
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2016

An Arithmetic-Based Deterministic Centroid Initialization Method An Arithmetic-Based Deterministic Centroid Initialization Method

for the k-Means Clustering Algorithm for the k-Means Clustering Algorithm

Matthew Michael Mayo

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Mayo, Matthew Michael, "An Arithmetic-Based Deterministic Centroid Initialization Method for the k-
Means Clustering Algorithm" (2016). Theses and Dissertations. 241.
https://csuepress.columbusstate.edu/theses_dissertations/241

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/241?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages

Columbus State University

D. Abbott Turner College of Business and Computer Science

The Graduate Program in Applied Computer Science

An Arithmetic-based Deterministic
Centroid Initialization Method for
the fc-Means Clustering Algorithm

A Thesis in

Applied Computer Science

by

Matthew Michael Mayo

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2016

Abstract

One of the greatest challenges in k-means clustering is positioning the initial

cluster centers, or centroids, as close to optimal as possible, and doing so in an

amount of time deemed reasonable. Traditional fc-means utilizes a randomiza-

tion process for initializing these centroids, and poor initialization can lead to

increased numbers of required clustering iterations to reach convergence, and

a greater overall runtime. This research proposes a simple, arithmetic-based

deterministic centroid initialization method which is much faster than ran-

domized initialization. Preliminary experiments suggest that this collection

of methods, referred to herein as the sharding centroid initialization algo-

rithm family, often outperforms random initialization in terms of the required

number of iterations for convergence and overall time-related metrics and is

competitive or better in terms of the reported mean sum of squared errors

(SSE) metric. Surprisingly, the sharding algorithms often manage to report

more advantageous mean SSE values in the instances where their performance

is slower than random initialization.

iii

Contents

Abstract iii

List of Figures

List of Tables ix

List of Algorithms x

List of Source Code xi

1 Introduction 1

1.1 Problem Definition 4

1.2 Proposed Method 6

1.3 Expected Results 7

1.4 Thesis Outline 8

2 Previous Work 10

2.1 Improvements to Random Initialization 11

2.2 Alternatives to Random Initialization 12

iv

3 Methodology 15

3.1 The &-means Clustering Algorithm 15

3.2 Random Centroid Initialization 18

3.3 Sharding Centroid Initialization 21

3.3.1 Naive Sharding 21

3.3.2 Mean Sharding 24

3.3.3 Median Sharding 25

3.4 Measuring Success 26

4 Implementation 28

4.1 Python 29

4.2 Implementation Overview 31

4.3 &-means Clustering Algorithm 33

4.4 Random Centroid Initialization 35

4.5 Sharding Centroid Initialization 36

4.5.1 Naive Sharding 37

4.5.2 Mean Sharding 40

4.5.3 Median Sharding 40

4.6 Utility Modules 41

4.7 Testing Apparatus 41

5 Results and Evaluation 43

5.1 Experiment Overview 43

5.2 Datasets 46

5.2.1 Research-specific Artificial Datasets 47

v

5.2.2 Datasets of Known Clusters from the Literature 54

5.2.3 Datasets of Unknown Clusters from Literature 64

6 Conclusions 70

6.1 Summary of Research 70

6.2 Future Work 74

A Computer Specifications 76

B Artificial Dataset Names 78

Bibliography 79

vi

List of Figures

1.1 A proposed classical machine learning algorithm taxonomy. . . 3

3.1 Sorting by composite value and sharding 22

3.2 Shard attribute means become centroid attribute values. ... 23

4.1 Python popularity among the analytics community 30

4.2 Project tree structure 32

4.3 kmeans.py module overview 37

5.1 Dessewffy dataset - 48

5.2 Dessewffy naive sharding versus random initialization, k = 3. . 49

5.3 Dessewffy naive sharding versus random initialization, k = 7. . 50

5.4 Jelonek dataset 52

5.5 Jelonek naive sharding versus random initialization, k — 3. . . 52

5.6 Jelonek naive sharding versus random initialization, k = 7. . . 53

5.7 Ruspini random centroid initialization, k = 4 55

5.8 Ruspini naive sharding centroid initialization, k — 4 56

5.9 Ruspini mean sharding centroid initialization, k = 4 57

5.10 Ruspini median sharding centroid initialization, k = 4 58

vii

5.11 Iris parallel coordinates visualization 61

6.1 Number of iterations of datasets with known number of clusters. 72

6.2 Number of iterations of datasets with class attributes 73

viii

List of Tables

5.1 Dataset summary 47

5.2 Dessewffy results 50

5.3 Jelonek results • • 53

5.4 Ruspini results 59

5.5 Iris results (without class) 61

5.6 Iris results (with class) 61

5.7 Wine results (without class) 63

5.8 Wine results (with class) • • 63

5.9 Seeds results (without class) 64

5.10 Seeds results (with class) 64

5.11 3D Road Network results 66

5.12 Power consumption results • • 67

5.13 Summarized results of datasets of known clusters 68

5.14 Summarized results of datasets of unknown clusters 69

A.l Experiment computer hardware 77

IX

List of Algorithms

1 £;-means Clustering 17

2 Random Centroid Initialization 19

3 Centroid Updating 20

4 Naive Sharding Centroid Initialization 24

5 Mean Sharding Centroid Initialization 25

6 Median Sharding Centroid Initialization 25

x

List of Source Code

4.1 kmeans.py module excerpt 33

4.2 euclidean() function from distances.py module 35

4.3 rand-cent() function from centroids.py module 35

4.4 naivesharding() function from centroids.py module 38

4.5 _geLmean() function from centroids.py module 39

4.6 meansharding() function excerpt from centroids.py module. . 40

4.7 mediansharding() function excerpt from centroids.py module. 40

5.1 Timing functionality excerpt from kmeans.py module. 45

xi

Acknowledgements

I would like to thank the following individuals:

My research co-advisor, Dr. J Dana Eckart, whose input and guidance have

been immensely helpful, both in this research and beyond, and someone I am

lucky to have stumbled upon during my educational pursuits.

My research co-advisor, Dr. Kongmunvattana, who graciously stepped in when

it became necessary, and welcomed me as though I had been under his tutelage

from the very start.

The remaining thesis committee members, Drs. Hodhod and Ho, both of whom

have been understanding and helpful, and whose interest in this research and

process I am grateful for.

xii

Dedication

To my parents, Michael and Susan, who molded me early on, and left an

impression.

To my children, Azai and Zoey, mis pulmones, the absolute best kids that a

father could ever ask for.

And most importantly, to my wife Suchdev, mi corazon, the most supportive,

loving, intelligent, and beautiful person whom I have ever known. I could live

a thousand lives and never again be so lucky.

xiii

Chapter 1

Introduction

According to Mitchell, machine learning is ’’concerned with the question of

how to construct computer programs that automatically improve with ex-

perience” [1]. Machine learning is interdisciplinary in nature, and employs

techniques from the fields of computer science, statistics, and artificial intel-

ligence, among others. The main artifacts of machine learning research are

algorithms which facilitate this automatic improvement from experience, algo-

rithms which can be applied in such diverse fields as computer vision, artificial

intelligence, and data mining [1].

Fayyad, Piatetsky-Shapiro & Smyth define data mining as ’’the application

of specific algorithms for extracting patterns from data” [2], This demon-

strates that, in data mining, the emphasis is on the application of algorithms,

as opposed to on the algorithms themselves. We can define the relationship

between machine learning and data mining as follows: data mining is a pro-

cess, during which machine learning algorithms are utilized as tools to extract

potentially-valuable patterns held within datasets.

Clustering is a machine learning method used for analyzing data which does

not include pre-labeled classes. During the clustering process, data instances

are grouped together using the concept of “maximizing the intraclass similarity

and minimizing the interclass similarity” [3]. This translates to the clustering

algorithm identifying and grouping instances which are similar to one another,

in contrast to ungrouped instances which are less-similar to one another. As

clustering does not require the pre-labeling of classes, which is, in contrast,

required for classification, it is considered a form of unsupervised learning [3],

intimating that clustering learns by observation as opposed to learning by

example.

/c-means is perhaps the most well-known example of a clustering algorithm [4,

5]. As such, it is often the default clustering method in data mining appli-

cations, allowing for the unsupervised exploration and discovery of groups of

similar items. The /c-means clustering algorithm continues to be one of the

most popular machine algorithms algorithms used in data mining, and was

included in the seminal Top 10 Algorithms in Data Mining paper by Wu, et

al. [5], which outlines the most influential algorithms based on 3 separate data

mining conference attendee surveys.

In the context of data mining, clustering is often used as both a standalone

tool for gaining insight into a particular set of data and its distribution, as well

as a pre-processing step for further algorithms, such as classification [3]. In the

2

Figure 1.1: A proposed classical machine learning algorithm taxonomy.

former, clustering is the protagonist which enables pattern recognition [4], one

of the core and original aims of data mining; in the latter, clustering becomes

a potentially-vital piece of machine learning pipelines, chains of algorithms

which operate serially on a dataset to generate an insightful final outcome.

As a member of the unsupervised learning branch of classical machine learn-

ing algorithms, clustering can be considered a fundamental machine learning

technique.

Figure 1.1 presents a proposed classical machine learning algorithm taxonomy

- classical in the sense that it does not include the more advanced, hybrid,

and unorthodox contemporary algorithms - highlighting clustering and the

/c-means algorithm in blue, with the various leaves representing particular

algorithm exemplars.

3

k-means clustering is an unmistakably simple algorithm; it works by initializ-

ing a specified number of generally user-supplied cluster centers, or centroids,

and computing the distance, usually Euclidean, between the coordinates of

each of a given dataset’s instances and the coordinates of each of the centroids

[4]. Each instance is added as a member of the cluster of the closest centroid,

after which the centroids are recentered to be in the position which minimizes

the sum of squared errors (SSE), which is the sum of the squared differences

between each instance and its group’s mean, of the distances between it and

all of its member instances. The clustering process then begins anew, contin-

uing until the centroids do not change their coordinates between successive

iterations. This optimal state is referred to as convergence, and its attainment

suggests that the centroids are, in fact, in the best possible location, reflected

in the minimized SSE.

1.1 Problem Definition

If you consider that an iteration of the distance calculations required to com-

pare each instance to each centroid takes constant time, there are, then, 2

aspects of the A;-means algorithm that can be, and often are, targeted for

optimization:

1. Centroid initialization, such that the initial cluster centers are placed as

close as possible to the optimal cluster centers

2. Selection of the optimal value for k (the number of clusters, and cen-

4

troids) for a particular dataset

If nothing of the data is known ahead of time, the optimal value of k is typi-

cally found via experimentation, though there are algorithms in existence for

assisting this process. Centroid initialization is usually performed via random-

ization, where the space of all existing instances are found, and centroids are

randomly placed within this space, with the hopes that the speed and simplic-

ity of this operation is an acceptable trade-off between the provided accuracy

and overall performance.

The actual clustering method of the /c-means algorithm, which follows centroid

initialization, and which is iterated upon until the “best” centroid location is

found, is highly sensitive to the initial placement of centroids. The better the

initial centroid placement, generally the fewer iterations are required, and the

faster and more efficient the algorithm is [4], Research into improved centroid

initialization has yielded both clever methods and improved results, but these

methods are often resource intensive and time-consuming.

There are also additional modifications to £;-means, such as &-means++ [6],

which take a somewhat different approach; the independent steps of centroid

initialization and optimal k selection are confounded into a single, overarching

process which is iterated upon during the clustering method. This allows the

number of clusters, and the corresponding centroids, to fluctuate during the

clustering process itself. Again, this process can be resource intensive and

time-consuming, and continues to rely on randomization as a main driver of

centroid initialization.

5

What if the trade-off between computational efficiency and the effectiveness of

centroid initialization methods was moot? What if there was a deterministic

approach which was computationally simple enough that it relied on very

few calculations, dramatically reducing the initialization time, lowering the

number of clustering iterations required, and shortening the overall execution

time of the /c-means algorithm, all while producing comparable accuracy of

results?

This research proposes a family of such centroid initialization algorithms for

A;-means clustering which aim to fill this role by using an innovative method

for attempting to place the initial cluster centers as close as possible to the

optimal cluster centers, and to place them in the same, calculable position

every time.

1.2 Proposed Method

The dataset sharding family centroid of initialization algorithms is simple,

relying on but a few arithmetic calculations of simple statistical metrics to

determine. The algorithm works only for fully numeric datasets; however, as

performing distance-based clustering on datasets with nominal values produces

meaningless results - true fc-means-style clustering of categorical or nominal

data requires a related, yet distinct, algorithm such as &-modes clustering [7]

- this is actually not a limitation.

The sharding family of centroid initialization algorithms proceed in a very

6

simple manner, and are primarily dependant on the calculation of a compos-

ite value reflecting all of the attribute values of an instance. The algorithm

family supports the calculation of this composite value based on the sum of all

instance attribute values (naive sharding), the mean of all instance attribute

values (mean sharding), and the median of all instance attribute values (me-

dian sharding).

Once this composite value is computed, it is used to sort the instances of the

dataset. The dataset is then horizontally split into k pieces, or shards. Finally,

the original attributes of each shard are independently summed, their mean is

computed, and the resultant collection of rows of shard attribute mean values

becomes the set of centroids to be used for initialization.

1.3 Expected Results

Putting aside any potential effect on the overall A;-means algorithm for a mo-

ment, such as a reduction in the number of clustering iterations required for

convergence, the sharding family of centroid initialization algorithms is ex-

pected to exhibit the following beneficial characteristic: decreased centroid

initialization time. Sharding initialization is expected to execute much quicker

than random centroid initialization, especially considering that the time needed

for randomly initializing centroids for increasingly complex datasets (more in-

stances and more attributes) grows superlinearly, and can be extremely time-

consuming given complex enough data; sharding initialization executes in lin-

7

ear time, and is not dependent on data complexity.

It is expected that sharding centroid initialization methods will reduce the

overall A;-rneans clustering algorithm runtime by reducing the centroid initial-

ization time, as outlined above. Further, it is expected that the sharding

family of centroid initialization algorithms will also allow for a further reduc-

tion in the overall A;-means clustering algorithm runtime by decreasing both

the required number of clustering iterations, due to initial centroid placement

closer to the optimal, and the overall execution time required by the clustering

iterations prior to convergence.

1.4 Thesis Outline

The remainder of this paper will further outline the sharding family of centroid

initialization algorithms, define a practical implementation of the algorithms,

outline a stringent method for evaluating their performance, and analyze the

results of experiments run on the implemented algorithms.

Chapter 2 will outline previous attempts at improving the A;-means clustering

centroid initialization algorithm. Chapter 3 will describe, in detail, the design

of the sharding family of centroid initialization algorithms. Chapter 4 will

bridge the gap between the theoretical algorithm design and its practical im-

plementation in Python, including steps that are language-specific. Chapter 5

will share and discuss the results of experiments on the Python implementation

of the sharding family of centroid initialization algorithms. Finally, Chapter

8

Chapter 2

Previous Work

Before describing and implementing an innovative method for centroid initial-

ization for fc-means clustering, it would be informative to outline some research

which has previously been pursued in an attempt to improve the original ini-

tialization process. In this chapter we will investigate a sampling of both

improvements and alternatives to random centroid initialization.

While some approaches which challenge the limits of classical fc-means clus-

tering will be presented, algorithms which are definitely not &-means will be

avoided, of which there are many different types; hierarchical, density-based,

and grid-based methods are all families of clustering algorithms which are quite

different than A:-rneans clustering. Though k-means is a partitioning cluster-

ing algorithm [3], it is certainly not the only one, with other options in this

category existent as well. Clustering algorithms such as Gaussian Expectation-

Maximization, Fuzzy &-means, and /s-harmonic, along with many others, are

eliminated from investigation for these reasons.

2.1 Improvements to Random Initialization

A number of attempts at improving randomized centroid initialization have

been pursued over the years. A sampling of such research follows.

One such modification to random centroid initialization is A;-means+-h Arthur

& Vassilvitskii [6] recognized that maximizing the distribution of the initial

clusters, as opposed to initializing them all at random, was likely advanta-

geous. As such, the approach that their research took was to initialize cen-

troids at random from the data points while weighing potential centroids by

their squared distance from the closest centroid already initialized. This effec-

tively ensures a maximal ’’spread” of centroids across the data space, more so

than does randomized initialization.

Arthur & Vassilvitskii found that their approach was, in fact, advantageous.

Experiments on 4 datasets yielded results which generally outperformed clas-

sical fc-means centroid initialization in both accuracy and speed, and often by

a wide margin.

Another such exemplar is bisecting ft-means, somewhat of a hybrid method

which attempts to successively initialize the required number of centroids be-

tween iterations of clustering. Bisecting /c-means starts with a single centroid

and cluster, and then splits this cluster into 2, performs clustering with a value

of k = 2, and continues to iterate on splitting the best possible target clus-

11

ter and performing another round of clustering with k + 1 until the desired

number of clusters (and centroids) are reached.

Steinbach, Karypis, & Kumar [8] found that bisecting k-means generally out-

performed standard /c-means clustering, when measuring entropy, and that

even when it did not it performed nearly as well. Their experiments did not

include time-related metrics.

2.2 Alternatives to Random Initialization

Alternatives to randomized centroid initialization, more consistent with the

method proposed in this research, have also previously been attempted. Sev-

eral promising deterministic methods for centroid initialization have emerged

from research over the years.

One such deterministic method is found in Su & Dy [9], which outlines a divi-

sive hierarchical method, based on Principal Component Analysis, for centroid

initialization. Principal Component Analysis (PCA) is a statistical technique

which transforms data into a representative projection in lower-dimensional

space. The principal components are those variables which descendingly ac-

count for the highest amount of variability within the data. PCA also ’’mini-

mizes the average projection cost, defined as the means squared distance be-

tween the data points and their projections” [4], which intuitively sounds as

though these principal components, in descending order of their discovery,

would make ideal candidates for clusters within the dataset.

12

Su & Dy leverage this very notion; the results of their experiments on 5

datasets suggest that their implementation led to the /c-means clustering pro-

cess generating clusters with SSE values close to the minimum SSE values

obtained by 100 random initialization tests. Results also indicated that fewer

numbers of iterations were required for convergence, when compared with ran-

dom initialization.

Gingles & Celebi [10] undertook research which posited that the natural clus-

ters of a dataset would be located in the areas of highest data density. Since

a histogram is deemed the simplest way to estimate nonparametric density,

Gingles & Celebi partitioned all attributes of a given dataset into bins and

observed the number of values which fell into each of these bins. It could

then easily be determined which areas of the dataset were of the highest den-

sity.

Results of [10] showed that this implementation generally performed well in

terms of mean sum of squared error metrics, when compared with other deter-

ministic /c-means centroid initialization methods on normalized datasets. The

study did not, unfortunately, draw comparisons between the outlined inno-

vative method and non-deterministic initialization methods, such as random-

ized; nor did the study use any time-related metrics. The results do, however,

express that a simple, arithmetic-based deterministic centroid initialization

method, not rooted in randomization, could provide favorable outcomes.

No comparable research employing such a simple arithmetic-based and arbi-

trary composite instance value-based method as this research outlines could

13

be found in the research. However, as non-deterministic centroid initializa-

tion algorithms have previously presented promising results, and as related

approaches to solving the problem of reduced A;-mcans clustering centroid ini-

tialization times with comparable clustering algorithm sum of squared error

results are not identifiable, the suggestion is that this research is worthy of

pursuit.

14

Chapter 3

Methodology

This chapter will further outline the functionality of the proposed method of

centroid initialization, and serve to highlight the differences between it and

random initialization, in the context of k-means clustering.

The first task is to formally define the k-means clustering algorithm and its

constituent components. Once these algorithms are sufficiently recounted, the

proposed centroid initialization method will be outlined in detail.

3.1 The fc-means Clustering Algorithm

The concept of clustering has been previously presented with the goal of “max-

imizing the intraclass similarity and minimizing the interclass similarity” [3].

While there are numerous clustering algorithms in existence, varying in their

complexities, ft-means takes a rather direct approach in its attempts to achieve

this stated goal.

k-means is a simple, yet often effective, approach to clustering, k points are

randomly chosen as cluster centers, or centroids, and all training instances

are plotted and added as a member of the closest centroid’s cluster. After all

instances have been added to clusters, the centroids, representing the means

(the means in fc-means) of the collection of each cluster’s instances, are re-

calculated, with these re-calculated centroids becoming the new centers of their

respective clusters.

At this point, all cluster membership is reset, and all instances of the training

set are re-plotted and -added as members of the closest, possibly re-centered

(or different) cluster. This iterative process continues until there is no change

to the centroids or their membership, at which point the clusters are considered

settled [3], and convergence has been achieved.

The classical fc-means clustering algorithm is presented as Algorithm 1.

Convergence is achieved once the re-calculated centroids match the previous

iteration’s centroids. The measure of distance utilized by the k-means cluster-

ing algorithm is generally Euclidean, which, given 2 points in the form of (x,

y), can be represented as:

y/(xx - x2)
2 + (yi - V2)2- (3-1)

This equation can be generalized to any number of points; therefore, the Eu-

clidean distance between any data instance and a centroid is calculable by

16

Algorithm 1 Umeans Clustering

INPUT: S, k where S = set of instances, k = integer
OUTPUT: k Clusters
Require: S ^ 0, k > 0

1: procedure CLUSTERDATA:

2: C 4- InitializeCentroids(5', k)
3: repeat
4: for all Instance i in S do
5: shortest <r- 0
6: membership *— null
7: for all Centroid c in C do
8: dist 4- Distance^, c)
9: if dist < shortest then

10: shortest 4- dist
11: membership 4- c
12: end if
13: end for
14: end for
15: UpdateCentroids(C)
16: until convergence
17: end procedure

17

taking the square root of the sum of the element-wise squared difference of

attribute value vectors representing a particular dataset instance and a given

centroid. This generalization can be represented as:

V(au - alc)
2 + (a2i - a2c)

2...(ani - anc)
2, (3.2)

where a is a given attribute, i and c denote instance and centroid attribute

values, respectively, and 1, 2, and n represent the particular attribute index

for which the difference is being calculated.

3.2 Random Centroid Initialization

Classical k-means clustering utilizes random centroid initialization [3]. In order

for randomization to be properly performed, the entire space being occupied

by all instances in all dimensions is first to be determined. This means that all

instances in the dataset must be enumerated, and a record must be kept of the

minimum and maximum values of each attribute, constituting the boundaries

of the various planes in n-dimensional space, with n being the number of

attributes in the dataset. This can be a time-consuming process; the time

required to perform randomization grows exponentially with increased dataset

complexity, by way of both a larger number of instances and a larger number

of attributes.

The algorithm for random centroid initialization is presented as Algorithm

18

2. Note that the RandomCentroids function of Algorithm 2 is generally

the InitializeCentroids function being referenced in Algorithm 1, at least in

classical fc-means; however, random centroid initialization is not a mandatory

component of the /c-means clustering process.

Algorithm 2 Random Centroid Initialization

INPUT: S, k where S = set of instances, k = integer
OUTPUT: k Centroids
Require: S ^ 0, k > 0

l: procedure RANDOMCENTROIDS:

2: C ■f- size(fc)
3: for all Attribute a in S do
4: min •<— Min(a)
5: max <— Max(a)
6: range <— max — min
7: for all Centroid c in C do
8: Attribute a <— min + range x Rand(0,1)
9: end for

10: end for
11: end procedure

After the centroids are initialized, the clustering portion of the algorithm is

executed (see Algorithm 1). Once an iteration of clustering has taken place,

centroids must be re-centered, as described in the above treatment of the k-

means clustering algorithm.

Centroid updating is described in Algorithm 3.

As outlined previously, this combined iterative process of clustering and cen-

troid updating continues until there is no change in centroid coordinates be-

tween successive iterations, at which point the clusters are considered settled,

and convergence has been achieved.

19

Algorithm 3 Centroid Updating

INPUT: C, where C — set of clusters
OUTPUT: Set of centroids
Require: C 7^ 0

1: procedure UPDATECENTROIDS:
2: NewCentroids •<— size(C')
3: for all Cluster c in C do
4: for all Attribute a in c do
5: mean •<— Mean(a)
6: a of Centroid c <— mean
7: end for
8: Append c to NewCentroids
9: end for

10: end procedure

A few aspects of particular importance regarding the Urneans clustering algo-

rithm, and its component methods, are presented below.

• Time required for random centroid initialization is affected by the time

required to survey the entire dataset in order to determine the dataset-

occupied space and its boundaries

• The number of clustering iterations required to reach convergence can

vary, dependant on the initial random centroids, which has a direct effect

on the total execution time of the clustering algorithm

These particular aspects of the /c-means clustering algorithm are those which

are directly addressed by the sharding family of centroid initialization algo-

rithms.

Now that the Umeans clustering algorithm has been outlined in sufficient

detail, the sharding method of centroid initialization will be defined.

3.3 Sharding Centroid Initialization

While random centroid initialization takes a non-deterministic approach to

initializing the first batch of centroids for k-means clustering, the proposed

algorithm family addresses the task in a different manner. The dataset shard-

ing family of centroid initialization algorithms are deterministic in nature, and

rely on simple arithmetic for determining the initial set of clusters.

All of the member algorithms operate within a common framework. First, each

of the member instances of the dataset to be clustered has some composite

value computed from its attributes’ values intended to provide some reflection

of the instance itself, able to be used for comparison to other instances for

sorting. This is the precise step where the constituent methods of the algorithm

family differ in their approach, approaches which are detailed below.

Next, as alluded to above, the dataset instances are sorted by this composite

value. The sorted dataset is then split horizontally into k equal-sized sections,

or shards. Finally, the mean of each of the attribute columns of each of k

shards is used as the corresponding attribute of the centroid of that shard’s

cluster.

3.3.1 Naive Sharding

The sharding family of centroid initialization algorithms includes 3 separate

statistical methods for performing the first of these steps. Naive sharding em-

ploys the summation of each of the dataset instance attribute values to achieve

21

1. Sum the attributes of each instance,

prepend result column to dataset

SUM ROWS ATTRO ATTR 1 ATTR2 ATTR n

instance 1

instance 2

instance 3

instance m

2. Sort the instances of the dataset by the

newly created sum column, in ascending order

3. Split the dataset horizontally into

k equal-sized pieces, or shards

Figure 3.1: Sorting by composite value and sharding.

the composite value used for sorting an entire dataset prior to sharding.

An overview of naive sharding is as follows:

• Step 1. Sum the attribute (column) values for each instance (row) of

a dataset, and prepend this new column of instance value sums to the

dataset

• Step 2. Sort the instances of the dataset by the newly created sum

column, in ascending order

• Step 3. Split the dataset horizontally into k equal-sized pieces, or shards

• Step 4. For each shard, sum the attribute columns (excluding the col-

umn created in step 1), compute its mean, and place the values into a

22

4, For each shard, compute mean of attribute columns; mean
values become corresponding attribute values of new centroid

Shard

Centroid

Figure 3.2: Shard attribute means become centroid attribute values.

new row; this new row is effectively one of the centroids used for initial-

ization

• Step 5. Add each centroid row from each shard to a new set of centroid

instances

• Step 6. Return this set of centroid instances to the calling function for

use in the fc-means clustering algorithm

As previously promised, the algorithm is very simple.

Formally, the naive sharding centroid initialization algorithm for A;-means clus-

tering is described in Algorithm

23

Algorithm 4 Naive Sharding Centroid Initialization

INPUT: S, k where S = set of instances, k = integer
OUTPUT: k Centroids
Require: S ^ 0, k > 0

1: procedure NAIVESHARDING:

2: for all Instance i in S' do
3: composite •<— Sum (attributes)
4: Append composite to i
5: end for
6: Sort S on composite
7: Split S into k Shards
8: for all Shard k in Shards do
9: for all Attribute a in A; do

10: mean Mean(a)
11: a of Centroid k <— mean
12: end for
13: end for
14: end procedure

3.3.2 Mean Sharding

Mean sharding, the second of the sharding family of centroid initialization

methods to be outlined, is the same as naive sharding in every aspect, except

for the statistical method used to sort the dataset instances prior to sharding.

Whereas naive sharding uses a summation process, mean sharding finds the

mean of all of the attributes’ values and uses this number as the composite

value on which to sort.

As such, the algorithm for mean sharding is identical to what is presented

in Algorithm 4, with the following 4 lines replacing lines 2-5 of Algorithm 4-

In fact, only a single one of these lines differs from its corresponding line in

Algorithm 4; the other lines are included to provide context.

24

Algorithm 5 Mean Sharding Centroid Initialization

1: for all Instance i in S do
2: composite <— yiean(attributes)
3: Append composite to i
4: end for

3.3.3 Median Sharding

Finally, median sharding calculates its composite value for dataset sorting by

taking the attribute values of each instance and finding their median. Just

as Algorithm 5 shows only the lines differing from those in Algorithm 4, the

following does the same. Again, note that only a single line is actually different;

the others are provided for context.

Algorithm 6 Median Sharding Centroid Initialization

1: for all Instance i in S do
2: composite 4— Median(aftrifrutes)
3: Append composite to i
4: end for

A few aspects of particular importance regarding the sharding family of cen-

troid initialization algorithms, especially in contrast to those pointed out above

for the random centroid initialization algorithm of classical &-means, are listed

below.

• Time required for sharding centroid initialization is not affected by the

time required to survey the entire dataset and compute occupied space

and boundaries, as only simple arithmetic is performed on instance data

in linear time

• The number of clustering iterations required to reach convergence will re-

25

main constant between executions of the algorithm on the same dataset,

as the results of simple statistical calculations will always provide the

same results, a fact which stabilizes the total execution time of the clus-

tering algorithm

The practical implementation described in the following chapter, and the con-

sequent experiments on its performance, will provide insight into whether these

above aspects of the proposed algorithm lead to improved execution times of

the k-means clustering algorithm.

3.4 Measuring Success

This project’s measure of success will be the execution time savings of the

A;-means clustering algorithm when utilizing the sharding family of centroid

initialization methods over random centroid initialization. Independent of such

performance benefits, it is imperative that any execution time savings are

accompanied by reasonably similar measures of cluster algorithm accuracy,

which will be evidenced by the comparison of the SSE metric of both random

and sharding centroid initialization method outcomes.

If huge increases in time savings are attained, but at a cost of algorithm

accuracy to any great degree, the trade-off may not be deemed worthy of con-

sideration. Conversely, increased execution time savings balanced with similar

SSE metrics - which is the desired outcome - would almost certainly make

the sharding family of centroid initialization algorithms valuable additions to

Chapter 4

Implementation

This chapter provides the details of translating the methodology outlined in

the previous chapter into code for evaluating the proposed algorithms. As

Python is a solid default language for contemporary scientific computing and

machine learning implementations [11], and due to its deserved reputation as

being easy to both read and write, it has been chosen as the medium for the

practical portion of this research.

First, a brief discussion of the scientific Python computing ecosystem and its

common libraries is undertaken. The chapter is then broken down into sections

corresponding to those in the previous chapter, allowing for a straightforward

comparison of the theoretical proposed algorithms and their practical imple-

mentation. Python code is presented for aspects of the implementation which

are deemed critical, which represent the proposed functionality, or which re-

quire further clarification.

4.1 Python

Python1 is an open source, general-purpose high-level programming language

which supports multiple paradigms and enjoys an admirable market share [12].

Beyond this, Python is heavily used in the scientific computing community,

has made recent inroads into statistical computing, and is increasingly becom-

ing the language of choice for machine learning researchers and practitioners

everywhere [11]. Given that it is open source, and has been described as exe-

cutable pseudocode [13], adoption by those looking for a cooperative and flexi-

ble language with quick prototyping turnaround times is intuitive. In addition

to these characteristics supporting do-it-yourself algorithm implementations,

from classical machine learning algorithms to contemporary deep neural net-

works and beyond, Python also has community-developed and -maintained

(and often considered de facto) libraries for nearly any machine learning or

data mining task imaginable.

According to longstanding data mining and analytics information website KD-

nuggets’ annual survey of analytics and data mining tools2, Python has made

continual market share inroads over the past several years in the analytics, data

science, and machine learning communities. Details of the survey methodology

can be found on KDnuggets’ website.

Figure f.l shows the previous 6 years of Python market share data, according

to KDnuggets. There is a clear upward trend, not unlikely due to the numerous
1https://www.python.org/
2http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html

29

Year

Figure 4.1: Python popularity among the analytics community.

language characteristics previously highlighted. Note that the survey is not

scientific, and is simply intended to provide some insight into Python’s role in

the current analytics and machine learning landscape.

Numerous well-known and -utilized scientific computing libraries exist for

Python as well. Notably, the NumPy3 scientific library, and its powerful

N-dimensional array (matrix) objects, is relied upon for this research as a

dataset housing and manipulation mechanism. NumPy is highly-optimized

Python and C code wrapped in a Python application programming interface

(API) [14], providing both the lower-level resource management and the speed

and convenience that come with such an implementation architecture.

Beyond NumPy, particular modules of the closely-related SciPy4 superset li-
3http://www.numpy.org/
4https: / / www.scipy.org/

30

brary for scientific computation have been employed, specifically for vectorized

distance calculations during the clustering process [14]. NurnPy and SciPy

provide well-honed and high-performing implementations of the functional-

ity required in each of the disclosed tasks; re-inventing the wheel would seem

not only clunky and unnecessary for this research, not removing every possible

point of interference with the true algorithmic aspects which are being explored

by this research would seem both dishonest and counterproductive.

Additionally, 2-dimensional Python plotting library matplotlib5 has been

employed for the plots and graphs which have been produced in the results

analysis section of this paper.

4.2 Implementation Overview

For this research, the £>means clustering algorithm, including the random

centroid initialization method and the sharding family of centroid initialization

methods, as well as utility functionality and much of the testing apparatus,

has all been implemented in Python. Figure 4-2 is an outline of the project

structure, including relevant packages and modules.

The following is a project package overview:

• docs - includes project documentation

• kmeans - the fc-means algorithm and associated algorithmic function-

ality
5http://matplotlib.org/

31

— docs
1— readne.html

— in it .py
— kneans
— centroids.py
— centroids.pyc
— distances.py
— distances.pyc
— init . py
— init .pyc
— kneans.py
— kneans.pyc

— tests
— logs
— results
— test_driver.py
— test_driver.sh
— test.py
— test.pyc

— utils
— dataset.py
— dataset.pyc
— init .py
— init .pyc
— netrics.py
— Retries.pyc
— plot.py
— plot.pyc
— process_dataset.py
— randon_dataset.py

Figure 4.2: Project tree structure.

• tests - apparatus for performing the implementation experiments

• utils - utility modules, including those for dataset management, plotting,

and algorithm performance metrics

For information on executing the implemented algorithm, see the project’s

documentation, browse the inline comments throughout the code, or read the

testing modules code.

Note that the script used for driving the experiments is the only project code

not written in Python; it is implemented in shell script for purposes described

in a subsequent section. Consider that this code was implemented in a Linux

environment, and as such may not behave as expected elsewhere.

32

4.3 fc-means Clustering Algorithm

The actual fc-means clustering algorithm, including all of its constituent com-

ponents, such as distance calculation and centroid initialization functions, is

implemented in the kmeans package; in particular, much of the interesting

functionality of this research is located in the centroids.py module.

Listing 4-1 is an excerpt from the kmeans.py module.

Listing 4.1: kmeans.py module excerpt.

Loop until no changes to cluster assignments

while changed:

Change in clusters between iterations?

changed = False

For every instance (row in dataset)

for i in range(m):

Track minimum distance, and vector index of cluster

min_dist = np.inf

min_index = -1

Calculate distances

for j in range(k):

dist_ji = dist_function(cents[j,:], ds[i,:])

if dist_ji < min_dist:

min_dist = dist_ji

min_index = j

Check if cluster assignment of instance has changed

if cluster_assignments[i,0] != min_index:

changed = True

Assign instance to appropriate cluster

cluster_assignments[i,:] = min_index, min_dist**2

33

Update centroid locations

for cent in range(k):

points = ds[np.nonzero(cluster_assignments[:,0] \

.A==cent)[0]]

cents[cent,:] = np.mean(points, axis=0)

This piece of code performs the actual clustering task of /c-means clustering,

which occurs after centroids have been initialized, randomly or otherwise, and

executes until convergence has occurred. For each instance in the dataset, the

distance to each centroid is calculated, and the closest centroid, and, logically,

member cluster, is tracked. Afterward, whether or not there has been a change

in assigned cluster for the given instance is determined (the convergence crite-

ria), and the cluster assignment, and its squared distance, is recorded. Finally,

the centroid locations are updated before beginning the next iteration, should

the convergence criteria not have been met.

The Euclidean distance of 2 points, generalized, for this research, to any num-

ber of corresponding attribute value vectors between a centroid and a dataset

instance, has been implemented using the distance functions of SciPy. As such,

the code is straightforward, being called from line 16 of the above cluster()

function as distJunction(). This is actually an abstraction, a variable refer-

encing any valid function call, in the case that something unorthodox, such

as Manhattan (city block) or Minkowski distance, was desired to be tested

with this code. Such an avenue has not been pursued for this research, how-

ever.

The actual code excerpt which performs the SciPy distance function call is

34

shown is Listing 2.

Listing 4.2: euclidean() function from distances.py module.

import numpy as np

import scipy.spatial.distance as metric

def euclidean(A, B):

Call to scipy with vector parameters
return metric.euclidean(A, B)

4.4 Random Centroid Initialization

Random centroid initialization is accomplished via the rand-cent() function of

the centroids.py project module. The function accepts 2 input parameters, a

dataset, ds, as a NumPy matrix and an integer, k, representing the number of

centroids to create, and proceeds by first surveying the bounded data space and

then randomly selecting points within this space. It is evident that this process

actually happens attribute value by attribute value. The set of centroids is

returned as a NumPy matrix.

Listing 4.3: rand^centQ function from centroids.py module.

def rand_cent(ds, k):

Number of columns in dataset
n = np.shape(ds)[1]

The centroids
centroids = np.mat(np.zeros((k,n)))

Create random centroids
for j in range(n):

35

min_j = min(ds[:,j])

range_j = float(max(ds [:,j]) - min_j)

centroids[:,j] = min_j + range_j * np.random.rand(k, 1)

Return centroids as numpy array

return centroids

The function shown in Listing 4-3 is called from the relevant section of code

in the cluster() function of the kmeans.py module via abstraction in a similar

manner as the disLfunction() function, which allows a user to pass the desired

centroid initialization function to the cluster() function as an input parameter,

without the need for code specific to calling each of the centroid initialization

functions.

Figure 4-3 is a diagrammatic representation of the interaction between the

constituent components of the kmeans module.

It is to be noted that the code included thus far has been inspired and influ-

enced by Harrington [15].

4.5 Sharding Centroid Initialization

The following sections outline the implementation of the sharding family of

centroid initialization functions.

36

Figure 4.3: kmeans.py module overview.

4.5.1 Naive Sharding

As outlined in a previous section, the naive sharding centroid initialization

method proceeds using the following steps:

• Step 1. Sum the attribute (column) values for each instance (row) of

a dataset, and prepend this new column of instance value sums to the

dataset

• Step 2. Sort the instances of the dataset by the newly created sum

column, in ascending order

• Step 3. Split the dataset horizontally into k equal-sized pieces, or shards

• Step 4. For each shard, sum the attribute columns (excluding the col-

37

umn created in step 1), compute its mean, and place the values into a

new row; this new row is effectively one of the centroids used for initial-

ization

• Step 5. Add each centroid row from each shard to a new set of centroid

instances

• Step 6. Return this set of centroid instances to the calling function for

use in the &-means clustering algorithm

Listing 4.4: naive.sharding() function from centroids.py module.

def naive_sharding(ds, k):

Number of columns in dataset

n = np.shape(ds)[1]

Number of rows in dataset

m = np.shape(ds)[0]

The centroids

centroids = np.mat(np.zeros((k,n)))

Sum all elements of each row

composite = np.sum(ds, axis=l)

Add composite as first column to original dataset matrix

ds = np.append(composite, ds, axis=l)

Sort matrix based on sum_rows (first) column

ds.sort(axis=0)

Step value for dataset sharding

step = floor(m/k)

38

Vectorize mean ufunc for numpy array
vfunc = np.vectorize(_get_mean)

Shard dataset; compute centroids
for j in range(k):

if j == k-1:

centroids [j:] = vfunc(np.sum(ds[j*step:,1:], \

axis=0), step)

else:

centroids[j:] = vfunc(np.sum(ds[j*step:(j+1)*step,1:], \

axis=0), step)

Return centroids as numpy array
return centroids

For more information on the theoretical methodology of the naive sharding

centroid initialization method, see Algorithm 4, Figure 3.1, and Figure 3.2 of

chapter 3.

Listing 4-4 implements the prescribed methodology in practical form. The

comments outline the step-by-step process of the algorithm, which match up

almost verbatim with the steps above. Of note, line 13 calculates the represen-

tative composite value for each instance, used for subsequent sorting (line 19)

before dataset sharding and centroid computation (lines 28-34). Line 25 vec-

torizes a custom helper function (_geLmean()), making it useful for NumPy

arrays as opposed to only traditional scalars, for finding the shard means,

which is outlined in the code of Listing 4-5-

Listing 4.5: .geLmean() function from centroids.py module.

def _get_mean(sums, step):

Return means as numpy array
return sums/step

4.5.2 Mean Sharding

For mean sharding, a single line must be replaced in the above naive sharding

algorithm in order to make the necessary changes, computing a composite

value reflective of the instance means as opposed to their sums. With NumPy,

this is trivial. Line 13 of Listing 4-4 is replaced by the single line of code of

Listing 4-6.

Listing 4.6: mean_sharding() function excerpt from centroids.py module.

Get mean of all elements of each row

composite = np.mean(ds, axis=l)

The remainder of the algorithm follows Listing 4-4-

4.5.3 Median Sharding

For median sharding, the final member of the sharding family of centroid ini-

tialization methods, the same single line, 13, from Listing 4-4 can be replaced

with the following single line of code of Listing 4-7. Again, this is trivial using

NumPy.

Listing 4.7: median_sharding() function excerpt from centroids.py module.

Get median of all elements of each row

composite = np.medianfds, axis=l)

4.6 Utility Modules

Aside from core project functionality, code for this research includes a small

number of utility modules, which are outlined below.

• dataset.py - functionality for loading a dataset from comma-separated

value (CSV) file

• metrics.py - functionality for computing the sum of squared errors

(SSE) for a particular cluster

• plot.py - functionality for plotting a 2-dimensional representation of a

dataset and a set of centroids

• process-dataset.py - used for processing datasets in a variety of ways,

such as removing instances with empty values, or removing entire columns;

used for dataset preparation outlined in a subsequent section

• random-dataset.py - used to generate an artificial dataset of random

values; employed in the creation of datasets outlined in a subsequent

section

4.7 Testing Apparatus

The following provides an overview of the testing modules and process followed

for conducting experiments in this research.

• /results - output from each experiment, including a series of parameters

such as the number of clusters for the experiment, number of k-means

clustering iterations, mean SSE of all clusters for the experiment, and a

number of timing-related measures

• /logs - raw output of the report data the fc-means clustering implemen-

tation outputs in verbose mode, including mostly the same data as above,

except per iteration of the /c-rneans clustering algorithm, as opposed to

summarized per experiment

• test.py - test script which executes a single k-means clustering task

• test-driver, sh - shell script which automates the execution of a number

of /c-means experiments and captures their results, configured to execute

all experiments required of a single dataset, including those for random,

naive, mean, and median sharding

The following chapter describes the results of the experiment executions.

Chapter 5

Results and Evaluation

This chapter describes and evaluates the results of the experiments executed

against the implementation described in the previous chapter.

First, an overview of the experiments performed are presented. The follow-

ing section then describes the datasets which were used for experimentation,

presents the outcomes of those experiments, and discusses relevant aspects of

those experiment outcomes. These outcomes are discussed with an eye toward

pivoting to conclusions in the final chapter.

5.1 Experiment Overview

For each of the datasets described in the following section, a set of experiments

was executed. These experiments focused on executing the ft-means cluster-

ing algorithm using the previously outlined centroid initialization methods -

random, naive sharding, mean sharding, median sharding - with an interest in

capturing and comparing their sum of squared error (SSE) metric outcomes,

their execution times (both for the entire clustering execution as well as for

the centroid initialization itself), and the number of iterations of clustering

required for convergence.

While the execution times and number of iterations for convergence are a di-

rect and obvious measure of the effectiveness of the centroid initialization algo-

rithms, SSE may not be. Should a member of the sharding family of centroid

initialization algorithms lead to a clustering performance with a significantly

reduced execution time yet demonstrate SSE measure values which were not

comparable to random initialization on the same data, it would be difficult

to conclude that this was any type of improvement. There may be some pos-

sibility of trade-off between speed and accuracy in general; however, terribly

inaccurate results are not an acceptable outcome in exchange for dramatic

improvements in speed.

For each of the datasets, the following individual experiments were executed:

• Random centroid initialization - 10 consecutive executions

• Naive sharding centroid execution - 3 consecutive executions

• Mean sharding centroid execution - 3 consecutive executions

• Median sharding centroid execution - 3 consecutive executions

As random centroid initialization leads to different initial centroids on each

execution, it is reasonable to believe that performance outcomes may differ

44

significantly; in fact, they often do [3]. However, for the deterministic sharding

family of centroid initialization algorithms, initial centroids are always the

same for a given dataset, leading to identical SSE outcomes, and so fewer

runs are required to simply determine mean execution times. Each set of

experiments were executed on the same dedicated computer (see Appendix A

for details).

Python’s clockQ [16] function of its built-in time module was employed for

capturing the runtimes of the separate clustering and centroid initialization

algorithm executions, as these functions are executed from within Python code

and return values to the calling functions, making this the most appropriate

technique for performing this task. As such, values reported in the results

tables below are the difference between wall clock times, in seconds.

For the overall execution time of each A;-means clustering experiment, however,

the time [17] command of the GNU operating environment was utilized, in

order to isolate the resources dedicated exclusively to our process(es); as these

executions were called from outside of the Python environment, this technique

was appropriate for such a task. As such, values reported in the results tables

below are in CPU seconds.

Listing 5.1: Timing functionality excerpt from kmeans.py module.

Initialize centroids
tO = time . clockO
cents = cent_init(ds, k)
tl = time.clockO
cent_init_time = tl - tO

Timing was captured within Python as outlined in Listing 5.1, with this partic-

45

ular example tracking the runtime of the centroid initialization function.

The full testing code apparatus has been detailed in the previous chapter.

5.2 Datasets

For some datasets, particularly those for which the number of natural clusters

was unknown, the experiments were performed a number of times, each with

a different value of k (the number of desired clusters), in order to provide

maximum insight.

For datasets for which the number of natural clusters was known, one iteration

of the experiment was performed, with an appropriate value of k. For datasets

for which the number of natural clusters was known, and for which a dataset

class attribute was available, the experiment was generally performed twice;

one execution with the class attribute removed, and the other with the class

attribute intact, converted to a numeric representation if necessary. While

clustering with values for which distances between cannot be meaningfully

measured (this generally includes nominal class values) is generally meaning-

less and adds noise to a dataset, the process was undertaken as a comparative

measure between the centroid initialization algorithms, as opposed to an exer-

cise in evaluating the results of the actual effectiveness of k-means clustering;

i.e. the interest is in the relative, as opposed to the absolute.

The datasets are of differing sizes, complexity, and data distribution; as such,

they are grouped into like categories. Each dataset is described in appro-

46

Table 5.1: Dataset summary.

Dataset

Dessewffy
Jelonek
Ruspini

Iris
Wine
Seeds

3D Road Network
Power Consumption

Attributes Clusters

n/a
n/a

4
3
3
3

n/a
n/a

priate detail, and the results of the above experiments for said dataset are

summarized alongside.

For experimentation, 8 datasets have been employed. Two of these sets have

been artificially crafted for this research, while the others are well-utilized sets

from the research.

Table 5.1 summarizes the datasets used, with attributes reported not including

class attributes, should one exist for the given dataset.

5.2.1 Research-specific Artificial Datasets

This section includes the artificial datasets crafted specifically for this research,

having been created by the researcher with specific characteristics in mind,

characteristics which are outlined below. These 2 datasets, Dessewffy and

Jelonek, have been named using the randomized Wikipedia article1 naming

system; for more information, see Appendix 2.

1https://en.wikipedia.org/wiki/Wikipedia:Random

1.2

1.0

0.8

0.6

0.4

0.2

0.0 • •

Figure 5.1: Dessewffy dataset.

Dessewffy

The Dessewffy dataset is an artificial dataset created by the researcher. The

dataset is uniformly randomized in nature, consisting of 2 attributes and 100

instances. A very simple dataset, Dessewffy mimics 2-dimensional Euclidean

space, and, as such, is informative in that its structure can be easily visualized

by the human eye.

The randomized uniform distribution will also provide an additional layer of

insight into the sharding family of centroid initialization algorithms, given that

there will most certainly not be any patterns of note held within this dataset.

Given its simple nature, it is a good set of data to begin experimentation

48

Naive Sharding

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Random

Figure 5.2: Dessewffy naive sharding versus random initialization, k = 3.

with.

Note that both the Dessewffy and Jelonek datasets were created with the ran-

dom-dataset.py script located in the utils module directory of the project.

The Dessewffy dataset is visualized in Figure 5.1.

In order to visualize the difference between random centroid initialization and

sharding initialization, Figure 5.2 demonstrates where one particular execu-

tion of random centroid initialization places 3 centroids in relation to the

Dessewffy data instances, alongside where naive sharding places its initializa-

tion centroids, each and every time.

Figure 5.3 demonstrates random versus naive sharding centroid initialization

for k = 7.

Experiments for Dessewffy included executing the testing regimen outlined

above for k values of 3, 7, and 10. The results of these executions are outlined

in Table 5.2.

49

Naive Sharding Random

Figure 5.3: Dessewffy naive sharding versus random initialization, k = 7.

Table 5.2: Dessewffy results.

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

7
9
9
9

0.06231
0.06186
0.06186
0.06186

0.00627
0.00038
0.00043
0.00054

0.13482
0.17223
0.17448
0.17590

0.27
0.31767
0.30433
0.311

random
naive
mean

median

8.6
6
6
6

0.02110
0.02181
0.02181
0.02181

0.00650
0.00069
0.00075
0.00086

0.36094
0.25252
0.25108
0.24742

0.501
0.391
0.38767
0.381

10

random
naive
mean

median

7.8
13
13
13

0.01433
0.01308
0.01308
0.01308

0.00599
0.00093
0.00101
0.00112

0.45589
0.76347
0.75557
0.75666

0.594
0.89433
0.90433
0.89767

50

As is visible from the results summarized in Table 5.2, random centroid ini-

tialization outperforms all sharding initialization algorithms for all values of k,

as far as number of iterations and algorithm runtimes are concerned, for the

Dessewffy dataset. However, and rather unexpectedly, all forms of sharding al-

gorithm result in a superior mean SSE metric value than random initialization

for 2 of the 3 values of k (3 and 10).

Jelonek

The Jelonek dataset is another artificial dataset created by the researcher.

Jelonek is uniformly randomized in nature, similar to Dessewffy; however, this

dataset consists of 2 attributes and 1000 instances, providing greater complex-

ity by way of additional instances. This dataset is equally visually interpretable

by the human eye as is Dessewffy, albeit much more densely distributed.

Figure 5-4 visualizes the Jelonek dataset.

Just as Figure 5.2 demonstrated the difference between the centroid place-

ment of a single occurrence of random initialization and naive sharding for the

Dessewffy dataset, k — 3, Figure 5.5 demonstrates the same for the Jelonek

dataset.

Figure 5.6 demonstrates random versus naive sharding centroid initialization

for k = 7.

Experiments for Jelonek included executing the testing regimen outlined above

for k values of 3, 7, and 10. The results of these executions are outlined in

51

1.2

1.0 -

0.8 -

0.2
-0.2

Figure 5.4: Jelonek dataset.

Naive Sharding Random

Figure 5.5: Jelonek naive sharding versus random initialization, k — 3.

52

Naive Sharding Random

Figure 5.6: Jelonek naive sharding versus random initialization, k — 7.

Table 5.3: Jelonek results.

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

30.6
15
15
15

0.06686
0.06712
0.06712
0.06712

0.58116
0.00311
0.00322
0.0035

57.29435
28.1926
28.27809
28.1473

58.03
28.34767
28.441
28.30767

random
naive
mean

median

29.7
26
26
26

0.0256
0.02584
0.02584
0.02584

0.57949
0.00332
0.00338
0.00381

120.27616
105.63985
105.66742
105.57737

121.005
105.791
105.801
105.76433

10

random
naive
mean

median

48.3
42
42
42

0.01699
0.01701
0.01701
0.01701

0.58077
0.00353
0.00374
0.00406

274.7395
238.69629
238.32835
237.40957

275.47
238.84767
238.49433
237.56767

53

Table 5.3.

As is visible in Table 5.3, the sharding family of centroid initialization algo-

rithms outperformed random initialization in terms of number of iterations

and all timing metrics (notice the dramatic difference in centroid initialization

time for even a relatively small number of instances), for all values of k. Ran-

dom initialization did have lower mean SSE scores for all values of k; however,

these differences were extremely insiginifcant. For example, the mean SSE

difference between all sharding algorithms and random initialization for k =

3 was 0.00026, the largest such difference exhibited of any value of k for the

dataset.

5.2.2 Datasets of Known Clusters from the Literature

This section includes details and experiment results of well-known and -used

datasets from the literature, of which the natural number of data clusters were

known.

Ruspini

The Ruspini dataset2 [18], similar to Dessewffy and Jelonek, is a 2-dimensional

artificial dataset of which there are 75 instances. Unlike the others, however,

Ruspini is not uniformly distributed, and consists of 4 natural clusters. No-

tably, the dataset does not include any classes, or distinguishing characteristics
2https: / / vincentarelbundock.github.io/Rdatasets/datasets.html

54

200

150

100

50

0

-50
-20 0 20 40 60 80 100 120 140

Figure 5.7: Ruspini random centroid initialization, k = 4.

of cluster membership, beyond the 2 data axes themselves. Data preparation

for Ruspini included the removal of a header row, as well as a single column

which consisted solely of an instance index.

Figure 5.7 visualizes the Ruspini dataset with a single occurrence of randomly-

initialized centroids, k — 4. For comparison, Figure 5.8 visualizes the Ruspini

dataset with naive sharding centroid initialization, which produces the same

centroids upon every execution, also with k = 4. Figure 5.9 and Figure 5.10

demonstrate the Ruspini dataset with 4 initial centroids generated via mean

and median sharding algorithms, respectively. As is visible from comparison of

55

Figure 5.8: Ruspini naive sharding centroid initialization, k = 4.

56

200

150

100

50

0

-50
-20 0 20 40 60 80 100 120

Figure 5.9: Ruspini mean sharding centroid initialization, k = 4

140

57

Figure 5.10: Ruspini median sharding centroid initialization, k = 4.

58

Table 5.4: Ruspini results.

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

3.2
4
4
4

271.425131
171.74735
171.74735
171.74735

0.00465
0.00049
0.00053
0.00068

0.06134
0.07650
0.07619
0.07713

0.208
0.22433
0.20767
0.22433

a dataset of this number and distribution of instances, these plots are virtually

indistinguishable.

Experiments on Ruspini consisted of the regimen outlined in a previous section,

solely for the k value of 4, the number of known clusters of the dataset. The

results are outlined in Table 5-4-

Visible from the results in Table 5.4, random centroid initialization outper-

forms all sharding initialization algorithms in terms of number of clustering it-

erations and all time-related metrics, though the mean number of iterations are

relatively similar, and the reduced execution time of the sharding algorithms

keeps their collective overall execution times reasonably close to the overall

random centroid initialization executions, despite the latter’s lower number

of clustering iterations required for convergence. However, and rather unex-

pectedly, the mean SSE metric of the sharding family of centroid initialization

algorithms is considerably lower than for the random centroid initialization

technique.

59

Iris

The Iris dataset3 [19] is a very well-known natural dataset from the litera-

ture, and is the first dataset outlined in this research that is not artificially

created. The Iris dataset contains data observations from 3 different types of

irises, made up of 4 attributes (plus 1 class attribute) and 150 instances; the

instances are of 3 classes, with an equal number of instances in each of these

3 classes.

Data preparation included remove the header row, as well as duplicating the

dataset, removing the class column from one copy, and leaving it in for the

other. The classes were converted from nominal to numeric values.

Experiments on Iris consisted of the regimen outlined in a previous section,

solely for the k value of 3, the number of known clusters of the dataset. The

experiment was executed for both dataset copies - with and without the class

attribute - in order to observe the effect of the noise associated with clustering

with attributes of immeasurable distance. The results for the Iris dataset

without class attribute and with class attribute are outlined in Table 5.5 and

Table 5.6, respectively.

Meaningfully visualizing data to the human eye beyond 2 or 3 dimensions

obviously becomes more difficult, given the lack of Euclidean plane or the

human-friendly 3-dimensional space; however, the Iris dataset is presented in

Figure 5.11 using a parallel coordinate graph. This allows for some basic

understanding of the data held in the Iris dataset.

3https://archive.ics.uci.edu/ml/datasets/Iris

60

The Iris dataset results summarized in Table 5.5 and Table 5.6, both with and

without the class attribute, show that the sharding family of centroid initial-

ization algorithms outperform random initialization in terms of all time-related

metrics and number of iterations. Unexpectedly, sharding centroid initializa-

tion also results in a lower mean SSE value than does random initialization

with the class attribute included; without the class attribute the mean SSE is

nearly identical.

Wine

The Wine dataset4 [20] is composed of chemical analysis data of wines grown

in Italy. The dataset is made up of 13 attributes and 178 instances, which

form 3 natural classes.

Data preparation of the Wine dataset included duplicating the dataset, and

removing the class attribute from one of the copies.

Experiments on Wine consisted of the regimen outlined in a previous section,

solely for the k value of 3, the number of known clusters of the dataset. The

experiment was executed for both dataset copies - with and without the class

attribute - in order to observe the effect of the noise associated with clustering

with attributes of immeasurable distance. The results for the Wine dataset

without class attribute and with class attribute are outlined in Table 5.7 and

Table 5.8, respectively.

As is evident from Table 5.11, the sharding family of centroid initialization

4https: //archive.ics.uci.edu/ml/datasets/Wine

62

Table 5.7: Wine results (without class).

Init Type Iters Mean SSE Init Time Oust Time Total Time

random
naive
mean

median

8.9
5
5
5

13909.19070
13318.48139
13318.48139
13318.48139

0.06757
0.00049
0.00051
0.00068

0.29916
0.16849
0.16781
0.16788

0.501
0.30767
0.28767
0.30767

Table 5.8: Wine results (with class).

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

11.8
5
5
5

14350.16163
13318.77699
13318.77699
13318.77699

0.07271
0.00049
0.00054
0.0007

0.40031
0.17093
0.16909
0.17014

0.609
0.30433
0.30433
0.301

algorithms outperformed random initialization in all time-related metrics, in

number of clustering iterations required for convergence, as well as mean SSE,

with the exception of reporting an identical mean SSE for one particular value

of k (k — 3).

Seeds

The Seeds dataset5 [21] consists of observations related to 3 different types of

wheat. The dataset contains 210 instances and is made up of 7 attributes,

plus 1 class attribute.

Data preparation tasks included duplicating the dataset, and removing the

class attribute from one of the copies.

Experiments on the Seeds dataset consisted of the regimen outlined in a pre-

vious section, solely for the k value of 3, the number of known clusters of the

5https: //archive.ics.uci.edu/ml/datasets/seeds

63

Table 5.9: Seeds results (without class).

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

7.9
4
4
4

2.80024
2.80437
2.80437
2.80437

0.04317
0.00047
0.00048
0.00059

0.31535
0.1597
0.16028
0.15888

0.501
0.27767
0.291
0.291

Table 5.10: Seeds results (with class).

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

8.2
5
5
5

2.97971
2.97962
2.97962
2.97962

0.04910
0.00046
0.00050
0.00059

0.32823
0.20104
0.20019
0.20056

0.513
0.321
0.33433
0.341

dataset. The experiment was executed for both dataset copies - with and with-

out the class attribute - in order to observe the effect of the noise associated

with clustering with attributes of immeasurable distance. The results for the

Seeds dataset without class attribute and with class attribute are outlined in

Table 5.9 and Table 5.10, respectively.

As is visible from Table 5.9 and Table 5.10, the sharding centroid initialization

algorithms all outperformed random centroid initialization in all metrics, with

the single exception being mean SSE in the experiments without the class

attribute, in which random initialization reported a marginally lower 2.80024,

as opposed to 2.80437.

5.2.3 Datasets of Unknown Clusters from Literature

This section includes details and experiment results of well-known and -used

datasets from the literature, of which the natural number of data clusters were

64

unknown.

3D Road Network

The 3D Road Network dataset6 [22] was originally constructed by adding el-

evation information to a 2-dimensional road network in North Jutland, Den-

mark, and was subsequently used for benchmarking a number of fuel and C02

estimation algorithms. It is of significantly larger size than the previously en-

countered datasets, consisting of 434874 instances of 4 attributes each. There

are no known natural clusters for this dataset.

Data preparation for the 3D Road Network dataset was not required; the CSV

file came ready for use.

Experiments for the 3D Road Network dataset included executing the testing

regimen outlined above for k values of 3, 7, and 10. The results of these

executions are outlined in Table 5.11.

As is visible from the results outlined in Table 5.11, the sharding centroid

initialization algorithms all outperformed random centroid initialization in all

metrics, with the single exception being mean SSE for k — 3, which was re-

ported as identical to the random mean SSE. Of note, the centroid initialization

times for a dataset of this size have been reduced by nearly 25000%; paired

with lower numbers of iteration required for convergence and high-performing

mean SSE values, the sharding family of centroid initialization algorithms are

beginning to solidify as a viable alternative to traditional random centroid
6https://archive.ics.uci.edu/ml/datasets/3D+Road+Network-|-(North-|-Jutland,-(-Denmark)

65

Table 5.11: 3D Road Network results.

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

9.1
7
7
7

1.1965e+14
1.1965e+14
1.1965e+14
1.1965e+14

49.5408
0.20484
0.20591
0.24226

726.1387
564.12472
563.17698
563.31783

777.367
566.02767
565.031
565.251

random
naive
mean

median

19.1
14
14
14

3.3969e+13
3.1036e+13
3.1036e+13
3.1036e+13

49.34861
0.20907
0.20739
0.24452

3283.96743
2422.48985
2408.66744
2414.75816

3334.705
2424.34433
2410.55767
2416.69433

10

random
naive
mean

median

25.6
13
13
13

1.4968e+13
1.4713e+13
1.4713e+13
1.4713e+13

49.48046
0.20754
0.20674
0.24389

6189.17081
3158.00158
3137.79286
3159.00651

6239.338
3159.90767
3139.41433
3160.96433

initialization.

Power Consumption

The Individual Household Electric Power Consumption, or simply Power Con-

sumption, dataset7 contains electric power consumption measurements in a

single household over the course of approximately 4 years, with a one-minute

sampling rate. The dataset consists of 9 attributes and 2049280 instances,

making it the largest dataset used in this research.

Data preparation for the Power Consumption dataset required removing a

number of instances (25979) which contained empty values, which the k-

rneans clustering algorithm implementation is not designed to appropriately

handle.
7https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+

consumption

66

Table 5.12: Power consumption results.

Init Type Iters Mean SSE Init Time Clust Time Total Time

random
naive
mean

median

11.3
18
18
18

103.14419
59.92447
59.92447
59.92447

412.00743
1.33582
1.3415
1.436

4286.46679
6843.3214
6883.48539
6874.63326

4707.652
6853.99767
6893.17433
6884.43433

Experiments for the Power Consumption dataset originally included executing

the testing regimen outlined above for k values of 3, 7, and 10; however, execu-

tion times for the /."-means clustering algorithm on this dataset for any values

of k greater than 3 proved prohibitive. This research decided on gathering the

results for a value of k = 3, which are summarized in Table 5.12.

As evidenced by Table 5.12, random centroid initialization outperformed the

sharding family of centroid initialization algorithms in terms of the number

of clustering iterations required for convergence, as well as all time-related

metrics, except for centroid initialization time. However, all of the sharding

initialization methods reported mean SSE values over 40% lower than those

reported by random initialization. Given the savings in execution time related

to the centroid initialization times, along with the notable reduction in the

mean SSE, the sharding centroid initialization algorithms do appear to have

demonstrated some value on this much larger dataset.

Table 5.13 and Figure 5.14 summarize select results of datasets of known

clusters and dataset of unknown clusters, respectively. In each of these tables,

the best-performing metrics are highlighted in red.

67

Table 5.13: Summarized results of datasets of known clusters.

Dataset Init Type Iters Mean SSE

Ruspini
Random

Naive
3.2
4

271.425
171.747

Iris (no class)
Random

Naive
7.5
3

0.52629
0.52630

Iris (without class)
Random

Naive
9
5

0.63744
0.58207

Wine (no class)
Random

Naive
8.9
5

13909.19070
13318.48139

Wine (without class)
Random

Naive
11.8

5
14350.16163
13318.77699

Seeds (no class)
Random

Naive
7.9
4

2.80024
2.80437

Seeds (without class)
Random

Naive
3.2
5

2.97971
2.97962

68

Table 5.14: Summarized results of datasets of unknown clusters.

Dataset Init Type Iters Mean SSE

Dessewffy (k — 3)
Random

Naive
7
9

0.06231
0.06186

Dessewffy (k = 7)
Random

Naive
8.6
6

0.02110
0.02181

Dessewffy (k = 10)
Random

Naive
7.8
13

0.01433
0.01308

Jelonek (k = 3)
Random

Naive
30.6
15

0.06686
0.06712

Jelonek {k = 7)
Random

Naive
29.7
26

0.0256
0.02584

Jelonek (k = 10)
Random

Naive
48.3
42

0.01699
0.01701

3D Road Network (k = 3)
Random

Naive
9.1
7

1.1965e+14
1.1965e+14

3D Road Network (k = 7)
Random

Naive
19.1
14

3.3969e+13
3.1036e+13

3D Road Network (k = 10)
Random

Naive
25.6
13

1.4968e+13
1.4713e+13

Power Consumption (k = 3)
Random

Naive
11.3
18

103.14419
59.92447

69

Chapter 6

Conclusions

This chapter will summarize and analyze the results of the experiments run

in the previous chapter, discuss the generalizability of the results, and draw

warranted conclusions for the research. Afterward, future possible research

will be suggested.

6.1 Summary of Research

The first observation gleaned from the results of last chapter’s experiments is

that the various members of the sharding family of centroid initialization algo-

rithms - naive, mean, and median - performed almost identically throughout

all tests on all datasets, with but a few minor exceptions. This observation

is not necessarily generalizable based on the number of experiments; however,

moving forward through analysis, the focus will be on the differences between

random centroid initialization and a representative method of the sharding

family - naive sharding centroid initialization.

As outlined in the previous section, the sharding family of centroid initial-

ization algorithms did outperform random initialization more times than not

in terms of number of iterations required for convergence and overall time-

related metrics. The sharding family of centroid initialization algorithms also

generally reported SSE values relatively similar to those reported by random

centroid initialization. Rather unexpectedly, on occasion where sharding was

outperformed by randomization in terms of execution time, it managed to

report more favorable SSE values than did randomization.

In all experiments, rather unsurprisingly, the sharding initialization algorithms

consistently outperformed randomization in terms of time required for centroid

initialization, by very wide margins. It is this fact in terms of potential trade-

off with competing factors that weighs heavily in favor of sharding initialization

being viewed as a useful tool in general for &-means clustering.

For datasets with known numbers of clusters, sharding performed particularly

and consistently well. Figure 6.1 demonstrates the difference in iterations

between random centroid initialization and naive sharding centroid initial-

ization methods for the 4 datasets of known number of clusters. For 3 of

these 4 datasets, naive sharding outperformed random initialization in terms

of number of clustering iterations required for convergence, and subsequently

all time-related metrics; the fourth set, Ruspini, reported mean numbers of

iterations close to one another. Unexpectedly, for the Ruspini dataset, though

71

10

Figure 6.1: Number of iterations of datasets with known number of clusters.

naive sharding reported a slightly higher number of mean iterations (4 ver-

sus 3.2), its reported SSE values were lower, and thus more desirable, by a

value of approximately 100, a more than 60% improvement; for all other of

the known cluster number datasets, mean SSEs were equal, somewhat better,

or very competitive by several thousandths of a decimal place.

The noise associated with the addition of class attributes were of no conse-

quence; for the Iris, Wine, and Seeds datasets, sharding outperformed random

initialization consistently for both dataset configurations, as demonstrated in

Figure 6.2.

72

Figure 6.2: Number of iterations of datasets with class attributes.

73

In 2 of the 3 datasets of unknown number of clusters which employed multiple

values of k for experimentation, sharding roundly outperformed randomization

in the largest of the datasets, as well as the densest of the datasets, in number of

required iterations and time-related metrics, and had either a very competitive

or more desirable mean SSE.

The sharding initialization algorithms were outperformed in terms of number

of iterations on the Dewsseffy dataset; however, 2 of these k values led to more

favorable mean SSE values for the sharding algorithms. The sharding family

was also outperformed in time-related metrics on the Power Consumption

dataset, the largest dataset in the research; however, the sharding algorithms

did report much better mean SSE values for this same dataset, suggesting

that, even when the sharding algorithms are beaten at their own game of

speed, the final clustering results are often likely as useful as randomization,

if not significantly more so.

6.2 Future Work

Future research into the viability of this family of centroid initialization algo-

rithms would likely be well-advised to focus on diversifying the test datasets,

and performing an increased volume of algorithm testing. While limited by

time to test the practical implementation, future work extending these experi-

ments would be able to provide insight as to whether the results shared in the

previous chapter could be generalized, and to what degree.

While this research cannot make such insinuations, nor did it intend to, being

exploratory in nature, further research could help determine whether data

density, complexity, or distribution consistently play a role in the success of

the sharding family of centroid initialization algorithms.

While generalizing the results found herein would be irresponsible, based on

the small sample size, the promising findings do suggest that further research

is warranted, and that the sharding family of centroid initialization algorithms

for the /.;'-means clustering algorithm may, in fact, be another useful tool in

the machine learning practitioner’s toolkit when it comes to clustering analy-

sis.

75

Appendix A

Computer Specifications

All research experiments were executed on a single computer of the specifica-

tions outlined in Table A.l.

Note that specifications were confirmed via the Linux Ishw1 command, which

is used to extract detailed hardware information from a machine.

1 http: //linux.die.net/man/l/lshw

Table A.l: Experiment computer hardware.

Hardware Model

Motherboard
Processor
LI cache
L2 cache

System memory
Display
Audio

Network
Storage
Optical

Gigabyte H55M-UD2H
Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz

64 KB
8 MB

16 GB (2 x 8 GB DIMM 1333 MHz (0.8 ns))
Nvidia GeForce GTX 970

Nvidia GM204
Realtek 8111/8168/8411 PCI Express Gigabit

640 GB Western Digital WD6402AAEX-0
Lite-On iHAS124

77

Appendix B

Artificial Dataset Names

I am a proponent of using Wikipedia randomization for naming almost any-

thing. Not only does it remove the issue of having to come up with a name,

or otherwise make some arbitrary choice, it allows for recreational learning at

the same time. Hence, this was the method used for naming the artificially

constructed datasets.

The first 2 random articles that Wikipedia returned during the naming process

were used. Here is some further information for those interested in the dataset

namesakes.

Dessewffy

Count Aurel Dessewffy de Csernek et Tarkeo1 was a Hungarian politician

and one-time Speaker of the House of Magnates, the National Assembly of

1 https: //en. wikipedia.org/ wiki / Aurel_Dessewffy_(1846-1928)

Hungary’s upper chamber.

Jelonek

Jelonek2 is a village in the Gmina Niechanowo district of Greater Poland

Voivodeship, located in west-central Poland.

2https://en.wikipedia.org/wiki/Jelonek,_Gniezno_County

79

Bibliography

[1] Mitchell, T.M. Machine learning. New Delhi, India: McGraw-Hill, 1997.

ISBN: 9780070428072.

[2] Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. “From data mining to

knowledge discovery in databases”. In: Advances in Knowledge Discovery

and Data Mining. Ed. by Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.

& Uthurusamy, R. Cambridge, MA: MIT Press, 1996, pp. 1-36. URL:

http://www.csd.uwo.ca/faculty/ling/cs435/fayyad.pdf.

[3] Jiawei, H., Kamber, M. & Pei, J. Data mining: Concepts and techniques,

3rd ed. San Francisco, CA: Morgan Kaufmann Publishers, 2012. ISBN:

9780123814791.

[4] Bishop, C. Pattern recognition and machine learning. Singapore: Springer,

2006. ISBN: 9780387310732.

[5] Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Qiang, Y., Motoda, H.,

McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z. Steinbach, M., Hand,

D.J., & Steinberg, D. “Top 10 algorithms in data mining”. In: Knowledge

Information Systems 14 (2008), pp. 1-37. DOl: 10.1007/S10115-007-

80

0114-2. URL: http://www.cs.uvm.edu/~icdm/algorithms/10Algori

thms-08.pdf.

[6] Arthur, D. & Vassilvitskii, S. “k-means++: The advantages of careful

seeding”. In: (2006). URL: http ://ilpubs . Stanford . edu: 8090/778/

1/2006-13.pdf.

[7] Chaturvedi, A., Green, P.E. & Carroll, J.D. “K-modes clustering”. In:

Journal of classification 18 (2001), pp. 35-55. DOl: 10.1007/s00357-

001-0004-3. URL: https://www.researchgate.net/profile/Anil_

Chaturvedi2/publication/226946703_K-modes_Clustering/1inks/

54c99baf0cf298fd26264cac.pdf.

[8] Steinbach, M., Karypis, G. & Kumar, V. A comparison of document

clustering techniques. Tech. rep. URL: http : / /cs . fit . edu/~pkc/

classes/ml-internet/papers/steinbachOOtr.pdf.

[9] Su, T. & Dy, J. “A deterministic method for initializing k-means clus-

tering”. In: (). URL: https://pdfs.semanticscholar.org/d853/

79ef05fd9b02f71f947flb58df474773767f.pdf.

[10] Gingles, C & Celebi, M.E. “Histogram-based method for effective ini-

tialization of the k-means clustering algorithm”. In: Proceedings of the

twenty-seventh international florida artificial intelligence research soci-

ety conference. 2014, pp. 333-338. URL: http://www.aaai.org/ocs/

index.php/FLAIRS/FLAIRS14/paper/view/7782/7864.

[11] Oliphant, T. “Python for scientific computing”. In: Computing in science

and engineering May/June (2007), pp. 10-20. DOl: 10.1109/MCSE.2007.

58. URL: https://www.researchgate.net/profile/Travis_01iphant

81

/publication/3422935_Python_for_Scientific_Computing/links/

548f0b680cf225bf66a7f9c3.pdf.

[12] TIOBE. TIOBE Index for February 2016. 2016. URL: http : / / www .

tiobe.com/index.php/tiobe_index (visited on 02/05/2016).

[13] Hilley, D. Python: Executable pseudocode. Georgia Institute of Tech-

nology. University lecture. DOl: 10 . 1 . 1 . 211 . 7674. URL: http : //

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.7674&

rep=repl&type=pdf.

[14] Scipy. Numpy and Scipy documentation. 2016. URL: http://docs.scip

y.org/doc/ (visited on 03/10/2016).

[15] Harrington, P. Machine learning in action. Shelter Island, NY: Manning

Publications, 2012. ISBN: 9781617290183.

[16] Python. Our documentation. 2016. URL: https://www.python.org/

doc/ (visited on 02/22/2016).

[17] Die.net. time(l) - Linux man page. URL: http://linux.die.net/man/

1/time (visited on 03/28/2016).

[18] Ruspini, E.H. “Numerical methods for fuzzy clustering”. In: Information

sciences 2 (3 1970), pp. 319-350. DOl: 10.1016/S0020-0255(70)80056-

1.

[19] Fisher, R.A. “The use of multiple measurements in taxonomic prob-

lems”. In: Annual Eugenics 7 (1936), pp. 179-188.

[20] Aeberhard, S., Coomans, D. & Vel, D. “The performance of statistical

pattern recognition methods in high dimensional settings”. In: ().

82

[21] Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Lukasik,

S. & Zak, S. “A complete gradient clustering algorithm for features anal-

ysis of x-ray images”. In: Information technologies in biomedicine. Ed.

by Pietka, E. & Kawa, J. Berlin-Heidelberg, Germany: Springer-Verlag,

2010, pp. 15-24.

[22] Kaul, M., Yang, B. & Jensen, C.S. “Building accurate 3D spatial net-

works to enable next generation intelligent transportation systems”. In:

Proceedings of international conference on mobile data management. Mi-

lan, Italy, 2013, pp. 137-146. DOI: 10.1109/MDM. 2013.24.

83

II

n 1 a- 245 L51 6173
07/08/16 -j 31180

I

	An Arithmetic-Based Deterministic Centroid Initialization Method for the k-Means Clustering Algorithm
	Recommended Citation

	An Arithmetic-Based Deterministic Centroid Initialization Method for the k-Means Clustering Algorithm

