
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

3-2011

Advanced I/O Techniques for Efficient and Highly Available Advanced I/O Techniques for Efficient and Highly Available

Process Crash Recovery Protocols Process Crash Recovery Protocols

Jason Cornwell

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cornwell, Jason, "Advanced I/O Techniques for Efficient and Highly Available Process Crash Recovery
Protocols" (2011). Theses and Dissertations. 8.
https://csuepress.columbusstate.edu/theses_dissertations/8

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/8?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

Digitized by the Internet Archive

in 2012 with funding from

LYRASIS Members and Sloan Foundation

http://archive.org/details/advancediotechniOOcorn

Columbus State University

The College of Business and Computer Science

The Graduate Program in Applied Computer Science

Advanced I/O Techniques for Efficient and

Highly Available Process Crash Recovery Protocols

A Thesis in

Applied Computer Science

by

Jason Warren Cornwell

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

March 2011

©201 1 by Jason Warren Cornwell

I have submitted this thesis in partial fulfillment of the requirements for the degree of Mas-

ter of Science

1 £*>.

'

</

Date Jason Cornwell

We approve the thesis of Jason Warren Cornwell as presented here.

3/2?/AOf{

Date Angkul Kongmunvattana. Ph.D.

Associate Professor,

Thesis Advisor

M«W XI , 2joII "t^,

Date Eugen Ionascu, Ph.D.

Professor of Mathematics

/?/— ?4 , ttti

Date

n

Wayne Summers, Ph.D.

Distinguished Chairperson and

Professor of Computer Science

Ill

Acknowledgments

First and foremost. I would like to thank Professor Angkul Kongmunvattana. He has

been an outstanding advisor and role model. Without his guidance and trust, many of my

proudest accomplishments during the past two years would never have come to pass. I

have learned many life and career lessons during our collaboration and hope that I have

also shown him about life's many blessings.

I would also like to thank Justin Whaley for setting up and configuring the NFS clus-

ter used in this experiment. It has been enjoyable to have his assistance as well as the

opportunity to share some of what I have learned and experienced with him.

I am deeply grateful to my parents Larry and Judy Cornwell. In recent years, they have

taught me to stand up for what I believe in, even when it meant standing alone. Their

love and support have provided me power to accomplish more than I could have imagined.

Words cannot express my love for them both.

I\

Abstract

As the number of CPU cores in high-performance computing platforms continues to

grow, the availability and reliability of these systems become a primary concern. As such,

some solutions are physical (ie. power backup) and some are software driven. Lawrence

Berkeley National Laboratory has created a system-level fault-tolerant checkpoint/restart

implementation for Linux Clusters. This allows processes to restart computations at the last

known checkpoint in the event the system crashes. The checkpoint data creation is highly

dependent on system input and output operations. This paper proposes: (i) a technique to

improve the efficiency of these I/O operations and (ii) an alternative checkpoint creation

method to increase availability and reliability of checkpointing data.

Keywords: caching, checkpoint, crash recovery, fault-tolerant system, high performance

computing, network file system, optimization, performance evaluation, remote checkpoint-

ing

\

Table of Contents

Acknowledgments iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1

2 Pertinent Background 3

3 Proposed Technique 7

3.

1

I/O Optimization 7

3.1.1 Checkpoint Caching 7

3.1.2 Optimized BLCRs Write Operation 9

3.1.3 Implementation 10

3.2 Remote Checkpoint 12

3.2.

1

Remote Checkpoint Server 12

3.2.2 Modified BLCRs Write Operation 14

3.2.3 Implementation 15

4 Experimental Setup 18

5 Experimental Results 21

5.1 NP-Complete Problem 24

5.2 Data Encryption 25

5.3 Linear Equation Solver 27

5.4 File Compression 29

\ I

5.5: Summary 30

6 Conclusion and Future Research 32

Bibliography 35

Vll

List of Figures

1 Pseudo Code for the Caching Process 8

2 Checkpoint Caching Protocol 10

3 Pseudo Code for the Modified BLCR's Write 11

4 Pseudo Code for the Server Process 13

5 Pseudo Code for the Modified BLCR's Write 14

6 Remote Checkpoint Protocol 16

7 Local Write Overhead for Checkpoint Creation 26

8 Remote Write Overhead for Checkpoint Creation 28

Vlll

List of Tables

1 Overhead Trend of Benchmark Programs 21

2 Traveling Sales Problem Results 22

3 Advanced Encryption Standard Results 22

4 Gaussian Elimination Results 23

5 Huffman Compression Results 23

6 Remote Checkpoint Results 24

1 Introduction

Multicore systems have become a common platform for high-performance computing. As

the number of CPU cores in these systems grows, the issue of permanent or transient

failures is a major concern. System failure of any nature continues to threaten reliabil-

ity as complexity and process duration increase. Current techniques favor redundancy of

resources to prevent or marginalize failure but this is not always an adequate solution.

Lawrence Berkeley National Laboratory has attempted to solve this problem with a system-

level fault-tolerant roll-back module [8, 13] for the Linux environment.

Berkeley Lab Checkpoint/Restart (BLCR) aims at saving the status of a process and

all related data to non-volatile storage in the event the task needs to be restarted or mi-

grated to another system. The interval and/or storage location of the checkpoint data can

adversely affect the overall performance of BLCR. Since checkpointing is heavily depen-

dent on input and output (I/O) operations, the slowest form of memory manipulation, to

create a process checkpoint, efficient I/O management can improve overall performance

and reliability [4. 10]. Moreover. BLCR does not currently implement any advanced I/O

management techniques to optimize disk operations. This paper proposes an efficient al-

ternative method for checkpoint creation. Additionally, advanced output features are ex-

tremely limited within BLCR. especially in the area of task migration and/or non-transient

failure. When checkpoint data is stored locally on the device performing the computa-

tions, the machine becomes a single point of failure. Thus, this paper also introduces a

remote checkpoint technique. This alternative method of checkpoint creation is designed

to provide redundancy if the local checkpoint is not accessible after system failure.

Our experimental results demonstrate that the proposed techniques reduces the latency

of the write operations compared with the BLCR implementation. Secondly, higher system

reliability can be achieved when compared with existing technologies.

This paper is organized into six chapters. Chapter 2 provides basic background per-

tinent to this paper. Our optimized checkpoint technique and remote checkpoint protocol

is introduced in Chapter 3. The experimental environment, which includes the hardware

platform for each technique, is described in Chapter 4. Our applications benchmarks and

experimental results are discussed in Chapter 5. Finally, we conclude in Chapter 6.

2 Pertinent Background

Checkpoint/restart [6. 7, 11. 15, 21, 22] is a common feature in many high-performance

computing (HPC) platforms. It is designed to save the execution state of a process, in real

time, to reliable storage. This process recovery point contains a copy of the computational

data such as stack, heap, and registers and possibly signals, signal handlers, etc' The re-

covery information can then be used by the Operating System (OS) to restart/reconstruct

the process at a later time if the process terminates before successful completion.

The checkpointing ability provides two key benefits for HPC systems [20]. First, it

enables a fault tolerant feature that is not currently provided by the original OS manage-

ment. This allows manual or automated process checkpoint creation to increase process

reliability. Second, it is a mechanism for task migration. In systems where virtual memory

is extremely limited, where the operating system does not have sufficient resources to allo-

cate memory to all runnable processes, the checkpointing feature may be used to capture

the state of the process and remove the process from the execution queue. After a success-

ful checkpoint is created, the process can be relocated to another machine or restarted when

sufficient resources are available.

Many fault-tolerant techniques currently prefer an application-level checkpoint imple-

mentation due to the application-specific knowledge that can be gathered about the process.

Chen et al [6] presented a user-level library that provides semi-transparent checkpointing

for commercial computers. Laadan et al. [15] described a technique for checkpointing

distributed networks without library, kernel or network protocol modification. Dieter and

Lumpp [7] discussed a user-level library for Unix platforms capable of handling multi-

threaded applications. Ruscio et al. [21] developed a new mechanism for checkpoint cre-

ation, migration and recovery at the user-level. Generally more efficient checkpoints can be

created by using knowledge about the application's design to reduce the I/O footprint. Al-

though this is a key benefit of application-level checkpoint creation, Litzkow and Soloman

[16] discuss limitations of user-level checkpointing.

System-level checkpointing has also been explored. Duell et al [8] described how a

kernel-level checkpoint is created. Gioiosa et al. [11] proposed a software architecture for

a fault-tolerant procedure in Linux clusters. System-level checkpointing has a unique set

of advantages over user-level checkpointing:

• Full resource restoration including process ID, session ID, etc.

• Limited restrictions on the number of processes that can be checkpointed since most

data structures are accessible to the kernel

• Flexibility in initiating the checkpoint application due to system level preemption

A checkpoint at the kernel-level requires modification and/or linking to the kernel

space. The current implementation uses a kernel module and user-shared libraries that

can be easily deployed without recompiling or rebooting the kernel. When an application

is marked for checkpoint, it first must be linked to predefined BLCR library codes. These

libraries are loaded into the application at start up. If the program is not linked correctly,

the checkpoint task will fail the checkpoint procedure gracefully.

Once BLCR is fully initialized, a registered callback thread is spawned. This thread

is designed to block key system calls in the kernel until the checkpoint occurs. When

the checkpoint is invoked, either manually or automated, the recovery point utility process

begins. This unblocks the callback thread, which checks to see if any of the process/threads

involved in the recovery creation has died unexpectedly. The callback thread now enters

the kernel and signals all remaining threads that the checkpoint process is active. Each

thread that interpreted the broadcast invokes the predefined library call routines of BLCR,

allowing each thread to enter kernel-space.

Once all threads have completed their callback routines and have entered the kernel, the

most challenging section of checkpoint creation begins: coordination and synchronization.

Each thread initially reaches the first barrier where one thread is chosen to write shared

header information and process state to local storage. After a successful write, the threads

continue until the next barrier is reached. At this barrier, one thread will write all shared

resources such as virtual memory, file descriptor, and other resources shared by the thread

group. After the first thread completes, every thread, including the first thread, writes

the process ID, registers, and signal handlers unique to each thread. This memory dump

procedure continues until all relevant data about the process is successfully copied to the

checkpoint file.

Once each thread completes the memory dump procedure, it continues until the final

barrier is reached. If the checkpoint parameters specify that the application is to terminate

after checkpoint creation, the task is removed from the process queue. Otherwise, each

thread is allowed through the barrier and is returned to user-space where the task will run

until completion or the checkpoint is re-initiated.

Currently, two main checkpoint functions are implemented: checkpoint creation and

process recovery. Two key factors limiting the checkpoint creation performance and avail-

ability are (i) the implementation of the I/O operations accessing disk storage and (ii) the

predefined local disk checkpoint creation. Proposed in Chapter 3.1 is the I/O optimization

technique. This procedure implements a caching operation to reduce the write latency of

BLCR. Additionally, Chapter 3.2 describes the remote checkpoint protocol. This procedure

allows for recovery point creation outside the local disk storage.

3 Proposed Technique

The methodology behind checkpointing is to create a snapshot of a process state during exe-

cution and store the process recovery point on reliable media. Computations can then be re-

constructed from the checkpoint hie descriptor for crash recovery purposes. The proposed

techniques are designed as an experimental proof of concept for increasing the write per-

formance of BLCR. Each technique aims to avoid extreme modification to original BLCR

design.

3.1 I/O Optimization

A factor limiting the checkpoint creation performance is the implementation of the I/O

operations accessing disk storage. Our implementation can be divided into two main cate-

gories. The first is a method of transferring checkpoint data to a temporary storage buffer.

The second is modification to the write sequencing of BLCR. Described below is a descrip-

tion of the checkpoint caching technique followed by the modified write procedure.

3.1.1 Checkpoint Caching

One method of avoiding BLCR inefficient write operation is to employ a buffer to store

checkpoint data until a sufficient quantity can be flushed to local disk in a large buffer

block. We accomplish this by creating temporary cache, in active memory, to hold check-

point data before it is stored on local disk. This is not without a trade-off between resources

consumption and improved I/O operation efficiency. This system overhead, in our experi-

ments, displayed minimal resource utilization while a 4-fold performance gain or more

cr_copy (chkptData, count)

if (chkptBuf is NULL)

kmalloc size of count for chkptBuf space;

copy chkptData into chkptBuf;

else

kmalloc size of count plus chkptBuf size

for tempBuf space;

copy chkptBuf into tempBuf

;

copy chkptData into tempBuf

krealloc chkptBuf for its expanded size;

memmove tempBuf into chkptBuf

;

kfree memory for tempBuf;

end if

Figure 1 : Pseudo code for the Caching Process.

can be achieved with this technique. The caching method is designed to copy checkpoint

data originally passed to the BLCR write procedure. This operation copies checkpoint data

into a temporary storage buffer in active memory. This buffer block will be used for future

write operations to transmit large data chunks to the checkpoint file descriptor on local disk.

A pseudo code for this protocol is shown in Figure 1.

When this process begins, a data buffer and buffer size referencing checkpoint infor-

mation is provided. This information will either be used to establish a new chkptBuf buffer

or will be concatenated at the end of the existing storage buffer. The first function is to

determine if the chkptBuf volume, of any size, exists. If this storage buffer does not ex-

ist, a storage volume is created that is equal to the incoming checkpoint buffer size. Next,

the checkpoint data will be copied to this temporary storage volume to be used in future

memory flush operations.

[f the chkptBuf containing checkpoint data already exists, an additional temporary stor-

age volume is created to assist in the snapshot storage resizing operation. The tempBuf

storage is equal in size to the chkptBuf volume increased by the chkptData size. Next, the

snapshot storage volume is copied to this local temporary volume followed by the check-

point data concatenated at the end of the chkptBuf. The snapshot storage volume is now

expanded to equal the tempBuf volume size that accommodates the extra information. All

data of the temporary storage is relocated, using the memmove system call, to the buffer ref-

erenced by chkptBuf. The temporary storage buffer used for the chkptBuf memory re-sizing

can now be released for other OS purposes.

The maximum size the temporary data buffer, in any experiments we tested, never ex-

ceeded 300 KB. Thus, the greatest memory overhead cost associated with this implemen-

tation is at most 300KB.

3.1.2 Optimized BLCRs Write Operation

BLCR original write operation transmitted all checkpoint buffers to local disk immediately

upon receipt of the data, irrelevant of the data size. If the data buffer is extremely small,

only a few bytes for example, calling the write operation is inefficient. Provided in Figure

2, is an example diagram of BLCR and optimized BLCR solution that requires temporarily

storing checkpoint data until a large data block is accumulated before invoking the write

procedure. This technique results in fewer calls to store data but with much larger buffer

10

BLCR write procedure

8 16 4 32 16 16 8 12 8 12

Modified BLCR write procedure

buf 32 buf 8 buf

buf - 8 16 4 buf - 16 16 buf = 12 8 12

buf size

CPU

I/O

- 32 '

Figure 2: Checkpoint Caching Protocol.

blocks. This does not reduce the total storage footprint but reduces the total overhead cost

associated with the write operations.

In this example, the maximum size of the chkptBuf is thirty two data units. When

the first write operation occurs, eight units of data are added to temporary storage and not

transmitted to local disk. The second disk operation copies sixteen units of data to the

chkptBuf since the additional data does not exceed the buffers maximum storage volume.

When the chkptBuf reaches the limit of its allotted storage space, the data will be flushed to

local disk in a large block. This continues until the completion of the checkpoint operation.

3.1.3 Implementation

All fundamental checkpoint operations of BLCR are divided into smaller function calls.

Each of these function invokes the write procedure multiple times. In turn, each write

function call is designed to flush checkpoint data to local disk immediately. The internal

procedure provided by the Linux kernel to store all data to storage media is the virtual file

system write, vfs_write(), operation. This function is an abstract system call provided to

n

ease development and unify the programming interface. The underlying procedure man-

ages each file system media unique disk structures. When vfs_write() is activated, the

I/O system calls needed to read/write the appropriate media (ext3, NTFS, CD_ROM) is

processed internally by the kernel.

The vfs_write() procedure is invoked hundreds to thousands of times in BLCR, de-

pending on the checkpointed process. This operation is executed for data buffers ranging

from tens of bits to hundreds of bytes. Each call incurs a system overhead delay, which

affects overall disk performance. When the total overhead is compiled, this time delta can

significantly increase the total checkpoint process creation time.

Our optimized design blocks the checkpoint process at the write operation. Once the

process is trapped, the checkpoint data will be transmitted to disk or cached in temporary

storage for future transmission. If the chkptBuf volume is small, the incoming checkpoint

data will be added to this temporary buffer. If the incoming data is larger than available free

space in the chkptBuf volume, first the temporary buffer is transmitted to disk followed by

write (chkptData, count)

if (chkptBuf has space for the incoming chkptData)

cr_copy(ckptData, count)

;

else

vf s_write(ckptBuf) ;

vf s_write(ckptData)
;

kfree(ckptBuf) ;

end if

Figure 3: Pseudo code for the Modified BLCR's Write.

12

the incoming checkpoint data. It is vital to maintain the write order of checkpoint creation

so that the checkpoint restart procedure can successfully reconstruct the process data. A

pseudo code for this protocol is shown in Figure 3.

3.2 Remote Checkpoint

A factor limiting the checkpoint availability is the predefined local disk creation of the

recovery point. This design only creates a checkpoint file descriptor in the directory where

the process is first initiated. One method of avoiding BLCR local disk checkpoint creation

is to share media directories. This is accomplished using Network File System (NFS) to

remotely share a directory of a server with a client. As a result, when the checkpoint file

is created in the home directory of the client, for example, the data is transmitted over the

network to the shared server physical storage using the NFS protocol [3, 19].

The proposed technique is designed to avoid such complex systems setups by modify-

ing BLCR to support remote checkpoint creation. Our design can be separated into two

main categories. The first is a server application to listen for incoming checkpoint data

whereas the second is modification to the write function of BLCR. Described below is a

description of the server application followed by the new remote checkpoint write opera-

tion.

3.2.1 Remote Checkpoint Server

The remote checkpoint server process is a single threaded daemon. This program is added

to the startup application list and initiated at system startup. For this experiment, each

13

while(true)

create socket;

bind to address;

listen for incoming connections:

wait for client to connect;

create file descriptor;

while(data buffered received)

write checkpoint data;

close file descriptor;

close socket;

Figure 4: Pseudo code for the Server Process.

application was compiled using the GCC compiler on a Linux platform but could easily be

built for any Microsoft derivative. Pseudo code for the server process is shown in Figure 4.

When the process begins, it creates a user level socket. This socket waits for commu-

nication from the client, acknowledging the start of checkpoint creation. Before accepting

data transmissions, the server process creates a file descriptor representing the checkpoint

data. The application now checks the data socket for incoming checkpoint packets. When

the data packet is fully buffered, the packets payload will be written to local disk. After

successful storage of the checkpoint data, this process writes the next data buffered until

the end of the checkpoint transmission is reached.

The final packet sent to this daemon is unique to each checkpoint procedure and defines

a successful checkpoint transaction. When this packet is received, the program will finalize

execution by closing the checkpoint file descriptor and returning to idle state.

14

3.2.2 Modified BLCR's Write Operation

Implementing the remote checkpoint support requires modification to BLCR write opera-

tion as shown in Figure 5. All fundamental checkpoint operations are divided into smaller

function calls, each of which invokes the write procedure multiple times. Each function

call is designed to make a copy of key data about the process and write that data to^a check-

point file on a local disk. Our design traps each write operation and transmits the data to

the remote checkpoint server (or create a checkpoint file on local disk when the remote

checkpoint server is unavailable).

if (remote checkpoint)

if (socket is NULL)

create socket;

establish connection, if handshake fails

break and perform the original_checkpoint

end if

package checkpoint data;

send data message;

end if

if (original_checkpoint)

original BLCR write operation;

end if

Figure 5: Pseudo code for the Modified BLCRs Write.

15

3.2.3 Implementation

During the checkpoint operation, relevant data about the process is buffered for delivery to

local disk. All data saved to storage media executes the virtual file system write operation,

vfs_write(), provided by the Linux kernel. Our remote checkpoint operation captures the

data to this procedure and remotely transmits the checkpoint data. Figure 6 describes this

blocking protocol with some of the key checkpoint functions.

The first call to vfs_write() is invoked by the function cr_save_header(). This opera-

tion copies relevant file system data, files, and signal handlers to local disk. The remote

checkpoint feature will intercept this process at the write call and redirect the data buffer to

our remote checkpoint operation. The second function to invoke the write operation is the

cr_save_linkage() method. This procedure is designed to copy the process ID, file descrip-

tor, and process signals to local disk. This buffered data is also blocked and forwarded to

the remote checkpoint write procedure.

The main function in Figure 6 is the cr_do_vmadump() method. This procedure imple-

ments the core memory dump operations essential to checkpoint creation. This memory

dump operation is dependent on the pre-existing kernel module called Virtual Memory

Area Dumper (VMA_Dump). This module is designed to serialize the memory regions of

a process. The procedures function is to copy the memory mapping between an applica-

tions address space and store it to local disk. This method may be called multiple times

to capture all process relevant data while copying to the checkpoint file. The transaction

concludes with store_page_list() and cr_save_pathname(), which save the memory page

chunks and active file pointer, respectively.

16

Client Server

cr save headerO

cr_save_linkage()

cr_do_vmadump()

store_page_list()

cr_save_pathname()

fs, files,

Time

Figure 6: Remote Checkpoint Protocol.

When the remote checkpoint write procedure is first initiated, the status of the remote

checkpoint data socket must be determined. If this socket has not been initialized, a call

to create the data socket is issued using the internet address and port number parameters

specified by the user at process initialization. After the socket is created, a connection

between the client and server is attempted. If the three-way TCP handshake process fails to

establish a connection, the original checkpoint process begins to write to the local storage

to avoid loss of checkpoint data.

Once communication between the client and server is established, checkpoint data will

be encapsulated within TCP packets for transmission. If the message size does not satisfy

the maximum transmission unit (MTU) of a TCP packet, the message will be held for future

delivery. When a message is suspended due to its size, subsequent vfs_write() data buffers

17

are added to the message until MTU is reached. Only when the data packet is full will

the packet be transmitted to the server. Holding the packets transmission incurs minimal

resource consumption but can greatly decrease the total TCP overhead associated with data

transfer as well as a reduction in acknowledge responses between the client and server. By

reducing the total transmission size, better performance can be achieved.

The total number of packets needed to send the checkpoint data is unique to each check-

pointed process. If MTU is not reached by the last checkpoint write function, the packet

will be padded and transmitted. Once all checkpoint data has been successfully transmitted

to the server, a reserved packet representing the successful end of the checkpoint procedure

is sent. This packet defines the end of communication for the existing checkpoint task.

The checkpoint process concludes by terminating the shared connection and return-

ing the programs lock. This allows the remaining BLCR operations to finish the cleanup

processes and gracefully exit.

18

4 Experimental Setup

Our experimental I/O optimization results were gathered using two implementations of

checkpoint creation: BLCR and the optimized BLCR (O-BLCR) technique. The type of

machine used to gather statistics was a Dell OptiPlex SX260 workstation equipped with a

3.06 GHz Intel Pentium 4, 1 GB of memory, 5.400 rpm hard disk and installed with Linux

version 2.6.

To achieve a baseline reference, all benchmark applications described in Chapter 5

were first executed on an isolated system. This workstation is installed with the BLCR

kernel module and disconnected from the network interface. Detaching this system from

the campus network helps to ensure that the CPU is minimally interrupted by unrelated

operations.

The second setup consists of an identical machine, also disconnected from the internal

network. This workstation is installed with the O-BLCR kernel module. This system

was used to gather comparative statistics to determine the effectiveness of the proposed

optimization technique.

Our experimental remote checkpoint results were gathered with three implementations

of checkpoint creation: BLCR. BLCR with NFS (BLCR+NFS), and BLCR with our remote

checkpoint technique (BLCR+R). Two types of machines were used to gather statistics: one

is a Dell OptiPlex SX260 workstation equipped with a 3.06 GHz Intel Pentium 4 with 1

GB of memory, 5,400 rpm hard disk and running Linux 2.6: the other is a 2.80 GHz dual-

processor Intel Pentium 4 Dell PowerEdge 700 server. 3GB of memory, 5,400 rpm hard

disk and is running Linux 2.6.

19

To achieve a baseline reference for the remote checkpoint procedure, we used the same

configuration setup as the baseline I/O optimization technique. Hence, this workstation is

installed with the BLCR kernel module and disconnected from the network interface.

The second setup consists of a server and one workstation connected through the NFS

protocol. The NFS infrastructure is connected through a local network, isolated from the

campus network. This client is configured to access the shared home directory of the NFS

server as if it were local media. This workstation is also installed with an original version of

the BLCR kernel module. The result is a client workstation that shares files over a network

in a similar fashion to how local storage is accessed. In this system, all computations are

performed by the workstation until the checkpoint data is stored. Since the home directory

of the client is mapped to the home directory of the NFS server, all data is transmitted

through the local network. The checkpoint data is encapsulated within TCP packets and

transmitted to the server, all of which is managed internally by the NFS protocol.

The final setup consists of two workstation computers connected to a local area network

or connected directly to the campus network. One computer is used as the client and the

other is used as the server. The client is installed with the remote checkpoint kernel module

and the server is installed with the corresponding daemon.

It is important to recognize the difference between the two network configurations.

The first is a local area network, the optimal solution, since the only network traffic is the

checkpoint TCP packets. The second configuration consists of two workstation computers

that are directly connected to the internal campus network. In this setup it is possible for

the transmissions to be delayed by network hubs, switches, etc. It is also possible that

20

checkpoint data may incur additionally delays if competing for limited campus bandwidth.

The results, compiled in the previous setup, provide an approximate upper and lower

bound between the two network configurations. It is not possible to define the finite upper

bound since every network has unique delays, but represented is an acceptable approxima-

tion for comparison.

2d

5 Experimental Results

To evaluate the performance gain of our optimized BLCR technique and remote checkpoint

technique we used four benchmark programs: an NP-complete problem, data encryption,

linear equation solver, and file compression. Table I outlines the consumption of system

resources under each application benchmark. Each program displays a unique process

duration, active memory usage, and disk consumption in order to accurately simulate a

wide range of potential calculations.

Table I: Overhead Trend of Benchmark Programs.

Benchmark CPU Memory I/O

TSP High Low Low

AES High Low Medium

GE Low High High

HC Medium Medium Medium

Each program's duration ranges from minutes to tens of minutes but only the write

procedure is timed. Only the write function is evaluated as to accurately compare how

each technique outperforms the original implementation. Table II, III, IV and V lists the

problem size, execution time, and performance gain for each benchmark program tested

with the BLCR and O-BLCR technique. Table VI lists each implementation, problem size

and write latency for the BLCR, BLCR+NFS, and BLCR+R.

Each application has a predefined execution delta before the call to initiate the check-

point. Each process initiates the checkpoint procedure with a minimal time discrepancy

of the predefined scheduled execution. The time variance and computational effects are

negligible since the only delays are CPU task switching and/or memory page eviction that

22

Table II: Traveling Sales Problem Results.

Problem

Size

Checkpoint

Technique

Write Latency

(Ms)

Optimization

Ratio

100

BLCR 14265
19.02

O-BLCR 750

150

BLCR 14265
19.02

O-BLCR 750

200
BLCR 14327

18.25

O-BLCR 814

250
BLCR 14327

16.01

O-BLCR 895

Table III: Advanced Encryption Standard Results.

Problem

Size

Checkpoint

Technique

Write Latency

(Ms)

Optimization

Ratio

10.000
BLCR 12568

14.53

O-BLCR 865

35.000
BLCR 18435

13.31

O-BLCR 1385

65.535
BLCR 20254

8.44
O-BLCR 2399

100.000
BLCR 19938

7.45

O-BLCR 2678

150.000
BLCR 26772

7.14

O-BLCR 3751

200,000
BLCR 21375

4.45

O-BLCR 4857

250,000
BLCR 27296

4.76
O-BLCR 5776

23

Table IV: Gaussian Elimination Results.

Problem

Size

Checkpoint

Technique

Write Latency

(MS)

Optimization

Ratio

2,500

BLCR 847,678
20.20

O-BLCR 41,939

3,500

BLCR 1,293,557

24.39

O-BLCR 53,033

4,500

BLCR 1,708,774

25.26
O-BLCR 67,647

5,500

BLCR 1.978,991

25.32

O-BLCR 78,171

6,500
BLCR 2.364,449

30.25

O-BLCR 78,171

9,500

BLCR 3.386,847
39.01

O-BLCR 86.809

12,500

BLCR 4,414,118
34.74

O-BLCR 127.064

15,500

BLCR 5.523.018
26.22

O-BLCR 210.067

18,500

BLCR 6,340,560
24.87

O-BLCR 254,986

Table V: Huffman Compression Results.

Problem

Size

Checkpoint

Technique

Write Latency

(Ms)

Optimization

Ratio

12

BLCR 86.180
6.13

O-BLCR 14,049

17

BLCR 253.134
8.51

O-BLCR 29,732

27
BLCR 836,537

16.42

O-BLCR 50,947

42
BLCR 1,507,152

17.63

O-BLCR 85,510

48
BLCR 2,256,725

16.41

O-BLCR 137,528

55
BLCR 2,669,130

14.23

O-BLCR 187.364

66
BLCR 3.213,296

16.29

O-BLCR 197,252

77
BLCR 3,798,030

15.75

O-BLCR 241.070

24

Table VI: Remote Checkpoint Results.

Implementation Benchmark Problem Size Write Latency (ms)

BLCR

TSP 100 -250 Nodes 14.3- 14.9

AES 10,000 - 250.000 Characters 12.5-37.2

GE 3,500x3,500- 18,500 x 18,500 1.200-6,300

HC 4.5 - 78 Mbytes 80 - 4,300

BLCR+R (optimal)

TSP 100 -250 Nodes 1.5- 1.7

AES 10,000 - 250,000 Characters 1.9-85.6

GE 3,500 x 3,500 - 18,500 x 18,500 90 - 300

HC 4.5 - 78 Mbytes 200 - 6,600

BLCR+R (load)

TSP 100 -2500 Nodes 4.1 -6.1

AES 10,000 - 250,000 Characters 9.7- 110.1

GE 3,500x3,500- 18.500 x 18,500 300- 1.800

HC 4.5 - 78 Mbytes 200 - 8,300

BLCR+NFS

TSP 100- 250 Nodes 900 - 950

AES 10,000 - 250,000 Characters 800- 1,000

GE 3,500x3.500- 18,500 x 18,500 52.00 - 493.500

HC 4.5 - 78 Mbytes 1.500-9,300

has little to no effect on the hard disk operations imposed by BLCR.

Figure 7 presents the overhead cost of BLCR and O-BLCR. Figure 8 presents the over-

head of BLCR. BLCR+NFS, BLCR+R. For each benchmark program, time is measured in

microseconds and checkpoint file size is in kilobytes. Described below is an examination

of results from each benchmark program.

5.1 NP-Complete Problem

This benchmark application solves the traveling sales problem (TSP). The experiment be-

gan with an analysis of 100 connected nodes and concluded with 250 networked nodes. It

exhibits high CPU consumption with minimal memory and I/O overhead.

From the experiment (I/O optimization), all checkpoint file sizes ranged from 168KB

25

to 205KB. The results depict a linear gradient in all TSP tests. Checkpoint creation in

O-BLCR averaged 0.8ms to complete the write procedure. The BLCR implementation

averaged 14.6ms to create a checkpoint file. The O-BLCR procedure provides a significant

improvement over BLCR in this experiment.

From the experiment (remote checkpoint), all checkpoint file sizes ranged from 1 7 1 KB

to 211KB. The results depict a linear gradient in all TSP tests. Checkpoint creation in

BLCR+NFS averaged 0.9s to complete the write procedure. The BLCR configuration av-

eraged 14.6ms to create a checkpoint file. The optimal BLCR+R averaged 1.6ms and

the campus networked BLCR+R setup averaged 5.1ms. In all experimental tests, the

BLCR+NFS checkpoint creation remained the least efficient compared with other results.

The BLCR+R procedure with or without network traffic provides a significant improve-

ment over BLCR.

5.2 Data Encryption

This benchmark program implements an algorithm based on the Advanced Encryption

Standard (AES). The experiment began with a plain-text of 10,000 characters and con-

cluded with a 250,000 character plain-text. It displays high CPU consumption with mod-

erate I/O usage and minimal memory overhead.

From the experiment (I/O optimization), all checkpoint file sizes ranged from 223KB to

2036KB. The results depict a linear gradient in BLCR and O-BLCR. Checkpoint creation

in O-BLCR averaged 3.3s to complete the write procedure. The BLCR implementation

averaged 23.8s to create a checkpoint file. O-BLCR showed a minimum of a 4.45-fold

26

Traveling Sales Problem

1M(T

i

a i >< 10-

lxlO"
168 178 190

Size (K.B)

205

Advanced Encryption Standard

« 1M0

1x10

1x10-

Gaussian Elimination

xlO'

» i*iob

lxlO5 -

lxlOH

27 40 51

Size (MB)

Huffman Compression

1x10'

| IxlO6

V

H lx]05

IxlO4

r~

1

1

17 28 43 49 55 67

Size (MB)

BLCR G O-BLCR

Figure 7: Local Write Overhead for Checkpoint Creation.

27

benefit over BLCR.

From the experiment (remote checkpoint), all checkpoint file sizes ranged from 227KB

to 2048KB. The results depict a linear gradient in BLCR and BLCR+NFS implementa-

tions but a logarithmic progression in each BLCR+R. Checkpoint creation in BLCR+NFS

averaged 0.9s to complete the write procedure. The BLCR configuration averaged 23.8s

to create a checkpoint file. The optimal BLCR+R averaged 36.9ms and the full networked

BLCR+R setup averaged 53.8ms. In all experimental tests, the BLCR+NFS implemen-

tation remained the least efficient compared to other results. In these experiments where

CPU and I/O operations approach the upper limit of the hardware, the remote checkpoint

procedure has a greater overhead compared with BLCR.

5.3 Linear Equation Solver

This benchmark application solves a system of linear equations based on the Gaussian

elimination method. The experiment began with a square matrix of 2,500 elements and

concluded with a square matrix of 18,500 elements. It exhibits low CPU consumption with

high memory and I/O overhead.

From the experiment (I/O optimization), all checkpoint file sizes ranged from 20MB to

75MB. The results depict a linear gradient in all Gaussian elimination tests. Checkpoint

creation in O-BLCR averaged .Is to complete the write procedure. The BLCR implemen-

tation averaged 3.3s to create a checkpoint file.

From the experiment (remote checkpoint), all checkpoint file sizes ranged from 15MB

to 76MB. The results depict a linear gradient in all Gaussian elimination tests. Checkpoint

28

Traveling Sales Problem

170 175 180 185 190 195 200 205 210

Size (KB)

Advanced Encryption Standard

xlO'

xio6

xlO5

*104

xlO3

256 512 768 1024 1280 1536 1792 2048

Size (KB)

Gaussian Elimination

xlO>

xlO8

xlO7

xlO6

xlO5

20 25 30 35 40 45 50 55 60 65 70 75

Size (MB)

Huffman Compression

xlO

xlO'

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Size (MB)

NFS
Original

Remote (optimal)

Remote (load)

Figure 8: Remote Write Overhead for Checkpoint Creation.

29

creation in BLCR+NFS averaged 225s to complete the write procedure. The BLCR config-

uration averaged 3.3s to create a checkpoint file. The optimal BLCR+R averaged 0.2s and

the full networked BLCR+R setup averaged 1 .0s. In all experimental tests, the BLCR+NFS

checkpoint creation remained the least efficient compared to other results. The remote

checkpoint procedure with or without network traffic provides significant improvement

over BLCR.

5.4 File Compression

In the final experiment, this benchmark application is based on Huffman compression. The

experiment began with an evaluation of the contents of a 12MB file and concluded with

an evaluation of a 77MB data file. The CPU, memory, and I/O consumption ranged from

medium to high depending on the input parameter.

From the experiment (I/O optimization), all checkpoint file sizes ranged from 5MB to

67MB. The results depict a linear gradient in all compression tests. Checkpoint creation

in O-BLCR averaged 0.1s to complete the write procedure. The BLCR implementation

averaged 1.9s to create a checkpoint file. In each experimental test, BLCR checkpoint

creation remained the least efficient.

From the experiment (remote checkpoint), all checkpoint file sizes ranged from 5MB

to 78MB. The results depict a linear gradient in all compression tests. Checkpoint creation

in BLCR+NFS averaged 4.8s to complete the write procedure. The BLCR configuration

averaged 1.9s to create a checkpoint file. The optimal BLCR+R averaged 2.9s and the

full networked BLCR+R setup averaged 3.7s. In all experimental tests, the BLCR+NFS

30

checkpoint creation remained the least efficient compared to other results. In these pro-

grams where CPU and I/O operations approach the upper limit of the system resources, the

remote checkpoint procedure has a greater overhead compared to BLCR.

5.5 Summary

From the I/O optimization experiment, we conclude that the O-BLCR technique success-

fully created checkpoint file descriptors with greater disk efficiency. In each experimental

tests. BLCR without optimization displays a costly overhead, in order of magnitude, greater

than O-BLCR. The write procedures overhead is directly linked to the number of write calls

invoked by the kernel. By reducing the quantity of I/O request, not by reducing the total

storage volume, the time to store data on local disk is greatly reduced. The trade between

caching, in order to increase the size of each I/O request, and the resources overhead is

shown to be minimal and beneficial.

In the remote checkpoint experiment, our results show that the NFS protocol used in

checkpoint creation is consistently the least efficient technique. In each experimental tests,

BLCR+NFS displayed a costly overhead, in order of magnitude, greater than BLCR and

BLCR+R. By managing the packet protocols from within BLCR+R and not with a separate

procedure, a greater response can be seen in packet transmission which leads to reduced

checkpoint times.

In the TSP and Gaussian elimination experiments, the BLCR+R depicted a decrease

in the time delta to complete the write operation. In the experiments AES and Huffman

compression, the BLCR+R displayed a increase in the time delta of the write operation.

31

The key difference in the performance of TSP and Gaussian elimination versus AES and

Huffman compression is due to the burden the process exerted on the systems resources.

As CPU consumption and I/O operations approach the limits of the hardware platform,

the remote checkpoint operation becomes less advantageous. Our proposed remote check-

point technique is at best more efficient than BLCR and at worst more efficient than the

BLCR+NFS for remote checkpoint creation.

32

6 Conclusion and Future Research

We have proposed an efficient optimization technique for checkpoint creation and a re-

mote checkpoint protocol in this paper. The experimental outcomes demonstrate that (i)

using a checkpoint caching technique within BLCR allows for more efficient checkpoint

creation times within the write operation and (ii) integrating remote checkpointing support

into BLCR allows for more efficient checkpoint creation when the CPU and I/O load is be-

low the threshold of the hardware system. Our techniques only modified the BLCR write

procedure to show the overhead delay, future versions of BLCR should be modified to in-

ternally handle the proposed caching technique to maximize checkpoint creation and the

remote checkpoint procedure to increase system availability.

Future work in this area would focus on (i) authentication and (ii) encryption proto-

cols as well as (iii) automated process load balancing. It would be possible to add an

authentication scheme into the source code of BLCR. One such possibility would be the

Diffie-Hellman key exchange procedure. For maintenance and flexibility it could be desir-

able to not modify BLCR but link to pre-defined system library's such as OpenSSL [17].

Most Linux version come pre-installed with OpenSSL or is easily accessible through the

systems repository. Using an additional software package creates dependencies for BLCR

but allows for greater flexibility in cryptographic standards.

The second area to research further is how to secure checkpoint data transmitted over

a network connection. To theorize about this procedure, a decision must first be made

about the desired implementation of this cryptographic technique. Since checkpoint cre-

ation is a single threaded process and encryption can consume a significant amount of

33

system resources (ie. CPU cycles), encryption and related I/O operations should execute

on a separate BLCR thread. This second encryption and I/O thread may reduce the check-

pointed process suspension time, allowing the process to resume computations earlier. With

this design approach, using a system library to perform the encryption could increase the

threads overhead. I believe future work should implement a security protocol directly into

BLCR so that all data buffered during vfs_write() would be immediately forwarded to a

cryptographic engine for cipher text creation.

Additional research in this area must examine the possibility of internal load balance

control for clusters implementing BLCR. Nuttall and Solomon [18] discusses conditions

when task migration is advantageous. Harchol-Balter and Downey [12] and Kacer and

Tvrdik [14] both describe how processes should be executed by remote machines (ie. pro-

cess migration or remote execution). Wang et al. [23] presents an experimental load bal-

ancing system for cluster computing that improves resources utilization.

BLCR primary focus is on checkpoint creation. Checkpointing, such as BLCR, is a key

feature in load balancing for cluster computing. It may be possible to expand the flexabil-

ity of BLCR using the foundational research of MOSIX [1, 2]. This management system

targets high-perormance computing on Linux clusters, multi-clusters, GPU clusters and

Clouds. MOSIX currently implements automatic resource discovery and dynamic work-

load distribution. With the integration of BLCR, it would be possible to remove a job on a

system that has become a bottleneck and relocate the task, at the processes current state, on

a system with available resources. A collaboration between MOSIX migration techniques

and BLCR checkpoint operations could result in a powerful new approach for the two tech-

34

nologies. MOSIX resources sharing could provided for greater efficiency for checkpoint

creation as well as an automated load balancing protocol built on the MOSIX foundation.

35

References

[1 1 Y. Amir. B. Awcrbuch, A. Barak., R.S. Borgstrom and A. Keren. An Opportunity

Cost Approach for Job Assignment in a Scalable Computing Cluster. In Journal ofthe

IEEE Transactions on Parallel and Distributed Systems, 1 1(7):760-768, July 2000.

[2] A. Barak and O. La'adan. The MOSIX Multicomputer Operating System for High

Performance Cluster Computing. In Journal of the Future Generation Computer Sys-

tems, 1 3(4-5):36 1-372. March 1998.

[3] A. Batsakis and R. Burns. Using NFSv4 as the Building Block for Fault Tolerant

Applications. In Proc. of the Workshop on NFS Extensionsfor Parallel Storage, 2003.

[4] G. Cabillic. G. Muller, and I. Puaut. The Performance of Consistent Checkpointing

in Distributed Shared Memory Systems. In Proc. of the 14th IEEE Symp. on Reliable

Distributed Systems, pp. 96-105, September 1995.

[5] K. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of

Distributed Systems. ACM Trans, on Computer Systems, pp.63-75. February 1985.

[6] Y. Chen. J. Plank, and K. Li. CLIP: A Checkpointing Tool for Message Passing Par-

allel Computers. In Scalable Input/Output: Achieving System Balance, Daniel Reed

(Ed.), MIT Press, January 2004.

[7] W. Dieter and J. Lumpp. A User-Level Checkpointing Library for POSIX Threads

Programs. In the Digest of Papers, 29th Annual Int'l Symp. on Fault-Tolerant Com-

puting, 1999.

36

[8 1 J. Duell, P. Hargrove, and E. Roman. The Design and Implementation of Berkeley

Lab's Linux Checkpoint/Restart. In Berkeley Lab Technical Report LBNL-54941.

December 2002.

[9] E. Elnozahy. L. Alvisi, Y. Wang, and D. Johnson. A survey of Rollback-Recovery

Protocols in Message Passing Systems. Technical Report CMU-CS-99-148. Carnegie

Mellon University, June 1999.

[10] E. Elnozahy, D. Johnson, and W. Zwaenepoel. The performance of consistent check-

pointing. In Proc. of the 11th IEEE SRDS, pp. 39-47, October 1992.

[11] R. Gioiosa, J. Sancho, S. Jiang, and F. Petrini. Transparent, Incremental Checkpoint-

ing at Kernel Level: A Foundation for Fault Tolerance for Parallel Computers. In

Proc. of the ACM/IEEE Conference on Supercomputing, November 2005.

[12] M. Harchol-Balter and A. Downey. Exploiting Process Lifetime Distributions for Dy-

namic Load Balancing. In Journal of the ACM Transactions on Computer Systems,

15(3), August 1997.

[13] P. Hargrove and J. Duell. Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clus-

ters. In Proc. ofthe SciDAC, 2006.

[14] M. Kacer and P. Tvrdik. Load Balancing by Remote Execution of Short Processes on

Linux Clusters. In Proc. of the 2nd IEEE/ACM Int'l Symp. on Cluster Computing and

the Grid, 2002.

37

1 15] O. Laadan, D. Phung, and J. Nieh. Transparent Checkpoint/Restart of Distributed

Applications on Commodity Clusters. In Proc. of the 2005 IEEE International Con-

ference on Cluster Computing, pp. 1-13, September 2005.

[16] M. Litzkow and M. Solomon. Supporting checkpointing and process migration out-

side the Unix kernel. In Proc. of Usenix Winter Technical Conference, pp. 283-290,

January 1992.

1 17] NIST. Security Requirements for Cryptographic Modules (FIPS 140-2), May, 2001.

[18] M. Nuttall and M. Sloman. Workload characteristics for process migration and load

balancing. In Proc. of the 17th Int'l Conf. on Distributed Computing Systems, 1997.

[19] N. Peyrouze and G. Muller. FT-NFS: An efficient fault-tolerant NFS server designed

for off-the-shelf workstations. In Proc. of the 26th IEEE Int'l Symp. on Fault-Tolerant

Computing, June 1996.

[20] E. Roman. A Survey of Checkpoint/Restart Implementations. Berkeley Lab Technical

Report LBNL-54942, July 2002.

[21] J. Ruscio, M. Heffner, and S. Varadarajan. DejaVu: Transparent User-Level Check-

pointing, Migration, and Recovery for Distributed Systems. In Proc. of the IEEE Int'l

Parallel and Distributed Processing Symposium, 2007.

[22] M. Spenzialetti and P. Kearns. Efficient Distributed Snapshots. In Proc. ofthe 6th Int'l

Conference on Distrubuted Computing Systems, pp. 382-388, May 1986.

38

[23] X. Wang, Z. Zhu, Z. Du, and S. Li. Multi-Cluster Load Balancing Based on Pro-

cess Migration. In Proc. of the 7th hit' I Conference on Advanced Parallel Processing

Technologies, 2007.

	Advanced I/O Techniques for Efficient and Highly Available Process Crash Recovery Protocols
	Recommended Citation

	Advanced I/O Techniques for Efficient and Highly Available Process Crash Recovery Protocols

