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Abstract—
We present a comparative delay analysis of tree-based re-

liable multicast protocols and show the influence of vary-
ing sending rates, group sizes, packet loss probabilities and
branching factors of the control tree. Besides the average
delivery delay we consider the delay to reliably deliver all
packets and the round trip delay. The former two examines
the delay between generation of a packet at the sender and
correct reception at a randomly chosen receiver or all re-
ceivers, respectively. The latter is the delay between genera-
tion of a packet at the sender and reception of all acknowl-
edgment packets at the sender.

Our numerical results show that all tree-based protocols
provide low delays and good scalability. From the four con-
sidered protocol classes, NAK-based protocols achieve the
best scalability but ACK-based protocols achieve the lowest
delays.

An important aspect of our work is to be of practical rel-
evance rather than being of only theoretical nature. There-
fore, we have compared the analytical results with a RMTP
and TMTP simulation. Both show similar results which con-
firms that our analysis can help to choose a suitable protocol
and to tune them for improved performance.

I. I NTRODUCTION

In analysis and simulation studies concerning band-
width and processing load, tree-based reliable multicast
protocols have proven to provide scalability for a large
number of receivers. In tree-based protocols, the members
of a multicast group are organized in a so-called control
tree to overcome the well-known acknowledgment implo-
sion problem of flat approaches, i.e., overwhelming of the
sender by a large number of positive (ACKs) or negative
acknowledgments (NAKs). A positive acknowledgment
returned by a receiver confirms correct message delivery,
whereas a negative acknowledgment asks for a message
retransmission. Since acknowledgments are propagated
along the edges of the control tree in a leaf-to-root di-
rection, the implosion problem can be avoided by limit-
ing the branching factor of a node and thus the number of
acknowledgment messages.

In this paper we present a delay analysis of tree-based

reliable multicast protocols. The message delivery delay is
an important issue for multimedia applications. For exam-
ple real time applications like interactive distributed sim-
ulations, distributed games, or the delivery of MPEG I-
frames [1] benefit from guaranteed reliability and low de-
lays. Besides time constraints of some applications, low
delays are vital for providing high throughput with a win-
dow based sending scheme [2].

In contrast to previous delay analysis we assume a more
realistic system model as explained later in Section II.
Besides analyzing the delay between sender and receiver
we determine the round trip delay between sending a data
packet and receiving the last corresponding control packet
at the sender. The round trip delay determines the time af-
ter a data packet can be removed from memory and influ-
ences the sending rate if the sender uses a window based
sending scheme. Furthermore, knowledge about this de-
lay is important to adjust the retransmission timeout at the
sender.

Our numerical results show that all tree-based proto-
cols provide good scalability and low delays compared to
non-hierarchical approaches. To be more precise, NAK-
based protocols achieve the best scalability but ACK-based
protocols achieve the lowest delays. With respect to the
branching factor, the optimal value depends on several pa-
rameters like packet loss probability, protocol class and
whether average delivery delay, maximum delivery delay
or round trip delay is of interest. We can conclude, though,
that a tuned branching factor can significantly reduce de-
lay. To assess the analytical results we have implemented
the RMTP [3] and TMTP protocol [4] in the network sim-
ulator NS-2 environment [5] and compared the analytical
results with simulation results. Both show similar results
with varying number of receivers, transmission rates, loss
probabilities and branching factors, which shows that our
analytical approach is adequate.

The remainder of this paper is structured as follows. In
the next section related work is discussed. In Section III
we discuss the analyzed protocol classes. In Section IV
we introduce our assumed system model followed by the
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detailed delay analysis. Numerical results are presented in
Section V and compared with simulation results in Section
VI. Finally, we will conclude with a brief summary.

II. BACKGROUND AND RELATED WORK

The first comparative analysis of reliable multicast pro-
tocols was done by Pingali et al. [6]. They have com-
pared the processing requirements of flat protocol classes.
Levine et al. [7] have extended this work to the class
of ring- and tree-based approaches and showed that tree-
based approaches are superior in terms of scalability. In
[8] a more realistic system model including loss of control
packets was analyzed and further protocol classes were in-
troduced.

Besides processing requirements, bandwidth efficiency
was subject to several analytical studies. Analysis of
generic reliable multicast protocols were done by Kasera
et al. [9], Nonnenmacher et al. [10] and Poo et al. [11]. In
[9], local recovery techniques are analyzed and compared.
Nonnenmacher et al. [10] studied the performance gain of
protocols using parity packets to recover from transmis-
sion errors. In contrast to previous work, [11] analyzes go-
back-N and selective-repeat error recovery schemes rather
than merely a stop-and-wait approach. Recently, end sys-
tem bandwidth requirements were analyzed rather than to-
tal bandwidth consumption within the network [12].

Regarding delay analysis, the first comparative analysis
of sender- (ACK) and receiver-initiated (NAK) approaches
was presented by Yamamoto et al. [13] and DeCleene [14].
Yamamoto et al. have analyzed the expected average deliv-
ery delay and showed that receiver-initiated protocols with
NAK suppression provide best scalability. However, their
analytical model for this class was simplified in assuming
that all receivers are perfectly synchronized and thus only
one NAK is sent back to the sender in case of message
loss. While the analysis in [13] is independent of the net-
work topology, in [14] a delay analysis of generic ACK-
and NAK-based protocols operating over star and linear
topologies was presented. In [10] the effect of local re-
covery and retransmission of parity packets on bandwidth
and delay of NAK-based protocols is examined. While the
bandwidth analysis is made in detail, the delay analysis is
rather brief and comparatively simple. For example, they
do not consider queuing delay in detail and neglect feed-
back processing. They concluded that local recovery tech-
niques and parity packets outperforms other approaches.

Our paper extends previous work in five significant
ways. First, to our knowledge this is the first comparative
analysis of generic classes of tree-based reliable multicast
protocols, which considers feedback traffic and queuing
delays. Second, we consider the loss of control packets

rather than assuming reliable delivery. In previous work,
control packets are assumed to be reliably delivered, which
especially favors protocols with multicast NAK and NAK
suppression scheme. NAK suppression works most effi-
ciently if no NAKs are lost at receivers and the sender and
therefore, only one NAK per lost data packet is sufficient.
Third, we assume that local clocks are not synchronized
which again affects the NAK suppression scheme. In re-
lated work it was assumed that in case of data packet loss
only one NAK is returned to the sender. Our assumption
allows that multiple NAKs are sent. Fourth, besides av-
erage delivery delay we examine the threshold delay and
the round trip delay. Threshold delay is the delay to reli-
ably deliver all packets with a certain probability. For ap-
plications with time bounds for the delivery of messages,
threshold delay should be considered rather than average
delay. In most cases threshold delay gives a more real-
istic impression of the delay behaviour of reliable multi-
cast protocols. For example, for low packet loss probabili-
ties and within the scalability range of the various protocol
classes, the average delivery delays of all classes are rather
similar and only moderately higher than the message prop-
agation delay of the network, which means they are rather
similar to unreliable protocols without retransmissions. In
contrast to average delay, threshold delay allows to com-
pare the protocols and the performance of their retransmis-
sion schemes in more detail. Finally, the round trip delay
examines the delay until all receivers have acknowledged
correct reception to the sender. The round trip delay de-
termines when to remove packets from the sender’s buffer
space. Furthermore, it may limit the throughput of a pro-
tocol if a window-based sending scheme is used, since the
round trip delay determines the delay to advance the send-
ing window. The fifth significant difference from previ-
ous work is that we have implemented the RMTP [3] and
TMTP [15] protocol in a simulation environment and com-
pared the results.

III. C LASSIFICATION OF TREE-BASED MULTICAST

PROTOCOLS

A. ACK-based Protocol (H1)

The first considered scheme is denoted as (H1). As
in all other protocol classes we assume that the initial
sender is the root of the control tree and that the initial
transmission is multicasted to the global group. Global
group denotes the whole multicast group in contrast to a
local group, which is described below. (H1) uses ACKs
sent by receivers to their parent in the control tree, called
group leader, in order to indicate correctly received pack-
ets. Each group leader that is not the root node also sends



an ACK to its parent as soon as a data packet has been re-
ceived. If a timeout for an ACK occurs at a group leader,
a multicast retransmission is invoked for this local group.
A local group encompasses a group leader and its directly
attached children. Such a retransmission can be sent to a
separate multicast address for this local group or sent to
the global group address and limited in scope by the TTL
value. An example of a protocol similar to our definition
of (H1) is RMTP [3]. RMTP uses subtree multicasting to
limit the retransmission scope.

B. NAK-based Protocol (H2)

The second scheme (H2) is based on NAKs with NAK
suppression [16]. NAKs are sent by means of multicast to
the group leader and other nodes of this local group. A
receiver that misses a data packet sends a NAK provided
that it has not already received a NAK from another re-
ceiver that also misses the data packet. NAKs alone do
not allow a deterministic decision when packets can be re-
moved from memory at the sender. Therefore, selective
ACKs (SAKs) are sent after a certain number of packets
has been received or after a certain time period has been
expired, to propagate the state of a receiver to its group
leader. TMTP [4] is an example for class (H2).

C. ACK and AAK-based Protocol (H3)

Before the next scheme will be introduced, it is neces-
sary to understand that (H1) and (H2) can guarantee reli-
able delivery only if no group member fails in the system.
Assume for example that a group leaderG1 fails after it
has acknowledged correct reception of a packet to its group
leaderG0 which is the root node. If a receiver ofG1’s lo-
cal group needs a retransmission, neitherG1 norG0 can
resend the data packet sinceG1 has failed andG0 has re-
moved the packet from memory. This problem is solved by
aggregated hierarchical ACKs (AAKs) of the third scheme
(H3). A group leader sends an AAK to its parent after
all children have acknowledged correct reception. After a
group leader has received an AAK, it can remove the cor-
responding data from memory because all members in this
subhierarchy (i.e. the transitive closure of the child rela-
tion) have already received it correctly. RMTP II is an ex-
ample for a protocol that uses AAKs [17]. Our definition
of its generic behaviour is as follows:
1. A group leaders sends an ACK to its parent after a data
packet has been received correctly.
2. A leaf node receiver of the control tree sends an AAK
to its parent after a data packet has been received correctly.
3. Group leaders wait a certain time to receive ACKs from
all children. If a timeout occurs, the packet is retransmit-
ted to all children or selective to those whose ACK is miss-

ing. Since leaf node receivers send only AAKs rather than
ACKs, a received AAK is also allowed to prevent the re-
transmission.
4. Group leaders wait to receive AAKs from their chil-
dren. Upon reception of all AAKs, the corresponding
packet can be removed from memory and a group leader
sends an AAK to its parent. If a timeout occurs while wait-
ing, a unicast AAK query is sent to the affected nodes.
5. If retransmissions or AAK queries are received by a
node after an AAK has been sent or the prerequisites for
sending an AAK are met, an AAK is sent to the parent
instead of an ACK.

Besides AAKs, we consider in our analysis of (H3) a
threshold scheme to decide whether a retransmission is
performed using unicast or multicast. The group leader
compares the number of missing ACKs with a threshold
parameter. If the number of missing ACKs is below this
threshold, the data packets are retransmitted using unicast.
Otherwise, if the number of missing ACKs exceeds the
threshold, the overall network and node load is assumed to
be lower using multicast retransmission.

D. NAK and AAK-based Protocol (H4)

Our next protocol will be denoted as (H4) and is a com-
bination of the negative acknowledgment with NAK sup-
pression scheme (H2) and aggregated acknowledgments.
Similar to (H2), NAKs are used to start a retransmission.
Instead of selective periodical ACKs, aggregated ACKs
are used to announce the receivers’ state and allow group
leaders to remove data from memory. Like SAKs, we
assume that AAKs are sent periodically. We define the
generic behaviour of (H4) as follows:
1. Upon detection of a missing or corrupted data packet,
receivers send a NAK to the local group by means of multi-
cast scheduled at a random time in the future and provided
that not already a NAK for this data packet is received be-
fore the scheduled time. If no retransmission arrives within
a certain time period, the NAK sending scheme is repeated.
2. Group leaders retransmit a packet to the local group by
means of multicast if a NAK has been received.
3. After a certain number of correctly received data pack-
ets, leaf node receivers send an AAK to their group leader
in the control tree. A group leader forwards an AAK to
its parent as soon as the data packets are correctly received
and the corresponding AAKs from all child nodes have
been received.
4. Group leaders initiate a timer and wait for all AAKs to
be received. If the timer expires, an AAK query is sent to
those child nodes whose AAK is missing.
5. If an AAK query is received by a node and the prereq-
uisites for sending an AAK are met, the query is acknowl-



edged with an AAK.

IV. A NALYSIS

A. System Model

We assume the following system model for our analyti-
cal evaluations. A single sender multicasts a message to a
set ofR identical receivers. With probabilityqD the mul-
ticast message is corrupted or lost during the transmission
to a single receiver. With probabilitypA for ACKs andqN
for multicast NAKs, a control message is corrupted or lost.
We assume that nodes do not fail and that the network is
not partitioned, i.e. retransmissions are finally successful.
All nodes work exclusively for the multicast protocol and
no background load is considered.

B. Analytical Approach

Our goal is to determine the delays between the initial
generation of a packet at the sender and the correct recep-
tion at a receiver as well as the reception of the last control
packet at the sender. These delays are determined by the
necessary processing times for a packet at the sender and
receivers, transmission delays, timeout delays to wait for
a data or control packet and finally the number of neces-
sary transmissions for correct reception of data and control
packets.

The processing time at a node is determined by the load
of such a node, i.e. the processing of data and control pack-
ets. We first determine the rates for initial sending and
arrival of packets. Arrival times are modeled as a pois-
son distribution, which results in exponentially distributed
inter-arrival times. As we assume general distributed ser-
vice times this queue type is defined asM jGj1 queue [18].

The number of necessary data packet transmissionsM

is determined by the packet loss probabilitiesqD, pA, and
qN . M has already been determined for the various proto-
col classes in our processing and bandwidth requirements
analysis [8], [12].

Given the average processing times and the number of
transmissions we can determine the delay experienced by
a single data packet. A summary of the frequently used
notations is given in Table I.

C. Protocol Independent Methods

If a node in a tree-based protocol has lost a data packet
and a retransmission is needed, the retransmission request
(either by a NAK packet or a missing ACK packet) is sent
to the group leader. If this group leader has lost the data
packet as well, the group leader’s group leader is queried
an so forth. As a prerequisite for the delay analysis we will
determine the height of the control tree. We define the root

TABLE I
FREQUENTLY USEDNOTATIONS

qD Probability for multicast data loss at a receiver.
pA; qN Probability for unicast ACK or multicast NAK

loss.
R Size of the receiver set.
B Branching factor of a tree or the local group

size.
W

w
S ;W

w
R ;

W
w
G

Waiting time for the sender, receiver or group
leader.w 2 fH1; H2; H3; H4g

� Rate for data packets.
�
S
t Initial transmission flow from the sender.
�
S
a ; �

S
n ACK or NAK packet flow received at the

sender.
�
S
r Retransmission flow at the sender.
�
S
r;u; �

S
r;m Flow of unicast or multicast retransmissions.

�
R Data packet reception flow at the receiver.
�
S
s ; �

R
s SAK flow at the sender or receiver.

�
R
n;g Flow of transmitted NAK packets at the re-

ceiver.
�
R
n;r Flow of received NAK packets at the receiver.
�
S
aa Flow of received AAK packets at the sender.
�
S
q ; �

R
q AAK query flow at the sender or receiver.

%
w
S ; %

w
R; %

w
G Total load on the sender, receiver or group

leader.
T Timeout delay.
�; �H Global or hierarchical network propagation

delay.
B
H2
; B

H4 Random NAK suppression delay.
X;Y; Z Processing time for data packets, control pack-

ets or periodical control packets.
h; ~h Maximum and mean height of the control tree.
M

w
;M

w
r Total number of retransmissions for all re-

ceivers or for receiverr, respectively.
I Delay for the initial transmission.
H Delay for a hierarchical retransmission.
S
w
� ; S

w

 Mean time between the initial arriving of a

data packet at the sender and the correct re-
ception at a random receiver or at all receivers
with probability
.

S
w
RTD Mean time between the initial arriving of a

data packet at the sender and the correct re-
ception of all control packets at the sender.

node’s height as 1. The height of every other node is the
height of the parent node plus 1. With this definition, the
height can be obtained as follows, whereR is the number
of receivers:

R =

h�1X
i=0

Bi = B0 +B1 + : : :+Bh�2 + Bh�1

=
(1� B)B0

1�B
+

(1� B)B1

1�B
+ : : :+

(1� B)Bh�2

1�B
+

(1� B)Bh�1

1�B

=
B0

� B1 +B1
� B2 + : : :+ Bh�2

� Bh�1 + Bh�1
� Bh

1� B



=
1�Bh

1�B
; (1)

and the tree height follows to:

h = logB

�
R(B � 1) + 1

�
; (2)

whereB is the number of members in a local group (i.e.
the branching factor of the control tree). To obtain the
mean delay, we obtain the average tree height~h:

~h =

�Ph�2
i=1 (i+ 1) � Bi

�
+
�
R�

Ph�2
j=1 B

j
�
h

R
: (3)

D. ACK-based Protocol (H1)

For a delay analysis of tree-based protocols we distin-
guish among sender, receivers and group leaders. Al-
though the sender is a group leader as well, here and in
the following we will denote only inner nodes as group
leaders. All delay components are shown in Figure 1.

D.1 Mean Waiting Times at the Sender (Root Node)

First, we have to determine the mean waiting time for
a packet between generation or arrival and completion of
processing or sending. The mean waiting time is deter-
mined by the load of a node, i.e. the processing of incom-
ing and outgoing packet flows. The sender has to process
the following three arriving packet flows:
1. Data packets from the higher protocol layer that are
transmitted for the first time. This packet flow is referred
to as�St and has rate�. The processing time for a data
packet is assumed to beX.
2. Data packets that are retransmitted due to packet
loss. This packet flow is referred to as�Sr and has rate
�(E(MH1) � 1), since every packet is(E(MH1) � 1)-times
retransmitted. E(MH1) is the expected total number of
transmissions per packet until all multicast group members
have received it correctly.
3. Control packets are received by the sender with flow�Sa

and rate�BE(MH1)(1 � qD)(1 � pA). B is the branching
factor of the ACK-tree, i.e. the number of child nodes per
group leader. The processing time for an ACK packet is
assumed to beY .

The expected total number of necessary transmissions
E(MH1) to receive the data packet correctly at all receivers
is given in [8]:

E(MH1) =

BX
i=1

�B
i

�
(�1)i+1

1

1� (qD + (1� qD)pA)i
: (4)

The load on the sender is given by the traffic intensity
%, which is generally the product of the traffic rate� and

mean processing time for a request (data transmission, re-
transmission or request)E(S):

%= �E(S): (5)

The load on the sender (%H1
S , traffic intensity) is then the

sum of the packet rates:

%H1
S = �E(MH1)E(X) + �BE(MH1)(1 � qD)(1 � pA)E(Y ): (6)

As explained in Section IV-B, the system can be mod-
eled as aM jGj1 queue. The Pollaczek-Chintchine for-
mula gives the mean number of requests to be processed
E(L) [18]:

E(L) = %+
%2 + �2V ar(S)

2(1 � %)
: (7)

With the formula of Little [18]:

E(L) = �E(T ); (8)

the mean waiting time of a request in the systemE(T ) is
(see Eq. 5, 7 and 8):

E(T ) = E(S) +
%2 + �2V ar(S)

2�(1 � %)
: (9)

The mean waiting time for a packet until processing
starts is:

E(W ) = E(T )�E(S) =
%2 + �2V ar(S)

2�(1 � %)
: (10)

With Eq. 5 andV ar(X) = E(X2)� (E(X))2:

E(W ) =
�E(S2)

2(1 � %)
(11)

E(WH1
S ) =

(�Sr + �St )E(X2) + �SaE(Y 2)

2(1 � %H1
S

)
: (12)

D.2 Mean Waiting Times at a Receiver (Leaf Node)

The only packet flow at a receiver is the reception of data
packets which are acknowledged by an ACK,�R, with rate
�E(MH1)(1 � qD). The processing time isX + Y since the
arrival of a data packet is followed by replying an ACK
packet to the sender. Note thatX andY are independent
random variables. The load on the receiver is:

%H1
R = �E(MH1)(1 � qD)

�
E(X) +E(Y )

�
: (13)

The mean waiting time of a packet at the receiver until
processing starts is (see Eq. 11):

E(WH1
R ) =

�RE
�
(X + Y )2

�
2(1 � %H1

R
)

: (14)

With X andY are independent random variables,E(X1+

X2) = E(X1) + E(X2), V ar(X1) = E(X2
1 ) � (E(X1))

2 and
V ar(X1 +X2) = V ar(X1) + V ar(X2):

E(WH1
R ) =

�R
�
E(X2) +E(Y 2) + 2E(X)E(Y )

�
2(1 � %H1

R )
: (15)
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Fig. 1. Packet delivery delay for protocol (H1)

D.3 Mean Waiting Times at a Group Leader (Inner Node)

The load on an inner node is the sender load without the
initial transmission and the receiver load:

%H1
G = �

�
E(MH1) � 1

�
| {z }

�Sr

E(X) + �BE(MH1)(1 � qD)(1 � pA)| {z }
�Sa

E(Y )

+�E(MH1)(1 � qD)| {z }
�R

E(X + Y ): (16)

The mean waiting time of a packet at an inner node is:

E(WH1
G ) =

�Sr E(X2) + �SaE(Y 2)

2(1� %H1
G

)

+�R
�
E(X2) + E(Y 2) + 2E(X)E(Y )

�
2(1 � %H1

G
)

: (17)

D.4 Overall Delay of Protocol (H1)

T is the group leader timeout delay,� is the network
propagation delay,~h is the average number of hierarchy
levels of the control tree andB is the branching factor. If
no retransmission is necessary, the delay from the initial
transmissionE(I) is:

E(I) = E(WH1
S ) + E(X) + � + E(WH1

G ) + E(X): (18)

Note that a simplifying pessimistic assumption we made
is that the receiver is always a group leader and therefore
takeE(WH1

G ) in the above equation.
Now we want to determine the delay for a hierarchical

retransmission on condition that the parent node has re-
ceived the packet correctly. The time for a hierarchical
retransmissionE(H) is:

E(H) =
�
E(MH1

r jMH1
r > 1)� 1

��
T +E(WH1

G ) +E(X)
�

+ �H +E(WH1
G ) +E(X): (19)

MH1
r is the number of transmissions for a single receiver

r and�H the network propagation delay for a hierarchical
retransmission. For obtaining the overall delay, we deter-
mine the probabilities that no data loss occurs, that a node

misses a packet but the parent node is able to retransmit
it, that a node and its parent misses that packet and the
next parent retransmits it and so forth and multiply these
probabilities with the expected delays. The overall delay
is then:

E(SH1
� ) =

h~h�2X
i=o

qiD(1� qD)
�
E(I) + iE(H)

�i

+ q
~h�1
D

�
E(WH1

S ) +E(X) + (~h� 1)E(H)
�
: (20)

Besides the delay for delivering data packets to the re-
ceivers we want to examine the delay for receiving all
ACK packets at the sender:

E(SH1
RTD) =

�
E(MH1)� 1

��
T + E(WH1

S ) + E(X)
�

| {z }
sending transmissions

+E(X) +E(WH1
S ) + �H + E(WH1

G ) + E(X)| {z }
receiving last successful retransmission

+E(Y ) + E(WH1
G ) + �H + E(WH1

S ) +E(Y )| {z }
send and receive last ACK

: (21)

Besides the mean delivery delay we can determine the
expected delay to reliably deliver a certain percentage of
data packets. We assume that
 is the percentage of data
packets that has to be reliably delivered andE(SH1


 ) is the
expected delay, which can be obtained as follows:


 = 1� q
MH1




D
(22)

MH1

 =

ln(1 � 
)

ln(qD)
; 
 � qD (23)

E(H) =
�
E(MH1


 jMH1

 > 1) � 1

��
T + E(WH1

G ) + E(X)
�

+ �H + E(WH1
G ) +E(X) (24)

E(SH1

 ) = E(WH1

S ) + E(X) + (~h� 1)E(H): (25)

In Eq. 25 retransmissions encompass all nodes on the
path from the sender to a random receiverr. Our assump-
tion here is that all parent nodes first have to receive a mes-
sage with the desired probability
 before retransmissions
can be sent tor.
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E. NAK-based Protocol (H2)

E.1 Mean Waiting Times at the Sender (Root Node)

At the sender we distinguish among the following four
packet flows: First, the flow for the initial data packet
transmissision�St with rate� and processing timeX. Sec-
ond, the NAK flow that trigger a retransmission�Sr with
rate�

�
E(MH2)� 1

�
and processing timeX + Y . Third, the

flow of additional NAKs, which are not necessary to trig-
ger a retransmission�Sn with rate�E(eLH2)��Sr and process-
ing timeY . And finally, the flow of selective (periodical)
acknowledgments (SAKs)�Ss with rate�B(1�pA) and pro-
cessing timeZ. All delay components are shown in Figure
2.

The number of transmissions is (see Eq. 4 and [8]):

E(MH2) =

BX
i=1

�B
i

�
(�1)i+1

1

1� qD
i
: (26)

The number of received NAKsE(eLH2) is given in the
processing requirements analysis [8].

Given these flows, the load on the sender is:

%H2
S = �E(MH2)E(X) + �E(eLH2)E(Y ) + �B(1 � pA)E(Z): (27)

The mean waiting time of a packet at the sender until it
is processed is:

E(WH2
S ) =

�St E(X2) + �Sr

�
E(X2) +E(Y 2) + 2E(X)E(Y )

�
2(1 � %H2

S
)

+
�Ss E(Z2)

2(1 � %H2
S

)
: (28)

E.2 Mean Waiting Times at a Receiver (Leaf Node)

At the receiver we distinguish among four packet flows.
�R is the flow of data packets from the sender with rate
�E(MH2)(1 � qD) and processing timeX. The second
flow �Rn;g consists of the submitted NAK packets with
rate �

�
E(Or) � 1)

�
#2
#3

and processing timeY . #2 is the
average number of NAKs sent in each round and#3 is
the mean number of receivers that did not receive a data

packet and therefore want to send a NAK. The third flow
�Rn;r are the received NAKs from other receivers with rate
�(1 � qN )

h
#2

�
E(O) � 1

�
�

#2
#3

�
E(Or) � 1

�i
and processing

time Y . The last flow�Rs are the sent SAKs with rate�B
and processing timeZ.

The total number of roundsO, the number of rounds for
a single receiverOr, as well as#2 and#3 are given in the
processing requirements analysis [8].

With these flows, the load on the receiver is:

%H2
R = �E(MH2)(1 � qD)E(X) + (�Rn;g + �Rn;r)E(Y ) + �Rs E(Z): (29)

Therefore the mean waiting time of a packet at a receiver
is:

E(WH2
R ) =

�RE(X2) + (�Rn;g + �Rn;r)E(Y 2) + �Rs E(Z2)

2(1 � %H2
R

)
: (30)

E.3 Mean Waiting Times at a Group Leader (Inner Node)

The load on an inner node is the sender load without the
initial transmission and the receiver load:

%H2
G =

�
E(MH2)� 1

�
E(X) + �eLH2E(Y ) + �B(1 � pA)E(Z)

+ �E(MH2)(1 � qD)E(X) + (�Rn;g + �Rn;r)E(Y )

+ �Rs E(Z): (31)

The mean waiting time of a packet at an inner node is:

E(WH2
G ) =

�Sr

�
E(X2) +E(Y 2) + 2E(X)E(Y )

�
2(1 � %H2

G
)

+
�SnE(Y 2) + �Ss E(Z2)

2(1� %H2
G

)

+
�RE(X2) + (�Rn;g + �Rn;r)E(Y 2) + �Rs E(Z2)

2(1 � %H2
G

)
: (32)

E.4 Loss Detection Phase

To obtain the overall delay, we distinguish between the
following phases (taken from [13]):
1. Loss Detection Phase. This phase encompasses the
time between the initial arrival of a packeti at the sender



and the triggering of a NAK at one of the receivers, which
have lost the first data packet. The loss is detected with the
arrival of a packetj, wherej > i.
2. Loss Recovery Phase. This phase encompasses the time
between the end of the first phase and the correct reception
of a packet at the considered receiver. As NAKs can be
lost, this phase includes the periodical sending of NAKs
until the data packet is received correctly.

For the loss detection phase we must consider the time
to unsuccessfully send data packets, the time to send and
receive the first successful data packet and the time to send
an initial NAK for the first lost data packet. The random
variableL is the number of consecutive lost packets at the
k + 1 unsuccessful receivers. Given thatK = k, the condi-
tional probability distribution ofL is:

P (L = ljK = k) = q
l(k+1)

D
(1 � q

k+1
D

);

l = 0; 1; : : : andk = 0; 1; : : : ; R� 1: (33)

The number of subsequent lost packets atk + 1 receiver
is:

E(LjK = k) =
q
k+1
D

1� q
k+1
D

: (34)

To obtain the meank among the possible ones between
0 andB � 1 we have:

E(LjK) =

B�1X
k=0

�B � 1

k

�
qkD(1� qD)B�1�k

q
k+1
D

1� qk+1
D

: (35)

Note that Eq. 35 differs from the result of Yamamoto et
al. [13]. Now we multiply the mean number of subsequent
lost packets with the time1

�
, to process a packet. The delay

of theL+ 1st packet is:

E(WH2
S ) + E(X)| {z }

sender processing delay

+ �|{z}
propagation delay

+ E(WH2
G ) +E(X)| {z }

receiver processing delay

:(36)

Finally, the first phase can be expressed as follows:

E(DH2) =

B�1X
k=0

�B � 1

k

�
qkD(1� qD)B�1�k

qk+1
D

1� q
k+1
D

1

�
(37)

+E(WH2
S ) +E(X) + � +E(WH2

G )

+E(X) + E(BH2) +E(Y ): (38)

Note that here and in the following we make a pes-
simistic simplification in assuming that the receiver is al-
ways a group leader and therefore takeE(WH2

G ).

E.5 Loss Recovery Phase

From the viewpoint of a random receiver, this phase en-
compasses a number of timeout rounds. This means, the
initial sent NAK in E(DH2) was unsuccessful. The fol-
lowing receiver or group leader timeouts have the length

T + E(WH2
G ) + E(BH2) + E(Y ), whereT is the timeout pe-

riod andWH2
G the waiting time before processing starts at a

group leader.BH2 is the random delay a receiver or group
leader waits before a NAK is sent. This delay starts with
the discovery of packet loss at the first receiver. In case
of no NAK suppression it ends with the expiration of the
backoff timer and the transmission of the initial NAK. Af-
ter a number of unsuccessful sent NAKs, this round ends
with a final successful sent NAK to the sender. This in-
cludes the propagation delay to the sender, the sending of
the data packet, the propagation delay to the receiver and
receiver processing of the received data packet. The mean
loss recovery delay is:

E(RH2) =
�
E(MH2

r ) + E(Oe;r)� 1
�

�

�
T + E(WH2

G ) + E(BH2) +E(Y )
�

+ �H +E(WH2
G ) + E(Y )

+E(X) + �H +E(WH2
G ) +E(X): (39)

The number of necessary transmissions for a single re-
ceiverr, E(MH2

r ), as well as the number of empty rounds,
in which no retransmission is sent due to NAK loss,
E(Oe;r), are given in [12].

E.6 Overall Delay of Protocol (H2)

If no retransmission is necessary, the delay from the ini-
tial transmissionE(I) is:

E(I) = E(WH2
S ) +E(X) + � + E(WH2

G ) + E(X): (40)

For obtaining the overall delay, we determine the proba-
bilities that no data loss occurs, that a node misses a packet
but the parent node is able to retransmit it, that a node and
its parent misses that packet and the next parent retrans-
mits it and so forth and multiply these probabilities with
the expected delays. The overall delay is then:

E(SH2
� ) = (1� qD)E(I)

+
h~h�2X
i=1

qiD(1� qD)
�
E(I) +E(DH2) + iE(RH2)

�i

+ q
~h�1
D

�
E(DH2) + (~h� 1)E(RH2)

�
: (41)

Now we obtain the delay of a SAK. Although SAKs
are sent periodically, we want to determine here the delay
starting from the sending of a data packet and the recep-
tion of the last SAK packet belonging to this data packet.
As there is no retransmission mechanism for lost SAKs in
(H2) we assume that they are reliably delivered.

E(SH2
RTD) = (1� qD)BE(I)

+
�
1� (1 � qD)B

��
E(DH2) +E(RH2)

�
| {z }

sending transmissions



+E(Y ) +E(WH2
G ) + �H + E(WH2

S ) + E(Y )| {z }
sending and receiving the last SAK

(42)

We have to use the processing delay of control packets
E(Y ) instead of periodic control packets since we obtain
the delay on condition that a SAK is actually being sent.

The delay to reliably deliver a certain percentage
 of
data packets is denoted byE(SH2


 ). It can be obtained with
a modifiedRH2 as follows:

E(RH2) =
�
E(MH2


 ) + E(Oe;r)� 1
�

�

�
T +E(WH2

G ) +E(BH2) +E(Y )
�

+ �H + E(WH2
G ) + E(Y )

+E(X) + �H + E(WH2
G ) + E(X) (43)

E(SH2

 ) = E(WH2

S ) +E(X) +E(DH2) + (~h� 1)E(RH2): (44)

MH2

 is obtained analogous to Eq. 23 of protocol (H1).

F. ACK and AAK-based Protocol (H3)

Protocol (H3) is similar to (H1) but uses besides normal
hierarchical ACKs, aggregated ACKs, so-called AAKs.
Additionally, we analyze a threshold scheme to send the
retransmission per unicast or multicast dependent on the
number of lost data packets. All delay components are
shown in Figure 3.

F.1 Mean Waiting Times at the Sender (Root Node)

The sender has to process the following six packet flows.
The initial data packet flow per multicast�St with rate �
and processing timeX. The retransmissions sent with uni-
cast�Sr;u with rate�E(Nu)E(M

H3
u ) and processing timeX,

whereE(Nu) is the average number of unicast messages
per retransmission round. Retransmissions sent with mul-
ticast �Sr;m with rate �(E(MH3

m ) � 1) and processing time
X. The ACK flow �Sa with rate �E(eLH3

a ) and the AAK
flow �Saa with rate�E(eLH3

aa ), both with processing timeY .
Finally, the AAK query flow�Sq with rate �E(LH3

aaq) and
processing timeY . The number of unicast,E(MH3

u ), or
multicast retransmissions,E(MH3

m ), the number of unicast
messages per retransmission roundE(Nu), the number of
ACK, E(eLH3

a ), and AAK packets,E(eLH3
aa ), and finally the

number of AAK query messages,E(LH3
aaq), are given in

[12]. The total load on the sender is:

%H3
S = �

�
E(Nu)E(MH3

u ) +E(MH3
m )

�
E(X)

+ �

�
E(eLH3

a ) +E(eLH3
aa ) + E(LH3

aaq)
�
E(Y ): (45)

The expected waiting time at the sender is then:

E(WH3
S ) =

(�St + �Sr;u + �Sr;m)E(X2) + (�Sa + �Saa + �Sq )E(Y 2)

2(1 � %H3
S )

: (46)

F.2 Mean Waiting Times at a Receiver (Leaf Node)

A receiver has to process the following flows. There is
the data flow�R with rate�E(NH3

r ) which automatically
triggers an ACK or AAK flow and therefore results in pro-
cessing time ofX + Y . The flow of AAK queries�Rq with
rate�E(eLH3

aaq) triggers the replying of AAKs, which results
in total processing timeY + Y . E(NH3

r ) andE(eLH3
aaq) are

given in [12]. The load on a receiver is then:

%H3
R = �E(NH3

r )E(X + Y ) + �E(eLH3
aaq)E(Y + Y ): (47)

The expectation of the waiting time at the receiver is:

E(WH3
R ) =

�RE((X + Y )2) + �Rq E((Y + Y )2)

2(1 � %H3
R )

: (48)

F.3 Mean Waiting Times at a Group Leader (Inner Node)

The load on an inner node is the sum of the sender’s load
without the initial transmission and a receiver’s load:

%H3
G = �

�
NuE(MH3

u ) +E(MH3
m )� 1

�
E(X)

+ �

�
E(eLH3

a ) + E(eLH3
aa ) + E(LH3

aaq)
�
E(Y )

+ �E(NH3
r )E(X + Y ) + �E(eLH3

aaq)E(Y + Y ): (49)

The mean waiting time of a packet at an inner node fol-
lows to:

E(WH3
G ) =

�
�Sr;u + �Sr;m

�
E(X2) +

�
�Sa + �Saa + �Sq

�
E(Y 2)

2(1 � %H3
G

)

+
�RE((X + Y )2) + �Rq E((Y + Y )2)

2(1� %H3
G

)
: (50)

F.4 Overall Delay of Protocol (H3)

If no retransmission is necessary, the delay from the ini-
tial transmissionE(I) is:

E(I) = E(WH3
S ) +E(X) + � + E(WH3

G ) + E(X): (51)

The time for a hierarchical retransmissionE(H) on con-
dition that the parent has received the packet correctly is:

E(H) =
�
E(MH3

r jMH3
r > 1) � 1

��
T + E(WH3

G ) +E(X)
�

+ �H +E(WH3
G ) +E(X): (52)

The overall delay is then analogous to protocol (H1):

E(SH3
� ) =

h~h�2X
i=o

qiD(1� qD)
�
E(I) + iE(H)

�i

+ q
~h�1
D

�
E(WH1

S ) +E(X) + (~h� 1)E(H)
�
: (53)
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Fig. 3. Packet delivery delay for protocol (H3)

We want to determine the round trip delay of AAKs,
since if AAKs are provided they are used to manage the
sending window and free buffer space. Before an AAK
could be sent from a receiver node, it must receive the data
packet before. The mean waiting time between sending a
packet and receiving the last AAK at the sender is given
by:

E(SH3
RTD) =

�
E(MH3)� 1

��
T +E(WH3

G ) +E(X)
�

| {z }
sending transmissions

+E(X) + E(WH3
G ) + �H +E(WH3

G ) +E(X)| {z }
receiving last successful retransmission

+ (h� 1)
h
E(eLH3

aaq)
�
T + E(WH3

G ) + E(Y )
�

| {z }
send AAK queries

+ E(Y ) + �H +E(WH3
G ) + E(Y )| {z }

send and receive successful AAK

i
: (54)

The delay to reliably deliver a certain percentage of data
packetsE(SH3


 ) is obtained analogous to protocol (H1).

G. NAK and AAK-based Protocol (H4)

Protocol (H4) is basically (H2) with additional AAKs.
In a NAK-based protocol, such AAKs are only reasonable
if they are sent periodically rather than after every data
packet transmission. Therefore, we assume in protocol
(H4) that AAKs have a processing time of Z, which can
be set to a proportionate value of Y. All delay components
are shown in Figure 4.

G.1 Mean Waiting Times at the Sender (Root Node)

At the sender we have the following packet flows. The
data packet flow�St , NAK and retransmission flow�Sr and
additional NAK flow �Sn are analogous to protocol (H2).
The AAK query flow�Sq has rate�LH4

aaq (see [12] forLH4
aaq).

The AAK flow �Saa has rate�B, since the sender receives
from every child node exactly one AAK. Missing AAKs
are queried with unicast from the nodes concerned. The
load on the sender is:

%H4
S = (�St + �Sr )E(X) + (�Sr + �Sn)E(Y ) + (�Sq + �Saa)E(Z): (55)

The mean waiting time of a packet at the sender until it
is processed is:

E(WH4
S ) =

�St E(X2) + �Sr

�
E(X2) + E(Y 2) + 2E(X)E(Y )

�
2(1� %H4

S
)

+
�SnE(Y 2)(�Saa + �Sq )E(Z2)

2(1 � %H4
S

)
: (56)

G.2 Mean Waiting Times at a Receiver (Leaf Node)

The data packet flow�R and NAK flows�Rn;g, �Rn;r are
analogous to protocol (H2). The AAK query flow�Rq has
rate�eLH4

aaq (see [12] foreLH4
aaq). The load on a receiver is:

%H4
R = �RE(X) + (�Rn;g + �Rn;r)E(Y ) + �Rq E(Z + Z): (57)

The mean waiting time of a packet at a receiver is:

E(WH4
R ) =

�RE(X2) + (�Rn;g + �Rn;r)E(Y 2)

2(1 � %H4
R

)

+
�H4
q E((Z + Z)2)

2(1 � %H4
R

)
: (58)

G.3 Mean Waiting Times at a Group Leader (Inner Node)

The load on an inner node is the sender’s load without
the initial transmission and receiver’s load.

%H4
G = �SrE(X + Y ) + �SnE(Y ) + (�Sq + �Saa)E(Z)

+ �RE(X) + (�Rn;g + �Rn;r)E(Y ) + �Rq E(Z + Z): (59)

The mean waiting time of a packet at an inner node is:

E(WH4
G ) =

�Sr E((X + Y )2) + �SnE(Y 2) + (�Sq + �Saa)E(Z2)

2(1 � %H4
G )

+
�RE(X2) + (�Rn;g + �Rn;r)E(Y 2) + �Rq E((Z + Z)2)

2(1 � %H4
G )

: (60)

G.4 Overall Delay Analysis of Protocol (H4)

The loss detection and loss recovery phase is analogous
to protocol (H2). If no retransmission is necessary, the
delay from the initial transmissionE(I) is:

E(I) = E(WH4
S ) +E(X) + � + E(WH4

G ) + E(X): (61)
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The overall delay is:

E(SH4
� ) = (1� qD)E(I)

+
h~h�2X
i=1

qiD(1� qD)
�
E(I) + E(DH4) + iE(RH4)

�i

+ q
~h�1
D

�
E(DH4) + (~h� 1)E(RH4)

�
: (62)

Since protocol (H4) is a NAK-based protocol we have
assumed that the AAKs are sent periodically rather than af-
ter every data packet transmission. However, for obtaining
the round trip delay we assume a scenario in which a data
packet is actually acknowledged by an AAK. The mean
waiting time between sending a packet and receiving the
last AAK at the sender is then given by:

E(SH4
RTD) = (1 � qD)RE(I)

+
�
1� (1� qD)R

��
E(DH4) + E(RH4)

�
| {z }

sending transmissions

+ (h� 1)
h
E(eLH4

aaq)
�
T +E(WH4

G ) +E(Y )
�

| {z }
AAK queries

+ E(Y ) + �H +E(WH4
G ) +E(Y )| {z }

send and receive successful AAK

i
: (63)

The delay to reliably deliver a certain percentage of data
packetsE(SH4


 ) is obtained analogous to protocol (H2).

H. An Extension for Spatially Dependent Losses

In this section we will discuss our assumed system
model of independent losses and extend it to spatially cor-
related losses. So far, we have assumed in the analysis
that losses at different nodes are temporarily and spatially
independent events. In fact, since receivers share parts
of the multicast routing tree, this does not hold in real
networks. In [19] and [20] the temporal and spatial loss
correlation in the Internet and MBone is studied in detail.
They concluded from measurements that the timescale for
temporal loss correlation is 1 second or less. Beyond this
timescale, what happens to a packet is not connected to the
behaviour of a former sent packet. Even within the corre-
lation timescale, most losses were solitary losses. With

Backbone
(loss free)

Sender

Receivers

Source link

Tail links

Fig. 5. System Model

respect to spatial losses, they found only small correlation
among the multicast sites except for the loss due to the link
next to the source. The backbone loss was found to be very
low. We can conclude from these observations that our as-
sumption of temporal independent losses introduces only a
negligible inaccuracy into our model. With respect to spa-
tial losses, though, an inaccuracy we introduce is the spa-
tial correlation due to loss on the first link from the sender
to the backbone.

Now we present a modified system model to consider
these spatial correlation. Figure 5 shows our assumed sys-
tem model. The sender is connected with an error-prone
link to the backbone. An error on this link will be seen by
all receivers. The backbone is considered as error free, ac-
cording to the observations discussed above. Finally, each
receiver is connected to the backbone with an error-prone
link. Errors on this tail links are assumed to be mutually
independent. Our model is similar to [9] and [10].

As the end-to-end loss probability perceived by a ran-
dom receiver continues to beqD, we assume that this prob-
ability is equally split between the source link lossqD0 and
tail link lossqD0, that are:

qD0 = 1�
p
1� qD: (64)

The expected total number of necessary transmissions
E(MH1) for protocol (H1) to receive the data packet cor-
rectly at all receivers is now the sum of the retransmits due
to loss on the source link and retransmits due to loss on the
tail link or ACK loss and the initial transmission:

E(MH1) = E(MH1
S ) + E(MH1

T ) + 1: (65)
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Fig. 6. Delays with respect to the number of receivers

The number of retransmissions due to loss on the source
link is:

E(MH1
S ) =

1

1� qD0
� 1; (66)

and the number of retransmissions due to loss on the tail
link or ACK loss:

E(MH1
T ) =

BX
i=1

�B
i

�
(�1)i+1

1

1� (qD 0+ (1� qD0)pA)i
� 1: (67)

The number of retransmissions for the other protocol
classes can be changed accordingly. Besides a modified
number of retransmissions we must change the round trip
delay equations for protocols (H2) and (H4) to:

E(SH2
RTD) =

h
1�

�
qD0+ (1� qD0)(1 � (1� qD0)

B)
�i
E(I)

+
�
qD0+ (1 � qD0)(1 � (1� qD0)

B)
��

E(DH2) +E(RH2)
�

+E(Y ) +E(WH2
G ) + �H + E(WH2

S ) + E(Y ); (68)

and analogous for protocol (H4). The numerical results
in the following section are based on this modified system
model.

V. NUMERICAL RESULTS

We examine the expected delays of the analyzed pro-
tocols by means of some numerical examples. Accord-
ing to measurements in [21] we have chosen the delay

X = 500�s for data packets andY = 100�s for control
packets. Analogous to [13], the packet processing times
are assumed as constant with no variability, i.e. according
to V ar(X) = E(X2) � (E(X))2 = 0, the second moments
are determined asE(X2) = (E(X))2. The propagation de-
lay is chosen as� = 10ms. The timeouts are chosen as
the trebled propagation delay, i.e.TS = TR = 30ms. For
the NAK suppression time we have assumedB = 30ms.
A discussion of reasonable values for the NAK suppres-
sion time can be found in [13]. We have chosen a lower
suppression time due to our smaller local group sizes.

Figure 6 shows the expected average delay, the thresh-
old delay to reliably deliver all packets with probability
0.999 and the round trip delay for all considered proto-
col classes with varying number of receivers. Addition-
ally, two non-hierarchical approaches (A1) and (N2) are
included to compare their scalability. Protocol (A1) is an
ACK-based protocol similar to (H1) and (N2) is a NAK-
based protocol with NAK suppression similar to (H2).
Protocol (A1) and (N2) are explained in more detail in
[12]. Data and control packet loss probability is0:1 (left
side) and0:01 (right side). The data rate is� = 0:1 1

ms
.

Figure 7 plots the delays for 5000 receivers with varying
sending rate�.

In contrast to non-hierarchical approaches, all tree-
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Fig. 7. Delays with respect to the sending rate

based protocols provide scalability for all group sizes and
in most cases, they result in lower delays even within the
scalability range of (A1) and (N2).

While the low packet loss probability of Figure 6.b re-
sults in almost identical average delivery delays close to
the propagation delay of the network, Figure 6.a allows a
more detailed view. The NAK protocols result in higher
average delivery delays as well as threshold and round trip
delays. This results from the receiver-initiated loss detec-
tion. Recall that receiver-initiated protocols detect packet
loss by a gap in the sequence number, i.e. not before a
subsequent packet is correctly received, which results in
higher delays for retransmissions.

Figure 6.c and 6.d plots the threshold delivery delay to
deliver all messages with probability 0.999. While the av-
erage delivery delay of all protocol classes within their
scalability range and with low loss probability is close to
the propagation delay of� = 10ms, since most nodes need
no retransmissions, the threshold delivery delay is signif-
icantly higher. For applications having a time constraint
to deliver all messages, threshold delay may be more im-
portant than average delivery delay. Analogous to average
delivery delay, ACK-based protocols have a significantly
lower threshold delay. With probability 1 for reliably de-
liver all packets, the threshold delay of our analysis would

be infinite for all protocol classes, since there exists a low
but non-zero probability that an infinite number of retrans-
missions is necessary. We will show in Section VI that the
threshold delay for
 = 0:999 is a reasonable approxima-
tion for the delay to deliver all packets correctly.

Figure 6.e and 6.f shows the expected average round trip
delay of the analyzed protocol classes. After this time,
the sender can remove the data packet from memory. Be-
sides freeing buffer space, the round trip delay is important
if a window based sending scheme for flow and conges-
tion control is used. In this case the round trip delay may
limit the throughput, since throughput is basically given by
bufferspace

rtd
[2]. Recall that the round trip delay for proto-

col (H1) and (H2) is assumed to encompass only the di-
rect child nodes of the sender while the round trip delay
for protocol (H3) and (H4) encompass the whole control
tree. The round trip delay for (H1) and (H2) decreases
with the tree height. This is caused by our assumption that
an increased tree height results in lower delays between
the sender and its direct child nodes, since all members
of a local group are nearby. As the round trip delay with
AAK protocols considers all local groups from a leaf node
to the sender, for (H3) and (H4) it increases with the tree
height.

The effect of the receiver-initiated loss detection can be
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Fig. 8. Delays with respect to the branching factor

studied in detail in Figure 7 with varying sending rates. For
low sending rates this loss detection delay is the dominant
delay. For example, with sending rate� = 0:0001 1

ms
it

takes about 10s (1=�) to detect packet loss. You can see in
Figure 7.c and 7.d that the threshold delay is indeed about
10s, almost independent of the loss rate. With respect
to the average delivery delay, only nodes that have lost a
packet are affected by the loss detection delay. Therefore,
for loss probability 0.1 only 10% of all nodes need to wait
10s for detecting a packet loss; all other nodes receive the
packet from the initial transmission. Therefore, the aver-
age delay is about 1s. With packet loss probability 0.01,
the average delay is decreased by about the factor 100. As
packet loss is detected by the sender for protocol (H1) and
(H3), their delays are independent of the sending rate. If
the sending rate exceeds a certain limit (� = 0:5 1

ms
for

packet loss rate0:01 and� = 0:2 1
ms

for packet loss rate
0:1), though, the sender is overwhelmed with ACK mes-
sages. For protocol (H2) and (H4) this limit is higher due
to less control messages (� = 1

1
ms

for packet loss rate
0:1).

Figure 8 shows the delay results for varying branching
factors with 1000 receivers and sending rate� = 0:1 1

ms
.

Within the scalability range of a protocol class, the average
delivery delay is hardly influenced by the branching factor.

Since an ACK-based protocol is only scalable for up to 50
nodes with the given sending rate, a branching factor of
more than 50 nodes cannot be supported by (H1) and (H3).
The threshold delay and round trip delay provides more
interesting results. For all protocol classes, the threshold
delay decreases with increasing branching factor until a
protocol class is saturated by the feedback implosion. This
is caused by the decreased tree height and therefore faster
retransmissions in the worst case. With respect to round
trip delay, there is a minimum delay at a branching factor
of 10 to 20 for protocol (H3) and (H4). Since (H1) and
(H2) uses normal ACKs rather than hierarchical ones, the
lowest round trip delay is achieved with a small number of
child nodes.

VI. COMPARISON WITH SIMULATION RESULTS

To assess the analytical results we have implemented
the RMTP [3] and TMTP [4] reliable multicast protocols
in the NS2 [5] network simulator environment. Recall
that RMTP is a sender-initiated protocol and TMTP is a
receiver-initiated protocol with NAK suppression.

In contrast to the specification of RMTP we have imple-
mented no subcast mechanism, as this is not available with
general routers. Instead we used TTL-limited multicast to
send retransmissions. A further significant difference is



that we send acknowledgments as soon as a data packet is
received rather than periodically. Besides normal ACKs
we have additionally implemented aggregated ACKs. As
a consequence of the aggregated ACKs, this protocol is of
class (H3).

In contrast to the specification of TMTP we have imple-
mented AAKs rather than so-called early ACKs. TMTP
uses early ACKs to advance the flow control window. An
early ACK is sent after the corresponding data packet has
been received. This means, a group leader does not need
to wait for ACKs from all its children in order to send an
early ACK to its parent. While this specification allows to
loose data in case of node failures, we have implemented
AAKs to cope with such situations. As a consequence of
the NAK with NAK suppression and AAK scheme, this
protocol is of class (H4).

In conformance with the specification of RMTP and
TMTP we use a rate and window based sending scheme for
flow and congestion control. TMTP defines a periodic in-
terval at which each receiver unicasts an ACK (here AAK)
to its parent and suggests to set it on the round trip time to
the farthest receiver. In our analysis we have determined
the round trip time between sending a data packet and re-
ceiving the last corresponding control packet at the sender
under the assumption that the control packets are sent im-
mediately. Therefore, our TMTP implementation sends
AAKs immediately after receiving a data packet rather
than periodically.

For our simulations we have used two networks gener-
ated by Tiers [22] with 250 and 1000 nodes. All nodes in
the network use DVMRP [23] routing. To simulate mes-
sage loss, each link in the network is configured with prob-
ability 0.02% or 0.002% respectively for message loss. We
have measured an average end-to-end message loss proba-
bility for data packets of about 12% or 1.5% respectively.
The average propagation delay was measured to be about
70ms for the 250 node network and 130ms for the 1000
node network. While we have varied the sending rate for
our simulations, the flow control window size was always
10.

First we take a look at the RMTP results. Figure 9 shows
the average delay, round trip delay and threshold delay
for varying sending rates, varying number of receivers and
varying branching factors. The solid lines display the re-
sults for the simulation whereas the dotted lines display
the numerical results from our analysis. For Figure 9.a-9.c
the number of receivers is 100 in a network consisting of
250 nodes and a branching factor of 10. For Figure 9.d and
9.e the sending rate is0:001 1

ms
and the network consists

of 1000 nodes. For Figure 9.d the branching factor is also
10. The results for the varying branching factor is shown
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Fig. 9. Analytical vs. simulated delays of RMTP

with 200 receivers.
As the results in figure 9 indicate, the delay of RMTP

is mostly independent of the sending rate and group size,
for the analytical as well as simulation results. If we take
a closer look on the average delay results we can see that
even the absolute delays are predicted very precisely by
our analysis. In fact, the average delays from the simula-
tion differs from the analytical delays only by less than 5%.
The threshold delay results show a significantly higher de-
viation. The analytical results for the threshold delay in
Figure 9.b are made with probability 0.999 for correct



delivery of all packets. The measured simulation results
show the delay to correctly deliver all packets. Some of
this deviation results from fluctuating message loss prob-
abilities which are only on average 12% or 1.5%, respec-
tively. The results for the round trip delay in Figure 9.c are
similar to average delay very precisely predicted by the
analysis.

Figure 9.d shows the delay results for a varying number
of receivers. Here we can see that the average delay within
this group size range is indeed almost independent of the
group size, while the round trip delay and threshold delay
increases with the tree height.

Our last results for RMTP in Figure 9.e show the in-
fluence of a varying branching factor. As predicted by the
analytical results, average delay is hardly influenced by the
branching factor. For the round trip delay we see that both,
the analytical as well as simulation results show a signif-
icant decrease with increasing group size. Unfortunately,
for the threshold delay the simulation results are not sta-
ble, showing a peak that was not predicted by the analyt-
ical results, which may result from high message loss at
important links, e.g. near the source.

Now we want to present the TMTP simulation results.
By comparing the average delay results in Figure 10.a we
can again see that the analysis predicts very exactly the
simulation results for varying sending rates as well as for
different packet loss probabilities.

We can see that the results for threshold probability
0.999 and round trip delay show similar behaviour com-
pared to the measured results, however, deviate in their
exact absolute value. Note that some of this deviation re-
sults from the window based sending scheme. If no fur-
ther data packets can be sent due to missing aggregated
ACKs of previous sent packets, the loss detection of the
last packet sent is also delayed. If the average delay is
measured, the results are only moderately affected by this
behaviour since most packets are received from the initial
transmission. However, for the threshold delay we mea-
sure the maximum delay which is affected significantly. A
second reason are the fluctuating message loss probabili-
ties.

Figure 10.d shows the delay results for a varying number
of receivers. Again, the average delivery delay is indeed
almost independent of the group size. However, round trip
delay is influenced by increased group size, since this re-
sults in larger height of the control tree and therefore more
forwarding steps in the control tree.

The influence of a varying branching factor on TMTP’s
results are depicted in Figure 10.e. As predicted by the
analytical results, average delay is hardly influenced by
the branching factor. With respect to the round trip delay
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(c) Round trip delay with respect to the sending rate
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Fig. 10. Analytical vs. simulated delays of TMTP

we can see a moderate decrease between 2 and 10 child
nodes per group leader in the analytical as well as simula-
tion results. A significant decrease can be observed for the
threshold delay. Although the absolute delays are fluctu-
ating and lower as the analysis predicts, both show similar
delay decrease with increased branching factor.

We can conclude from the results that the measured av-
erage delivery delay from our simulation studies is very
appropriately predicted by our analytical model. For the
round trip delay and threshold delay there are more sig-
nificant deviations. They result from fluctuating message



loss probabilities in the simulation as well as from the win-
dow based sending scheme, which introduces additional
delays. However, in all cases the behaviour of the analyt-
ical model and the simulation studies with varying num-
ber of receivers, varying loss probabilities, varying send-
ing rates and varying branching factors are closely corre-
lated.

VII. SUMMARY

We have presented a comparative delay analysis of tree-
based reliable multicast protocols. Besides the average de-
livery delay we have considered the delay to reliably de-
liver all packets and the round trip delay.

Our numerical results showed that all tree-based pro-
tocols provide low delays and good scalability compared
to non-hierarchical approaches. From the four considered
protocol classes, NAK-based protocols achieve the best
scalability but ACK-based protocols achieve the lowest
delays. With respect to protocols with aggregated ACKs
(AAKs), which provide reliability even in case of node
failures, we can conclude that the increase in delay com-
pared to protocols without AAKs is negligible.

It was an important goal of our analysis to be of prac-
tical relevance rather than being of only theoretical na-
ture. Therefore, we have compared the analytical results
with RMTP and TMTP simulations. Both show identical
behaviour with varying number of receivers, transmission
rates, loss probabilities and branching factors. In case of
average delivery delay, even the absolute delays of the an-
alytical and simulation results are almost identical which
shows that our analytical model is appropriate.
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