
Universität Stuttgart
Fakultät Informatik

A Comparison of Mechanisms for
Locating Mobile Agents

J. Baumann

Bericht 1999/11
August 1999

A Comparison of Mechanisms for
Locating Mobile Agents

Authors:
Dipl.-Inform. J. Baumann

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)
Fakultät Informatik
Universität Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

A Comparison of Mechanisms for Locating Mobile Agents

Joachim Baumann

Email: Joachim.Baumann@informatik.uni-stuttgart.de

Institute of Parallel and Distributed High-Performance Systems (IPVR)

University of Stuttgart - Germany

Breitwiesenstraße 20-22

D-70565 Stuttgart

Abstract

In this paper we present different possible approaches for locating mobile agents and introduce a classification for

them. We will use this classification to categorize mechanisms proposed in standards and implemented in mobile

agent systems. Then we assess the different mechanisms regarding their fault tolerance, their message complexity

and the migration delay they induce. We conclude by combining the different assessments to allow a comparison of

all mechanisms.

Keywords

Mobile Agents, Distributed Systems Architecture, Distributed Algorithms, Communication Protocols.

1 Introduction

Due to its notable properties the mobile agent paradigm has received a rapidly growing attention over the last few years.

The research community involved in the area of mobile agents is steadily growing, and more and more systems are

developed in both academia and industry. Moreover, standardization efforts for mobile agent facilities and architectures

are already in progress.

These architectures have to provide functionality for agent migration, communication of agents with other agents and

with the underlying system, and for agent control (i.e. to start agents, to stop agents, to find agents etc.). In this paper

we will concentrate on mechanisms that allow to locate a mobile agent. We will discuss the advantages and disadvan-

 2

tages of the different existing approaches, provide a classification and examine the mechanisms’ fault tolerance and

message complexity.

The paper is structured as follows: we start with discussing the need for mechanisms to locate agents in Section 2,

present a minimal agent, system and fault model in Section 3, and examine and classify the different possible approach-

es in Section 4. In Section 5 we will discuss existing mechanisms, some of which are combinations of different ap-

proaches discussed in Section 4, and categorize them. We will analyse the mechanisms’ fault tolerance, message com-

plexity, and their effects on the agent autonomy in Section 6. We conclude with an assessment of the qualities of the

different mechanisms in Section 7.

2 Why Mechanisms to Locate Mobile Agents?

Regardless of the application employing mobile agents, the ability to get information about the computation in progress

(i.e. the status information from the agents) is a crucial prerequisite to decide on further behaviour (e.g. to stop the agent

or to start additional ones). To request such information from an agent, the agent’s location has to be known, which

implies that the agent has to be located by the system. In theory, global communication mechanisms such as a distrib-

uted tuple space could be an alternative (for an introduction to tuple spaces see CARRIERO AND GELERNTER (1989)) or

event channels as defined by the OMG could be used (see BAUMANN ET AL. (1997) for usage examples). But the com-

munication costs for maintaining distributed tuple spaces (i.e. for maintaining the global consistency of the tuple space)

are extremely high, and implementations of OMG event channels normally provide only best-effort semantics. One ex-

ception is an event mechanism for mobile agents developed by BECK (1997) providing a reliable causal-order event

channel, but the communication costs are extremely high (in fact, a reliable multicast tree is created that is extended

and pruned with every movement of a member). It is useful if employed for agent coordination (see e.g.

BAUMANN AND RADOUNIKLIS (1997)), but too expensive to be used for control mechanisms (see PAULUS (1998) for

details). Thus other mechanisms are needed that provide the ability to locate an agent with lower costs.

 3

3 Agent, System and Fault Model

3.1 The Agent Model

The minimal agent model used for this paper contains only properties that are either common to existing mobile agent

systems, or can be implemented without problems on top of existing systems. The agent model is based on the concepts

of places and agents (see Figure 1).

Places provide the environment for executing mobile agents. Additionally they may provide abstractions of services of

the underlying system. A place is entirely located on a single node of the underlying network. An agent system consists

of a number of these places. Mobile agents are active entities, which may move from place to place to meet other agents

and to access the places’ services. An agent can be identified by a globally unique agent identifier, which is generated

at the agent’s creation time and is not changed throughout its life. The place on which the agent has been created can

be derived from the identifier. Communication between agents may be local or global.

3.2 System and Fault Model

Throughout this paper we will use the terminology defined in JALOTE (1994). We assume a large, distributed system

(e.g. the Internet), on top of which the mobile agent systems (of principally the same size) are executed. This distributed

system consists of autonomous nodes that are connected to each other by a communication network. Each node consists

Figure 1: The agent model

Mobile Agent

Place

Agent Migration Desktop

Server

Legacy Software

Application

Local Communication

Global Communication User Application

Laptop

System
Resources

 4

of a processor, private volatile and private stable storage. The nodes are loosely coupled, do not have shared memory

and communicate via message passing. The communication network is assumed to be point-to-point.

In this large, distributed system we can distinguish node and network faults. We assume that nodes suffer from crash

failures only. The failure causes the node to halt and to lose its internal volatile state. The stable storage survives fail-

ures. We assume a communication protocol is used that supports full connectivity between the nodes, and the delivery

of messages in order, correct, and exactly-once as long as no network fault occurs. Furthermore, we assume the com-

munication protocol to be fail-aware. Protocols providing this type of reliable datagram service are common, i.e. this

assumption is close to reality. Consequently the following can be assumed: the communication network is fully con-

nected and it provides reliable communication channels as long as no network fault occurs. Communication networks

can suffer from crash failures that may cause the network to be partitioned. In the case of a network partition the com-

munication channel between sender and receiver in different partitions fails, but continues to work between participants

in the same partition. We assume that no failure is permanent, i.e. every encountered network or node failure is tran-

sient. Node and network failures are detectable, but not distinguishable.

4 Categorizing Mechanisms for Locating Agents

Different approaches for locating agents can be identified, depending on the assumptions about migrational behaviour,

on assumptions about the size of the agent system, and on assumptions about the communication costs. In this section

we present the different possible approaches that could be used for locating agents, and categorize them.

4.1 Possible Approaches

4.1.1 Preordained Migration Paths

If we assume that an agent migrates only along a preordained migration path, then by probing the different places along

its path, we sooner or later have to find it. This can be done either sequentially (probing one place at a time) or in parallel

(probing more than one place at a time). Additional information gathered from the places, e.g. whether the agent already

visited this place, or the time an agent remains on a place on average, can help to identify the next place(s) to probe.

 5

Simple examples for algorithms to identify the next place to probe are binary search (sequential case) and ternary search

(parallel case).

4.1.2 Autonomous Migration

If we assume that the mobile agent has full autonomy, i.e. that it has no preordained migration path to follow, then prob-

ing is not practical. The following approaches are usable instead if the migration path of the agent is not known in ad-

vance.

4.1.2.1 Logging

These approaches store information that ultimately leads to the place on which the agent resides. This can be done di-

rectly, in a database or indirectly, with path proxies.

Global Database. If every agent, upon every migration, informs a global database about its new location, then the

problem of finding an agent is reduced to requesting its location from the database. This database might simply be a

file on one node in the network. The disadvantage is that the migration of every agent now depends on the database’s

availability (this includes the availability of the node on which the database resides and the communication channel

between this node and the agent place).

Local Database. This approach has the same characteristics as the approach employing a global database with the

additional advantage, that distributing data over different local databases scales better (i.e. will not be one central bot-

tleneck even with a high number of migrating agents). The disadvantage is that now the correct local database has to

be identified. One simple method to do this is to define a relationship between (unique) agent name and database node.

Untimed Path Proxies. If an agent stores on every place it visits, when leaving, a pointer to the target place of its

migration, then a path of proxies is created. Following this path of proxies eventually leads to the agent. Since the in-

formation is stored along the path, no additional communication is necessary for maintaining the path. A similar tech-

nique has been used in Emerald (object proxies, discussed in JUL ET AL. (1988)).

Timed Path Proxies. The problem of the untimed path proxies is the unbounded length of the path. This leads, de-

pending on the length of the path, to a low availability and to a high message volume along the path if an agent has to

 6

be located (see discussion in Section 6.1.1). This problem can be solved by assigning a time-to-live or ttl to the path

proxies. After the ttl the path is shortened. This leads to slightly higher costs for maintaining the path (one additional

message for every ttl interval). But this solution provides a better availability and lower message volume when an agent

has to be located than the untimed path proxies (we elaborate on this in Section 6.1.2).

4.1.2.2 No Logging

Here no information about the agent’s location is saved, i.e. the mechanisms have to use a brute force approach to find

the agent. The message volume created by these mechanisms is comparatively high (we examine the message complex-

ity of the different mechanisms in Section 6.2).

Sequential Brute Force. Here the search is done sequentially, one place at a time. On average the number of mes-

sages sent equals the number of places, since on average the agent is found after half the places have been searched

(each inquiry needs a request and a reply). The assumption here is that the agent does not migrate while the search is

in progress. If that happens, then in the worst case the agent is not found (if the agent migrates from a place not yet

examined to an already searched place).

Parallel Brute Force. If the search is done in parallel instead, i.e. a broadcast with the request is sent to every place

in the system, then the answer is obtained faster, but the message volume equals twice the number of places. The

number of messages can be reduced (down to the number of places plus one message for the reply), if only a positive

reply is sent. Again the assumption is that the agent does not move while the search is in progress.

4.1.2.3 Non Deterministic Approaches

These approaches do not allow to locate the agent always. Instead, the necessary information is only provided occa-

sionally.

Advertising. Here the agent advertises its location (sends its place to a database) whenever it (more precisely the

agent’s programmer) deems it necessary. Whenever an agent migrates and does not advertise, it cannot be found with

this approach.

Energy. In its life an agent consumes resources of the places on which it resides (e.g. cpu time) and uses services pro-

vided on a place (e.g. a directory service). This approach assumes that access to each service and use of every resource

 7

are associated with a cost, which we call energy. An agent gets an amount of energy and uses this energy to access the

services and to use the resources provided. As soon as its energy is depleted, the agent has to contact e.g. a database to

request more energy, and incidentally the database is updated. Each time this happens the agent can be found until its

next migration.

4.2 Classification

A graphical representation of these different approaches leads to the classification in Figure 2. Mechanisms for locating

agents assume either preordained paths or autonomy of the agent migration. In the first case, the path can be probed

either sequentially or in parallel. In the second case (agent autonomy) three different classes can be distinguished, the

non deterministic mechanisms, mechanisms using logging to identify the location of the agent, and mechanisms using

brute force to find the agent.

5 Actual Mechanisms

We will now examine mechanisms that have been proposed or have actually been implemented. We will start with the

mechanisms for finding agents that have been proposed in the MASIF standard, the OMG Mobile Agent System Inter-

operability Facility (see MILOJICIC ET AL. (1998) for a description of the standard). Then we will examine the mecha-

nisms implemented in the Aglets Workbench (an introduction can be found in LANGE AND OSHIMA (1998)), some of

Figure 2: Locating agents: a classification

Locating

Autonomous
Migration

Preordained
Path/Probing

Sequential Parallel

No Logging/Brute Force

Sequential Parallel

Logging

Path Proxies

Untimed Timed

Nondeterministic

EnergyAdvertising

Database

Global Local

 8

which are exactly the mechanisms proposed in the MASIF standard (which is quite understandable, considering that

two authors of the MASIF standard were part of the Aglets team). We will continue by investigating the mechanisms

that have been implemented for the Mole system (see BAUMANN ET AL. (1998A) for an introduction to the concepts).

Last we will discuss a mechanism that has been proposed by CHEN AND LENG (1997) for mobile agents with a preor-

dained path. We will give a short introduction to the standard respectively the system, where appropriate.

5.1 MASIF

MASIF tries to define a minimal interoperable interface for mobile agent systems. Agents in the MASIF standard can

migrate between places, and they have a unique identifier. Communication between agents is not addressed in the stand-

ard. Thus the MASIF agent model conforms to the model given in Section 3.1.

According to MILOJICIC ET AL. (1998) MASIF defines an interface named MAFFinder, which offers the following

mechanisms to locate agents (in braces the category according to the classification is given):

• Brute force search (autonomous | no logging | parallel). This technique first identifies every place in a region (a set

of places owned by the same person or organization), then checks each place to find the agent.

• Logging (autonomous | logging | path proxies | untimed). Whenever an agent leaves a place, it leaves a log entry on

it (called mark) pointing to the target place of the migration. The log entries are garbage-collected after the agent

dies (it is not discussed how this can be done).

• Agent registration (autonomous | logging | database | global). Every agent registers its current location in a global

database. This database can be queried to find the agent.

• Agent advertisement (autonomous | nondeterministic | advertising). The agent advertises its location whenever it

deems it necessary. To find an agent for which the advertised information is out-of-date, brute force search is used.

5.2 Aglets

The Aglets Workbench was created at the IBM Tokyo Research Laboratory (see IBM (1999)). An aglet is a combina-

tion of the applet model and the agent model, in principle adding mobility to applets. While this approach allows an

applet programmer to quickly grasp the functionality of aglets, it constrains aglets to a mainly event-based model.

 9

Aglets have immutable, globally unique names and can communicate with other aglets via messages. Communication

can be local and global, synchronous or asynchronous. Aglets can migrate between contexts (the framework’s term for

a place) to access services provided by the context or to communicate with other agents. Thus the agent model used in

the Aglets workbench also conforms to our agent model.

ARIDOR AND OSHIMA (1998) discuss requirements for a mobile agent infrastructure and present their implementation

in the Aglets Workbench. The schemes for locating agents discussed here are similar to those given in the MASIF. The

main differences are:

• the brute force search can be done either sequentially (autonomous | no logging | sequential) or in parallel (auton-

omous | no logging | parallel).

• paths created by the logging scheme can be cut short.

• registration can be used with distributed data bases (autonomous | logging | database | local).

• The advertisement scheme is not part of the Aglets Workbench.

5.3 Mole

Mole is one of the first Java based mobile agent systems and was developed at the University of Stuttgart. Agents in

Mole have immutable, globally unique names. They can migrate between different places to access services or to com-

municate locally with other agents. Mole supports a large variety of communication mechanisms (see

BAUMANN ET AL. (1997) for a detailed description). The agent model used in Mole concurs with our agent model.

Mole contains three different mechanisms for locating mobile agents, which have been presented by BAUMANN (1997)

and by BAUMANN AND ROTHERMEL (1998B). The different mechanisms are:

• Energy (autonomous | nondeterministic | energy). The implementation in Mole is a realization of an orphan detec-

tion scheme. Finding an agent works as described above, but additionally an agent is terminated as soon as it has

no energy left (e.g. because no additional energy has been granted).

• Paths (autonomous | logging | path proxies| untimed). The path concept is an implementation of untimed path prox-

ies as described above.

 10

• Shadows (autonomous | logging | database | local), (autonomous | logging | path proxies | timed). The shadow con-

cept is a combination of the distributed database approach (with the shadow acting as the local database) with timed

path proxies to minimize the communication cost while maintaining a high availability. Additionally to providing

the functionality to locate agents it allows orphan detection and termination. We will examine only the basic proto-

col.

Each application creates one or more shadows (holding the information about the locations of the depending agents)

on a place. In regular intervals (called time to live or ttl) the place on which the agent resides updates the information

in the associated shadow (see Figure 3).

Now the old path proxies are no longer needed. By keeping the ttl with every path proxy, this can be determined

locally, i.e. without additional communication. Even if the path is broken (e.g. because a node crashed) the worst-

case time until the agent is reachable again is the ttl, because after that time it will have contacted the shadow again.

By changing the value for the ttl the mechanism can be adapted to changing costs and fault tolerance requirements.

Figure 3: Shadows: regular update of proxy paths

Place

Agent A

Shadow

Agent A

Shadow

Path Proxy

Update
Message

Ack
Message

Shadow

Agent A

Path Proxy

Place

Place

 11

5.4 Locating Agents with the Help of a Probability Function

CHEN AND LENG (1997) have proposed a mechanism that uses the knowledge of an agent’s movements to guess its lo-

cation with the help of a probability function (probing | sequential). It assumes a predefined path from which the agent

cannot deviate, and tries to compute the current place of the agent using the time interval since the agent left (assuming

a binomial distribution of the execution time on each place).

5.5 Categorizing the Mechanisms

If we add the results of our discussion of existing mechanisms into the classification, we yield Figure 4. It can be seen

that every system and standard provides mechanisms of widely different types.

6 Assessing the Mechanisms

To assess the discussed mechanisms we will determine their fault tolerance, their message complexity and the con-

straints they put on the autonomy of the mobile agents (i.e. whether the migration is delayed).

Figure 4: Locating agents: the mechanisms existing in different systems

Locating

Dynamic
Path

Preordained
Path/Probing

SequentialParallel

Guessing

No Logging

Sequential Parallel

Logging

Path Proxies

Untimed Timed

Nondeterministic

EnergyAdvertising

Database

Global Local

EnergyAdvertise-
ment1,3

Paths4

Logging1,3
Shadows4 Registration1,3 Brute

Force1,3
Brute
Force1

ProbabilityShadows4

Registration1

1 Aglets
2 Chen and Leng
3 MASIF
4 Mole

Concept4 Function2

 12

6.1 Fault Tolerance

To assess the fault tolerance of a mechanism the availability has to be computed. We will again use the terminology and

methodology given by JALOTE (1994). For most of the mechanisms this is quite simple; these are advertisement, ener-

gy, global and local databases, sequential and parallel brute force, and the probing mechanism. In every one of these

types, two nodes (the agent node and the node holding the database or energy source) and two communication channels

are involved (one between inquirer and database and one between inquirer and agent place). Let us denote the failure

rate for nodes with and the failure rate for communication channels . This leads to the following equation for the

availability :

(Equation 1)

If we assume that the mean time to repair (MTTR) is 0,5 hours and that the failure rate for nodes and the failure

rate for communication channels is of the same value , then the availability is:

(Equation 2)

With an MTTF for the single components of 50 hours (failure rate of 0.02/hour), the availability is 0.96.

6.1.1 Untimed Path Proxies

For untimed path proxies the fault sensitivity added by the paths as presented above manifests itself in the dependency

on the availability of all nodes containing a proxy, i.e. on those nodes that are part of a path. Additionally the place on

which the path ends (the agent place) and the place on which the path starts (the anchor node), afflict the reliability. Let

i be the length of the path (i.e. the number of proxy nodes plus the anchor node and the agent node) and the relia-

bility of a node k. The reliability R(i) of the path can then be calculated by the following equation:

(Equation 3)

If we simplify the equation by assigning the same reliability rn to every node in the path, then we get the following

simple expression:

λn λc

α MTTF
MTTF MTTR+
--------------------------------------- 1

1 MTTR 2λn 2λc+()+
---= =

λn

λc λ αλ

αλ
1

1 2λ+
----------------=

λ αλ

rnk

R i() rnk

k 1=

i

∏=

 13

(Equation 4)

The reliability leads directly to the MTTF of the path. Figure 5 shows the development of the MTTF with increasing

path length and three different failure rates for the nodes of 0.10, 0.02 and 0.01. The graph shows that, if e.g. each

component of the path has an MTTF of 50 hours (failure rate of 0.02/hour), the MTTF for a path of length 50 is only

1 hour.

If we actually want to follow the path, then the reliability of the underlying communication network has to be regarded

also. Let us make the same assumption as with the different nodes along the path, i.e. the communication channels be-

tween two nodes have all the same reliability rc. If the path has i nodes, then communication channels are needed;

 between the path nodes (including anchor and agent node), and 1 each between inquirer and anchor node, and

inquirer and agent node. Assuming an exponential distribution this leads to:

(Equation 5)

From this follows the MTTF of the path:

(Equation 6)

Let us now make the following additional assumptions: the path information is stored on stable storage, and the MTTR

(mean time to repair) for both communication channels and nodes is 0.5 hours. We get the availability :

Figure 5: Path concept: the MTTF of a path

R i rn,() rn
i

=

λ

λ

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

5 10 15 20 25 30 35 40 45 50

λ = 0.10
λ = 0.02
λ = 0.01

Path length i

TF
urs]

 14

(Equation 7)

If we make a final assumption, namely that the failure rate for nodes and the failure rate for communication channels

 is of the same value , then the availability can be illustrated as in Figure 6. We can see that with an MTTF

for the single components of the path of 50 hours (failure rate of 0.02/hour) and an MTTR of 0.5 hours, the availa-

bility for a path of length 50 (i.e. 48 hops by the agent) is only 0.5. Even doubling the MTTF of the components

leads only to an availability of 0.66.

A small remedy is the specification of a maximum path length as proposed by ARIDOR AND OSHIMA (1998), i. e. the

path is shortened automatically after a certain number of hops. The disadvantage is the additional communication for

shortening the path, i.e. a message from the source place of a migration to the anchor place, and then “shortenPath”-

messages along the path, leading to additional messages every n hops. This mechanism can be used to recreate

the path in the presence of faults, after the agent has made the nth hop. The problem is that it is unforeseeable when the

nth hop takes place, if ever (i.e. the worst-case time bound for MTTR is still the MTTR of the single devices).

Figure 6: Path concept: the availability of a path

(path information on stable storage, MTTR = 0.5 hours)

αi λ,
MTTF

MTTF MTTR+

1
iλn i 1+()+ λ

c

1
iλn i 1+()+ λ

c

------------------------------------ 0 5,+

1
1 0 5 iλn i 1+()+ λ

c
(),+

= =

=

λn

λc λ αi λ,

λ

αi λ,

αi λ,

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 5 10 15 20 25 30 35 40 45 50

λ = 0,10
λ = 0,02
λ = 0,01

Path length i

Availability α

n 1+

 15

6.1.2 Timed Path Proxies

Again the proxy path (including anchor place and agent place) is the determining factor. By introducing the ttl, after

which the agent has to contact the anchor place, it is guaranteed that even if the path is broken, the new place of the

agent is known after the ttl has passed (as a worst-case bound), as long as either the network partition is short-term, or

agent place and anchor place are in the same partition. Let us first examine the availability of the path. We again assume

the same failure rate for all nodes containing a proxy. But with the automatic update of the path we essentially have a

repair functionality with a maximum time to repair that equals ttl, and a minimum time to repair that equals 0, i.e. a

mean time to repair that equals . Thus we get the following availability :

(Equation 8)

If we make the same simplifications as before, namely one failure rate for all nodes and one for all communication

channels , we get the following first equation for the availability in dependence of the path length i:

(Equation 9)

What hasn’t been included yet is the shortening of the path. The availability as computed with Equation 9 assumes that

after the contact with the anchor place the path length stays the same, when in reality it is shortened to 2 (anchor place

and agent place). If we assume that the agent movement is linear, i.e. it stays on every place for the same time, then we

yield the following equation (the average of the availability for all the different path lengths):

(Equation 10)

ttl
2
----- α

α MTTF

MTTF ttl
2
-----+

----------------------------=

λn

λc α̃i

α̃i
MTTF

MTTF ttl
2
-----+

1
iλn i 1+()+ λ

c
()

1
iλn i 1+()+ λ

c
()
--- ttl

2
-----+

1

1
ttl
2
----- iλn i 1+()+ λ

c
()+

--

= =

=

αi
1

i 1–
---------- α̃k

k 2=

i

∑ 1
i 1–
---------- 1

1
ttl
2
----- kλn k 1+()+ λ

c
()+

--

k 2=

i

∑= =

 16

Let us now make the following additional assumptions (the same as in Section 6.1.1): firstly, the failure rate for nodes

 and the failure rate for communication channels is of the same value , and secondly, all agents have a ttl of 6

minutes, i.e. every agent contacts its anchor place 10 times an hour. Now the availability can be illustrated as in

Figure 7. We can see that e.g. with an MTTF for the single component of 50 hours (failure rate of 0.02/hour), the

availability of a path of length 50 (i.e. 48 hops by the agent) is 0.95. Thus even if, with these assumptions, an agent

migrates nearly 50 times every 6 minutes, the probability of an inquirer being able to contact it is still 95%.

6.2 Message Complexity

When examining the message complexity of the different mechanisms we have to distinguish between the message

complexity for maintaining the information and the message complexity for actually using the mechanism.

6.2.1 Maintenance

Advertising. Since the message cost depends entirely on the decisions of the programmer when to advertise the new

location, the message cost cannot be given precisely. But if the agent’s location is never advertised, the message cost is

0, and if the agent’s location is advertised every time it migrates, the cost is 2 messages per agent per migration (i.e.

one message advertising the new location, and one acknowledgment message).

Figure 7: Timed Path Proxies: the average availability of the path

(ttl = 0.1 hours)

λn λc λ

αi

λ

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

5 10 15 20 25 30 35 40 45 50

λ = 0,10
λ = 0,02
λ = 0,01

Path length i

Availability α

 17

Energy. The message cost added by the protocol is 2 messages per agent per granted energy request, and 1 additional

message for a denied request. If we assume that the common usage of the energy concept is for agents that wait for

something, e.g. for a specific change in a remote database, then the request can be piggy-backed on the message sig-

nalling the change. This reduces the message cost to 1 message if additional energy is granted and to 0 if denied.

Untimed Path Proxies. Since the path information is maintained locally, no messages are needed to maintain the

path. Thus the message cost for maintaining untimed path proxies is 0. Additional messages are needed though to re-

move the path of a no longer existing agent (the same cost as for using the mechanism to cut the path short). Shortening

the path involves sending a “shortenPath” message along the old, superfluous path. This leads to a cost of mes-

sages for a path length of n.

Timed Path Proxies. As has been described in Section 4.1.2.1 the path is shortened in regular intervals, i.e. every

time the agent’s ttl has dropped to 0. Shortening the path includes one message from the agent to the anchor place (the

update message) and one from the anchor place to the agent (the acknowledgment message). The intermediate path

proxies are removed without additional communication. This leads to a cost of 2 messages per agent and ttl.

Database. The database (global or local) is updated every time the agent migrates. Thus a message is needed for the

update, and furthermore an acknowledgment message is needed to guarantee that the information has been added to the

database. Thus the message cost is 2 messages per agent per migration.

No Logging. Since no information is maintained, the maintenance message cost for these mechanisms is 0.

Probing. Since no information is maintained, the maintenance message cost for these mechanisms is 0.

6.2.2 Using the Mechanism

Advertising. Locating an agent involves inquiring at the database, i.e. one request message and one message answer-

ing the request, if the information is not outdated. Otherwise the agent is not locatable.

Energy. Locating an agent involves inquiring at the database, i.e. one request message and one message answering the

request, if the information is not outdated. Otherwise the agent is not locatable.

Untimed Path Proxies. A search request is forwarded along the path, and answered by the agent node sending a

message back to the initiator node. If the path contains n proxies, then messages are sent along the path.

n 1+

n 1+

 18

Timed Path Proxies. The message complexity is the same as with untimed path proxies, namely messages

along the path.

Database. Locating an agent involves inquiring at the database, i.e. one request message and one message answering

the request.

No Logging. As has been pointed out already, the message complexity of sequential brute force and of parallel brute

force differs. In the case of sequential brute force the number of messages for locating the agent on average equals the

number of places, since on average the agent is found after half the places have been found (and each inquiry needs a

request and a reply). With parallel brute force the message volume equals twice the number of places. This can be re-

duced (as has been discussed in Section 4.1.2.2) to the number of places plus 1 (if only a positive reply is sent back).

Probing. In the best case the first message probing for the agent locates it, and in the worst case the number of mes-

sages equals the number of places to be visited by the agent depending on the algorithm used for probing. If for instance

a binary search algorithm is used, then the number of messages in the average case equals .

6.2.3 Overall Message Complexity

To simplify comparing the different mechanisms we define three different degrees of message complexity: low, medium

and high message complexity. Using the results of the above discussion for the message complexity for maintenance

and for locating agents and our assumption about the possible size of the mobile agent system from Section 3.2 we yield

Figure 8.

Since the overall cost can only be given correctly if the application is known exactly, we simplify again by defining

concentric zones of low, medium and high message complexity. Following this classification the energy approach is of

low message complexity, advertising, timed path proxies and untimed path proxies are of middle message complexity,

and database approaches and approaches using no logging have a high message complexity.

n 1+

ld n()

 19

6.3 Migration Delay

If a mechanism for locating agents restricts the migration operation, then it violates the autonomy of the agent, and thus

the mobile agent paradigm (constituting mobile agent autonomy). Hence we will examine the different approaches re-

garding their intrusion upon the migration. Let us distinguish the following three classes of migration delay:

• every migration is delayed. Mechanisms of the first class are those that force a contact with a third party before the

agent migrates, i.e. the agent is delayed until the answer (the acknowledgment) is received. An example for this

class is a mechanism using a database for registering the new location of the agent, that waits for the acknowledg-

ment at the source place before allowing the migration.

• subsequent migrations are delayed. This class contains all those mechanisms that contact a third party after the mi-

gration takes place, i.e. the agent has to wait for the answer on the target place, and subsequent migrations can only

take place after receipt of this answer. An example for this class is a mechanism using a database, that forces the

agent to wait at the target place for the acknowledgment.

• migrations are not delayed. The third class of mechanisms never delays the agent, either because no third party is

involved, or because no acknowledgment is needed. An example for this class is a mechanism using untimed path

proxies.

Figure 8: The message complexity of the different mechanisms

Low Middle High

Low

Middle

High

Maintenance

Locating

No Logging

Timed Path Proxies

DatabaseEnergy Advertising

Probing

Untimed

Middle Message
Complexity
Low
Complexity

High
Complexity

Path Proxies

 20

We combine the first and second class (and name it first/following), since mechanisms of these classes can be trans-

formed into mechanisms of the other class by sending the acknowledgment to the source place of the migration (to con-

vert mechanisms of the second class to mechanisms of the first class) or to the target place (to convert mechanisms from

the first to second class). The third class we name no-delay.

Advertising is in the first/following class, since every time the agent advertises its location it has to wait for the ac-

knowledgment that the information has been received. All those mechanisms updating databases for every migration

delay the migration (the update has to be acknowledged), i.e. they are also in the first/following class.

The energy concept never delays migration (we ignore the rare case of having to request additional energy) and is thus

in the no-delay class. The mechanisms implementing untimed path proxies are in the same no-delay class (they never

delay the migration; only a proxy is left on the source place). Timed path proxies (i.e. Shadows) also do not delay the

migration (here the infrequent case that the path is shortened is ignored), hence they are in the no-delay class as well.

Lastly, the mechanisms using no logging (i.e. Brute Force) and the probing mechanisms are of the no-delay class, be-

cause these mechanism do not modify the migration operation at all.

6.4 Merging the Assessments

Let us assume the following conditions: a failure rate of 0.02/hour and an MTTR of 0.5 hours, a ttl of 6 minutes for

the timed paths and 50 migrations of an agent during this time. With these values we get the following results for the

availability of the different mechanisms:

• For advertisement, energy, centralized and distributed registration, sequential and parallel brute force, and the prob-

ing mechanism the availability according to Equation 2 is 0.96.

• For paths and logging the availability with the above conditions is 0.50 (see Figure 6).

• The shadow concept has an availability of 0.95 with the above conditions (compare with Figure 7).

Let us draw a line at 80%, i.e. an availability of 0.8 and higher is deemed as a high availability, and an availability of

lower than 0.8 is considered a low availability (actually the results would be the same for any percentage between

λ

 21

51% - 94%). If we now combine the assessments regarding availability, message complexity and migration delay, we

yield Figure 9.

It can be observed that the mechanisms implementing untimed paths (i.e. the path concept and the logging mechanisms)

provide only a low availability. But their advantage is their low message complexity (i.e. no messages are used for

maintaining the path) and that they do not delay the agent migration.

The energy concept seems to have perfect qualities, i.e. low message complexity combined with high availability and

no migration delay, but it has the big drawback, that the information provided may be incorrect. The same drawback

holds for the advertisement mechanism, making these two unsuitable for locating agents reliably.

The registration mechanism has a high availability, but its drawbacks are a high message complexity and the delay of

the agent migration.

The brute force mechanism has the same high availability and does not delay the agent migration, but its message com-

plexity is very high (at least half the number of places in the agent system). This makes the mechanism unusable in an

environment as large as the one we assumed in Section 3.2.

Figure 9: Control mechanisms: combining the assessments for existing mechanisms

Message
Complexity

Migration

Availability Energy1

Logging

first/ never

low

high

med

high

ShadowsAdvertisement1

Delay
following

Registration
Brute Force

Guessing

Paths

1 Information
provided
may be
incorrect

 22

The guessing mechanism has medium message complexity, high availability and does not delay the agent migration.

But this mechanism assumes preordained paths, i.e. it changes the agent model. Whether this constraint is acceptable

has to be decided by the agent programmer, but it definitely makes this approach a less general one.

The shadow mechanism is more general, since it makes no assumptions about agent migration. At the same time it has

a high availability, medium message complexity and introduces no delay on migration. Furthermore, the message com-

plexity of the shadow concept is adjustable even at runtime, allowing the mechanism to react to a changing environ-

ment.

The results of comparing the existing mechanisms for locating agents are:

• Brute force has a extremely high message complexity and is unusable in real-world mobile agent systems.

• The energy concept and the advertising mechanism are unsuitable for locating mobile agents reliably.

• The registration mechanisms (both with global and local databases) have a high message complexity compared to

other mechanisms, i.e. they should not be used as long as alternatives exist. Furthermore, they delay the agent mi-

gration, thus interfering with the autonomy of the agent.

• The mechanisms employing the path concept provide only a low availability compared to the other discussed mech-

anisms. This more than negates their advantages of low message complexity and of no interference with agent au-

tonomy (i.e. no delay of agent migrations).

• The guessing mechanism is only usable in situations where the constraint put on the agent model, i.e. that the agent

migration follows a preordained path, is acceptable.

• The shadow mechanism needs only moderate message complexity compared to most of the other mechanisms while

providing a high availability and without interfering with the agent autonomy.

7 Conclusion

In this paper we have discussed different possible solutions for locating agents in a mobile agent system. We have in-

troduced a classification of these possible approaches and have categorized mechanisms proposed in the MASIF stand-

ard and mechanisms implemented in the Aglets Workbench and in Mole. The comparison of the different mechanisms

yielded as a result that the shadow mechanism (implemented in Mole) provides the best combination of properties (i.e.

 23

message complexity, availability and non-interference with the agent autonomy) for the general usage. Furthermore this

mechanism provides termination and orphan detection for mobile agents, an additional feature that none of the other

mechanisms provides (see BAUMANN AND ROTHERMEL (1998B) for the details).

The other mechanisms can still be the better choice for specific applications that provide additional knowledge. In these

cases e.g. the advertisement scheme might perform much better by using the application-specific knowledge to decide

when to update the location information.

8 References

ARIDOR AND OSHIMA (1998) Aridor, Y. and Oshima, M. (1998), “Infrastructure for mobile agents: requirements and

design”, in Proceedings of the Second International Workshop on Mobile Agents ‘98, K. Rothermel, F.

Hohl, Eds., Lecture Notes in Computer Science 1477, Springer-Verlag, Berlin, Germany, pp. 38 - 49.

BAUMANN (1997) Baumann, J. (1997), “A protocol for orphan detection and termination in mobile agent systems“,

Technical Report Nr. 1997/09, Faculty of Computer Science, University of Stuttgart, Germany.

BAUMANN ET AL. (1997) Baumann, J. and Hohl, F. and Radouniklis, N. and Rothermel, K. and Straßer, M. (1997),

“Communication concepts for mobile agent systems”, in Proceedings of the First International

Workshop on Mobile Agents ‘97, K. Rothermel, R. Popescu-Celetin, Eds., Lecture Notes in Computer

Science 1219, Springer-Verlag, Berlin, Germany, pp. 123 - 135.

BAUMANN AND RADOUNIKLIS (1997) Baumann, J. and Radouniklis, N. (1997), “Agent groups for mobile agent

systems“, in Distributed Applications and Interoperable Systems, H. König, K. Geihs and T. Preuß,

Eds., Chapman & Hall, London, UK, pp. 74 - 85.

BAUMANN ET AL. (1998A) Baumann, J. and Hohl, F. and Rothermel, K. and Straßer, M. (1998), “Mole - concepts of a

mobile agent system”, WWW Journal 1, 3, Baltzer Science Publishers, pp. 123 - 137.

BAUMANN AND ROTHERMEL (1998B) Baumann, J. and Rothermel, K. (1998), “The Shadow approach: an orphan

detection protocol for mobile agents”, in Personal Technologies 2, 3, Springer-Verlag, London, UK,

pp. 100 - 108.

 24

BECK (1997) Beck, B. (1997), “Terminierung und Waisenerkennung in einem System mobiler Software-Agenten”,

Diploma Thesis Nr. 1472, Faculty of Computer Science, University of Stuttgart, Germany.

CARRIERO AND GELERNTER (1989) Carriero, N. and Gelernter, D. (1984), “Linda in context”, Communications of the

ACM 32, 4, pp. 444 - 458.

CHEN AND LENG (1997) Chen, W.-S. E. and Leng, C.-W. R. (1997), “A novel mobile agent search algorithm”, in

Proceedings of the First International Workshop on Mobile Agents ‘97, K. Rothermel, R. Popescu-

Celetin, Eds., Lecture Notes in Computer Science 1219, Springer-Verlag, Berlin, Germany, pp. 162 -

173.

IBM (1999) IBM Tokyo Research Laboratory (1999), “Aglets Workbench: programming mobile agents in Java”,

web page, URL: http://www.trl.ibm.co.jp/aglets

JALOTE (1994) P. Jalote (1994), Fault Tolerance in Distributed Systems, PTR Prentice Hall.

JUL ET AL. (1988) Jul, E. and Levy, H. and Hutchinson, N. and Black, A. (1988), “Fine-grained mobility in the

Emerald system”, in ACM Transactions on Computer Systems 6, 1, pp. 109 - 133.

LANGE AND OSHIMA (1998) Lange, D. B. and Oshima, M. (1998), Programming and Deploying Java Mobile Agents

with Aglets, Addison-Wesley, Reading, Massachusetts.

MILOJICIC ET AL. (1998) Milojicic, D. and Breugst, M. and Busse, I. and Campbell, J. and Covaci, S. and Friedman,

B. and Kosaka, K. and Lange, D. and Ono, K. and Oshima, M. and Tham, C. and Virdhagriswaran, S.

and White. J. (1998), “MASIF: the OMG mobile agent system interoperability facility”, in Proceedings

of the Second International Workshop on Mobile Agents ‘98, K. Rothermel, F. Hohl, Eds., Lecture

Notes in Computer Science 1477, Springer-Verlag, Berlin, Germany, pp. 50 - 67.

PAULUS (1998) Paulus, M. (1998), “Agentengruppen für mobile Agenten”, Diploma Thesis Nr. 1664, Faculty of

Computer Science, University of Stuttgart, Germany.

