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Abstract 

The study of complex systems examines the global behavior of a system and how the 

individual parts of the system affect that behavior [1]. The study of complex systems spans 

across many fields of science like biology, physics, engineering, and computer science. One area 

of complex systems that has not been fully explored is cellular automata. Since its discovery by 

John von Neumann, there have been no consistent ways of categorizing similarities between 

cellular automata rules or collecting similar rules for observation. This thesis introduces an 

approach to identifying clusters of similar rules and extracting rules from that cluster. Several 

similarity measures were developed to establish similarity between rules. All similarity measure 

approaches are outlined in this thesis, but only one was selected for determining similarity in this 

approach. Based on a partitioning of the rule space, this approach uses lo and h with their 

inherent primitives p0 and pi to obtain a cluster identification string [5], The cluster Id. is 

determined by the output of the surrounding neighbors of any rule in the cluster. This cluster Id. 

can be used to produce a set of rules, all yielding the same or similar output. 



1 Introduction 

Cellular automata can be classified as simple systems with deterministic input. However, 

these systems can generate complexity in their output. Cellular automata can appear in several 

dimensions depending on initial input. The formula for 1-dimensional cellular automata rule 

space creation is /cfc(2r+1) where k is the number of states and r is the radius of cells to examine on 

both sides. The elementary cellular automata rule space uses k = 2 (binary: 0, 1) and r = 1 (three 

cells to use: central, left, and right). The elementary rule space is 22(2(1) +1) = 256. By moving to 

the next radius size of 2, the rule space jumps from 256 rules to 22(2(z)+1) = 22$ = 4,294,967,296 

rules. With such a large space, traversal and examination have been limited to random sampling. 

Initially, cellular automata were thought to have random distribution on the space; however, 

recent work has shown that partitioning the space into a partially ordered system creates clusters 

of similar rules [2] [5]. To the best of our knowledge, no application or methodology for 

collecting similar rules exists. This thesis uses the foundation of rule partitioning [5] to develop a 

framework for collecting similar rules. This framework allows any similarity measure to be 

employed for determining rule similarity on the premise that the chosen similarity measure for 

this thesis can be improved upon, or replaced completely, to insure a more accurate similarity 

measure. 



2 Cellular Automata 

Wolfram classified cellular automata rules into one of four classes: Class 1, 2, 3, and 4 

[9], Class 1 is a uniform or homogenous state. Class 2 is a semi-uniform state where localized 

patterns may appear, yet they are simplistic. Class 3 is a random state of disordered output. Class 

4 is a complex state. Class 4 can be seen as a mixture of both Class 2 and Class 3, where there 

are seemingly semi-uniform patterns and random patterns. Wolfram describes Class 4 as an 

“intermediate phenomenon” [8], Below are examples of these classes: 

Figure 1 - From Left to Right: Class 1 and Class 2 (above) 

Figure 2 - Rule 30 Evaluation 



Cellular automata evaluation begin with the rule number. Figure 2 shows the cell evaluation 

parameters for a two state cellular automaton at radius 1 (k = 2 and r = 1). The first row is the 

initial condition, where the middle bit is set to 1 (black) and all other bits are 0 (white). All rules 

are converted into their respective binary representations. The seond row is evaluated according 

to the radius. In Figure 2, all cells in the first row are matched to the corresponding cell 

evaluation parameter to produce the cell in the next row. The cell evaluation applies to each 

consecutive row to produce the output over a given number of steps. This procedure shows an 

evaluation over time. 



3 Related Work 

Many areas of cellular automata are currently being researched. Imre et al [3] show how 

quantum-dot cellular automata can be used as nanomagnets for logic functionality at the near 

subatomic level. Sipper has completed research in non-uniform cellular automata [7], These 

automata use a different rule per cell to evaluate each row with a genetic algorithm to 

progressively become more fit. Recently, Obando partitioned the rule space using a new set of 

parameters [5]. He defines them as A.o and ki. Where Langston defines X to be the ratio of ones in 

the rule to the total number of possible ones [4], Obando defines ko as the number of ones in 

primitive zero and ki as the number of zeros in primitive one, giving primitives po and pi [5], 

To the best of our knowledge, the contents of this thesis, with all of its new ideas, 

algorithms, and code, do not exist anywhere else. Wolfram acknowledges that “find[ing] families 

of cellular automaton rules with closely related behaviour” should be possible, but no known 

work has conclusively done so [8], Also, please note that the approach outlined in this thesis 

stems directly from the work presented by Obando. Many functions used in the development, 

testing, and execution stages of our experiments make use of his Mathematica package. It was 

through his guidance and cooperation that this thesis was written. 



4 Current Research 

4.1 Initial Findings 

Many researchers focus on specific cellular automaton rules, often finding that individual 

behavioral patterns can be applicable to other fields of science. This thesis focuses on the general 

behavior of the entire space. We examine the global behavior of the entire rule space to find 

patterns. Through the partitioning of the rule space [5], it can now be defined as a partially 

ordered system based on the binary primitives of the rules. In previous work, traversal of the rule 

space is achieved using a navigational tool [Huffman], This tool shows the primitives of the rule 

in question as well as its neighboring rules and their primitives. Investigation into the space 

shows the likelihood of rule “clusters”. These clusters appear evenly throughout the rule space. 

As the navigator approaches the edge of the cluster, rules belonging to neighboring clusters 

appear. One can transition into the approaching cluster, revealing more rules belonging to that 

cluster. The existence of clusters in this cellular automata system gives rise to several questions 

that will be answered throughout this thesis. Firstly, what defines a cluster? Secondly, is each 

cluster unique? If so, what is the cluster identifier? Thirdly, can a rule pertaining to a specific 

cluster give information about the global behavior of that cluster? 

When examining the primitives of each rule and its neighbors, each cluster seems to be 

‘activated’ by flipping certain bits in the primitives. By definition of the partially ordered system, 

each neighbor of the central rule only differs by one bit. Hovering over the rules’ images allows 

one to see the single bit difference per rule via tooltip. All other bits in that local neighborhood 

are the same. Take Figure 3 for instance. The rule 001 is adjacent (neighbors) with 000, 101, and 

011. These numbers have a single bit of difference. Also, the numbers 001,000, and 101 all have 

a ‘0’ as the middle bit. These are the same types of observations seen in the 232 rule space. 



Because each rule in the space has thirty-two bits, many similar bits are present between 

neighbors. Take Figure 4, which is rule 2,147,483,649. The primitives are 1 and 32,768 for p0 

and pi, respectively. The base 2 forms of each are represented by the boxes above the image, 

with white being 0 and black being 1. 

Noticeably different about rule 2,147,483,649 and rule 2,281,701,377 is the first bit 

position from left to right in po of rule 2,281,701,377. This change does not alter the rule, causing 

no deviation from the central rule. These two rules can be considered similar, but similarity will 

be discussed later. According to Obando [5], rule primitives are defined as 

= number of 1 s in binary representation of the primitive 

7.1 = number of Os in binary representation of the primitive 

Let us take all the bit positions in po that are 1 and all the bit positions in pi that are 0. In 

Table 1, the po for both rules are exactly the same, while the pi of rule 2,281,701,377 includes 

the first bit position from the left. From here, we created a “rule crawler” that takes an initial 

seed (rule number). The crawler begins to collect similar rules based strictly on output; in other 

words, a bit-by-bit comparison per row. This similarity measure will be discussed in detail later. 

The sample space returned had 1,160 similar rules at Hamming distance 3. We use a separate 

algorithm to run a tally of all occurring position for both primitives. This algorithm takes the 

complement of each rule from the sample against a standard, in this case, rule 2,147,483,649. 

The result of this algorithm gave us po = {16} and pi = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16}. Running the same algorithm with the same sample space on rule 2,281,701,377 gave us 

the exact same primitive bit positions: po = {16} and pi = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16}. Matching primitive bit positions for visually similar rules implies that there exists a 



correlation between particular cellular automata output (images) and the primitive bit positions 

for those images. We will call this the cluster identification. 

ooo 

Figure 3- 3-tuple Cube 



Table 1- Primitive Comparison 

After further testing, we realized that visually similar rules running through the algorithm 

all produce the same po and pi. This particular algorithm requires a large sample space against 

which to test. The creation of this sample space is both time consuming and computationally 

expensive. Thus, a different approach must be made that is fast and efficient. Let us start by 

defining a similarity measure. 

4.2 Defining a Similarity Measure 

The best similarity measure between rules can be a difficult topic for discussion. So many 

different methods exist for image processing like edge detection, symbol recognition, and digital 

morphology [6]. To properly categorize similarity, a similarity measure must be used that 

quickly and efficiently determines rule similarity. We took three different approaches to find the 

best method: Mathematica’s built-in image processing components, comparison by complete 

output, and comparison by step. 

Mathematica has rich built-in image processing capabilities. These include, but are not 

limited to: color manipulation, geometric operations, morphological operations, filtering and 

neighborhood processing, and computer vision. We used a computer vision function called 

Image Feature Track that automatically detects set points between different images. We took a 



standard rule and compared that to each subsequent rule of our choosing. The result was images 

with an overlay of similar points in red as shown in Figure 5. The images of rules 2,147,483,649 

and 2,281,701,377 are similar according to the Image Track Feature. The problem with using 

computer vision in this manner is that the Image Track Feature does not give the programmer 

much control of how these “similar points” are chosen. Instead, full reliance is on Mathematica 

to be the ultimate judge of similarity. We abandoned this technique in search of an approach with 

more flexibility. 

    __ nuwarwzwjZ'm 

Figure 5- Computer Vision Comparison 

For the second approach, we decided to work directly with the binary numbers 

composing the cellular automata. Our goal was to define an algorithm that directly compares the 

output of one rule with the output of another rule, which we call a comparison by output. 

Remember that these cellular automata images are merely a visual representation of Os and 1 s. 

Moreover, Mathematica represents cellular automata using a list of lists, where each inner list is 

the corresponding row in the image. The comparison by output uses this knowledge and 

calculates similarity based on each row of output. This process first generates each list of lists for 

both rules. Then, it programmatically loops through each inner list taking the sum of the 



differences of each row, divides by the length of the row, subtracts this value by one, and gets 

the mean of all the rows. This equation to find similarity is denoted as s, where st is the standard 

rule, tr is the target rule, / is the length of the row, / is the index of the binary digit in the row, i is 

index of the row, and n is the number of rows. Note that Mathematica indexes its lists starting at 

1. 

Z?=i(l 
s =   

15=1 I StiJ ~ triJ I x 
 l J 

n 

This approach gives us a direct similarity measure based on the locations of Os and 1 s in 

each row of output. For example, take the lists {{0, 0, 0, 0, 1}, {1, 0, 0, 0, 1}} and {{0, 0, 0, 0, 

0}, {0, 0, 1, 0, 0}}. We will assume that these are our standard and target, respectively. Rowi is 

then subtracted, {0, 0, 0, 0, 1} - {0, 0, 0, 0, 0} = {0, 0, 0, 0, 1}. The absolute value of the sum of 

this result is 1 divided by 5, the length of the row. Then, we take 1 - ^ which is the similarity 

of the standard’s and target’s rowi. The same procedure is done for row2 of each list to get ^ 

4 , 2 

• . — i — O 

similarity. The last step is to get the mean of all these similarities, i.e. 

The third approach used a technique similar to the second approach. The major difference 

being that the initial condition of the target rule was reset as the previous row in the standard 

rule’s output. We called this similarity by step. So, the similarity changed from an exact 

comparison by appearance to a comparison of the rate of change from one row to the next. We 

followed the same formula from similarity by output. Such a measure can be useful for detecting 

how rules from one cluster globally change into another cluster. However, this approach was also 



abandoned as it is beyond the scope of our current objective. We decided to use the comparison 

by output as the similarity measure for our algorithm. 

4.3 Dynamic Bits 

As mentioned before, a pattern began to emerge between certain bit locations in the 

primitives of the rules. With our new similarity measure in hand, we compared many different 

rules against one another for testing. Images like the Sierpinski triangles were found to not only 

be similar but also to be the exact same output. Our tests used a similarity measure of 100 

percent (1.0) similarity. This means that different rules like 2,147,483,649 and 2,281,701,377 

create the exact same output. This discovery raises a question. Can we create a search algorithm 

to find similar rules given our new similarity measure? 

4.3.1 Recursive Algorithm 

The creation of the search algorithm began using a recursive function that tracked the 

visited rules, similar rules, and next level of rules. The algorithm started with a single rule, the 

standard rule, and a threshold of similarity. It began to traverse the rule space outwardly, 

essentially becoming a ‘rule crawler’. First, the crawler finds the neighbors of all incoming rules. 

These neighbors were complemented to the list of visited rules. The resulting list consisted of 

only neighbors that have yet to be visited. The crawler compared all the remaining rules to the 

standard. If the comparison between a target rule and the standard meet or surpass the threshold, 

the target is considered similar to the standard and is stored in a list. All targets are appended to a 

separate list for visited rules. Certain clusters produced tens of thousands of rules, which took too 

much time for rapid testing. So, a cutoff point of Hamming distance of 3 was implemented to 

decrease search time. When we refer to Hamming distance, we simply mean a certain number of 

steps away from the standard. A Hamming distance of 1 would be immediate neighbors of the 



standard, while a Hamming distance of 2 would be 2 steps away for the standard. Even with a 

cutoff of Hamming distance 3, our algorithm took over 90 seconds to run to completion for some 

clusters. These long run times coupled with extreme resource consumption caused us to examine 

a different approach. 

4.3.2 PrintSimilarBits[] 

The recursive algorithm’s results led to finding that certain bit positions were persistent 

across all rules found We defined a function to identify key bit positions in a rule. These 

positions come from breaking the rule into its primitives. Then, one must determine the positions 

of 1 s occurring in primitive 0, and Os in primitive 1. The resulting list contains key bit positions 

for both po and pi. In Figure 6, we show a function to take the running complement of the similar 

rule set from our recursive algorithm against the same standard used to find the similar set. This 

similar set is called ‘many’ in our code and contains 1,160 similar Sierpinski triangles. The 

output of PrintSimilarBits[] in Figure 6 shows that the 16th position of po occurs in every po in 

the set. Likewise, 2, 4, 9, 13, and 16 all occur in every pi in the set. Therefore, these positions are 

required to create this cluster of Sierpinski triangles. To validate that this process is correct, we 

run a separate rule that was chosen at random within the similar set, as seen in Figure 7. Notice 

that the po is different, as it should be, but the result is still {{16}, {2, 4, 9, 16}} for the key bits 

in the cluster. 

tn|S3j> PrintSimilarBits [2 147 483 649 , many, 2, 1] 

Qm'& Standard Key Bits: {{16}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}} 
Targets Combined Key Bits: {{16}, {2, 4, 9, 13, 16}} 

Figure 6- Key Bits Positions of Standard Sierpinski Triangle 

fcilSSJ:* PrintSimilarBits [2 182 090 753, many, 2, 1] 

Outps|= Standard Key Bits: {{3, 16), {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16}} 

Targets Combined Key Bits: {{16}, {2, 4, 9, 13, 16}} 

Figure 7- Key Bits Positions of Neighboring Sierpinski Triangle 



PrintSimilarBits[] can correctly determine the key bits of a cluster. However, it also 

requires a set of previously defined similar rules. Remember that this set was derived from the 

long-running recursive algorithm. A different, more concise method must be adopted to correctly 

identify the key bits in the cluster. After further examination in the navigational tool, it came to 

light that certain neighbor positions consistently moved out of the current cluster. That is to say, 

no matter where one moves in the cluster, a particular position will always move out of the 

cluster. In Figure 8, the standard rule from previous tests is the central rule in the navigator. 

Notice the positions where the right neighborhood moves out of the cluster (i.e. not a Sierpinski 

triangle). Figure 9 shows the rule 2,281,701,377 as the central rule. This rule was in the last 

position of the right neighborhood. Notice that, even when moving to a different rule, the four 

positions that move out of the cluster stay the same from rule to rule. This is generally the case 

while moving throughout the cluster. 



Figure 9- Navigator on Neighboring Rule 

4.3.3 FindSimilarRules[] 

Now that we have seen the general behavior of rule neighborhoods, we move on to the 

next algorithm called FindSimilarRules[]. Instead of processing the similarity of a large set, we 

only process the similarity of the immediate neighbors of the standard rule. Remember that each 

neighbor differs from the central (standard) rule by only a single bit. Each neighbor is tested 

against the standard for similarity by output. If the target is considered similar, the position of the 

different bit is considered dynamic and a running intersection of the key bits is taken. Dynamic, 

in this sense, means that the bit could be 0 or 1, and the output would not change. If the target is 

not similar to the standard, the differing bit position is marked as negatively affective because 

that bit position moves the output away from the current cluster. Once all neighbors have been 

tested, the key bit positions are marked as positively affective because these bits must be flipped 

to create the cluster. We called this function ClusterID[], and its output can be seen in Figure 10. 

ClusterXD[2 147 483 649, 2] 

0«peg- {{D, B, B, N, B, B, B, N, B, B, B, N, N, N, Nr P}, (K, F, D, F, D, B, B, B, P, B, D, D, P, B, B, P}} 

Figure 10- Cluster Id 



The cluster Id. allows us to find similar rules. We must convert the Id. into binary. In 

primitive po, a ‘P’ means the binary 1 goes there because the position is required to be flipped. 

An ‘N’ in po means a binary 0 goes there because the position cannot be flipped. The exact 

opposite is true of pi. Where there is a ‘P’, the binary 0 is used. Where there is an ‘N\ the binary 

1 must be used. The interesting part of this process is when converting ‘D’ back into a binary 

number. Remember that the ‘D’ was given to all bit positions that were considered similar. So, 

this position can be 0 or 1. Once we lock the Ps and Ns appropriately, we apply a mask to the 

cluster Id. This mask generates all the binary numbers possible given that ‘D’ positions can flip. 

For example, take a simple cluster Id. {N, P, D, D, P}, where Ns will lock to Os and Ps will lock 

to Is. After we lock the bits, the result is {0, 1, D, D, 1}. Now we generate all the binary 

numbers around that to get {01001,01011,01101,01111}. Figure 11 shows a run of 

FindSimilarRules[]. 

FindSiaiilarRules [2147 483 649, 2, 1] 

(2147 483 649, 2147 483 681, 2147483 713, 2147 433745, 2 147 484 161, 2147484193, 2147 484225, 2147 484 257, 2147484 673, 2147 484705, 

2147 434 737, 2147484 769, 2 147 405 185, 2147435217, 2147485249, 2147485281, 2147 435697, 2 147485729, 2 147485761, 2147485793, 

2 147436209, 2 147486241, 2147486273, 2 147436305, , 2 935911425, 2935 911 457, 2 935911489, 2 935911521, 
,;>v 2935911937, 2 935911969, 2 935 912 001, 2935912 033, 2935912 449, 2 935912 431, 2 935912513, 2935912 545, 2935912 961, 2 535912 993, 

2935 913025, 2935913057, 2935913473, 2935 913 505, 2935913 537, 2 935913 569, 2 935 913585, 2935914017, 2 935 914049, 2 935914081} 

iarce output show less show more show all set size limit... 

Figure 11- Similar Sierpinski Triangle Rules 



5 Results 

The next section of the thesis outlines the verification and validation stages of our results. 

These are the questions we asked: “Are we building the product right?” and “Are we building the 

right product?” In order to answer these questions, we compare the results of our algorithm to 

the original specifications and to other clusters. 

5.1 Verification 

Can we design an algorithm that efficiently identifies and collects similar rules in a cellular 

automata rules space? The answer is a resounding yes. We have proven that, under the partially 

ordered system proposed by Dr. Rodrigo Obando, a cluster of similar rules can be identified. At 

the same time, similar rules can be extracted from the rules space. One function created by Dr. 

Obando, called EquivalentClass[], allows one to find the exact reflection, complement, and 

reflection-complement of any given rule. In Figure 12, rule 2,147,483,649 at radius 2 has been 

passed as arguments. The result of this function call returns only 2 rules, itself and 

2,147,483,646. Since the reflection (across the y axis) of a Sierpinski triangle is exactly the same 

as the original, only the complement and the original are returned. Both rules have been plotted 

to show their differences. Next, the ContainsAll[] function takes as arguments the rule set 

produced by FindSimilarRulesf] and 2,147,483,646. The result of ContainsAll[] is false showing 

that the complement rule, 2,147,483,646, does not exist in the similar set. Only rules fitting the 

exact output pattern of the standard rule appear in the output of the FindSimilarRules[] function. 

Also, we can further verify the accuracy of FindSimilarRules[] by using the rules set generated 

by the recursive algorithm from earlier trials. By using the ContainsAll[] function again in Figure 

13, we prove that all of the 1,160 similar rules found by the recursive algorithm appear in the 

output of FindSimilarRulesf], 



E<juivalentClass [2 147 483 649, 2] 

{2 147 483 646, 2137 433 649} 

ArrayPlot [CellnlarAutoiaaton { £xr, 2, 2}, {50, All}], PlotLabel -* zrj 6 /^EqnivalentCIass [2147 483 649, 2] 

2147483646 2147483849 

ConfcainsAll [FiadSixailarRnles [2147483 649, 2, 1], {2147 483 646}! 

False 

FindSimilarRules {,■?, 2, i] i /£ EquivalentClass [2147 483 649, 2} 

{{2033530 462, 203853G 434, 2028530 526, 2033 530 55-3, 2038530974, 2033531006, 2038 531 033, 2038531073, 2033531 486, 2038531518, 2038531550, 2033531582, 

2038531 SS8, 2038532 030, 2038 532 062, 2038532 094, 2033532 510, 2038532 542, 2038532 574, 2033532 606, 2038533 022, 203S533 054, 2 038533086, 2038533 118, 

2038533 534, 203-8533 566, 2 038533 598, 2038533 630, 2038534 046, 2038 534078, 2 038 534 110, 2038534142, 2038 534 558, 2038534 590, 2038534 622, 2038534 654, 

2038535070, 2038 535 102, 2038535 134, 2038535166, 2038535 582, 2038535 614, 2038535 646, 2038535 678, 2038556 0S4, 2038536 126, 2 038536158, 

2 OSS 536 190, 2038536 606, 2038536 638, 2038-536 670, , 2147477 438, 2147477 470, 2147477502, 2147477 918, 2147477 950, 2147477 982, 2247978 014, 

2247478430, 2147 478 462, 2147478 494, 2247478 526, 2147478 942, 2147473 974, 2147479 006, 2147479 038, 214747S4S4, 2147479486, 2147479518, 

2147 475 550, 2 147 479 966, 2147 475 598, 2 147 520 030, 2 147 480 062, 2147 480 478, 2147 480 510, 2147 480 542, 2147 480 574, 2 147 480 990, 2 247 481022, 

2147 481054, 2147 481086, 2147 481 502, 2147 481534, 2147 481566, 2147 481 598, 2 147 482 014, 2147 482 046, 2147 482 078, 2147 482 110, 2 147 482 526, 

2147 482 558, 2147 4S2 590, 2147 482 622, 2147 483 038, 2147 433 070, 2 147 483 102, 2 147 483 134, 2147 483 550, 2 147 483 582, 2147 433 614, 2147 433 646;., { 

shew Jess sitow more show «Si set ske limit™ 

Figure 12- Equivalent Class Tests 

lnflS3]:= ContainsAll [FindSimilarRules [2 147 483 649 , 2, 1], many] 

Outfl8Sf= True 

Figure 13- FindSimilarRules[] Contains All Recursively Identified Rules 

5.2 Validation 

Validation asks if FindSimilarRules [] correctly produces the expected output from the 

user. Does our algorithm actually deliver similar rules from the rule space? Figure 12 from 

above, displays a large output of 524, 240 rules. A tremendous set of Sierpinski triangles like 

that would be far too large to display in this thesis. Since we proved that all the rules generated 

by our recursive algorithm are also contained in the output of FindSimilarRules[], we decided to 

show a sample of rules from that set instead. Figures 14 and 15 are the first 104 and last 84 rules, 

respectively. All of the rules from the recursive algorithm yield the exact image compared to the 

standard, but to prove the FindSimilarRules[] yields exact matches, we create the test found in 

Figure 16. This test first collects the results of FindSimilarRulesf], Next, it maps all of those 

rules into a comparison functions built into Mathematica called SameQ[], SameQ tests two 

arguments for an exact match. What we have done is evaluate the standard rule 2,147,483,649 



and every rule from FindSimilarRules[] (stored as the variable ‘sim’) as arguments into 

SameQ[], The result of this mapping is a list of truth values. Finally, we use the Apply[] function 

to apply the And operator across the entire truth values list, which returns back True. This value 

of True proves that the entire set given by FindSimilarRules[] is an exact match to the standard 

rule when a measure of 100 percent is used in FindSimilarRules[], 



ArrayPlot [CellularAatoma'tonr 2, 2}, {50, All}], PlotLabel -♦ *'} & /© jaany 

2147483649 2147483681 2147483713 2147484673 

2147485 687 2147487 745 2147491841 2147500G33 

2147745793 2148007937 2148532225 2149530891 2151677953 

2155872257 2181038081 2214532513 

2147483 745 2147484183 2147484225 2147484 705 2147484 737 2147485185 

2147501057 2147502081 2147504129 2147614753 2147614785 

2147015233 214761574B 2147016769 214761881? 2147622913 2147631105 

2147745826 2147745857 2147740305 2147740817 2147747841 2147743889 

2147753985 2147762177 2147876855 £148007869 2148008001 2148008443 

2148270081 2148532257 2148532289 2148532737 2148533249 2148534273 

2148530321 2148540417 2148548609 2148003297 2148794 389 2149056513 

2149588993 2149597'1B5 2149711873 2149342S45 2150105089 215062S37? 

2151678017 2151078465 2151078 377 2151080001 2151082049 

Figure 14- Small Set of Similar Rules from Beginning 



268B452 737 2686453761 2686455866 2686459905 2586460 097 2686582785 

2685713857 2686876601 2687500289 2 688548897 2688548929 2 688540377 

2682874241 2683005313 2603287457 2 603791745 2 694840321 2696037473 

2 717809 025 2717606057 2 717909505 2 71791001? 2717911041 2717913 089 

2751467521 2 751471 617 2 751470 809 2 751504497 

2759852033 

Figure 15- Small Set of Similar Rules from Ending 

sim = FindSimiIarRules[2147 483 649, 2, 1] 

;2 147 483 640, 

2147 484 737, 

2147 486209, 

2 925 911521, 

2 935 512 993, 

2 147 483 681, 

2 147 484 76S, 

2 147 486241, 

2 935 911937, 

2 935 913025, 

2147 483 713, 

2147 485185, 

214? 486273, 

2 935 911 969, 

2935 913 057, 

2147 483 745. 

2147 485217, 

2147 486305, 

2 935 912 001, 

2 935 913473, 

2147484 161, 

2 147 485249, 

2147 486721, 

2 935 912 033, 

2 935 913 505, 

2147484 193, 2147484 225, 2147484 257, 2147484 673, 2147484705, 

2147455281, 2147 485697, 2147485729, 2147 485761, 2147 485793, 

, 2935 911009, 2 935 911425, 2 935 911457, 2935 911489, 

2 935 912 449, 2 935 912 481, 2 935 912 513, 2 935 912 545, 2 935 912 961, 

2935 913537, 2935 913569, 2935 913985, 2935 914017, 2 935 914049, 2935 914081} 

large output show less show more show aS set sire limit. 

Apply [And, J4ap[SameQ{CellularAutomaton[{.tf, 2, 2}, {50, All}}, CellularAutomaton[ {2147 483 649, 2, 2}, {50, All}}} 6, sim]} 

Figure 16- And Operator Across Recursively Found Rules 



6 Future Work 

Continued work on general behavior of cellular automata rule spaces could yield interesting 

results. For instance, one could now use FindSimilarRules[] to generate a particular list of rules. 

Then, we could apply a different rule across each bit of an initial bit string. The result would be a 

cellular automaton image where each column uses a different rule. The neighboring rules would 

‘fight’ over the evaluation of each step. Based on our investigations, we hypothesize that this 

multi-ruled cellular automaton would behave in the same manner as the comprising rule set. 

Another possibility of future research could be defining a more precise similarity measure to 

observe similarity in a different way. Using the comparison by step similarity measure that we 

created would produce a different rule set because it measures rate of change. This similarity 

measure could give one insight on how rules change from state to state, or cluster to cluster, 

inside the rule space. One may begin to ask new question. Can specific bit positions determine 

cluster dominance? Do bit positions affect the rate of change from one output step to another? 

One could even relate this research back to Markov Chains. Can a different similarity measure be 

used to find similar Markov Chains based on dynamic bit positions? 

Rule engineering may arise out of the discovery of cluster Ids. A desired output could be 

generated by manually assigning the locked and dynamic bits. Rule engineering has the potential 

to change digital art. Instead of hand drawing a texture for wood, a cluster Id. could generate an 

output that mimics the behavior of wood. The cluster of that rules would also lead to other 

similar yet unique wood patterns. The possibilities are endless when considering that a 1- 

dimesional cellular automaton at radius two generates well over four billion images. By simply 

extending the radius size to three, the output jumps to well over three trillion images. 



7 Limitations 

An assumption was made in the results displayed in this thesis. For instance, we assumed a 

similarity threshold of one hundred percent. This means each target rule had to match the 

standard rule exactly. Using a lower threshold yields more rules. In most cases, moving below 

eighty-five percent increased execution time exponentially. As the threshold becomes less strict, 

the number of dynamic (D) positions in the cluster id increases. Remember that a ‘D’ in the 

cluster Id. means that position could be a 0 or 1, so each ‘D’ changes the range of similarity by 

2n, where n is the number of ‘D’s present. 

The results of FindSimilarRules[] heavily depends on the similarity measure. A comparison 

by output measures exact similarity. However, a different similarity measure may be used to 

capture image translation as similar as well. Currently, FindSimilarRules[] will not account for 

an image translation, rotation, or dilation from the standard. This more sophisticated similarity 

measure could prove useful when comparing between rule spaces of differing sizes. A radius 1 

Sierpinski triangle is of a smaller size compared to a radius 2 Sierpinski triangle. Finding 

similarity across radii may offer more insight to global behavior of these clusters. 



8 Conclusion 

Many readers may ask, ‘What are practical applications for finding similar cellular automata 

rules?’ Let us answer that question with an illustration. Let us assume that there exists a box 

filled with 100 colored cubes of uniform size with colors of red, blue, green, and white. Now, the 

contents of the box are dumped onto the floor. The objective is to sort the pile of cubes by color. 

The process may take a minute or two, but easily enough, sorting a small number of 100 cubes 

would not be a considerable challenge. Now, let us assume that there exists a box of over four 

billion cubes. The existing colors now blend into millions of combinations of red, blue, green, 

and white. The objective remains the same: sort the pile of cubes by color. The task is much 

more daunting. Where cellular automata rule spaces were once defined as randomly distributed, 

Obando proved that a partially ordered system gives rise to clustering in the space [5], 

Using this system, we have defined an algorithm to be a framework for identifying and 

collecting similar rules in a cellular automata rule spaces using a similarity measure that 

compares direct output. Using this framework, one can simply replace the similarity measure to 

observe completely different results similarly to the comparison by step method. Over the course 

of this thesis, we have asked and answered three questions. Clusters are defined by a cluster 

identification string known as a cluster Id. These cluster Ids. are unique for every cluster. Table 1 

showed us that two separate rules can yield the same cluster Id. This means the two rules in 

question must belong to the same cluster. Because the similarity measure selected in this thesis 

compared exact outputs, rules belonging to the same cluster must also be globally similar. In 

other words, rules belonging to a specific cluster all produce the same general behavior when 

applying our similarity measure. Now, local rule behavior may reveal global behavior in the 

cluster. 



Code Appendix 

(*Function that sets up the pre-computed standard rule and calls the recursive function SimilarHelper.*) 

Similar[rule_, threshold^ init_: {{1}, 0}, k_: 2, radius_: 1, steps_: 30] := 

Module[{VR = {rule}, CR = {rule}, timer = AbsoluteTime[], fullRule = {}}, 

ParallelSow[rule, v]; 

ParallelSow[rule, s]; 

fullRule = CellularAutomatonf {rule, k, radius}, init, {steps, All}]; 

SimilarHelperffullRule, CR, VR, threshold, init, k, radius, steps, 1]; 

Printf'Total Time: " o ToString[AbsoluteTime[] - timer] <> " seconds"] ] 

(*Function that recursively calls itself until Hamming distance 3. When detecting a target rule that is similar the standard rule, the 
value is stored away. Returns a list of lists -» {Null, {{List of visited rules}, {List of similar rules}}}*) 

SimilarHelper[rule_, currentRules_, vRules_, threshold , init_, k_, radius_, steps , hamDistJ := 

Module[ 
{visitedRules = vRules, rulesToVisit = {}, currentLevel = {}, timer = {}, stepSize = steps, preComputedRule = 
DynamicBitsfrule, radius]}, 

Print["Hamming Distance: " <> ToStringfhamDist]]; 
Print["\tCollecting Neighbors..."]; 

timer = Timing[Complement[ DeleteDuplicates[ Flatten[Map[Flatten[Rest[NeighborRules[#, radius]]] &, currentRules]]], 

currentLevel = timer[[2]]; 

Print["\tThere are " <> ToString[Length[currentLevel]] o " rules in this level. (" o ToString[timer[[l]]] o ") seconds."]; 

Print["\tTesting Neighbors..."]; 

SetSharedVariable[visitedRules]; 

SetSharedVariable[rulesToVisit]; 

timer = Timing[Parallelize[ 

Map[ (ParallelSow[#, v]; AppendTo{visitedRules, #]; 

lf[ AvgCompareRulesByOutput[rule, #, init, stepSize, k, radius] >= threshold, 

ParallelSowf#, s]; 

AppendTo[rulesToVisit, #] ];) &, 

currentLevel], Method -> "FinestGrained"]]; 

Print}"\tThere are " <> ToString[Length[rulesToVisit]] o " rules to visit. (" <> ToString[timer[[ 1 ]]] <> ") seconds."]; 

If[Length[rulesToVisit] > 0, 

If}hamDist < 3, 



visitedRules = 

SimilarHelper[rule, rulesToVisit, visitedRules, threshold, init, 

k, radius, stepSize, hamDist + 1]], 

Map[Print["Leaf Rules:" o ToString[#]] &, currentRules]] ] 

(♦Compares the target to the standard by the output of each rule. Can accept an integer standard or a pre-computed version of the 
standard.*) 

NewCompareRulesByOutput[standard_, target_, init_, t_, k_, r_J := 

Module[ {standardList = {}, targetList = CellularAutomaton[{target, k, r}, init, {t, All}], retumList= {}}, 

standardList = Switch[standard, 

_Integer, CellularAutomaton[{standard, k, r}, init, {t, All}], 

_List, standard, 

{}]; 

Retum[ 

Mean[Table[ 

N[1 - ApplyfPlus, Abs[standardList[[currentStep]] - targetList[[currentStep]]]]/Length[Last[standardList]], 4], 

{currentStep, 1, t}]]]] 

(♦Returns the average (similarity) of the of the target to the standard.*) 

AvgCompareRulesByOutput[standard_, target_, init_, t_, k_, rj := 

Retum[NewCompareRulesByOutput[standard, target, init, t, k, r]] 

(♦Function that determines if the target is similar to the standard based on dynamic bits.*) 

DynamicBitsQ[standard_, target_, radius_] := 

Module}{standardBits = targetBits = ""}, 

standardBits = Switchfstandard, 

_Integer, DynamicBits[standard, radius], 

_List && Length[standard] = 2, standard, 

{}]; 

targetBits = Switch[target, 

_Integer, DynamicBitsftarget, radius], 

_List && Lengthftarget] = 2, target, 



{}]; 

Retum[ContainsAll[targetBits[[l]], standardBits[[l]]] && ContainsAll[targetBits[[2]], standardBits[[2]]]]] 

(*Function that returns a list of rules based of the similarity of their dynamic bit location.*) 

FindSimilarRules[standard_, radius_: 1, threshold^ 0.99] := 

Map[FromDigits[#, 2] &, CreateRules[lntegerDigits[standard, 2, 2A(2*radius + 1)], ClusterToRulefstandard, radius, threshold]]] 

SetAttributes[FindSimilarRules, Listable]; 

(*Function that takes in a cluster id or rule, then returns a binary form of that cluster id.*) 

FromClusterlD[standard_, radius_, threshold^ 0.98] := 

Module[{temp = {}, id = {}}, 

id = Switch[standard, 

_lnteger, ClusterID[standard, radius, threshold], 

_List, standard, 

{}]; 

id[[l]] = id[[ 1 ]] /. {"P" ->1}/. {"N" ->0}/. {"D" -> 1}; 

id[[2]] = id[[2]] /. {"P" -> 0} /. {"N” -> 1} /. {"D" -> 0}; 

Table] 

AppendTo[temp, Take[id[[2]], {pos, pos + (2Aradius - 1)}]]; 

AppendTo[temp, Take[id[[l]], {pos, pos + (2Aradius - 1)}]], 

{pos, 1, 2A(2 radius + l)/2, 2Aradius}]; 

Retum[Flatten[temp]]] 

(♦Function that converts a cluster id or rule into its expanded cluster id form.*) 

ClusterToRule[standard_, radius_, threshold : 0.98] := 

Module]{temp = {}, id = {}}, 

id = Switch[standard, 

_Integer, ClusterlD[standard, radius, threshold], 

_List && Length[standard] = 2, standard, 

{}]; 



AppendTo[temp, Take[id[[2]], {pos, pos + (2Aradius - 1)}]]; 

AppendToftemp, Take[id[[l]], {pos, pos + (2Aradius - 1)}]], 

{pos, 1,2A(2 radius + l)/2, 2Aradius}]; 

Retum[Flatten[temp]]] 

(*Function that takes in a binary number and a cluster id as a mask to produce all the possible numbers according to the mask.*) 

CreateRules[in_, mask_] := 

Module[{p = Position[mask, "D"]}, 

ReplacePart[in, Rule @@@ Transposef {p, #}]] & /@ Tuples[{0, 1}, Length@p]] 

(*Function that returns the dynamic bit locations as a list of lists -> {pO, pi }.*) 

DynamicBits[standard_, radius_] := 

Module[{standDigits = Map[lntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]], pO = {}, pi = {}}, 

Table[If[standDigits[[l]][[pos]] = 1, AppendTo[pO, pos]], 

{pos, 1, Length[standDigits[[l]]]}]; 

Table[lf[standDigits[[2]][[pos]] = 0, AppendTofpl, pos]], 

{pos, 1, Length[standDigits[[2]]]}]; 

Retum[{p0, pi}]] 

(*Flelper function to PrintSimilarBits. Counts all pO bits that are Is and all pi bits that are Os.*) 

PrintSimilarBitsHelper[standard_, targets_, radius_: 1] := 

Module[ 

{pO = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 

pi = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 

standDigits = Map[IntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]], 

targetBits = Map[IntegerDigits[#, 2, 2A(2 * radius + l)/2] &, Map[BreakRule[#, radius] &, targets]] 

}, 

Map[ 

If[DynamicBitsQ[standDigits, #, radius], 



(Do[If[#[[l]][[pos]] = 1, pO[[pos]] = pO[[pos]] + 1], {pos , 1, 

Length[#[[l ]]]}]; 

Do[If[#[[2]][[pos]] = 0, pi [[pos]] = pi [[pos]] + 1], {pos , 1, 

Length[#[[2]]]}];)] &, 

targetBits]; 

Return} {pO, pi}]] 

(^Function that prints out the dynamic bit locations for the standard and neighboring rules collectively.*) 

PrintSimilarBits[standard_, targets_, radius_: 1, thresholdl_: 0.75] := 

Module[{bits = PrintSimilarBitsHelper[standard, targets, radius], pO = {}, pi = {}, max = 0}, 

max = Max[bits]; 

Do[If[bits[[l]][[pos]]/max >= threshold, 

AppendTo[pO, pos]], {pos, 1, Length[bits[[l ]]]}]; 

Do[If[bits[[2]][[pos]]/max >= threshold, AppendTo[pl, pos]], {pos , 

1, Length[bits[[2]]]}]; 

Return ["Standard Key Bits: " o ToString[DynamicBits[standard, radius]] o "\nTargets Combined Key Bits: " <> 
ToString[{pO, pi}]]] 

(*Function that gets the position of the single different bit between standard and target. 

It is assumed that the standard and target have only one bit of difference. 

Returns a list -> {Position of bit, Integer representing corresponding primitive list (1 for pO and 2 for pi)}*) 

GetDifferentBit[standard_, target_, radiusj := 

Module}{ standPrims = DynamicBits[standard, radius], targetPrims = DynamicBits[target, radius], complPrims = {}}, 

AppendTo[complPrims, Complement[standPrims[[l]], targetPrims[[l]]]]; 

AppendTo[complPrims, Complement[targetPrims[[l]], standPrims[[l]]]]; 

If[Length[Flatten[Select[complPrims, UnsameQ[#, {}] &]]] > 0, 

Retum[Append[Flatten[Select[complPrims, UnsameQ[#, {}] &]], 1]]]; 

AppendTo[complPrims, Complement[standPrims[[2]], targetPrims[[2]]]]; 

AppendTofcomplPrims, Complement[targetPrims[[2]], standPrims[[2]]]]; 

Retum[Append[Flatten[Select[complPrims, UnsameQ[#, {}]&]], 2]] ] 

(*Function that displays the significant bits for the given rule (standard). 



P Positively effective in the formation of the cluster. This means that this bit is required to create the rule's image. 

D ->Dynamic in the formation of the cluster. This means that this bit could be on or off. Neither will affect the rule's image. 

N Negatively effective in the formation of the cluster. This means that flipping this bit makes the image deviate from its 

original cluster.*) 

ClusterID[standard_, radius_: 2, threshold : 0.99 , steps_: 100] := 

Module[ {p0 = PadRight[{}, 2A(2 * radius + l)/2], pi = PadRight[{}, 2A(2 * radius + l)/2], 

standDigits = 

Map[lntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]], 

temp = {}, 

intersection = DynamicBits[standard, radius]}, 

Map[ 

IfIAvgCompareRulesByOutput[standard, #, {{1}, 0}, steps, 2, radius] >= threshold, 

temp = GetDifferentBit[standard, #, radius]; 

intersection}}!]] = lntersection[intersection[[l]], DynamicBits}#, radius][[l]]]; 

intersection[[2]] = Intersection[intersection[[2]], DynamicBits}#, radius][[2]]]; 

If[temp[[2]] = 1, p0[[temp[[l]]]] = "D", pl[[temp[[l]]]] = "D"], 

temp = GetDifferentBit[standard, #, radius]; 

If[temp[[2]] = 1, p0[[temp[[l]]]] = "N", 

P1 [[temp}} 1 ]]]] = "N"]] &, 

Rest[NeighborRules[standard, radius]], {2}]; 

temp = DeleteDuplicates} Flatten[Map[Position[intersection, #] &, intersection, {2}], 2]]; 

Map} 

If}#[[l]] = l, 

p0[[intersection[[l]][[#[[2]]]]]] = "P", 

pl[[intersection[[2]][}#[[2]]]]]] = "P"] &, temp]; 

Retum[(*"p0 = "<>ToString[pO]o"\npl = "oToString[pl]*){pO, pi}] ] 
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