
Universität Stuttgart
Fakultät Informatik

Architecture of a Large-scale

Location Service

Authors:
Dipl.-Inf. A. Leonhardi
Prof. Dr. K. Rothermel

Institute of Parallel and Distributed
High-Performance Systems (IPVR)
Department of Computer Science
University of Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart
Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Publikationen der Universität Stuttgart
Architecture of a Large-scale
Location Service

A. Leonhardi, K. Rothermel

Technical Report 2001/01
January 2001

https://core.ac.uk/display/147540792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bjects
calable
obile
a large

el, defin-
esented,
ing and
hitec-

sentient
lready
“close”

ains the
ve the
mobile
neighbor
ounce
vailable
raction.
in area”

cations

ccurate
rs an

curacy
ered to
ust take
sted for
mple,

coordi-
ns.
Architecture of a Large-scale
Location Service

Alexander Leonhardi and Kurt Rothermel

Institute of Parallel and Distributed
High-Performance Systems (IPVR)

University of Stuttgart
Breitwiesenstr. 20-22

70565 Stuttgart, Germany

alexander.leonhardi@informatik.uni-stuttgart.de

Technical Report 2001/01
Department of Computer Science

University of Stuttgart
January 2001

Abstract
Many mobile applications require some knowledge about the current geographic locations of the mobile o
involved. Therefore, services exist that can store and retrieve the position of mobile objects in an efficient and s
way. More advanced location-aware applications, however, require additional functionality, like determining all m
objects inside a certain geographic area (range query). This functionality is not supported by existing services on
scale yet. In this paper, we present a generic large-scale location service. We describe the location service mod
ing the semantics of position, range and nearest neighbor queries. A hierarchical distributed architecture is pr
which can efficiently process these queries, and the structure of a main-memory database for efficiently stor
retrieving position information on a location server. Finally, through measurements on a first prototype of this arc
ture, we show the feasibility of such a location service.

1 Introduction
Location-aware services provide the base for a wide range of promising application areas, such as navigation,
computing (e.g., [18]), and situated information spaces (e.g., [2]). In particular, the latter kind of application is a
emerging into Personal Communication Services (PCS), where users may retrieve (situated) information that is
to their current location.

In order to support a wide rage of location-aware applications, a generic locations service is needed, which maint
locations of tracked objects, like persons or vehicles. While for some applications it might be sufficient to retrie
current position of a given object, others might require more sophisticated types of queries like determining all
objects that are inside a certain area (range queries) or the mobile object nearest to a certain location (nearest
query). For example, in a city guide application an information service for public transportation might want to ann
the delay of a bus to all users waiting at the next station. In consequence, a user may want to find the nearest a
taxi cab. Besides a query/result-style of communication the location service should also support event-based inte
In other words, applications should be able to register for predicates, such as “more than five objects are in a certa
or “two users of the system meet”, at the location service, which asynchronously informs the registered appli
when the predicate becomes true (see [2]).

Position sensing devices, such as GPS differ in the accuracy with which they record information. While GPS is a
to within 10 m, an indoor location system might have a finer resolution, for example, the Active Bat system [8] offe
accuracy of up to 10 cm. Consequently, the position information maintained by a location service may differ in ac
if it integrates various sensor systems. When designing an API for the location service this fact must be consid
allow clients and tracked objects to specify the requested accuracy. Of course, query processing algorithms m
into account the varying accuracy of the recorded position information as well as the accuracy related QoS reque
the query. Moreover, different positioning systems can deliver the same information but in different forms. For exa
an Active Badge System [23] delivers position by means of cell identities, while GPS is based on a geographic
nate system. A location service implementation should hide this heterogeneity as far as possible from applicatio
2

rvice.
discus-

acy of
). In
cy infor-
pending
on the

come
ms. We
ailable.
jects and

spects
del (or

defined
e loca-
ure of a
ed, and
e imple-

service
ues are

sented in
an out-

em [23].
of the

fficient
tracking
y a spe-

cation.
of a suit-
roject
io-tem-
ee for

, where a
a large
ome
prove

ion Ser-
on ser-
nge or
com-

of the
a hier-
e Globe
t support
The privacy of the tracked object’s recorded position information will be crucial for the acceptance of such a se
Therefore, authentication and authorization mechanisms must be integrated into a location service (for detailed
sion of this aspect see [11]). In addition, we think that it is important to allow tracked objects to control the accur
the position information that is submitted to the location service (“I am in town” vs. “I am at the central station”
other words, independent of the underlying sensor system users should be able to specify bounds on the accura
mation transferred to the location service. Moreover, a user should be able to change these bounds on the fly de
on his or her current situation. Consequently, the accuracy of the recorded position information not only depends
underlying sensor systems but also on the users’ privacy needs and trust in such a service.

We believe that the location-awareness of applications will not be limited to indoor or outdoor situations but will be
a global issue, which is supported by a location service integrating various indoor and outdoor positioning syste
further believe that many applications will become location-aware as soon as the required infrastructure gets av
Consequently, we expect that a global location service must be able to handle hundred thousands of tracked ob
clients concurrently. In other words, the scalability of such a service becomes a major design goal.

In this paper, we will consider only some of the issues raised above. In particular, we will focus on architectural a
of a large-scale location service. The main contributions of this paper are as follows: (1) A location service mo
generic API) including position, range, and nearest neighbor queries is given. The semantics of these queries are
taking into account accuracy related QoS requirements. (2) A hierarchical server architecture for implementing th
tion service together with the algorithms for position updates and query processing are proposed. (3) The struct
main-memory database for recording and accessing the position information in an efficient manner is describ
finally (4), the feasibility of the proposed architecture is shown by means of measurements based on our prototyp
mentation.

The remainder of the paper is organized as follows: In Section 2, we discuss related work and then present our
model in Section 3. The proposed architecture of the location service is given in Section 4, while data storage iss
covered in the subsequent section. In Section 6, the major algorithms for update and query processing are pre
detail. Section 7 shows the results of our experiments, and finally the paper concludes with a brief summary and
look on future work.

2 Related Work
One of the first systems providing location-awareness has been based on the Active Badge in-door locating syst
In this context, a location service has been developed that manages the location information for an installation
Active Badge system [7] or its much more accurate successor, Active Bat [8]. The latter system provides an e
event mechanism based on the notion of geometric containment. In the ParcTab system, which uses a location
technique similar to the Active Badge system, the location information of each user is managed and protected b
cial user agent because of privacy considerations [19].

Moving Objects Databases (MODs) are databases which contain information about moving objects and their lo
They are, for example, used for fleet management of transportation vehicles. Research issues are the definition
able data model, querying and updating of the location information and the indexing of the data. In the DOMINO p
[24], for example, the reduction of position updates by using different dead-reckoning policies is discussed. Spat
poral databases deal with changes of spatial information over time and additionally allow historical queries (s
example [5]).

Much research has been done on efficient, scalable location management in Personal Communications Services
distributed location management component is used for storing and retrieving the current communication cells for
number of mobile phones. Currently, in GSM [14] the location information of a mobile phone is stored in the H
Location Register it is assigned to and in a Visitor Location Register responsible for its current location area. To im
scalability, hierarchical concepts and user profile replication have been proposed for future Personal Communicat
vices (see for example [9] or [10]). Although many concepts of location management can be used for the locati
vice, location management is primarily concerned with finding a certain mobile phone and does not consider ra
nearest neighbor queries. Also, position information is only captured with the granularity of a cell of the underlying
munication network.

A location service for locating mobile objects (mainly software objects) worldwide is being developed as part
Globe project [20]. To achieve the scalability for the desired very large number of mobile objects, the service uses
archical search tree, which allows to store addresses at different levels, and caching mechanisms. However, th
location service returns the contact address of a queried object rather than a geographic position and does no
range or nearest neighbor queries.
3

ystems.
t service
ents as

bal, gen-
ta model
, range,

f

d in the

mobile
te with
ndard.

be
lays and
y. The
ency and
Leonhardt [11] proposes a wide-scale distributed location service that is independent of application and sensor s
In his PhD-thesis, he examines fundamental issues of such a location service and classifies them in an abstrac
model. In addition, he proposes a location model for the integration of different types of sensor data and requirem
well as policies for access control of a location service. The thesis also discusses architectural aspects of a glo
eral-purpose location service but does not propose or evaluate a specific architecture. Maaß [12] describes the da
and access protocols for a location service based on the X.500 directory service. This service supports position
and nearest neighbor queries as well as notifications for predefined areas.

3 The Location Service
In our service model we distinguish between thelocation service(LS), which is typically implemented by a number o
servers,tracked objects, whose position information is managed by the LS, andclientsthat query their position informa-
tion through the LS. The LS is responsible for managing position information of mobile objects inside a certainservice
area. Those mobile objects whose position information is managed by the LS are denoted astracked objects. The posi-
tion information for the tracked objects is determined through location sensor systems and is continuously update
LS’s database. The position of a tracked object can be determined either by apositioning systemattached to the mobile
device, such as a GPS sensor, or by an external stationarytracking system, like the Active Badge system (for an overview
of location sensors see for example [11]). Clients exploit the LS by issuing position or range queries, where a
device may and often will have both roles, tracked object and client. Mobile devices are assumed to communica
the LS by means of wireless communication, such as GSM or a Wireless LAN according to the IEEE 802.11 sta

From a client’s point of view, the LS maintains in its database for each tracked objecto (o ∈ O) a so-calledlocation
descriptor ld, which includeso’s position together with accuracy information. We assume position information to
based on geographic coordinate systems, such as WGS84 [16], which is used by GPS. Due to communication de
the limited precision of sensor systems, the LS may maintain position information only up to a certain accurac
achievable accuracy depends on various factors, mainly on the used position update protocol, the update frequ
the underlying sensor system (for details see [15]).

A tracked objecto’s location descriptor, denoted asld(o), consists of two components:

ld(o).pos: The position stored foro, given by a geographic coordinate.

ld(o).acc: This field specifies the accuracy, which is defined to be
the worst-case deviation ofld(o).pos from o’s actual
position.

Consequently, ifrp(o) denoteso’s real position then:

DISTANCE(ld(o).pos - rp(o))≤ ld(o).acc

As illustrated in Fig. 2,o is guaranteed to reside in the circular location area defined by
ld(o). Obviously, the smaller the value ofld(o).acc the higher is the accuracy. When an
object is registered, the worst-case accuracy for this object’s position information can be
negotiated with the LS (see below).

3.1 Registration and Position Update
When an object is registered or a tracked object’s position information is updated, a so-calledsighting recordis sent to
the LS. A sighting record s∈ S has the following properties:

s.oId: identifier of the tracked object, which is unique in the LS’s namespaceOId.

s.t: Timestamp of the sighting.1

tracked
object

location
service

registration,
position updates

service
arearegistration,

position updates

position & range
queries

mobile client &
tracked object

Figure 1: Basic components and interactions of the LS.

location area
of tracked object o

ld(o).pos

rp(o)

ld(o).acc

Figure 2: Location area
defined byld(o).
4

the

he
pt-

type. On
and per-
eeded to
d range,

ting the

s update

position
ple, this
ction at

he area
rns the
a load

a. Since
hether

que-
osition

y a

me
s.pos: Object’s position at times.tgiven by a geographic coordinate.Posdenotes the set of
possible positions.

s.accsens: Sensor accuracy of the corresponding sensor system1, which is defined to be the
maximum distance between the returned position and the actual position of
tracked object ats.t.

 To become a tracked object, a mobile device must register with the LS by issuing theregisterLS operation:

register(s, desAcc, minAcc)→ offeredAcc

The registering instance supplies an initial sighting records for the object to be registered. Moreover, it specifies t
requested accuracy range by means ofdesAccandminAcc, the desired and minimal accuracy, respectively. The acce
able accuracy range mainly depends on the applications considering the tracked object as well as the object’s
the other hand, as mentioned above, the accuracy provided by the LS is limited due to the sensor infrastructure
formance reasons. It should be noted that the level of accuracy has a strong impact on the update frequency n
keep the position up to date. Registration succeeds, if the LS can provide an accuracy value within the requeste
and fails otherwise. The offered accuracy is returned inofferedAcc.

After registration the LS can be requested to change the accuracy by issuing:

changeAcc(o, desAcc, minAcc)→ offeredAcc

Whenever the currently offered accuracy changes, the LS sends a notification to the registering instance, indica
now available accuracy.

notifyAvailAcc() → offeredAcc

To update the sighting records stored in the LS’s database, a tracked object or stationary tracking system send
requests according to a given update protocol (for details see [15]) to the LS.

update(s)

The LS forgets about a tracked object whenderegister is received for this object.

deregister(o)

3.2 Position and Range Queries
The LS basically supports three types of queries, position queries, range queries and nearest neighbor queries. A
query is used to retrieve the current position of a given tracked object. In a fleet management system, for exam
type of query could be used to get the current position of a certain truck, which has been scheduled for an inspe
short notice. A range query determines all tracked objects inside a certain geographic area,a ∈ A. Such an area can be
defined as an arbitrary connected polygon given by the geographic coordinates of its corners. An application in t
of fleet management would be to find all trucks that are in a given part of a city. The nearest neighbor query retu
object with the minimal distance to a given geographic position. It could be used to find the nearest (free) truck for
of goods.

A client can retrieve the current position of an object, sayo, by issuing:

posQuery(o)→ ld

As response, objecto’s location descriptorld(o) is returned, with the currently offered accuracy, ifo is a tracked object of
the location service.

A range query returns the location descriptor for each tracked object located inside the indicated geographic are
the position information recorded for a tracked object is a circular area rather than a point it is not always clear w
or not an object belongs to a given area. In the example depicted in Fig. 3 it is clear that objecto1 is within areaa ando2
is outside of it. What about objectso3 ando4? The location areas associated with these two objects overlap with the
ried area to different degrees. Clearly, the stronger the overlap the higher is the probability that the object’s real p
is within the area2. We allow the client to specify the degree of overlap that is needed to qualify for a range. Leta be a
queried area andld(o) specify the circular location area of objecto, then the degree of overlap is defined to be:

Overlap(a, o) = SIZE(a ∩ ld(o)) / SIZE(ld(o))

Obviously, the overlap degree can be in the range of [0,1].

1. For this timestamp we assume synchronized clocks, which can, for example, be achieved by using the very accurate time provided b
GPS receiver.

1. s.t ands.accsens together with the maximum speed of the tracked object are used by the LS to obtain a bound for the accuracy at a ti
t > s.t (see [15]).

2. We assume that the probability of an object being at a certain point is uniformly distributed over the object’s location area.
5

nd
s

tabase.

cy is

t, for

elected

nearest
t their
s high,
Another parameter that may strongly affect the outcome of the query
is the accuracy of the objects’ position information. Assume, for
example, that the accuracy associated with an object is 200 m, while
the specified area has the size of a room. Even if the location area of
the object and the range overlap to a high degree the probability that
this object is within that area might be rather low. Therefore, in addi-
tion to a threshold for the overlapping degree a client should be able
to request a certain degree of accuracy. Objects, whose position accu-
racy is below this degree, are not considered during query processing.
In our example depicted in Fig. 3, objecto5 is not considered as its
accuracy is below the threshold.

A range query is issued by the following operation:

rangeQuery(a, reqAcc, reqOverlap)→ objSet

Parametera identifies the geographic area, andreqAccand reqOverlapspecify the requested degree of accuracy a
overlap, respectively. Clearly,reqOverlapmust be in (0,1]. InobjSet,the (id, location descriptor)-pairs for the object
qualifying for that query are returned:

objSet = { (o, ld(o))| o ∈ O and Overlap(a, o)≥ reqOverlap > 0 and ld(o).acc≤ reqAcc }

A nearest neighbor query selects the tracked object with the minimum distance to a given position from the LS da
It is issued by the following operation:

neighborQuery(p, reqAcc, nearQual)→ (nearestObj, nearObjSet)

For the selected object, sayo, the operation returns innearestObjthe corresponding (o, ld(o))-pair. Foro holds that -
according to its position recorded inld(o).pos- no other tracked object is closer to positionp. As with range queries, a
client may specify an accuracy thresholdreqAcc,where objects whose accuracy value is greater (i.e., whose accura
worse) than this threshold are not considered for query processing:

nearestObj = (o, ld(o)) with o∈ O and DISTANCE(ld(o).pos, p)≤ DISTANCE(ld(o’).pos, p)∀ o’ ∈ O
and ld(o).acc, ld(o’).acc≤ reqAcc

Consequently, it is guaranteed, that no object fitting the requested accuracy has a distance top of less thanDIS-
TANCE(ld(o).pos, p) - reqAcc(see Fig. 4). A client can use this lower bound for the distance to the nearest objec
example to decide on the maximum power it can use for wireless transmission without causing interference.

Note that due to the limited accuracy of the recorded position information, it cannot be guaranteed that the s
object is actually the nearest neighbor. For example, in the scenario depicted in Fig. 4 objecto1 may be nearer top thano,
if its actual position inside the service area is in the part nearer top and the actual position ofo is in the farther outside
part of its service area. However, it can be shown that from all tracked objects this object is selected that is the
neighbor with the highest probability. (Actually the probability also depends on the radii of the location areas, bu
influence is very low if the distance to p is large in comparison to them. If, for example, the distance is four times a
their influence is less than 1 percent.1)

In particular, due to this uncertainty some applications might be inter-
ested not only in the nearest neighbor but also in other “near” neighbors,
where parameternearQualqualifies what “near” means. Leto be the
selected nearest neighbor, thennearObjSet is defined as follows:

nearObjSet = { (o’, ld(o’)) | o’ ∈ O, o’ ≠ o and DIS-
TANCE(ld(o’).pos, p)≤ DISTANCE(ld(o).pos, p) + nearQual)
and ld(o’).acc≤ reqAcc }

Consequently, ifnearQualis set to zero, thennearObjSetis the empty
set. On the other hand, ifnearQualis set to 2× reqAcc,it is guaranteed
that all tracked objects that could potentially be closer top thano are
included innearObjSet. In the example illustrated in Fig. 4, objecto1 is
in nearObjSet, while o2 is not, as the position ofo2 lies outside of the cir-
cle aroundp given by addingnearQualto the distance of the selected
objecto from p. Objecto3 is again not considered because of its accu-
racy.

1. Again assuming that the probability of being at a certain location is uniformly distributed over the object’s location area.

queried
area, a

reqOverlap = 0.3

reqAcc:

position and
accuracy for object

ld(o).pos
ld(o).acc o

included

o1

o2

o3

o5

o4

not included because of
insufficient accuracy

included

not included

not included

10%

40%

100%

Figure 3: Example of a range query.

queried
position p

reqAcc:

not considered because of
insufficient accuracy

guaranteed
minimal distance

returned
object o

DISTANCE(ld(o).pos, p)

nearQual

reqAcc

o

o1

o3o2

Figure 4: Scenario of a nearest
neighbor query.
6

r regis-

ers. To
o the LS

anage-
0].

service

sub ser-

af ser-
s do not

service

s
or-

, at any
of the

ne
ich then

d serv-
f-to-root
f these
hat

the child
red for
ring the

sighting
warding
ut its new
handover
4 Architecture of the Location Service
In this section, we propose an architecture for a large-scale location service together with the basic algorithms fo
tration, handover and query processing. An outline of possible optimizations will be given in Section 6.5.

A LS as part of a future location-aware information system for a larger city may have hundred thousands of us
ensure the scalability required for such a large-scale deployment of the service, the location servers that belong t
are organized in a hierarchical manner. Similar hierarchical architectures have been proposed for the location m
ment in Personal Communications Services [22] and the GLOBE location service for mobile software objects [2

A location service (LS) is configured to cover a certain geographic area, its so-calledservice area. Only objects that are
located within its service area can be registered with the LS to be tracked. Tracked objects that move out of the
area are automatically deregistered.

The service area covered by an LS is structured in a hierarchical fashion: A service area can be subdivided into
vice areas, which again can be subdivided, and so on. We denote the sub areas of a given service area to bechild service
areasof this parent service area. The service area covered by the entire LS is called theroot service area. While the
shape of a service area may be any kind of polygon, the following two requirements must be fulfilled: (1) A non-le
vice area consists of their child service areas, that is, it is the union of its child areas, and (2) sibling service area
overlap.

Associated with each service area is a location server, which is responsible for tracking all the objects visiting its
area. Consequently, the service area hierarchy resembles the location server hierarchy. Theroot serveris the only server
in the hierarchy without aparentserver. Those servers that do not havechildren in the server hierarchy are denoted a
leaf servers, all other servers arenon-leaf servers. Fig. 5 shows an example for a part of a server hierarchy with the c
responding service areas.

• Leaf serversare associated with leaf service areas only. Since leaf service areas are not supposed to overlap
point in time for each tracked object there exists exactly one leaf server that is responsible for keeping track
object’s position. We will call this leaf server the object’sagent. Of course, whenever a tracked object moves from o
service area to another, the tracking responsibility has to be handed over to another leaf location server, wh
becomes the object’s new agent.

• A non-leaf serveris responsible for a service area that is the union of the service areas associated with its chil
ers. Obviously, the size of service areas associated with the servers increases from server to server in a lea
direction. A non-leaf server records all tracked objects that are currently within its service area and for each o
objects stores a so-calledforwarding reference, where an object’s forwarding reference identifies the child server t
is responsible for the child service area this object is currently located in.

Consequently, only leaf location servers store sighting records, whereas non-leaf servers store a reference to
server that is “closer” to the corresponding sighting record. Obviously, the collection of forwarding references sto
any given tracked object in the server hierarchy specifies a path from the root server to the object’s agent, sto
sighting record.

Location updates for a tracked object are always sent to the object’s agent, which then updates the object’s
record. When a tracked object moves to a new service area, the tracking responsibility is handed over and the for
path has to be adapted accordingly. Handover processing must then make sure that the tracked object learns abo
agent. How many servers are affected by the path update operation depends on what level of service area the

oid

oid

oid pos, acc

pos, acc pos, acc

pos, accoid

oid

root server

service
areas

location
server

leaf
server

tracked objects

position
updates

oid

oid

oid oid

oid

…

…

… …

…

…
…

…

…

1

1

4

4

5

5

3

3 22

Figure 5: Basic architecture of the LS.
7

reas will

cessing
me that
a hand-

service
a

ject. In
er-
r the

d

area
g with
area

ice. Due
iously,
xpect that
y inter-
A high
n sys-
it goes
rvices

of chil-
d on the

ed), and
ries are
nother
f update
ncy.

e and per-
ular, this
cts. As
here are
servers or
ts can be
ter in
, replica-
occurs. Of course, due to the hierarchical organization of service areas, handovers between lower level service a
occur more rarely than for higher level areas.

Fig. 6 shows a three-layered server hierarchy, which we will use to briefly sketch how handover and query pro
works in a server hierarchy. Details of the algorithms can be found in the next section. In our example, we assu
Server 4 (s4 for short) has detected that some tracked object has moved out of its service area. In consequence,
over request is sent to its parent server, which recognizes that the tracked object is still in its own (higher-level)
area. Therefore, instead of forwarding the request further up the hierarchy,s2 sends it to that child whose service are
includes the object’s new position. Finally,s5 sends the handover acknowledgement back tos4, thereby updating the for-
warding path, ands4 informs the tracked object of its new agent.

In order to execute a position query the forwarding path is used to find the agent of the corresponding tracked ob
our example, we assume that the position query is issued ats4 and the corresponding object currently resides in the s
vice area associated withs6. The position query is forwarded up to the root as only there a forwarding reference fo
object is found. From there the request is forwarded along the object’s forwarding path down tos6, which finally sends
the answer tos4. Note that if the object had been located in the service area ofs5, the request would have been forwarde
only up tos2.

For the range query in our example, we assume that the specified area overlaps with the service areas ofs6 ands7. A
query request is propagated upwards froms4 until a server is found, whose service area includes the specified
entirely, which iss1. From there the request is propagated downwards to all children with service areas overlappin
the specified area, until reachings6 ands7. Both leaf servers determine the objects that are in the corresponding sub
and send the result tos4, which is responsible for constructing the answer returned to the client.

The possibility to partition a service area among a number of servers is a prerequisite for a scalable location serv
to the hierarchical organization of servers, we can gain performance by exploiting the locality of operations. Obv
most handovers will be local since tracked objects are supposed to move to adjacent service areas. Further, we e
also queries will show a rather high degree of locality because users of location-aware applications are typicall
ested in objects in their vicinity (e.g., all restaurants in walking distance, or persons that are in the same room).
locality of queries has been observed for location-aware applications [7], for phone calls in mobile communicatio
tems [10] and for the Globe location service [20]. An additional advantage of a hierarchical server structure is that
in line with hierarchically organized administrative domains, which is an important criteria for Internet-scale se
(e.g., see DNS [13]).

The performance of the system is influenced by the height of the hierarchy, the fan-out of nodes (i.e., the number
dren for a location server) and the size of the (leaf) service areas. The optimal setting of these parameters depen
number of tracked objects in the root service area, their distribution over this area (e.g., where hot spots are locat
their mobility patterns (e.g., average speed, degree of locality). Moreover, the setting depends on what type of que
requested with which frequency, that is, it depends of the mix of queries issued by the applications of the LS. A
aspect is the placement of servers, which has an impact on communication cost and latency. Due to the locality o
and query operations (leaf) servers should be close to their service areas in terms communication cost and late

So far, we have assumed that each service area is associated with a single server. However, due to fault-toleranc
formance reasons it is conceivable that multiple location servers are assigned to the same service area. In partic
will be important for the root server and higher-level servers which may have to manage a large number of obje
will be seen below, each location server maintains a database to keep track of objects visiting its service area. If t
multiple location servers associated with the same service area, this database either can be replicated on these
the data can be divided into partitions that are assigned to servers. For example, information about tracked objec
partitioned based on some portion of the object id, which is similar to the partitioning of the Home Location Regis
Personal Communications Services, such as GSM. Since location updates are supposed to occur very frequently

handover

1 1 1

2 2 23 3 3

4 4 45 5 56 6 67 7 7

tracked
object

position
query

queried
objectclient

range
query

queried
areaclient

Figure 6: Basic algorithms of the LS.
8

which
beyond

visiting
objects

tifiers to

figuration

ionally
re

e posi-

to effi-
g a hash
easure-
requests
tion of sighting records would cause a significant overhead. So it has to be carefully checked which information on
level in the hierarchy can be replicated without causing prohibitive cost. A detailed discussion of these issues is
the scope of this paper.

5 Location Server Data Storage
Location servers need to maintain configuration information and databases that they use to keep track of objects
their service area. To speed up query processing a spatial index containing the position information of the tracked
is used to find the candidates for a range or nearest neighbor query and a hash table containing object iden
quickly find the object belonging to a position query.

In order to maintain the server hierarchy and the associated service areas, each location server stores a con
record on persistent storage. A configuration recordc stored by a server, says, includes the following information:

c.sa: This component defines the service area associated withs.

c.parent: This component identifies the parent server ofs. For the root servers.parentis
undefined (ε).

c.children: This set includes a child record for each child ofs. A child record encom-
passes two fieldsid andsa, which specify the child’s identifier and associated
service area, respectively. Clearly, for a leaf nodes.childrenis empty.

Fig. 7 shows the components involved in the storage of the location data. A tracked object is calledvisitor of a location
server if it is currently located in this server’s service area. To keep track of its visitors, each location server addit
maintains a so-calledvisitor database(visitorDB for short), which includes a visitor record for each visitor. The structu
of a visitor record depends on whether it is stored at a leaf or non-leaf server.

A visitor recordv stored on a non-leaf server consist of the following components:

v.oId: Identifier of visiting object.

v.forwardRef: Forwarding reference to the child server, which is next on the path to the visi-
tor’s agent.

A visitor recordv on a leaf server includes the following components:

v.oId: Identifier of visiting object.

v.sightingRef: Reference to the visitor’s sighting record in thesightingDB (see below).

v.offeredAcc: The currently offered accuracy for locating the visitor.

v.regInfo: Registration information record for the visitor, encompassing the fieldsreg,
desAccandminAccspecifying the registering instance, the desired accuracy
and the minimal accuracy, respectively.

Each leaf server in addition maintains asightingDB, which
includes a sighting record for each visitor. Each sighting record is
associated with an expiration date, which is extended accordingly
whenever the visitor contacts the location server in order to update
its position. When the sighting record expires, the visitor is auto-
matically deregistered, that is, its visitor records are removed from
the entire hierarchy. That is, we adopt the soft state principle to
make sure the information associated with a tracked object is even-
tually removed from location servers even if the object fails.

We decided to store thesightingDBin volatile memory for two rea-
sons. First, we expect position updates to occur very frequently,
and hence, in particular updates should be performed most effi-
ciently (see our measurements in Section 7). Second, the overhead
for making location data recoverable from secondary storage is not
worth the effort since the recorded positions would be most probably out-dated anyway after recovery. Instead, th
tion updates sent (periodically) by the tracked objects can be used to restore the data in volatile memory.

A spatial index over the position information in the sighting records (e.g., a Quadtree [17] or a R-Tree [6]) is used
ciently retrieve the results for range or nearest neighbor queries. Position queries are efficiently processed by usin
index structure defined over the object identifiers. The index structures are also stored in volatile memory. Our m
ment results reported in Section 7 show that even the spatial index can be built up very quickly (e.g., as update
arrive after system restart).

.

.

.

.

.

.

sightingDB

spatial index

visitorDB

object index
main
memory

persistent
memory

Figure 7: Data storage components.
9

ndover
istration
n, for

query
ver, an

r close-
for
same

request
sponse

in the

ed.

the root
g this

can be
ThevisitorDB is kept in persistent storage, which is updated only when an object is registered, deregisters or a ha
occurs. In other words, the objects’ forwarding paths are supposed to survive system failures. Persistent reg
information also allows a location server to ask a visitor for a position update to restore its position informatio
example, when a position query arrives for this particular visitor after system restart.

6 Algorithms
In this section we will describe the major algorithms for implementing the LS, namely registration, handover and
processing. When describing the algorithms we will assume tracked objects with local positioning systems. Howe
extension of the algorithms to also support stationary tracking sensors is straightforward.

Moreover, we will assume the existence of a mechanism that helps a client of the LS to find a leaf location serve
by. This server, which we will callentry server, is contacted by the client in order to access the LS. A mechanism
finding the entry server could be provided by a local lookup service, such as Jini (see [21]). A client that is at the
time a tracked object already knows the closest leaf server through the handover mechanism.

6.1 Registration
To register a mobile object with the LS, the registering instance (e.g., the mobile object itself) sends a registration
registerReqto its entry server (see Section 3.1 for a description of the request parameters). Then it waits for the re
registerResto arrive. The registration procedure is shown in Algorithm 6-1.

The first phase of the registration procedure starts when the entry server receivesregisterReq. In this phase, the request is
forwarded to the leaf server that is responsible for the object according to the object’s current position, specified
sighting records. If needed, the request is forwarded upwards the hierarchy untils.posis in the receiving location
server’s service area. From there the request is forwarded downwards, until the responsible leaf server is reach

The registration succeeds if the LS can provide an accuracy within the requested range [desAcc, minAcc]. Only in this
case the second phase of registration is started, which creates the path of forwarding pointers from the leaf to
server. To this end, acreatePathrequest is forwarded upwards, until it reaches the root server. Each server receivin
request creates the corresponding visitor record in itsvisitorDB. In addition, the leaf server storess in its sightingDB, and
finally sends aregisterResmessage, back to the registering instance. This message contains the accuracy that
offered by the leaf server (offeredAcc). If registration fails due to accuracy limitations, aregisterFailedresponse is
returned instead.

registration
request

[upon receiving registration request registerReq(s, oInfo, desAcc, minAcc, regInst)]
(1) if (mobile object is in service area of server: s.pos ∈ c.sa) then
(2) if (server is leaf server: c.children = ∅) then
(3) acc := determine maximum accuracy with which the location

information can be managed by the service
(4) if (acc ≤ minAcc) then // registration successful
(5) send createPath(s.oId) to parent server c.parent
(6) visitorDB.insert(s.oId) // create visitor record
(7) with visitorDB(s.oId) do // fill visitor record
(8) sightingRef := sightingDB.insert(s); offeredAcc := max(acc, desAcc)
(9) reginfo.desAcc := desAcc; reginfo.minAcc := minAcc
(10) reginfo.reg := regInst
(11) endwith
(12) send registerRes(self, max(acc, desAcc)) to registering instance regInst
(13) else // registration not successful
(14) send registerFailed(self, acc) to registering instance regInst
(15) endif
(16) else // forward registration downwards
(17) child := select child ∈ c.children with s.pos ∈ child.c.sa
(18) send registerReq(s, oInfo, desAcc, minAcc, regInst) to child
(19) endif
(20) else // forward registration upwards
(21) send registerReq(s, oInfo, desAcc, minAcc, regInst) to parent server c.parent
(22) endif

Algorithm 6-1: Registration Processing.
10

roaches
n protocol

to [24]

that has
ccuracy,
er-

es
to its

r-
6.2 Location Updates and Handovers
As location updates are performed frequently, they are crucial in terms of performance. Therefore, various app
have been proposed to optimize update processing. Since this paper focuses on architectural issues rather tha
optimizations, we will confine ourselves here to a rather simple update protocol. The interested reader is referred
or [15].

A tracked object continuously compares its current position - as reported by the sensor system - with the position
been sent most recently to its agent. If these positions differ by more than the distance defined by the offered a
the tracked object sends a newupdateReqincluding the current sightings to its agent server. The update processing p
formed by an agent is depicted in Algorithm 6-2.

An agent receiving a position update checks whethers.posis still within its service area. If this is the case, it just updat
the sighting record in itssightingDB. Otherwise, it initiates the handover procedure by sending a handover request
parent. This message containss and the registration information recorded for that object. ThehandoverReqmessage is
propagated upwards until a receiver’s service area includess.pos. Starting from this receiver, the handover request if fo

create path [upon receiving registration entry request createPath(oId) from server lsf]
(1) visitorDB.insert(oId)
(2) visitorDB(oId).forwardRef := lsf
(3) if (server is not root server: c.parent ≠ ε) then // forward create path request upwards
(4) send createPath(oId) to parent server c.parent

position
update

[upon receiving position update update(s) from tracked object o]
(1) if (position of sighting is outside of service area: s.pos ∉ c.sa) then // initiate handover
(2) send handoverReq(s, visitorDB(s.oId).reginfo) to parent server c.parent
(3) receive handoverRes(lsnew, acc)
(4) send handoverRes(lsnew, acc) to tracked object o

// remove visitor and sighting record from database
(5) visitorDB.remove(s.oId)
(6) sightingDB.remove(s)
(7) else
(8) sightingDB.update(s)
(9) endif

Algorithm 6-2: Processing of position updates.

handover [upon receiving handover request handoverReq(s, regInfo) from server lsf]
(1) if (mobile object is in service area of server: s.pos ∈ c.sa) then
(2) if (server is leaf server: c.children = ∅) then
(3) acc := determine maximum accuracy with which the location

information can be managed by the service
(4) visitorDB.insert(s.oId)
(5) visitorDB(s.oId).offeredAcc := max(acc, regInfo.desAcc)
(6) sightingDB.insert(s)
(7) send handoverRes(self, max(acc, regInfo.desAcc)) to lsf
(8) else // forward handover downwards and create/reset forwarding pointer
(9) child := select child ∈ c.children with s.pos ∈ child.c.sa
(10) send handoverReq(s, regInfo) to child
(11) receive handoverRes(lsnew, acc)
(12) if (visitorDB(s.oId) = ε) then visitorDB.insert(s.oId)
(13) visitorDB(s.oId).forwardRef := child
(14) send handoverRes(lsnew, acc) to lsf
(15) endif
(16) else // forward handover upwards and remove forwarding pointers
(17) send handover(s, regInfo) to parent server c.parent
(18) receive handoverRes(lsnew, acc)
(19) visitorDB.remove(s.oid)
(20) send handoverRes(lsnew, acc) to lsf
(21) endif

Algorithm 6-3: Handover processing.

Algorithm 6-1: Registration Processing.
11

s

ich is

that a

ing this
he
w agent

lf store

ed along

e corre-
he (par-
bjects in
osition

f
ponsible
f
tracked
warded downwards until the leaf server, whose service area containss.pos,is reached. When this leaf server receive
handoverReq, it becomes the object’s new agent. That is, it creates a new visitor record in itsvisitorDB, includess in its
sightingDB, and returns ahandoverResmessage. The response includes the accuracy offered by the new agent, wh
in the requested accuracy range.

Due to the hierarchical server organization, most handovers will only involve one non-leaf node. The probability
non-leaf node is involved in handover processing decreases in a leaf-to-root direction.

The messagehandoverResis propagated back along the path the request was sent on. The non-leaf servers receiv
message update the object’s forwarding path in theirvisitorDBs accordingly, that is, remove the sub path leading to t
old agent and establish a new sub path to the new one. Finally, the old agent informs the tracked object of its ne
and removes its entries from bothvisitorDB andsightingDB.

The processing of a handover request is shown in Algorithm 6-3.

6.3 Position Query
A client of the LS issues a position query by sending aposQueryReqmessage for a tracked objecto to an entry server
(see Algorithm 6-4). If the entry server itself storeso’s visitor record, it accesses itssightingDBto retrieveo’s position.
Otherwise, the entry server forwards the request to its parent, and then waits for the answer to arrive. Onceo’s position is
available, the entry server returns the corresponding location descriptor in aposQueryRes message to the client.

A non-leaf location server receiving a forwarded position query sends this message to its parent, if it does not itse
a visitor record foro. Otherwise, it forwards the request downwards following the forwarding pointer recorded ino’s vis-
itor record. When a leaf server receives a forwarded position query from its parent, it retrieveso’s position from itssight-
ingDB and returns the corresponding location descriptor to the entry server, whose address has been forward
with the query.

In summary, query processing starts at a leaf sever, which forwards the request up to the first server storing th
sponding visitor record, if needed. An alternative approach would have been to send the request immediately to t
titioned) root. However, we decided against this alternative since we assume that clients are more interested in o
their vicinity (see also our discussion on locality in Section 4) and hence the distance to the node storing the p
information is on average shorter from a leaf server than from the root.

6.4 Range Query
A client can issue a range query by sending arangeQueryReqto an entry server (see Algorithm 6-5). If multiple lea
servers are involved in query processing, these servers return their partial results to the entry server, which is res
for collecting them inobjects. A returned partial result inrangeQuerySubResconsists of a specification of the portion o
the specified area that is covered by the sender plus a set of (identifier, location descriptor)-pairs, one for each

position
query

[upon receiving position query posQueryReq(oId) from client o]
(1) if (queried object is managed by server: visitorDB(oId) ≠ ε) then
(2) ld := new location descripor // create and return location descriptor
(3) ld.pos := sightingDB.objectHash(oId).pos
(4) ld.acc := visitorDB(oId).offeredAcc
(5) else // forward query upwards
(6) send posQueryFwd(oId, self) to parent server c.parent
(7) receive position query results, posQueryRes(ld)
(8) endif
(9) send posQueryRes(ld) to client o

position
query fwd

[upon receiving position query forward posQueryFwd(oId, lse)]
(1) if (queried object is managed by server: visitorDB(oId) ≠ ε ∧ c.children = ∅) then
(2) ld := new location descripor // create and return location descriptor
(3) ld.pos := sightingDB.objectHash(oId).pos
(4) ld.acc := visitorDB(oId).offeredAcc
(5) send posQueryRes(ld) to entry server lse
(6) elseif (server has forwarding pointer: visitorDB(oId) ≠ ε) then // forward packet downwards
(7) send posQueryFwd(oId, lse) to child server visitorDB(oId).forwardRef
(8) else // forward packet upwards
(9) send posQueryFwd(oId, lse) to parent server c.parent
(10) endif

Algorithm 6-4: Processing of position queries.
12

ve

in a leaf-
ards to
hese leaf
records
erver

argin of
uery,

e size of
pplica-
object that qualifies for this part of the area. Variablecoveredis used for checking whether or not all partial results ha
already been received.

If the entry server’s service area does not cover the specified area entirely, the range query request is forwarded
to-root direction until a server is reached which covers the area completely. Then the query is forwarded downw
all leaf servers of the corresponding subhierarchy whose service areas overlap with the specified area. Each of t
servers uses the spatial index to identify the tracked objects qualifying for the query and retrieves their sighting
from itssightingDB. Finally, the result is sent to the entry server. After having received all partial results, the entry s
returns the outcome of the query in arangeQueryRes message to the client.

Before comparing the specified area with the service area of a location server, it is enlarged at all sides by a m
reqAcc(using the functionEnlarge). Otherwise, a server who is the agent of possible candidates for the range q
might by missed, as they can be outside of the specified area (see Section 3.2).

Obviously, the cost of processing a query depends on the number of leaf servers involved, which depends on th
the specified area. In order to control the cost of range queries it is conceivable to limit the size of the area that a
tions are allowed to specify in their requests.

range
query

[upon receiving range query rangeQueryReq(area, reqAcc, reqOverlap) from client o]
(1) objects := ∅ // for collecting the results
(2) covered := ∅ // for checking if all results have been received
(3) if (area overlaps with service area of the server: Enlarge(area, reqAcc) ∩ c.sa ≠ ∅) then

// get appropriate location descriptors from sighting database using spatial index
(4) foreach s in sightingDB.spatialIndex.objectsInArea(area, reqAcc, reqOverlap) do
(5) objects.append({ s.oId, new ld(s.pos, visitorDB(s.oId).offeredAcc) })
(6) covered := area ∩ c.sa
(7) endif
(8) if (part of area lies outside service area: Enlarge(area, reqAcc) − c.sa ≠ ∅) then

// forward query upwards
(9) send rangeQueryFwd(area, reqAcc, reqOverlap, self) to parent server c.parent
(10) until area is entirely covered: covered = area
(11) receive range query results, rangeQuerySubRes(objs, a)
(12) objects := objects ∪ objs; covered := covered ∪ a
(13) end
(14) endif
(15) send rangeQueryRes(objects) to client o

range
query fwd

[upon receiving range query forward rangeQueryFwd(area, reqAcc, reqOverlap, lse) from
 forwarding server lsf]
(1) if (area overlaps with service area of the server: Enlarge(area, reqAcc) ∩ c.sa ≠ ∅) then
(2) if (server is leaf server: c.children = ∅) then

// get appropriate location descripors from sighting database using spatial index
(3) objects := ∅
(4) foreach s in sightingDB.spatialIndex.objectsInArea(area, reqAcc, reqOverlap) do
(5) objects.append({ s.oId, new ld(s.pos, visitorDB(s.oId).offeredAcc) })
(6) send rangeQuerySubRes(objects, area ∩ c.sa) to entry server lse
(7) else // forward query downwards
(8) foreach child in c.children do
(9) if (area overlaps with child service area: Enlarge(area, reqAcc) ∩ child.c.sa ≠ ∅

and child was not forwarding server: child ≠ lsf) then
(10) send rangeQueryFwd(area, reqAcc, reqOverlap, lse) to child
(11) endif
(12) endif
(13) if (part of area lies outside service area: Enlarge(area, reqAcc) − c.sa ≠ ∅

and parent was not forwarding server: c.parent ≠ lsf) then // forward query upwards
(14) send rangeQueryFwd(area, reqAcc, reqOverlap, lse) to parent server c.parent
(15) endif

Algorithm 6-5: Processing of range queries.
13

erhead
caching
eans

the LS.

locally
message

area. A
rver will
over or a
this area
ervice

. There-
head in

an be
originator
bject, it

f server
the ser-
erforms
dates. If
to shorten
dovers on

also
receives
ovided
estima-
epends
quested

dates,
t. There-

l index
storage

ge on a
ults of
with an
tracked
ere con-
ifferent

ich is in
p again
nt posi-
r. Obvi-
6.5 Caching
Many hierarchically organized information systems employ caching mechanisms particularly to reduce the ov
caused by tree traversals (e.g., see [20] or [13]). The Domain Name System, for example, relies to a great deal on
to achieve its scalability and performance. Our following discussion will concentrate on further optimizations by m
of caching performed on leaf location severs. Clearly, similar caching mechanisms can be used on the clients of
Caching mechanisms on non-leaf servers will be the focus of future work.

The following information may be cached on leaf servers:

(Leaf server, service area):The efficiency of handovers and range queries can be enhanced by caching for each
known leaf server the associated service area. To spread this mapping information, in each request and response
forwarded within the server hierarchy the originator of the message includes a specification of its (leaf) service
leaf server receiving such a message stores the included mapping in its cache. Using this mechanism, leaf se
soon learn about the service areas of other leaf servers, especially those of its neighbors. When executing a hand
range query concerning a certain area, the entry server first checks whether it can determine the leaf server(s) for
from its cache. If this is the case, it can contact the server(s) directly, without traversing the hierarchy. As the s
areas of location servers are assumed to change seldomly, the probability of out-dated cache entries will be low
fore, we expect the performance improvements achieved by this mechanism be worth the additional (little) over
almost all cases.

(Tracked object, current agent):To speed up position queries, the address of a tracked object’s current agent c
cached. Upon receipt of a response for a query, a leaf server stores a cache entry with address of the response’s
for each object identifier included in the response. When an entry server receives a position query for a tracked o
first checks whether it finds an entry for the corresponding object in its cache. If so, it contacts the recorded lea
directly. However, for highly mobile objects cache entries may become out-dated soon, depending on the size of
vice areas as well as the speed and moving pattern of the objects. Consequently, how well this mechanism p
depends on the frequency of handovers between leaf service areas compared with the frequency of position up
agent information becomes obsolete too fast it has been suggested to use cache pointers to higher-level servers
the search path (see for example [1]). The service areas associated with those servers are larger, and hence han
a higher level are not that frequent as on the leaf level.

(Tracked object, position descriptor): Besides storing information about the current agent of a tracked object, it is
possible to cache the position descriptor returned as result for a previous query. When the location server
another query concerning the same object(s), it can retrieve the position information directly from the cache, pr
the information is still accurate enough. (this can be determined based on the object’s maximum speed with the
tion method mentioned in Section 3). Whether or not caching of position information for an object makes sense d
on various factors: The speed of this object, the frequency of position queries, as well as the position accuracy re
for this object.

7 Experiments
A first prototype of the LS, implemented in Java 1.2, is available. It provides the basic functionality for position up
handover and query processing. However, the caching mechanisms described in Section 6.5 are not included ye
fore, all measurement results reported below show the performance of the system without caching.

7.1 Data Storage
As pointed out in Section 5, we decided to store position information in a main memory database. For the spatia
we used a Point Quadtree implementation [17], which we found to be very well suited for our purpose. Persistent
is provided by a DB2 database, which is accessed via JDBC.

To evaluate the performance of our main memory solution, we have measured the throughput of the data stora
SUN Ultra machine with a 450 MHz CPU and 1 GB of memory, where the load was generated locally. The res
these measurements are depicted in Table 1 for the different types of operations. In our experiment, we started
empty location server associated with a service area of 10 by 10 km. Then we consecutively registering 25,000
objects with random positions in this area. Subsequently, 10,000 position updates and 10,000 position queries w
secutively performed for randomly selected objects, and finally 10,000 range queries for random areas of three d
sizes were executed.

The results show that the spatial index can be built-up very fast (in our case 25,000 inserts in about 1 second), wh
particular important for crash recovery. Remember that the spatial index is lost due to failures and has to be built u
after system restart as position update requests come in. The main memory solution also provides for very efficie
tion updates. Position queries, which only involve the hash table of object identifiers, can be processed even faste
14

ial index
d even for
our sys-

testing
ected
its chil-
mmuni-

osition
positions
date and
al share of

ocal and
ries, the
ried area.

osition
pecially
mizations
results
consid-
ously, the throughput for range queries depends on the size of the area, which determines the portion of the spat
to be searched. Our measurements show, that the data storage can process more than 1000 queries per secon
big areas. Moreover, these results also show that data storage is not going to become a performance bottleneck in
tem.

7.2 Local and Distributed Queries
To determine the overall performance of the LS for local as well as for distributed queries, we have set up a small
environment with 5 SUN Ultra workstations with 450 MHz CPUs and between 256 MB and 1 GB of memory conn
through a 100 MBit Ethernet network. One of these machines is configured as root server with the other four as
dren. Each child server is responsible for a quarter of the entire service area of 1.5 by 1.5 km (see Fig. 8). Our co
cation protocols are implemented on top of UDP to achieve efficient client/server and server/server interactions.

For this configuration of the LS, we have measured the response time as well as the overall throughput for p
updates, position queries and range queries. To this end, we have registered 10,000 mobile objects at random
with the LS. Three additional machines act as load generators and run parallel client processes sending the up
query requests as fast as possible to the four leaf location servers, so that each of these servers receives an equ
the load. The queried area in range queries has a medium size of 50 by 50 meters.

Because we wanted to determine the effect of having to traverse the hierarchy, we have distinguished between l
remote queries. For position updates (which are always local in our architecture), for local position and range que
requests are always sent directly to the queried object’s agent or the server whose service area includes the que
For remote queries, we have chosen another entry server.

We have also looked at the overhead caused by remote
range queries that involve more than one leaf server by
querying an area that is (1) included completely in the
service area of one leaf server, that (2) overlaps with the
service areas of two leaf servers, and (3) overlaps with
the service areas of all four leaf servers. Table 2 shows
the results we have obtained for our test configuration.

The update rate achieved for this configuration would be
sufficient to support position information for as much as
100,000 mobile objects with an average speed of 3 km/h
and an accuracy of 25 m. Similarly, local queries can be performed very efficiently, where the performance of p
query is better, mainly because of the larger results of range queries. Although still good, remote queries and es
remote range queries are more expensive since one query involves at least three location servers. Here, the opti
proposed in Section 6.5 should definitely bring an improvement. Note that our decision to collect the range query
at the entry server before sending them back to the client causes an extra hop of communication, whose effect is
ered in our measurements.

operation operations per second

creating index 24,015 1/s

position updates 41,494 1/s

position query 384,615 1/s

range query (10 m× 10 m) 21,834 1/s

range query (100 m× 100 m) 18,450 1/s

range query (1 km× 1 km) 1,813 1/s

Table 1: Throughput of the data storage component based on
a service area of 10 km× 10 km and 25,000 tracked objects.

operation response time overall throughput

position updates 1.2 ms (with ACK) 4,954 1/s

local position query 2.0 ms 2,809 1/s

Table 2: Response time and overall throughput for different types of
operations performed on the test configuration of the LS.

1

2 3 4 5

root server

leaf
servers

updates
and queries

load
generators

service
areas

1.5 km

1.5 km

Figure 8: Testing environment for the distributed
mechanisms of the LS.
15

frequent
ibuted
le storage
e service
ithms. A

con-
on the
tracked
cality.
er hier-
lined in
ching
areas of

er-

Con-
m-

ects

Net-

g in
8 Conclusion and Future Work
In this paper we have presented the design of a distributed LS, which is suitable for large-scale deployment and
updating of the location information. Besides position queries, the service is also able to efficiently carry out distr
range and nearest neighbor queries. Its data storage component, which combines a main memory and a stab
part, is designed to allow an efficient processing of local updates and queries. In the paper, we have described th
model and the hierarchical distributed architecture of this service as well as its data storage component and algor
performance evaluation of a first prototype of the LS shows the feasibility of our concepts.

For future work, we will soon have finished with the implementation of the distributed mechanisms for the LS and
tinue to evaluate it in more detail. We will be looking into the influence of movement and querying characteristics
performance of different configurations of the LS. Parameters of interest are, for example, the density of the
objects or their moving patterns as well as the concrete mix of different types of queries and their degree of lo
Those will be considered in comparison with the size of service areas or the height and fan-out of the location serv
archy. Based on the results of this evaluation we will look at caching mechanisms, some of which have been out
Section 6.5, with the goal of further improving the scalability of the service. We will then integrate promising ca
mechanisms into the LS and evaluate their influence on its performance for different usage scenarios. Further
research include the integration of an event mechanism as sketched in Section 1.

References
[1] A. Baggio, G. Ballintijn and M. v. Steen: Mechanisms for Effective Caching in the Globe Location Service,Pro-

ceedings of the Ninth ACM SIGOPS European Workshop, pp. 55-60, 2000.
[2] M. Bauer:Event-Management für mobile Benutzer,Master-Thesis No. 1836, Faculty of Computer Science, Univ

sity of Stuttgart. In German.
[3] Keith Cheverst, Nigel Davies, Keith Mitchell and Adrian Friday: Experiences of Developing and Deploying a

text-Aware Tourist Guide: The GUIDE Project,Proceedings of the Sixth International Conference on Mobile Co
puting and Networking (MobiCom 2000),pp. 20-31, 2000.

[4] G. Fitzmaurice: Situated Information Spaces and Spatially Aware Palmtop Computers,Communications of the
ACM, 36(7), pp. 38-49, 1993.

[5] L. Forlizzi, R. H. Güting, E. Nardelli and M. Schneider: A Data Model and Data Structures for Moving Obj
Databases.Proceedings of the ACM SIGMOD Conference,pp. 319-330, 2000.

[6] A. Guttmann: R-Trees: A Dynamic Index Structure for Spatial Searching,Proceedings of the 13th ACM SIGMOD
Conference, pp. 47-57, 1984.

[7] A. Harter and A. Hopper: A Distributed Location System for the Active Office,IEEE Network, 36(1), pp. 62-70,
1994.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster: The Anatomy of a Context-Aware Application,Pro-
ceedings of the Fifth International Conference on Mobile Computing and Networking (MobiCom ’99),pp. 59-68,
1999.

[9] J. S. M. Ho and I. F. Akyildiz: Dynamic Hierarchical Database Architecture for Location Management in PCS
works,IEEE/ACM Transactions on Networking, 5(5), 1997.

[10] D. Lam, Y. Cui, D. C. Cox, and J. Widom: A Location Management Technique to Support Lifelong Numberin
Personal Communications Services,ACM Mobile Computing and Communications Review, 2(1), pp. 27-35, 1998.

[11] U. Leonhardt:Supporting Location-Awareness in Open Distributed Systems, PhD-thesis, Imperial College of Sci-
ence, Technology and Medicine, University of London, 1998.

remote position query 6.3 ms 728 1/s

local range query 5.1 ms 1,927 1/s

remote range query (1 server) 13.0 ms 588 1/s

remote range query (2 servers) 14.6 ms 364 1/s

remote range query (4 servers) 13.8 ms 284 1/s

operation response time overall throughput

Table 2: Response time and overall throughput for different types of
operations performed on the test configuration of the LS.
16

-

ith

-

Units,
[12] H. Maaß: Location-Aware Mobile Applications based on Directory Services,Proceedings of the Third Interna-
tional Conference on Mobile Computing and Networking (MobiCom '97), pp. 22-33, 1997.

[13] P. Mockapetris and K. Dunlap. Development of the Domain Name System.Proceedings of the SIGCOMM '88 Sym
posium, pp. 123-133, 1988.

[14] M. Mouly and M.-B. Pautet:The GSM System for Mobile Communications,Palaiseau, France, 1992.
[15] N. N.: A Comparison of Protocols for Updating Location Information, Technical Report TR-2000-05, 2000.
[16] National Imagery and Mapping Agency:DoD World Geodetic System 1984, its Definition and Relationship w

Local Geodetic Systems, National Imagery and Mapping Agency, 8350.2, Third Edition, 1997.
[17] H. Samet:The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990, ISBN 0-201

50255-0.
[18] Sentient Computing Project Home Page, AT & T Laboratories Cambridge,http://www.uk.research.att

.com/spirit/ , Work in Progress.
[19] M. Spreitzer and M. Theimer: Providing Location Information in a Ubiquitous Computing Environment,Proceed-

ings of the Fourteenth ACM Symposium on Operating System Principles, pp. 270-283, 1993.
[20] M. v. Steen, F. Hauck, P. Homburg and A. Tanenbaum: Locating Objects in Wide-Area Systems,IEEE Communi-

cations Magazine, pp. 2-7, 1998.
[21] Sun’s Jini Homepage, www.sun.com/jini , Work in Progress.
[22] J. Wang: A Fully Distributed Location Registration Strategy for Universal Personal Communcation Systems,IEEE

Journal on Selected Areas in Communications, 11(6), pp. 850-860, 1993.
[23] R. Want, A. Hopper, V. Falcao and J. Gibbons: The Active Badge Location System,ACM Transactions on Infor-

mation Systems, 10(1), pp. 91-102, 1992.
[24] O. Wolfson, A. P. Sistla, S. Chamberlain and Y. Yesha: Updating and Querying Databases that Track Mobile

Distributed and Parallel Databases Journal, 7(3), pp. 1-31, Kluwer Academic Publishers, 1999.
17

	Technical Report 2001/01 January 2001
	Architecture of a Large-scale Location Service
	Abstract
	1 Introduction
	2 Related Work
	3 The Location Service
	Figure 1: Basic components and interactions of the LS.
	Figure 2: Location area defined by ld(o).

	DISTANCE(ld(o).pos - rp(o)) £ ld(o).acc
	3.1 Registration and Position Update
	3.2 Position and Range Queries

	Overlap(a, o) = SIZE(a « ld(o)) / SIZE(ld(o))
	Figure 3: Example of a range query.
	Figure 4: Scenario of a nearest neighbor query.
	4 Architecture of the Location Service
	Figure 5: Basic architecture of the LS.
	Figure 6: Basic algorithms of the LS.

	5 Location Server Data Storage
	Figure 7: Data storage components.

	6 Algorithms
	6.1 Registration
	Algorithm 6-1: Registration Processing.

	6.2 Location Updates and Handovers
	Algorithm 6-2: Processing of position updates.
	Algorithm 6-3: Handover processing.

	6.3 Position Query
	Algorithm 6-4: Processing of position queries.

	6.4 Range Query
	Algorithm 6-5: Processing of range queries.

	6.5 Caching

	7 Experiments
	7.1 Data Storage
	Table 1: Throughput of the data storage component based on a service area of 10 km ¥ 10 km and 25...

	7.2 Local and Distributed Queries
	Figure 8: Testing environment for the distributed mechanisms of the LS.
	Table 2: Response time and overall throughput for different types of operations performed on the ...

	8 Conclusion and Future Work
	References

