
*
The work of Jörg Hähner is supported by the Gottlieb Daimler and Karl Benz Foundation

Institute of Parallel and Distributed
High Performance Systems (IPVS)

Department of Computer Science

University of Stuttgart

Breitwiesenstr. 20-22
D-70565 Stuttgart

Germany

Consistent Update Diffusion in Mobile
Ad Hoc Networks

Kurt Rothermel, Christian Becker,
Jörg Hähner*

Technical Report 2002-04

July 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

2

Abstract

Applications of mobile ad hoc networks (MANETs) occur in situations,
where networks need to be deployed immediately but network
infrastructures are not available. If MANET nodes have sensing
capabilities, they can capture and communicate state of their
surroundings, including environmental conditions or other nodes in
proximity. If the sensed state information is propagated and collected in a
database, this allows for a variety of promising automatic monitoring,
tracking and navigation applications, using global state information to
built up models of reality.

Since state changes represent events happening in reality, applications are
typically interested to see the most recent state. Also the order of state
changes should be consistent with the corresponding order of events in
reality. In particular, preserving consistency becomes a challenging
research problem if there are multiple nodes sensing the same object,
either subsequently or even concurrently.

In this paper, we introduce a generic model of state propagation in
MANETs and propose two consistency levels for this model. For each of
these consistency levels, we define a state propagation algorithm based on
information diffusion. Our simulations show, that for typical scenarios the
additional synchronization overhead for achieving the proposed
consistency levels is low. In terms of communication overhead and state
propagation latency one of the proposed algorithms shows a similar
performance as the underlying flooding mechanism.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

3

1 Introduction
In the near future, advances in processor, memory and radio technology will enable small mobile
nodes that are capable of communication, computation and sensing. The integrated sensing
devices may detect a node’s position and orientation as well as measure and test for changes in its
environmental conditions, including hazardous emission, temperature, smoke or dust. For
proximity and presence sensing various promising technologies, such as Radio Frequency
Identification (RFID) are rapidly emerging. Active RFID tag technology has been designed to
locate and track mission-critical people and assets. Although this technology is still in an early
stage, read ranges of currently available active RFID tags are already up to 35 feet.

Their sensing capabilities allow nodes to monitor their physical context and gather context
information. Although context-aware applications can already profit from locally gathered state
information, the benefit is much greater if they have access to global state information, i.e. the
collection of locally captured states. Access to global state enables to maintain more or less
complex models of reality which can be accessed by each node. If not only the observed state but
also – if possible – the relation to other observations with respect to their temporal ordering is
propagated, applications can derive additional information about the environment. For an
example consider a mobile object that has been observed by two consecutive observations. If the
ordering of the observations is known, the heading of the object can be deduced.

To motivate our research, we consider the following fire fighting scenario. A number of fire
fighters have been assigned to extinguish a fire in a building. Among the fire fighters are a
number of officers, who are in charge to collectively manage the entire operation.

Each fire fighter carries an active RFID tag and a small communication device, which is
equipped with appropriate environmental sensing devices. RFID tags are also attached to the
mission-critical equipment of the fire fighters’ (e.g., water pumps), some of which may signal
their current state (e.g., pump pressure, energy level). In order to locate both fire fighters and
devices, officers carry RFID receivers with communication capabilities. When the fire fighters
move into the building, those receivers are also placed at neuralgic points in the buildings, like
entrances or hall ways. Other relevant objects within the building, e.g. a tank for gas or other
chemicals, might be provided with a sensor indicating their condition, e.g. temperature.

From a system’s point of view, the fire fighters and their equipment are “perceivable” objects that
are associated with state information. Each object has a relative location (e.g., in team of officer
A) and an absolute location (e.g., in wing B of second floor). Objects are typically associated
with further state information, such as pump pressure or temperature. If the officers have access
to the state of all perceivable objects, they get a global picture of the entire operation. That is,
they know where fire fighters and their equipment are located, how they are grouped into teams,
and what are the fire fighters’ current environmental conditions and the equipment’s state. If
consecutive observations indicate a rise of temperature in a gas tank either cooling or evacuation
of the surrounding area can be forced. This information may significantly increase the efficiency
of the operation as well as the safety of the fire fighters.

Applications of mobile ad hoc networks (MANETs) occur in situations like the one described
above, where networks need to be deployed immediately but (operational) base stations or fixed
network infrastructures are not available. To allow access to global state information in MANETs

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

4

one can follow one of two approaches, update diffusion or query diffusion. In the case of update
diffusion, sensed state changes cause updates to be propagated to a database, which is typically
replicated over a number of nodes. The entire state information is stored in the database, and for
state retrieval, applications access an available database copy. In contrast, with query diffusion,
state information is only stored at the nodes, where it has been sensed. For state retrieval an
application broadcasts or geocasts a query specifying the requested state information. State
information matching the query is sent back to the application. While this approach has its merits
in sensor networks with stationary nodes, it has two serious disadvantages in MANETs. Firstly,
for partitioned networks the availability of state information is poor since each state item is stored
on a single node only. Of course, caching can be used to increase availability, however at the cost
of introducing the problem of stale caches. Secondly, in many situations, as in the scenario
described above, applications should learn about state changes as fast as possible. This is hard to
achieve with pull approaches like query diffusion. Therefore, we decided for the update diffusion
approach. In our fire fighting scenario, on each officer’s device there exists a copy of a database
that stores the entire state information. Whenever a state change occurs, the new state information
is propagated to each database copy.

The problem that comes with update diffusion is the danger of inconsistencies. In the realm of
databases numerous replication management algorithms have been proposed to achieve strong
consistency (e.g., see [BHG97]). However, applying those algorithms in MANETs, where
network partitioning is supposed to occur frequently, would result in reduced availability of data,
while also incurring unacceptably high communication overhead. For many applications the
availability of data is more important than strong consistency, e.g., an officer querying the states
of the fire fighters located in a given wing would prefer (slightly) outdated state information to
the alternative of getting no information. This fact has lead to the definition of weaker
consistency levels in various areas, such as directory systems (e.g., [Nee93]) or distributed file
systems (e.g., [Sat93]). In the context of sensing, ideally all DB copies of an object should reflect
this object’s state in reality. Here, weak consistency has been defined to be given if all copies of
an object converge to the most recently propagated state, where it may happen that a fraction of
copies are up-to-date, while others are stale [KMP99]. A precise definition of our notion of weak
consistency will be given below.

If there only exists a single source of updates for each object, the most recently propagated state
can be easily determined by an appropriate versioning scheme. However, this becomes a more
challenging task if there are multiple update sources per object and synchronized clocks are not
available. For example, while moving through the building, a fire fighter will enter the read range
of several RFID receivers, propagating an state update message each time. Two “current
pressure” signals successively communicated by a water pump may be received by different
communication devices, each propagating an update. Multiple update sources can occur in many
realistic sensing environments.

In this paper, we address update propagation taking into account that there might exist multiple
update sources per object, propagating updates subsequently or even concurrently. In particular,
the contributions of the paper are as follows: We propose a generic model for update diffusion
and define two consistency levels, called local observation consistency and global observation
consistency. For each of these consistency levels, we describe an update diffusion algorithm
based on flooding. Finally, simulations compare the algorithms with flooding in three typical

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

5

scenarios. While consistency in
the local observation
consistency results in 50%
more messages and a doubled
latency global observer
consistency performs the same
as flooding. However,
additional effort is spent on
maintaining ordering
information on the node.

The remainder of the paper is
structured as follows. The next
section will present our system
model introducing the system
model and the two consistency
levels. Section 3 discusses the
assumptions regarding the
underlying dissemination
algorithm. The two protocols

ensuring the consistency levels are introduce in section 4 and informal correctness proofs are
given. Simulations comparing the protocols with plain flooding are presented in section 5 before
related work is discussed. The paper closes with a conclusion and an outlook to further work.

2 Update Diffusion Model
The major components of our model are observers, nodes and perceivable objects (see Fig. 1).
Each perceivable object (or object for short) has a globally unique identifier and is associated
with state information, which may change over time. Perceivable objects may be stationary or
mobile. For example, the fire fighters are equipped with RFID tags reflecting identifying them
individually. Sensors for smoke or temperature are placed at neuralgic places providing
environmental information. Even image recognition might be used to track objects not being
equipped with RFID tags, e.g. people still residing in the building, and propagating this
information

An observer can sense perceivable objects that reside in its observation range. For each observed
object, an observer captures the object’s identifier and the state information associated with it.
There might be multiple observers that observe the same object, consecutively or even
concurrently. Observers also may be stationary or mobile. The sensors for environmental
conditions and position monitoring will be typically placed at appropriate locations within the
mission area. However, some fire fighters might be equipped with such sensors as well in order
to provide additional information about the environment as they move.

When an observer notices a state change of an object, it propagates the new state to a database (or
DB for short). For each observed object, this DB stores a record consisting of the object’s
identifier and its current state. As will be seen below, the DB is replicated over multiple mobile
nodes (see Fig. 1). Applications running on those nodes access the local DB to read the observed
objects’ states. In other words, observers update the DB, while applications only read it. A device

z x y

N1

N2

N3

N4

x1
y1
z1

x3
y3

x2
y2
z2

x3
y3

O1 O2

Perceivable
Object

Node Ni

Observer Oi

z

Figure 1: Observation Model

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

6

can support both roles observer and node, e.g. the officer’s device being equipped with sensors as
well as running the tracking and management application.

In our model, we distinguish between observers and observations. When an object moves into the
observation range of an observer, a new observation is started, and this observation ends when
the object leaves the observation range. Consequently, an object entering the observation range of
a given observer several times results in multiple observations. Each observation observes a
single object, for which it maintains a state record. If the state information captured by the
observer’s sensors significantly differ from the recorded state, the latter is updated accordingly
and propagated to the DB, where the definition “significant” is application-dependent.

An observation can be modelled as a sequence of transitions of the observed object’s state,
where each state transition is propagated to the DB. We will use the following notation for
denoting an observation, say o: so

1 → so
2 → so

3 → ... → so
j-1 → so

j, where edge so
i-1 → so

i

represents a state transition from state so
i-1 to state so

i. We call this a local observation graph.

Our notion of consistency introduced below is based on the ordering of observations. Let o and o’
be two observations of the same object, say x. We define o to occur before o’ if o was finished
before o’ was started, and will use notation o <x o’ to express this relationship. Note that if o <x o’
or o’ <x o, observations o and o’ do not overlap in time. We define o and o’ to be concurrent if
neither o <x o’ nor o’ <x o holds, and will use notation o ||x o’ to denote this relationship. Note that
concurrent observations at least partially overlap in time.

There might exist multiple observations of the same object, concurrently or consecutively. The
collection of observations of an object, say x, is modelled by a so-called global observation
graph, which is composed of the local observation graphs of all observations of x. This graph
links x’s local observation graphs according to the <x-relationship. More precisely, for each
observation o and o’ with o <x o’, the global observation graph’s set of edges includes
so

Last→so’
1 , where so

Last is the last state in o’s state transition sequence and so’
1 is the first state in

the sequence of o’. Fig. 2 shows three examples of global observation graphs of an object. The
graph in Fig. 2a links observation o1 and o2, where o1<x o2. The graph in Fig. 2b includes

observations o1, o2 and o3,
where o1 <x o2, o1 <x o3 and o2
||x o3. In the graph given in Fig.
2c, observations o2 and o3,
which are concurrent, occur
before o4.

As stated above, the DB is
supposed to be replicated over a
number of mobile nodes, and
hence multiple copies of an
observed object’s state record
exist. We will use xi to denote a
copy of x’s state record and
Copies(x) to designate the set of
all state record copies of x. When

o1:

(a)

o2:

(b)

o1:

o2:

o3:

1 2 3

1 2

1 2

1 2 3 4

1 2 3

t

t

t

o4:

(c)

o1:

o2:

o3:

1 2
1 2 3

1 2
1 2

Figure 2: Observation graphs

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

7

a state change is observed for some object x, the new state must be propagated to all Copies(x).
Since there may exist several (potentially concurrent) observations propagating state updates for
the same object, an update algorithm has to obey some rules to avoid that the copies diverge.
Those rules depend on the consistency level that is to be achieved. In the following we will
define two consistency levels, local observation consistency and global observation consistency.

The DB is defined to be local observation consistent if for each object x in the DB and for each
of xn ∈Copies(x) the following holds:

(C1) xn will eventually converge to the most recently propagated state of x.

(C2) Once xn has reached state so
i, it will no longer accept a state so

j with j < i.

Condition (C1) ensures that all copies of x converge into the most recently propagated state. We
assume here that observations observing the same object at the same time deliver equivalent
states, where the definition of state equivalence is application-dependent. In the observation
graphs depicted in Fig. 2a, 2b and 2c, the most recently propagated state is so2

2, so2
4, and so4

2,
respectively. Condition (C2) ensures that a state propagated by a given observation is never
overwritten by an older state propagated by the same observation. In other words, the ordering of
state transitions need to be consistent with x’s local observation graphs in the sense that a state
transition from s to s’ is only allowed if s’ follows s in one of these graphs. Note, however, that
there are no restrictions concerning states propagated by different observations. For example, for
the observation depicted in Fig. 2a the sequence state updates so1

1 so2
1 so1

3 so2
2 applied to some

copy is local observation consistent. Notice that although o1 occurred before o2, a state
propagated by o2 is overwritten by a state of o1. As this might not be acceptable for various
applications, we introduce a stronger type of consistency. When two subsequent observations of
the same object happen, applications can deduce distinct properties, e.g. the heading of an object
when it passes different observers. A fire fighter first passing the receiver in the first floor and
then one in the second floor can be considered to be moving upstairs.

A DB is defined to be global observation consistent if it is local observation consistent and
additionally for each object x in the DB and for each xn ∈Copies(x) the following holds:

(C3) Once xn has reached state so’
j, it will no longer accept a state so

k for o <x o’ and any j and

k.

Condition (C3) ensures that a state propagated by a given observation is never overwritten by a
state propagated by an observation that occurred before. In other words, the ordering of state
transitions need to be consistent with x’s global observation graph in the sense that a state
transition from s to s’ is only allowed if s’ follows s in this graph. For the global observation
graph depicted in Fig. 2a, the sequence of state updates so1

1 so1
3 so2

1 so2
2 applied to some copy is

global observer consistent. Note, however, that there are no restrictions concerning the ordering
of states belonging to concurrent observations. For example, the state update sequence so1

1 so1
2

so2
1 so3

1 so2
2 so3

3 so2
4 applied to some copy is global observer consistent for the graph depicted in

Fig. 2b.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

8

3 Assumptions
In the following, we will introduce the assumptions, the algorithms described in the next section
are based upon.

We will assume that object states are replicated on each node, i.e., each node contains a replica of
the DB. Diffusion mechanisms are applied to propagate state changes from node to node, which
update their copies accordingly. Nodes and observers are assumed to form a mobile wireless ad
hoc network (MANET). Two devices (node or observer) are called neighbours while they are in
each others communication range. On each device we assume the existence of a discovery
mechanism that maintains a Neighbours list to keep track about the device’s current neighbours.

Our state diffusion algorithms are based on a flooding mechanism. For MANETs several such
mechanisms have been introduced in the literature (e.g., see [Ni+99, Ho+99]). To avoid so-called
broadcast storms various scoped flooding techniques have been proposed in [Ni+99]. For
example, probabilistic, distance-based, or even location-based schemes can be applied to restrict
the scope of flooding. Furthermore, “hyper flooding” [OTV01] can be used to increase the packet
delivery ratio if network partitioning happens frequently [Ho+99]. With this approach,
references to previously updated DB records are stored in a cache, where cached states are re-
broadcasted when a new neighbour node becomes available. Either the entire cache is
broadcasted or some heuristic can applied to select an appropriate subset of states. A more
complex approach is to synchronize databases when two nodes become neighbours, and flood the
updates resulting from synchronization. Note that flooding techniques incorporating state caching
or DB synchronization techniques increases the “lifetime” of update messages as compared to
plain or scoped flooding [OTV01].

It has been shown that the chosen flooding technique can significantly impact both
communication overhead and packet delivery ratio [HKB99][Ho+99]. Whether or not a given
flooding mechanism is appropriate depends on the application and the characteristics of the
underlying MANET. That is the reason why we have tried to make our diffusion algorithms
independent on the underlying flooding technique. We assume a communication primitive f-
forward, which forwards a message to the sender’s neighbour nodes according to the underlying
flooding scheme. It is also assumed that f-forward applies an appropriate randomisation
technique to reduce the probability of collisions. Moreover, we will assume that a state f-
forwarded by an observer will eventually reach each node. Note that this assumption is a
prerequisite for condition C1 to be fulfilled for all copies. It is important to mention, however,
that our diffusion algorithms also work if an object’s most recent state can only be f-forwarded to
a fraction of copies. In this case, of course, C1 can be only fulfilled for this fraction of copies.

Any kind of sensor technology can be used to perceive objects, and we make no assumptions
about the sensed objects itself. In particular, we do not require objects to support versioning of
state information. Clearly, an object sensed visually or identified by RFID technology cannot
perform state versioning itself. Therefore, we assume that versioning of states is done by
observers.

Finally, we do not require the clocks of observers and nodes to be synchronized. Clock
synchronization is at least a difficult task in frequently partitioned networks and consumes
additional bandwidth and energy.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

9

4 Update Diffusion Algorithms
In the first part of this section, we will present a diffusion algorithm that supports local-observer-
consistency. This algorithm is extended in the second part to also provide for global-observer-
consistency. While removal of DB objects are not considered in the first two parts the last part of
this section, the last part is devoted to this problem.

4.1 Supporting Local Observer Consistency: Algorithm 1
We will first introduce the data structures needed for observers and nodes before describing the
observer/node and node/node protocol. Finally, informal correctness arguments are given.

4.1.1 Data Structures

For each active observation, an observer maintains a so-called observation record in data
structure Obs. When an object enters an observer’s observation range a new observation is
created and an observation record added to data structure Obs. When an observation ends, the
corresponding record is removed from Obs. An observation record is composed of the following
components:

• Obj: the observed object’s unique identifier.
• State: the observed object’s propagated-state.
• VN: version number of the propagated-state. VN is incremented whenever a new version

of State is generated.
• ObsId: This is the globally unique identifier of the corresponding observation. It has the

form ObserverId.ObservationCounter, where the counter is incremented whenever a new
observation record is created.

We will use notation Obs(o) to denote the observation record of observation o, while Obs(o).c
denotes component c in this record.

A node’s local DB contains an observation record for each locally known object. We will use
DB(x).c to designate component c of object x’s observation record, while DB(x) denotes the
entire DB entry of x and DB the entire local copy of the database.

4.1.2 Observer/Node Protocol

An observer broadcasts state information to its neighbour nodes whenever it observes a new
object or a state change of an already observed object The state observed by an observation, say
o, is transmitted in an O_Update message, which includes the observation record Obs(o). A
randomization technique is used to make sure that concurrent observers forwarding the same state
information becomes a rare event. Each observer waits a random time before it transmits an
object’s new state. If in the meanwhile the observer receives another O_Update including
equivalent state information for the same object, the transmission is withdrawn. Again note that
the decision whether two states are equivalent is application-dependent. This mechanism is based
on the valid assumption that in most cases observers observing the same object are close to each
other and sense state changes at approximately the same time.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

10

When a neighbour node receives an O_Update message, including observation record r, it
proceeds according to the following cases:

(O-1) Object r.Obj is not in DB: r is included in DB and f-forwarded in an N_Update message
to its neighbour nodes.

(O-2) Object r.Obj is in DB: The following subcases must be considered:
(O-2.1)DB(r.Obj).ObsId = r.ObsId: r and the record in DB are from the same observation,

again two subcases must be considered:
(O-2.1.1) DB(r.Obj).VN < r.VN: r is younger than the record in DB. Therefore, the old

record is replaced by r in DB, and r is f-forwarded in an N_Update message to its
neighbour nodes.

(O-2.1.2) DB(r.Obj).VN ≥ r.VN: r is not younger than the record in DB and thus is
ignored.

(O-2.2)DB(r.Obj).ObsId ≠ r.ObsId: r and the record in DB are from different observations,
two subcases must be considered:

(O-2.2.1) DB(r.Obj).VN < r.VN : r replaces the old record in DB and is f-forwarded in
an N_Update message to its neighbour nodes.

(O-2.2.2) DB(r.Obj).VN ≥ r.VN: r is not accepted. Instead, the observer is requested to
synchronize its version number by sending a O_Sync message. This message
includes a tuple (r.ObsId, NewVN,), where the latter component is the requested new
value of the version number, which is set toDB(r.Obj).VN+1.

When an observer receives O_Sync(o, NewVN) for
observation o, it sets Obs(o).VN to max(Obs(o).VN,
NewVN). Moreover, it f-forwards the updated observation
record within an O_Update message to its neighbours.

Let’s take a closer look at case (O-2.2.1). Since condition
C3 does not have to be fulfilled, the node can accept the
propagated state without knowing the ordering between
DB(r.Obj).ObsId and r.ObsId. However, to satisfy
condition C1, we have to make sure that the most recent
state will eventually end up with the highest version
number. That is why in case (O-2.2.2) the node requests
the observer to increase its version number to

DB(r.Obj).VN+1. Fig. 3 shows a scenario, where synchronization of version numbers is to be
performed. In this scenario, observation o2 follows observation o1, whose final O_Update
message forwards an observation record with version number 50. The first observation record
propagated by o2 includes version number 1. Because of the returned O_Sync message, o2
synchronizes its version number counter and f-forwards an observation record with version
number 51, which then is accepted by the node.

4.1.3 Node/Node Protocol

When a node receives an N_Update message, including observation record r, it proceeds
according to the following cases:

O-Update, VN=50

N O2

O-Update, VN = 1

O-Sync, VN=51

O-Update, VN = 51

O1

Figure 3: Synchronization of
Version Numbers

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

11

(N-1) Object r.Obj is not in DB: r is included in DB and f-forwarded in an N_Update message.
(N-2) Object r.Obj is in DB: The following two subcases are to be considered:

(N-2.1)DB(r.Obj).VN < r.VN : Two subcases are to be considered:
(N-2.1.1) DB(r.Obj).ObsId = r.ObsId: r is younger than the record in DB. Therefore, r

replaces the old record in DB and is f-forwarded in an N_Update message.
(N-2.1.2) DB(r.Obj).ObsId ≠ r.ObsId1: Since the ordering between these both

observations is unknown, it cannot be decided whether r or the DB record is more up
to date. Since, however, r can be accepted without violating C2, the old record in
DB is replaced by r, which then is f-forwarded in an N_Update message.

(N-2.2)DB(r.Obj).VN ≥ r.VN: r is ignored.

4.1.4 Correctness Arguments

Let us briefly argue why this algorithm ensures local observation consistency. Condition C2 is
obviously fulfilled due to (N-2.2) and (O-2.1.2), which prevent a node from accepting an
observation record that is older than the one in the DB.

To show C1 to be fulfilled we assume that f-forwarded observation records will eventually reach
each node (see Sec. 3). The fact that observers increment version numbers with each state change
in combination with the synchronization of version numbers in (O-2.2.2), ensures that the most
recent state will eventually end up with the highest version number. Finally, the state with the
highest version number will eventually be accepted by all nodes due to (O-2.1.1), (O-2.2.1), and
(N-2.1). Consequently, condition C1 is also satisfied.

Although this algorithm achieves the required level of consistency, it suffers a performance
problem in the presence of concurrent observations. As soon as there are multiple observations at
the same time for the same object, the corresponding observations will indirectly hear from the
version numbers generated by each other. Due to (O-2.2.2) they will cause themselves to
mutually increase their version numbers constantly as long as they overlap in time. One way to
avoid this problem is to let a node check whether the state included in an O_Update message
received from an observer actually differs from its local DB state2. If the received state and the
DB state are equivalent, the received state is not accepted and the version number not modified.
Since we assume that concurrent observations capture equivalent states while they overlap in
time, the above mentioned problem is avoided.

4.2 Supporting Global Observer Consistency: Algorithm 2
In this section, we will modify Algorithm 1 to provide for global observer consistency. Again we
will first introduce the required data structures, then describe the observer/node and node/node
protocol, and finally give informal correctness arguments.

1 To speed up synchronization of version numbers, the following can be performed: If the observer performing
DB(r.Obj).ObsId is in the node’s Neighbours list, an O_Sync(DB(r.Obj).ObsId, r.VN+1) is sent to this observer. If
this observation is still active, an O_Update with a synchronized version number will be triggered.
2 This check is only to be performed if the received state an DB state are from different observations.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

12

4.2.1 Data Structures

Nodes and observers maintain data structures DB and Obs,
respectively, which are structured as described for
Algorithm 1. In addition, nodes have to maintain
information about the ordering of observations to be able to
fulfil condition C3.

Ordering relationships can be derived from interactions
between nodes and observers. Assume that o1 and o2 are
observations of the same object, say x, and a given node

learns about o1 before o2, i.e. the node receives the first O_Update of o1 before the first
O_Update of o2. We conclude from the ordering of these receive events that o2 did not occur
before o1, i.e., o1 <x o2 or o1 ||x o2. Of course, this conclusion is only valid if we can guarantee
that the first O_Update of o2 never arrives before the first O_Update of o1 at any node if o1 <x

o2. This can be ensured by deferring the first O_Update of an observation by δ, where δ is the
maximum message delay on a link (single hop). The scenario in Fig. 4 shows that the first
O_Update of o2 cannot arrive at the node before the one of o1.

For each object in its DB a node maintains a so-called ordering graph, which specifies the
locally known ordering relationships between observations of this object. Let Gx=(Vx,Ex) denote
the ordering graph for object x. The set of vertices, Vx, contains the locally known observations of
x, where a node learns about observations by means of O_Update or N_Update messages, as will
be seen below. The set of edges, Ex, defines the locally known ordering relationships between
observations. A directed edge o→o’ exists in the ordering graph if and only if either o <x o’ or o
||x o’ holds, i.e., o’ did not occur before o.

Now, we will describe how observation graphs are constructed. When a node receives an
O_Update message from an observation, say o, it performs the following graph management
operations:

(GM1): Vx ∪{o}, and ∀ o’ ∈ Vx\{o}: Ex ∪ {o’→o}.

Fig. 5 shows versions of an ordering graph Gx maintained by some node N. The graph in Fig. 5a
indicates that o1 <x o2 or o1 ||x o2. Now assume that N receives an O_Update from observation

o3, which causes Gx to be modified as depicted in Fig
5b.

Nodes forward ordering relationships by means of
N_Update messages to their neighbouring nodes (for
the details of this protocol see below). An N_Update
message propagating an observation record for an
object, say x, also includes the sending node’s
ordering graph Gx. A node receiving Gx in an
N_Update merges Gx and its local ordering graph, say
G’x. It performs the following graph management
operations:

O-Update

O-Update

δ}

O1 N O2

Figure 4: Deferring initial

a)

b)

c)

d)

e)

f)

o3

o4

o1 o2

o1 o2

o3

o1 o2

o1 o2

o4

o2

o1

o4

o3

o1 o3

o2 o4

Figure 5: Ordering Graphs

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

13

(GM2): Vx ∪ V’x and Ex ∪ E’x.

Note that due to the graph merging, it may happen that there are two oppositely directed edges
between a pair of vertices, which indicates that these two observations are concurrent. For
example, the merging of the graphs depicted in Fig. 5b and Fig. 5c results in the graph shown in
Fig. 5d, from which we can derive that o1 and o2 are (definitely) concurrent.

A vertex o ∈ Vx is defined to be a sink of Gx if there exists a path from each o’ ∈ Vx \{o} to o in
Gx. Moreover, we call Gx to be ordering-complete if either (1) Vx includes a single sink, or (2) Vx

contains multiple sinks and for each pair of sinks, say o and o’, the following holds: o→o’ ∈ Ex

and o’→o ∈ Ex, i.e., all sink observations are concurrent. Note that an ordering-complete graph
always has a single sink if there are no concurrent observations, while there might be multiple
sinks in the case of concurrent observations. In the ordering graph in Fig. 5d, for example, there
is a single sink observation, which is o3. Obviously, if Gx is ordering complete, the local copy of
x converges to the state most recently propagated by one of the sink observations. Remember,
observations observing a given object at the same time are assumed to deliver equivalent states.

The result of merging may be an ordering graph that is not ordering-complete. An example of
such a graph is given in Fig 5e. An ordering graph Gx at some node can be completed due to later
merging operations contributing the missing ordering information. However, it is definitely
completed if this node receives an O_Update message of some observation in Vx. When the node
maintaining the ordering graph depicted in Fig. 5e receives an O_Update from o4, it performs
operations (GM1), which results in the ordering-complete graph depicted in Fig. 5f.
Consequently, the following operations ensure that a node staying in the communication range of
an observer currently observing x will end up with an ordering-complete Gx:

(GM3): If an ordering graph, say Gx, is not ordering-complete at a node, this node
broadcasts an O_UpdateReq including the identifier of x. An observer receiving this
message f-forwards an O_Update message only if it currently observes x. If no O_Update
arrives, the node repeats (GM3) when new neighbours become available.

In addition to an ordering graph Gx, a node maintains for each observation in Vx the highest
version number it has seen so far for this observation. We will use VN(o) to designate this version
number for observation o.

4.2.2 Observer/Node Protocol

An observer broadcasts O_Update messages as described in Sec. 4.1.2.

When a node receives an observation record, say r, in an O_Update, it performs the graph
management operations (GM1) described above on Gr.ObsId. Moreover, it acts upon r according to
the following cases. This algorithm differs from Algorithm 1 only in case (O-2.2), for the other
cases we refer to Algorithm 1.

(O-1) Object r.Obj is not in DB: Same as in Algorithm 1.
(O-2) Object r.Obj is in DB: The following subcases must be considered:

(O-2.1)DB(r.Obj).ObsId = r.ObsId: Same as in Algorithm 1.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

14

(O-2.2)DB(r.Obj).ObsId ≠ r.ObsId: According to our discussion in Sec. 4.2.1 this means that
DB(r.Obj).ObsId→r.ObsId. Two subcases must be considered:

(O-2.2.1) VN(r.ObsId) < r.VN : r replaces the old record in DB and is f-forwarded in an
N_Update message to its neighbour nodes.

(O-2.2.2) VN(r.ObsId) ≥ r.VN: r is ignored.

Note that since in this algorithm the ordering between observations is explicitly captured, the
synchronization of version numbers of different observations is not needed anymore.

4.2.3 Node/Node Protocol

In this protocol, N_Update messages are used to propagate state information as well as
information concerning the ordering of observations. In other words, an N-Update contains an
observation record, say r, as well as the sender’s ordering graph Gr.Obj. In some situations, the
observation record can be omitted from those messages. To indicate this we use the notation
N_UpdateG.

When a node receives an ordering graph in an N_Update or N_UpdateG message, it merges the
received graph with the corresponding local ordering graph according to graph management
operations (GM2) introduced in Sec. 4.2.1. In the case of an N_Update, it additionally acts upon
received observation record, say r, according to the following cases:

(N-1) Object r.Obj is not in DB: Same as in Algorithm 1.
(N-2) Object r.Obj is in DB: The following subcases must be considered:

(N-2.1)DB(r.Obj).ObsId = r.ObsId: r and the record in DB are from the same observation,
again two subcases must be considered:

(N-2.1.1) DB(r.Obj).VN < r.VN: r is younger than the record in DB. Therefore, r
replaces the old record in DB and is f-forwarded in an N_Update.

(N-2.1.2) DB(r.Obj).VN ≥ r.VN. r is not younger than the record in DB and thus is
ignored. If Gr.Obj was modified, it is f-forwarded in an N_UpdateG message.

(N-2.2)DB(r.Obj).ObsId ≠r.ObsId: r and the record in DB are from different observations,
two subcases must be considered:

(N-2.2.1) DB(r.Obj).ObsId→r.ObsId ∈ Er.Obj: In this case, r.ObsId did not occur before
DB(r.Obj).ObsId. Again two subcases are to be distinguished:

(N-2.2.1.1)r.VN > VN(r.ObsId): r is younger than all observation records that have
been seen from r.ObsId before. Therefore, r replaces the old record in DB and
is f-forwarded in an N_Update.

(N-2.2.1.2)r.VN ≤ VN(r.ObsId): r is ignored. If Gr.Obj was modified, it is f-forwarded
in an N_UpdateG message.

(N-2.2.2) DB(r.Obj).ObsId→r.ObsId ∉ Er.Obj: r cannot be accepted as potentially
r.ObsId <x DB(r.Obj).ObsId. In other words, accepting r could violate C3, and thus r
is ignored. If Gr.Obj was modified, it is f-forwarded in an N_UpdateG message.

The algorithm described so far works fine if there are no concurrent observations. However, in
the presence of concurrent observations, it cannot be guaranteed that all DB copies of an object
converge to the most recent state of this object (condition C1). Since there is no ordering

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

15

enforced between concurrent observations, say o and o’, a subset of copies may end up with the
latest state of o and another subset with the latest state of o’. Note that this is no problem as long
as both observations are active since both observe equivalent states by assumption. If, however,
one ends before the other, some copies might reflect the (globally) most recent state, while others
might not.

This problem can be solved by introducing an incarnation scheme. For this we require an
observation to maintain an incarnation counter, being incremented whenever an new incarnation
of this observation is created. Moreover, observation identifiers are to be extended to indicate the
current incarnation. With this modification, the vertices of ordering graphs represent incarnations
of observations. When a node receives an O_Update message of an observation incarnation, say
o.i, after performing (GM1) it checks, whether o.i and some other observation, say o’.k are
concurrent, i.e., whether edges o.i→o’.k and o’.k→o.i are in its corresponding ordering graph. If
it finds such a concurrent observation, the node asks o to create a new incarnation and to re-
broadcast O_Update within the new incarnation.

With regard to (GM1) and (GM2), there is no change except that vertices represent incarnations
rather than observations. In other words, a new (sink) vertex is added to a node’s ordering graph
when an O_Update of a newly created incarnation arrives at this node. Note that the execution of
(GM1) and (GM2) may result in an ordering graph including vertices for different incarnations of
the same observation. In this case, only the vertex for the latest incarnation remains in the
resulting ordering graph, all the other ones including their ingoing and outgoing edges can be
removed. Consequently, as before, an ordering graph includes at most one vertex for each
observation.

Assume that o.i and o’.k are the latest incarnations of observations o and o’, respectively.
Assume further, that a node learns at time t that o.i and o’.k are concurrent. When this node
receives an O_Update including observation record r from o.i at time t or later, incarnation
o.(i+1) is created, which then re-broadcasts r. With the proposed scheme, it is ensured that if o’
was finished before t, a record propagated by o’ will never replace r.

Since ordering graphs are propagated in messages, their size is a critical parameter. In an ordering
graph with n vertices there are n (n-1) edges in the worst case, where each edge can be encoded
with one bit. As mentioned above, there exists at most one vertex for each observation.
Moreover, a vertex can be removed from the graph if the corresponding observation is not active
anymore. There are situations, where this can be decided very easily. When a node learns about a
new observation, it can remove all observations performed by the same observer from its
ordering graph. Remember that the observer identifier is part of the observation identifier. This
limits the number of vertices to the number of observers that exist for a given object. Moreover, if
a node’s ordering graph includes edge o.k→o’.i and the node knows that the observation ranges
of o and o’ do not overlap, it can conclude that o has been finished and hence can be removed
from the graph. Therefore, n is supposed to be a small number.

4.2.4 Correctness Arguments

Here, we will briefly argue why this algorithm ensures global observation consistency. Condition
C2 is obviously fulfilled due to (O-2.1.2), (O-2-2-2), (N-2.1.2) and (N-2.2.1.2), which prevent a

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

16

node from accepting an observation record that is older than the one in its local DB. Condition
C3 is satisfied due to the maintenance of ordering graphs and (N-2.2.2), which prevents a node
from accepting an observation record from an observation that occurred before the current DB
record’s observation.

To show C1 to be fulfilled, we assume that f-forwarded observation records and ordering graphs
will eventually reach each node (see Sec. 3). Let us first assume that there are no concurrent
observations, and o is the most recent observation of object x. Consequently, there exists only
one incarnation of o, denoted o.1. Whenever a node’s local ordering graph Gx is changed, the
graph is forwarded by means of N_Update or N_UpdateG messages. Therefore, each node will
eventually learn about all observations of x. Eventually, at least one such node will be in the
communication range of the observer performing o. Graph management operations (GM3)
ensured that this node’s ordering graph will become ordering-complete with sink o.1. Since this
graph is f-forwarded in N_Update or N_UpdateG messages, eventually all nodes will know it and
thus will accept observation records of o.1. Our version numbering scheme makes sure that o.1’s
latest observation record has the highest version number. Finally, this state will eventually be
accepted by all nodes due to (N-2.1.1), (N-2.2.1.1), (O-2.2.1) and (O-2.1.1). Therefore, condition
C1 is fulfilled if observations are sequential.

Now assume that observations o and o’ are concurrent, o’ ends before o, and o is the final
observation of x. Moreover, we assume that o exists long enough that edge o’.k → o.i is in at least
one ordering graph, where o.i and o’.k are current incarnations of o and o’.

If o’ is finished before an edge o.i→o’.k can be added to any ordering graph, each ordering graph
will eventually be ordering-complete with o.i as the only sink. Otherwise, both edges o’.k→ o.i
and o.i→o’.k will eventually occur in each ordering graph. Consequently, an O_Update messages
forwarded by o.i will cause a new incarnation o.(i+1) to be created. When a node receives the
first O_Update from o.(i+1), the execution of (GM1) results in a ordering-complete graph, which
includes o.(i+1) as the only sink. If o’ finishes before an edge o.(i+1)→o’.(k+1) or o.i→o’.(k+1)
can be added to any observation graph, each ordering graph will be eventually ordering-complete
with the only sink o.(i+1). Otherwise, it can be shown that each ordering graph will eventually
indicate that the latest incarnations of o and o’ are concurrent. This continues until o’ is finished.
Then each ordering graph will eventually be ordering-complete with the latest incarnation of o as
the only sink. Consequently, all copies will converge to the state most recently propagated by o.

4 Removal of DB Entries
So far, we have only considered the creation and update of DB entries. However, the fact that
objects can also “disappear” and hence must be removed from the DB has not been considered in
the algorithms described above.

For the removal of objects that are not under observation anymore we adopt a soft state approach,
which can be easily integrated in the above algorithms. Each DB entry is associated with a TTL.
Observers are responsible to periodically refresh the TTL of the objects they observe. To do so
they must make sure that the version number of an object is incremented at least once within a
given TTL period and this change is propagated to the object’s DB copies. Whenever a node
learns about a higher version number of an object, it refreshes the TTL of the corresponding DB

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

17

entry. In order to save bandwidth, the state information can be omitted from O_Update and
N_Update messages if the observed state is the same as the previously propagated one.

5 Simulations
In order to determine the overhead imposed by the algorithms ensuring local and global
observation consistency we compare the performance of the algorithms based on a particular f-
forward primitive with the f-forward mechanism itself. The f-forward mechanism used in the
simulations is plain flooding.

We consider three scenarios which model characteristic cases. The simulations are conducted in
order to determine the average number of messages produced by the algorithms and the state
propagation ratio spr reflecting the percentage of nodes that have received the observation at a
time t0. after initiating an update.

5.1 Simulation Environment

The simulations were done using a discrete time-step approach. At the MAC layer a simple
collision avoidance mechanism prohibits one node to send if it is in the radio range of another
node that is already sending. In this case an exponential back-off like algorithm is used to
reschedule the message. If the retransmission fails for the third time the message is dropped. If
both senders are out of each others radio range, simultaneous transmissions are allowed, though
the message does not reach receivers in the intersection of both ranges. If two or more senders
start sending simultaneously, again messages in the intersection of any two radio ranges are
extinguished and do not reach their receivers. All message types are assumed to have a size of
128 bytes, the transmission speed is 128kbit/s with 250m transmission range. Mobility of the
nodes is not a concern in scenario 1 and scenario 2 since times measured here are very small. In
the third scenario the nodes follow the random waypoint mobility pattern [Bro+98] with a
pedestrian speed of 3-5km/h.

All simulation scenarios are done on an area of 1000m x 1000m with different numbers of
observers at fixed locations and either 100 or 200 nodes placed at random locations. The next sub
sections present different scenarios with simulations results. All simulations have been run 25
times and were averaged.

Algorithm 1 will be referred to as loc (local observer consistency) and algorithm 2 as goc (global
observer consistency). The notation of loc-aaa x bb or goc-aaa x bb refers to scenarios where
either algorithm has been used with aaa nodes and bb observers.

5.2 Scenario 1: Flooding

In the flooding scenario one observer is placed in the middle of the simulation area forwarding
exactly one O_Update message using either the loc or the goc algorithm. All nodes accept and
forward the data when they receive it for the first time since their local DB is empty. Using either
algorithm in this scenario means that an existing DB entry is never replaced since only one
version number from one observer has been issued. The results in Figure 7 show the percentage
of nodes that accepted the data over time for 100 and 200 nodes with either protocol. Figure 6
shows the average number of overall messages used per node receiving the data with and without
repetitions caused by MAC collisions.

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

18

The figures show a very similar behaviour that is independent of the protocol used, supporting
the interpretation that in all cases the algorithms are reduced to the underlying f-forward
mechanism, which is plain flooding in this case.

5.3 Scenario 2: Concurrent Observations

In this scenario we compare the performance of both algorithms in the presence of concurrent
observations with the results of scenario 1 in order to determine the cost of obtaining local and
global observer consistency.

Figures 8 and 9 show the simulation results of the loc protocol in the presence of two concurrent
observation that each f-forward the state of the same object once. Both observers use different
version numbers for their observations. This causes some of the nodes to accept the state from the
observer with the lower version number first, before they replace it according to the loc protocol
with the state offered by the second observer using a higher version number. Some other nodes
accept the higher version number first and do not replace it any more. The average number of
messages per node in Figure 8 supports this interpretation since approximately 1.5 messages are
sent by each node. Figure 9 shows a comparison of the spr compared to the scenario 1. The times
for reaching a particular spr in scenario 1 are approximately 50-150% faster compared to the
results when concurrent observations are present. This is caused by the higher number of
messages that have to be sent in order to distribute the highest version number to nodes that

0

0,2

0,4

0,6

0,8

1

0 0,02 0,04 0,06 0,08 0,1

time [s]

sp
r

loc-100x1

loc-200x1

goc-100x1

goc-200x1

Figure 7: spr over time in the flooding scenario

0

0,5

1

1,5

2

2,5

without re-transmissions with re-transmissions

av
g

m
sg

/n
o

d
e

100 nodes

200 nodes

Figure 6: Average number of messages in the flooding
scenario

0

0,2

0,4

0,6

0,8

1

1,2

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18

time [s]

sp
r

loc-100x2

loc-200x2

loc-100x1

Figure 9: spr over time for loc with 2 concurrent
observations compared to the flooding scenario

0

0,5

1

1,5

2

2,5

3

3,5

w/o re-transmissions with re-transmissions

av
g

m
sg

s/
n

o
d

e

100 nodes

200 nodes

Figure 8: Average number of messages for loc with 2
concurrent observations

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

19

accepted the lower version number first. Those nodes replace their DB entry and f-forward this a
second time.

The goc algorithm performs in both message numbers and spr very similarly to scenario 1. This
behaviour is due to the fact that the nodes very soon notice and distribute the concurrency of the

two observations. This leads to the effect that nodes do not replace one object state with the other
once they have accepted either one.

5.4 Scenario 3: Sequential and Concurrent Observations

This scenario determines the impact of a growing ordering graph on the spreading behaviour of
the goc algorithm. Figure 15 shows the structure of the scenarios: it starts with two sequential
observations followed by four concurrent and again two sequential observations over time.
Figures 12, 13, and 14 show the information spreading at three different situations in the
scenario: the transition from sequential to concurrent observations (see Figure 15, a), while
observing concurrently (b), and the transition from concurrent to sequential observations (c).
Every observation lasted for five seconds with an update of the version number every second.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

time [s]

sp
r seq2con

goc
flood

Figure 12: Transition from sequential to concurrent
observations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

time [s]

sp
r con2con

goc flood

Figure 13: Transition from one state to the next in the
presence of concurrent observations

0

0,5

1

1,5

2

2,5

w/o retransmission with retransmission

av
g

m
sg

/n
od

e

goc-100x2

goc-200x2

Figure 10: Average number of messages for loc with 2
concurrent observations

0

0,2

0,4

0,6

0,8

1

1,2

0 0,02 0,04 0,06 0,08 0,1

time [s]

sp
r

goc-100x2

goc-200x2

goc-100x1

Figure 11: spr over time for loc with 2 concurrent observations
compared to the flooding Scenario

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

20

With pauses between the sequential observations the overall duration of the scenario was about
30 seconds.

The times measured for the three situations have been normalized to compare them to the
flooding scenario. 100 nodes at random positions and 8 observers at fixed positions were
simulated.

The performance in all three cases is very close to the performance of the flooding scenario. In
Figure 13 the concurrent scenario shows faster information spreading in around 10ms. The states
of all concurrent observations are accepted as valid by the nodes due to the construction of the
ordering graph whereas in the flooding scenario only one state at a time is exchanged.

5.5 Discussion

The conducted simulations cover realistic scenarios with respect to scenarios where observers are
located near the observed object and the overall area is considerably small, i.e., 1000m x 1000m..
It is remarkable, that global observation consistency can be achieved with less message overhead
and in less time than local observation consistency. This results from the additional information
about the ordering of observations in the ordering graph. In the scenarios here, the ordering graph
will easily fit within the simulated message size.

In future work we will ascertain the overhead imposed by larger observation graphs and the
resulting message overhead as well as the state propagation ratio. Therefore we will consider
scenarios in a larger area and a higher number of possibly mobile observers. Also, the impact of
longer duration on the observation graphs during the simulations will be worthwhile to be
investigated.

6 Related Work
A variety of flooding algorithms have been proposed to disseminate information in MANETs.
Many scoping schemes have been proposed to avoid broadcast storms, e.g. in [Ni+99] and apply
either probabilistic message exchange, e.g. see [Ho+99], [Ni+99], and hyper flooding approaches
have been investigated to increase the packet delivery ratio, e.g. in [OTV01]. As pointed out in
Sec. 3, our work builds on such mechanisms.

Figure 15: Observations in Scenario 3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

time [s]

sp
r con2seq

GOC flood

Figure 14: Transition from concurrent to sequential
observations

t

a b

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

21

Strong consistency based on the concept of serializability [HR83] has been addressed in the
domain of distributed databases extensively. Since, however, consistency is a trade-off to
availability [DGS85], strong consistency may result in poor availability if the presence of
frequent network partitioning. Therefore, weaker consistency levels have been proposed to
increase the availability of data. The seminal work in [Dem+87] proposes epidemic algorithms to
update copies in fixed networks. Their concept of consistency ensures that all copies converge to
a common state. While this concept comes close to ours, it does not enforce state transitions to be
consistent with the order the state changes has been observed in reality. However, consistency
with the order of the corresponding events in reality is most important for many monitoring and
tracking applications.

Data replication has been also addressed in the context of sensor networks. The adaptive
broadcast replication protocol (ABR [XWC00]) covers explicitly the trade-off between
consistency and transmission costs. ABR ensures weak consistency assuming that there exists a
single update source per object. Deno [KC00] presents an epidemic replication algorithm based
on weighted-voting for weakly connected and ad hoc networks. This algorithm ensures that each
copy commits updates in the same order. However, there are no real-time constraints concerning
this order.

The work reported [IGE00] also treats the diffusion of sensor data. However, it adopts an query
diffusion approach rather than data replication.

For data replication in MANETs an replication algorithm has been described in [KMP99]. This
work has similar objectives as ours: replicating the most current state of a data item and accepting
a weaker consistency of replicas in order to increase availability under real-time conditions.
However, it differs form our in the assumption that there exists a single update source for each
object.

The replication protocols in [KC00], [DGS85], [Dem+87] provide means for synchronizing the
copies in rejoined partitions. While our algorithms ensure that updates are applied according to
our consistency constraints, we rely on the underlying (hyper) flooding mechanism to re-
broadcasts states that are not available in each of the rejoined partitions. If a hyper-flooding
scheme captures and re-broadcast the DB “difference” of nodes moving into each others
communication range, the copies in the re-joined partitions move to the most recent state
available there. However, depending on the underlying MANET and the application plain and
even scoped flooding will already provide an acceptable state propagation ratio. Since our
algorithms can work with any kind of flooding mechanisms they are tuneable with regard to
communication cost versus state propagation ratio.

7 Conclusion and Outlook
We have addressed update propagation in mobile ad hoc networks. Updates can result from one
or more observations of an object. These observations can happen concurrently. The contribution
of this paper is the introduction of two consistency levels based on a generic model for update
diffusion: local and global observation consistency. Based on forwarding primitive, f_forward,
two algorithms were presented to ensure the corresponding consistency levels. Beside informal
correctness proofs, simulations compare the algorithms with plain flooding as the underlying
f_forward mechanism. While local observation consistency can be achieved without storing data

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

22

structures besides the updated information and its source global observation consistency requires
additional ordering information about observations. Compared to the underlying flooding, local
observation consistency results in a 50% increase of messages and a doubled latency. Global
observation consistency performs the same compared to the underlying flooding in both, latency
and message overhead but requires the maintenance of the ordering graph.

Our current implementation of the f_forward primitive is based on plain flooding. Due to the
performance of Hyper-Flooding or gossiping compared to plain flooding it is worthwhile to
compare the resulting message overhead and latencies when the f_forward mechanism is
changed. Additionally, the size of the ordering graph in different realistic and long-term scenarios
will be investigated. Further optimisations in the graph storage and management should be based
on characteristic occurrences.

References
[BHG87] Bernstein, P. A., Hadzilacos, V., Goodman, N.: “Concurrency Control and Recovery

in Database Systems”, Addison Wesley, 1987
[Bro+98] Broch, J., Maltz, D., Johnson, D., Hu, Y.-C., Jetcheva, J.: “A performance comparison

of multihop wireless ad hoc network routing protocols”, Proceedings of the Fourth
International Conference on Mobile Computing and Networking (MobiCom), Dallas,
Texas, 1998

[Dem+87] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: „Epidemic Algorithms for Replicated Database
Maintenace“, Proceedings of the 6th ACM Symposium on Principles of Distributed
Computing, 1987

[DGS85] Davidson, S. B., Garcia-Molina, H., Skeen, D.: “Consistency in Partitioned
Networks”, ACM Computing Surveys, Vol. 17, No. 3, September 1995

[HKB99] Rabiner Heinzelman, W., Kulik, J., Balakrishnan, H.: “Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks”, Proceedings of the Fifth
Annual International Conference on Mobile Computing and Networking
(MobiCom'99), Seattle, Washington, USA, 1999

[Ho+99] Ho, C., Obraczka, K., Tsudik, G., Viswanath, K.: “Flooding for Reliable Multicast in
Multi-Hop Ah Hoc Networks“, Workshop on Discrete Algorithms and Methods for
Mobility at the Fifth Annual International Conference on Mobile Computing and
Networking (MobiCom'99), Seattle, Washington, USA, 1999

[HR83] Härder, T., Reuter, A.: „Principles of Transaction-Oriented Database Recovery“,
Computing Surveys, Vol. 15, No. 4, pp. 287-317, 1983

[IGE00] Intanagonwiwat, C., Govindan, R., Estrin, D.: “Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks“, Proceedings of the Sixth
Annual International Conference on Mobile Computing and Networks (Mobicom
2000), August 2000, Boston, MA.

[KC00] Keleher, P. J., Cetintemel, U.: „Consistency management in Deno“, Mobile Networks
and Applications, 5(2000) pp. 299-309, Baltzer

[KMP99] Karumanchi, G., Muralidharan, S., Prakash, R.: “Information Dissemination in
Partitionable Mobile Ad Hoc Networks”, Proceedings of 18th IEEE Symposium on
Reliable Distributed Systems, Lausanne, Switzerland, 1999

Rothermel, Becker, Hähner : Consistent Update Diffusion in Mobile Ad Hoc Networks, 2002

TR-2002-04, University of Stuttgart, IPVS, Germany

23

[Nee93] Needham, R. M.: “Names”, in Distributed Systems, Ed. S. Mullender, 2nd Edition,
Addison Wesley, 1993

[Ni+99] Ni, S.-Y, Tseng, Y.-C, Chen, Y.-S., Sheu, J.-P.: “The Broadcast Storm Problem in a
Mobile Ad Hoc Network“, Proceedings of the Fifth Annual International Conference
on Mobile Computing and Networking (MobiCom'99), Seattle, Washington, USA,
1999

[OTV01] Obraczka, K., Tsudik, G., Viswanath, K.: “Pushing the Limits of Multicast in Ad Hoc
Networks”, Proceedings of International Conference on Distributed Computing
Systems (ICDCS), Phoenix, USA, 2001

[Sat93] Satyanarayanan, M.: “Distributed File Systems”, in Distributed Systems, Ed. S.
Mullender, 2nd Edition, Addison Wesley, 1993

[XWC00] Xu, B., Wolfson, O., Chamberlain, S.: „Spatially Distributed Databases on Sensors“,
Proceedings of the 8th ACM Symposium on Advances in Geographic Information
Systems (ACMGIS’00), Washington, DC, USA

