
Specification and Scheduling of
Adaptive Multimedia Documents

Stefan Wirag

University of Stuttgart
Institute of Parallel and Distributed High-Performance Systems (IPVR)

Breitwiesenstr. 20-22
D-70565 Stuttgart

e-mail: wirag@informatik.uni-stuttgart.de

Abstract
Multimedia documents are of importance in several application areas, such as education, training, ad-
vertising and entertainment. Since multimedia documents may comprise continuous media, such as au-
dio and video, the presentation of those documents may require a significant amount of processing and
network resources. The amount of resources available during a presentation depends on the system con-
figuration and the current system load. Hence, it can happen that there are not enough resources to ren-
der a multimedia document according to the specification, resulting in a reduced presentation quality, if
the presentation is possible at all. To cope with those situations, different versions of the same document
can be specified, one for each potential configuration or probable load situation. A better approach is to
have only one document that can be adapted to different system configurations and load conditions. To
enable this approach, an adaptive document model as well as an adaptive scheduling algorithm are nec-
essary. In this paper, we present the adaptive Tiempo document model, an algorithm to check the consis-
tency of specifications, the concepts of a graphical document editor supporting the model as well as a
scheduling algorithm which allows to adapt documents conform to our model in environments with best-
effort assignment of resources.

1. Introduction

Due to their expressive power, multimedia documents have become attractive for many application areas,
such as education, training, advertising or entertainment. Multimedia documents combine continuous
media objects (e.g., video, audio or animation) and discrete media objects (e.g., graphic or text).

In a distributed environment, documents are typically stored onservers, from which they are retrieved
for presentation. The actual presentation takes place at apresentation terminal, such as a workstation, a
PC, a Set-Top-Unit, or even a mobile device in future times. When a user initiates the presentation of
some document at a terminal, the terminal takes over the responsibility for orchestrating this presenta-
tion, i.e. it schedules the access to remote servers, the playout of individual data units, and so forth.

In order to present a multimedia document, a certain amount of resources is needed. For example, pro-
cessing and buffer resources are needed at the terminal to present the document, while network resources
are required to transfer the media objects associated with the document from the server to the terminal.
The amount of resources available strongly depends on the system configuration and the current system
load.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction 2

Let us consider the system configuration first. Clearly, a workstation connected to a high-speed network
allows for a higher quality presentation than a PDA linked to a radio network. One approach to overcome
this problem of heterogeneity is to have different versions of the same “logical” document, one for each
potential configuration. Another approach is to have one document that is able to adapt to the capabilities
of the underlying system. We prefer the second approach since it avoids redundancy and does not have
to predict numerous configurations. For example, with the second approach a digital library would have
to store only one version for each document, without taking into account the capabilities of the terminals
potentially used to access the library.

Even if we only consider one type of terminal and one type of network, variations in the system load may
cause different amounts of resources to be available. Without resource reservation, the resources avail-
able for a presentation may change while the presentation is in progress, i.e., resource shortages cannot
be avoided. If the underlying system provides for resource reservation, the resources needed to present
a (mono-media) object (e.g., a video clip) can be determined and reserved prior to its presentation. How-
ever, reservation in general cannot prevent resource shortages to occur during the presentation of inter-
active multi-media documents. For interactive documents, it is not feasible or even possible to reserve
all resources required to render the entire document in advance. Rather resources are reserved and re-
leases incrementally while the presentation progresses, which again can lead to resource shortages. Con-
sequently, even in the case of resource reservation it may happen that less resources are available than
expected.

When a resource shortage occurs, there are basically three ways to react on it. Firstly, the presentation is
aborted, which is the only choice if the underlying system is non-adaptive. Secondly, the quality of the
presentation is degradedsomehow,meaning in a system-controlled manner. In this case, the underlying
system is adaptive, however the author of the document cannot impact how the quality is degraded.
Thirdly, the presentation is adapted in auser-controlled mannerto the given resource situation. To enable
the last alternative, flexible document models are required, which allow to compile different presenta-
tions from a given document specification depending on the resource situation.

In theTIEMPO1 project which was supported by the Deutsche Forschungsgemeinsachaft (DFG), a flexible
document model [12, 15, 16] was developed. In this model documents are composed of single media ob-
jects, such as video, audio or text, and composite media objects, such as pages or scenes. The desired
adaptability is achieved byselection groupswhich allow to define alternative media objects or presenta-
tion parts representing the same information in different form andQuality of Service rangeswhich allow
to specify alternative presentation behavior for media objects. These abstractions can be applied in com-
bination to achieve a high degree of adaptability.

To check if flexible documents are presentable, we have developed a graph-based consistency-checking
algorithm, which is used in the graphical Tiempo document editor to detect inconsistent specification
parts. The adaptive scheduling algorithm of Tiempo uses the flexibility in documents to adapt the pre-
sentation to alternating resource situations. The algorithm schedules a presentation such that not more
resources are needed than available and that the available resources are distributed optimal between si-
multaneously presented media objects. Thus, resource shortages need not result in an uncontrolled re-
duced presentation quality of Tiempo documents.

The remainder of the paper is structured as follows: In Section 2 we present the concepts of the Tiempo
model. Then, we describe the consistency-checking algorithm. In Section 4 a brief overview of the doc-
ument language the Tiempo editor is based upon is given, before the design concepts of the editor are
presented. In Section 6 to 9 we describe our adaptive scheduling algorithm. In Section 10 some perfor-
mance measurements are presented. Related work concerning is described in Section 11. Finally, we
summarize our results.

1. Temporalintegratedmodel topresent multimedia-objects

2. The TIEMPO Document Model 3

2. The TIEMPO Document Model

2.1 Basis Concepts

Tiempo is an interval-based model, in which documents are composed of single media objects and com-
posite media objects. A media object is modeled by a temporal space, a presentation interval and a pro-
jection. Thetemporal space (TS)represents the content and layout information associated with the media
object. Thepresentation intervalrepresents the period the media object is presented. Theprojectionde-
scribes which and how many data units of the TS are presented per second in the presentation interval.
The concept of a projection allows to present media objects with other than recording-time properties.
Our model knows four types of projections: With the typealign-lengththe whole TS is presented in the
presentation interval. With the typehold-datathe presentation interval can have any extent, gaps at the
edges of the presentation interval are filled with the last or first data unit of the TS. Applying the type
loop-data,a presentation interval of any length can be specified. Gaps at the edges of the presentation
interval are filled by repeating the already presented part of the TS. With the typeforce-enda presenta-
tion interval of any length can be defined, until the TS is large enough to fill the interval. Interaction ob-
jects, such as buttons or sliders, have additionalinteraction intervals.Each such interval represents the
period in which a particular user-interaction (e.g. click with mouse) is accepted.

A TS consists of a finite time axis on which data units such as video frames, audio samples or pictures
are positioned. The arrangement of data units and the extent of a single media objects TS is fixed when
its content is generated. To define the temporal layout of a composite media objects TS, presentation in-
tervals of included media objects are arranged byinterval operators[12]. In Figure 1, the left side shows
a simplified composite media object specification and the right side shows how the temporal layout of
the presentation is generated by projection of TSs. In this example, the interval operator “before” spec-
ifies that the animation should be started 1 second after the video has ended.

An interaction is described as a reaction-relation between an interaction interval and the affected projec-
tions, interaction and presentation intervals. Assigned actions can imply the start or end of intervals, they
can pause, continue and speed up the playout [13].

Figure 1: Tiempo specification example

1

before

video
5

5
animation

9

4

12

1 2 3 4 5 2 31 4

1 2 3 4 5 2 31 4 2 31 4 1

TS video TS animation

TS scene

start end

presentation
scene

12345 231 4 231 41

specification presentation

time

presentation interval

projection temporal space media object

interval operator data unit1

2. The TIEMPO Document Model 4

2.2 Modeling of Adaptivity

The Tiempo model allows for adaptivity on the object- and attribute-level [15, 16]. Adaptivity on the ob-
ject level can be specified by so-calledselection groups. A selection group contains a number of presen-
tations that can be selected alternatively. Whenever a selection group is performed, the underlying
system selects and presents exactly one of these alternatives. A presentation alternative can be a single
or arbitrarily complex composite media object. Selection groups can be nested to specify selections at
various levels of abstraction. Moreover, priorities can be assigned to presentation alternatives to indicate
which alternative should be preferred when more than one can be implemented.

Figure 2 shows an abstract representation of a document part with nested selection groups. The outer
group includes two presentation alternatives. While the first alternative is a text object, the second one
consists of an animation object and another selection group. The inner selection group provides three
presentation alternatives, a speech object, a subtitle sequence and an empty object. According to the se-
lection group semantics, the presentation system has the option to present the text or the animation with
either the speech sequence, the subtitles or no further explanation.

In the outer selection group, the alternative with the animation has the highest priority (100) and hence
should be selected provided the required resources are available. In the inner selection group, the speech
object is the preferred alternative (priority 80), followed by the subtitles (priority 60) and the empty ob-
ject (priority 0).

Adaptivity on the attribute-level is modeled by so-calledQuality of Service (QoS) ranges. QoS range ar-
guments can be used to specify the extent of presentation and interaction intervals, the presentation speed
and the delays implied by interval operators. Based on this information, a presentation system can select
extent, speed or delay values within the specified QoS ranges according to the current resource situation.
To indicate which values of QoS ranges are preferred, priorities are assigned to the contained values. The

Figure 2: Document specification with selection groups

Speech

Subtitles

Text

Animation

80

60

100

40

0

Presentation Alternative Selection Group Media Object

Presentation Interval Interval Operator

3. Consistency Checking 5

priority structure of a QoS range is defined by anchor points. The QoS range on the left side of Figure 3
might define the extent of a presentation interval, which can be between 10 seconds and 55 seconds. In
the example, an extent of 10 seconds has the priority 30, an extent of 55 seconds has the priority 70, and
an extent of 35 seconds has a priority of 100. With the extents between 10 and 35 linear increasing pri-
orities from 30 to 100 are associated, and with the extents between 35 and 55 linear decreasing priorities
from 100 to 70 are associated. Here, the presentation system should implement an extent of 35 seconds
for an optimal presentation quality.

3. Consistency Checking

Tiempo specifications may integrate many flexible temporal dependencies. Hence, it is necessary to
check if all temporal relations are compatible. Otherwise the document is not presentable.

3.1 Basic Algorithm

To check the consistency of Tiempo specifications an graph-based algorithm is used. The application of
a graph-based algorithm is possible as a Tiempo specification can be represented as a directed acyclic
graph. Such a graph is called event-graph. An event-graph is derived as follows from a specification.

In an event-graph each interval in a specification is modeled by two nodes representing its start- and end-
event. These nodes are related by an edge which represents the delay between the nodes respectively
events. A TS is also modeled by two nodes representing its start- and end-event. According to the spec-
ified projection, presentation interval nodes and TS nodes are related by appropriate edges. All our pro-
jections can be modeled by introducing appropriate edges [14]. Delays implied by interval operators are
modeled as edges between presentation interval nodes, interaction interval nodes and TS nodes. Figure 4
shows on the left side a simple document specification and on the right side the corresponding event-
graph of the specification.

The edges in an event-graph are labeled with the possible delay values between the nodes. If speed val-
ues, interval lengths and delays implied by interval operators are specified as QoS ranges, edges will be
labeled with a value range that contains all possible delays. In Tiempo the projections define how fast
data units of a TS are presented. As the nodes of the scheduling graph should describe instants of the real
time, delay values specified in a TS i have to be divided by the value ve,i that represents the effective
speed in the TS. The effective speed ve,i of a TS i is defined recursively by ve,i = vi ve,j where vi is the
speed defined for the projection from TS i to TS j and ve,j is the effective speed of TS j. The grey rect-
angles on the right side of Figure 4 show how edges are affected by the different speeds in the TSs.

Figure 5 shows a simplified specification that consists of a multimedia object containing a slide presen-
tation which is accompanied by a speech sequence. If the presentation of the slide ends, the slide presen-
tation continues until the user presses the stop button. The start of the slide presentation is specified
flexible. The whole presentation should be rendered with double speed (v = 200). Not specified lengths

Figure 3: QoS range semantics

[10 : 30, 35 :100, 55 : 70]

10 35 55
extent

priority
100

80
60
40
20

0

3. Consistency Checking 6

and delays are represented by a ‘?’. The left side of Figure 6 shows the event-graph of the example. As
can be seen, not specified delays are represented by [0,?], since the delay may lie between zero and in-
finity. Specified delays are divided by two as the presentation shall be rendered with twice the normal
speed.

Figure 4: Generation of Event Graphs

Figure 5: Concistency checking sample specification

video

animation

scene

specification event graph

presentation interval

projection

temporal space

media object
interval operator

Presentation interval node

Temporal space node

Presentation Interval

Temporal Space

?

180

? 2

?

??

?

[0,6]

0

00

?

Speech

Slide

Button

Interaction Interval

Stop

v = 200

3. Consistency Checking 7

With the help of an event-graph it is now possible to check whether all delays represented by edges in
the graph can hold simultaneously by application of the algorithm described in [3] as follows.

From an event-graph a so called distance-graph is derived represented as adjacence matrix. In a distance-
graph an edge of an event-graph is represented by two edges. A forward edge represents the maximum
delay between the nodes and a backward edge represents the minimum delay between the nodes. Further
the sign of the value of the backward edge is switched.

On such an adjacency matrix the algorithm of Floyd-Warshall [11] is applied. This algorithm is used to
compute the minimal distances between all nodes of a usual graph. Applied on a distance-graph the fol-
lowing is computed:

• Contains the diagonal of the computed matrix negative values is the specification not consistent.
This means there exists no combination of edge values so that all minimum and maximum distances
are kept.

• Contains the computed matrix only zeros in the diagonal is the specification consistent. This means
there exists at least one combination of edge values so that all distances stay within the given inter-
vals. Further on, the computed matrix contains now the possible minimum and maximum distances
between all nodes. On the base of this values it is now possible to limit the range of not specified
QoS Ranges and we also know now the minimum and maximum distance of all nodes from the start
node. Hence, we know in which intervals start- and stop-events of media objects can occur.

Figure 6: Consistency checking algorithm

0 0

0

?

00 0 0

0

1
-1

0
3

0

?

0

?

0 ?

0

?
0?

0 0

0 0
-90

90

?

[0] [91,?]

[91,?][0]

[0,3] [90,?]

[90,?][0,3]

[0,?] [0,?]

[0,3] [90,93]

Event Graph Distance Graph

90

0

[0,?]
0 0

[0,?]

1
[0,3]

[0,?]

[0,?]

[0,?]

[0,?]

[0,?]

0

0

90

Presentation Interval Temporal Space

Interaction Interval

90

Speech

Slide

Button

4. The Tiempo Document Language 8

If the algorithm is applied on the example in Figure 5, it is shown that the specification is consistent. The
distance-graph in Figure 6 shows the computed intervals events associated with the nodes may occur in
italic style. These values show that the slide and button presentation can not end earlier than 90 seconds
after the start of the presentation. Hence, we can complete their minimum presention duration.

The complexity of this algorithm is determined by the complexity of the Floyd-Warshall Algorithm
which is O(n3) (n is the number of nodes in a graph).

This algorithm can be applied on each media and multimedia object separately. In a hierarchical docu-
ment specification we can first check the consistence of the objects on the lowest level. Then we can
check the objects on the next level and so on. If a specification integrates selection groups, the consis-
tency is checked for each possible combination of presentation alternatives separately.

3.2 Checking Consistency of Interaction

Interaction intervals describe when an interaction can be triggered by the user. Reaction-relations define
how media objects should change their behavior when an interaction occurs. In a consistent specification
it must be guaranteed that the triggering of an interaction do not cause an inconsistency. The consistency
of interactions can be checked as follows.

The consistency of the document is checked without considering interaction effects. Not specified values
are completed and QoS Ranges are corrected. Then delays in the event-graph are set as they can be if the
interaction would be triggered. On the modified event-graph the described algorithm is applied. On base
of the computed minimum and maximum delays between nodes, it can now be checked if the interaction
intervals are specified correctly. If causal dependencies of interactions and interaction intervals exist, we
check each scenario step by step.

In the example the consistency of the stop-interaction would be checked as follows. The length of the
slide presentation is set to [0,?], since the media object will be stopped sometimes by the interaction.
Then we compute the distance graph. For the example this distance graph is identical to the distance-
graph used to check the consistency without considering the interaction. The computed distance-graph
shows that the slide presentation can not stop earlier than 90 seconds after the start of the presentation.
Hence, the interaction interval can start not earlier than 90 seconds after the presentation has been start-
ed. We can now set the delay between the start of the button presentation interval and the button interac-
tion interval to [90,?].

4. The Tiempo Document Language

Based on the Tiempo model, a document language was developed that supports all features of the tem-
poral model. The developed document language follows the paradigm of object orientation. The lan-
guage is defined by a set of element types. An element type defines the attributes a document element
conform to the type has to have. Also a default-value can be defined for each attribute. To describe the
Tiempo model appropriately, the following attribute types are necessary: integer, floating-point numbers,
enumeration types, strings, references to objects, attributes and external entities, QoS ranges, and com-
posite attributes. Composite attributes can be compared with struct-constructs in C. These attributes en-
able a clear representation of complex element properties such as alignment policies. All element types
are derived from each other. An element type inherits the attributes of the element types it is derived from
but can have additional attributes representing new properties. Multiple inheritance is allowed. Element
types can be abstract. Such types can be used to structure the element type hierarchy accordingly. This
approach can be compared with the concepts of MHEG [6] or HyTime [4] where document elements are
also derived from each other. Tiempo documents are composed by instances of such element types.

5. Design of the Tiempo-Editor 9

Figure 7 shows an example of an inheritance tree that shows the characteristic element types implement-
ing the concepts of the Tiempo model. All element types are derived from the typeTSObject. The subtree
Mediacontains the types that represent media items such as video-clips, speech-sequences, etc. The con-
crete presentation of media items is defined by viewer that are associated with the media items. The sep-
aration of content and presentation functionality has the advantage that the same content can be
presented in different form. But viewer can not only present single media, viewer that define the presen-
tation of multiple other viewer are calledMultimediaViewer. A simple example for such a viewer is a
Window. The abstract typeViewerhas all attributes that are necessary to describe a media object accord-
ing to the Tiempo model.

The subtreeRelationcontains typs to define dependencies between other elements. This subtree contains
types representing the 10 interval operators and the reaction relation.Reactionelements contain ele-
ments of the types in theActionsubtree. This subtree contains types representing the interaction effects
supported by the Tiempo model.

To describe selection groups, elements of the typeSelectionGroupare used which contain elements of
the typePresAlternative representing presentation alternatives.

Composite attributes (CompositeAttribute) are also defined within the inheritance tree. Figure 7 shows
which composite attributes are necessary to represent alignment policies, projections and intervals.

The Tiempo language can be extended very easily by new kinds of media items. To do this, a new media
type describing the media item has to be defined and inserted into the subtreeMediaof the inheritance
tree. If no adequate viewer exists also a new viewer object has to be defined and inserted in the subtree
Viewer.

5. Design of the Tiempo-Editor

The Tiempo-Editor permits the graphical interactive composition of Tiempo-documents. Figure 8 shows
the GUI of the editor. The editor integrates the following concepts.

5.1 Views

As it is not possible to display all aspects of a document in a single view, the Tiempo-editor visualizes a
document specification in three different views. Each view represents a particular aspect of the specifi-
cation. A multimedia element is visualized by three views:

• The Main Viewdisplays media- and multimedia elements contained in a multimedia element by
icons. The kind of the icons shows the type of the elements. Temporal relations and reaction rela-
tions are also represented by icons. Lines show between which other elements the relation is de-
fined. Selection groups are represented by icons on the left side of the view. With the help of the
icons the author can select the displayed presentation alternatives. In Figure 8 the middle window
on the left side shows the Main View of a multimedia element.

• The Temporal Viewdisplays the temporal layout of the multimedia element in detail. Media ele-
ments are represented by bars positioned on a time-line. The length of the bars is equal to the pre-
sentation duration of the media item. The height of the bar shows the presentation speed of the
media item. The position of the bar is given as defined by the specified interval operators. Interval
operators are visualized by lines between the bars. If the specification contains QoS Ranges, the
Temporal View shows always the layout of the presentation which implements the best quality on
attribute level. If the multimedia elements contain selection groups, the Temporal View shows al-
ways the presentation alternatives which are currently active in the Main View. In Figure 8 the mid-
dle window on the right side shows the Temporal View of the multimedia element on the left side.

5
.

D
e

sig
n

 o
f th

e
 T

ie
m

p
o

-E
d

ito
r

1
0

F
igure 7: T

iem
po Inheritance T

ree

TSObject

Relation

MultimediaViewer

IntViewer

AudioViewer

VideoViewer

TextViewer
Window Frame

Button Slider

TempRel

Reaction

Interval

Action

SimpleActionCompositeAction

Sequentiel Parallel

before cobegin
endin

startin
cross overlaps

beforeendof

coend

while

delayed

start

continue pause

jump

setSpeed

stop

SelectionGroupPresAlternativeCompositeAttribute

IntInterval ValInterval

Projection AlignPolicy

AlignLength

ForceEnd
LoopDataHoldData

Media

Viewer

Text

LongTextShortText

Audio

Video

Picture

SpatViewer

Document
PictureViewer

5. Design of the Tiempo-Editor 11

• TheSpatial Viewdisplays the spatial layout of a multimedia element. Media items are displayed as
the are displayed during the presentation with regard to content, size, overlapping and position. As
different media items played after each other in a presentation can share the same place, the author
can select the displayed instant in the Temporal View. In Figure 8 the window in the lower right cor-
ner shows the Spatial View of the sample multimedia element.

With the help of these views temporal and spatial aspects of a specification can be visualized adequately.

Figure 8: Editor GUI

5. Design of the Tiempo-Editor 12

5.2 Visualization of Document Elements

To support an easy specification of documents, it is not only necessary to visualize the created docu-
ments. It is also necessary to visualize the elements and element types documents are composed of.

Element types of the Tiempo language are visualized in so called type selection panels (TSP) by icons.
Each set of element types with similar semantics (e.g. multimedia viewer element types, relation types
etc.) is presented in a separate TSP. In Figure 8 the window in the right upper corner shows the TSP of
single viewer element types.

Media element types representing media items such as video-clips or music pieces do not contain the
data itself. They only contain references to the data. To permit a simple usage of such media items, the
editor allows to visualize NFS and Web-server directories by so called File Selection Panels (FSP). A
FSP displays the files in the directory according to the type of media they contain by different icons. The
editor is capable to automatically recognize and read the attributes of files with JPEG pictures, CellB-
and MJPEG videos, SUN audiofiles and HTML-documents. The attribute values are automatically in-
serted in the media object instances shown in a FSP. In Figure 8 the window in the lower left corner
shows a FSP.

Further on, the editor has a clipboard which shows the currently loaded documents as icons. The clip-
board shows also specified elements which are currently not part of a document. As can be seen in
Figure 8, the clipboard is integrated in the main window of the editor.

5.3 Object-oriented Interaction Mechanisms

The editor integrates object-oriented interaction schemes. Graphical elements such as icons, lines etc.
associated with elements have a context menu. Dependent on the element type, the context menus allow
operations such as deleting, setting attribute values etc.

When specifying documents, elements are generated by moving the associated type icons with
drag&drop into the Main View of the element the new element shall be placed in. When dropping the
icon, the new element type instance is generated and the attributes are initialized with default-values. If
new instances of interval operators or reaction relations are generated, it is then necessary to create the
links to appropriate elements. To generate a new document, a new document instance has to be created
by drag&drop in the clipboard. Then its Main View can be opened and other elements can be inserted.
To assign a media element to a single viewer element, a media element from a FSP can be dropped onto
the viewer element.

In this way, a sketch of a document can be composed quite fast in the Main View. Details can then be
specified with the help of context menus or the Temporal and Spatial View. In the Temporal View the
presentation speed can be manipulated by squeezing or stretching the bar of an object in vertical dimen-
sion. The presentation duration can be manipulated by squeezing or stretching the bar in horizontal di-
mension. It is also possible to manipulate the position of the bar or the length of lines belonging to in-
terval operators. QoS Range values have to be manipulated textually. In the Spatial View the author can
position media items with the mouse. He can manipulate the overlapping and the size.

The editor supports cut, copy and paste operations. During the operation the cutted or copied elements
are stored in the clipboard.

The usage of drag&drop techniques and the strong object orientation has the advantage that the author
has to know and remember only a few interaction mechanisms.

6. Adaptive Scheduling Concept 13

5.4 Support by Consistency Checking

The editor supports two specification modes. In the first mode a consistency checking is performed after
each action of the author. This is done by application of the described consistency checking algorithm
whenever the author inserts or removes an element from a document or when she manipulates a temporal
attribute. If the action causes the inconsistency of the specification, the author gets an appropriate mes-
sage. Further, not specified attribute values are set according to the information in distance graphs. The
second mode performs no automatic consistency checking. This mode is well suited if bigger modifica-
tions in the document are made. The author can switch arbitrarily between the two modes.

6. Adaptive Scheduling Concept

To render a multimedia document, a presentation schedule, which guides the presentation, has to be gen-
erated according to the document specification. If documents are interactive, presentation schedules have
to be modified appropriately when interactions occur. In our approach presentation schedules are also
adapted dynamically to changing resource situations. At each adaptation of the presentation schedule, it
is determined which alternatives of selection groups and QoS ranges can be implemented with the avail-
able resources.

To start the presentation of a discrete media object, its whole content has to be preloaded. As we assume
that continuous media objects are transferred as a stream from the server to the terminal during their pre-
sentation, it is only necessary to preload the portion of the content, which is needed to bridge the delay
occurring when the stream transfer is started. Since Tiempo documents are interactive, it is not possible
to preload all media objects before the document presentation is started. Hence, our scheduling concept
considers for each media object a separatepreloading phase and apresentation phase.

Because of the preloading it is not possible to simply adopt an existing adaptive stream synchronization
approach such as [8], which adjusts the playout rate to the changing resource situations. To determine
instants the preloading is started at, we have to make assumptions about the resource situation in the fu-
ture. Further, we have to know how much resources will be needed to preload and present objects.

7. Resource Information

To determine an optimal schedule our scheduling algorithm needs information about the amount of re-
sources needed by the presentation and the amount of resources available while the presentation is run-
ning.

7.1 Resource Requirements of the Presentation

In the preloading phase media objects consume bandwidth and CPU cycles as well as an increasing
amount of buffer needed to store the transferred data on the terminal. For our algorithm we assume that
a function Vi(vi) is given which describes the amount of data that has to be transferred to start the playout
of media object i with speed vi. For discrete media objects, Vi is a constant equal to the size of the media
objects content.

For continuous media objects, Vi depends on the used stream synchronization algorithm to compensate
jitter and skew of media streams. In our system we apply a simple stream synchronization mechanisms
that is based on globally synchronized clocks. Let us assume that we have n streams which should be
synchronized at the sink (terminal) and that the maximum communication delay dmax,i to each server i

7. Resource Information 14

is known, with dmax = maxi{dmax,i}. A synchronized playout of the n streams is guaranteed, if the fol-
lowing is given. If a data-unit ui has to be played out at the instant TP(ui) at the terminal, it has to be
sended at TS(ui) = TP(ui) - dmax,i - Qd. Here Qd (Qd ≥ 0) is a QoS parameter; how bigger it is the less
delayed play-outs will occur, if the delay value is incorrect. Hence, to compensate the start delay of a
stream we have to preload Vi(vi) := 2 (dmax,i + Qd) ri vi Ui data. Here ri represents the rate of the stream
i which has to be multiplied by the presentation speed of the associated media object. Ui is the average
size of data-units of the stream. The maximum communication delay to a server can be gained by mon-
itoring of the transit delays of data-units of a stream. E.g. when using RTP [9] to communicate media
streams, timestamps and associated real time values of sender reports can be used to determine the oc-
curring delay between server and terminal. To get an impression about the delay values before a stream
is started, the ‘ping’ program, available on nearly all platforms, might be used.

We further assume that a function C(b) is given, which describes how much CPU load is produced to
receive b bits per second. The function C(b) is determined by monitoring the load produced to transfer
a certain amount of data from the network-adapter in the memory. Such a loading may be performed by
a thread that logs how much data D is transferred per second. By monitoring the CPU load CD produced
by the thread, C(b) is given as C(b) = CD b / D. Measurements showed that this formula is correct as long
as the CPU is not overloaded.

In the presentation phase we neglect the CPU load produced to display a discrete media object since we
assume this CPU load to be low. A continuous media object needs CPU resources continuously during
its presentation. To determine the CPU load Cu,i produced to playout one data-unit u of a stream i on a
particular system the following technique can be applied. We select a significant subset of each contin-
uous media object. Then we simulate a playout of the data with a rate rs,i specified in the document for
the media object and monitor the CPU load Cs,i produced. On the base of this load we compute Cu,i =
Cs,i / rs,i. Measurements showed that this formula is valid as long as the CPU is not overloaded and that
the variance between computed and real values of Cu,i is less than 2%. The function Ci(vi) describing
how much CPU load is produced to playout a media object with speed vi is then given as Ci(vi) := Cu,i
ri vi .

To be able to redisplay a discrete media object, it has to be buffered during its presentation. If a contin-
uous media object is transferred as a stream during its presentation, buffer is needed to compensate jitter.
We assume that a function Pi(vi) is given describing how much buffer is consumed to playout a media
object with speed vi. For discrete media objects Pi is equal to Vi multiplied by the compression factor.
For continuous media objects Pi depends on the average size of a data unit Ui and the applied stream
synchronization mechanism. The buffer needed to compensate the jitter ji of the stream has the size Pi(vi)
= (ji + Qd) ri vi Ui. Jitter is defined as dmax - dmin . Hence, to get an impression about the possible jitter
of a stream before it is started, we can use the dmin and dmaxdelivered by the ‘ping’ program. During the
presentation the jitter of each stream is monitored.

In the presentation phase a discrete media object needs no bandwidth. Whereas if a continuous media
object is transferred in real time, bandwidth is needed. The bandwidth Bi(vi) needed to present a contin-
ues media object is given as Bi(vi) := ri vi Ui.

We further need the information which resources, such as an audio device, are needed by media objects
exclusively.

7.2 Prediction of Resources Situations

Our approach is to predict the resource situation in the future based on information about the resource
situation in the past.

To determine the amount of currently available buffer, the amount of free physical memory Pf on the ter-
minal is monitored. From the computation of Bi we known how much buffer is needed for each media

8. Preparations for the Adaptive Scheduling 15

object. The amount of buffer currently available for the presentation is computed as Pa= Pf + Σi Bi - QP.
QP (QP ≥ 0) is a quality parameter that describes how much buffer is not assigned to the presentation.

To gain the amount of currently free CPU cycles, we observe the idle time Cf of the CPU. Further we
observe the amount of CPU load Cp,i produced by each thread dealing with the playout of continuous
media items i. The amount of free CPU resources is then computed as Ca = Cf + Σi Cp,i - QC. QC (QC ≥
0) is a quality parameter. According to the value of the parameter some CPU resources are not assigned
to the presentation.

To gain information about the currently available bandwidth Ba,sto a server s we observe how much data
is transferred from a server to the terminal in each second. This value is equal to the really available band-
width Br,s. According to the schedule we know how much data should be transferred per instant from
this server Bv,s. If Br,s= Bv,swe set Ba,s= Bv,s+ d . d is a parameter describing the amount of bandwidth
that is expected to be additionally available. If Br,s < Bv,s we set Ba,s= Br,s . To get an impression about
the bandwidth to a server before a stream transfer or preloading, some test-packages might be trans-
ferred.

When monitoring the available resources we apply a filter of the following form

ra(t) = ra(t-1) g + ra(t) (1-g) ; 0≤ g ≤ 1

to avoid oscillations and to get smoother modifications. Increasing g increases the influence of the new
value while decreasing g results in a higher influence of the previous values.

On the base of the current values the available resources in the future are predicted. For each resource r
we generate a hyperbolic function

Rr(t) := (sign(ra - rm) (ra - rm)2) / (t - tc + | ra - rm |) + rm .

In this function ra represents the current available amount of the resource. tc is the current instant and rm
is the average amount of resource r available in the past of the presentation. In functions constructed in
this way the vertex of the hyperbolic function lies at the current instant tc and behind tc the function ap-
proaches towards rm (Figure 9). The idea behind the extrapolation is the following. We know that at the
moment ra resources are available and we know that in average rm resources were available. Hence, we
assume that the amount of available resources will approach towards this value in the future.

8. Preparations for the Adaptive Scheduling

To generateMathematical Programmes, which are used to schedule a document, we represent a specifi-
cation as directed acyclic graphs calledscheduling graphs.

Figure 9: Prediction of available resources

rm

ra

tc

Rr(t)

time

available
amount

8. Preparations for the Adaptive Scheduling 16

8.1 Scheduling Graphs

It is not possible to efficiently solve Mathematical Programmes integrating different overlappings of me-
dia objects. Hence, we generate for each possible overlapping of media objects a separate scheduling
graph.

Firstly, we generate a provisional scheduling graph for each possible combination of presentation alter-
natives of selection groups. A provisional scheduling graph is generated in the same way as an event-
graph. For each provisional scheduling graph the possible event instants associated with the nodes are
computed applying the algorithm described in Section 3. With the help of the computed event ranges it
is now possible to generate scheduling graphs as follows.

We insert in a provisional scheduling graph between two nodes a and b associated with a presentation
interval a directed edge from a to b and from b to a, if the event ranges of the nodes have common instants
and there is no edge between a and b. Both edges are labeled with a value range [0, infinite]. Let us as-
sume that in the example in Figure 4 the animation and the video may overlap or not overlap according
to the specified QoS ranges. Then we would introduce such edges between the node representing the end
of the presentation interval associated with the video and the node representing the start of the presenta-
tion interval of the animation. After that we generate for each possible combination of additional edges
a separate scheduling graph. Such a scheduling graph implies totally ordered presentation interval nodes.
In other words, we have a particular overlapping of media objects.

Each such scheduling graph consists of a fixed set of segments. A segment is characterized by a fix num-
ber of presented media objects. When a scheduling graph was generated, we check whether media ob-
jects which need the same resources exclusively are overlapping in a segment. If this is the case, the
scheduling graph causes a resource violation and has to be omitted.

After all scheduling graphs have been generated from the provisional scheduling graphs, the scheduling
graphs are arranged in a sorted list according to the object-level presentation quality they imply. The pre-
sentation quality of a scheduling graph is given by the sum of priorities of the contained presentation
alternatives. All scheduling graphs derived from one provisional scheduling graph have the same object-
level quality.

8.2 Generation of Mathematical Programmes

In a next step we generate for each scheduling graph in the list a Mathematical Programme. A Mathe-
matical Programme is an optimization problem subject to constraints inℜn of the form

Maximize f(x)
subject to
gi(x) = 0; i = 1, . . . ,m
x ∈ S⊂ ℜn

The vectorx ∈ ℜn has componentsx1,,xn which are the variables of the problem. The functionf is
called theobjective functionand the set of conditionsgi(x) = 0 (i = 1, . . . ,m) andx ∈ S is the set of the
constraintsof the problem. The optimal solution of such a problem is a vectorx* that fulfills the con-
straints and maximizes the objective function. A Mathematical Programme of this form is constructed
for each scheduling graph.

The scheduling graph in Figure 10 is used to illustrate the generation of a Mathematical Programme. It
shows the scheduling graph of a composite media object including two continuous media objects. As in
Figure 4, the grey rectangles show how edges are affected by the different speeds in the TSs.

8. Preparations for the Adaptive Scheduling 17

Constraints representing the document specification

We introduce for each node in a scheduling graph a variable x, x≥ 0 representing the instant the event
associated with the node occurs (If nodes are related by edges with length zero only one common vari-
able is introduced). To be able to consider the preloading of the objects starting in the first segment, we
assume that there is a further segment before the first segment given by the scheduling graph. A variable
xo represents the start of this segment. For the speed of a TS i specified by a QoS range we introduce for
each segment s a variable vi,s, vi,s ≥ 0. For flexible edges i in the graph, we introduce variables li, li ≥ 0
representing the length of the edges. Figure 10 shows which variables have to be introduced in the sce-
nario.

With the help of these variables a scheduling graph can be described representing each edge by a con-
straint. The resulting length of an edge depends on the speed in the segments the edge crosses. An edge
h that crosses segment i to segment j can be represented by a constraint of the form

(xi+1 - xi) ve,h,i + (xi+2 - xi+1) ve,h,i+1 + . . . + (xj - xj-1) ve,h,j = lh
In this equation xi and xj are placeholder for the variables representing the start-instant respectively the
end-instant of the edge. xi+1 to xj-1 are placeholders for variables representing the border of the segments
i+1 to j-1. ve,h,kis a placeholder for the term va,k vb,k, which is the product of the speed of all TSs in
segment k which contain the edge directly or indirectly. lh is the variable that represents the length of the
edge. If the edge has a constant length the right side of the equation consists of this constant.

Figure 10: Scheduling graph example

00

00

l3

00

l2

80

60

l4

v1,2 v1,3

v2,1 v2,2

v3,2 v3,3

segment 3

v1,1

segment 1 seg 2

0

0

l1

l6

l5

time

segment 0

x0 x1

x2

x3

x4

Presentation interval node Temporal space node

8. Preparations for the Adaptive Scheduling 18

Constraints representing resource limits

To guarantee that not more resources are required by the computed schedule than available, resource
constraints are introduced. The requirements of CPU cycles, bandwidth and buffer to present the media
objects o in a segment s are given as follows:

Cs = Σ o presented in s Co(ve,o,s)

Bs = Σ o presented in s Bo(ve,o,s)

Ps = Σ o presented in s Po(ve,o,s)

To describe the preloading, the following constraints are introduced for each segment s where the pre-
sentation of some objects starts:

Σ j = 0,s-1 bj (xj+1 - xj) + wL,s - mL,s = Σ o starts in s Vo(ve,o,s); wL,s ≥ 0; mL,s ≥ 0; bj ≥ 0;

This constraint expresses that the transfer data volume in the segments before segment s has to be greater
than the preload volume of the objects started at xs. The variable bj represents the bandwidth used in seg-
ment j to preload objects. To express the buffer requirements for preloading we have to introduce for all
segments s the following equations:

Ls = Ls-1 + bs-1 (xs - xs-1) - Σ o starts in s-1 Vo(ve,o,s-1); L0 = 0;

These equations express that the amount of needed buffer Ls at the end of a segment s is equal to the
amount of buffer Ls-1at the start of the segment increased by the data volume transferred in the segment
and decreased by the preload volume of objects whose presentation is started in the segment.

To restrict the CPU usage, we introduce for each segment s the constraint

Cs + C(bs) + wC,s - mC,s = min{RC(xs), RC(xs+1)} ; wC,s≥ 0, mC,s≥ 0;

For the bandwidth resource we introduce for each segment s a constraint:

Bs + bs + wB,s - mB,s = min{RB(xs), RB(xs+1)}; w B,s ≥ 0, mB,s ≥ 0;

For the buffer resource we introduce for each segment a constraint:

Ps + Ls+1 + wP,s - mP,s = min{RP(xs), Rp(xs+1)}; w P,s≥ 0, mP,s≥ 0;

In the equations Rr(xs) represents the predicted available amount of resource r at the segment border xs.
As it is not possible to generate constraints that reflect the detailed course of such a function, we consider
the minimum value of a function Rr(xs) in each segment.

The variables wr,s are slack variables which describe how many units of resource r are not used in the
segment. The variables mr,sare slack variables which describe how many units of resource r are missing
in a segment. By constructing resource constraints in this way, it is also possible to compute a solution
if there are not enough resources available.

Representation of QoS ranges

A QoS range of the form [π1:ρ1, π2:ρ2, . . . πk:ρk] restricting a variable l or v is represented as follows:

l = Σ i=1,k πi li; li ≥ 0;

Σ i=1,k li = 1

Σ i = 1,k; i-1 mod 2 = 0 [(li + li+1) (Σj = 1,k; j ≠ i; j ≠ i+1 lj)] = 0

Σ i = 2,k; i mod 2 = 0 [(li + li+1) (Σ j = 1,k; j≠ i; j ≠ i+1 lj)] = 0

W(l) = Σ i=1,k ρi li
A QoS range with k anchor points is represented by three equations and k variables. The second and third
equations allow only that two adjacent variables li are non-zero. The first equation guarantees that the
value of l, which is a linear combination of the variables li, stays within the bounds given by the QoS

9. Adaptive Scheduling Algorithm 19

range. The function W(l) assigns to each value l a priority value as defined by the QoS range. The func-
tions W(l) are needed to construct the objective function.

Objective function

The objective function f of the Mathematical Programme is constructed as follows:

f = Σ W(l) + Σ W(v) - M Σ mr,j

In f all functions W are added. The slack variables containing amounts of resources that are missing are
inserted multiplied by a big negative numberM. Thus, in the optimal solution (where the objective func-
tion has a maximum) these variables have minimum values and the variables representing QoS range val-
ues have values with high priorities.

Mathematical Programmes, generated as described above, contain terms where two or more different
variables are multiplied. Functions containing such terms are not convex. This means, they may have
more than one extremum. If such functions are contained in Mathematical Programmes, it is necessary
to use rather inefficient global optimization algorithms to solve them. Whereas, there exist very efficient
optimization algorithms to solve Mathematical Programmes consisting of convex functions [7]. To be
able to use efficient optimization algorithms, the non-linear equations of our Mathematical Programmes
can be made convex as follows.

We replace each term xi xj . . . xl with more than two variables by a term xi k1 and add the equation

xj . . . xl - k1 = 0

to the constraints. This is done until all equations contain terms where less than 3 variables are multi-
plied. Then, each of the remaining terms xi xj is replaced by a term ui - uj (ui,uj ≥ 0) and the following
equations are added to the constraints:

yi
2 - ui = 0; yj

2 - uj = 0; xi + xj - 2yi = 0; xi - xj - 2yj = 0;

By inserting these equations in each other, it can be easily proven that they represent the term xi xj. After
these transformations have been done, our Mathematical Programmes consist of linear equations and
equations of the form yi

2 - ui = 0. As linear equations are convex and terms of the form yi
2 - ui = 0 are

convex, we have now a convex optimization problem.

9. Adaptive Scheduling Algorithm

Whenever one of the functions Ri changes significantly, we compute an adaptation of the presentation
schedule. An adaptation can be implemented not before ts = tc + ta + 2 dmax, because it takes 2 dmaxtill
all server can react to an adaptation and the computation of the adaptation takes also some time ta. Hence,
each adaptation is computed not for tc but for ts. Values ta are estimated based on earlier adaptations.

To find an adaptation, we start with the first Mathematical Programme in the list. Let us assume that the
current adaptation takes place in segment s. To represent the course of the already presented part of the
specification, we omit resource constraints and constraints describing edges which are related to the pre-
sentation before s. In the remaining constraints we assign to the variable x representing the start of s the
time ts. Further, we introduce in the constraints describing the transfer volume requirements to preload
objects a constant which describes the amount of already transferred data. Then we compute the optimal
solution of the Mathematical Programme. If the value of the objective function is positive, we have found
a solution which do not cause resource violations. If the objective function is negative, there is a resource
violation. In this case we have to compute the optimal solution of the next Mathematical Programme in
the list. If all Mathematical Programmes cause resource violations, we can implement the solution with

10. Measurements 20

the biggest objective function value or we can abort the presentation. To compute the optimal solution
of a Mathematical Programme we apply the Generalized Reduced Gradient Method [7].

From the optimal solution of the ‘best’ Mathematical Programme start- and end-instants as well as speed
values can immediately be derived for the presentation schedule. Whereas instants to start the prepara-
tion of media objects have to be determined by moving backwards through the schedule starting with the
media object that will be presented last. For each media object we compute a preparation instant so that
the amount of resources not used to present media objects between the preparation instant and the start
instant of the object is sufficient to preload the appropriate part of the object. When the presentation
schedule is updated, the playout components and server are adjusted according to the new schedule. In
the RTP protocol adaptation decisions are made by the servers. In our approach adaptation decisions are
made by the scheduler on the terminal. Hence, we apply the RTSP [10] protocol not only to initialize,
start and stop media streams from the server to the client, but also to inform server about modified send-
ing characteristics with the help of the Setup, Set_Parameter functionality.

10. Measurements

Table 1 shows the time needed to compute adaptations for some document specifications. The first col-
umn depicts the number of media objects in the specification. The second column shows the number of
temporal relations between the media objects. The last column contains the average time that was needed
to compute the schedule for a given resource situation. The specifications contained as much flexibility
as possible, this means all speeds, delays and durations were described by QoS ranges. The measure-
ments were performed on a SUN Ultra 2.

It can be seen that the scheduling times are acceptable. Especially if we consider that in general not all
attributes in a document will be specified by QoS ranges.

The following figures show the effect of flexible specifications on the presentation quality. In all figures
the left side shows the presentation with no flexibility and the right side with flexibility. The diagrams
show the reciprocal of the playout rate (1 / ri vi) and the correlated playout delay for each data-unit of
the presentation. Playout delays below 20 ms are omitted in the diagrams. For all measurements Qd was
set to 0.1, QC was set to 25, QP was set to 0 and d was set to 50.

Figure 11 shows the presentation of two videos. For video A we had specified a flexible playout speed
between 30 frames/sec and 20 frames/sec. For the figure without adaptation we specified a playout speed
of 30 frames/sec. Approximately at the half of the presentation a concurrent application was started and
aborted after 30 sec. The diagram without adaptation shows that the playout delays are very high while
the application is running. In the presentation with adaptation the rate of video A is reduced while the
application is running. This results in much less delayed playout of frames.

Media
Objects

Temporal
Relations

Time (sec)

2 2 0.04

4 5 0.1

9 16 0.6

16 28 1.7

Table 1: Scheduling Times

10. Measurements 21

Figure 12 shows the playout with flexible speed and a selection group. Video A had a flexible speed be-
tween 30 frames/sec and 20 frames/sec and was contained in a selection group that allowed to stop play-
out of video A. After 20 sec we started a concurrent application running for 20 sec. The left diagram
without adaptation shows that while the application is running the playout delay of both videos increases.
While in the diagram with adaptation the playout of video A is stopped while the application is running.
Afterwards its playout is continued.

Figure 13 shows the playout of a presentation containing a selection group that allowed to playout two
videos simultaneously or one after the other. If the videos are played simultaneously video B should be
aborted when video A ends. If they are played one after the other, the complete videos should be played
out. The diagram on the left shows what happens if the second alternative does not exist. There is an in-
creasing playout delay for both videos. The right diagram shows what happens with selection group. The
videos are played after each other and the playout delays are much lower.

Figure 11: Playout with flexible speed

Figure 12: Playout with flexible speed and selection group

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 10 20 30 40 50 60 70 80

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

11. Related Work 22

11. Related Work

Various temporal models and synchronization concepts have been developed for multimedia presenta-
tions, but only a few models provide for adaptive documents.

Firefly [1] is event-based, which means that the start and end of media objects are modeled as instants.
The delay between related events is described by a minimum, optimal and maximum value. Additionally,
costs are defined for shrinking the extent of an object to minimum or extending it to maximum. To au-
tomatically compute the optimal schedule out of these values, a linear programming algorithm has been
proposed. However, the scheduling algorithm does not consider the resource situation when the presen-
tation schedule is created.

In CHIMP [2] temporal aspects of media objects are modeled by flexible constraints, which allow to
specify ranges for the temporal values. It is possible to specify alternative constraints and to assign pri-
orities. The concept to adapt presentations to different resource situations is equivalent to the concept we
propose. Available resources are also predicted and distributed between simultaneous presented media
objects. Compared with CHIMP, our model allows a finer granularity with regard to the specification of
priorities. Further, CHIMP does not integrate abstractions such as selection groups and it does not pro-
vide for variable presentation speeds.

Currently the W3C develops the Synchronized Multimedia Integration Language (SMIL) [5]. SMIL al-
lows integrating a set of independent multimedia objects into a synchronized presentation. Using SMIL,
an author can describe the temporal behavior of the presentation, describe the layout of the presentation
on the screen as well as associate hyperlinks with media objects. SMIL offers a construct called ‘switch’
that allows to specify alternative media objects respectively presentations. The order of the alternatives
in a switch construct defines their priorities. A SMIL interpreter selects the first alternative in the switch-
construct that fulfills so-called test-attributes. These test-attributes allow the author to define require-
ments that have to be fulfilled to present the associated alternative. With regard to QoS aspects there ex-
ists only the test-attribute ‘system-bitrate’ defining how much bandwidth is needed to present the
alternative. In contrast to our approach, SMIL documents are not continuously adapted to changing re-
source situations. Adaptations in form of selections of switch-statement alternatives are only performed
at the start of these statements. SMIL does not provide attribute-level adaptivity.

Figure 13: Playout with selection group

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180

de
la

y,
ra

te
 [s

ec
]

time [sec]

’DelayA’
’DelayB’
’RateA’
’RateB’

12. Conclusion 23

12. Conclusion

To perform multimedia presentations under different resource situations, adaptable document models are
required. The Tiempo model offers selection groups to represent alternative presentation parts consisting
of media objects and interval operators. With QoS ranges alternative presentation behavior of media ob-
jects or interval operators can be defined. Assigned priorities define which alternatives of selection
groups or QoS ranges should be preferred. Hence, Tiempo conform multimedia documents can integrate
a high degree of flexibility and resource shortages need not result in a reduced presentation quality.

The developed consistency checking algorithm permits to detect errors in flexible specifications. It is ap-
plied in the Tiempo document editor which allows a mainly graphical composition of multimedia docu-
ments. The editor visualizes documents in different views and integrates object-oriented interaction
concepts.

The adaptive scheduling algorithm is designed for environments with best-effort assignment of resourc-
es. It allows to adapt flexible presentations to changing resource situations. Whenever an adaptation is
necessary, the algorithm selects presentation alternatives such that the available resources are distributed
optimal between simultaneously presented media objects. Measurements showed that the algorithm can
help to improve the presentation quality.

13. References

[1] M. Cecelia Buchanan and Polle T. Zellweger. “Scheduling Multimedia Documents Using
Temporal Constraints”, in Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video, San Diego, USA, pp. 223–235, 1992.

[2] K. Selcuk Candan, B. Prabhakaran and V.S. Subrahmania. “CHIMP: A Framework for
Supporting Distributed Multimedia Document Authoring and Presentation”, in Proc. ACM Intl.
Conference on Multimedia, Boston, USA, pp. 329-339, 1996.

[3] Dechter, Meiri, Pearl. Temporal Constraint Networks. In Proc.First International Conference on
Principles of Knowledge Representation and Reasoning, 5 1989, S. 83-93.

[4] HyTime. “Information technology - Hypermedia/Time-based Structuring Language (HyTime)”.
ISO/IEC 10744, 8 1992.

[5] Philipp Hoschka (Ed.). “Synchronized Multimedia Integration Language (SMIL) 1.0
Specification”, W3C Proposed Recommendation, April 1998.

[6] MHEG. “ Information Technology - Coding of Multimedia and Hypermedia Information”, ISO/
IEC 13522, 1994.

[7] M. Minoux. “Mathematical Programming - Theory and Algorithms”, John Wiley and Sons. 1986.
[8] Kurt Rothermel, Tobias Helbig. “An Adaptive Protocol for Synchronizing Media Streams”, In

ACM/Springer Multimedia Systems, Vol. 5 No. 5, September 1997, pp. 324-336
[9] Henning Schulzrinne. “Internet Services: from Electronic Mail to Real-Time Multimedia”. In

Tagungsband GI/ITG Kommunikation in Verteilten Systemen, FRG Chemnitz, pp. 21-34, 2 1995.
[10] H. Schulzrinne, A. Rao, R. Lanphier. “Real Time Streaming Protocol (RTSP)”. Internet-Draft,

MMusic WG, 2 1998.
[11] Robert Sedgewick. “Algorithms”, Second Edition, Addison-Wesley, 1999, S. 476-478.
[12] Thomas Wahl and Kurt Rothermel. “Representing Time in Multimedia Systems,” in Proc. IEEE

Intl. Conference on Multimedia Computing and Systems, Boston, USA, pp. 538–543, 1994.
[13] Thomas Wahl, Stefan Wirag and Kurt Rothermel. “TIEMPO: Temporal Modeling and Authoring

of Interactive Multimedia”, In Proc. IEEE Intl. Conference on Multimedia Computing and
Systems, Washington DC, 5 1995, pp. 274-277.

13. References 24

[14] Stefan Wirag. “Adaptive Scheduling of Multimedia Documents”. Fakultätsbericht 1997/12,
Universität Stuttgart, 7 1997.

[15] Stefan Wirag. “Modeling of Adaptable Multimedia Documents”, In Proc. Interactive Distributed
Multimedia Systems and Telecommunication Services; International Workshop, IDMS’97,
Darmstadt, Germany, September 1997, pp. 420-429.

[16] Stefan Wirag, Kurt Rothermel. “Adaptive Multimedia Documents”. Journal of Computing and
Information Technology (CIT). Vol. 6, No. 3, September 1998.

