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Abstract

Many mobile applications require some knowledge about the current geographic locations of the mobile objects
involved. Therefore, services exist that can store and retrieve the position of mobile objects in an efficient and scalable
way. More advanced location-aware applications, however, require additional functionality, like determining all mobile
objects inside a certain geographic area (range query). This functionality is not supported by existing services on a large
scale yet. In this paper, we present a generic large-scale location service. We describe the location service model, defin-
ing the semantics of position, range and nearest neighbor queries. A hierarchical distributed architecture is presented,
which can efficiently process these queries, and the structure of a main-memory database for efficiently storing and
retrieving position information on a location server. Finally, through measurements on a first prototype of this architec-
ture, we show the feasibility of such a location service.

1 Introduction

Location-aware services provide the base for a wide range of promising application areas, such as navigation, sentient
computing (e.g., [18]), and situated information spaces (e.qg., [2]). In particular, the latter kind of application is already
emerging into Personal Communication Services (PCS), where users may retrieve (situated) information that is “close”
to their current location.

In order to support a wide rage of location-aware applications, a generic locations service is needed, which maintains the
locations of tracked objects, like persons or vehicles. While for some applications it might be sufficient to retrieve the
current position of a given object, others might require more sophisticated types of queries like determining all mobile
objects that are inside a certain area (range queries) or the mobile object nearest to a certain location (nearest neighbor
guery). For example, in a city guide application an information service for public transportation might want to announce
the delay of a bus to all users waiting at the next station. In consequence, a user may want to find the nearest available
taxi cab. Besides a query/result-style of communication the location service should also support event-based interaction.
In other words, applications should be able to register for predicates, such as “more than five objects are in a certain area”
or “two users of the system meet”, at the location service, which asynchronously informs the registered applications
when the predicate becomes true (see [2]).

Position sensing devices, such as GPS differ in the accuracy with which they record information. While GPS is accurate
to within 10 m, an indoor location system might have a finer resolution, for example, the Active Bat system [8] offers an
accuracy of up to 10 cm. Consequently, the position information maintained by a location service may differ in accuracy
if it integrates various sensor systems. When designing an API for the location service this fact must be considered to
allow clients and tracked objects to specify the requested accuracy. Of course, query processing algorithms must take
into account the varying accuracy of the recorded position information as well as the accuracy related QoS requested for
the query. Moreover, different positioning systems can deliver the same information but in different forms. For example,
an Active Badge System [23] delivers position by means of cell identities, while GPS is based on a geographic coordi-
nate system. A location service implementation should hide this heterogeneity as far as possible from applications.



The privacy of the tracked object’s recorded position information will be crucial for the acceptance of such a service.
Therefore, authentication and authorization mechanisms must be integrated into a location service (for detailed discus-
sion of this aspect see [11]). In addition, we think that it is important to allow tracked objects to control the accuracy of
the position information that is submitted to the location service (“I am in town” vs. “| am at the central station”). In
other words, independent of the underlying sensor system users should be able to specify bounds on the accuracy infor-
mation transferred to the location service. Moreover, a user should be able to change these bounds on the fly depending
on his or her current situation. Consequently, the accuracy of the recorded position information not only depends on the
underlying sensor systems but also on the users’ privacy needs and trust in such a service.

We believe that the location-awareness of applications will not be limited to indoor or outdoor situations but will become

a global issue, which is supported by a location service integrating various indoor and outdoor positioning systems. We
further believe that many applications will become location-aware as soon as the required infrastructure gets available.
Consequently, we expect that a global location service must be able to handle hundred thousands of tracked objects and
clients concurrently. In other words, the scalability of such a service becomes a major design goal.

In this paper, we will consider only some of the issues raised above. In particular, we will focus on architectural aspects
of a large-scale location service. The main contributions of this paper are as follows: (1) A location service model (or
generic API) including position, range, and nearest neighbor queries is given. The semantics of these queries are defined
taking into account accuracy related QoS requirements. (2) A hierarchical server architecture for implementing the loca-
tion service together with the algorithms for position updates and query processing are proposed. (3) The structure of a
main-memory database for recording and accessing the position information in an efficient manner is described, and
finally (4), the feasibility of the proposed architecture is shown by means of measurements based on our prototype imple-
mentation.

The remainder of the paper is organized as follows: In Section 2, we discuss related work and then present our service
model in Section 3. The proposed architecture of the location service is given in Section 4, while data storage issues are
covered in the subsequent section. In Section 6, the major algorithms for update and query processing are presented in
detail. Section 7 shows the results of our experiments, and finally the paper concludes with a brief summary and an out-
look on future work.

2 Related Work

One of the first systems providing location-awareness has been based on the Active Badge in-door locating system [23].
In this context, a location service has been developed that manages the location information for an installation of the
Active Badge system [7] or its much more accurate successor, Active Bat [8]. The latter system provides an efficient
event mechanism based on the notion of geometric containment. In the ParcTab system, which uses a location tracking
technique similar to the Active Badge system, the location information of each user is managed and protected by a spe-
cial user agent because of privacy considerations [19].

Moving Objects Databases (MODs) are databases which contain information about moving objects and their location.
They are, for example, used for fleet management of transportation vehicles. Research issues are the definition of a suit-
able data model, querying and updating of the location information and the indexing of the data. In the DOMINO project
[24], for example, the reduction of position updates by using different dead-reckoning policies is discussed. Spatio-tem-
poral databases deal with changes of spatial information over time and additionally allow historical queries (see for
example [5]).

Much research has been done on efficient, scalable location management in Personal Communications Services, where a
distributed location management component is used for storing and retrieving the current communication cells for a large
number of mobile phones. Currently, in GSM [14] the location information of a mobile phone is stored in the Home
Location Register it is assigned to and in a Visitor Location Register responsible for its current location area. To improve
scalability, hierarchical concepts and user profile replication have been proposed for future Personal Communication Ser-
vices (see for example [9] or [10]). Although many concepts of location management can be used for the location ser-
vice, location management is primarily concerned with finding a certain mobile phone and does not consider range or
nearest neighbor queries. Also, position information is only captured with the granularity of a cell of the underlying com-
munication network.

A location service for locating mobile objects (mainly software objects) worldwide is being developed as part of the
Globe project [20]. To achieve the scalability for the desired very large number of mobile objects, the service uses a hier-
archical search tree, which allows to store addresses at different levels, and caching mechanisms. However, the Globe
location service returns the contact address of a queried object rather than a geographic position and does not support
range or nearest neighbor queries.



Leonhardt [11] proposes a wide-scale distributed location service that is independent of application and sensor systems.
In his PhD-thesis, he examines fundamental issues of such a location service and classifies them in an abstract service
model. In addition, he proposes a location model for the integration of different types of sensor data and requirements as
well as policies for access control of a location service. The thesis also discusses architectural aspects of a global, gen-
eral-purpose location service but does not propose or evaluate a specific architecture. Maal3 [12] describes the data model
and access protocols for a location service based on the X.500 directory service. This service supports position, range,
and nearest neighbor queries as well as notifications for predefined areas.

3 The Location Service

In our service model we distinguish between theation servicgLS), which is typically implemented by a humber of
serversfracked objectswhose position information is managed by the LS, aliehtsthat query their position informa-

tion through the LS. The LS is responsible for managing position information of mobile objects inside a semnan

area Those mobile objects whose position information is managed by the LS are denttackad objectsThe posi-

tion information for the tracked objects is determined through location sensor systems and is continuously updated in the
LS’s database. The position of a tracked object can be determined eithgrdsjtianing systerattached to the mobile

device, such as a GPS sensor, or by an external statitnagkyng systenrlike the Active Badge system (for an overview

of location sensors see for example [11]). Clients exploit the LS by issuing position or range queries, where a mobile
device may and often will have both roles, tracked object and client. Mobile devices are assumed to communicate with
the LS by means of wireless communication, such as GSM or a Wireless LAN according to the IEEE 802.11 standard.

location
service

registration,
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Figure 1: Basic components and interactions of the LS.

From a client’s point of view, the LS maintains in its database for each tracked ab{edl O) a so-calledocation

descriptor Id which includeso's position together with accuracy information. We assume position information to be
based on geographic coordinate systems, such as WGS84 [16], which is used by GPS. Due to communication delays and
the limited precision of sensor systems, the LS may maintain position information only up to a certain accuracy. The
achievable accuracy depends on various factors, mainly on the used position update protocol, the update frequency and
the underlying sensor system (for details see [15]).

A tracked object’s location descriptor, denoted la§o), consists of two components:

Id(0).pos The position stored faw, given by a geographic coordinate.

Id(o).acc This field specifies the accuracy, which is defined to be location area
the worst-case deviation ddl(0).pos from o's actual .. Of tracked object o
position. : ',d(o)_am

Consequently, ifp(o) denote®’s real position then:
DISTANCE(Id(0).pos - rp(o¥ Id(0).acc ferpos
(o)
As illustrated in Fig. 2p is guaranteed to reside in the circular location area defined by
Id(0). Obviously, the smaller the value tif(0).acc the higher is the accuracy. When an _. i .
O . . S o . Fégure 2: Location area
object is registered, the worst-case accuracy for this object’s position information can b defined byld(o)

negotiated with the LS (see below).

3.1 Registration and Position Update
When an object is registered or a tracked object’s position information is updated, a sosagikany recordis sent to
the LS. A sighting record 0 S has the following properties:

s.old identifier of the tracked object, which is unique in the LS’s namesphte
s.t Timestamp of the sightind.



S.pos Obiject’s position at times.tgiven by a geographic coordinateosdenotes the set of
possible positions.

S.aCGeng Sensor accuracy of the corresponding sensor systedich is defined to be the
maximum distance between the returned position and the actual position of the
tracked object af.t

To become a tracked object, a mobile device must register with the LS by issuimjstes 5 operation:
register(s desAcc, minAcc)- offeredAcc

The registering instance supplies an initial sighting recofar the object to be registered. Moreover, it specifies the
requested accuracy range by meande$AccandminAcc the desired and minimal accuracy, respectively. The accept-

able accuracy range mainly depends on the applications considering the tracked object as well as the object’s type. On
the other hand, as mentioned above, the accuracy provided by the LS is limited due to the sensor infrastructure and per-
formance reasons. It should be noted that the level of accuracy has a strong impact on the update frequency needed to
keep the position up to date. Registration succeeds, if the LS can provide an accuracy value within the requested range,
and fails otherwise. The offered accuracy is returnexdf@aredAcc

After registration the LS can be requested to change the accuracy by issuing:

changeAcc(o, desAcc, minAce)offeredAcc
Whenever the currently offered accuracy changes, the LS sends a notification to the registering instance, indicating the
now available accuracy.

notifyAvailAcc() — offeredAcc
To update the sighting records stored in the LS’s database, a tracked object or stationary tracking system sends update
requests according to a given update protocol (for details see [15]) to the LS.

update(s)
The LS forgets about a tracked object whleregisteris received for this object.

deregister(0)

3.2 Position and Range Queries
The LS basically supports three types of queries, position queries, range queries and nearest neighbor queries. A position
query is used to retrieve the current position of a given tracked object. In a fleet management system, for example, this
type of query could be used to get the current position of a certain truck, which has been scheduled for an inspection at
short notice. A range query determines all tracked objects inside a certain geographiclarkaSuch an area can be
defined as an arbitrary connected polygon given by the geographic coordinates of its corners. An application in the area
of fleet management would be to find all trucks that are in a given part of a city. The nearest neighbor query returns the
object with the minimal distance to a given geographic position. It could be used to find the nearest (free) truck for a load
of goods.
A client can retrieve the current position of an object,sdoy issuing:

posQuery(o)- Id
As response, objedts location descriptold(0) is returned, with the currently offered accuracyg i a tracked object of
the location service.

A range query returns the location descriptor for each tracked object located inside the indicated geographic area. Since
the position information recorded for a tracked object is a circular area rather than a point it is not always clear whether
or not an object belongs to a given area. In the example depicted in Fig. 3 it is clear thabglgeetthin areaa ando,

is outside of it. What about objects ando,? The location areas associated with these two objects overlap with the que-
ried area to different degrees. Clearly, the stronger the overlap the higher is the probability that the object’s real position
is within the ared We allow the client to specify the degree of overlap that is needed to qualify for a rangebeet

queried area and(o) specify the circular location area of objecthen the degree of overlap is defined to be:

Overlap(a, 0) = SIZE(an Id(0)) / SIZE(Id(0))

Obviously, the overlap degree can be in the range of [0,1].

1. For this timestamp we assume synchronized clocks, which can, for example, be achieved by using the very accurate time provided by a
GPS receiver.

1. s.tands.acgengtogether with the maximum speed of the tracked object are used by the LS to obtain a bound for the accuracy at a time
t>s.t(see [15]).

2. We assume that the probability of an object being at a certain point is uniformly distributed over the object’s location area



Another parameter that may strongly affect the outcome of the querv

is the accuracy of the objects’ position information. Assume, 1 ™" notinuded because of
example, that the accuracy associated with an objectis 200 m, w | *x
the specified area has the size of a room. Even if the location are "~ ;
the object and the range overlap to a high degree the probability notinciuded .
this object is within that area might be rather low. Therefore, in ad
tion to a threshold for the overlapping degree a client should be ¢
to request a certain degree of accuracy. Objects, whose position ¢
racy is below this degree, are not considered during query proces: A
In our example depicted in Fig. 3, objewmy is not considered as its :
accuracy is below the threshold.

A range query is issued by the following operation: Figure 3: Example of a range query.
rangeQuery(a, regAcc, reqOverlap) objSet
Parameten identifies the geographic area, arejAccandreqOverlapspecify the requested degree of accuracy and

overlap, respectively. ClearlyggOverlapmust be in (0,1]. InobjSet,the (id, location descriptor)-pairs for the objects
qualifying for that query are returned:

objSet = { (o, Id(0)) o O O and Overlap(a, ok reqOverlap > 0 and ld(0).acs regAcc }

A nearest neighbor query selects the tracked object with the minimum distance to a given position from the LS database.
It is issued by the following operation:

neighborQuery(p, regAcc, nearQual) (nearestObj, nearObjSet)

For the selected object, say the operation returns inearestObjthe correspondingo( Id(0))-pair. Foro holds that -
according to its position recorded lid(0).pos- no other tracked object is closer to positipnAs with range queries, a
client may specify an accuracy threshoddjAcc,where objects whose accuracy value is greater (i.e., whose accuracy is
worse) than this threshold are not considered for query processing:

nearestObj = (0, Id(0)) with @ O and DISTANCE(Id(0).pos, g)DISTANCE(Id(0’).pos, p)l o' 0 O

and Id(o).acc, Id(0’).ac& reqAcc

Consequently, it is guaranteed, that no object fitting the requested accuracy has a distarafeldss thanDIS-
TANCE(Id(0).pos, p) - reqAdsee Fig. 4). A client can use this lower bound for the distance to the nearest object, for
example to decide on the maximum power it can use for wireless transmission without causing interference.

Note that due to the limited accuracy of the recorded position information, it cannot be guaranteed that the selected
object is actually the nearest neighbor. For example, in the scenario depicted in Fig. 4phjegtbe nearer tp thano,

if its actual position inside the service area is in the part nearpratad the actual position af is in the farther outside

part of its service area. However, it can be shown that from all tracked objects this object is selected that is the nearest
neighbor with the highest probability. (Actually the probability also depends on the radii of the location areas, but their
influence is very low if the distance to p is large in comparison to them. If, for example, the distance is four times as high,
their influence is less than 1 percéht.

In particular, due to this uncertainty some applications might be irt~~

queried
area, a

reqAcc:

_included

_— .Xm% 071 reqOverlap = 0.3
.‘.".?‘.“ded position /d(o).pos and
: 100% accuracy Id(o).acc for object o

—-40% Ty

ested not only in the nearest neighbor but also in other “near” neighl nearQual T dered because of
where parametenearQual qualifies what “near” means. Let be the 7, Insuffcient accuracy
selected nearest neighbor, thearObjSets defined as follows: g o F -
nearObjSe = { (0, 1d()) | 0 0 O, o' # o and DIS- FOSK T e

TANCE(Id(0’).pos, pk DISTANCE(Id(0).pos, p) + nearQual ol X

and Id(0’).accs regAcc } ST S queried roatest
Consequently, ihearQualis set to zero, thenearObjSeis the empty ;@x 5

Vi DISTANCE(Id(0).pos, p)

set. On the other hand, ffearQualis set to 2x regAcc,it is guaranteed o N
that all tracked objects that could potentially be closep tithano are s
included innearObjSetIn the example illustrated in Fig. 4, objewt is reqhce
in nearObjSetwhile o, is not, as the position af, lies outside of the cir-
cle aroundp given by addingnearQualto the distance of the selectea
objecto from p. Objectog is again not considered because of its accu-
racy.

Figure 4: Scenario of a nearest
neighbor query.

1. Again assuming that the probability of being at a certain location is uniformly distributed over the object’s location area.



4 Architecture of the Location Service

In this section, we propose an architecture for a large-scale location service together with the basic algorithms for regis-
tration, handover and query processing. An outline of possible optimizations will be given in Section 6.5.

A LS as part of a future location-aware information system for a larger city may have hundred thousands of users. To
ensure the scalability required for such a large-scale deployment of the service, the location servers that belong to the LS
are organized in a hierarchical manner. Similar hierarchical architectures have been proposed for the location manage-
ment in Personal Communications Services [22] and the GLOBE location service for mobile software objects [20].

A location service (LS) is configured to cover a certain geographic area, its so-satiéde areaOnly objects that are
located within its service area can be registered with the LS to be tracked. Tracked objects that move out of the service
area are automatically deregistered.

The service area covered by an LS is structured in a hierarchical fashion: A service area can be subdivided into sub ser-
vice areas, which again can be subdivided, and so on. We denote the sub areas of a given service elhiéd setwice

areasof this parent service areaThe service area covered by the entire LS is calledrdbé service areaWhile the

shape of a service area may be any kind of polygon, the following two requirements must be fulfilled: (1) A non-leaf ser-
vice area consists of their child service areas, that is, it is the union of its child areas, and (2) sibling service areas do not
overlap.

root server

[oid [ _—]
loid [\ —] )
service
@ @ areas
location
server @ i i @ @
[oid [4] | [oid [4] |
[oid [4] | [oid [4] | @
leaf
server -

(ON
[oid [/Tpos, acc |
[oid |/]pos, acc_|

e [ 1A

O O O O O tracked objects

Figure 5: Basic architecture of the LS.
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Associated with each service area is a location server, which is responsible for tracking all the objects visiting its service
area. Consequently, the service area hierarchy resembles the location server hieraraot Séreeris the only server

in the hierarchy without @arentserver. Those servers that do not hatédrenin the server hierarchy are denoted as

leaf serversall other servers amon-leaf serversFig. 5 shows an example for a part of a server hierarchy with the cor-
responding service areas.

» Leaf serversare associated with leaf service areas only. Since leaf service areas are not supposed to overlap, at any
point in time for each tracked object there exists exactly one leaf server that is responsible for keeping track of the
object’s position. We will call this leaf server the objeaigent Of course, whenever a tracked object moves from one
service area to another, the tracking responsibility has to be handed over to another leaf location server, which then
becomes the object’s new agent.

» A non-leaf serveiis responsible for a service area that is the union of the service areas associated with its child serv-
ers. Obviously, the size of service areas associated with the servers increases from server to server in a leaf-to-root
direction. A non-leaf server records all tracked objects that are currently within its service area and for each of these
objects stores a so-calléarwarding referencewhere an object’s forwarding reference identifies the child server that
is responsible for the child service area this object is currently located in.

Consequently, only leaf location servers store sighting records, whereas non-leaf servers store a reference to the child
server that is “closer” to the corresponding sighting record. Obviously, the collection of forwarding references stored for
any given tracked object in the server hierarchy specifies a path from the root server to the object’s agent, storing the
sighting record.

Location updates for a tracked object are always sent to the object's agent, which then updates the object’s sighting
record. When a tracked object moves to a new service area, the tracking responsibility is handed over and the forwarding
path has to be adapted accordingly. Handover processing must then make sure that the tracked object learns about its new
agent. How many servers are affected by the path update operation depends on what level of service area the handover



occurs. Of course, due to the hierarchical organization of service areas, handovers between lower level service areas will
occur more rarely than for higher level areas.

Fig. 6 shows a three-layered server hierarchy, which we will use to briefly sketch how handover and query processing
works in a server hierarchy. Details of the algorithms can be found in the next section. In our example, we assume that
Server 4 §, for short) has detected that some tracked object has moved out of its service area. In consequence, a hand-
over request is sent to its parent server, which recognizes that the tracked object is still in its own (higher-level) service
area. Therefore, instead of forwarding the request further up the hieragcégnds it to that child whose service area
includes the object’s new position. Finallg sends the handover acknowledgement badg,tthereby updating the for-

warding path, and, informs the tracked object of its new agent.

In order to execute a position query the forwarding path is used to find the agent of the corresponding tracked object. In
our example, we assume that the position query is issuggaeid the corresponding object currently resides in the ser-
vice area associated witlg. The position query is forwarded up to the root as only there a forwarding reference for the
object is found. From there the request is forwarded along the object’s forwarding path degymtach finally sends

the answer t&,. Note that if the object had been located in the service areg tife request would have been forwarded
only up tos,.

For the range query in our example, we assume that the specified area overlaps with the servicesgaaassaf A

query request is propagated upwards frgpruntil a server is found, whose service area includes the specified area
entirely, which iss;. From there the request is propagated downwards to all children with service areas overlapping with
the specified area, until reachiggands;. Both leaf servers determine the objects that are in the corresponding sub area
and send the result &, which is responsible for constructing the answer returned to the client.

position range
query query

handover

o\o tracked o L] ied o .
™ 2 bject i Querie queried
object client object client area

Figure 6: Basic algorithms of the LS.

The possibility to partition a service area among a number of servers is a prerequisite for a scalable location service. Due
to the hierarchical organization of servers, we can gain performance by exploiting the locality of operations. Obviously,
most handovers will be local since tracked objects are supposed to move to adjacent service areas. Further, we expect that
also queries will show a rather high degree of locality because users of location-aware applications are typically inter-
ested in objects in their vicinity (e.g., all restaurants in walking distance, or persons that are in the same room). A high
locality of queries has been observed for location-aware applications [7], for phone calls in mobile communication sys-
tems [10] and for the Globe location service [20]. An additional advantage of a hierarchical server structure is that it goes
in line with hierarchically organized administrative domains, which is an important criteria for Internet-scale services
(e.g., see DNS [13]).

The performance of the system is influenced by the height of the hierarchy, the fan-out of nodes (i.e., the number of chil-
dren for a location server) and the size of the (leaf) service areas. The optimal setting of these parameters depend on the
number of tracked objects in the root service area, their distribution over this area (e.g., where hot spots are located), and
their mobility patterns (e.g., average speed, degree of locality). Moreover, the setting depends on what type of queries are
requested with which frequency, that is, it depends of the mix of queries issued by the applications of the LS. Another
aspect is the placement of servers, which has an impact on communication cost and latency. Due to the locality of update
and query operations (leaf) servers should be close to their service areas in terms communication cost and latency.

So far, we have assumed that each service area is associated with a single server. However, due to fault-tolerance and per-
formance reasons it is conceivable that multiple location servers are assigned to the same service area. In particular, this
will be important for the root server and higher-level servers which may have to manage a large number of objects. As
will be seen below, each location server maintains a database to keep track of objects visiting its service area. If there are
multiple location servers associated with the same service area, this database either can be replicated on these servers or
the data can be divided into partitions that are assigned to servers. For example, information about tracked objects can be
partitioned based on some portion of the object id, which is similar to the partitioning of the Home Location Register in
Personal Communications Services, such as GSM. Since location updates are supposed to occur very frequently, replica-



tion of sighting records would cause a significant overhead. So it has to be carefully checked which information on which
level in the hierarchy can be replicated without causing prohibitive cost. A detailed discussion of these issues is beyond
the scope of this paper.

5 Location Server Data Storage

Location servers need to maintain configuration information and databases that they use to keep track of objects visiting

their service area. To speed up query processing a spatial index containing the position information of the tracked objects

is used to find the candidates for a range or nearest neighbor query and a hash table containing object identifiers to

quickly find the object belonging to a position query.

In order to maintain the server hierarchy and the associated service areas, each location server stores a configuration
record on persistent storage. A configuration recafred by a server, sayincludes the following information:

c.sa This component defines the service area associated.with

c.parent This component identifies the parent serves.dfor the root serves.parentis
undefined g).

c.children This set includes a child record for each childofA child record encom-

passes two field&l andsa, which specify the child’s identifier and associated
service area, respectively. Clearly, for a leaf nedbildrenis empty.
Fig. 7 shows the components involved in the storage of the location data. A tracked object ivis#be®df a location
server if it is currently located in this server’s service area. To keep track of its visitors, each location server additionally
maintains a so-calledsitor databasévisitorDB for short), which includes a visitor record for each visitor. The structure
of a visitor record depends on whether it is stored at a leaf or non-leaf server.

A visitor recordv stored on a non-leaf server consist of the following components:

v.old Identifier of visiting object.
v.forwardRef Forwarding reference to the child server, which is next on the path to the visi-
tor’s agent.
A visitor recordv on a leaf server includes the following components:
v.old Identifier of visiting object.
v.sightingRef Reference to the visitor’s sighting record in #ightingDB(see below).
v.offeredAcc The currently offered accuracy for locating the visitor.
v.reginfa Registration information record for the visitor, encompassing the fiegs

desAccand minAccspecifying the registering instance, the desired accuracy
and the minimal accuracy, respectively.

Each leaf server in addition maintains sightingDB which sightingDB

includes a sighting record for each visitor. Each sighting recor S
associated with an expiration date, which is extended accordi z% ?; %

whenever the visitor contacts the location server in order to up
its position. When the sighting record expires, the visitor is at
matically deregistered, that is, its visitor records are removed f

the entire hierarchy. That is, we adopt the soft state principlt ¢ aringex 3 objec; index 22‘;0ry
make sure the information associated with a tracked object is €

tually removed from location servers even if the object fails. %
We decided to store theghtingDBin volatile memory for two rea- VisitorDB oy
sons. First, we expect position updates to occur very freque

and hence, in particular updates should be performed most
ciently (see our measurements in Section 7). Second, the overhea
for making location data recoverable from secondary storage is not
worth the effort since the recorded positions would be most probably out-dated anyway after recovery. Instead, the posi-
tion updates sent (periodically) by the tracked objects can be used to restore the data in volatile memory.

A spatial index over the position information in the sighting records (e.g., a Quadtree [17] or a R-Tree [6]) is used to effi-
ciently retrieve the results for range or nearest neighbor queries. Position queries are efficiently processed by using a hash
index structure defined over the object identifiers. The index structures are also stored in volatile memory. Our measure-
ment results reported in Section 7 show that even the spatial index can be built up very quickly (e.g., as update requests
arrive after system restart).

dFigure 7: Data storage components.



ThevisitorDB is kept in persistent storage, which is updated only when an object is registered, deregisters or a handover
occurs. In other words, the objects’ forwarding paths are supposed to survive system failures. Persistent registration
information also allows a location server to ask a visitor for a position update to restore its position information, for
example, when a position query arrives for this particular visitor after system restart.

6 Algorithms

In this section we will describe the major algorithms for implementing the LS, namely registration, handover and query
processing. When describing the algorithms we will assume tracked objects with local positioning systems. However, an
extension of the algorithms to also support stationary tracking sensors is straightforward.

Moreover, we will assume the existence of a mechanism that helps a client of the LS to find a leaf location server close-
by. This server, which we will cakéntry serveris contacted by the client in order to access the LS. A mechanism for
finding the entry server could be provided by a local lookup service, such as Jini (see [21]). A client that is at the same
time a tracked object already knows the closest leaf server through the handover mechanism.

6.1 Registration

To register a mobile object with the LS, the registering instance (e.g., the mobile object itself) sends a registration request
registerRedo its entry server (see Section 3.1 for a description of the request parameters). Then it waits for the response
registerRedo arrive. The registration procedure is shown in Algorithm 6-1.

The first phase of the registration procedure starts when the entry server reegistesReqln this phase, the request is
forwarded to the leaf server that is responsible for the object according to the object’s current position, specified in the
sighting records. If needed, the request is forwarded upwards the hierarchy supidlsis in the receiving location
server's service area. From there the request is forwarded downwards, until the responsible leaf server is reached.

The registration succeeds if the LS can provide an accuracy within the requesteddas@eciminAcg. Only in this

case the second phase of registration is started, which creates the path of forwarding pointers from the leaf to the root
server. To this end, ereatePathrequest is forwarded upwards, until it reaches the root server. Each server receiving this
request creates the corresponding visitor record wisisorDB. In addition, the leaf server store# its sightingDB and

finally sends aregisterReamessage, back to the registering instance. This message contains the accuracy that can be
offered by the leaf serverofferedAcy. If registration fails due to accuracy limitations,registerFailedresponse is
returned instead.

registration [ upon receiving registration request registerReq(s, olnfo, desAcc, minAcc, reginst) |
request (1) if (mobile object is in service area of server: s.pos U c.sa) then

2) if ('server is leaf server: c.children =) then

3) acc = determine maximum accuracy with which the location

information can be managed by the service

4) if (acc < minAcc)then [/ registration successful

(5) send createPath(s.old) to parent server c.parent

(6) visitorDB.insert(s.old) I/ create visitor record

(@) with visitorDB(s.old) do /I fill visitor record

8) sightingRef := sightingDB.insert(s); offeredAcc := max(acc, desAcc)

9) reginfo.desAcc = desAcc; reginfo.minAcc := minAcc

(20) reginfo.reg := reginst

(11) endwith

12) send registerRes(self, max(acc, desAcc)) to registering instance reginst

(13) else  // registration not successful

(14) send registerFailed(self, acc) to registering instance reglnst

(15) endif

(16) else /[ forward registration downwards

a7) child := select child O c.children with s.pos O child.c.sa

(28) send registerReq(s, olnfo, desAcc, minAcc, reginst) to child

(29) endif

(20) else /I forward registration upwards

(21) send registerReq(s, olnfo, desAcc, minAcc, reginst) to parent server c.parent

(22) endif

Algorithm 6-1: Registration Processing.
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create path [ upon receiving registration entry request createPath(old) from server /sy ]

(1) visitorDB.insert(old)

(2)  visitorDB(old).forwardRef := Is¢

(3) if (serveris not root server: c.parent # € ) then // forward create path request upwards
4) send createPath(old) to parent server c.parent

Algorithm 6-1: Registration Processing.

6.2 Location Updates and Handovers

As location updates are performed frequently, they are crucial in terms of performance. Therefore, various approaches
have been proposed to optimize update processing. Since this paper focuses on architectural issues rather than protocol
optimizations, we will confine ourselves here to a rather simple update protocol. The interested reader is referred to [24]
or [15].

A tracked object continuously compares its current position - as reported by the sensor system - with the position that has
been sent most recently to its agent. If these positions differ by more than the distance defined by the offered accuracy,
the tracked object sends a nepwdateRedncluding the current sightingto its agent server. The update processing per-
formed by an agent is depicted in Algorithm 6-2.

position [ upon receiving position update update(s) from tracked object 0]
update (1) if ( position of sighting is outside of service area: s.pos [ c.sa) then  // initiate handover
2) send handoverReq(s, visitorDB(s.old).reginfo) to parent server c.parent
?3) receive handoverRes(Isyq,, acc)
4) send handoverRes(ls,e,, acc) to tracked object o
/I remove visitor and sighting record from database
5) visitorDB.remove(s.old)
(6) sightingDB.remove(s)
(7) else
(8) sightingDB.update(s)
(9) endif
Algorithm 6-2: Processing of position updates.
handover [ upon receiving handover request handoverReq(s, reginfo) from server Is¢ ]
(1) if (mobile object is in service area of server: s.pos U c.sa) then
2) if ('server is leaf server: c.children =) then
3) acc = determine maximum accuracy with which the location
information can be managed by the service
4) visitorDB.insert(s.old)
(5) visitorDB(s.old).offeredAcc := max(acc, reginfo.desAcc)
(6) sightingDB.insert(s)
(@) send handoverRes(self, max(acc, reginfo.desAcc))to Is¢
8) else // forward handover downwards and create/reset forwarding pointer
9) child := select child 00 c.children with s.pos 0 child.c.sa
(20) send handoverReq(s, reginfo) to child
(11) receive handoverRes(ls,g,, acc)
12) if (visitorDB(s.old) = €) then visitorDB.insert(s.old)
(13) visitorDB(s.old).forwardRef := child
(14) send handoverRes(ls,e,, acc)to Is¢
(15) endif
(16) else /I forward handover upwards and remove forwarding pointers
a7) send handover(s, reginfo) to parent server c.parent
(28) receive handoverRes(Isyq,, acc)
(29) visitorDB.remove(s.oid)
(20) send handoverRes(ls,e,, acc)to Is¢
(21) endif

Algorithm 6-3: Handover processing.

An agent receiving a position update checks whesh@oss still within its service area. If this is the case, it just updates
the sighting record in itsightingDB Otherwise, it initiates the handover procedure by sending a handover request to its
parent. This message contamand the registration information recorded for that object. faerdoverReanessage is
propagated upwards until a receiver’s service area inclsighes Starting from this receiver, the handover request if for-
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warded downwards until the leaf server, whose service area comtaios,is reached. When this leaf server receives
handoverRegit becomes the object’s new agent. That is, it creates a new visitor record/isiits DB, includessin its
sightingDB and returns aandoverRemessage. The response includes the accuracy offered by the new agent, which is
in the requested accuracy range.

Due to the hierarchical server organization, most handovers will only involve one non-leaf node. The probability that a
non-leaf node is involved in handover processing decreases in a leaf-to-root direction.

The messagbkandoverRess propagated back along the path the request was sent on. The non-leaf servers receiving this
message update the object’s forwarding path in thisitorDBs accordingly, that is, remove the sub path leading to the

old agent and establish a new sub path to the new one. Finally, the old agent informs the tracked object of its new agent
and removes its entries from bafisitorDB andsightingDB

The processing of a handover request is shown in Algorithm 6-3.

6.3 Position Query

A client of the LS issues a position query by sendingoaQueryRegnessage for a tracked objexto an entry server

(see Algorithm 6-4). If the entry server itself stoi@s visitor record, it accesses issghtingDBto retrieveo’s position.
Otherwise, the entry server forwards the request to its parent, and then waits for the answer to arrieés. Qrsitson is

available, the entry server returns the corresponding location descriptpo$QaeryRemessage to the client.

A non-leaf location server receiving a forwarded position query sends this message to its parent, if it does not itself store
a visitor record foio. Otherwise, it forwards the request downwards following the forwarding pointer recoraéviis-

itor record. When a leaf server receives a forwarded position query from its parent, it ret'gepesition from itssight-

ingDB and returns the corresponding location descriptor to the entry server, whose address has been forwarded along
with the query.

In summary, query processing starts at a leaf sever, which forwards the request up to the first server storing the corre-
sponding visitor record, if needed. An alternative approach would have been to send the request immediately to the (par-
titioned) root. However, we decided against this alternative since we assume that clients are more interested in objects in
their vicinity (see also our discussion on locality in Section 4) and hence the distance to the node storing the position
information is on average shorter from a leaf server than from the root.

position [ upon receiving position query posQueryReq(old) from client o ]
query (1) if (queried object is managed by server: visitorDB(old) # € ) then
2) Id := new location descripor  // create and return location descriptor
?3) Id.pos := sightingDB.objectHash(old).pos
4) Id.acc = visitorDB(old).offeredAcc
(5) else /I forward query upwards
(6) send posQueryFwd(old, self) to parent server c.parent
(@) receive position query results, posQueryRes(Id)
(8) endif
(9) send posQueryRes(ld) to client o
position [ upon receiving position query forward posQueryFwd(old, Is.) ]
query fwd (1) if (queried object is managed by server: visitorDB(old) # € U c.children = 0 ) then
2) Id := new location descripor  // create and return location descriptor
3) Id.pos := sightingDB.objectHash(old).pos
4) Id.acc = visitorDB(old).offeredAcc
(5) send posQueryRes(ld) to entry server Isg
(6) elseif (server has forwarding pointer: visitorDB(old) # € ) then // forward packet downwards
(@) send posQueryFwd(old, Isp)to child server visitorDB(old).forwardRef
(8) else //forward packet upwards
9) send posQueryFwd(old, Isg) to parent server c.parent
(10) endif

Algorithm 6-4: Processing of position queries.

6.4 Range Query

A client can issue a range query by sendingaageQueryRedo an entry server (see Algorithm 6-5). If multiple leaf
servers are involved in query processing, these servers return their partial results to the entry server, which is responsible
for collecting them irobjects A returned partial result irmangeQuerySubRe®nsists of a specification of the portion of

the specified area that is covered by the sender plus a set of (identifier, location descriptor)-pairs, one for each tracked
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object that qualifies for this part of the area. Variabdeereds used for checking whether or not all partial results have
already been received.

If the entry server’s service area does not cover the specified area entirely, the range query request is forwarded in a leaf-
to-root direction until a server is reached which covers the area completely. Then the query is forwarded downwards to
all leaf servers of the corresponding subhierarchy whose service areas overlap with the specified area. Each of these leaf
servers uses the spatial index to identify the tracked objects qualifying for the query and retrieves their sighting records
from its sightingDB Finally, the result is sent to the entry server. After having received all partial results, the entry server
returns the outcome of the query irmageQueryRemessage to the client.

Before comparing the specified area with the service area of a location server, it is enlarged at all sides by a margin of
regAcc(using the functiorEnlargg. Otherwise, a server who is the agent of possible candidates for the range query,
might by missed, as they can be outside of the specified area (see Section 3.2).

Obviously, the cost of processing a query depends on the number of leaf servers involved, which depends on the size of
the specified area. In order to control the cost of range queries it is conceivable to limit the size of the area that applica-
tions are allowed to specify in their requests.

range [ upon receiving range query rangeQueryReq(area, regAcc, reqOverlap) from client 0]

query (1) objects:= 0 [l for collecting the results

(2) covered:=0 Il for checking if all results have been received

(3) if (area overlaps with service area of the server: Enlarge(area, reqAcc) n c.sa# [0 ) then
I/l get appropriate location descriptors from sighting database using spatial index

(4) foreach sin sightingDB.spatiallndex.objectsInArea(area, reqAcc, reqOverlap) do
(5) objects.append( { s.old, new Id(s.pos, visitorDB(s.old).offeredAcc) } )

(6) covered := area n c.sa

(7) endif

(8) if (part of area lies outside service area: Enlarge(area, reqAcc) — c.sa# [ ) then
/I forward query upwards

9) send rangeQueryFwd(area, reqgAcc, reqOverlap, self) to parent server c.parent
(20) until area is entirely covered: covered = area
(11) receive range query results, rangeQuerySubRes(objs, a)
(12) objects := objects [1 objs; covered := covered [1 a
(13) end
(14) endif
(15) send rangeQueryRes(objects) to client o
range [ upon receiving range query forward rangeQueryFwd(area, reqAcc, reqOverlap, Isg) from
query fwd forwarding server Is¢]
(1) if (area overlaps with service area of the server: Enlarge(area, regAcc) n c.sa# O ) then
2) if (' server is leaf server: c.children =0 ) then
/I get appropriate location descripors from sighting database using spatial index
?3) objects := [
4) foreach sin sightingDB.spatialindex.objectsinArea(area, reqAcc, reqOverlap) do
5) objects.append( { s.old, new Id(s.pos, visitorDB(s.old).offeredAcc) } )
(6) send rangeQuerySubRes(objects, area n c.sa) to entry server Is,
(@) else // forward query downwards
(8) foreach childin c.children do
9) if (area overlaps with child service area: Enlarge(area, regAcc) n child.c.sa# O
and child was not forwarding server: child # Is¢) then
(20) send rangeQueryFwd(area, regAcc, reqOverlap, Isg) to child
(11) endif
(12) endif

(13) if ( part of area lies outside service area: Enlarge(area, reqAcc) — c.sa# [

and parent was not forwarding server: c.parent # Isg) then  // forward query upwards
(14) send rangeQueryFwd(area, reqgAcc, reqOverlap, Isg) to parent server c.parent
(15) endif

Algorithm 6-5: Processing of range queries.
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6.5 Caching

Many hierarchically organized information systems employ caching mechanisms particularly to reduce the overhead
caused by tree traversals (e.g., see [20] or [13]). The Domain Name System, for example, relies to a great deal on caching
to achieve its scalability and performance. Our following discussion will concentrate on further optimizations by means
of caching performed on leaf location severs. Clearly, similar caching mechanisms can be used on the clients of the LS.
Caching mechanisms on non-leaf servers will be the focus of future work.

The following information may be cached on leaf servers:

(Leaf server, service areafhe efficiency of handovers and range queries can be enhanced by caching for each locally
known leaf server the associated service area. To spread this mapping information, in each request and response message
forwarded within the server hierarchy the originator of the message includes a specification of its (leaf) service area. A
leaf server receiving such a message stores the included mapping in its cache. Using this mechanism, leaf server will
soon learn about the service areas of other leaf servers, especially those of its neighbors. When executing a handover or a
range query concerning a certain area, the entry server first checks whether it can determine the leaf server(s) for this area
from its cache. If this is the case, it can contact the server(s) directly, without traversing the hierarchy. As the service
areas of location servers are assumed to change seldomly, the probability of out-dated cache entries will be low. There-
fore, we expect the performance improvements achieved by this mechanism be worth the additional (little) overhead in
almost all cases.

(Tracked object, current agentfo speed up position queries, the address of a tracked object’s current agent can be
cached. Upon receipt of a response for a query, a leaf server stores a cache entry with address of the response’s originator
for each object identifier included in the response. When an entry server receives a position query for a tracked object, it
first checks whether it finds an entry for the corresponding object in its cache. If so, it contacts the recorded leaf server
directly. However, for highly mobile objects cache entries may become out-dated soon, depending on the size of the ser-
vice areas as well as the speed and moving pattern of the objects. Consequently, how well this mechanism performs
depends on the frequency of handovers between leaf service areas compared with the frequency of position updates. If
agent information becomes obsolete too fast it has been suggested to use cache pointers to higher-level servers to shorten
the search path (see for example [1]). The service areas associated with those servers are larger, and hence handovers on
a higher level are not that frequent as on the leaf level.

(Tracked object, position descriptof3esides storing information about the current agent of a tracked object, it is also
possible to cache the position descriptor returned as result for a previous query. When the location server receives
another query concerning the same object(s), it can retrieve the position information directly from the cache, provided
the information is still accurate enough. (this can be determined based on the object’s maximum speed with the estima-
tion method mentioned in Section 3). Whether or not caching of position information for an object makes sense depends
on various factors: The speed of this object, the frequency of position queries, as well as the position accuracy requested
for this object.

7 Experiments

A first prototype of the LS, implemented in Java 1.2, is available. It provides the basic functionality for position updates,
handover and query processing. However, the caching mechanisms described in Section 6.5 are not included yet. There-
fore, all measurement results reported below show the performance of the system without caching.

7.1 Data Storage

As pointed out in Section 5, we decided to store position information in a main memory database. For the spatial index
we used a Point Quadtree implementation [17], which we found to be very well suited for our purpose. Persistent storage
is provided by a DB2 database, which is accessed via JDBC.

To evaluate the performance of our main memory solution, we have measured the throughput of the data storage on a
SUN Ultra machine with a 450 MHz CPU and 1 GB of memory, where the load was generated locally. The results of
these measurements are depicted in Table 1 for the different types of operations. In our experiment, we started with an
empty location server associated with a service area of 10 by 10 km. Then we consecutively registering 25,000 tracked
objects with random positions in this area. Subsequently, 10,000 position updates and 10,000 position queries were con-
secutively performed for randomly selected objects, and finally 10,000 range queries for random areas of three different
sizes were executed.

The results show that the spatial index can be built-up very fast (in our case 25,000 inserts in about 1 second), which is in
particular important for crash recovery. Remember that the spatial index is lost due to failures and has to be built up again
after system restart as position update requests come in. The main memory solution also provides for very efficient posi-
tion updates. Position queries, which only involve the hash table of object identifiers, can be processed even faster. Obvi-

14



ously, the throughput for range queries depends on the size of the area, which determines the portion of the spatial index
to be searched. Our measurements show, that the data storage can process more than 1000 queries per second even fol
big areas. Moreover, these results also show that data storage is not going to become a performance bottleneck in our sys-

tem.
operation operations per second
creating index 24,015 1Js
position updates 41,494 1/s
position query 384,615 1fs
range query (10 m 10 m) 21,834 1/
range query (100 m 100 m) 18,450 1/
range query (1 k¥ 1 km) 1,813 1/3

Table 1: Throughput of the data storage component based on
a service area of 10 ksm10 km and 25,000 tracked objects.

7.2 Local and Distributed Queries

To determine the overall performance of the LS for local as well as for distributed queries, we have set up a small testing
environment with 5 SUN Ultra workstations with 450 MHz CPUs and between 256 MB and 1 GB of memory connected
through a 100 MBIt Ethernet network. One of these machines is configured as root server with the other four as its chil-
dren. Each child server is responsible for a quarter of the entire service area of 1.5 by 1.5 km (see Fig. 8). Our communi-
cation protocols are implemented on top of UDP to achieve efficient client/server and server/server interactions.

For this configuration of the LS, we have measured the response time as well as the overall throughput for position
updates, position queries and range queries. To this end, we have registered 10,000 mobile objects at random positions
with the LS. Three additional machines act as load generators and run parallel client processes sending the update and
guery requests as fast as possible to the four leaf location servers, so that each of these servers receives an equal share of
the load. The queried area in range queries has a medium size of 50 by 50 meters.

Because we wanted to determine the effect of having to traverse the hierarchy, we have distinguished between local and
remote queries. For position updates (which are always local in our architecture), for local position and range queries, the
requests are always sent directly to the queried object’s agent or the server whose service area includes the queried area.

For remote queries, we have chosen another entry server.
root server 15k/ .
2 km service
leaf / areas

We have also looked at the overhead caused by remq

range queries that involve more than one leaf server |
qguerying an area that is (1) included completely in th
service area of one leaf server, that (2) overlaps with tt (5157 s —

service areas of two leaf servers, and (3) overlaps wi :ggaqrﬁzrie“s : B

the service areas of all four leaf servers. Table 2 shov I:l 59 B o ators

the results we have obtained for our test configuration.

The update rate achieved for this configuration would be  Figure 8: Testing environment for the distributed

sufficient to support position information for as much as mechanisms of the LS.

100,000 mobile objects with an average speed of 3 km/h

and an accuracy of 25 m. Similarly, local queries can be performed very efficiently, where the performance of position
query is better, mainly because of the larger results of range queries. Although still good, remote queries and especially
remote range queries are more expensive since one query involves at least three location servers. Here, the optimizations
proposed in Section 6.5 should definitely bring an improvement. Note that our decision to collect the range query results
at the entry server before sending them back to the client causes an extra hop of communication, whose effect is consid-
ered in our measurements.

operation response time overall throughput
position updates 1.2 ms (with ACK) 4,954 1/s
local position query 2.0ms 2,809 1/s

Table 2: Response time and overall throughput for different types of
operations performed on the test configuration of the LS.
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operation response time overall throughput
remote position query 6.3 ms 728 1/s
local range query 5.1ms 1,927 1/s
remote range query (1 server) 13.0|ms 588 1/s
remote range query (2 servers) 14.6|/ms 364 1/s
remote range query (4 servers) 13.8|ms 284 1/s

Table 2: Response time and overall throughput for different types of
operations performed on the test configuration of the LS.

8 Conclusion and Future Work

In this paper we have presented the design of a distributed LS, which is suitable for large-scale deployment and frequent
updating of the location information. Besides position queries, the service is also able to efficiently carry out distributed
range and nearest neighbor queries. Its data storage component, which combines a main memory and a stable storage
part, is designed to allow an efficient processing of local updates and queries. In the paper, we have described the service
model and the hierarchical distributed architecture of this service as well as its data storage component and algorithms. A
performance evaluation of a first prototype of the LS shows the feasibility of our concepts.

For future work, we will soon have finished with the implementation of the distributed mechanisms for the LS and con-
tinue to evaluate it in more detail. We will be looking into the influence of movement and querying characteristics on the
performance of different configurations of the LS. Parameters of interest are, for example, the density of the tracked
objects or their moving patterns as well as the concrete mix of different types of queries and their degree of locality.
Those will be considered in comparison with the size of service areas or the height and fan-out of the location server hier-
archy. Based on the results of this evaluation we will look at caching mechanisms, some of which have been outlined in
Section 6.5, with the goal of further improving the scalability of the service. We will then integrate promising caching
mechanisms into the LS and evaluate their influence on its performance for different usage scenarios. Further areas of
research include the integration of an event mechanism as sketched in Section 1.
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