
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2013

Developing a Mobile-Commerce Financial Transaction Processing Developing a Mobile-Commerce Financial Transaction Processing

Model Model

Edward Nathaniel Thomas Charles Williams Jr.
Columbus State University

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Williams, Edward Nathaniel Thomas Charles Jr., "Developing a Mobile-Commerce Financial Transaction
Processing Model" (2013). Theses and Dissertations. 36.
https://csuepress.columbusstate.edu/theses_dissertations/36

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/36?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages

DEVELOPING A MOBILE-COMMERCE
FINANCIAL TRANSACTION PROCESSING MODEL

ard Nathaniel Thomas Charles Williams,.-.Jr.

Columbus State University

TSYS School of Computer Science

The Graduate Program in Applied Computer Science

Developing a Mobile-Commerce
Financial Transaction Processing Model

A Thesis in

Applied Computer Science

by

Edward Nathaniel Thomas Charles Williams, Jr.

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2013

©2013 by Edward Nathaniel Thomas Charles Williams, Jr.

IWWMWWWHWiWIWH «

fffffflfflffl

I have submitted this thesis in partial fulfillment of the requirements for the degree of
Master of Science.

Date idward
Williams, Jr

omas Charlie

We approve the thesis of Edward Nathaniel Thomas Charles Williams, Jr. as
presented here.

ttlMkz
Date

t> />//5

Date

ftT j*H \>o\3
Date

C 111 IS
Date

$1 Z/ Z&/3
Date

Christopher Whitehead, Associate
Professor of Computer Science,
Thesis Advisor

Shamim Khan, Professor of
Computer Science

Jianhua Yang, Associate Professor
of Computer Science

fc&t
Benjapin Blair, Butler Chair
in Business and Finance

Alan Tidwell, Assistant Professor
of Accounting and Finance

m

11

TABLE OF CONTENTS

Abstract viii

List of Figures v

List of Tables vi

Acknowledgments vii

Chapter 1: Introduction 1

1.1 Electronic Commerce , 1

1.1.1 Definition.., 1

1.1.2 Background 1

1.2 Mobile Commerce 3

1.2.1 Definition 3

1.2.2 Background , , 3

Chapter 2: M-Commerce Problem 4

2.1 Standard Definition 4

2.1.1 Specification 4

2.1.2 Security 4

2.1.2.1 PCI Standard 5

Chapter 3: Solution 6

3.1 Mobile Commerce Open Standard 6

3.1.1 Mobile Commerce Specification Definition 7

3.1.1.1 System Architecture 8

3.1.1.2 Network Architecture 10

iii

3.1.1.3 Database Specification 10

3.1.1.4 Application Specification 11

3.1.1.5 Mobile Client Specification 14

3.2 Implementation 15

3.2.1 System Implementation 15

3.2.2 Network Implementation 16

3.2.3 Database Implementation 18

3.2.4 Application Implementation 20

3.2.5 Mobile Client Implementation 23

Chapter 4: M-Commerce Open Standard Evaluation 26

4.1 System Tests 26

4.1.1 Load Testing 26

4.1.1.1 SoapUI 27

4.1.2 Denial of Service Testing 27

4.1.2.1 slowhttptest 27

4.2 Test Results 29

4.2.1 SoapUI Load Testing Results 29

4.2.2 Denial of Service Testing Results 31

Chapter 5: Conclusions and Directions for Further Work 32

5.1 Conclusions 32

5.2 Future Work 32

5.2.1 Improved Transaction Processor 32

5.2.2 Adding Encryption 32

iv

5.2.3 PCI Compliance 33

5.2.4 Additional Samples 33

Bibliography 34

SBjgBanaSBmBL

V

LIST OF FIGURES

Figure 3.1: 3-Tier Architecture 9

Figure 3.2: Database Relational Diagram 10

Figure 3.3: Mobile Commerce Implementation UML Diagram 12

Figure 3.4: Amazon EC2 Server Instances 16

Figure 3.5: Amazon Load Balancer 17

Figure 3.6: Amazon EC2 Firewall Rules , 18

Figure 3.7: Database ERD 19

Figure 3.8: DB Instance Description 20

Figure 3.9: Amazon RDS Database Console 20

Figure 3.10: Method Heartbeat Implementation 21

Figure 3.11: Method SaleTransaction Implementation 21

Figure 3.12 Method VoidTransaction Implementation 21

Figure 3.13 Method RefundTransaction Implementation 22

Figure 3.14: Method RegisterDevice Implementation 22

Figure 3.15: Method RegisterUser Implementation 23

Figure 3.16: Method RegisterToken Implementation 23

Figure 3.17: Eclipse IDE, Android Development Environment 24

Figure 3.18: Mobile Client Screenshots 24

Figure 4.1: SoapUI GUI Interface 27

Figure 4.2: Slowhttptest Interface 28

Figure 4.3: SLOW Body DoS Test, 5000 Connections 31

Figure 4.4: SLOW RIS DoS Test, 5000 Connections 32

VI

LIST OF TABLES

Table 3.1: Transaction Table Definition 10

Table 3.2: Device Table Definition 11

Table 3.3: User Table Definition 11

Table 3.4: Token Table Definition 11

Table 4.1: SoapUI Test Results 29

VI1

Acknowledgements

The author wished to thank several people. I would like to thank my mom, Dr.

Bonita Williams for her love and support while completing this thesis. I also wish to

thank Dr. Christopher Whitehead for his guidance and assistance while competing this

thesis. Last, but not least, I would like to thank Ramon Perez from First Data for his

assistance in accessing a payment platform for my project.

Vlll

Abstract

The topic for this Master's Thesis is selected in compliance with the guidelines to

complete a Master of Science in Applied Computer Science at Columbus State

University. The problem to be addressed by this thesis is to produce an open standard for

an m-commerce financial transaction processing system based on current e-commerce

standards and mobile technology. This solution was to be specifically designed to build

upon the strengths of a mobile platform using current smartphone and tablet technology.

An open source software stack in combination with a cloud computing solution was

used to create a working example of the specification. Load testing and Denial of

Service attack testing were completed io test the stability and capacity of the

implementation. It was found that the initial implementation of the specification was able

to accommodate a moderate level of concurrent transactions and connected users. It was

also found that the system was brought down with a slow header denial of service attack,

but was able to withstand a slowloris denial of service attack. An Android native

application was built as a sample implementation of a mobile client for the system.

Chapter 1: Introduction

Mobile technology has rapidly evolved over the last 20 years. As a platform, mobile

devices have evolved their functionality, beginning with basic voice communication and

later adding text-based communication. As mobile devices gained additional

capabilities, data and world wide web (WWW) functionality was added. "Not so long

ago, low-speed, small screen mobile devices on cellular networks accessed the Internet

with minimal functionality via the Wireless Application Protocol (WAP). Now, wireless

devices are much more powerful, in some cases as powerful as the PCs of just a few

years ago" (Vaughan-Nichols, 2008). With the addition of these capabilities, electronic

commerce became a user-friendly function available on mobile devices.

1.1 Electronic Commerce (E-Commerce)

1.1.1 Definition

Electronic commerce (E-Commerce) is defined as "any type of business or

commercial transaction that involves the transfer of information across the Internet"

(Maamar, 2003). These transactions can take place between a business and person, a

business and another business, or any combination of people and businesses.

1.1.2 Background

E-commerce has evolved through several major changes. First, businesses started

with the digitization of their data to make it available online. An example of this would

be a text-based representation of what was previously a paper-based catalog utilizing a

service such as CompuServe or Prodigy. Later, businesses decided to reengineer this

process to stay competitive. This change included increasing the ease of access to data

and the consistency of the data presented. An example of this change would be the

movement of data to webpages, where standards such as HTML were used. The third

change that occurred was the offering of online forms to capture users' needs efficiently

and accurately. This involved inviting financial partners to join the shopper-vendor

relationship. At this point, this allowed a user not to just view information, but to

actually make a purchase from within the website. Ensuring security for the payment

process and the exchange of private information became a concern, as now sensitive

financial information was being transmitted and stored.

The next stage in e-commerce was the personalization of services. This involved the

introduction of user profiles, which included preferences and interests. The e-commerce

site would then adapt itself to meet the customer's needs based on the user profile. Joint

business ventures and social contexts have also been introduced into e-commerce

(Maamar, 2003). Good examples of this would be a current website like amazon.com.

Standards such as PCI (Payment Card Industry) were created to ensure a standard

level of security when handling financial transactions electronically and storing the

transactional credentials of the customers in an implemented storage system. Visa and

Mastercard required higher standards of security from the payment card services industry,

which created the need for standards such as PCI. The standard applies to the protection

of credit card data that is processed, transmitted or stored. They have come up with 12

rules that must be complied with. The requirements include encrypting card data across

public networks and using anti-virus software. These standards also include advice on

how to develop software securely (Mathieu, 2006).

1.2 Mobile Commerce (M-Commerce)

1.2.1 Definition

Mobile Commerce (M-Commerce) is defined as the financial transactions for services

or goods between trading parties through a mobile terminal (Weihui, Xiang, Haifeng,

Weidong, & Xuan, 2011). More precisely, a mobile terminal is defined as a smartphone

or tablet with Internet capabilities and software to enable financial transactions. M-

Commerce is considered by some to be the next level of evolution of e-commerce. M-

Commerce is an emerging discipline involving applications, mobile devices, middleware,

and wireless networks. M-Commerce involves using mobile devices such as

smartphones and tablets to complete financial transactions.

1.2.2 Background

While most existing e-commerce applications can be modified to run in a wireless

environment, m-commerce also involves many new applications that are only possible

due to wireless infrastructure (Malloy, Upkar & Snow, 2002). As an integration product

of electronic currency and mobile communication, mobile payment has many advantages.

First, it is more convenient and easier to use than other traditional payment methods.

Second, it has a higher level of compatibility due to the smaller number of providers

(Haifeng , Xuan, Weihui, & Weidong, 2010).

Chapter 2: The Mobile Commerce Problem

2.1 Standard Definition

For years, techies and phone companies have dreamed of turning a cell phone into

a virtual wallet (Crockett, 2005). Although there are several competing systems

available for consumer use today, each having advantages and disadvantages, there are no

standards established for how an m-commerce system should be implemented. The

problem is that all of these systems are proprietary and closed. Another issue in the

solutions available today is that these solutions are locking into individual platforms and

will not work on competing mobile operating systems. An example of this is Google

Wallet. The Google Wallet app is only compatible with a small number of Android

based devices. The Google Wallet app is not available for the iOS, Windows, or

Blackberry mobile platforms.

2.1.1 Specification

A standardized, open specification is needed for m-commerce systems. Current

e-commerce and m-commerce designs need to be investigated, and a standardized model

for how to build an m-commerce transaction processing system needs to be proposed,

tested, and more widely implemented.

2.1.2 Security

Due to the sensitive nature of the data that a mobile commerce connection

processes, a certain level of security must be added to the standard. This security will

include several levels of data transferred across the network and the use of firewalls in

the network to prevent the unauthorized use of that network.

2.1.2.1 PCI

A standard that is in use today across the financial sector is the PCI security

standard. There are several subsections of this standard, including the Data Security

Standard (PCI DSS) and the Payment Application Data Security Standard (PA-DSS).

The standard developed as part of this thesis includes the implementation of the PCI DSS

and PA-DSS standards. If a third party certifies the system as being compliant with both

of these standards, the mobile commerce system should be acceptable for production and

commercial usage.

Chapter 3: Solution

3.1 Mobile Commerce Open Standard

"Open-source software development is a production model that exploits the

distributed intelligence of participants in the Internet community" (Kogut & Metiu,

2001). The currently available solutions are closed-source and proprietary. There are no

mobile commerce platforms available today that are open-source and available on all of

the major mobile platforms. An open-source standard for a mobile commerce system

must be created to resolve this issue.

A mobile-commerce system will require several components to be functional.

The system must be able to handle large amounts of transactions over the Internet, it must

be secure, and it must be reliable. There are technologies that are already in use in

financial and e-commerce systems that can be utilized to build the open source standard.

Tokenization, cloud computing, open source software, and open source operating systems

will be included in the standard.

"Tokenization involves the random generation of proxy numbers to replace actual

credit card numbers at the point of sale to improve data security" (Heun, 2011).

Tokenization technology replaces a primary account number with a surrogate value

called a "token". If a token is properly used, then there would be no need retain the

primary account number in the payment system (Heun, 2011). Tokenization is a method

by which a primary account number (PAN) is associated with a reference number where

a merchant only needs to keep the token and a trusted third party keeps the PAN and

manages the association (Stapleton & Poore , 2011).

"A cloud is a pool of virtualized computer resources" (Pareek, 2001). A cloud can

host a variety of different workloads, such as batch style back-end jobs and user-facing

client applications. Examples of this are a payroll processing system or an e-commerce

website such as amazon.com. Cloud computing allows an application to be deployed and

scaled out quickly through the rapid provisioning of virtual machines or physical

machines; allows for support of redundant, self recovering highly scalable programming

models; and monitors resources in real time to enable reallocation of resources when

needed (Pareek, 2011). Rapid provisioning is the process of deploying a server image

onto a server through software such as VMWare or Amazon's EC2 interface. This

process can be done in minutes, versus the hours or days it can take to complete a

traditional server deployment. The utilization of a cloud computing system will be ideal

for the implementation of the mobile commerce specification, as a mobile commerce

system will require a system that is reliable, can handle large amounts of real-time

transactions, and can reallocate resources dynamically as needed.

"Open source software lets users study, modify, and redistribute the source code"

(Nash, 2009). With access to open source software and operating systems, there is a

robust collection of applications that are required to build a mobile commerce processing

system. Webserver software such as Apache server, application servers including JBoss

and Tomcat, and database solutions like MySQL are components that can be utilized as

an open source implementation of the specification.

3.1.1 Mobile Commerce Specification Definition

The initial definition defined includes the following components:

• System Architecture

unaujiHimii mmmm

8

• Network Architecture

• Server Software

• Database Definition

• Mobile Client Specifications

• Mobile Commerce Application Specification

When all of these components are implemented and combined, a base model of a

mobile commerce system is created. The system architecture describes the overall server,

network, and software requirements. The network architecture describes how the

network is configured for the specification. The database definition is a description of

the tables required for the system functionality. The mobile client specification

describes the functionality of the mobile client software. Finally, the application

specification describes the application that implements the required back-end

functionality of the system.

3.1.1.1 System Architecture

"Web-based e-commerce applications commonly employ multiple tiers (3-tier client

server architecture) and a combination of technologies such as HTML, XML, JavaScript,

Java (JSP, Servlets), ASP, dynamic html, CGI, and relational databases" (Meshram &

Rane, 2012). The proposed system architecture shall consist of a 3-tier architecture. The

top layer will contain multiple webservers, which will be load balanced by a top-level

load balancer. The top-level load balancer will receive traffic from the mobile clients

over the Internet and divide the traffic between the webservers. The middle layer will

consist of several servers that will run the mobile commerce application. This layer will

be load balanced by a load balancer connected between the top and middle tiers. The

9

database component of the system will be located in the bottom tier of the system. A

replication method that will make multiple copies of the database simultaneously will be

implemented.

Presentation tier
The top-most level of the application
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand,

Logic tier
This fsyer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations, it also moves and
processes data between the two
surrounding layers,

Data tier
Here information is stored and retrieved
from a database or hie system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

.

GET LIST 0 ALL * ADDAU.SAU5
SALES MADE TOGETHER
LAST VSAR

Ittil
QUERY

r
SALE 2
SALES

y/y SALE*

'' :,
2=5^1

Database
Storage

Figure 3.1: 3 Tier Architecture Diagram

A common technology stack should be utilized to simplify and to keep the

implementation consistent. This should be done, as it is a normal practice to implement a

technology stack using common technologies that were developed to function together.

For example, an IIS webserver should not be used in combination with a JBoss

application server. The recommendation is to utilize all Java-based technology in one

stack, or to use all Microsoft technology in the implementation stack. Common examples

of this type of implementation would be an IIS webserver instance, a Windows Server

instance running IIS as an application server, and a Microsoft SQL webserver instance.

The Java-based example of this implementation would be an Apache webserver instance,

a JBoss or Tomcat application server instance, and an Oracle, MySQL, or IBM DB2

database server instance.

10

3.1.1.2 Network Architecture

A three-tier networking architecture was the standard utilized for this

implementation. Load balancers were used to ensure that an even amount of

transactional data flows to and from the available web, application, and database servers.

Firewalls were implemented between each of the tiers and in between the Internet

and the top tier. Only the ports required for communications between the layers were

opened, all other ports were closed. This network can be implemented either with an

internal network, enterprise network, or with a cloud service, such as Amazon Web

Services (AWS) or Microsoft Azure.

3.1.1.3 Database Specification

The underlying database for the system was implemented using the relational

diagram and table definitions shown below.

Toten

1 ,,. A

Device
• n... l-

User
-1 ... ft-

Transaction

figure 3.2: .Database Relational Diagram

Table Transaction

id timestamp amount transactionType to ken Id authNumber result

Table 3.1: Transaction T-ible Definition

11

Table Device

Table 3,2: Device Table Definition

Table User

id username | password name address \ city state zipCode phone email
i

i 1
Table 3,3: User Table Definition

Table Token
 —_—__

I userld
"T

:.;..■;: .■:. P t~7

id I tokenNumber tokenExp cardType

Table 3,4; Token TaMe Definition

3.1.1.4 Application Specification

The application was designed to handle communication between the mobile client

and the financial processor. The application managed the storage of transactional data.

The application could be implemented in any language, but the sample of the

implementation of the specification was implemented in Java. The application itself ran

on a JBoss server implementation. Communication between the mobile client and the

application was implemented as a Webservice. The Webservice was initially

implemented using a SOAP-based protocol, but future implementations will support a

Representational State Transfer (REST) implementation, utilizing JavaScript Object

Notation (JSON) to encapsulate the data transferred.

"JSON is a popular format for data serialization. Programmers use it extensively

to encode data for transfer between a server and an Asynchronous JavaScript and XML

(AJAX) application, to connect two servers communicating via Web services, and in

many other similar scenarios. The most common structures used in programming are

scalar variables, linear lists, and key-value pairs. JSON represents these structures in the

12

most natural and direct serialization, greatly reducing the impedance mismatch between

in-memory structures in applications and the serialization format. JSON is not only

convenient but also efficient" (Severance, 2012).

The webserver was responsible for implementation of the SSL protocol to encrypt

the data between the mobile client and the server m-commerce gateway. Client

certificates were implemented along with the SSL certificate to employ an additional

layer of security.

The server application implemented the following functionality:

M obite C orn me r ce WS

^nancialWebService:Servic8SaapProxy

+ heartbeats)
+registerUser(username, password, name, address, city, state, zipCode, phone, email:lnteger
+registerDevice(deviceld, status, userld}:lnteger
+registerToken(cardNutii, cardExp, cardType, userW):lnteger
+saleTran$action|userld. tokenSd. amount, merchant):String
♦refundTransaction(amount,merchant,tok8nlcl, userld}:String
+voidTransactior»|user!d. tokenld. transactions, merchant}:String

Figure 3,3: Mobile Commerce Implementation UML Diagram

Authentication

Register User - a user is registered with the system. A user will be able to register

multiple devices under the same username. A username must be unique and cannot be

duplicated. This limitation was enforced at the database level and not at the mobile client

application level.

13

Register Device - the mobile device will register itself with the application. Each device

shall supply a unique identifier based on the device in question. The uniqueness of the

identifier will be enforced at the database level. This identifier is a 50 character

maximum alphanumeric string that can also include special characters.

Register Token - any credit card number associated with a user is tokenized through a

third-party tokenization system. The returned token will be stored in the database and the

original number will only be utilized one time to obtain the token. Credit card numbers

will not be stored by the system, only the tokenized value.

Execute Transaction

Sale - a mobile device will request the application to complete a sale transaction. The

result from the transaction will store the authorization number for the transaction in the

transaction table if the transaction was successful. The transaction result will be retuned

as the result of the webservice call.

Void - a mobile device will request the application to complete a void of a previously

completed transaction. The authorization number of a previously successful sale or

refund transaction will be required to execute a void command.

Refund - a mobile device will request the application to complete a refund transaction.

A successful refund transaction will store the results of the transaction in the transactional

database and return the results to the webservice caller.

Multi-Pay Tokens

The original concept of the token meant that the merchant could not use this

random number to perform a subsequent financial transaction, because it is not a valid

PAN. However, a multi-pay token adds the ability to perform an authorized financial

14

transaction under strict control measures within the merchant environment. The merchant

submits a token that it already has on file for a specific consumer/card to the transaction

processor who accesses an external database to retrieve the PAN and complete the

transaction. By using this type of token in the payment authorization process, the

merchant reduces the risk of having the real PAN stoien as it is being collected from the

consumer or stored by the merchant.

"Multi-pay tokens are especially valuable in e-commerce and other card not present

(CNP) environments that tend to store payment card information in a virtual wallet or on

their website for repeat customers. The multi-pay token allows a merchant to tokenize the

payment card information, associate that token with the consumer profile stored on the

merchant side, and then use the token with the processor gateway that holds the token

vault in order to run subsequent transactions. This is done without the need to prompt the

customer for his card account number again, and without having to store the actual card

number" (How Multi-Pay Tokens, 2012).

3.1.1.5 Mobile Client Specification

The mobile client will implement all of its functionality through the

implementation of the mobile commerce webservice. This revision of the specification

does not specify what the interface must look like, but only what minimum functionality

is required to be compliant with the specification.

A mobile client can be implemented in any programming language. A language

native to platform, such as Objective-C for iOS or Java for Android, is acceptable. A

fully web-based approach is acceptable, as the state of the application is handled solely

on the server side. A hybrid approach, where the interface is built upon web standards

HBBBBB

15

and only portions of the code are implemented in a native language, is acceptable. An

example of a framework for this approach would be PhoneGap or Xamarian. PhoneGap

and Xamarian are two examples of HyperText Markup Language (HTML) based

frameworks that can be used to produce mobile applications.

The mobile client must implement an interface to collect user input for use with

the mobile commerce webservice. The results from the mobile commerce webservice

must be interpreted and displayed in a user-friendly manner for the end-user. A platform-

independent algorithm is required for the creation of a unique identifier for the devices.

The Universally Unique Identifier (UUID) identifier standard was utilized as the device

identifier in the implementation. The initial implementation will put no restrictions on

the type of characters used for the username and passwords for the users. Alphanumeric

and special characters were acceptable when creating a username and password. In the

initial implementation, the password was passed without encryption, and was stored in

the database without encryption. This feature is outside of the scope of the initial

specifications and will be included in a later revision.

3.2 Implementation

3.2.1 System Implementation

The sample implementation used an Apache webserver for all of the webserver

instances. For the operating system of the implementation instances, default configured

Amazon EC2 Linux instances were utilized. To implement the firewalls, Amazon's soft

firewall service was implemented. The port of 443 was the only port the top load

balancer allowed traffic to travel over. The top and middle layer only allowed port 5634

to open to allow traffic between the application and the webservers. Port 2674 was the

16

only port opened between the middle and bottom layer, allowing data to be transferred

between the application and the database.

ECS DuMMMd

instances

Reserved faaMnOM

AUls

fSuncHe Tasks

Mum

■ ■ . ■■

Security Groufss

Easitc IPs

MMimMI Snxsps

«a>M< »SJ,*m.

Launcft instflnc*

eTypei 1.:

c * «

ow ttMMMm :>

Nam* 'n*t*nc* AMiiD Root Device Tyjtt State Stats;* Ch«ci<» Aiarm Btwu* Monitoring S«curi!

code-sandbox c c»r> gj i-0ces556c 3fni-349b«95<) BCS MA** * rum*fl -^ 2*2 ch*ck6 tx MM MM qutckiw

app d01 $ i-28e08l>52 MMMfMaff *■ RJNM ,.;!• running $ #2 ch*cks p.' DOW b^.0 BW..SW

*eb..i«2

app.d02

0 i-63«f&918

:jgt-6os2c!c0

£ i-aSTQinte

;jjji-25tb8743

ni-aectitiCc? «b»

n--0fc«Td66 ec£

II micro f| stopped i

tl micro ■'■# atoppad

ll.mtcnj ■,# runni^s ^ 2/2 crocks p; :

tl micro 0 slopped

tl mJcfo ^ stwpefi

No eca ImtancM *«leet«d.

DBSiC SPP..MI

basic <w* sa

bask. dofatiH

basic "PP,.«*

Figure 3,4: Amazon EC2 Server Instances

3.2.2 Network Implementation

Load balancers are one of the unique features of cloud computing and implemented in

Amazon's EC2. EC2 includes a load balancer in which an auto-scaling algorithm is used

based on threshold values of network traffic. When the setup threshold value is exceeded,

Amazon's EC2 will spin a new webserver and automatically roll it into the load balancer

pool. Similarly when the traffic falls below the threshold value, Amazon will take a

server from the allotted pool (Anandhi & Chitra, 2012). To maximize the effectiveness

of the Amazon load balancer, it is important to split the instances in the load balancer

evenly between the 4 available zones. If it is possible, instances should be added in

multiples of 4, with one instance added to each zone simultaneously.

mm

17

ECU Dasfiboarci

t-vertfs

Insts^cas

Spot Sti<pj*sra

AMIS

MMMMM

Snapshots

lOWUaaCUWPi

Stoutly ttnm
0MB n
MManm (Swipi
Load fiatenew*

Crate Loud Balance*

Lead B*lanc*r M«m«

£ Weto

I. Us*f

c * ©

S< * J 313* 2 Items V* ;»£

DNS PWBIS fflrt Conftg=..fa(i-5ii AvaiiHtiility 2©n*«

Wets-1096232913. us-eesl -1 elt> ■MMMAM M(HTTP; fowarmng to SOS!) (HTTP! w-ta»Ma, us-eaal-1b

Us«f-13l6a)1fl67.us-easi-l.BJc.affi820flaw*.i:c ao{H'TTP}fw*anJiftg to SO {HTTP) M«| us-easi-la

Load l»lati<tr» idccUd

Select •* load baiancpr sbove « B £3

t-iZW 'i':i\i, *"~?.tcr> Wail Ks:v.-<>s, I^n. r, im iflSiiaJi!-'; *i: ; m?>tt ---s*rv*d NtWMV MtW

Figure 3.5: Amazon Load Balancer

"Amazon EC2 provides a complete firewall solution; this mandatory inbound firewall

is configured in a default deny mode and the Amazon EC2 customer must explicitly open

any ports to allow inbound traffic. The traffic may be restricted by protocol, by service

port, as well as by source IP [Internet protocol] address (individual IP or classless inter-

domain routing block). The classless inter-domain routing (CIDR) block was created to

do away with the restrictive Class A, B, and C network distinction" (Passmore, 1994).

Class A, B, and C network divisions are used to assign groups of IP addresses in a

standardized fashion.

"The firewall can be configured in groups permitting different classes of instances to

have different rules, for example the case of a traditional three-tiered web application"

(Jamil, 2011).

wjnuiiiiit«niimuiiiiniij|jijwjiiij|j|juu«juujmjiww

18

£C2 Oasriboard
fc-eents

instates
Spot ttetttmts
Rnsf:rv(»a hMMCM

Mil
BundteTisM

- RAgfnoa

NUyMM
Snapshots

Security aroups

Piasgrnen* Groups
Lewd Balance**
K;:v Pair*

Create Security Group Delete e 0 < >

M < OJt<i ton* > vt«v«tn«; IZi rttu-ir. Crew M

MMM VPC10 Description

^ UbSiiE«Gr<X]p Access to LafaSlice iterated mac .nemaiance.

^ ,$■ web. server Web Satvet Firevraii Rutee

^aetad! deieutt group

^ quick launch-1 qwcklauncrt-1

jt acp server App Seiver Firewall Rules

:^ Security KZrmtp; we-;:...■■■■/:: ;r:;

Details IrttKKinci !

■ H B

Group ID:

Group DcftiHptwnt lA'tSS J>i}i"v,jr F-'««*vw=lH Si;*1

.£ MHiii ■ ;5i^. *?-,t<v.i VfCO iw/MS. tnt.. .v -!s #:-«t *ii r!$hw ti«t,i. Privacy P«5fcy Tarmfi o

Figure 3.6: Amazon EC2 Firewall Roles

3.2.3 Database Implementation

The following is the definition for the database tables. All credit card numbers

stored in the system were tokenized, a non-tokenized option was not available, and

tokenization was not enforced.

As part of the standard, a standard for interconnecting the database to the

application is recommended. The sample implementation used Hibernate for its database

API. Hibernate is a collection of related projects enabling developers to utilize plain old

Java objects (POJO) style domain models in applications (hibernate.org, 2013).

The following is the Entity Relationship Diagram (ERD) for the database
implementation:

19

id INT(1lj

usemame VARCHAR(SO)

password VARCHAR(SO)

name VARCHARj 100)

address V ARC HAR(100)

city VARCHARf 100)

state CHAR(E)

, zpCodeVARCHAR(IO)

phone VARCHAR(10)

email VARCHAR{2555

▼

PRIMARY

usemame U

■4t--

tt ■

7h
3 Dwlee *

>dlNT(11)

| devceld VARCHARffiSS)

t UMrtd INTC11)

state TIN Y! NT (1?

V

PRIMARY

Devicflld U

userld

■-«

M INT(11)

tetaiNumber VARCHAR(SO)

tokertExp VARCHAR(IO)

,-usefldlNTjll)

caRjTypsVARCHAR<25}

PRIMARY

tokenNumber U

usftfid

1
I

-1

A

a INT(11)

timestamp TIMESTAMP

, amount DECIMAL(10,2)

trartsacbonTVps VARCMAR<25)

*t<*erUdlNT(11)

x auVMunta VARCHAR(SO)

,»result CHAR(3»

PRIMARY

MkmM

Figure 3,7; Database ERD

Amazon Relational Database Service (RDS) was used to create the database

instance in the implementation. This was done so that a server instance with a MySQL

database instance already pre-installed and pre-configured could be spawned quickly. By

using the Amazon RDS service instead of creating an EC2 instance and manually

installing a MySQL server, a Graphical User Interface (GUI) is made available for

managing the server instance. To ensure that enough simultaneous connections are

available for the system, a database instance of the type shown in figure 3.8 was used.

Mmmmwummmm ■niimiiiiiiiHiiiiiimuwiii

20

DB Inst3nc6

High-Memory Quadruple Extra Large DB Instance 68 GB of memory,

26 ECUS (8 virtual cores with 3.25 ECUs each), 64-bit platform, High

I/O Capacity, Provisioned IOPS Optimized: 1000M bps

One ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor.

Figure 3,8; DB Instance Specifications

- L^CTifrfjysrtfti.lWlS

a ittb-oduciag tfj* n«w RBS t&ftsole interface
Ciiik i<-> t=y XJ.% the ?■.&# i«*.

> OtttMttl

i M«M D9 BAN

> 33 S*CIMS* Groups

i 815ubfl« 3."auos

i 33 tiiti■■■■. vxiixftf-of.i

launch * K*iatt«nai S*t*feas*

Amazon Jteia'JoiBt Database Service (SDSj crakes It easy to M
up, operate, ana scaie a relation*; tiaisoase in the cloud. You can
■Heft the button oeiow to ^Bunch a Datauase {03} fcwance ift

jftkHMl MdW automated Backups, :«^nk«y Mutti-A2 replication and
t-tt nuflRarifll metrics. AffltNi 3DS gives you MMM to a
ImHtm MySfjC Oracie, pf SQL Server |NlMt to facilitate
corr.pati&iity w-ih existing code, apt*: cations, ond tools.

VM of€ usirij M Wtawtag Amazon 3DS n
At US East (N, v-rginlfl) region

| Ifil NtMKM

* 3 ;>s v Jii-y-sn

I i XMNwa , 8 tWBtiHWil

L«« iH* a DB !««*«£« &

IftfUtiS KM :*:. WfJtWfl MpMfc.

Amuon ElMtKache

Add a managed r^am cached-co^afcale irvme.fory cache tc
your database access.

» Q-.cb frfa >.c \ea-n 'iwe at-i i*u^-:r. y^j- Ca;'>s Ouster

i S- HI .'!*;!*:!J*. *l: sSjfla '!'-;. ■<;;« -l»Kv ?flicv 'i'«™i s! Jwv

QyrvilW anc f-e^tyas

OtewnMNGM

AritdtttBd Tutorials

I DM IWpOf guiiM tor MySQi.

t Data impen guide he Oracis

' MM Mt#M pMl -!::' BQ| Sm

Figure 3.9: Amazon RDS Database Console

3.2.4 Application Implementation

The application communicates with the mobile client by way of a webservice.

By submitting a webservice request via a POST call or SOAP request, the mobile client is

able to make transactional and account requests. The following URL is the link utilized

by the mobile client to communicate with the mobile commerce application:

Webservice WSdl URL: http://mobilecommercexode-sandbox.org/MobileCommerceWS/MobileCommerceWS7wsdl

The following are the descriptions of the implemented webservice class:

TJJTJTTTT

21

/**

* public String heartbeat
* method for announcing the application is active
*

*/
@WebMethod()
public String heartbeat();

Figure 3.10: Method Heartbeat Implementation

/**

* public String saleTransaction
* method for announcing the application is active
*

* @param userld - userld from the database of the current user
* @param tokenld - tokenld from the database of the current token(tokenized credit
card)
* @param amount - amount of the transaction
* @param merchant - email address of the merchant the transaction is completed with
*/
@WebMethod
public String saleTransaction(Long userld, Long tokenld, String amount,
String merchant) throws RemoteException;

Figure 3.11: Method SaleTransaction Implementation

/**

* public String voidTransaction
* method for a void transaction type
*

* @param userld - userld from the database of the current user
* @param tokenld - tokenld from the database of the current token(tokenized

credit card)
* @param transactionld - transactionld from the database of the transaction to

be voided
* @param amount - amount of the transaction
* @param merchant - email address of the merchant the transaction is

completed with
*/

@WebMethod
public String voidTransaction(Long userld, Long tokenld, Long transactionld,

String merchant) throws RemoteException;

Figure 3.12: Method VoidTransaction Implementation

■luimuwiumww

22

/**

* public String refundTransaction
* method for a refund transaction type
*

* @param userld - userld from the database of the current user
* @param tokenld - tokenld from the database of the current token(tokenized

credit card)
* @param amount - amount of the transaction
* @param merchant - email address of the merchant the transaction is

completed with
*/

@WebMethod
public String refundTransaction(Long userld, Long tokenld, String amount,

String merchant) throws RemoteException;
Figure 3.13: Method RefundTransaction Implementation

* public int registerDevice
* method for registering a mobile device with the system
*

* @param userld - userld from the database of the current user
* @param deviceld - deviceld for the device being registered
* @param transactionld - transactionld from the database of the transaction to

be voided
* @param status - status of the device, true = active, false = inactive

*/

@WebMethod
public int registerDevice(Long userld, String deviceld, Boolean status)

throws RemoteException;
Rgure 3.14: Method RegisterDevice Implementation

23

/**

* public int registerUser
* method for a registering a user with the system

* @param username - username requested, will throw an exception if the
username is already taken

* @param password - password requested
* @param name - name of user
* @param address - address of user
* @param city - city of user
* @param state - state of user
* @param zipCode - zip code of user
* @param phone - user phone number, xxxxxxxxxx formatted
* @param email - email address of user
*/

@WebMethod
public int registerUser (String username, String password, String name,

String address, String city, String state, String zipCode, String phone,
String email) throws RemoteException;

Figure 3,15: Method RegisterUser Implementation

/**

* public int registerToken
* method for registering an tokenizing a credit card
*

* @param userld - userld from the database of the current user
* @param cardNum - card number of the credit card
* @param cardExp - card expiration date of the credit card, mmyy formatted
* @param cardType - credit card type, valid values are 'Visa', 'Mastercard',

'American Express', 'JCB', 'Discover', 'Diners Club'
*/

@WebMethod
public int registerToken(Long userld, String cardNum, String cardExp,

String cardType) throws RemoteException;

Figure 3.16: Method RegisterToken Implementation

3.2.5 Mobile Client Implementation

A native Android app was built as a sample mobile client. The mobile client was

built using the standard Android development environment, Eclipse. The app has all of

24

the basic system functionality. This includes the ability to register the user, register the

device, register a credit card (includes tokenization), and to execute a financial

transaction (sale, void, or refund).

n'iir.%'Cla«.;£Vi ■■ tcH.ait <■!}*. ■■ /ij^^'H^-rfwiSS* 3; ■■■:>,<■. ;.■,■■■>■•.

»'i,-;;;*iilBnm«ntl

*■);;■■ rhqhtMtVi.Mm
" ■■■-■ F:iaHIMi=i_S*jr,Li;

► if Ma««AoivHv

*V.vTtuT^to>i*iActtrty

► ;,■■; MMMHWtMkM

£.«$;;< tidiiOSONOt-iCcL o*]>

JSONObjocl abi - :«* M*B»jett(itr> a'.McdObi);

-\a;'.icfrawOb.JCJiSitSjieit ob:i)

i.lmtnictartlMM - rid.fttStrtatC'lx

D L05C11 S3 S3 £.wio« j«

Dialog

TNgln a,;iv.!t4

Figure 3.1.7: Eclipse IDE, Android Development Environment

Register Card

Mastercard

fcar

25

Mobile Client

Register Device

Register Card

Sale

Refund

Void

Logout

43 1 t » t ! '« f i 1 9 03

■P MobileCommerceClient

..■-,r

Register User

Password

Name

Address

City

State

Zip Code

Phone

Email

Register

Transaction

Amount

Merchant

Submit

Figure 3.1.8: Mobile Client Screetishots

mm

26

Chapter 4: M-Commerce Open Standard Evaluation

4.1 System Test

An implementation of the first draft of the standard was built for the purpose of

demonstrating the capabilities of the system. Tests for the capacity of the system and

standard security tests were carried out to test the capabilities of the initial

implementation of the standard.

4.1.1 Load Testing

The first test is a transaction capacity test. The number of webservers were

changed between 1 server minimum, and up to 4 servers maximum. The number of

application servers were changed between 1 server minimum and up to 4 servers

maximum. The test produced 16 sets of results. Each set of results contained the

minimum number of transactions per second, the maximum number of transactions per

second, and the average number of transactions per second. The tests were completed

with 10,000 simultaneous users. This test was completed via the SoapUI application to

simulate connecting to the service with a large number of clients, and to collect the

results. "SoapUI is a free and open source cross-platform Functional Testing solution.

SoapUI allows easy creation and execution of automated functional, regression,

compliance, and load tests" (What is SoapUI, 2013).

The second test was comprised of attempts to compromise the sample

implementation at multiple levels. At the top layer, a Denial of Service attack was

committed with 1-4 webservers in service in combination with 1-4 application servers in

service. The test was also comprised of attempts to access the servers in each layer

directly.

27

4.1.1.1 SoapUI

SoapUI was used once again to simulate 25 simultaneous users connecting to the

system. The write capabilities of the system was examined by having all 25 test clients

run sales transactions, refund transactions, void transactions, and registration

transactions. These tests were done to test the write capabilities of the system.

1HL
File looJs gtsktop Help

i
3 *'-" .; 41A 5MWhft>r **>
S 1 IS Rcqutstl rf'tf E3
9 Projects *■ *™ : 0 0 Q ■ rrap //iocaihostSGSO-Mr'^^Com.-ne'ceWS.-MocileCom'rierceWS -: - Lag

% X MobiieCommerceWSSefvceSoapBindins XML '...,-? ':■:.: - ' : «. ; XML *..
' Raw : Raw

Ij Request 1
jr^«* **/•*>

" Request 1 "—*•«**■"

S tf registerDevice 3 *!-. *Vti**J*—»
■It Request 1

:

9 "& regisiefTekert ««X43>^/*xv»
? Request 1 ' ■ ••#•*»* to*jrt :

■- £ registerUier *. iOtpcr.v i f f-A'a'i n;>«> :
" Request 1

S ■£ sale

£J Request 1

:*? 0 vddTrartsactton

1 % api.glc&ilgateway** .fifsniau

=
*JWM1 Pr op-erf Iss

Property Value
J Name Request 1

Dtfcnption
Message Sze 443
Encoding UTF-8
Ertdpoim hap.//iocaihost.-4080/MebJte

Timeout
B<nO ACCESS W
MM) Redirects true
Username 3
Domain 1 1
AMhMfcMlM Type GioiM! HTTP Settings Header.- Atucrime . W... W5. ! Headers (Oi Attacrtme>its <0t SSL Info
WSS-Password Type
WSS T.nwToDve •e

Prooertii' . soapUHocj hnp log jetty wg error tog *srm aq roemtxy iog

Figure 4.1: SoapUI GUI Interface

4.1.2 Denial of Service Testing

4.1.2.1 slowhttptest

A Unix line-command utility called slowhttptest was used to run denial of service

tests on the implemented system. For all tests, 5000 simultaneous connections were used.

The slow headers and slowloris tests were run over a time period of 240 seconds.

The slow headers test slows down the transmittal of the http header, which locks a

connection to the webserver for a longer than normal time period. This can create a

28

scenario where no connections to the webserver are available, causing the webserver to

lock up and be non-responsive to the end-user.

"Slowloris holds connections open by sending partial HTTP requests. It continues

to send subsequent headers at regular intervals to keep the sockets from closing. In this

way webservers can be quickly tied up. In particular, servers that have threading will tend

to be vulnerable by virtue of the fact that they attempt to limit the amount of threading

they'll allow"(Slowris, 2013).

0 n. n A edwardwiliiarris — ec2 -usstpp-10-202-39 45 ~ - bash - 80x37 *"
■ Edwards-MacBook-Pro:~ edwardwill ia*rs$ slowhttptest http://ftobileco^erce.code-sa
ndbox.org/MobileCoariterceWS/Hobil eCo?M?erceWS?wsdlff!rt!erteWS?wsdl
Fri Har 29 18:12:38 2013:
Using:
test type: SLOW HEADERS
number of connections: 58
URL: http://localhost/
verb; GET
Content-Length header value: 4895
follow up data max size: 68
interval between follow up data: 18 seconds
connections per seconds: 58
probe connection timeout: 5 seconds
test duration: 248 seconds
using proxy: no proxy
Fri Har 29 10:12:38 2813:slow HTTP test status on 8th second:
initializing: 8
pending: 1
connected: 6
error: B
closed: 8
service available: YES
Fri Mar 29 18:12:39 2913:
Using:
test type: SLOW HEADERS
number of connections: 50
URL: http://localhost/
verb: GET
Content-tength header value: 4096
follow up data sax size: 68
interval between follow up data: 18 seconds
connections per seconds: 50
probe connection timeout: 5 seconds
test duration: 249 seconds
using proxy: no proxy
Fri Har 29 18:12:39 2813:Test en ded on 1th second
status: Connection refused

Figure 4.2: Slowhrtptest. Interface

29

4.2 Test Results

4.2.1 SoapUI Load Testing Results

Web
tiMlanees

App

l*ft*flWM Thread' TromctfcM Twt
Transact ism
Per Second

Total
Transactions Byte.

Hits Per
Second Frr rs Mm Mai AvB Tc*l Deiav

1 1 25 Sale a. 54 523 123633 2058 0 520 7165 210966 1000

1 2 25 Sale 5 95 358 31,278 1436 0 972 12419 3336.86 1000

: 3 25 Sa le 6.43 387 93267 1551 0 846 16879 3005.06 1000

l 25 Sale 7.49 994 108450 1806 0 65 3 14437 2506.29 10OO

1 1 25 Sale 14.9S 900 216900 3603 0 454 4863 905.86 1000

2 2 25 Sale 15.57 937 225817 3753 0 417 6375 826.12 1000

2 3 2 5 Sale 15.7 943 227263 3784 0 442 2158 812.91 1000

2 25 Sale 16.52 992 239072 3981 0 444 2115 753.71 100G

3 1 25 Sale 17 1021 246061 4097 0 431 1527 b-i'f 1 1000

3 2 25 Sale 15.62 9.59 226299 3766 0 444 2 566 825.12 1000

3 3 25 Sale 14.18 853 205573 3419 0 428 2845 987.88 1000

3 25 Sale 14.21 857 206537 3425 0 4S0 5527 978.79 1000

4 1 25 Sale 15.64 942 227022 3770 0 444 4356 820.79 1000

4 2 25 Sale IS. 1 913 220033 3665 3 441 3860 867.66 1000

3 25 5ale 15.82 952 229432 3813 0 444 1988 808.08 1000

4 4 25 Sale 14.21 853 205573 3425 0 434 2647 972.37 1000

Table 4.1: SoapUI Test: Results

The results of the testing yielded several interesting results. First, the number of

transactions was severely limited based on the type of transaction being executed. The

system is able to handle over 5000 concurrent connections when executing the heartbeat

or user registration webservice commands. The heartbeat command's only function is to

return a pre-determined response from the service so that the client can recognize that the

application is functional and reachable over the internet. Any webservice calls made

where a webservice call to the payment processor was required caused the transactions

30

per second to be limited to approximately 15 transactions per second. Any attempt to

execute a test with more than 100 concurrent threads would overload the capacity of the

test implementation and cause all four of the JBoss application servers to crash. This

result was only achievable when two or more webservers were in service with the load

balancer. With only one webserver in service, the application was only able to process

approximately 7-9 transactions per second. By having more than one webserver, the

transactions per second effectively doubled, but did not increase when a third and fourth

webserver instance were added to the tier one load balancer. Adding more webservers

decreased the average response time of the application in a linear fashion. The minimum

response time stayed fairly constant across all tests, only the maximum response time

decreased with an increase in the number of webservers put into service. The additional

application servers appeared to have little to no effect on the system. With a financial

transaction processor that could handle more simultaneous transactions, perhaps a greater

significance in the number of application servers in service would have made a

difference. One important thing to note is that even though having multiple application

servers in service didn't increase the transactions per second, it does allow the system to

have redundancy. All of the application instances utilized were located in different data

centers (east la, east lb, east lc, east Id). East la, lb, lc, and Id are all located in

northern Virginia. In its current configuration, the application could continue to run

effectively if 3 out of 4 of the application servers failed.

31

4.2.2 Denial of Service Testing Results

The results for the slow body Denial of Service tests showed a loss of service

availability at 32 seconds, 86 seconds, and finally at 96 seconds. The webservice had a

total failure at 108 seconds.

4,000

3.000

2.000

1.0CQ

a/ Closed

Pending
Connected
Service
available

O h \fc <j& & t»0 |$ «£ ^ <l 0 fto tf> ^

Seconds

figure 4.3; SLOW BODY Test, 5000 Connections

The slowlowris test resulted in the webservice being unavailable at several

intervals during the test, occurring at 36, 72,109,146,164,182, 200, and 218

seconds. The test did run through the entire 240 second interval, so the webservers

we able to withstand the test.

Closed

I Pending

4,000 Connected

| Service
available

3.000

2,000

1,000

i nil
!

f—"

' : ■: ii, ...

s« £ & na 0,0 ^ tf s& ^ & -jo0 a* j#>

Seconds

Figure 4.4: SLOW RIS Test, 5000 Connections

lUiutuuiauuaBBiUiLuiu

32

Chapter 5: Conclusions and Directions for Further Work

5.1 Conclusions

A base mobile wallet system was created successfully and the system was tested

for load balancing and denial of service attacks. The sample implementation could be

used successfully to register a user, register a device, register a credit card, and then use

that tokenized card to execute several financial transactions.

Even though this implementation is functional, there is much further work that needs

to be done to improve both the specification and the sample implementation.

5.2 Future Work

5.2.1 Improved Transaction Processor

The implementation of the specification for this thesis was severely limited by the

performance of the transaction processor used. The account used for this implementation

is a demo account and not a full production account. Using this approach allowed for a

valid set of transactional responses, but the demo system's performance is severely

limited compared to the production system. According to the processor, the demo system

only has one webserver and one application server instance in its implementation. The

production server has over 6 times the server capacity of the demo system. Another

limitation is that the demo system throttles the maximum possible transaction throughput

to help prevent overloading the system.

5.2.2 Adding Encryption

A sufficient encryption protocol is required for the storage of the password in the

database. Currently, the passwords are being stored unencrypted in the database. Also,

an SSL certificate should be added to all of the webservers in the system. This is

33

required to ensure that the data between the mobile device and the mobile commerce

system is encrypted. Another suggestion would be the addition of client certificates. By

modifying the mobile commerce system to deliver client certificates on a per-device

basis, an added level of security could be added to the specification. Also, multi-layer

security could be added. Requiring a password and some other secondary form of

identification is an example of this.

5.2.3 PCI Compliance

Adherence to PCI standards was not implemented in the sample implementation

due to time constraints and cost. A future implementation should follow these guidelines

to be considered commercially usable. Assistance from a third party company that

certifies systems for PCI compliance would most likely need to be a part of any sample

implementations.

5.2.4 Additional Samples

An Android native client was built for this sample implementation, but in future

revisions it may be a good idea to implement mobile clients for other mobile operating

systems, such as iOS or Windows Mobile. Eventually, there should be a base sample

available for every major mobile OS and a fully HTML-based sample.

mnnnnii.,.ini...j

34

Bibliography

Anandhi, R., Chitra, K. (2012). A Challenge in Improving the Consistency of
Transactions in Cloud Databases - Scalability. International Journal of Computer
Applications, 52(2), 12-14.

Crockett, R. O. (2005). Will That Be Cash, Credit, or Cell? Businessweek, (3939), 42.

Haifeng, W., Xuan, L., Weihui, D., & Weidong, Z. (2010). Mobile Payment Framework
Based on 3G Network. Proceedings Of The International Symposium On
Electronic Commerce & Security Workshops, 172-175.

Heun, D. (2011). PCI council offers tokenization advice. American Banker. Retrieved
fromhttp://search.proquest.com/docview/884306274?accountid=35812.

How Multi-Pay Tokens Can Reduce Security Risks. (2012). Retrieved March 21, 2012,
from http://www.firstdata.com/downloads/thought-
leadership/MultipayTokensWP.pdf.

Jamil, D. (2011). Cloud Computing Security. International journal of engineering
science and technology, 3(4), 3478-3483.

Kogut, B., & Metiu, A. (2001). Open Source Software Development and Distributed
Innovation. OxfRev Econ Policy, 17(2).

Maamar, Z. (2003). Commerce, E-Commerce, and M-Commerce: What Comes Next?
Communications Of The ACM, 46(12), 251-257.

Malloy, A. D., Upkar, V., & Snow, A. P. (2002). Supporting mobile commerce
applications using dependable wireless networks. Mobile Networks and
Applications, 7, 225-23.

Mathieu, G. (2006). The PCI standard and its implications for the security industry.
Computer Fraud & Security, 2, 6-9.

Meshram, B., & Rane, P. (2012). Application-Level and Database Security for E-
Commerce Application. InternationalJournal of Computer Applications, 41(18).

Nash, J. (2009). Directions for open source software over the next decade. Futures, 42(4),
427-433.

Pareek, R. (2011). Cloud Computing. Journal of global research in computer science,
2(7).

Passmore, D. (1994). Quick fixes for the Internet address shortage. Business
Communications Review, 24(12), 24.

mnniimi.,irm.nn i '-""fl

35

Relational Persistence for Java and .NET. (2013). Retrieved April 13, 2013, from
http ://www. hibernate. org/.

Severance, C. (2012). Discovering JavaScript Object Notation. Computer (Long Beach,
Calif.), 45(4), 6-8.

Slowris HTTP DoS (2013). Retrieved April 14, 2013, from http://ha.ckers.org/slowloris/.

Stapleton, J., & Poore, R. (2011). Tokenization and Other Methods of Security for
Cardholder Data. Information Security Journal: A Global Perspective, 20(2), 91-
99.

Vaughan-Nichols, S. (2008). The Mobile Web Comes of Age. Computer, 41(11), 15-17.

Weihui, D., Xiang, C, Haifeng, W., Weidong, Z., & Xuan, L. (2011). An Integrated
Mobile Phone Payment System Based on 3G Network. Journal Of Networks,
6(9), 1329-1336.

What is SoapUI? (2013). Retrieved April 14, 2013, from http://www.soapui.org/About-
SoapUI/what-is-soapui.html.

mmmmmmmsmmm

	Developing a Mobile-Commerce Financial Transaction Processing Model
	Recommended Citation

	Developing a Mobile-Commerce Financial Transaction Processing Model

