosen perpendicular to P̃1 and to each other.
One possible choice for the transformation matrix is

Mi j =
1
3

0
@

1 �1+
p

3 �1�p3
1 �1�p3 �1+

p
3

1 2 2

1
A :

The transformation back to RGB color space is based on the inverse
matrix M�1.

The maximum and minimum values of Mi j are 1=3 and (�1�p
3)=3, respectively. For the implementation on the GeForce 3,

the matrix elements have to be mapped from [�1;1] to [0;1] before
they can be transferred as parameters to the register combiner stage.
The respective input mapping for the register combiners has to be
GL EXPAND NORMAL NV in order to remap the matrix elements
back to the true values.

Other choices of matrices are also possible. In particular, the
definition of the luminous vector Y from the CIE XYZ color space
could serve as a basis for the transformation matrix.

References
[1] M. J. Bailey and D. Clark. Using ChromaDepth to obtain inexpensive single-

image stereovision for scientific visualization. Journal of Graphics Tools,
3(3):1–9, 1998.

[2] J. Brueghel the Elder. Christ preaching at the seaport. Oil on wood, Alte
Pinakothek, Munich, 1598.

[3] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen. Unstructured
lumigraph rendering. In SIGGRAPH 2001 Conference Proceedings, pages 425–
432, 2001.

[4] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin.
Computer-generated watercolor. In SIGGRAPH 1997 Conference Proceedings,
pages 421–430, 1997.

[5] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Eurographics Rendering
Workshop ’98, pages 105–116, 1998.

[6] O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte. Floating points: A
method for computing stipple drawings. In Computer Graphics Forum (Euro-
graphics 2000), volume 19(3), 2000.

[7] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and
Modeling. Academic Press, San Diego, 1998.



[8] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic rendering of
volume models. In IEEE Visualization 2000 Proceedings, pages 195–202, 2000.

[9] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics —
Principles and Practice. Addison-Wesley, 2nd edition, 1992.

[10] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic lighting
model for automatic technical illustration. In SIGGRAPH 1998 Conference Pro-
ceedings, pages 101–108, 1998.

[11] B. Gooch and A. A. Gooch. Non-Photorealistic Rendering. A. K. Peters, Natick,
Mass., 2001.

[12] B. Gooch, P.-P. Sloan, A. Gooch, P. Shirley, and R. Riesenfeld. Interactive tech-
nical illustration. In 1999 ACM Symposium on Interactive 3D Graphics, pages
31–38, 1999.

[13] S. Green, D. Salesin, S. Schofield, A. Hertzmann, P. Litwinowicz, A. A. Gooch,
C. Curtis, and B. Gooch. SIGGRAPH 1999 Course 17: Non-photorealistic ren-
dering, 1999.

[14] C. G. Healey, V. Interrante, and P. Rheingans. SIGGRAPH 1999 Course 6: Fun-
damental issues of visual perception for effective image generation, 1999.

[15] G. S. Hubona, P. N. Wheeler, G. W. Shirah, and M. Brandt. The relative con-
tributions of stereo, lighting, and background scenes in promoting 3D depth vi-
sualization. ACM Transactions on Computer-Human Interaction, 6(3):214–242,
Sept. 1999.

[16] V. Interrante, P. Rheingans, J. Ferwerda, R. Gossweiler, and C. G. Healey. SIG-
GRAPH 1998 Course 32: Applications of visual perception in computer graph-
ics, 1998.

[17] C. A. Kelsey. Detection of visual information. In W. R. Hendee and P. Wells,
editors, Perception of Visual Information, pages 30–51, Wien, 1993. Springer.

[18] R. Kosara, S. Miksch, and H. Hauser. Semantic depth of field. In IEEE Sympo-
sium on Information Visualization 2001 (InfoVis 2001), 2001.

[19] L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bourdev, D. Goldstein, and
J. F. Hughes. Real-time nonphotorealistic rendering. In SIGGRAPH 1997 Con-
ference Proceedings, pages 415–420, 1997.

[20] S. W. Mereu and R. Kazman. Audio enhanced 3D interfaces for visually im-
paired users. In Proceedings of ACM CHI 96 Conference, volume 1, pages 72–
78, 1996.

[21] Open Scene Graph. Web page. http://www.openscenegraph.org, 2001.

[22] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching. In SIG-
GRAPH 2001 Conference Proceedings, pages 579–584, 2001.

[23] R. Raskar. Hardware support for non-photorealistic rendering. In ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pages 41–46, 2001.

[24] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3D
visualizations of hierarchical information. In Proceedings of ACM CHI’91 Con-
ference on Human Factors in Computing Systems, pages 189–194, 1991.

[25] M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H. Salesin. Interactive pen-
and-ink illustration. In SIGGRAPH 1994 Conference Proccedings, pages 101–
108, 1994.

[26] H. Schirmacher, L. Ming, and H.-P. Seidel. On-the-fly processing of generalized
lumigraphs. Computer Graphics Forum, 20(3), 2001.

[27] F. Schöffel, W. Kresse, S. Müller, and M. Unbescheiden. Do IPT systems fulfill
application requirements? – A study on luminance on large-scale immersive
projection devices. In Proceedings of the 3rd International Immersive Projection
Technology Workshop (IPT ’99), pages 281–292. Springer, 1999.

[28] T. Troscianko, R. Montagnon, J. L. Clerc, E. Malbert, and P.-L. Chanteau. The
role of colour as a monocular depth cue. Vision Research, 31(11):1923–1930,
1991.

[29] E. R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narra-
tive. Graphics Press, Cheshire, Conn., 1997.

[30] J. Tumblin and J. A. F. (eds.). Issue on applied perception. IEEE Computer
Graphics and Applications, 21(5):20–85, 2001.

[31] J. van Eyck. The virgin of chancellor Rolin. Oil on wood, Musée du Louvre,
Paris, 1435.

[32] J. J. van Wijk and A. Telea. Enridged contour maps. In IEEE Visualization 2001
Proceedings, pages 69–74, 2001.

[33] G. Winkenbach and D. H. Salesin. Computer-generated pen-and-ink illustration.
In SIGGRAPH 1994 Conference Proceedings, pages 91–100, 1994.

[34] M. Woo, J. Neider, T. Davis, and OpenGL Architecture Review Board. OpenGL
Programming Guide. Addison-Wesley, 1997.

[35] G. Wyszecki and W. S. Stiles. Color Science. John Wiley & Sons, New York,
second edition, 1982.

[36] S. Zhai, W. Buxton, and P. Milgram. The partial-occlusion effect: Utilizing
semitransparency in 3D human-computer interaction. ACM Transactions on
Computer-Human Interaction, 3(3):254–284, Sept. 1996.


