
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2016

An Exploration of Rule Clustering in Cellular Automata Rule An Exploration of Rule Clustering in Cellular Automata Rule

Spaces Spaces

Jordon Huffman

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Huffman, Jordon, "An Exploration of Rule Clustering in Cellular Automata Rule Spaces" (2016). Theses
and Dissertations. 243.
https://csuepress.columbusstate.edu/theses_dissertations/243

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/243?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages

Columbus State University

D. Abbot Turner College of Business

The Graduate Program in Applied Computer Science

An Exploration of Rule Clustering in Cellular Automata Rule Spaces

A Thesis in

Applied Computer Science

By

Jordon Huffman

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2016

©2016 by Jordon Huffman

I have submitted this thesis in partial fulfillment of the requirements for the degree of Master of
Science.

Table of Contents

Table of Figures 4

Abstract 5

1 Introduction 6

2 Cellular Automata 7

3 Related Work 9

4 Current Research 10

4.1 Initial Findings 10

4.2 Defining a Similarity Measure 13

4.3 Dynamic Bits 16

4.3.1 Recursive A1 gorithm 16

4.3.2 PrintSimilarBits[] 17

4.3.3 FindSimilarRules[] 19

5 Results 21

5.1 Verification 21

5.2 Validation 22

6 Future Work 26

7 Limitations 27

8 Conclusion 28

Code Appendix 29

References 35

Table of Figures

Figure 1 - From Left to Right: Class 1 and Class 2 (above) 7
Figure 2 - Rule 30 Evaluation 7
Figure 3- 3-tuple Cube 12
Figure 4- Similar Sierpiski Triangles 12
Figure 5- Computer Vision Comparison 14
Figure 6- Key Bits Positions of Standard Sierpinski Triangle 17
Figure 7- Key Bits Positions of Neighboring Sierpinski Triangle 17
Figure 8- Navigator on Standard Rule 18
Figure 9- Navigator on Neighboring Rule 19
Figure 10- Cluster Id 19
Figure 11- Similar Sierpinski Triangle Rules 20

Figure 12- Equivalent Class Tests 22
Figure 13- FindSimilarRules[] Contains All Recursively Identified Rules 22

Figure 14- Small Set of Similar Rules from Beginning 24
Figure 15- Small Set of Similar Rules from Ending 25
Figure 16-And Operator Across Recursively Found Rides 25

Abstract

The study of complex systems examines the global behavior of a system and how the

individual parts of the system affect that behavior [1]. The study of complex systems spans

across many fields of science like biology, physics, engineering, and computer science. One area

of complex systems that has not been fully explored is cellular automata. Since its discovery by

John von Neumann, there have been no consistent ways of categorizing similarities between

cellular automata rules or collecting similar rules for observation. This thesis introduces an

approach to identifying clusters of similar rules and extracting rules from that cluster. Several

similarity measures were developed to establish similarity between rules. All similarity measure

approaches are outlined in this thesis, but only one was selected for determining similarity in this

approach. Based on a partitioning of the rule space, this approach uses lo and h with their

inherent primitives p0 and pi to obtain a cluster identification string [5], The cluster Id. is

determined by the output of the surrounding neighbors of any rule in the cluster. This cluster Id.

can be used to produce a set of rules, all yielding the same or similar output.

1 Introduction

Cellular automata can be classified as simple systems with deterministic input. However,

these systems can generate complexity in their output. Cellular automata can appear in several

dimensions depending on initial input. The formula for 1-dimensional cellular automata rule

space creation is /cfc(2r+1) where k is the number of states and r is the radius of cells to examine on

both sides. The elementary cellular automata rule space uses k = 2 (binary: 0, 1) and r = 1 (three

cells to use: central, left, and right). The elementary rule space is 22(2(1) +1) = 256. By moving to

the next radius size of 2, the rule space jumps from 256 rules to 22(2(z)+1) = 22$ = 4,294,967,296

rules. With such a large space, traversal and examination have been limited to random sampling.

Initially, cellular automata were thought to have random distribution on the space; however,

recent work has shown that partitioning the space into a partially ordered system creates clusters

of similar rules [2] [5]. To the best of our knowledge, no application or methodology for

collecting similar rules exists. This thesis uses the foundation of rule partitioning [5] to develop a

framework for collecting similar rules. This framework allows any similarity measure to be

employed for determining rule similarity on the premise that the chosen similarity measure for

this thesis can be improved upon, or replaced completely, to insure a more accurate similarity

measure.

2 Cellular Automata

Wolfram classified cellular automata rules into one of four classes: Class 1, 2, 3, and 4

[9], Class 1 is a uniform or homogenous state. Class 2 is a semi-uniform state where localized

patterns may appear, yet they are simplistic. Class 3 is a random state of disordered output. Class

4 is a complex state. Class 4 can be seen as a mixture of both Class 2 and Class 3, where there

are seemingly semi-uniform patterns and random patterns. Wolfram describes Class 4 as an

“intermediate phenomenon” [8], Below are examples of these classes:

Figure 1 - From Left to Right: Class 1 and Class 2 (above)

Figure 2 - Rule 30 Evaluation

Cellular automata evaluation begin with the rule number. Figure 2 shows the cell evaluation

parameters for a two state cellular automaton at radius 1 (k = 2 and r = 1). The first row is the

initial condition, where the middle bit is set to 1 (black) and all other bits are 0 (white). All rules

are converted into their respective binary representations. The seond row is evaluated according

to the radius. In Figure 2, all cells in the first row are matched to the corresponding cell

evaluation parameter to produce the cell in the next row. The cell evaluation applies to each

consecutive row to produce the output over a given number of steps. This procedure shows an

evaluation over time.

3 Related Work

Many areas of cellular automata are currently being researched. Imre et al [3] show how

quantum-dot cellular automata can be used as nanomagnets for logic functionality at the near

subatomic level. Sipper has completed research in non-uniform cellular automata [7], These

automata use a different rule per cell to evaluate each row with a genetic algorithm to

progressively become more fit. Recently, Obando partitioned the rule space using a new set of

parameters [5]. He defines them as A.o and ki. Where Langston defines X to be the ratio of ones in

the rule to the total number of possible ones [4], Obando defines ko as the number of ones in

primitive zero and ki as the number of zeros in primitive one, giving primitives po and pi [5],

To the best of our knowledge, the contents of this thesis, with all of its new ideas,

algorithms, and code, do not exist anywhere else. Wolfram acknowledges that “find[ing] families

of cellular automaton rules with closely related behaviour” should be possible, but no known

work has conclusively done so [8], Also, please note that the approach outlined in this thesis

stems directly from the work presented by Obando. Many functions used in the development,

testing, and execution stages of our experiments make use of his Mathematica package. It was

through his guidance and cooperation that this thesis was written.

4 Current Research

4.1 Initial Findings

Many researchers focus on specific cellular automaton rules, often finding that individual

behavioral patterns can be applicable to other fields of science. This thesis focuses on the general

behavior of the entire space. We examine the global behavior of the entire rule space to find

patterns. Through the partitioning of the rule space [5], it can now be defined as a partially

ordered system based on the binary primitives of the rules. In previous work, traversal of the rule

space is achieved using a navigational tool [Huffman], This tool shows the primitives of the rule

in question as well as its neighboring rules and their primitives. Investigation into the space

shows the likelihood of rule “clusters”. These clusters appear evenly throughout the rule space.

As the navigator approaches the edge of the cluster, rules belonging to neighboring clusters

appear. One can transition into the approaching cluster, revealing more rules belonging to that

cluster. The existence of clusters in this cellular automata system gives rise to several questions

that will be answered throughout this thesis. Firstly, what defines a cluster? Secondly, is each

cluster unique? If so, what is the cluster identifier? Thirdly, can a rule pertaining to a specific

cluster give information about the global behavior of that cluster?

When examining the primitives of each rule and its neighbors, each cluster seems to be

‘activated’ by flipping certain bits in the primitives. By definition of the partially ordered system,

each neighbor of the central rule only differs by one bit. Hovering over the rules’ images allows

one to see the single bit difference per rule via tooltip. All other bits in that local neighborhood

are the same. Take Figure 3 for instance. The rule 001 is adjacent (neighbors) with 000, 101, and

011. These numbers have a single bit of difference. Also, the numbers 001,000, and 101 all have

a ‘0’ as the middle bit. These are the same types of observations seen in the 232 rule space.

Because each rule in the space has thirty-two bits, many similar bits are present between

neighbors. Take Figure 4, which is rule 2,147,483,649. The primitives are 1 and 32,768 for p0

and pi, respectively. The base 2 forms of each are represented by the boxes above the image,

with white being 0 and black being 1.

Noticeably different about rule 2,147,483,649 and rule 2,281,701,377 is the first bit

position from left to right in po of rule 2,281,701,377. This change does not alter the rule, causing

no deviation from the central rule. These two rules can be considered similar, but similarity will

be discussed later. According to Obando [5], rule primitives are defined as

= number of 1 s in binary representation of the primitive

7.1 = number of Os in binary representation of the primitive

Let us take all the bit positions in po that are 1 and all the bit positions in pi that are 0. In

Table 1, the po for both rules are exactly the same, while the pi of rule 2,281,701,377 includes

the first bit position from the left. From here, we created a “rule crawler” that takes an initial

seed (rule number). The crawler begins to collect similar rules based strictly on output; in other

words, a bit-by-bit comparison per row. This similarity measure will be discussed in detail later.

The sample space returned had 1,160 similar rules at Hamming distance 3. We use a separate

algorithm to run a tally of all occurring position for both primitives. This algorithm takes the

complement of each rule from the sample against a standard, in this case, rule 2,147,483,649.

The result of this algorithm gave us po = {16} and pi = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16}. Running the same algorithm with the same sample space on rule 2,281,701,377 gave us

the exact same primitive bit positions: po = {16} and pi = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16}. Matching primitive bit positions for visually similar rules implies that there exists a

correlation between particular cellular automata output (images) and the primitive bit positions

for those images. We will call this the cluster identification.

ooo

Figure 3- 3-tuple Cube

Table 1- Primitive Comparison

After further testing, we realized that visually similar rules running through the algorithm

all produce the same po and pi. This particular algorithm requires a large sample space against

which to test. The creation of this sample space is both time consuming and computationally

expensive. Thus, a different approach must be made that is fast and efficient. Let us start by

defining a similarity measure.

4.2 Defining a Similarity Measure

The best similarity measure between rules can be a difficult topic for discussion. So many

different methods exist for image processing like edge detection, symbol recognition, and digital

morphology [6]. To properly categorize similarity, a similarity measure must be used that

quickly and efficiently determines rule similarity. We took three different approaches to find the

best method: Mathematica’s built-in image processing components, comparison by complete

output, and comparison by step.

Mathematica has rich built-in image processing capabilities. These include, but are not

limited to: color manipulation, geometric operations, morphological operations, filtering and

neighborhood processing, and computer vision. We used a computer vision function called

Image Feature Track that automatically detects set points between different images. We took a

standard rule and compared that to each subsequent rule of our choosing. The result was images

with an overlay of similar points in red as shown in Figure 5. The images of rules 2,147,483,649

and 2,281,701,377 are similar according to the Image Track Feature. The problem with using

computer vision in this manner is that the Image Track Feature does not give the programmer

much control of how these “similar points” are chosen. Instead, full reliance is on Mathematica

to be the ultimate judge of similarity. We abandoned this technique in search of an approach with

more flexibility.

 __ nuwarwzwjZ'm

Figure 5- Computer Vision Comparison

For the second approach, we decided to work directly with the binary numbers

composing the cellular automata. Our goal was to define an algorithm that directly compares the

output of one rule with the output of another rule, which we call a comparison by output.

Remember that these cellular automata images are merely a visual representation of Os and 1 s.

Moreover, Mathematica represents cellular automata using a list of lists, where each inner list is

the corresponding row in the image. The comparison by output uses this knowledge and

calculates similarity based on each row of output. This process first generates each list of lists for

both rules. Then, it programmatically loops through each inner list taking the sum of the

differences of each row, divides by the length of the row, subtracts this value by one, and gets

the mean of all the rows. This equation to find similarity is denoted as s, where st is the standard

rule, tr is the target rule, / is the length of the row, / is the index of the binary digit in the row, i is

index of the row, and n is the number of rows. Note that Mathematica indexes its lists starting at

1.

Z?=i(l
s =

15=1 I StiJ ~ triJ I x
 l J

n

This approach gives us a direct similarity measure based on the locations of Os and 1 s in

each row of output. For example, take the lists {{0, 0, 0, 0, 1}, {1, 0, 0, 0, 1}} and {{0, 0, 0, 0,

0}, {0, 0, 1, 0, 0}}. We will assume that these are our standard and target, respectively. Rowi is

then subtracted, {0, 0, 0, 0, 1} - {0, 0, 0, 0, 0} = {0, 0, 0, 0, 1}. The absolute value of the sum of

this result is 1 divided by 5, the length of the row. Then, we take 1 - ^ which is the similarity

of the standard’s and target’s rowi. The same procedure is done for row2 of each list to get ^

4 , 2

• . — i — O

similarity. The last step is to get the mean of all these similarities, i.e.

The third approach used a technique similar to the second approach. The major difference

being that the initial condition of the target rule was reset as the previous row in the standard

rule’s output. We called this similarity by step. So, the similarity changed from an exact

comparison by appearance to a comparison of the rate of change from one row to the next. We

followed the same formula from similarity by output. Such a measure can be useful for detecting

how rules from one cluster globally change into another cluster. However, this approach was also

abandoned as it is beyond the scope of our current objective. We decided to use the comparison

by output as the similarity measure for our algorithm.

4.3 Dynamic Bits

As mentioned before, a pattern began to emerge between certain bit locations in the

primitives of the rules. With our new similarity measure in hand, we compared many different

rules against one another for testing. Images like the Sierpinski triangles were found to not only

be similar but also to be the exact same output. Our tests used a similarity measure of 100

percent (1.0) similarity. This means that different rules like 2,147,483,649 and 2,281,701,377

create the exact same output. This discovery raises a question. Can we create a search algorithm

to find similar rules given our new similarity measure?

4.3.1 Recursive Algorithm

The creation of the search algorithm began using a recursive function that tracked the

visited rules, similar rules, and next level of rules. The algorithm started with a single rule, the

standard rule, and a threshold of similarity. It began to traverse the rule space outwardly,

essentially becoming a ‘rule crawler’. First, the crawler finds the neighbors of all incoming rules.

These neighbors were complemented to the list of visited rules. The resulting list consisted of

only neighbors that have yet to be visited. The crawler compared all the remaining rules to the

standard. If the comparison between a target rule and the standard meet or surpass the threshold,

the target is considered similar to the standard and is stored in a list. All targets are appended to a

separate list for visited rules. Certain clusters produced tens of thousands of rules, which took too

much time for rapid testing. So, a cutoff point of Hamming distance of 3 was implemented to

decrease search time. When we refer to Hamming distance, we simply mean a certain number of

steps away from the standard. A Hamming distance of 1 would be immediate neighbors of the

standard, while a Hamming distance of 2 would be 2 steps away for the standard. Even with a

cutoff of Hamming distance 3, our algorithm took over 90 seconds to run to completion for some

clusters. These long run times coupled with extreme resource consumption caused us to examine

a different approach.

4.3.2 PrintSimilarBits[]

The recursive algorithm’s results led to finding that certain bit positions were persistent

across all rules found We defined a function to identify key bit positions in a rule. These

positions come from breaking the rule into its primitives. Then, one must determine the positions

of 1 s occurring in primitive 0, and Os in primitive 1. The resulting list contains key bit positions

for both po and pi. In Figure 6, we show a function to take the running complement of the similar

rule set from our recursive algorithm against the same standard used to find the similar set. This

similar set is called ‘many’ in our code and contains 1,160 similar Sierpinski triangles. The

output of PrintSimilarBits[] in Figure 6 shows that the 16th position of po occurs in every po in

the set. Likewise, 2, 4, 9, 13, and 16 all occur in every pi in the set. Therefore, these positions are

required to create this cluster of Sierpinski triangles. To validate that this process is correct, we

run a separate rule that was chosen at random within the similar set, as seen in Figure 7. Notice

that the po is different, as it should be, but the result is still {{16}, {2, 4, 9, 16}} for the key bits

in the cluster.

tn|S3j> PrintSimilarBits [2 147 483 649 , many, 2, 1]

Qm'& Standard Key Bits: {{16}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}}
Targets Combined Key Bits: {{16}, {2, 4, 9, 13, 16}}

Figure 6- Key Bits Positions of Standard Sierpinski Triangle

fcilSSJ:* PrintSimilarBits [2 182 090 753, many, 2, 1]

Outps|= Standard Key Bits: {{3, 16), {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16}}

Targets Combined Key Bits: {{16}, {2, 4, 9, 13, 16}}

Figure 7- Key Bits Positions of Neighboring Sierpinski Triangle

PrintSimilarBits[] can correctly determine the key bits of a cluster. However, it also

requires a set of previously defined similar rules. Remember that this set was derived from the

long-running recursive algorithm. A different, more concise method must be adopted to correctly

identify the key bits in the cluster. After further examination in the navigational tool, it came to

light that certain neighbor positions consistently moved out of the current cluster. That is to say,

no matter where one moves in the cluster, a particular position will always move out of the

cluster. In Figure 8, the standard rule from previous tests is the central rule in the navigator.

Notice the positions where the right neighborhood moves out of the cluster (i.e. not a Sierpinski

triangle). Figure 9 shows the rule 2,281,701,377 as the central rule. This rule was in the last

position of the right neighborhood. Notice that, even when moving to a different rule, the four

positions that move out of the cluster stay the same from rule to rule. This is generally the case

while moving throughout the cluster.

Figure 9- Navigator on Neighboring Rule

4.3.3 FindSimilarRules[]

Now that we have seen the general behavior of rule neighborhoods, we move on to the

next algorithm called FindSimilarRules[]. Instead of processing the similarity of a large set, we

only process the similarity of the immediate neighbors of the standard rule. Remember that each

neighbor differs from the central (standard) rule by only a single bit. Each neighbor is tested

against the standard for similarity by output. If the target is considered similar, the position of the

different bit is considered dynamic and a running intersection of the key bits is taken. Dynamic,

in this sense, means that the bit could be 0 or 1, and the output would not change. If the target is

not similar to the standard, the differing bit position is marked as negatively affective because

that bit position moves the output away from the current cluster. Once all neighbors have been

tested, the key bit positions are marked as positively affective because these bits must be flipped

to create the cluster. We called this function ClusterID[], and its output can be seen in Figure 10.

ClusterXD[2 147 483 649, 2]

0«peg- {{D, B, B, N, B, B, B, N, B, B, B, N, N, N, Nr P}, (K, F, D, F, D, B, B, B, P, B, D, D, P, B, B, P}}

Figure 10- Cluster Id

The cluster Id. allows us to find similar rules. We must convert the Id. into binary. In

primitive po, a ‘P’ means the binary 1 goes there because the position is required to be flipped.

An ‘N’ in po means a binary 0 goes there because the position cannot be flipped. The exact

opposite is true of pi. Where there is a ‘P’, the binary 0 is used. Where there is an ‘N\ the binary

1 must be used. The interesting part of this process is when converting ‘D’ back into a binary

number. Remember that the ‘D’ was given to all bit positions that were considered similar. So,

this position can be 0 or 1. Once we lock the Ps and Ns appropriately, we apply a mask to the

cluster Id. This mask generates all the binary numbers possible given that ‘D’ positions can flip.

For example, take a simple cluster Id. {N, P, D, D, P}, where Ns will lock to Os and Ps will lock

to Is. After we lock the bits, the result is {0, 1, D, D, 1}. Now we generate all the binary

numbers around that to get {01001,01011,01101,01111}. Figure 11 shows a run of

FindSimilarRules[].

FindSiaiilarRules [2147 483 649, 2, 1]

(2147 483 649, 2147 483 681, 2147483 713, 2147 433745, 2 147 484 161, 2147484193, 2147 484225, 2147 484 257, 2147484 673, 2147 484705,

2147 434 737, 2147484 769, 2 147 405 185, 2147435217, 2147485249, 2147485281, 2147 435697, 2 147485729, 2 147485761, 2147485793,

2 147436209, 2 147486241, 2147486273, 2 147436305, , 2 935911425, 2935 911 457, 2 935911489, 2 935911521,
,;>v 2935911937, 2 935911969, 2 935 912 001, 2935912 033, 2935912 449, 2 935912 431, 2 935912513, 2935912 545, 2935912 961, 2 535912 993,

2935 913025, 2935913057, 2935913473, 2935 913 505, 2935913 537, 2 935913 569, 2 935 913585, 2935914017, 2 935 914049, 2 935914081}

iarce output show less show more show all set size limit...

Figure 11- Similar Sierpinski Triangle Rules

5 Results

The next section of the thesis outlines the verification and validation stages of our results.

These are the questions we asked: “Are we building the product right?” and “Are we building the

right product?” In order to answer these questions, we compare the results of our algorithm to

the original specifications and to other clusters.

5.1 Verification

Can we design an algorithm that efficiently identifies and collects similar rules in a cellular

automata rules space? The answer is a resounding yes. We have proven that, under the partially

ordered system proposed by Dr. Rodrigo Obando, a cluster of similar rules can be identified. At

the same time, similar rules can be extracted from the rules space. One function created by Dr.

Obando, called EquivalentClass[], allows one to find the exact reflection, complement, and

reflection-complement of any given rule. In Figure 12, rule 2,147,483,649 at radius 2 has been

passed as arguments. The result of this function call returns only 2 rules, itself and

2,147,483,646. Since the reflection (across the y axis) of a Sierpinski triangle is exactly the same

as the original, only the complement and the original are returned. Both rules have been plotted

to show their differences. Next, the ContainsAll[] function takes as arguments the rule set

produced by FindSimilarRulesf] and 2,147,483,646. The result of ContainsAll[] is false showing

that the complement rule, 2,147,483,646, does not exist in the similar set. Only rules fitting the

exact output pattern of the standard rule appear in the output of the FindSimilarRules[] function.

Also, we can further verify the accuracy of FindSimilarRules[] by using the rules set generated

by the recursive algorithm from earlier trials. By using the ContainsAll[] function again in Figure

13, we prove that all of the 1,160 similar rules found by the recursive algorithm appear in the

output of FindSimilarRulesf],

E<juivalentClass [2 147 483 649, 2]

{2 147 483 646, 2137 433 649}

ArrayPlot [CellnlarAutoiaaton { £xr, 2, 2}, {50, All}], PlotLabel -* zrj 6 /^EqnivalentCIass [2147 483 649, 2]

2147483646 2147483849

ConfcainsAll [FiadSixailarRnles [2147483 649, 2, 1], {2147 483 646}!

False

FindSimilarRules {,■?, 2, i] i /£ EquivalentClass [2147 483 649, 2}

{{2033530 462, 203853G 434, 2028530 526, 2033 530 55-3, 2038530974, 2033531006, 2038 531 033, 2038531073, 2033531 486, 2038531518, 2038531550, 2033531582,

2038531 SS8, 2038532 030, 2038 532 062, 2038532 094, 2033532 510, 2038532 542, 2038532 574, 2033532 606, 2038533 022, 203S533 054, 2 038533086, 2038533 118,

2038533 534, 203-8533 566, 2 038533 598, 2038533 630, 2038534 046, 2038 534078, 2 038 534 110, 2038534142, 2038 534 558, 2038534 590, 2038534 622, 2038534 654,

2038535070, 2038 535 102, 2038535 134, 2038535166, 2038535 582, 2038535 614, 2038535 646, 2038535 678, 2038556 0S4, 2038536 126, 2 038536158,

2 OSS 536 190, 2038536 606, 2038536 638, 2038-536 670, , 2147477 438, 2147477 470, 2147477502, 2147477 918, 2147477 950, 2147477 982, 2247978 014,

2247478430, 2147 478 462, 2147478 494, 2247478 526, 2147478 942, 2147473 974, 2147479 006, 2147479 038, 214747S4S4, 2147479486, 2147479518,

2147 475 550, 2 147 479 966, 2147 475 598, 2 147 520 030, 2 147 480 062, 2147 480 478, 2147 480 510, 2147 480 542, 2147 480 574, 2 147 480 990, 2 247 481022,

2147 481054, 2147 481086, 2147 481 502, 2147 481534, 2147 481566, 2147 481 598, 2 147 482 014, 2147 482 046, 2147 482 078, 2147 482 110, 2 147 482 526,

2147 482 558, 2147 4S2 590, 2147 482 622, 2147 483 038, 2147 433 070, 2 147 483 102, 2 147 483 134, 2147 483 550, 2 147 483 582, 2147 433 614, 2147 433 646;., {

shew Jess sitow more show «Si set ske limit™

Figure 12- Equivalent Class Tests

lnflS3]:= ContainsAll [FindSimilarRules [2 147 483 649 , 2, 1], many]

Outfl8Sf= True

Figure 13- FindSimilarRules[] Contains All Recursively Identified Rules

5.2 Validation

Validation asks if FindSimilarRules [] correctly produces the expected output from the

user. Does our algorithm actually deliver similar rules from the rule space? Figure 12 from

above, displays a large output of 524, 240 rules. A tremendous set of Sierpinski triangles like

that would be far too large to display in this thesis. Since we proved that all the rules generated

by our recursive algorithm are also contained in the output of FindSimilarRules[], we decided to

show a sample of rules from that set instead. Figures 14 and 15 are the first 104 and last 84 rules,

respectively. All of the rules from the recursive algorithm yield the exact image compared to the

standard, but to prove the FindSimilarRules[] yields exact matches, we create the test found in

Figure 16. This test first collects the results of FindSimilarRulesf], Next, it maps all of those

rules into a comparison functions built into Mathematica called SameQ[], SameQ tests two

arguments for an exact match. What we have done is evaluate the standard rule 2,147,483,649

and every rule from FindSimilarRules[] (stored as the variable ‘sim’) as arguments into

SameQ[], The result of this mapping is a list of truth values. Finally, we use the Apply[] function

to apply the And operator across the entire truth values list, which returns back True. This value

of True proves that the entire set given by FindSimilarRules[] is an exact match to the standard

rule when a measure of 100 percent is used in FindSimilarRules[],

ArrayPlot [CellularAatoma'tonr 2, 2}, {50, All}], PlotLabel -♦ *'} & /© jaany

2147483649 2147483681 2147483713 2147484673

2147485 687 2147487 745 2147491841 2147500G33

2147745793 2148007937 2148532225 2149530891 2151677953

2155872257 2181038081 2214532513

2147483 745 2147484183 2147484225 2147484 705 2147484 737 2147485185

2147501057 2147502081 2147504129 2147614753 2147614785

2147015233 214761574B 2147016769 214761881? 2147622913 2147631105

2147745826 2147745857 2147740305 2147740817 2147747841 2147743889

2147753985 2147762177 2147876855 £148007869 2148008001 2148008443

2148270081 2148532257 2148532289 2148532737 2148533249 2148534273

2148530321 2148540417 2148548609 2148003297 2148794 389 2149056513

2149588993 2149597'1B5 2149711873 2149342S45 2150105089 215062S37?

2151678017 2151078465 2151078 377 2151080001 2151082049

Figure 14- Small Set of Similar Rules from Beginning

268B452 737 2686453761 2686455866 2686459905 2586460 097 2686582785

2685713857 2686876601 2687500289 2 688548897 2688548929 2 688540377

2682874241 2683005313 2603287457 2 603791745 2 694840321 2696037473

2 717809 025 2717606057 2 717909505 2 71791001? 2717911041 2717913 089

2751467521 2 751471 617 2 751470 809 2 751504497

2759852033

Figure 15- Small Set of Similar Rules from Ending

sim = FindSimiIarRules[2147 483 649, 2, 1]

;2 147 483 640,

2147 484 737,

2147 486209,

2 925 911521,

2 935 512 993,

2 147 483 681,

2 147 484 76S,

2 147 486241,

2 935 911937,

2 935 913025,

2147 483 713,

2147 485185,

214? 486273,

2 935 911 969,

2935 913 057,

2147 483 745.

2147 485217,

2147 486305,

2 935 912 001,

2 935 913473,

2147484 161,

2 147 485249,

2147 486721,

2 935 912 033,

2 935 913 505,

2147484 193, 2147484 225, 2147484 257, 2147484 673, 2147484705,

2147455281, 2147 485697, 2147485729, 2147 485761, 2147 485793,

, 2935 911009, 2 935 911425, 2 935 911457, 2935 911489,

2 935 912 449, 2 935 912 481, 2 935 912 513, 2 935 912 545, 2 935 912 961,

2935 913537, 2935 913569, 2935 913985, 2935 914017, 2 935 914049, 2935 914081}

large output show less show more show aS set sire limit.

Apply [And, J4ap[SameQ{CellularAutomaton[{.tf, 2, 2}, {50, All}}, CellularAutomaton[{2147 483 649, 2, 2}, {50, All}}} 6, sim]}

Figure 16- And Operator Across Recursively Found Rules

6 Future Work

Continued work on general behavior of cellular automata rule spaces could yield interesting

results. For instance, one could now use FindSimilarRules[] to generate a particular list of rules.

Then, we could apply a different rule across each bit of an initial bit string. The result would be a

cellular automaton image where each column uses a different rule. The neighboring rules would

‘fight’ over the evaluation of each step. Based on our investigations, we hypothesize that this

multi-ruled cellular automaton would behave in the same manner as the comprising rule set.

Another possibility of future research could be defining a more precise similarity measure to

observe similarity in a different way. Using the comparison by step similarity measure that we

created would produce a different rule set because it measures rate of change. This similarity

measure could give one insight on how rules change from state to state, or cluster to cluster,

inside the rule space. One may begin to ask new question. Can specific bit positions determine

cluster dominance? Do bit positions affect the rate of change from one output step to another?

One could even relate this research back to Markov Chains. Can a different similarity measure be

used to find similar Markov Chains based on dynamic bit positions?

Rule engineering may arise out of the discovery of cluster Ids. A desired output could be

generated by manually assigning the locked and dynamic bits. Rule engineering has the potential

to change digital art. Instead of hand drawing a texture for wood, a cluster Id. could generate an

output that mimics the behavior of wood. The cluster of that rules would also lead to other

similar yet unique wood patterns. The possibilities are endless when considering that a 1-

dimesional cellular automaton at radius two generates well over four billion images. By simply

extending the radius size to three, the output jumps to well over three trillion images.

7 Limitations

An assumption was made in the results displayed in this thesis. For instance, we assumed a

similarity threshold of one hundred percent. This means each target rule had to match the

standard rule exactly. Using a lower threshold yields more rules. In most cases, moving below

eighty-five percent increased execution time exponentially. As the threshold becomes less strict,

the number of dynamic (D) positions in the cluster id increases. Remember that a ‘D’ in the

cluster Id. means that position could be a 0 or 1, so each ‘D’ changes the range of similarity by

2n, where n is the number of ‘D’s present.

The results of FindSimilarRules[] heavily depends on the similarity measure. A comparison

by output measures exact similarity. However, a different similarity measure may be used to

capture image translation as similar as well. Currently, FindSimilarRules[] will not account for

an image translation, rotation, or dilation from the standard. This more sophisticated similarity

measure could prove useful when comparing between rule spaces of differing sizes. A radius 1

Sierpinski triangle is of a smaller size compared to a radius 2 Sierpinski triangle. Finding

similarity across radii may offer more insight to global behavior of these clusters.

8 Conclusion

Many readers may ask, ‘What are practical applications for finding similar cellular automata

rules?’ Let us answer that question with an illustration. Let us assume that there exists a box

filled with 100 colored cubes of uniform size with colors of red, blue, green, and white. Now, the

contents of the box are dumped onto the floor. The objective is to sort the pile of cubes by color.

The process may take a minute or two, but easily enough, sorting a small number of 100 cubes

would not be a considerable challenge. Now, let us assume that there exists a box of over four

billion cubes. The existing colors now blend into millions of combinations of red, blue, green,

and white. The objective remains the same: sort the pile of cubes by color. The task is much

more daunting. Where cellular automata rule spaces were once defined as randomly distributed,

Obando proved that a partially ordered system gives rise to clustering in the space [5],

Using this system, we have defined an algorithm to be a framework for identifying and

collecting similar rules in a cellular automata rule spaces using a similarity measure that

compares direct output. Using this framework, one can simply replace the similarity measure to

observe completely different results similarly to the comparison by step method. Over the course

of this thesis, we have asked and answered three questions. Clusters are defined by a cluster

identification string known as a cluster Id. These cluster Ids. are unique for every cluster. Table 1

showed us that two separate rules can yield the same cluster Id. This means the two rules in

question must belong to the same cluster. Because the similarity measure selected in this thesis

compared exact outputs, rules belonging to the same cluster must also be globally similar. In

other words, rules belonging to a specific cluster all produce the same general behavior when

applying our similarity measure. Now, local rule behavior may reveal global behavior in the

cluster.

Code Appendix

(*Function that sets up the pre-computed standard rule and calls the recursive function SimilarHelper.*)

Similar[rule_, threshold^ init_: {{1}, 0}, k_: 2, radius_: 1, steps_: 30] :=

Module[{VR = {rule}, CR = {rule}, timer = AbsoluteTime[], fullRule = {}},

ParallelSow[rule, v];

ParallelSow[rule, s];

fullRule = CellularAutomatonf {rule, k, radius}, init, {steps, All}];

SimilarHelperffullRule, CR, VR, threshold, init, k, radius, steps, 1];

Printf'Total Time: " o ToString[AbsoluteTime[] - timer] <> " seconds"]]

(*Function that recursively calls itself until Hamming distance 3. When detecting a target rule that is similar the standard rule, the
value is stored away. Returns a list of lists -» {Null, {{List of visited rules}, {List of similar rules}}}*)

SimilarHelper[rule_, currentRules_, vRules_, threshold , init_, k_, radius_, steps , hamDistJ :=

Module[
{visitedRules = vRules, rulesToVisit = {}, currentLevel = {}, timer = {}, stepSize = steps, preComputedRule =
DynamicBitsfrule, radius]},

Print["Hamming Distance: " <> ToStringfhamDist]];
Print["\tCollecting Neighbors..."];

timer = Timing[Complement[DeleteDuplicates[Flatten[Map[Flatten[Rest[NeighborRules[#, radius]]] &, currentRules]]],

currentLevel = timer[[2]];

Print["\tThere are " <> ToString[Length[currentLevel]] o " rules in this level. (" o ToString[timer[[l]]] o ") seconds."];

Print["\tTesting Neighbors..."];

SetSharedVariable[visitedRules];

SetSharedVariable[rulesToVisit];

timer = Timing[Parallelize[

Map[(ParallelSow[#, v]; AppendTo{visitedRules, #];

lf[AvgCompareRulesByOutput[rule, #, init, stepSize, k, radius] >= threshold,

ParallelSowf#, s];

AppendTo[rulesToVisit, #]];) &,

currentLevel], Method -> "FinestGrained"]];

Print}"\tThere are " <> ToString[Length[rulesToVisit]] o " rules to visit. (" <> ToString[timer[[1]]] <> ") seconds."];

If[Length[rulesToVisit] > 0,

If}hamDist < 3,

visitedRules =

SimilarHelper[rule, rulesToVisit, visitedRules, threshold, init,

k, radius, stepSize, hamDist + 1]],

Map[Print["Leaf Rules:" o ToString[#]] &, currentRules]]]

(♦Compares the target to the standard by the output of each rule. Can accept an integer standard or a pre-computed version of the
standard.*)

NewCompareRulesByOutput[standard_, target_, init_, t_, k_, r_J :=

Module[{standardList = {}, targetList = CellularAutomaton[{target, k, r}, init, {t, All}], retumList= {}},

standardList = Switch[standard,

_Integer, CellularAutomaton[{standard, k, r}, init, {t, All}],

_List, standard,

{}];

Retum[

Mean[Table[

N[1 - ApplyfPlus, Abs[standardList[[currentStep]] - targetList[[currentStep]]]]/Length[Last[standardList]], 4],

{currentStep, 1, t}]]]]

(♦Returns the average (similarity) of the of the target to the standard.*)

AvgCompareRulesByOutput[standard_, target_, init_, t_, k_, rj :=

Retum[NewCompareRulesByOutput[standard, target, init, t, k, r]]

(♦Function that determines if the target is similar to the standard based on dynamic bits.*)

DynamicBitsQ[standard_, target_, radius_] :=

Module}{standardBits = targetBits = ""},

standardBits = Switchfstandard,

_Integer, DynamicBits[standard, radius],

_List && Length[standard] = 2, standard,

{}];

targetBits = Switch[target,

_Integer, DynamicBitsftarget, radius],

_List && Lengthftarget] = 2, target,

{}];

Retum[ContainsAll[targetBits[[l]], standardBits[[l]]] && ContainsAll[targetBits[[2]], standardBits[[2]]]]]

(*Function that returns a list of rules based of the similarity of their dynamic bit location.*)

FindSimilarRules[standard_, radius_: 1, threshold^ 0.99] :=

Map[FromDigits[#, 2] &, CreateRules[lntegerDigits[standard, 2, 2A(2*radius + 1)], ClusterToRulefstandard, radius, threshold]]]

SetAttributes[FindSimilarRules, Listable];

(*Function that takes in a cluster id or rule, then returns a binary form of that cluster id.*)

FromClusterlD[standard_, radius_, threshold^ 0.98] :=

Module[{temp = {}, id = {}},

id = Switch[standard,

_lnteger, ClusterID[standard, radius, threshold],

_List, standard,

{}];

id[[l]] = id[[1]] /. {"P" ->1}/. {"N" ->0}/. {"D" -> 1};

id[[2]] = id[[2]] /. {"P" -> 0} /. {"N” -> 1} /. {"D" -> 0};

Table]

AppendTo[temp, Take[id[[2]], {pos, pos + (2Aradius - 1)}]];

AppendTo[temp, Take[id[[l]], {pos, pos + (2Aradius - 1)}]],

{pos, 1, 2A(2 radius + l)/2, 2Aradius}];

Retum[Flatten[temp]]]

(♦Function that converts a cluster id or rule into its expanded cluster id form.*)

ClusterToRule[standard_, radius_, threshold : 0.98] :=

Module]{temp = {}, id = {}},

id = Switch[standard,

_Integer, ClusterlD[standard, radius, threshold],

_List && Length[standard] = 2, standard,

{}];

AppendTo[temp, Take[id[[2]], {pos, pos + (2Aradius - 1)}]];

AppendToftemp, Take[id[[l]], {pos, pos + (2Aradius - 1)}]],

{pos, 1,2A(2 radius + l)/2, 2Aradius}];

Retum[Flatten[temp]]]

(*Function that takes in a binary number and a cluster id as a mask to produce all the possible numbers according to the mask.*)

CreateRules[in_, mask_] :=

Module[{p = Position[mask, "D"]},

ReplacePart[in, Rule @@@ Transposef {p, #}]] & /@ Tuples[{0, 1}, Length@p]]

(*Function that returns the dynamic bit locations as a list of lists -> {pO, pi }.*)

DynamicBits[standard_, radius_] :=

Module[{standDigits = Map[lntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]], pO = {}, pi = {}},

Table[If[standDigits[[l]][[pos]] = 1, AppendTo[pO, pos]],

{pos, 1, Length[standDigits[[l]]]}];

Table[lf[standDigits[[2]][[pos]] = 0, AppendTofpl, pos]],

{pos, 1, Length[standDigits[[2]]]}];

Retum[{p0, pi}]]

(*Flelper function to PrintSimilarBits. Counts all pO bits that are Is and all pi bits that are Os.*)

PrintSimilarBitsHelper[standard_, targets_, radius_: 1] :=

Module[

{pO = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

pi = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

standDigits = Map[IntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]],

targetBits = Map[IntegerDigits[#, 2, 2A(2 * radius + l)/2] &, Map[BreakRule[#, radius] &, targets]]

},

Map[

If[DynamicBitsQ[standDigits, #, radius],

(Do[If[#[[l]][[pos]] = 1, pO[[pos]] = pO[[pos]] + 1], {pos , 1,

Length[#[[l]]]}];

Do[If[#[[2]][[pos]] = 0, pi [[pos]] = pi [[pos]] + 1], {pos , 1,

Length[#[[2]]]}];)] &,

targetBits];

Return} {pO, pi}]]

(^Function that prints out the dynamic bit locations for the standard and neighboring rules collectively.*)

PrintSimilarBits[standard_, targets_, radius_: 1, thresholdl_: 0.75] :=

Module[{bits = PrintSimilarBitsHelper[standard, targets, radius], pO = {}, pi = {}, max = 0},

max = Max[bits];

Do[If[bits[[l]][[pos]]/max >= threshold,

AppendTo[pO, pos]], {pos, 1, Length[bits[[l]]]}];

Do[If[bits[[2]][[pos]]/max >= threshold, AppendTo[pl, pos]], {pos ,

1, Length[bits[[2]]]}];

Return ["Standard Key Bits: " o ToString[DynamicBits[standard, radius]] o "\nTargets Combined Key Bits: " <>
ToString[{pO, pi}]]]

(*Function that gets the position of the single different bit between standard and target.

It is assumed that the standard and target have only one bit of difference.

Returns a list -> {Position of bit, Integer representing corresponding primitive list (1 for pO and 2 for pi)}*)

GetDifferentBit[standard_, target_, radiusj :=

Module}{ standPrims = DynamicBits[standard, radius], targetPrims = DynamicBits[target, radius], complPrims = {}},

AppendTo[complPrims, Complement[standPrims[[l]], targetPrims[[l]]]];

AppendTo[complPrims, Complement[targetPrims[[l]], standPrims[[l]]]];

If[Length[Flatten[Select[complPrims, UnsameQ[#, {}] &]]] > 0,

Retum[Append[Flatten[Select[complPrims, UnsameQ[#, {}] &]], 1]]];

AppendTo[complPrims, Complement[standPrims[[2]], targetPrims[[2]]]];

AppendTofcomplPrims, Complement[targetPrims[[2]], standPrims[[2]]]];

Retum[Append[Flatten[Select[complPrims, UnsameQ[#, {}]&]], 2]]]

(*Function that displays the significant bits for the given rule (standard).

P Positively effective in the formation of the cluster. This means that this bit is required to create the rule's image.

D ->Dynamic in the formation of the cluster. This means that this bit could be on or off. Neither will affect the rule's image.

N Negatively effective in the formation of the cluster. This means that flipping this bit makes the image deviate from its

original cluster.*)

ClusterID[standard_, radius_: 2, threshold : 0.99 , steps_: 100] :=

Module[{p0 = PadRight[{}, 2A(2 * radius + l)/2], pi = PadRight[{}, 2A(2 * radius + l)/2],

standDigits =

Map[lntegerDigits[#, 2, 2A(2 * radius + l)/2] &, BreakRule[standard, radius]],

temp = {},

intersection = DynamicBits[standard, radius]},

Map[

IfIAvgCompareRulesByOutput[standard, #, {{1}, 0}, steps, 2, radius] >= threshold,

temp = GetDifferentBit[standard, #, radius];

intersection}}!]] = lntersection[intersection[[l]], DynamicBits}#, radius][[l]]];

intersection[[2]] = Intersection[intersection[[2]], DynamicBits}#, radius][[2]]];

If[temp[[2]] = 1, p0[[temp[[l]]]] = "D", pl[[temp[[l]]]] = "D"],

temp = GetDifferentBit[standard, #, radius];

If[temp[[2]] = 1, p0[[temp[[l]]]] = "N",

P1 [[temp}} 1]]]] = "N"]] &,

Rest[NeighborRules[standard, radius]], {2}];

temp = DeleteDuplicates} Flatten[Map[Position[intersection, #] &, intersection, {2}], 2]];

Map}

If}#[[l]] = l,

p0[[intersection[[l]][[#[[2]]]]]] = "P",

pl[[intersection[[2]][}#[[2]]]]]] = "P"] &, temp];

Retum[(*"p0 = "<>ToString[pO]o"\npl = "oToString[pl]*){pO, pi}]]

References

[1] Bar-Yam, Y. (2002). “General Features of Complex Systems.” Encyclopedia of Life Support

Systems. EOLSS UNESCO Publishers.

[2] Huffman, J. (2014). “An Exploration of Complex Systems in 16 Dimensions.” Columbus State

University.

[3] Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., and Porod, W. (2006). “Majority Logic

Gate for Magnetic Quantum-Dot Cellular Automata.” Science Magazine. Vol. 311 Pg. 205-208.

[4] Langston, C. G. (1990), “Computation at the edge of chaos: Phase transitions and emergent

computation.” Emergent Computation. Pg. 12. North-Holland, Amsterdam.

[5] Obando, R. (2015). “Partitioning of Cellular Automata Rule Spaces.” Complex Systems, 24.

Complex Systems Publications, Inc.

[6] Parker, J. R. (2010), “Algorithms for Image Processing and Computer Vision.” Wiley Publishing,

Inc. Second Edition.

[7] Sipper, M. (1994). “Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of

Complex Structures.” Artificial Life IV. The MIT Press. Pg. 394-399.

[8] Wolfram, S. (1985). “Twenty Problems in the Theory of Cellular Automata.” Physica Scripta.

Nobel Symposium, vol. T9. Pg. 170- 183.

[9] Wolfram, S. (1994). “Cellular Automata and Complexity: Collected Paper.” Addison-Wesely.

	An Exploration of Rule Clustering in Cellular Automata Rule Spaces
	Recommended Citation

	An Exploration of Rule Clustering in Cellular Automata Rule Spaces

