
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

8-2016

ADDSMART: Address Digitization and Smart Mailbox with RFID ADDSMART: Address Digitization and Smart Mailbox with RFID

Technology Technology

Jonathon Ross Tew

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tew, Jonathon Ross, "ADDSMART: Address Digitization and Smart Mailbox with RFID Technology" (2016).
Theses and Dissertations. 246.
https://csuepress.columbusstate.edu/theses_dissertations/246

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/246?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages

", ?.r ~
PH* H jHp j ; .-

i 'HP H;

™ " pPpfPN H C, ,T> £, /->’>? ‘if- f':\S\t7

>' 5 VS3 3 "^pH HHP PH H- ■OPHH'n KPHi^H Hvp

••'% PP~ :;■ :.'v- / >. ^\c

;■ 0 : i :J '■• . y <Sr»'W :■ % • ••• .>3 ■ Vi '..

H ^ ■
J: ^

n £
<r P ■ (P* HO

i ' ■’

P- A

■, H ? HP | g I

Columbus State University

D. Abbott Turner College of Business and Computer Science

The Graduate Program in Applied Computer Science

ADDSMART:

Address Digitization and Smart Mailbox with RFID Technology

A Thesis in

Applied Computer Science

By:

Jonathan Ross Tew

Submitted in Partial Fulfillment

of the Requirements

for the Degree of:

Master of Science

August 2016

© 2016 Jonathan Ross Tew

I have submitted this thesis in partial fulfillment of the requirements for the degree

of Master Science.

We approve the thesis of Jonathan Ross Tew as presented here.

Date Dr. Lydia Ray, Associate Professor of
Computer Science, Thesis Advisor

Oft/ lo/
Date

sh/n
Date

Dr. Alfredo Fiferez, Assistant Professor of
Computer Science

Dr. Sumanth Yenduri, Associate Professor of
Computer Science

Date Dr. Wayne Summers, Distinguished
Chairperson, Professor of Computer Science

Abstract:

ADDSMART is a research project focused on digitizing addresses of

locations and building a smart mailbox by combining wireless sensors, cameras,

locks, and RFID readers and tags into a system controlled by an Arduino board.

The aim of the project is to explore the idea of address digitization (using RFID

tags to store addresses) and incorporate it into a mailbox that can communicate

wirelessly with the homeowner to provide mail status updates and home security

footage through digital photographs. This paper demonstrates the proposed ideas,

describes the design of a smart mailbox, the technology that has been used, and

the current results of the work along with future research ideas.

IV

Table of Contents:

Abstract: iii

List of Figures: vi

List of Tables: vii

Chapter 1: Introduction 1

1.1 Address Digitization 1

1.2 Smart Mailbox 1

Chapter 2: Previous and Related Work 4

2.1 Previous Work 4

2.2 Similar Concepts5

2.3 Related Projects 6

Chapter 3: Description of Technology ..9

3.1 Address Digitization..; 9

3.2 Smart Mailbox 10

Chapter 4: Creating a Smart Mailbox 17

4.1 Setting up the Individual Components 17

4.1.1 Arduino Yun Setup/Configuration and USB Webcam 17

4.1.2 Connecting the PIR Sensor 19

4.1.3 Connecting the RFID Shield 24

4.1.4 Wiring the Solenoid to the Yun 25

4.2 Combining the Components into One System 29

4.2.1 The Wiring and Circuits 29

4.2.2 The Software Side 31

4.2.2.1 Accounts, Authorizations, and Temboo 31

4.2.2.2 Arduino and Python Code 32

4.3 Installing the Hardware 38

Chapter 5: Testing and Evaluation 41

5.1 PIR Sensor Effectiveness 41

5.2 Success Rate Evaluations 43

5.3 Performance Time Evaluations 45

V

5.4 False Positive Detection Testing 48

Chapter 6: Conclusions and Directions for Future Work 51

Bibliography: 53

vi

List of Figures:

Figure 1: Screenshot of Android phone reading a digital address RFID tag 9

Figure 2: Smart mailbox hardware. A: Arduino Yun, B: RFID shield, C: PIR
sensor, D: Logitech USB webcam, E: Lock solenoid 11

Figure 3: RFID tags 13

Figure 4: fritzing diagram of PIR sensor testing circuit 21

Figure 5: fritzing diagram of circuit for testing the solenoid 26

Figure 6: Flowchart for smart mailbox 30

Figure 7: fritzing diagram of completed perfboard circuit 31

Figure 8: RFID reader and solenoid mounted inside mailbox door 39

Figure 9: PIR sensor (left) and camera (right) 39

Figure 10: Aluminum bracket for locking the door 40

Figure 11: Diagram A - Testing the maximum detection distance of the PIR
sensor. Diagram B - testing the maximum detection angle of the PIR sensor. ..42

List of Tables:

Table 1: Results from testing the reliability of two different USB cameras 24

Table 2: Results from maximum distance testing of PIR sensor 43

Table 3: Results from maximum detection angle of PIR sensor 43

Table 4: Success rate results of picture upload/email system 45

Table 5: Success rate results of email notification for mailbox opened system. .45

Table 6: Results from time evaluations for picture upload/email system 47

Table 7: Results from time evaluations for mailbox opened email notification
system 47

Table 8: Outdoor testing results for false positive motion detection 50

Table 9: Indoor testing results for false positive motion detection 50

Acknowledgments:

viii

I want to thank my research advisor, Dr. Lydia Ray, for guiding me

throughout this process and being there for me every step of the way. Dr. Ray’s

willingness to help, valuable feedback, and patience with me was very much

appreciated as I would not have been able to accomplish my goals without all of

her help.

I would also like to thank my committee members Dr. Alfredo Perez and Dr.

Sumanth Yenduri. Dr. Perez and Dr. Yenduri provided me with valuable advice

and comments along with helping me to navigate several challenging “crossroads”

along my journey.

Finally, I want to thank my family - Mom, Dad, and Sam - for all the love

and support they provided me along the way. I would not have been able to do any

of this without them. Thank you all so much!

Chapter 1: Introduction

The ADDSMART project aims to create an Internet of Things, or loT, device

by combining RFID technology and wireless sensor networking technology in a

physical system, i.e., a mailbox, to provide a wide variety of services. The project

has two components: address digitization and smart mailbox. The descriptions of

the two components are given below.

1.1 Address Digitization

The goal of address digitization is to digitize the address of a building or any

location with a physical address. The information written to the tag includes the

address, the names associated with the address, phone numbers, and email

addresses. The RFID tag with the digitized address would be used in conjunction

with Global Positioning System (GPS) technology to provide an accurate

identification of an address. Digitized addresses have the potential to be extremely

beneficial when driverless vehicles become a reality [7], and drones are used to

deliver goods [2] [8] in the future. A RFID tag storing a digital address will provide

a way for these automated systems to scan the tag and confirm or deny that they

are at the correct location. In addition to this location verification, the RFID tags

have the potential to help optimize routes, similar to how various cities are

beginning to use the same technology for optimizing waste collection routes [1],

1.2 Smart Mailbox

The goal of this component is to design and build a smart mailbox. The

smart mailbox incorporates the address digitization technology mentioned

previously, along with several other technologies. An Arduino board is used to

control a RFID reader, camera, motion sensor, locking solenoid, and WiFi module.

The main functions of this mailbox are as follows:

• Notifying the home owner when a postal worker has opened the

mailbox/new mail has arrived

• Acting as a driveway monitor and notifying the home owner by

sending pictures whenever a car or a human crosses a threshold of

the owner’s driveway

Thus, the smart mailbox will enhance home security at a very low cost

compared to surveillance video systems. Surveillance video systems are complex

to install and capture video continuously, consuming a lot of electricity and creating

large amounts of digital data, much of which is redundant for a home owner. A

smart mailbox will consume significantly less energy and will create only relevant

data (only when somebody or some vehicle crosses a threshold).

The prototype of the smart mailbox has been built and this paper will focus

on the equipment used to accomplish this, how it was set up, and how the different

components work together. In the next chapter, the previous work for this project

will be briefly outlined, then a discussion of related works will follow. Chapter three

will describe the technology used to create the prototype, then chapter four will go

over how the components are combined to create the smart mailbox. Chapter five

Chapter 2: Previous and Related Work

The Previous and Related Work section will be separated into three main

sections: previous work completed, projects that are similar in nature that might be

considered some form of a “smart mailbox”, and then related projects that have

similar elements to the smart mailbox. The Previous Work section will briefly

describe prior attempts at creating a smart mailbox, which were unsuccessful but

lead to the working prototype that is presented in this paper. The Similar Concepts

section will show that the smart mailbox presented here appears to be the first of

its kind. The following section, Related Projects, will outline several projects found

on the web that provided guidance for this project and how certain components

worked, for example: how to use USB cameras with the Arduino Yun.

2.1 Previous Work

The first iteration of the smart mailbox prototype began with slightly different

hardware than what is presented in chapter 3. The main hardware used in the first

prototype was an Arduino Uno R3 microcontroller with an Adafruit CC3000 WiFi

shield [18] and a small Adafruit camera [19] that worked through TTL (transistor-

transistor logic) serial communication [20], The same motion sensor that is

described in chapter 3 was also used with these components.

The first issue with this set up was the camera. The picture resolution had

a maximum setting of 640x480 [19] pixels and image quality was low. The last

issue with the camera was the price - at $54.95 it was the most expensive

component used.

5

The Arduino Uno R3 paired with the WiFi shield allowed the Uno to connect

to wireless networks. The Uno with the WiFi shield was successfully connected to

a WiFi network, but there were many issues that started popping up with this setup.

First, the reliability was not good at all. One of the simplest test sketches for the

WiFi shield involved taking a postal address as input, then connecting to a site and

searching the address to gather the basic weather information for that area and

then displaying it in the console. This test was hit or miss, often times not working.

When trying to send test emails to set up the email communication portion of the

project, similar results were seen. Finally, one of the key aspects of the project was

the ability to email and upload a photograph. Multiple tests and configurations all

lead to unsuccessful attempts at these tasks.

It was at this point the decision was made to begin researching new

hardware. This research lead to the hardware that will be outlined in chapter 3,

which ultimately resulted in a working prototype.

2.2 Similar Concepts

The proposed idea of address digitization appears to be a novel concept as

no previous work or research related to the idea of digitizing addresses using RFID

tags has been found at the this time. As such, the research on this topic will provide

new direction.

The idea of a smart mailbox is not entirely new, however; two examples

have been found with limited features. The first example is a patent filed December

17, 2009 and titled “Method and system for tracking and processing items in

6

personal mailbox” [5], The patent describes an invention that would have a small

robotic arm inside a mailbox that would pick up and move mail to a scanner. The

scanner would collect information off the mail, sending the owner a notification or

either sorting it as junk if there is no sender address. No information has been

found about this invention outside of this patent, however.

The second example is a project titled “Mr. Postman” by a company named

Simple Elements [4] which first appeared as a Kickstarter campaign [21] in 2014

that ultimately never reached its funding goal. Following the Kickstarter, their

website began taking pre-orders for the mailbox, and still shows a pre-order button

at the time of the last visit. Mr. Postman had a locking system that was controlled

by a mobile application that also received notifications when mail was delivered.

The locking system would open up during a certain window of time, allowing the

postal worker to deliver mail to the mailbox [4], Neither of these systems have the

security monitoring system of the smart mailbox presented in this paper.

Additionally, both systems lack any form of digitized addressing or an RFID

enabled locking system.

2.3 Related Projects

This section will outline several projects found on the web that were a great

help to the work presented in this paper. A brief description of the projects, along

with how they were helpful will be included. The smart mailbox created for this

project was built in a piecemeal fashion, and many of the projects in this section

were used as building blocks.

The first project to be outlined is from Adafruit, an online vendor of hobby

electronics specializing in Arduino and Raspberry Pi related goods that also

provides many great tutorials and informative guides. One of these guides is titled

“Wireless Security Camera with Arduino Yun” and goes through how to set up a

simple USB camera with a Yun that is connected to the internet [22], The guide

also details how to set up a service called Temboo to work with the Yun and

Dropbox to store pictures captured by the camera. The idea to use Temboo in this

project came from reading through this guide early on in the research phase of the

project. A more detailed explanation of Temboo can be found in chapter 4. Some

of the Arduino and Python code [22] that the Adafruit guide goes over were perfect

building blocks for the smart mailbox project. Another useful resource from this

guide was the set up process outlined for the USB camera and Yun interface.

Adafruit’s guide to PIR motion sensors [23] was another online resource

that provided excellent information which helped to lay the ground work for this

project. Adafruit’s PIR sensor guide has a wealth of knowledge on these sensors;

going over how they work, connecting them, testing them, and example projects.

The sensor Adafruit uses in their guide is very similar to the sensors that were used

in this project; however, there were a few slight differences. To account for these

small differences, the manufacturer’s data sheet [24] was used in conjunction with

the Adafruit guide to obtain a firm grasp on the workings of these sensors.

Additionally, some of the Arduino code [23] provided in the guide turned out to be

useful for testing the sensors used in the smart mailbox.

8

The RFID locking solenoid was inspired by projects like Robot Geek’s

‘RFIDuino Lock Box Getting Started Guide”, where RFID readers were being used

to control access to boxes locked with a solenoid [25]. The Robot Geek guide goes

over how to build a small trinket box that is locked and controlled by RFID. They

go over the hardware needed, how to connect everything, and how to write the

code to control the box. Ultimately, the smart mailbox project ended up going in a

different direction than what they outline, and instead took advantage of some of

the test sketches that came with the Adafruit library for their RFID reader (the

reader used in the smart mailbox).

Chapter 3: Description of Technology

3.1 Address Digitization

To create the digitized addresses, the Android application TagWriter

created by NXP [10] was used to write the information to the RFID tag. The

TagWriter application helped to streamline the work in this area, as it is easy to

use and performs exactly the tasks that were needed for this phase of the project.

The RFID system in the smart mailbox works on the high frequency range which

allows smart phones with Near Field Communication (NFC) chips to communicate

with the tags used on the mailbox - this will be discussed more in section 3.2. The

type of tag used for the prototype was a simple sticker tag that was affixed to the

front of the mailbox door after the necessary data had been written to it. Another

benefit of using the TagWriter Android application was that it allowed the tag to be

set up to open a message with the data read from the tag when scanned with any

NFC enabled smartphone. A screenshot from an Android phone reading the tag is

shown in Figure 1. This allows the digital address to be read quickly and easily.

A W ▼ P _ 11:25

fj| New tag collected

Jonathan Ross Tew
4255 University Ave.
Columbus, GA 31907
tew_jonathan@columbusstate. edu

Figure 1: Screenshot of Android phone reading a digital address RFID tag.

3.2 Smart Mailbox

The smart mailbox prototype has an Arduino board as its brain. The Arduino

controls a RFID reader, camera, motion sensor, locking solenoid, and onboard

WiFi module. A brief description of each technology is given below:

Arduino: The Arduino board being used for this project is an Arduino Yun (Figure

2, Item A), one of the newest Arduino boards. The Yun is different from other

Arduino boards as it has both a microcontroller and a microprocessor. The Yun

uses an ATmega32u4 for its microcontroller and an Atheros AR9331 for its

microprocessor [26], The use of these two different chips allows the Yun to run the

Arduino environment on the microcontroller and a special Linux distribution known

as OpenWrt-Yun on the microprocessor [26], The AR9221 has 802.11 b/g/n WiFi

built in, along with Ethernet support. The board also features a Micro USB port for

hard-wire programing of the board, and a Micro SD card slot for expandable on-

board storage. Finally, there is a standard USB Type A port on the board, which is

important as this is how the camera will be connected to the system.

RFID Shield: An RFID shield (Figure 2, Item B) built for Arduino by Adafruit is

being used as the RFID reader for this project. The shield uses a PN532 chip-set,

which works as a reader/writer operating on the 13.56MHz High Frequency (HF)

range. RFID devices available to consumers typically fall within one of three

frequency ranges: low frequency (LF), high frequency (HF), and ultra-high

frequency (UHF). The low and high frequency range devices offer similar

performance at similar price points, while the UHF devices offer more powerful

11

performance - much farther read ranges - at a significantly higher price point. The

price of the UHF devices would be too prohibitive for this project, so the choice

was narrowed down to either the low or high frequency RFID systems.

Figure 2: Smart mailbox hardware. A: Arduino Yuri, B: RFID shield, C: PIR sensor, D: Logitech

USB webcam, E: Lock solenoid

As mentioned in section 3.1, one of the benefits of HF based RFID systems

is their compatibility with NFC. NFC is an emerging technology that appears to be

gaining traction, particularly in the smartphone sector: it is estimated two in three

phones will have NFC capabilities by 2018 [11]. NFC is a sub-technology of HF

RFID, built on the same specifications as its parent technology. The main

difference, however, is that NFC is limited to communication no greater than 10

centimeters [12], The capability of HF RFID to be used alongside NFC is what

guided the decision to use HF over LF for this project.

The PN532 chip-set in the Adafruit shield works with both HF RFID tags and

NFC specific tags, allowing it to read and write both types of tags. Finally, through

previous testing of the Adafruit shield, the typical read range of this unit was found

to be around 80mm with the Mifare Classic 1k tags described below.

RFID Tags: The tags used in this project are Mifare Classic 1k tags, operating on

the HF range. These tags are manufactured by NXP Semiconductors and are

designed according to the ISO/IEC 14443 Type A standard - a standard for

contactless proximity cards and their transmission protocols [13]. The Mifare tags

are capable of holding up to 1 kb of data in their Electrically Erasable

Programmable Read-Only Memory (EEPROM), which has an endurance rating of

100,000 write cycles [13]. This amount of storage has not been an issue for this

project, as the most data being written to a card is a name and address information.

However, should there be an issue with storage, there are Mifare Classic 4k tags

available with 4kb of EEPROM storage.

A variety of tags were tested throughout the research, including coin, key

fob, credit card, and sticker style tags as shown in Figure 3. The sticker style tags

were used to store the digital address information as they attached easily and

securely to the front of the mail box with their adhesive backing. The card and key

fob style tags were selected for homeowner and postal worker use as these

provided the best read ranges and are the most convenient style to use in daily

life.

Figure 3: RFID tags.

Sensors: The sensor being used for motion detection is a Passive Infrared (PIR)

sensor, as shown in Figure 2, Item C. PIR sensors, like the one in this project, work

by incorporating two infrared sensors to detect a change in infrared radiation - a

type of electromagnetic radiation. Infrared radiation is one way that heat can be

transferred, and it is important to note that nearly everything emits infrared

radiation; anything with a temperature greater than negative 450 degrees

Fahrenheit emits infrared radiation [14],

As mentioned, two of these sensors are actually used behind the lens to

accurately detect movement and prevent false positives from changes in

temperature or sunlight. For example, if there is a change in sunlight hitting the two

sensors, both sensors will be affected at the same time - which will result in no

output from the PIR sensor as each smaller sensor will cancel the other one out.

However, if a person were to walk across the path of the PIR sensor, the two

individual infrared sensors will be affected in a sequence of: first, both, then

second. A sequence like this produces a positive, neutral, then negative output (or

vice versa, depending on which way the subject is moving) [15], A sensor designed

like this is desirable, as it should cut down on false positives.

Finally, the PIR sensor is outfitted with a Fresnel lens to extend the sensor’s

range and detection field. The literature for the PIR sensor claims an effective

range of 21 feet with a detection field of 120 degrees. Tests of these claims were

conducted and are presented in chapter five. The PIR sensor will be connected to

the Arduino, and the Arduino programmed to begin taking photographs with a

camera mounted inside the mailbox once the sensor has been triggered. The

15

camera will continue taking photographs as long as motion is detected, capturing

the person or vehicle that triggered the sensor.

Camera: Two cameras were tested for use with the smart mailbox. The first

camera tested was a Logitech c270 (Figure 2, Item D) - a small, inexpensive USB

webcam. Logitech’s camera is capable of capturing pictures in a resolution up to

1280x720 pixels, or 720p, at a size of up to 3.0 megapixels. More importantly,

however, is the fact that this webcam is compatible with the USB Video Class

(UVC) protocol. UVC is a standardized video driver that dictates how video is

moved from a USB camera to another device, such as an Arduino [16]. Because

the webcam is compatible with UVC, a downloadable utility known as fswebcam

will be installed on the Linux side of the Arduino for use in controlling the webcam.

The fswebcam utility provides a variety of options to set for the camera, which will

be covered with more detail in chapter four.

The second camera tested was from a company called ELP and was

purchased through Amazon. The ELP camera is capable of capturing pictures with

720p resolution at a size of up to 1.0 megapixels and is also compatible with the

UVC protocol. The main difference between this camera and the Logitech,

however, is the addition of a circular Infrared, or IR, LED array around the lens of

the camera. The camera has a light sensor that turns on the IR LEDs once it is

dark, allowing the IR lights to help illuminate the camera’s field of view for better

low light pictures. Chapter four will outline how the two cameras were tested, and

which one ended up being used in the smart mailbox.

The motion sensor and camera will be used together to monitor the

entrance to the home, and alert the owner of any activity. The camera will begin

taking photographs when the motion sensor is tripped. The Arduino will then save

the photographs to the onboard Micro SD card. After storing the photograph on

physical media, a copy will be uploaded to a Dropbox account and then emailed

to the homeowners email, allowing them to receive a copy of the picture on the

smart phone. Not only does this give the homeowner multiple ways to view the

photographs, it also provides backup copies of the media - three different places

in total.

Solenoid: The solenoid used for this project has an armature with a slanted cut,

as seen in Figure 2, Item E. When the solenoid is energized, the armature is pulled

into its housing, allowing the door to open freely. After a set time, the energy to the

solenoid is stopped, and the armature returns to its resting state outside of the

housing. The solenoid is controlled by the RFID reader inside the mailbox. When

a pre-approved tag is read, the Arduino energizes the solenoid, unlocking the door.

Tag IDs for the owner(s) of the mailbox are stored onboard the Arduino, along with

a universal ID for postal worker’s tags. Additionally, whenever the postal worker’s

tag is used to open the mailbox, the owner will be alerted that they have received

Chapter 4: Creating a Smart Mailbox

The bulk of the time spent on this project has been in creating the physical

smart mailbox - the prototype. Once the research into the various pieces of

hardware that would be needed to assemble the prototype was complete, and all

of the various bits and pieces had been acquired, the building of the smart mailbox

began in a piecemeal fashion. Section 4.1 will highlight this process, demonstrating

how the main components are assembled separately of each other and tested for

proper functionality. Following that, section 4.2 will outline how everything is put

together to create the fully functional prototype. Finally, section 4.3 will go over

how all of the hardware was installed in the mailbox.

4.1 Setting up the Individual Components

To begin building the prototype, all of the different components that would

comprise the smart mailbox first needed to be setup and tested, making sure they

worked fine on their own before adding them to the larger picture. This section will

outline how each piece of hardware is connected and set up, along with how its

functionality was tested.

4.1.1 Arduino Yun Setup/Configuration and USB Webcam

The first step in creating the prototype smart mailbox was to prepare the

Yun for its role as the brains of the mailbox. To do this, a computer with WiFi

capabilities is used to connect to the Yun as an access point, then a web browser

is used to open the Yun’s configuration panel. After connecting to the Yun, it is

given a name and then a password is created to secure the board from un-

authorized access over WiFi. After this, the board’s wireless parameters were

configured by setting the name, security type, and password for the personal

wireless network [28] it would be connecting to - this allows for the Yun to connect

automatically to the stored WiFi network.

After successfully connecting the Yun to the network, it was time to update

and install some packages, drivers, and utilities on the Linux side of the board. In

order to accomplish this, a secure shell, or SSH, must be used to connect to the

Linux side of the board and gain access to the command prompt. On the Windows

based machine being used for this project, the software PuTTY was used to

establish a SSH connection [27] [29], After successfully connecting, root access to

the Linux operating system is established by using the password set up in the

configuration panel earlier [29], Using the command prompt, the following actions

were completed:

• Updated the package manager

• Installed the USB Video Class, or UVC, drivers

• Installed the fswebcam utility

The UVC drivers and the fswebcam utility are important for the proper

functioning of the USB webcam [22],

After finishing these updates and installations, it was a good time to test the

cameras to make sure they were going to work properly. In order to do this, each

camera was connected via USB and a Micro SD card inserted in the Yun. The

19

fswebcam utility has a simple command to snap a picture and store it to the Micro

SD card onboard the Yun [37], This command was used to take a few pictures,

then the Micro SD card was removed and a card reader was used to check that

the camera was operating correctly and the images had been saved. Several test

runs were required so that the proper settings could be adjusted following the

documentation at [37]; ultimately the resolution was set to 1280x720 using -r

1280x720 and the banner that displayed the time stamp had to be turned off using

-no-banner. With these small adjustments, the camera was working great.

4.1.2 Connecting the PIR Sensor

The next step in creating the prototype was to wire up the PIR sensor using

a simple circuit on a breadboard to test that it was working correctly. In order to do

this, a red LED light was connected through the digital out of the PIR sensor so

that it would light up when the sensor detected motion [23], The Yun was used to

control these components by uploading some basic code using the Arduino IDE:

Author: Ross Tew
File: PIR__Test. ino
About: Simple test code for the PIR Sensor that lights up a
LED when motion is detected, and turns it off afterwards.
Based on sample code from Adafruit's PIR Sensor guide @ [23]

int ledPin =13; // pin for the LED
int inputPin =8; // input pin for PIR sensor
mt pirState = LOW; // start state, assuming no motion detected
int val = LOW; // variable for reading the pin status

void setup () {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(inputPin, INPUT); // declare sensor as input

delay(60000); // Delay to allow PIR sensor to initialize
// Datasheet suggests 60 seconds

20

void loop(){
val = digitalRead(inputPin) ; // read input value
if (val == HIGH) { // check if the input is HIGH
digitalWrite(ledPin, HIGH); // turn LED ON
// Check the pirState variable to see it if is still LOW,
// which indicates motion was JUST detected
if (pirState == LOW) {

// Change the state to HIGH:
pirState = HIGH;

}
} else { // Digital read is no longer HIGH

if (pirState == HIGH){
digitalWrite(ledPin, LOW); // turn LED OFF
pirState = LOW; // Reseat the state back to LOW

}

}
}

The code in this sketch checks for motion from the PIR sensor using the

digitalReadf) function: when this value is HIGH, that means the sensor has

detected motion and the voltage output of the sensor has been increased to HIGH.

The pir_state variable acts as a control variable since the output voltage from the

sensor will stay HIGH for several seconds, but in the meantime the main loop()

function is still repeating. The plr_state variable prevents the code that should be

executed once when motion is detected from being repeated many times as the

main loop() function repeats by being switched to HIGH at the end of that section

of code. Now, even though the main loop() function is repeating itself and the PIR

sensor is still reporting a voltage of HIGH from the digitalRead() function, the

nested if statement that checks the pir_state variable prevents the code inside this

statement from executing again until the PIR sensor’s voltage drops, and then is

raised again due to a new occurrence of motion. In this specific sketch, the only

action taken is to light up the LED when motion was detected, then turn it off after

the sensor’s voltage dropped back to LOW.

A circuit prototyping software known as fritzing [30] was used to design a

layout digitally before hooking anything up. This fritzing diagram of the simple

circuit can be seen in Figure 4 below.

fritzing

Figure 4: fritzing diagram of PIR sensor testing circuit.

Using the LED light as an indication of the sensor detecting motion

confirmed the PIR sensor was working properly. Next, the PIR sensor and camera

needed to be tested to make sure they worked well with each other. To do this, the

sensor was connected straight to the Yun, the webcam connected via USB, and a

Micro SD card inserted in the board. A simple test sketch was created in the

Arduino IDE and then uploaded to the board:

Author: Ross Tew
File: Cam_and_PIR_Test.ino
About: Code to test the PIR Sensor with the camera. Whenever
motion is detected, the camera takes a picture and stores it to
MicroSD card on board the Yun.
Based on sample code from Adafruit's PIR Sensor guide @ [23]
and their security camera project @ [22]

*/
#include <Bridge.h>
iinclude <Process.h>

Process picture;

String filename; // Variable for picture file name
int pir_pin =9; // pin for PIR sensor input
int led_pin = 13; // LED pin
int pir_state = LOW; // Control variable for PIR's state
int val = LOW; // Variable for storing the digitalRead value of PIR Sensor
String path = "/mnt/sdal/"; // MiniSD card storage location

void setup () {
// Function to start the Bridge - allows communication between the two chips
Bridge.begin ();

pinMode(pir_pin, INPUT); // Declare sensor as input
pinMode (led_pin, OUTPUT); /./ Declare LED as output

delay(60000); // Delay to allow PIR sensor to initialize
// Datasheet suggests 60 seconds

void loop() {
// Read the digital value from the PIR Sensor to see if there is motion:
val = digitalRead(pir_pin);
if (val HIGH) { // A value of HIGH means there was motion
digitalWrite(led_pin, HIGH); // turn the LED on
//If control variable is LOW, motion was JUST detected:
if (pir_state == LOW) {

filename = // Blank filename

// Run a shell command to get the date/time for building unique filename
picture.runShellCommand("date +%s");
while(picture.running());

// Read the results from above and convert the chars:
while(picture.available()>0) {

char c = picture.read();
filename += c;

}

filename.trim();
filename += ".png";

// Run the fswebcam command to take a picture, giving it the unique
// filename from above and saving it to MiniSD card:
picture.runShellCommand("fswebcam —r 1280x720 —no-banner " + path +

filename);
while(picture.running());

// Change the PIR state to HIGH:
pir_state = HIGH;

} else { // Digital read is no longer HIGH
if (pir_state == HIGH){
digitalWrite(led_pin, LOW); // turn LED OFF
pir_state = LOW; // Reseat the state back to LOW

23

}
}

}

The code in this sketch builds on the previous sketch’s code, adding the

required commands to take a picture and store it on the Micro SD card. The

function runShellCommand() is used to execute the fswebcam utility on the Linux

side of the Arduino. Note that a Process must be defined, in this case named

picture, to enable the use of the runShellCommand() function. Process is a class

in the Arduino Bridge library [31] - the library that enables communication between

the Arduino based chip and the Linux based chip on the Yun’s board [31]. Using

this setup, the sensor and camera worked together without issue.

At this point, it was clear the sensor and camera components were working

correctly, so it was time to test the two cameras and see which one would be the

best fit for the project. The same sketch from above was used and the system was

left to run for forty-eight hours in a high traffic area indoors. The same test was

conducted for both cameras and the results are displayed in Table 1. The Logitech

webcam took a total of 2632 pictures over the forty-eight hour period and only five

of these picture were unusable. For this test, an unusable picture was one that was

either blank or had enough artifacts to make it impossible to tell what the picture

taken was of. Section 5.2 will go into more detail about artifacts, including

compression and blocking artifacts. With only five unusable pictures, the Logitech

webcam had a success rate of 99.81%.

Table 1: Results from testing the reliability of two different USB cameras.

Camera Testing

Camera
Usable

Pictures
Unusable
Pictures

Total Pictures
Taken

Success
Rate

Logitech C270
USB Camera 2627 2632 99.81%

ELP USB
Camera w/ IR

Array 1935 541 2476 78.15%

The ELP camera took a total of 2476 pictures over the forty-eight hour

period and 541 of these were unusable. The success rate of the ELP camera was

considerably lower than the Logitech’s at 78.15%. Preliminary testing of this

camera revealed some issues, so it was not too surprising to see these results.

The ELP camera was not as reliable as the Logitech - it was unable to produce

consistent results. As a result of this testing, the camera of choice was the Logitech

C270 webcam.

4.1.3 Connecting the RFID Shield

The next step in the prototyping process was to connect the RFID reader to

the Yun board so that the reader’s functionality could be tested. The RFID unit

being used in the smart mailbox is classified as a shield, as opposed to a breakout

board. The main difference between the two is their form factor - the shield can be

attached to the Yun with stacking headers, while the breakout board needs a circuit

with a level shifter chip before it can be wired to the Yun [32], Having the shield

allowed for almost plug-and-play ease of use, but also meant there would be some

extra effort involved when it came time to mount the shield in the door of the

mailbox, away from the Yun. To begin using the shield, headers needed to be

soldered to the shield’s board so that it could be connected to the Yun. After this,

the male and female headers on the RFID shield and the Yun are lined up and

then pushed into place, connecting the two devices.

The RFID shield came from Adafruit [33], who has created their own

Arduino library for the unit [34], including example sketches. These files were

downloaded and the new library was added to the Arduino libraries folder, then

testing began by using some of the example sketches provided by Adafruit. By

using these sketches, it was possible to see that the shield was working properly

— recognized by the Yun — and that it was able to write and read to and from the

RFID tags without issue.

4.1.4 Wiring the Solenoid to the Yun

The last component to test was the locking solenoid. The solenoid uses a

good bit of power very quickly to engage the electromagnet that retracts the metal

armature into the body. Because of this, it was a little more involved than the other

components as it needed a circuit that provided the solenoid with its own power,

and provided protection to the Yun’s board so that it would not be damaged.

The circuit design for this step of the build process was created using a

breadboard as a temporary means of testing the solenoid before soldering a

dedicated circuit on perfboard. The fritzing circuit prototyping software was used

again to design the initial breadboard connections - the diagram for this design

26

can be seen in Figure 5. The circuit uses a TIP120 transistor, 1k Ohm resistor,

1N4004 diode, and female barrel jack.

fritzjrjg

Figure 5: fritzing diagram of circuit for testing the solenoid.

The circuit was wired up, then a test sketch was created in the Arduino IDE

to test the solenoid’s functionality by powering the solenoid every time the “Enter”

key was pressed on the keyboard of the computer the Yun was connected to.

When the solenoid is powered, the electromagnet retracts the metal armature into

the body of the solenoid, which then allows the door to be opened.

After successfully testing the solenoid, the RFID reader needed to be paired

with it to test their functionality together and make sure the reader could properly

control the solenoid when an authorized tag was read. In order to do this, the

reader was hooked up to the Yun, then another sketch was created in the Arduino

software to power the solenoid when an approved RFID tag was read:

27

/*

Author: Ross Tew
File: RFID_and_Solenoid_Test.ino
About: Used to test the RFID reader and locking solenoid work properly.
RFID reader reads a tag and checks to see if it is approved - if so the
solenoid is unlocked, if not, a message is printed to the console.
Based on example sketches included in Adadfruit's library for their
PN532 shield found @ [34]

*/

iinclude <Wire.h>
finclude <SPI.h>
tinclude <Adafruit PN532.h>

// When using the shield with I2C, define just the pins connected
//to the IRQ and reset lines:
#define PN532_IRQ (6)
#define PN532_RESET (3) // Not connected by default on the NFC Shield

// This line is used for a shield with an I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

void setup(void) {
Serial.begin(115200);
while(!Serial)

pinMode(12, OUTPUT);

Serial.println("Hello!");

nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {

Serial.print("Didn't find PN53x board");
while (1); // halt

}

// Got ok data, print it out!
Serial.print("Found chip PN5"); Serial.println((versiondata»24) & OxFF,

HEX) ;
Serial.print("Firmware ver. "); Serial.print((versiondata»l6) & OxFF, DEC);
Serial.print ('.') ; Serial. println ((versiondata»8) & OxFF, DEC) ;

// configure board to read RFID tags
nfc.SAMConfig();

Serial.println("Waiting for an IS014443A Card ...");
}

void loop(void) {
uint8_t success;
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on IS014443A

card type)
uint32_t cardID = 0;

// Wait for an IS014443A type cards (Mifare, etc.):
success = nfc.readPassiveTargetID(PN532_MIFARE_IS014443A, uid, SuidLength);

28

if (success) {
Serial.println("Found an IS014443A card");

// turn the four byte UID of a mifare classic into a single variable #
cardID = uid[3];
cardID «= 8; cardID |= uid[2];
cardID «= 8; cardID | = uid[l];
cardID «= 8; cardID |= uid[0];

}
else
{

// PN532 probably timed out waiting for a card
Serial.println("Timed out waiting for a card");

}

if(cardID == 1072309060 || cardID == 3492602243){
Serial.println("Access granted!");
digitalWrite(12, HIGH); // turn the LED on (HIGH is the voltage level)
delay(3000); // wait for 3 seconds
digitalWrite(12, LOW); // turn the LED off by making the voltage LOW

else {
Serial.println("Access DENIED!");

}

Serial.println ("");
// Wait 1 second before continuing
delay(1000);

}

The sketch for this test constantly checks for a RFID tag and the main loop()

function is actually held up until one is found. The function that does this is

readPassiveTargetlD() which controls the RFID reader and has it constantly

searching for a tag within its read range. Once a tag is found, the tag number is

converted from hexadecimal to an unsigned integer and stored in the cardID

variable. The cardID is checked to see if it matches any approved identification

numbers, and if so the solenoid is powered on for three seconds opening the latch.

Once this was confirmed to be working properly, this phase of the project was

complete.

4.2 Combining the Components into One System

The next step of the project was to assemble the prototype by combining all

of the components into one system where they all worked alongside each other.

This would involve some more work with the hardware, such as modifying some

of the circuits, but would also include a lot more work on the software side of the

project. The final design of the system that dictated how these different pieces

worked together both physically and digitally can be seen in the flowchart in Figure

6. The flowchart represents the goal of this phase of the project. This section will

present an overview of how everything came together into one unit.

4.2.1 The Wiring and Circuits

The first issue that needed to be addressed was the need for the RFID

shield to be mounted in the door of the mailbox separate of the Yun. The RFID

shield was intended to be stacked on the Yun through the headers soldered to the

board, which meant wires would need to run from the male header pins on the

shield to the female header sockets on the Yun’s board. As this is a prototype, the

ability to disconnect the shield if needed was important, so jumper wires were used

to plug into the header pins on the RFID shield. Flowever, jumper wires were not

long enough to run the length of the mailbox, so solid copper hookup wire was

soldered to the ends of the jumper wires so they could reach and be inserted into

the female headers on the Yun. This setup allowed the RFID reader to be

connected and disconnected as needed.

The next issue that needed addressing was the circuit for the solenoid and

the need to share power and ground connections from the Arduino board. The

solution to these two issues was to use two simple circuits on one small piece of

perfboard. The circuit designed for the solenoid on the breadboard from section

4.1.4 was transferred to the perfboard, then another area of the perfboard was

used to share 5V power and ground from the Arduino for the RFID shield and PIR

sensor. A fritzing diagram for the perfboard can be seen in Figure 7. With these

31

issues resolved, only a few simple connections remained and all of the hardware

was complete and ready to go.

To 5v Pin on RFID Shield

Figure 7: fritzing diagram of completed perfboard circuit.

4.2.2 The Software Side

To outline the software side of the project, section 4.2.2.1 will first go over

the internet-based applications, Gmail and Dropbox, being used in this project and

how they are controlled by the smart mailbox. The section following will provide an

overview of the Arduino and Python code used to control the system.

4.2.2.1 Accounts, Authorizations, and Temboo

The two internet based utilities that were needed for this project were email

and cloud storage. Google’s Gmail is used for email, while Dropbox is being used

for cloud storage. To help simplify the use of these online applications, the “cloud-

based code generation platform” known as Temboo [17] would be used: Temboo

worked as a middleman between the smart mailbox’s code and the Gmail and

32

Dropbox APIs. This allowed the use of Temboo’s Python Software Development

Kit, or SDK, to write short, simple code that could send an email, send an email

with a picture attached, and upload a picture to Dropbox.

The first step of this process was creating accounts for Temboo, Gmail, and

Dropbox. After this, the developer options for Google and Dropbox were used to

create “Apps” that Temboo would have access to [22], The trickiest part of this

process was setting up the correct authorization and keys to be used between the

different apps and Temboo; fortunately the Temboo website shows users how to

do this [22], After all of this was successfully set up, it was time to finalize the code

for the project.

4.2.2.2 Arduino and Python Code

The final code for the smart mailbox consisted of one Arduino sketch and

two Python scripts. To create the final Arduino sketch, the test sketches used in

section 4.1 were assembled into one main sketch, modifying them as needed so

everything would work properly together. The structure of the Arduino sketch

consists of one main loop in the code, as is typical in these sketches, with two main

if statements to control the flow of the program:

/*
Author: Ross Tew
File: YunFinalCodeV3.1.ino
About: Final code for smart mailbox - this controls the PIR
sensor, camera, RFID reader, and locking solenoid. Uses two Python
scripts - upload_send_picture.py and mailbox_opened.py - that
work with Temboo to send emails and upload files to Dropbox.
Parts of code based on the Adafruit project @ [22]
along with example sketeches included in their library for the PN532
shield found @ [34]

*/
#include <Bridge.h>

#include <Process.h>
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_PN532.h>

// When using the shield with I2C, define just the pins connected
// to the IRQ and reset lines:
tdefine PN532_IRQ (6)
#define PN532_RESET (3) // Not connected by default on the NFC Shield

// This line is used for a shield with an I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

// Define a process to use for running linux processes on the AR9331 chip:
Process linuxProcess;

// Setting up variables:
String filename;
int pir_pin =8; // PIR Sensor's output is connected pin 8
int pir_state = LOW; // Control variable for PIR's state
int pir_val = LOW; // Variable for storing the digitalRead value of PIR Sensor
int sol_pin =12; // Solenoid controled by pin 12
int led_pin =13; // Red LED light on Yun board
String path = "/mnt/sdal/"; // MiniSD card storage location

void setup() {
// Function to start the Bridge - allows communication between the two chips
Bridge.begin();

// Set the pin modes for the PIR, solenoid, and LED:
pinMode(pir_pin, INPUT);
pinMode(sol_pin, OUTPUT);
pinMode(led_pin, OUTPUT);

// Start the RFID/NFC shield:
nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {
while (1); // halt

}

// Set the max number of retry attempts to read from a card
// This prevents waiting forever for a card, which is
// the default behaviour of the PN532.
nfc.setPassiveActivationRetries(1);

// configure board to read RFID/NFC tags
nfc.SAMConfig();

// The main logic for that controls the mailbox, constantly repeating:
void loop() {

// Read the digital value from the PIR Sensor to see if there is motion:
pir_val = digitalRead(pir_pin);
if (pir_val == HIGH) { //A value of HIGH means there was motion
digitalWrite(led_pin, HIGH); // Turn on red LED
// If control variable is LOW, motion was JUST detected:
if (pir_state == LOW) {

filename = // Blank filename

34

// Run a shell command to get the date/time for building unique filename:
linuxProcess.runShellCommand("date +\"%G%m%d%H%M%S\"");
while(linuxProcess.running());

// Read the results from above and convert the chars:
while(linuxProcess.available()>0) {

char c = linuxProcess.read() ;
filename += c;

filename.trim();
filename += ".png";

// Run the fswebcam command to take a picture, giving it the unique
filename

// from above and saving it to MiniSD card:
//linuxProcess.runShellCommand("fswebcam -r 1280x720 —no-banner " + path

+ "'date +\"%G%m%d%H%M%S\"'.png");
linuxProcess.runShellCommand("fswebcam -r 1280x720 —no-banner " + path +

filename);
while(linuxProcess.running());

// Run the python script that uploads/emails the picture:
linuxProcess.runShellCommand("python " + path + "upload_send_picture.py "

+ path + filename);
while(linuxProcess.running()) ;

pir_state = HIGH;
}

} else {
if (pir_state == HIGH) {
digitalWrite(led_pin, LOW); // Turn LED off
pir_state = LOW; // Reset control variable back to LOW

}
}

// Set up variables to use with RFID reader:
uint8_t success;
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes

depending on IS014443A card type)
uint32_t cardID = 0;

// Check twice (first time, then one retry as set in setup()) for an
IS014443A

// type card (Mifare, etc.). If one is found, the 'uid'
// will be populated with the UID, and uidLength will indicate
//if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_IS014443A, uid, SuidLength);

if (success) {
// turn the four byte UID of a mifare classic into a single variable #
cardID = uid[3];
cardID <<= 8; cardID |= uid[2];
cardID <<= 8; cardID |= uid[l];
cardID <<= 8; cardID |= uid[0];

}

// Check if card is homeowner's, if so, open the lock:
if(cardID == 1072309060){

35

digitalWrite(12, HIGH); // Energize the solenoid to retract the lock
(HIGH is the voltage level)

delay(5000); // wait for 5 seconds
digitalWrite(12, LOW); // Cut the power to the solenoid off by making

the voltage LOW, lock pops back up
}

// Check if card is Postal Worker's, if so open lock and send message:
if(cardID == 3492602243)(

digitalWrite(12, HIGH); // Energize the solenoid to retract the lock
(HIGH is the voltage level)

// Run python script to send email alert:
linuxProcess.runShellCommand("python " + path + "mailbox opened.py");
while(linuxProcess.running());

delay(3000); // wait for 3 seconds
digitalWrite (12, LOW); // Cut the power to the solenoid off by making

the voltage LOW, lock pops back up
}

}// End of main loop

One issue that arose when the various bits of code were combined had to

do with the default settings for the PN532 chip in the RFID reader. Preliminary

testing revealed the program was getting stuck when the RFID reader was

checking to see if a RFID tag was present with the readPassiveTargetlD() function.

This halt in the program’s execution was not allowing the PIR sensor to check for

motion until after a RFID tag was presented, and even then the program’s

execution would halt again as soon as the main loop() function came back around

to readPassiveTargetlD(). The Adafruit library for the RFID reader provided some

insight into the issue: the default set up for the reader was to wait indefinitely for a

RFID tag, continuously scanning until one was found. Fortunately, the library

included a setup parameter setPassiveActivationRetries() that could be included

in the Arduino’s setup() function that allows the user to specify the number of retries

the reader should attempt before moving on. Adjusting this setting fixed the issue

and the mailbox was working as desired.

36

As mentioned, there are two Python scripts which are stored onboard the

Micro SD card and used by the Linux side of the Yun. The first script,

upload_send_picture.py, is used when a picture is taken with the USB camera:

Author: Ross Tew
File: upload_send picture.py

About: Script used to execute two Temboo Choreos, one
to send an email with an emage attachment, and another
to upload an image to Dropbox. Adapted from Adafruit's
guide @ [22]

import base64
import sys
Import the needed libraries from the Temboo Python SDK
from temboo.core.session import TembooSession
from temboo.Library.Dropbox.FilesAndMetadata import UploadFile
from temboo.Library.Google.Gmailv2.Messages import SendMessage

print str(sys.argv[1])

Image needs to be encoded into base64 for uploading:
with open(str(sys.argvfl]), "rb") as image^file:

encoded_string = base64.b64encode(image file.read())

Create a "session" with Temboo credintials:

session = TembooSession('jrtew', 'myFirstApp', '**********?)

Create the first "Choreo" for uploading a file:

uploadFileChoreo = UploadFile(session)
uploadFilelnputs = uploadFileChoreo.new input set()

Set the parameters for Temboo to use for the upload file Choreo:

uploadFilelnputs .set AppSecret (''**********")
uploadFilelnputs . set AccessToken (''**********")
uploadFilelnputs.set_FileName(str(sys.argv[1]))
uploadFilelnputs. set_AccessTokenSecret (''**********»)
uploadFilelnputs .set AppKey (''**********")
uploadFilelnputs.set_FileContents(encoded string)
uploadFilelnputs.set_Root("sandbox")

Execute the Choreo:

uploadFileResults = uploadFileChoreo.execute__with_results(uploadFilelnputs)

Repeat the same as above but for the send message Choreo:

sendMessageChoreo = SendMessage(session)
sendMessagelnputs = sendMessageChoreo.new input set()

Set paratmeters:

sendMessagelnputs.set_AttachmentContentType("image/png")
sendMessagelnputs.set_AttachmentFileContent(encoded string)
sendMessagelnputs.set_AttachmentFileName(str(sys.argv[l]))
sendMessagelnputs.set_ClientID("552863990646-
9urgopavnoumrc29opj Osmjld7 fiqfpc.apps.googleusercontent.com")

sendMessagelnputs.set_ClientSecret(''**********")
sendMessagelnputs.set_From("tew__j onathan@columbusstate.edu")

37

sendMessagelnputs.set_MessageBody("Motion detected, picture taken.")
sendMes sage Inputs .set Ref reshToken (''**********")

sendMessagelnputs.set_Subject("Motion Alarm Activated")
sendMessagelnputs.set_To("tew_j onathangcolumbusstate.edu")

Execute Choreo:
sendMessageResuits = sendMessageChoreo.execute_with_results(sendMessagelnputs)

After the picture is stored onboard, the script runs, passing the image data

along with the account information through Temboo, which then sends an email

with the picture as an attachment and uploads it to Dropbox.

The second script, mailbox_opened.py, runs after a Postal worker is

positively identified as opening the mailbox with their RFID tag:

Author: Ross Tew
File: mailbox_opened.py
About: Script used to execute a Temboo Choreo for
sending an email notification that the mailbox has
been opened by a Postal Worker.

import sys
Import the needed libraries from the Temboo Python SDK
from temboo.core.session import TembooSession
from temboo.Library.Google.Gmailv2.Messages import SendMessage

Create a "session" with Temboo credintials:
session = TembooSession('jrtew', 'myFirstApp', '**********')

Create a "Choreo" for sending a message through Temboo:
sendMessageChoreo = SendMessage(session)
sendMessagelnputs = sendMessageChoreo.new input set()

Set the parameters for Temboo to use for the send message Choreo
sendMessagelnputs.set_ClientID("552863990646-
9urgopavnoumrc2 9opj Osmjld7fiqfpc.apps.googleusercontent.com")
sendMessagelnputs . set_ClientSecret (''**********")
sendMessagelnputs.set_From("j rtew2@gmail.com")
sendMessagelnputs.set_MessageBody("A U.S. Postal Service employee has opened
your mailbox.")
sendMessagelnputs . set_Ref reshToken ("*******'***»)
sendMessagelnputs.set_Subject("You've got mail!")
sendMessagelnputs.set_To("tew_j onathangcolumbusstate.edu")

Execute the Choreo:
sendMessageResults = sendMessageChoreo.execute_with_results(sendMessagelnputs)

This script passes the Temboo account information along with the desired

Gmail information to Temboo, which then triggers an email to be sent that will notify

the user a Postal worker has opened their mailbox. This script is very similar to the

second half of the upload_send_picture.py script, using Temboo to send a simple

Gmail message.

4.3 Installing the Hardware

The last step for creating the prototype was to install all of the hardware

inside the mailbox. One important consideration when choosing the mailbox to use

for the prototype was the material it was made from. The RFID reader was to be

mounted inside the door of the mailbox, so it was important the material of the door

allowed for reading RFID tags through it. The majority of mailboxes are either metal

or plastic, so a plastic mailbox was selected from a local home improvement store.

The metal mailboxes would have interfered with the RFID readers signal,

potentially preventing it from reading any tags through the door.

A product called 3M Dual Lock [38] was used to attach the RFID reader and

the solenoid to the inside of the mailbox door, as shown by Figure 8. The Dual

Lock fastens the reader and the solenoid securely to the door, but also allows them

to be removed and re-attached easily - especially useful for the solenoid so that it

could be removed for testing.

Two holes were created in the side of the mailbox to allow the camera and

the PIR sensor to “look” out from inside. Figure 9 shows how the mailbox looks

with the holes on the side. The bigger hole for the camera has a sheet of Plexiglas

behind it to protect the camera. Additionally, two small holes were created in the

back left corner of the mailbox to allow power cables to pass through for the

Arduino and the solenoid. The Arduino and the perfboard circuit were placed in the

back left corner of the mailbox.

Figure 8: RFID reader and solenoid mounted inside mailbox door.

Figure 9: PIR sensor (left) and camera (right).

40

Finally, an aluminum bracket in the shape of an “L” was created and

mounted to the roof of the mailbox, which can be seen in Figure 10. This bracket

catches the locking armature part of the solenoid and keeps the door from being

opened unless the solenoid retracts its armature.

Figure 10: Aluminum bracket for locking the door.

With all of the hardware and software squared away at this point, the smart

mailbox prototype was up and running. The next step in the research would be to

begin testing and evaluating the prototype to make sure that it functioned properly

and to work out any bugs that may arise through these tests and evaluations.

Chapter 5: Testing and Evaluation

Multiple tests were performed on the prototype to determine how well it

worked. These tests focused on the following areas:

• Effectiveness of the PIR sensor

• Success rate of the picture upload/email and the mailbox opened

notification systems

• The average time it takes to:

o Upload a picture and notify the homeowner of visitors/intruders

o Notify the homeowner of a mailbox opening.

5.1 PIR Sensor Effectiveness

The effectiveness of the PIR sensor was determined by testing both the

maximum distance it could detect a human, along with the maximum angle it could

detect a human. These two tests provided a way to compare how close the PIR

sensor performs to the manufacturer’s claims in a real-world setting.

Figure 11, Diagram A depicts how the maximum detection distance was

tested. The sensor was set up outdoors with an LED light attached to it that lit up

when motion was detected. The manufacture states a maximum detection distance

of 21 feet, so the test subject started off at a distance of 30 feet and began walking

towards the sensor. Once the LED lit up, indicating the PIR sensor had detected

the subject, the distance was marked, then measured from the sensor. This test

was repeated ten times, at the end of which the mean of the ten distances was

taken. Table 2 shows the results from this testing. The resulting mean from these

42

tests was 152.9 inches, or twelve feet and 8.9 inches. The datasheet for the sensor

claims a maximum detection distance of twenty-one feet [24], so the results here

show a shorter actual detection distance. One thing to note: the PIR sensor’s

sensitivity potentiometer was turned down some in an effort to help decrease false

positive detections while using the sensor outdoors - this likely decreased the

maximum detection distance somewhat.

Figure 11: Diagram A - Testing the maximum detection distance of the PIR sensor. Diagram B -

testing the maximum detection angle of the PIR sensor.

To determine the maximum detection angle, a similar test was performed

as above and is depicted in Figure 11, Diagram B. The sensor was again set up

outdoors, with an LED attached to notify when it had detected movement. The PIR

manufacturer claims a detection angle of 120 degrees, so the test subject started

at a distance equal to half the maximum detection distance from the previous test

and an angle of 130 degrees. The subject walked parallel to the sensor until the

43

LED lit up, after which the spot where the subject was standing was marked and

the angle of detection was measured. The test was repeated ten times, and then

the mean of all ten results was taken. The results from this testing are shown in

Table 3. The mean of the angles measured was 94.6 degrees, while the datasheet

states a maximum detection angle of 120 degrees [24],

Table 2: Results from maximum distance
testing of PIR sensor.

Table 3: Results from maximum detection
angle of PIR sensor.

PIR Sensor Maximum
Detection Distance Testing
Test# Detection Distance

1 147"

107"

144"

167"

152"

165"

163"

8 148"

9 193"

10 143"

Mean: 152.9" or 12' 8.9"

5.2 Success Rate Evaluations

The focus of these tests will be to determine how reliable the system is in

terms of the internet connected applications used in the smart mailbox. The system

needs to be reliable whenever a picture is taken, then uploaded to Dropbox and

44

emailed as an attachment using Gmail, and when an email notification is sent

through Gmail that a postal worker has opened the mailbox. The testing in this

section will focus on the success rate of the system by determining how often these

tasks fail.

To test the picture upload/email success rate, a test subject triggered the

system to upload/email a photograph of them twenty different times. Throughout

this test, two issues were monitored: how many times, if any, the picture failed to

upload/email and how many times, if any, the picture was uploaded/emailed with

any compression artifacts. Compression artifacts would indicate a loss of data [35]

when the image is compressed to store on the Micro SD card. The most common

of these compression artifacts is the blocking artifact, which is also the most

noticeable [35], A great amount of these artifacts may render the image unusable

- something that must be avoided in this type of application. If there were enough

compression artifacts to render the image unusable, it was marked as a failure.

Testing the email notification from the RFID system was done in a similar

way: this feature was invoked using an RFID tag with the postal worker ID twenty

different times. Any notifications that failed to work correctly were kept track of.

After all these tests were complete, the success rate for each test was

calculated by dividing the number of successful uploads or notifications by the

number of attempts. Table 4 and Table 5 show the results from both tests. Both

sets of tests revealed a one hundred percent success rate, proving the reliability

of these systems in the smart mailbox.

45

Table 4: Success rate results of picture
upload/email system.

Picture Upload/Email
Success Rate

Test#

1

8

10

11

12

13
14
15
16
17
18
19
20

Successful (Yes/No)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Success Rate: 100%

Table 5: Success rate results of email
notification for mailbox opened system.

Email Notification Success
Rate

Test#

1

10

11

12

13
14
15
16
17
18
19
20

Successful (Yes/No)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Success Rate: 100%

5.3 Performance Time Evaluations

The testing in this category will be directed at how long it takes the system

to perform two of its main tasks: capturing/saving/uploading/emailing a photograph

and sending an email notification that the mailbox has been opened by a postal

worker.

The process for testing these two tasks was straight forward: the 40 tests

from the previous sub-section (20 tests for the picture system, 20 tests for the RFID

email notification) were timed, averaging the time it took for each of the tasks. In

order to obtain consistent start and stop times, a red LED on the Arduino board

that is programmed to light up when the PIR sensor detects motion was used for

the start of the timer. The timer was stopped once the email was received and the

picture appeared in Dropbox. For the RFID email notification, the click of the

solenoid retracting was used to start the timer, and the timer was stopped once the

email was received. A laptop running Windows 8.1 and connected to the internet

over WiFi was used as the device to check the emails and Dropbox.

The results for the picture processing test are shown in Table 6. The time it

took for the picture to be emailed and uploaded ranged from just under twelve

seconds to just over twenty-two seconds, with most results being on the lower end

of that range. The mean of all twenty tests worked out to be exactly thirteen

seconds. The results for the email notification test are shown in Table 7. These

times were quicker, ranging from around two seconds up to around twelve

seconds. The mean of these twenty tests worked out to be 6.20 seconds.

These tests may not represent how every user would experience the

system, as there are a wide variety of factors that play a part in its speed: home

internet connection speed, modem, router, and hardware on the device receiving

47

the notifications (cell phone, tablet, PC, etcetera) just to name a few. However,

these tests give a solid indication of the typical time it will take for these different

tasks to be accomplished by the system.

Table 6: Results from time evaluations for
picture upload/email system.

Table 7: Results from time evaluations for
mailbox opened email notification system.

Time Taken to
Upload/Email Picture

Mean: 13.00 Seconds

Time Taken to Email Mailbox
Opened Notification

Mean: 6.20 Seconds

Testing the time it takes for the system to perform these tasks was

important, so that the user would be able to receive the different notifications as

quickly as possible. The results from this testing proved that there were no serious

delays from the use of any of the technologies being used. The resulting times are

believed to be adequately fast for the two tasks.

5.4 False Positive Detection Testing

The focus of these tests will be to determine how reliable the system is in

terms of false positive motion detection. As discussed under Sensors in section

3.2, the PIR sensor is designed in a way to cut down on false positives due to

issues such as temperature swings and changes in sunlight. However, this does

not mean the sensor is perfect. The tests in this section will show whether or not

the PIR sensor is well suited for the task of detecting people passing by the mailbox

so the camera can take a picture of any visitors or intruders.

In order to test the PIR sensor’s ability to perform in real-world conditions,

the system was set up in an outdoor environment that provided plenty of different

conditions: temperature changes, sunlight changes, movement from small wildlife

(e.g., birds), and windy conditions that may disturb surrounding foliage. These

conditions provided plenty of opportunities for a false positive from the sensor. The

mailbox was placed at an appropriate height of forty-three inches, which falls

between the United States Postal Service’s recommended guidelines for mailbox

installations that dictate a height of forty-one to forty-five inches from the ground

[36]. The plan for keeping track of the sensor’s performance was to leave the

49

system in place for forty-eight hours, recording any motion capture the system

picks up through the pictures stored on the Micro SD card. The picture file names

are the date and time to the second for when motion was detected, which allows

the ability to keep track of when a specific picture was taken just by looking at the

file name. After the forty-eight hours was up, the plan was to study the pictures for

any false positives - a picture with no one in the frame to trigger the motion

detection system. A record was kept for the number of false positives, actual

human detections, and total number of detections.

After the first thirty-three hours of the test, the Micro SD card was checked

to see how the system was performing. Unfortunately, it was decided to cut the

test short as a result of this check. The results are displayed in Table 8. Based on

these results, it was clear the PIR sensor was not suited for use outside. The

conditions during the testing period were a mix of clear skies and light cloud

coverage, along with consistent, moderate wind which was most likely the main

factor for the large number of false positives. The results from this testing were

disappointing.

To confirm that the poor results of this testing were indeed caused by the

outdoor setting, the mailbox was set up indoors in a low traffic area for forty-eight

hours. The mailbox was checked on several times throughout this test. After

reviewing the pictures stored on the Micro SD card, it was clear the only times the

PIR sensor was triggered was during these checks. The results from the indoor

test are shown in Table 9. The indoor testing proves the PIR sensor being used in

50

the mailbox is indeed unfit for outdoor applications. This is disappointing, as the

sensors are not marked as “Indoor Only”, or make any mention of that. Upon closer

inspection of the datasheet for the sensor, it does, however, mention that wind and

light may cause problems. A sensor designed to work outdoors will be a necessity

for the mailbox.

Table 8: Outdoor testing results for false positive motion detection.

False Positive Testing of Motion Detection System - Outdoors
False Positive Detections Human Detections Total Detections

931 937

Chapter 6: Conclusions and Directions for Future Work

The goal for this project was to create a prototype for what is considered a

smart mailbox, while also incorporating the idea of a digital address. This goal has

been reached, as outlined by this paper which demonstrates that these different

components and systems can be combined together to create one cohesive

system that may be used for address digitization, mail notification, and home

surveillance.

However, it must be noted that there is one caveat to this: a motion sensor

designed to be used outdoors must be found and substituted for the model used

in this project. Due to time and financial constraints, a suitable sensor was not able

to be found before the close of this project. Sensors designed to work in outdoor

motion sensing flood lights or drive way alarms may prove to be the right match.

If this project were to be continued, the next phase would be to focus on the

sensor as the number one priority. The second priority would likely be Temboo.

Temboo has worked well for this project so far, as it helped to simplify and

streamline some of the work in regards to working with the Gmail and Dropbox

APIs. However, this is an area that could be improved by working with those APIs

directly and cutting out the middleman - Temboo. Another reason for this is the

free version of Temboo only allows 250 choreo runs per month, where a choreo

run is considered a request to their severs to perform a task such as sending an

email or uploading an item to Dropbox. Every time the smart mailbox takes a

picture, two of these choreo runs are used, which adds up fast.

52

Finally, the physical appearance of the mailbox could use some refinement

- especially the interior. The wiring from the RFID reader and the solenoid could

be run under a false floor to the back of the mailbox. An interior wall could be built

to house the Yun, camera, and sensor out of view when the door was opened.

These changes would result in a more aesthetically pleasing design, and, more

importantly, an even better functioning smart mailbox.

Bibliography:

[1] A. Ustundag, E. Cevikcan, “Vehicle route optimization for RFID integrated
waste collection system, International Journal of Information Technology &
Decision Making”, vol 7-4, 611-625, Dec. 2008.

[2] C. Albanesius, “Amazon testing drone delivery system”, PC Maqazine 9-
11, Jan. 2014.

[3] E. Fish, “Do it yourself with arduino: what it is, how to get started”, PC
World, vol 29-11, 20-21, Nov. 2011.

[4] “Mr. Postman”, Simple Elements, accessed June 9, 2016,
http://simpleelements.us/2.0/mr-postman/.

[5] “Method and system for tracking and processing items in personal
mailbox”, Patents, accessed June 10, 2016,
https://www.google.com/patents/US8238602.

[6] J. Simpson, “Passive infrared technology”, EC&M Electrical Construction
& Maintenance, vol 113-9, C12-C14, Sept. 2014.

[7] L.E. Ferreras, “The driverless city”, Civil Engineering, vol 84-3, 52-55 Mar
2014.

[8] S. Cendrowski, “Alibaba to test drone delivery in three cities”,
Fortune.com, Feb. 5, 2015.

[9] “Drones could soon be delivering mail in the land down under”, Fortune,
last modified April 15, 2016, http://fortune.com/2016/04/15/australia-post-drone-
delivery/.

[10] “NXP Tools”, NXP Semiconductors, accessed June 9, 2016, https://nxp-
rfid.com/tools/.

[11] “Two in three phones to come with NFC in 2018”, NFC World, last
modified February 12, 2014, http://www.nfcworld.com/2014/02/12/327790/two-
three-phones-come-nfc-2018/.

[12] Flaselsteiner, Ernst, and Klemens BreitfuB, "Security in near field
communication (NFC)", in Workshop on RFID Security, 2006, pp. 12-14.

[13] "MIFARE—Standard Card IC—MF1 IC S50 Functional Specification",
Philips Semiconductors—Product Specification—Revision 5.1, 2001, pp. 1-19.

[14] J. Lucas, “What is infrared?”, Live Science, last modified March 26, 2015,

http://www.livescience.com/50260-infrared-radiation.html.

[15] “How infrared motion detector components work”, Glolab Corporation,
accessed June 9, 2016, http://www.glolab.com/pirparts/infrared.html.

[16] E. Huang, “An explanation of the USB Video Class (UVC)”, Synopsys last
modified December 6, 2012,

https://blogs.synopsys.com/tousbornottousb/2012/12/06/an-explanation-of-the-
usb-video-class-uvc/.

[17] Temboo, accessed June 9, 2016, https://temboo.com/.

[18] “Adafruit CC3000 WiFi Shield”, Adafruit, accessed July 1, 2016,
https ://www. ad afru it. com/prod ucts/1534.

[19] “Weatherproof TTL serial JPEG camera”, Adafruit, accessed July 1,2016,
https://www.adafruit.com/products/613.

[20] “RS-232 vs. TTL serial communication”, SparkFun Electronics, last
modified November 23, 2010, https://www.sparkfun.com/tutorials/215.

[21] “Mr. Postman - the smart, secure, wi-fi enabled mailbox”, Kickstarter,
accessed July 8, 2016, https://www.kickstarter.com/projects/1033096239/mr-
postman-the-smart-secure-wi-fi-enabled-mailbox?ref=search.

[22] M. Schwartz, “Wireless secuirty camera with the Arduino Yun”, Adafruit,
accessed July 12, 2016, https://learn.adafruit.com/wireless-security-camera-
arduino-yun?view=all.

[23] L. Ada, “PIR motion sensor”, Adafruit, accessed July 12, 2016,

https://learn. adafruit. com/pir-passive-infrared-proximity-motion-senso'r?view=all.

[24] “HC-SR501 PIR motion detector”, Datasheet, pp.1-3.

[25] “RFIDuino lock box getting started guide”, Robot Geek, accessed July 8,
2016, http://learn.robotgeek.com/getting-started/41-rfiduino/178-rfiduino-lock-
box-getting-started-guide.html.

[26] “Arduino Yun”, Arduino, accessed July 1, 2016,
https://www.arduino.ee/en/Main/ArduinoBoardYun.

[27] S. Tatham, “PuTTY: a free SSH and telnet client”, last modified March 10,
2016, http://www.chiark.greenend.org.uk/~sgtatham/putty/.

[28] “Getting started with the Arduino Yun”, Arduino, accessed July 1, 2016,
https://www.arduino.ee/en/Guide/ArduinoYun.

[29] S. Nasir, “Access Linus server of Arduino Yun with PuTTY”, last modified
March 17, 2015, http://www.theengineeringprojects.com/2015/03/access-linux-
server-arduino-yun-putty.html.

[30] fritzing, accessed July 12, 2016, http://fritzing.org/home/.

[31] “Bridge library for Yun devices”, Arduino, accessed July 12, 2016,
https://www.arduino.cc/en/Reference/YunBridgeLibrary.

[32] “PN532 NFC/RFID controller breakout board - v1.6”, Adafruit, accessed
July 12, 2016, https://www.adafruit.com/products/364.

[33] “Adafruit PN532 NFC/RFID controller shield for Arduino + extras”, Adafruit,
accessed July 12, 2016, https://www.adafruit.com/products/789.

[34] “Arduino library for SPI and I2C access to the PN532 RFID/near field
communication chip”, GitHub, last modified May 27, 2016,
https ://g ith u b. com/ad afru it/Ad af ru it- P N 532.

[35] M. Shen, C. Kuo. "Review of postprocessing techniques for compression
artifact removal." Journal of Visual Communication and Image Representation 9
no. 1, 1998, pp. 2-14.

[36] “Mailbox guidelines”, United States Postal Service, accessed July 12,
2016, https://www.usps.com/manage/mailboxes.htm.

[37] P. Heron, “Ubuntu manuals - fswebcam”, Ubuntu Manpage Repository,
accessed July 1, 2016,
http://manpages.ubuntu.eom/manpages/xenial/en/man1/fswebcam.1 .html.

[38] “3M Dual Lock reclosable fasteners”, 3M, accessed July 12, 2016,

http://solutions.3m.com/wps/portal/3M/en_US/Adhesives/Tapes/Brands/Dual-
Lock-Reclosable-Fasteners/.

	ADDSMART: Address Digitization and Smart Mailbox with RFID Technology
	Recommended Citation

	ADDSMART: Address Digitization and Smart Mailbox with RFID Technology

