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Abstract 

One of the greatest challenges in k-means clustering is positioning the initial 

cluster centers, or centroids, as close to optimal as possible, and doing so in an 

amount of time deemed reasonable. Traditional fc-means utilizes a randomiza- 

tion process for initializing these centroids, and poor initialization can lead to 

increased numbers of required clustering iterations to reach convergence, and 

a greater overall runtime. This research proposes a simple, arithmetic-based 

deterministic centroid initialization method which is much faster than ran- 

domized initialization. Preliminary experiments suggest that this collection 

of methods, referred to herein as the sharding centroid initialization algo- 

rithm family, often outperforms random initialization in terms of the required 

number of iterations for convergence and overall time-related metrics and is 

competitive or better in terms of the reported mean sum of squared errors 

(SSE) metric. Surprisingly, the sharding algorithms often manage to report 

more advantageous mean SSE values in the instances where their performance 

is slower than random initialization. 
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Chapter 1 

Introduction 

According to Mitchell, machine learning is ’’concerned with the question of 

how to construct computer programs that automatically improve with ex- 

perience” [1]. Machine learning is interdisciplinary in nature, and employs 

techniques from the fields of computer science, statistics, and artificial intel- 

ligence, among others. The main artifacts of machine learning research are 

algorithms which facilitate this automatic improvement from experience, algo- 

rithms which can be applied in such diverse fields as computer vision, artificial 

intelligence, and data mining [1]. 

Fayyad, Piatetsky-Shapiro & Smyth define data mining as ’’the application 

of specific algorithms for extracting patterns from data” [2], This demon- 

strates that, in data mining, the emphasis is on the application of algorithms, 

as opposed to on the algorithms themselves. We can define the relationship 

between machine learning and data mining as follows: data mining is a pro- 



cess, during which machine learning algorithms are utilized as tools to extract 

potentially-valuable patterns held within datasets. 

Clustering is a machine learning method used for analyzing data which does 

not include pre-labeled classes. During the clustering process, data instances 

are grouped together using the concept of “maximizing the intraclass similarity 

and minimizing the interclass similarity” [3]. This translates to the clustering 

algorithm identifying and grouping instances which are similar to one another, 

in contrast to ungrouped instances which are less-similar to one another. As 

clustering does not require the pre-labeling of classes, which is, in contrast, 

required for classification, it is considered a form of unsupervised learning [3], 

intimating that clustering learns by observation as opposed to learning by 

example. 

/c-means is perhaps the most well-known example of a clustering algorithm [4, 

5]. As such, it is often the default clustering method in data mining appli- 

cations, allowing for the unsupervised exploration and discovery of groups of 

similar items. The /c-means clustering algorithm continues to be one of the 

most popular machine algorithms algorithms used in data mining, and was 

included in the seminal Top 10 Algorithms in Data Mining paper by Wu, et 

al. [5], which outlines the most influential algorithms based on 3 separate data 

mining conference attendee surveys. 

In the context of data mining, clustering is often used as both a standalone 

tool for gaining insight into a particular set of data and its distribution, as well 

as a pre-processing step for further algorithms, such as classification [3]. In the 
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Figure 1.1: A proposed classical machine learning algorithm taxonomy. 

former, clustering is the protagonist which enables pattern recognition [4], one 

of the core and original aims of data mining; in the latter, clustering becomes 

a potentially-vital piece of machine learning pipelines, chains of algorithms 

which operate serially on a dataset to generate an insightful final outcome. 

As a member of the unsupervised learning branch of classical machine learn- 

ing algorithms, clustering can be considered a fundamental machine learning 

technique. 

Figure 1.1 presents a proposed classical machine learning algorithm taxonomy 

- classical in the sense that it does not include the more advanced, hybrid, 

and unorthodox contemporary algorithms - highlighting clustering and the 

/c-means algorithm in blue, with the various leaves representing particular 

algorithm exemplars. 
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k-means clustering is an unmistakably simple algorithm; it works by initializ- 

ing a specified number of generally user-supplied cluster centers, or centroids, 

and computing the distance, usually Euclidean, between the coordinates of 

each of a given dataset’s instances and the coordinates of each of the centroids 

[4]. Each instance is added as a member of the cluster of the closest centroid, 

after which the centroids are recentered to be in the position which minimizes 

the sum of squared errors (SSE), which is the sum of the squared differences 

between each instance and its group’s mean, of the distances between it and 

all of its member instances. The clustering process then begins anew, contin- 

uing until the centroids do not change their coordinates between successive 

iterations. This optimal state is referred to as convergence, and its attainment 

suggests that the centroids are, in fact, in the best possible location, reflected 

in the minimized SSE. 

1.1 Problem Definition 

If you consider that an iteration of the distance calculations required to com- 

pare each instance to each centroid takes constant time, there are, then, 2 

aspects of the A;-means algorithm that can be, and often are, targeted for 

optimization: 

1. Centroid initialization, such that the initial cluster centers are placed as 

close as possible to the optimal cluster centers 

2. Selection of the optimal value for k (the number of clusters, and cen- 
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troids) for a particular dataset 

If nothing of the data is known ahead of time, the optimal value of k is typi- 

cally found via experimentation, though there are algorithms in existence for 

assisting this process. Centroid initialization is usually performed via random- 

ization, where the space of all existing instances are found, and centroids are 

randomly placed within this space, with the hopes that the speed and simplic- 

ity of this operation is an acceptable trade-off between the provided accuracy 

and overall performance. 

The actual clustering method of the /c-means algorithm, which follows centroid 

initialization, and which is iterated upon until the “best” centroid location is 

found, is highly sensitive to the initial placement of centroids. The better the 

initial centroid placement, generally the fewer iterations are required, and the 

faster and more efficient the algorithm is [4], Research into improved centroid 

initialization has yielded both clever methods and improved results, but these 

methods are often resource intensive and time-consuming. 

There are also additional modifications to £;-means, such as &-means++ [6], 

which take a somewhat different approach; the independent steps of centroid 

initialization and optimal k selection are confounded into a single, overarching 

process which is iterated upon during the clustering method. This allows the 

number of clusters, and the corresponding centroids, to fluctuate during the 

clustering process itself. Again, this process can be resource intensive and 

time-consuming, and continues to rely on randomization as a main driver of 

centroid initialization. 
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What if the trade-off between computational efficiency and the effectiveness of 

centroid initialization methods was moot? What if there was a deterministic 

approach which was computationally simple enough that it relied on very 

few calculations, dramatically reducing the initialization time, lowering the 

number of clustering iterations required, and shortening the overall execution 

time of the /c-means algorithm, all while producing comparable accuracy of 

results? 

This research proposes a family of such centroid initialization algorithms for 

A;-means clustering which aim to fill this role by using an innovative method 

for attempting to place the initial cluster centers as close as possible to the 

optimal cluster centers, and to place them in the same, calculable position 

every time. 

1.2 Proposed Method 

The dataset sharding family centroid of initialization algorithms is simple, 

relying on but a few arithmetic calculations of simple statistical metrics to 

determine. The algorithm works only for fully numeric datasets; however, as 

performing distance-based clustering on datasets with nominal values produces 

meaningless results - true fc-means-style clustering of categorical or nominal 

data requires a related, yet distinct, algorithm such as &-modes clustering [7] 

- this is actually not a limitation. 

The sharding family of centroid initialization algorithms proceed in a very 
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simple manner, and are primarily dependant on the calculation of a compos- 

ite value reflecting all of the attribute values of an instance. The algorithm 

family supports the calculation of this composite value based on the sum of all 

instance attribute values (naive sharding), the mean of all instance attribute 

values (mean sharding), and the median of all instance attribute values (me- 

dian sharding). 

Once this composite value is computed, it is used to sort the instances of the 

dataset. The dataset is then horizontally split into k pieces, or shards. Finally, 

the original attributes of each shard are independently summed, their mean is 

computed, and the resultant collection of rows of shard attribute mean values 

becomes the set of centroids to be used for initialization. 

1.3 Expected Results 

Putting aside any potential effect on the overall A;-means algorithm for a mo- 

ment, such as a reduction in the number of clustering iterations required for 

convergence, the sharding family of centroid initialization algorithms is ex- 

pected to exhibit the following beneficial characteristic: decreased centroid 

initialization time. Sharding initialization is expected to execute much quicker 

than random centroid initialization, especially considering that the time needed 

for randomly initializing centroids for increasingly complex datasets (more in- 

stances and more attributes) grows superlinearly, and can be extremely time- 

consuming given complex enough data; sharding initialization executes in lin- 
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ear time, and is not dependent on data complexity. 

It is expected that sharding centroid initialization methods will reduce the 

overall A;-rneans clustering algorithm runtime by reducing the centroid initial- 

ization time, as outlined above. Further, it is expected that the sharding 

family of centroid initialization algorithms will also allow for a further reduc- 

tion in the overall A;-means clustering algorithm runtime by decreasing both 

the required number of clustering iterations, due to initial centroid placement 

closer to the optimal, and the overall execution time required by the clustering 

iterations prior to convergence. 

1.4 Thesis Outline 

The remainder of this paper will further outline the sharding family of centroid 

initialization algorithms, define a practical implementation of the algorithms, 

outline a stringent method for evaluating their performance, and analyze the 

results of experiments run on the implemented algorithms. 

Chapter 2 will outline previous attempts at improving the A;-means clustering 

centroid initialization algorithm. Chapter 3 will describe, in detail, the design 

of the sharding family of centroid initialization algorithms. Chapter 4 will 

bridge the gap between the theoretical algorithm design and its practical im- 

plementation in Python, including steps that are language-specific. Chapter 5 

will share and discuss the results of experiments on the Python implementation 

of the sharding family of centroid initialization algorithms. Finally, Chapter 
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Chapter 2 

Previous Work 

Before describing and implementing an innovative method for centroid initial- 

ization for fc-means clustering, it would be informative to outline some research 

which has previously been pursued in an attempt to improve the original ini- 

tialization process. In this chapter we will investigate a sampling of both 

improvements and alternatives to random centroid initialization. 

While some approaches which challenge the limits of classical fc-means clus- 

tering will be presented, algorithms which are definitely not &-means will be 

avoided, of which there are many different types; hierarchical, density-based, 

and grid-based methods are all families of clustering algorithms which are quite 

different than A:-rneans clustering. Though k-means is a partitioning cluster- 

ing algorithm [3], it is certainly not the only one, with other options in this 

category existent as well. Clustering algorithms such as Gaussian Expectation- 

Maximization, Fuzzy &-means, and /s-harmonic, along with many others, are 



eliminated from investigation for these reasons. 

2.1 Improvements to Random Initialization 

A number of attempts at improving randomized centroid initialization have 

been pursued over the years. A sampling of such research follows. 

One such modification to random centroid initialization is A;-means+-h Arthur 

& Vassilvitskii [6] recognized that maximizing the distribution of the initial 

clusters, as opposed to initializing them all at random, was likely advanta- 

geous. As such, the approach that their research took was to initialize cen- 

troids at random from the data points while weighing potential centroids by 

their squared distance from the closest centroid already initialized. This effec- 

tively ensures a maximal ’’spread” of centroids across the data space, more so 

than does randomized initialization. 

Arthur & Vassilvitskii found that their approach was, in fact, advantageous. 

Experiments on 4 datasets yielded results which generally outperformed clas- 

sical fc-means centroid initialization in both accuracy and speed, and often by 

a wide margin. 

Another such exemplar is bisecting ft-means, somewhat of a hybrid method 

which attempts to successively initialize the required number of centroids be- 

tween iterations of clustering. Bisecting /c-means starts with a single centroid 

and cluster, and then splits this cluster into 2, performs clustering with a value 

of k = 2, and continues to iterate on splitting the best possible target clus- 
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ter and performing another round of clustering with k + 1 until the desired 

number of clusters (and centroids) are reached. 

Steinbach, Karypis, & Kumar [8] found that bisecting k-means generally out- 

performed standard /c-means clustering, when measuring entropy, and that 

even when it did not it performed nearly as well. Their experiments did not 

include time-related metrics. 

2.2 Alternatives to Random Initialization 

Alternatives to randomized centroid initialization, more consistent with the 

method proposed in this research, have also previously been attempted. Sev- 

eral promising deterministic methods for centroid initialization have emerged 

from research over the years. 

One such deterministic method is found in Su & Dy [9], which outlines a divi- 

sive hierarchical method, based on Principal Component Analysis, for centroid 

initialization. Principal Component Analysis (PCA) is a statistical technique 

which transforms data into a representative projection in lower-dimensional 

space. The principal components are those variables which descendingly ac- 

count for the highest amount of variability within the data. PCA also ’’mini- 

mizes the average projection cost, defined as the means squared distance be- 

tween the data points and their projections” [4], which intuitively sounds as 

though these principal components, in descending order of their discovery, 

would make ideal candidates for clusters within the dataset. 
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Su & Dy leverage this very notion; the results of their experiments on 5 

datasets suggest that their implementation led to the /c-means clustering pro- 

cess generating clusters with SSE values close to the minimum SSE values 

obtained by 100 random initialization tests. Results also indicated that fewer 

numbers of iterations were required for convergence, when compared with ran- 

dom initialization. 

Gingles & Celebi [10] undertook research which posited that the natural clus- 

ters of a dataset would be located in the areas of highest data density. Since 

a histogram is deemed the simplest way to estimate nonparametric density, 

Gingles & Celebi partitioned all attributes of a given dataset into bins and 

observed the number of values which fell into each of these bins. It could 

then easily be determined which areas of the dataset were of the highest den- 

sity. 

Results of [10] showed that this implementation generally performed well in 

terms of mean sum of squared error metrics, when compared with other deter- 

ministic /c-means centroid initialization methods on normalized datasets. The 

study did not, unfortunately, draw comparisons between the outlined inno- 

vative method and non-deterministic initialization methods, such as random- 

ized; nor did the study use any time-related metrics. The results do, however, 

express that a simple, arithmetic-based deterministic centroid initialization 

method, not rooted in randomization, could provide favorable outcomes. 

No comparable research employing such a simple arithmetic-based and arbi- 

trary composite instance value-based method as this research outlines could 
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be found in the research. However, as non-deterministic centroid initializa- 

tion algorithms have previously presented promising results, and as related 

approaches to solving the problem of reduced A;-mcans clustering centroid ini- 

tialization times with comparable clustering algorithm sum of squared error 

results are not identifiable, the suggestion is that this research is worthy of 

pursuit. 
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Chapter 3 

Methodology 

This chapter will further outline the functionality of the proposed method of 

centroid initialization, and serve to highlight the differences between it and 

random initialization, in the context of k-means clustering. 

The first task is to formally define the k-means clustering algorithm and its 

constituent components. Once these algorithms are sufficiently recounted, the 

proposed centroid initialization method will be outlined in detail. 

3.1 The fc-means Clustering Algorithm 

The concept of clustering has been previously presented with the goal of “max- 

imizing the intraclass similarity and minimizing the interclass similarity” [3]. 

While there are numerous clustering algorithms in existence, varying in their 

complexities, ft-means takes a rather direct approach in its attempts to achieve 



this stated goal. 

k-means is a simple, yet often effective, approach to clustering, k points are 

randomly chosen as cluster centers, or centroids, and all training instances 

are plotted and added as a member of the closest centroid’s cluster. After all 

instances have been added to clusters, the centroids, representing the means 

(the means in fc-means) of the collection of each cluster’s instances, are re- 

calculated, with these re-calculated centroids becoming the new centers of their 

respective clusters. 

At this point, all cluster membership is reset, and all instances of the training 

set are re-plotted and -added as members of the closest, possibly re-centered 

(or different) cluster. This iterative process continues until there is no change 

to the centroids or their membership, at which point the clusters are considered 

settled [3], and convergence has been achieved. 

The classical fc-means clustering algorithm is presented as Algorithm 1. 

Convergence is achieved once the re-calculated centroids match the previous 

iteration’s centroids. The measure of distance utilized by the k-means cluster- 

ing algorithm is generally Euclidean, which, given 2 points in the form of (x, 

y), can be represented as: 

y/(xx - x2)
2 + (yi - V2)2- (3-1) 

This equation can be generalized to any number of points; therefore, the Eu- 

clidean distance between any data instance and a centroid is calculable by 
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Algorithm 1 Umeans Clustering 

INPUT: S, k where S = set of instances, k = integer 
OUTPUT: k Clusters 
Require: S ^ 0, k > 0 

1: procedure CLUSTERDATA: 

2: C 4- InitializeCentroids(5', k) 
3: repeat 
4: for all Instance i in S do 
5: shortest <r- 0 
6: membership *— null 
7: for all Centroid c in C do 
8: dist 4- Distance^, c) 
9: if dist < shortest then 

10: shortest 4- dist 
11: membership 4- c 
12: end if 
13: end for 
14: end for 
15: UpdateCentroids(C) 
16: until convergence 
17: end procedure 

17 



taking the square root of the sum of the element-wise squared difference of 

attribute value vectors representing a particular dataset instance and a given 

centroid. This generalization can be represented as: 

V(au - alc)
2 + (a2i - a2c)

2...(ani - anc)
2, (3.2) 

where a is a given attribute, i and c denote instance and centroid attribute 

values, respectively, and 1, 2, and n represent the particular attribute index 

for which the difference is being calculated. 

3.2 Random Centroid Initialization 

Classical k-means clustering utilizes random centroid initialization [3]. In order 

for randomization to be properly performed, the entire space being occupied 

by all instances in all dimensions is first to be determined. This means that all 

instances in the dataset must be enumerated, and a record must be kept of the 

minimum and maximum values of each attribute, constituting the boundaries 

of the various planes in n-dimensional space, with n being the number of 

attributes in the dataset. This can be a time-consuming process; the time 

required to perform randomization grows exponentially with increased dataset 

complexity, by way of both a larger number of instances and a larger number 

of attributes. 

The algorithm for random centroid initialization is presented as Algorithm 
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2. Note that the RandomCentroids function of Algorithm 2 is generally 

the InitializeCentroids function being referenced in Algorithm 1, at least in 

classical fc-means; however, random centroid initialization is not a mandatory 

component of the /c-means clustering process. 

Algorithm 2 Random Centroid Initialization 

INPUT: S, k where S = set of instances, k = integer 
OUTPUT: k Centroids 
Require: S ^ 0, k > 0 

l: procedure RANDOMCENTROIDS: 

2: C ■f- size(fc) 
3: for all Attribute a in S do 
4: min •<— Min(a) 
5: max <— Max(a) 
6: range <— max — min 
7: for all Centroid c in C do 
8: Attribute a <— min + range x Rand(0,1) 
9: end for 

10: end for 
11: end procedure 

After the centroids are initialized, the clustering portion of the algorithm is 

executed (see Algorithm 1). Once an iteration of clustering has taken place, 

centroids must be re-centered, as described in the above treatment of the k- 

means clustering algorithm. 

Centroid updating is described in Algorithm 3. 

As outlined previously, this combined iterative process of clustering and cen- 

troid updating continues until there is no change in centroid coordinates be- 

tween successive iterations, at which point the clusters are considered settled, 

and convergence has been achieved. 
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Algorithm 3 Centroid Updating 

INPUT: C, where C — set of clusters 
OUTPUT: Set of centroids 
Require: C 7^ 0 

1: procedure UPDATECENTROIDS: 
2: NewCentroids •<— size(C') 
3: for all Cluster c in C do 
4: for all Attribute a in c do 
5: mean •<— Mean(a) 
6: a of Centroid c <— mean 
7: end for 
8: Append c to NewCentroids 
9: end for 

10: end procedure 

A few aspects of particular importance regarding the Urneans clustering algo- 

rithm, and its component methods, are presented below. 

• Time required for random centroid initialization is affected by the time 

required to survey the entire dataset in order to determine the dataset- 

occupied space and its boundaries 

• The number of clustering iterations required to reach convergence can 

vary, dependant on the initial random centroids, which has a direct effect 

on the total execution time of the clustering algorithm 

These particular aspects of the /c-means clustering algorithm are those which 

are directly addressed by the sharding family of centroid initialization algo- 

rithms. 

Now that the Umeans clustering algorithm has been outlined in sufficient 

detail, the sharding method of centroid initialization will be defined. 



3.3 Sharding Centroid Initialization 

While random centroid initialization takes a non-deterministic approach to 

initializing the first batch of centroids for k-means clustering, the proposed 

algorithm family addresses the task in a different manner. The dataset shard- 

ing family of centroid initialization algorithms are deterministic in nature, and 

rely on simple arithmetic for determining the initial set of clusters. 

All of the member algorithms operate within a common framework. First, each 

of the member instances of the dataset to be clustered has some composite 

value computed from its attributes’ values intended to provide some reflection 

of the instance itself, able to be used for comparison to other instances for 

sorting. This is the precise step where the constituent methods of the algorithm 

family differ in their approach, approaches which are detailed below. 

Next, as alluded to above, the dataset instances are sorted by this composite 

value. The sorted dataset is then split horizontally into k equal-sized sections, 

or shards. Finally, the mean of each of the attribute columns of each of k 

shards is used as the corresponding attribute of the centroid of that shard’s 

cluster. 

3.3.1 Naive Sharding 

The sharding family of centroid initialization algorithms includes 3 separate 

statistical methods for performing the first of these steps. Naive sharding em- 

ploys the summation of each of the dataset instance attribute values to achieve 
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1. Sum the attributes of each instance, 

prepend result column to dataset 

SUM ROWS ATTRO ATTR 1 ATTR2 ATTR n 

instance 1 

instance 2 

instance 3 

instance m 

2. Sort the instances of the dataset by the 

newly created sum column, in ascending order 

3. Split the dataset horizontally into 

k equal-sized pieces, or shards 

Figure 3.1: Sorting by composite value and sharding. 

the composite value used for sorting an entire dataset prior to sharding. 

An overview of naive sharding is as follows: 

• Step 1. Sum the attribute (column) values for each instance (row) of 

a dataset, and prepend this new column of instance value sums to the 

dataset 

• Step 2. Sort the instances of the dataset by the newly created sum 

column, in ascending order 

• Step 3. Split the dataset horizontally into k equal-sized pieces, or shards 

• Step 4. For each shard, sum the attribute columns (excluding the col- 

umn created in step 1), compute its mean, and place the values into a 
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4, For each shard, compute mean of attribute columns; mean 
values become corresponding attribute values of new centroid 

Shard 

Centroid 

Figure 3.2: Shard attribute means become centroid attribute values. 

new row; this new row is effectively one of the centroids used for initial- 

ization 

• Step 5. Add each centroid row from each shard to a new set of centroid 

instances 

• Step 6. Return this set of centroid instances to the calling function for 

use in the fc-means clustering algorithm 

As previously promised, the algorithm is very simple. 

Formally, the naive sharding centroid initialization algorithm for A;-means clus- 

tering is described in Algorithm 
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Algorithm 4 Naive Sharding Centroid Initialization 

INPUT: S, k where S = set of instances, k = integer 
OUTPUT: k Centroids 
Require: S ^ 0, k > 0 

1: procedure NAIVESHARDING: 

2: for all Instance i in S' do 
3: composite •<— Sum (attributes) 
4: Append composite to i 
5: end for 
6: Sort S on composite 
7: Split S into k Shards 
8: for all Shard k in Shards do 
9: for all Attribute a in A; do 

10: mean Mean(a) 
11: a of Centroid k <— mean 
12: end for 
13: end for 
14: end procedure 

3.3.2 Mean Sharding 

Mean sharding, the second of the sharding family of centroid initialization 

methods to be outlined, is the same as naive sharding in every aspect, except 

for the statistical method used to sort the dataset instances prior to sharding. 

Whereas naive sharding uses a summation process, mean sharding finds the 

mean of all of the attributes’ values and uses this number as the composite 

value on which to sort. 

As such, the algorithm for mean sharding is identical to what is presented 

in Algorithm 4, with the following 4 lines replacing lines 2-5 of Algorithm 4- 

In fact, only a single one of these lines differs from its corresponding line in 

Algorithm 4; the other lines are included to provide context. 
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Algorithm 5 Mean Sharding Centroid Initialization 

1: for all Instance i in S do 
2: composite <— yiean(attributes) 
3: Append composite to i 
4: end for 

3.3.3 Median Sharding 

Finally, median sharding calculates its composite value for dataset sorting by 

taking the attribute values of each instance and finding their median. Just 

as Algorithm 5 shows only the lines differing from those in Algorithm 4, the 

following does the same. Again, note that only a single line is actually different; 

the others are provided for context. 

Algorithm 6 Median Sharding Centroid Initialization 

1: for all Instance i in S do 
2: composite 4— Median(aftrifrutes) 
3: Append composite to i 
4: end for 

A few aspects of particular importance regarding the sharding family of cen- 

troid initialization algorithms, especially in contrast to those pointed out above 

for the random centroid initialization algorithm of classical &-means, are listed 

below. 

• Time required for sharding centroid initialization is not affected by the 

time required to survey the entire dataset and compute occupied space 

and boundaries, as only simple arithmetic is performed on instance data 

in linear time 

• The number of clustering iterations required to reach convergence will re- 
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main constant between executions of the algorithm on the same dataset, 

as the results of simple statistical calculations will always provide the 

same results, a fact which stabilizes the total execution time of the clus- 

tering algorithm 

The practical implementation described in the following chapter, and the con- 

sequent experiments on its performance, will provide insight into whether these 

above aspects of the proposed algorithm lead to improved execution times of 

the k-means clustering algorithm. 

3.4 Measuring Success 

This project’s measure of success will be the execution time savings of the 

A;-means clustering algorithm when utilizing the sharding family of centroid 

initialization methods over random centroid initialization. Independent of such 

performance benefits, it is imperative that any execution time savings are 

accompanied by reasonably similar measures of cluster algorithm accuracy, 

which will be evidenced by the comparison of the SSE metric of both random 

and sharding centroid initialization method outcomes. 

If huge increases in time savings are attained, but at a cost of algorithm 

accuracy to any great degree, the trade-off may not be deemed worthy of con- 

sideration. Conversely, increased execution time savings balanced with similar 

SSE metrics - which is the desired outcome - would almost certainly make 

the sharding family of centroid initialization algorithms valuable additions to 





Chapter 4 

Implementation 

This chapter provides the details of translating the methodology outlined in 

the previous chapter into code for evaluating the proposed algorithms. As 

Python is a solid default language for contemporary scientific computing and 

machine learning implementations [11], and due to its deserved reputation as 

being easy to both read and write, it has been chosen as the medium for the 

practical portion of this research. 

First, a brief discussion of the scientific Python computing ecosystem and its 

common libraries is undertaken. The chapter is then broken down into sections 

corresponding to those in the previous chapter, allowing for a straightforward 

comparison of the theoretical proposed algorithms and their practical imple- 

mentation. Python code is presented for aspects of the implementation which 

are deemed critical, which represent the proposed functionality, or which re- 

quire further clarification. 



4.1 Python 

Python1 is an open source, general-purpose high-level programming language 

which supports multiple paradigms and enjoys an admirable market share [12]. 

Beyond this, Python is heavily used in the scientific computing community, 

has made recent inroads into statistical computing, and is increasingly becom- 

ing the language of choice for machine learning researchers and practitioners 

everywhere [11]. Given that it is open source, and has been described as exe- 

cutable pseudocode [13], adoption by those looking for a cooperative and flexi- 

ble language with quick prototyping turnaround times is intuitive. In addition 

to these characteristics supporting do-it-yourself algorithm implementations, 

from classical machine learning algorithms to contemporary deep neural net- 

works and beyond, Python also has community-developed and -maintained 

(and often considered de facto) libraries for nearly any machine learning or 

data mining task imaginable. 

According to longstanding data mining and analytics information website KD- 

nuggets’ annual survey of analytics and data mining tools2, Python has made 

continual market share inroads over the past several years in the analytics, data 

science, and machine learning communities. Details of the survey methodology 

can be found on KDnuggets’ website. 

Figure f.l shows the previous 6 years of Python market share data, according 

to KDnuggets. There is a clear upward trend, not unlikely due to the numerous 
1https://www.python.org/ 
2http://www.kdnuggets.com/2015/05/poll-r-rapidminer-python-big-data-spark.html 
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Year 

Figure 4.1: Python popularity among the analytics community. 

language characteristics previously highlighted. Note that the survey is not 

scientific, and is simply intended to provide some insight into Python’s role in 

the current analytics and machine learning landscape. 

Numerous well-known and -utilized scientific computing libraries exist for 

Python as well. Notably, the NumPy3 scientific library, and its powerful 

N-dimensional array (matrix) objects, is relied upon for this research as a 

dataset housing and manipulation mechanism. NumPy is highly-optimized 

Python and C code wrapped in a Python application programming interface 

(API) [14], providing both the lower-level resource management and the speed 

and convenience that come with such an implementation architecture. 

Beyond NumPy, particular modules of the closely-related SciPy4 superset li- 
3http://www.numpy.org/ 
4https: / / www.scipy.org/ 
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brary for scientific computation have been employed, specifically for vectorized 

distance calculations during the clustering process [14]. NurnPy and SciPy 

provide well-honed and high-performing implementations of the functional- 

ity required in each of the disclosed tasks; re-inventing the wheel would seem 

not only clunky and unnecessary for this research, not removing every possible 

point of interference with the true algorithmic aspects which are being explored 

by this research would seem both dishonest and counterproductive. 

Additionally, 2-dimensional Python plotting library matplotlib5 has been 

employed for the plots and graphs which have been produced in the results 

analysis section of this paper. 

4.2 Implementation Overview 

For this research, the £>means clustering algorithm, including the random 

centroid initialization method and the sharding family of centroid initialization 

methods, as well as utility functionality and much of the testing apparatus, 

has all been implemented in Python. Figure 4-2 is an outline of the project 

structure, including relevant packages and modules. 

The following is a project package overview: 

• docs - includes project documentation 

• kmeans - the fc-means algorithm and associated algorithmic function- 

ality 
5http://matplotlib.org/ 
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— docs 
1— readne.html 

—  in it .py 
— kneans 
— centroids.py 
— centroids.pyc 
— distances.py 
— distances.pyc 
—  init . py 
—  init .pyc 
— kneans.py 
— kneans.pyc 

— tests 
— logs 
— results 
— test_driver.py 
— test_driver.sh 
— test.py 
— test.pyc 

— utils 
— dataset.py 
— dataset.pyc 
—  init .py 
—  init .pyc 
— netrics.py 
— Retries.pyc 
— plot.py 
— plot.pyc 
— process_dataset.py 
— randon_dataset.py 

Figure 4.2: Project tree structure. 

• tests - apparatus for performing the implementation experiments 

• utils - utility modules, including those for dataset management, plotting, 

and algorithm performance metrics 

For information on executing the implemented algorithm, see the project’s 

documentation, browse the inline comments throughout the code, or read the 

testing modules code. 

Note that the script used for driving the experiments is the only project code 

not written in Python; it is implemented in shell script for purposes described 

in a subsequent section. Consider that this code was implemented in a Linux 

environment, and as such may not behave as expected elsewhere. 
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4.3 fc-means Clustering Algorithm 

The actual fc-means clustering algorithm, including all of its constituent com- 

ponents, such as distance calculation and centroid initialization functions, is 

implemented in the kmeans package; in particular, much of the interesting 

functionality of this research is located in the centroids.py module. 

Listing 4-1 is an excerpt from the kmeans.py module. 

Listing 4.1: kmeans.py module excerpt. 

# Loop until no changes to cluster assignments 

while changed: 

# Change in clusters between iterations? 

changed = False 

# For every instance (row in dataset) 

for i in range(m): 

# Track minimum distance, and vector index of cluster 

min_dist = np.inf 

min_index = -1 

# Calculate distances 

for j in range(k): 

dist_ji = dist_function(cents[j,:], ds[i,:]) 

if dist_ji < min_dist: 

min_dist = dist_ji 

min_index = j 

# Check if cluster assignment of instance has changed 

if cluster_assignments[i,0] != min_index: 

changed = True 

# Assign instance to appropriate cluster 

cluster_assignments[i,:] = min_index, min_dist**2 
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# Update centroid locations 

for cent in range(k): 

points = ds[np.nonzero(cluster_assignments[:,0] \ 

.A==cent)[0]] 

cents[cent,:] = np.mean(points, axis=0) 

This piece of code performs the actual clustering task of /c-means clustering, 

which occurs after centroids have been initialized, randomly or otherwise, and 

executes until convergence has occurred. For each instance in the dataset, the 

distance to each centroid is calculated, and the closest centroid, and, logically, 

member cluster, is tracked. Afterward, whether or not there has been a change 

in assigned cluster for the given instance is determined (the convergence crite- 

ria), and the cluster assignment, and its squared distance, is recorded. Finally, 

the centroid locations are updated before beginning the next iteration, should 

the convergence criteria not have been met. 

The Euclidean distance of 2 points, generalized, for this research, to any num- 

ber of corresponding attribute value vectors between a centroid and a dataset 

instance, has been implemented using the distance functions of SciPy. As such, 

the code is straightforward, being called from line 16 of the above cluster() 

function as distJunction(). This is actually an abstraction, a variable refer- 

encing any valid function call, in the case that something unorthodox, such 

as Manhattan (city block) or Minkowski distance, was desired to be tested 

with this code. Such an avenue has not been pursued for this research, how- 

ever. 

The actual code excerpt which performs the SciPy distance function call is 
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shown is Listing 2. 

Listing 4.2: euclidean() function from distances.py module. 

import numpy as np 

import scipy.spatial.distance as metric 

def euclidean(A, B): 

# Call to scipy with vector parameters 
return metric.euclidean(A, B) 

4.4 Random Centroid Initialization 

Random centroid initialization is accomplished via the rand-cent() function of 

the centroids.py project module. The function accepts 2 input parameters, a 

dataset, ds, as a NumPy matrix and an integer, k, representing the number of 

centroids to create, and proceeds by first surveying the bounded data space and 

then randomly selecting points within this space. It is evident that this process 

actually happens attribute value by attribute value. The set of centroids is 

returned as a NumPy matrix. 

Listing 4.3: rand^centQ function from centroids.py module. 

def rand_cent(ds, k): 

# Number of columns in dataset 
n = np.shape(ds)[1] 

# The centroids 
centroids = np.mat(np.zeros((k,n))) 

# Create random centroids 
for j in range(n): 
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min_j = min(ds[:,j]) 

range_j = float(max(ds [:,j]) - min_j) 

centroids[:,j] = min_j + range_j * np.random.rand(k, 1) 

# Return centroids as numpy array 

return centroids 

The function shown in Listing 4-3 is called from the relevant section of code 

in the cluster() function of the kmeans.py module via abstraction in a similar 

manner as the disLfunction() function, which allows a user to pass the desired 

centroid initialization function to the cluster() function as an input parameter, 

without the need for code specific to calling each of the centroid initialization 

functions. 

Figure 4-3 is a diagrammatic representation of the interaction between the 

constituent components of the kmeans module. 

It is to be noted that the code included thus far has been inspired and influ- 

enced by Harrington [15]. 

4.5 Sharding Centroid Initialization 

The following sections outline the implementation of the sharding family of 

centroid initialization functions. 
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Figure 4.3: kmeans.py module overview. 

4.5.1 Naive Sharding 

As outlined in a previous section, the naive sharding centroid initialization 

method proceeds using the following steps: 

• Step 1. Sum the attribute (column) values for each instance (row) of 

a dataset, and prepend this new column of instance value sums to the 

dataset 

• Step 2. Sort the instances of the dataset by the newly created sum 

column, in ascending order 

• Step 3. Split the dataset horizontally into k equal-sized pieces, or shards 

• Step 4. For each shard, sum the attribute columns (excluding the col- 

37 



umn created in step 1), compute its mean, and place the values into a 

new row; this new row is effectively one of the centroids used for initial- 

ization 

• Step 5. Add each centroid row from each shard to a new set of centroid 

instances 

• Step 6. Return this set of centroid instances to the calling function for 

use in the &-means clustering algorithm 

Listing 4.4: naive.sharding() function from centroids.py module. 

def naive_sharding(ds, k): 

# Number of columns in dataset 

n = np.shape(ds)[1] 

# Number of rows in dataset 

m = np.shape(ds)[0] 

# The centroids 

centroids = np.mat(np.zeros((k,n))) 

# Sum all elements of each row 

composite = np.sum(ds, axis=l) 

# Add composite as first column to original dataset matrix 

ds = np.append(composite, ds, axis=l) 

# Sort matrix based on sum_rows (first) column 

ds.sort(axis=0) 

# Step value for dataset sharding 

step = floor(m/k) 
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# Vectorize mean ufunc for numpy array 
vfunc = np.vectorize(_get_mean) 

# Shard dataset; compute centroids 
for j in range(k): 

if j == k-1: 

centroids [j:] = vfunc(np.sum(ds[j*step:,1:], \ 

axis=0), step) 

else: 

centroids[j:] = vfunc(np.sum(ds[j*step:(j+1)*step,1:], \ 

axis=0), step) 

# Return centroids as numpy array 
return centroids 

For more information on the theoretical methodology of the naive sharding 

centroid initialization method, see Algorithm 4, Figure 3.1, and Figure 3.2 of 

chapter 3. 

Listing 4-4 implements the prescribed methodology in practical form. The 

comments outline the step-by-step process of the algorithm, which match up 

almost verbatim with the steps above. Of note, line 13 calculates the represen- 

tative composite value for each instance, used for subsequent sorting (line 19) 

before dataset sharding and centroid computation (lines 28-34). Line 25 vec- 

torizes a custom helper function (_geLmean()), making it useful for NumPy 

arrays as opposed to only traditional scalars, for finding the shard means, 

which is outlined in the code of Listing 4-5- 

Listing 4.5: .geLmean() function from centroids.py module. 

def _get_mean(sums, step): 

# Return means as numpy array 
return sums/step 



4.5.2 Mean Sharding 

For mean sharding, a single line must be replaced in the above naive sharding 

algorithm in order to make the necessary changes, computing a composite 

value reflective of the instance means as opposed to their sums. With NumPy, 

this is trivial. Line 13 of Listing 4-4 is replaced by the single line of code of 

Listing 4-6. 

Listing 4.6: mean_sharding() function excerpt from centroids.py module. 

# Get mean of all elements of each row 

composite = np.mean(ds, axis=l) 

The remainder of the algorithm follows Listing 4-4- 

4.5.3 Median Sharding 

For median sharding, the final member of the sharding family of centroid ini- 

tialization methods, the same single line, 13, from Listing 4-4 can be replaced 

with the following single line of code of Listing 4-7. Again, this is trivial using 

NumPy. 

Listing 4.7: median_sharding() function excerpt from centroids.py module. 

# Get median of all elements of each row 

composite = np.medianfds, axis=l) 



4.6 Utility Modules 

Aside from core project functionality, code for this research includes a small 

number of utility modules, which are outlined below. 

• dataset.py - functionality for loading a dataset from comma-separated 

value (CSV) file 

• metrics.py - functionality for computing the sum of squared errors 

(SSE) for a particular cluster 

• plot.py - functionality for plotting a 2-dimensional representation of a 

dataset and a set of centroids 

• process-dataset.py - used for processing datasets in a variety of ways, 

such as removing instances with empty values, or removing entire columns; 

used for dataset preparation outlined in a subsequent section 

• random-dataset.py - used to generate an artificial dataset of random 

values; employed in the creation of datasets outlined in a subsequent 

section 

4.7 Testing Apparatus 

The following provides an overview of the testing modules and process followed 

for conducting experiments in this research. 

• /results - output from each experiment, including a series of parameters 



such as the number of clusters for the experiment, number of k-means 

clustering iterations, mean SSE of all clusters for the experiment, and a 

number of timing-related measures 

• /logs - raw output of the report data the fc-means clustering implemen- 

tation outputs in verbose mode, including mostly the same data as above, 

except per iteration of the /c-rneans clustering algorithm, as opposed to 

summarized per experiment 

• test.py - test script which executes a single k-means clustering task 

• test-driver, sh - shell script which automates the execution of a number 

of /c-means experiments and captures their results, configured to execute 

all experiments required of a single dataset, including those for random, 

naive, mean, and median sharding 

The following chapter describes the results of the experiment executions. 



Chapter 5 

Results and Evaluation 

This chapter describes and evaluates the results of the experiments executed 

against the implementation described in the previous chapter. 

First, an overview of the experiments performed are presented. The follow- 

ing section then describes the datasets which were used for experimentation, 

presents the outcomes of those experiments, and discusses relevant aspects of 

those experiment outcomes. These outcomes are discussed with an eye toward 

pivoting to conclusions in the final chapter. 

5.1 Experiment Overview 

For each of the datasets described in the following section, a set of experiments 

was executed. These experiments focused on executing the ft-means cluster- 

ing algorithm using the previously outlined centroid initialization methods - 



random, naive sharding, mean sharding, median sharding - with an interest in 

capturing and comparing their sum of squared error (SSE) metric outcomes, 

their execution times (both for the entire clustering execution as well as for 

the centroid initialization itself), and the number of iterations of clustering 

required for convergence. 

While the execution times and number of iterations for convergence are a di- 

rect and obvious measure of the effectiveness of the centroid initialization algo- 

rithms, SSE may not be. Should a member of the sharding family of centroid 

initialization algorithms lead to a clustering performance with a significantly 

reduced execution time yet demonstrate SSE measure values which were not 

comparable to random initialization on the same data, it would be difficult 

to conclude that this was any type of improvement. There may be some pos- 

sibility of trade-off between speed and accuracy in general; however, terribly 

inaccurate results are not an acceptable outcome in exchange for dramatic 

improvements in speed. 

For each of the datasets, the following individual experiments were executed: 

• Random centroid initialization - 10 consecutive executions 

• Naive sharding centroid execution - 3 consecutive executions 

• Mean sharding centroid execution - 3 consecutive executions 

• Median sharding centroid execution - 3 consecutive executions 

As random centroid initialization leads to different initial centroids on each 

execution, it is reasonable to believe that performance outcomes may differ 
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significantly; in fact, they often do [3]. However, for the deterministic sharding 

family of centroid initialization algorithms, initial centroids are always the 

same for a given dataset, leading to identical SSE outcomes, and so fewer 

runs are required to simply determine mean execution times. Each set of 

experiments were executed on the same dedicated computer (see Appendix A 

for details). 

Python’s clockQ [16] function of its built-in time module was employed for 

capturing the runtimes of the separate clustering and centroid initialization 

algorithm executions, as these functions are executed from within Python code 

and return values to the calling functions, making this the most appropriate 

technique for performing this task. As such, values reported in the results 

tables below are the difference between wall clock times, in seconds. 

For the overall execution time of each A;-means clustering experiment, however, 

the time [17] command of the GNU operating environment was utilized, in 

order to isolate the resources dedicated exclusively to our process(es); as these 

executions were called from outside of the Python environment, this technique 

was appropriate for such a task. As such, values reported in the results tables 

below are in CPU seconds. 

Listing 5.1: Timing functionality excerpt from kmeans.py module. 

# Initialize centroids 
tO = time . clockO 
cents = cent_init(ds, k) 
tl = time.clockO 
cent_init_time = tl - tO 

Timing was captured within Python as outlined in Listing 5.1, with this partic- 
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ular example tracking the runtime of the centroid initialization function. 

The full testing code apparatus has been detailed in the previous chapter. 

5.2 Datasets 

For some datasets, particularly those for which the number of natural clusters 

was unknown, the experiments were performed a number of times, each with 

a different value of k (the number of desired clusters), in order to provide 

maximum insight. 

For datasets for which the number of natural clusters was known, one iteration 

of the experiment was performed, with an appropriate value of k. For datasets 

for which the number of natural clusters was known, and for which a dataset 

class attribute was available, the experiment was generally performed twice; 

one execution with the class attribute removed, and the other with the class 

attribute intact, converted to a numeric representation if necessary. While 

clustering with values for which distances between cannot be meaningfully 

measured (this generally includes nominal class values) is generally meaning- 

less and adds noise to a dataset, the process was undertaken as a comparative 

measure between the centroid initialization algorithms, as opposed to an exer- 

cise in evaluating the results of the actual effectiveness of k-means clustering; 

i.e. the interest is in the relative, as opposed to the absolute. 

The datasets are of differing sizes, complexity, and data distribution; as such, 

they are grouped into like categories. Each dataset is described in appro- 
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Table 5.1: Dataset summary. 

Dataset 

Dessewffy 
Jelonek 
Ruspini 

Iris 
Wine 
Seeds 

3D Road Network 
Power Consumption 

Attributes Clusters 

n/a 
n/a 

4 
3 
3 
3 

n/a 
n/a 

priate detail, and the results of the above experiments for said dataset are 

summarized alongside. 

For experimentation, 8 datasets have been employed. Two of these sets have 

been artificially crafted for this research, while the others are well-utilized sets 

from the research. 

Table 5.1 summarizes the datasets used, with attributes reported not including 

class attributes, should one exist for the given dataset. 

5.2.1 Research-specific Artificial Datasets 

This section includes the artificial datasets crafted specifically for this research, 

having been created by the researcher with specific characteristics in mind, 

characteristics which are outlined below. These 2 datasets, Dessewffy and 

Jelonek, have been named using the randomized Wikipedia article1 naming 

system; for more information, see Appendix 2. 

1https://en.wikipedia.org/wiki/Wikipedia:Random 
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Figure 5.1: Dessewffy dataset. 

Dessewffy 

The Dessewffy dataset is an artificial dataset created by the researcher. The 

dataset is uniformly randomized in nature, consisting of 2 attributes and 100 

instances. A very simple dataset, Dessewffy mimics 2-dimensional Euclidean 

space, and, as such, is informative in that its structure can be easily visualized 

by the human eye. 

The randomized uniform distribution will also provide an additional layer of 

insight into the sharding family of centroid initialization algorithms, given that 

there will most certainly not be any patterns of note held within this dataset. 

Given its simple nature, it is a good set of data to begin experimentation 
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Naive Sharding 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Random 

Figure 5.2: Dessewffy naive sharding versus random initialization, k = 3. 

with. 

Note that both the Dessewffy and Jelonek datasets were created with the ran- 

dom-dataset.py script located in the utils module directory of the project. 

The Dessewffy dataset is visualized in Figure 5.1. 

In order to visualize the difference between random centroid initialization and 

sharding initialization, Figure 5.2 demonstrates where one particular execu- 

tion of random centroid initialization places 3 centroids in relation to the 

Dessewffy data instances, alongside where naive sharding places its initializa- 

tion centroids, each and every time. 

Figure 5.3 demonstrates random versus naive sharding centroid initialization 

for k = 7. 

Experiments for Dessewffy included executing the testing regimen outlined 

above for k values of 3, 7, and 10. The results of these executions are outlined 

in Table 5.2. 
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Naive Sharding Random 

Figure 5.3: Dessewffy naive sharding versus random initialization, k = 7. 

Table 5.2: Dessewffy results. 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

7 
9 
9 
9 

0.06231 
0.06186 
0.06186 
0.06186 

0.00627 
0.00038 
0.00043 
0.00054 

0.13482 
0.17223 
0.17448 
0.17590 

0.27 
0.31767 
0.30433 
0.311 

random 
naive 
mean 

median 

8.6 
6 
6 
6 

0.02110 
0.02181 
0.02181 
0.02181 

0.00650 
0.00069 
0.00075 
0.00086 

0.36094 
0.25252 
0.25108 
0.24742 

0.501 
0.391 
0.38767 
0.381 

10 

random 
naive 
mean 

median 

7.8 
13 
13 
13 

0.01433 
0.01308 
0.01308 
0.01308 

0.00599 
0.00093 
0.00101 
0.00112 

0.45589 
0.76347 
0.75557 
0.75666 

0.594 
0.89433 
0.90433 
0.89767 
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As is visible from the results summarized in Table 5.2, random centroid ini- 

tialization outperforms all sharding initialization algorithms for all values of k, 

as far as number of iterations and algorithm runtimes are concerned, for the 

Dessewffy dataset. However, and rather unexpectedly, all forms of sharding al- 

gorithm result in a superior mean SSE metric value than random initialization 

for 2 of the 3 values of k (3 and 10). 

Jelonek 

The Jelonek dataset is another artificial dataset created by the researcher. 

Jelonek is uniformly randomized in nature, similar to Dessewffy; however, this 

dataset consists of 2 attributes and 1000 instances, providing greater complex- 

ity by way of additional instances. This dataset is equally visually interpretable 

by the human eye as is Dessewffy, albeit much more densely distributed. 

Figure 5-4 visualizes the Jelonek dataset. 

Just as Figure 5.2 demonstrated the difference between the centroid place- 

ment of a single occurrence of random initialization and naive sharding for the 

Dessewffy dataset, k — 3, Figure 5.5 demonstrates the same for the Jelonek 

dataset. 

Figure 5.6 demonstrates random versus naive sharding centroid initialization 

for k = 7. 

Experiments for Jelonek included executing the testing regimen outlined above 

for k values of 3, 7, and 10. The results of these executions are outlined in 

51 



1.2 

1.0 - 

0.8 - 

0.2 
-0.2 

Figure 5.4: Jelonek dataset. 

Naive Sharding Random 

Figure 5.5: Jelonek naive sharding versus random initialization, k — 3. 
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Naive Sharding Random 

Figure 5.6: Jelonek naive sharding versus random initialization, k — 7. 

Table 5.3: Jelonek results. 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

30.6 
15 
15 
15 

0.06686 
0.06712 
0.06712 
0.06712 

0.58116 
0.00311 
0.00322 
0.0035 

57.29435 
28.1926 
28.27809 
28.1473 

58.03 
28.34767 
28.441 
28.30767 

random 
naive 
mean 

median 

29.7 
26 
26 
26 

0.0256 
0.02584 
0.02584 
0.02584 

0.57949 
0.00332 
0.00338 
0.00381 

120.27616 
105.63985 
105.66742 
105.57737 

121.005 
105.791 
105.801 
105.76433 

10 

random 
naive 
mean 

median 

48.3 
42 
42 
42 

0.01699 
0.01701 
0.01701 
0.01701 

0.58077 
0.00353 
0.00374 
0.00406 

274.7395 
238.69629 
238.32835 
237.40957 

275.47 
238.84767 
238.49433 
237.56767 
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Table 5.3. 

As is visible in Table 5.3, the sharding family of centroid initialization algo- 

rithms outperformed random initialization in terms of number of iterations 

and all timing metrics (notice the dramatic difference in centroid initialization 

time for even a relatively small number of instances), for all values of k. Ran- 

dom initialization did have lower mean SSE scores for all values of k; however, 

these differences were extremely insiginifcant. For example, the mean SSE 

difference between all sharding algorithms and random initialization for k = 

3 was 0.00026, the largest such difference exhibited of any value of k for the 

dataset. 

5.2.2 Datasets of Known Clusters from the Literature 

This section includes details and experiment results of well-known and -used 

datasets from the literature, of which the natural number of data clusters were 

known. 

Ruspini 

The Ruspini dataset2 [18], similar to Dessewffy and Jelonek, is a 2-dimensional 

artificial dataset of which there are 75 instances. Unlike the others, however, 

Ruspini is not uniformly distributed, and consists of 4 natural clusters. No- 

tably, the dataset does not include any classes, or distinguishing characteristics 
2https: / / vincentarelbundock.github.io/Rdatasets/datasets.html 
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Figure 5.7: Ruspini random centroid initialization, k = 4. 

of cluster membership, beyond the 2 data axes themselves. Data preparation 

for Ruspini included the removal of a header row, as well as a single column 

which consisted solely of an instance index. 

Figure 5.7 visualizes the Ruspini dataset with a single occurrence of randomly- 

initialized centroids, k — 4. For comparison, Figure 5.8 visualizes the Ruspini 

dataset with naive sharding centroid initialization, which produces the same 

centroids upon every execution, also with k = 4. Figure 5.9 and Figure 5.10 

demonstrate the Ruspini dataset with 4 initial centroids generated via mean 

and median sharding algorithms, respectively. As is visible from comparison of 
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Figure 5.8: Ruspini naive sharding centroid initialization, k = 4. 
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Figure 5.9: Ruspini mean sharding centroid initialization, k = 4 

140 
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Figure 5.10: Ruspini median sharding centroid initialization, k = 4. 
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Table 5.4: Ruspini results. 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

3.2 
4 
4 
4 

271.425131 
171.74735 
171.74735 
171.74735 

0.00465 
0.00049 
0.00053 
0.00068 

0.06134 
0.07650 
0.07619 
0.07713 

0.208 
0.22433 
0.20767 
0.22433 

a dataset of this number and distribution of instances, these plots are virtually 

indistinguishable. 

Experiments on Ruspini consisted of the regimen outlined in a previous section, 

solely for the k value of 4, the number of known clusters of the dataset. The 

results are outlined in Table 5-4- 

Visible from the results in Table 5.4, random centroid initialization outper- 

forms all sharding initialization algorithms in terms of number of clustering it- 

erations and all time-related metrics, though the mean number of iterations are 

relatively similar, and the reduced execution time of the sharding algorithms 

keeps their collective overall execution times reasonably close to the overall 

random centroid initialization executions, despite the latter’s lower number 

of clustering iterations required for convergence. However, and rather unex- 

pectedly, the mean SSE metric of the sharding family of centroid initialization 

algorithms is considerably lower than for the random centroid initialization 

technique. 
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Iris 

The Iris dataset3 [19] is a very well-known natural dataset from the litera- 

ture, and is the first dataset outlined in this research that is not artificially 

created. The Iris dataset contains data observations from 3 different types of 

irises, made up of 4 attributes (plus 1 class attribute) and 150 instances; the 

instances are of 3 classes, with an equal number of instances in each of these 

3 classes. 

Data preparation included remove the header row, as well as duplicating the 

dataset, removing the class column from one copy, and leaving it in for the 

other. The classes were converted from nominal to numeric values. 

Experiments on Iris consisted of the regimen outlined in a previous section, 

solely for the k value of 3, the number of known clusters of the dataset. The 

experiment was executed for both dataset copies - with and without the class 

attribute - in order to observe the effect of the noise associated with clustering 

with attributes of immeasurable distance. The results for the Iris dataset 

without class attribute and with class attribute are outlined in Table 5.5 and 

Table 5.6, respectively. 

Meaningfully visualizing data to the human eye beyond 2 or 3 dimensions 

obviously becomes more difficult, given the lack of Euclidean plane or the 

human-friendly 3-dimensional space; however, the Iris dataset is presented in 

Figure 5.11 using a parallel coordinate graph. This allows for some basic 

understanding of the data held in the Iris dataset. 

3https://archive.ics.uci.edu/ml/datasets/Iris 
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The Iris dataset results summarized in Table 5.5 and Table 5.6, both with and 

without the class attribute, show that the sharding family of centroid initial- 

ization algorithms outperform random initialization in terms of all time-related 

metrics and number of iterations. Unexpectedly, sharding centroid initializa- 

tion also results in a lower mean SSE value than does random initialization 

with the class attribute included; without the class attribute the mean SSE is 

nearly identical. 

Wine 

The Wine dataset4 [20] is composed of chemical analysis data of wines grown 

in Italy. The dataset is made up of 13 attributes and 178 instances, which 

form 3 natural classes. 

Data preparation of the Wine dataset included duplicating the dataset, and 

removing the class attribute from one of the copies. 

Experiments on Wine consisted of the regimen outlined in a previous section, 

solely for the k value of 3, the number of known clusters of the dataset. The 

experiment was executed for both dataset copies - with and without the class 

attribute - in order to observe the effect of the noise associated with clustering 

with attributes of immeasurable distance. The results for the Wine dataset 

without class attribute and with class attribute are outlined in Table 5.7 and 

Table 5.8, respectively. 

As is evident from Table 5.11, the sharding family of centroid initialization 

4https: //archive.ics.uci.edu/ml/datasets/Wine 
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Table 5.7: Wine results (without class). 

Init Type Iters Mean SSE Init Time Oust Time Total Time 

random 
naive 
mean 

median 

8.9 
5 
5 
5 

13909.19070 
13318.48139 
13318.48139 
13318.48139 

0.06757 
0.00049 
0.00051 
0.00068 

0.29916 
0.16849 
0.16781 
0.16788 

0.501 
0.30767 
0.28767 
0.30767 

Table 5.8: Wine results (with class). 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

11.8 
5 
5 
5 

14350.16163 
13318.77699 
13318.77699 
13318.77699 

0.07271 
0.00049 
0.00054 
0.0007 

0.40031 
0.17093 
0.16909 
0.17014 

0.609 
0.30433 
0.30433 
0.301 

algorithms outperformed random initialization in all time-related metrics, in 

number of clustering iterations required for convergence, as well as mean SSE, 

with the exception of reporting an identical mean SSE for one particular value 

of k (k — 3). 

Seeds 

The Seeds dataset5 [21] consists of observations related to 3 different types of 

wheat. The dataset contains 210 instances and is made up of 7 attributes, 

plus 1 class attribute. 

Data preparation tasks included duplicating the dataset, and removing the 

class attribute from one of the copies. 

Experiments on the Seeds dataset consisted of the regimen outlined in a pre- 

vious section, solely for the k value of 3, the number of known clusters of the 

5https: //archive.ics.uci.edu/ml/datasets/seeds 
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Table 5.9: Seeds results (without class). 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

7.9 
4 
4 
4 

2.80024 
2.80437 
2.80437 
2.80437 

0.04317 
0.00047 
0.00048 
0.00059 

0.31535 
0.1597 
0.16028 
0.15888 

0.501 
0.27767 
0.291 
0.291 

Table 5.10: Seeds results (with class). 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

8.2 
5 
5 
5 

2.97971 
2.97962 
2.97962 
2.97962 

0.04910 
0.00046 
0.00050 
0.00059 

0.32823 
0.20104 
0.20019 
0.20056 

0.513 
0.321 
0.33433 
0.341 

dataset. The experiment was executed for both dataset copies - with and with- 

out the class attribute - in order to observe the effect of the noise associated 

with clustering with attributes of immeasurable distance. The results for the 

Seeds dataset without class attribute and with class attribute are outlined in 

Table 5.9 and Table 5.10, respectively. 

As is visible from Table 5.9 and Table 5.10, the sharding centroid initialization 

algorithms all outperformed random centroid initialization in all metrics, with 

the single exception being mean SSE in the experiments without the class 

attribute, in which random initialization reported a marginally lower 2.80024, 

as opposed to 2.80437. 

5.2.3 Datasets of Unknown Clusters from Literature 

This section includes details and experiment results of well-known and -used 

datasets from the literature, of which the natural number of data clusters were 
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unknown. 

3D Road Network 

The 3D Road Network dataset6 [22] was originally constructed by adding el- 

evation information to a 2-dimensional road network in North Jutland, Den- 

mark, and was subsequently used for benchmarking a number of fuel and C02 

estimation algorithms. It is of significantly larger size than the previously en- 

countered datasets, consisting of 434874 instances of 4 attributes each. There 

are no known natural clusters for this dataset. 

Data preparation for the 3D Road Network dataset was not required; the CSV 

file came ready for use. 

Experiments for the 3D Road Network dataset included executing the testing 

regimen outlined above for k values of 3, 7, and 10. The results of these 

executions are outlined in Table 5.11. 

As is visible from the results outlined in Table 5.11, the sharding centroid 

initialization algorithms all outperformed random centroid initialization in all 

metrics, with the single exception being mean SSE for k — 3, which was re- 

ported as identical to the random mean SSE. Of note, the centroid initialization 

times for a dataset of this size have been reduced by nearly 25000%; paired 

with lower numbers of iteration required for convergence and high-performing 

mean SSE values, the sharding family of centroid initialization algorithms are 

beginning to solidify as a viable alternative to traditional random centroid 
6https://archive.ics.uci.edu/ml/datasets/3D+Road+Network-|-(North-|-Jutland,-(-Denmark) 
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Table 5.11: 3D Road Network results. 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

9.1 
7 
7 
7 

1.1965e+14 
1.1965e+14 
1.1965e+14 
1.1965e+14 

49.5408 
0.20484 
0.20591 
0.24226 

726.1387 
564.12472 
563.17698 
563.31783 

777.367 
566.02767 
565.031 
565.251 

random 
naive 
mean 

median 

19.1 
14 
14 
14 

3.3969e+13 
3.1036e+13 
3.1036e+13 
3.1036e+13 

49.34861 
0.20907 
0.20739 
0.24452 

3283.96743 
2422.48985 
2408.66744 
2414.75816 

3334.705 
2424.34433 
2410.55767 
2416.69433 

10 

random 
naive 
mean 

median 

25.6 
13 
13 
13 

1.4968e+13 
1.4713e+13 
1.4713e+13 
1.4713e+13 

49.48046 
0.20754 
0.20674 
0.24389 

6189.17081 
3158.00158 
3137.79286 
3159.00651 

6239.338 
3159.90767 
3139.41433 
3160.96433 

initialization. 

Power Consumption 

The Individual Household Electric Power Consumption, or simply Power Con- 

sumption, dataset7 contains electric power consumption measurements in a 

single household over the course of approximately 4 years, with a one-minute 

sampling rate. The dataset consists of 9 attributes and 2049280 instances, 

making it the largest dataset used in this research. 

Data preparation for the Power Consumption dataset required removing a 

number of instances (25979) which contained empty values, which the k- 

rneans clustering algorithm implementation is not designed to appropriately 

handle. 
7https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+ 

consumption 
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Table 5.12: Power consumption results. 

Init Type Iters Mean SSE Init Time Clust Time Total Time 

random 
naive 
mean 

median 

11.3 
18 
18 
18 

103.14419 
59.92447 
59.92447 
59.92447 

412.00743 
1.33582 
1.3415 
1.436 

4286.46679 
6843.3214 
6883.48539 
6874.63326 

4707.652 
6853.99767 
6893.17433 
6884.43433 

Experiments for the Power Consumption dataset originally included executing 

the testing regimen outlined above for k values of 3, 7, and 10; however, execu- 

tion times for the /."-means clustering algorithm on this dataset for any values 

of k greater than 3 proved prohibitive. This research decided on gathering the 

results for a value of k = 3, which are summarized in Table 5.12. 

As evidenced by Table 5.12, random centroid initialization outperformed the 

sharding family of centroid initialization algorithms in terms of the number 

of clustering iterations required for convergence, as well as all time-related 

metrics, except for centroid initialization time. However, all of the sharding 

initialization methods reported mean SSE values over 40% lower than those 

reported by random initialization. Given the savings in execution time related 

to the centroid initialization times, along with the notable reduction in the 

mean SSE, the sharding centroid initialization algorithms do appear to have 

demonstrated some value on this much larger dataset. 

Table 5.13 and Figure 5.14 summarize select results of datasets of known 

clusters and dataset of unknown clusters, respectively. In each of these tables, 

the best-performing metrics are highlighted in red. 
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Table 5.13: Summarized results of datasets of known clusters. 

Dataset Init Type Iters Mean SSE 

Ruspini 
Random 

Naive 
3.2 
4 

271.425 
171.747 

Iris (no class) 
Random 

Naive 
7.5 
3 

0.52629 
0.52630 

Iris (without class) 
Random 

Naive 
9 
5 

0.63744 
0.58207 

Wine (no class) 
Random 

Naive 
8.9 
5 

13909.19070 
13318.48139 

Wine (without class) 
Random 

Naive 
11.8 

5 
14350.16163 
13318.77699 

Seeds (no class) 
Random 

Naive 
7.9 
4 

2.80024 
2.80437 

Seeds (without class) 
Random 

Naive 
3.2 
5 

2.97971 
2.97962 
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Table 5.14: Summarized results of datasets of unknown clusters. 

Dataset Init Type Iters Mean SSE 

Dessewffy (k — 3) 
Random 

Naive 
7 
9 

0.06231 
0.06186 

Dessewffy (k = 7) 
Random 

Naive 
8.6 
6 

0.02110 
0.02181 

Dessewffy (k = 10) 
Random 

Naive 
7.8 
13 

0.01433 
0.01308 

Jelonek (k = 3) 
Random 

Naive 
30.6 
15 

0.06686 
0.06712 

Jelonek {k = 7) 
Random 

Naive 
29.7 
26 

0.0256 
0.02584 

Jelonek (k = 10) 
Random 

Naive 
48.3 
42 

0.01699 
0.01701 

3D Road Network (k = 3) 
Random 

Naive 
9.1 
7 

1.1965e+14 
1.1965e+14 

3D Road Network (k = 7) 
Random 

Naive 
19.1 
14 

3.3969e+13 
3.1036e+13 

3D Road Network (k = 10) 
Random 

Naive 
25.6 
13 

1.4968e+13 
1.4713e+13 

Power Consumption (k = 3) 
Random 

Naive 
11.3 
18 

103.14419 
59.92447 
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Chapter 6 

Conclusions 

This chapter will summarize and analyze the results of the experiments run 

in the previous chapter, discuss the generalizability of the results, and draw 

warranted conclusions for the research. Afterward, future possible research 

will be suggested. 

6.1 Summary of Research 

The first observation gleaned from the results of last chapter’s experiments is 

that the various members of the sharding family of centroid initialization algo- 

rithms - naive, mean, and median - performed almost identically throughout 

all tests on all datasets, with but a few minor exceptions. This observation 

is not necessarily generalizable based on the number of experiments; however, 

moving forward through analysis, the focus will be on the differences between 



random centroid initialization and a representative method of the sharding 

family - naive sharding centroid initialization. 

As outlined in the previous section, the sharding family of centroid initial- 

ization algorithms did outperform random initialization more times than not 

in terms of number of iterations required for convergence and overall time- 

related metrics. The sharding family of centroid initialization algorithms also 

generally reported SSE values relatively similar to those reported by random 

centroid initialization. Rather unexpectedly, on occasion where sharding was 

outperformed by randomization in terms of execution time, it managed to 

report more favorable SSE values than did randomization. 

In all experiments, rather unsurprisingly, the sharding initialization algorithms 

consistently outperformed randomization in terms of time required for centroid 

initialization, by very wide margins. It is this fact in terms of potential trade- 

off with competing factors that weighs heavily in favor of sharding initialization 

being viewed as a useful tool in general for &-means clustering. 

For datasets with known numbers of clusters, sharding performed particularly 

and consistently well. Figure 6.1 demonstrates the difference in iterations 

between random centroid initialization and naive sharding centroid initial- 

ization methods for the 4 datasets of known number of clusters. For 3 of 

these 4 datasets, naive sharding outperformed random initialization in terms 

of number of clustering iterations required for convergence, and subsequently 

all time-related metrics; the fourth set, Ruspini, reported mean numbers of 

iterations close to one another. Unexpectedly, for the Ruspini dataset, though 
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Figure 6.1: Number of iterations of datasets with known number of clusters. 

naive sharding reported a slightly higher number of mean iterations (4 ver- 

sus 3.2), its reported SSE values were lower, and thus more desirable, by a 

value of approximately 100, a more than 60% improvement; for all other of 

the known cluster number datasets, mean SSEs were equal, somewhat better, 

or very competitive by several thousandths of a decimal place. 

The noise associated with the addition of class attributes were of no conse- 

quence; for the Iris, Wine, and Seeds datasets, sharding outperformed random 

initialization consistently for both dataset configurations, as demonstrated in 

Figure 6.2. 
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Figure 6.2: Number of iterations of datasets with class attributes. 

73 



In 2 of the 3 datasets of unknown number of clusters which employed multiple 

values of k for experimentation, sharding roundly outperformed randomization 

in the largest of the datasets, as well as the densest of the datasets, in number of 

required iterations and time-related metrics, and had either a very competitive 

or more desirable mean SSE. 

The sharding initialization algorithms were outperformed in terms of number 

of iterations on the Dewsseffy dataset; however, 2 of these k values led to more 

favorable mean SSE values for the sharding algorithms. The sharding family 

was also outperformed in time-related metrics on the Power Consumption 

dataset, the largest dataset in the research; however, the sharding algorithms 

did report much better mean SSE values for this same dataset, suggesting 

that, even when the sharding algorithms are beaten at their own game of 

speed, the final clustering results are often likely as useful as randomization, 

if not significantly more so. 

6.2 Future Work 

Future research into the viability of this family of centroid initialization algo- 

rithms would likely be well-advised to focus on diversifying the test datasets, 

and performing an increased volume of algorithm testing. While limited by 

time to test the practical implementation, future work extending these experi- 

ments would be able to provide insight as to whether the results shared in the 

previous chapter could be generalized, and to what degree. 



While this research cannot make such insinuations, nor did it intend to, being 

exploratory in nature, further research could help determine whether data 

density, complexity, or distribution consistently play a role in the success of 

the sharding family of centroid initialization algorithms. 

While generalizing the results found herein would be irresponsible, based on 

the small sample size, the promising findings do suggest that further research 

is warranted, and that the sharding family of centroid initialization algorithms 

for the /.;'-means clustering algorithm may, in fact, be another useful tool in 

the machine learning practitioner’s toolkit when it comes to clustering analy- 

sis. 
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Appendix A 

Computer Specifications 

All research experiments were executed on a single computer of the specifica- 

tions outlined in Table A.l. 

Note that specifications were confirmed via the Linux Ishw1 command, which 

is used to extract detailed hardware information from a machine. 

1 http: //linux.die.net/man/l/lshw 



Table A.l: Experiment computer hardware. 

Hardware Model 

Motherboard 
Processor 
LI cache 
L2 cache 

System memory 
Display 
Audio 

Network 
Storage 
Optical 

Gigabyte H55M-UD2H 
Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz 

64 KB 
8 MB 

16 GB (2 x 8 GB DIMM 1333 MHz (0.8 ns)) 
Nvidia GeForce GTX 970 

Nvidia GM204 
Realtek 8111/8168/8411 PCI Express Gigabit 

640 GB Western Digital WD6402AAEX-0 
Lite-On iHAS124 
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Appendix B 

Artificial Dataset Names 

I am a proponent of using Wikipedia randomization for naming almost any- 

thing. Not only does it remove the issue of having to come up with a name, 

or otherwise make some arbitrary choice, it allows for recreational learning at 

the same time. Hence, this was the method used for naming the artificially 

constructed datasets. 

The first 2 random articles that Wikipedia returned during the naming process 

were used. Here is some further information for those interested in the dataset 

namesakes. 

Dessewffy 

Count Aurel Dessewffy de Csernek et Tarkeo1 was a Hungarian politician 

and one-time Speaker of the House of Magnates, the National Assembly of 

1 https: //en. wikipedia.org/ wiki / Aurel_Dessewffy_(1846-1928) 



Hungary’s upper chamber. 

Jelonek 

Jelonek2 is a village in the Gmina Niechanowo district of Greater Poland 

Voivodeship, located in west-central Poland. 

2https://en.wikipedia.org/wiki/Jelonek,_Gniezno_County 
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