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Abstract
A common approach to interactive narrative involves
imbuing the computer with all of the potential story pre-
authored story experiences (e.g. as beats, plot points,
planning operators, etc.). This has resulted in an accepted
paradigm where stories are not created by or with the user;
rather, the user is given piecemeal access to the story from
the gatekeeper of story knowledge: the computer (e.g. as an
AI drama manager). This article describes a formal process
that provides for the equal co-creation of story-rich
experiences, where neither the user nor computer is in a
privileged position in an interactive narrative. It describes a
new formal approach that acts as a first step for the real-
time co-creation of narrative in games that rely on the
negotiated shared mental model between a human actor and
an AI improv agent.

Introduction

The field of interactive narrative has trended towards a
focus on advancements in the processes used for
supporting interactivity and player agency in narratives
(e.g. drama managers or strongly autonomous systems) and
on the knowledge that those processes operate on (e.g.
story beats, planning operators, story graphs, etc.). The use
of this knowledge is typically intended to increase user
agency within an unfolding story.  Though techniques that
involve planning (Cavazza, Charles, and Mead 2002;
Young et al. 2004; Riedl and Young 2010), drama
managers (c.f. Roberts and Isbell 2008), or other novel
techniques like theory of mind (Si, Marsella, and Pynadath
2005) or conceptual blending (Harrell 2005; Zhu and
Harrell 2008) have focused heavily on the tradeoffs
between user agency and authorial control, few systems
have considered how user agency can involve the
contribution of story content on the part of the user.
Interactive narrative systems tend to focus on exposing the
user to story content (e.g. exposing a reader to pre-written
chapters in a Choose Your Own Adventure book) as
opposed to actively creating content with other humans or
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AI agents (i.e. improvisation in a theatre game or role
playing game).

We can use this observation of the difference between
story exposure and creation to revisit the canonical
definition of user agency, which can be thought of more
specifically as surface agency and deep agency.  Surface
agency refers to the common view of how much control a
user perceives they have in a narrative environment. Deep
agency, on the other hand, can be used to describe tangible
control that a user has both on the creation and ordering of
story content. Deep agency in an interactive narrative
involves the process of story co-creation, a mutual process
where neither the user nor computer is in a privileged
position in an interactive narrative. While deep agency has
been touched on in a handful of systems (Crawford 2004;
Fairclough 2004; Zhu et al., 2011), this view of player
interactivity in a narrative experience has been vastly
underexplored.

This paper presents our ongoing work on developing a
co-creative interactive narrative system called the Digital
Improv Project, which is heavily influenced by our socio-
cognitive studies of improvisational actors (Magerko et al.
2009). This work focuses on providing an experience akin
to that of an improvised scene, where a player interacts
with an AI actor (via gestural input with the Microsoft
Kinect) to create a wholly unique scene. The gestural
input provides the challenge of dealing with ambiguous
communication (much like is seen in the real world) about
scene details that provides situations where the AI and
human actor may have different models of scene elements
(called a cognitive divergence). This phenomenon, due to
the use of a naturalistic interface like the Kinect, forces us
to consider the procedural knowledge involved in “getting
on the same page” between actors (i.e. building a shared
mental model about scene elements). This paper discusses
how we formally use situational calculus to represent the
process of cognitive convergence to create shared mental
models between humans and agents and how agents deal
cognitive divergences with their fellow actors.



Related Work

Most interactive narrative systems focus on surface
agency, which privileges the computer in controlling story
content. While this is not necessarily a negative approach
to interactive narrative, it has been the primary focus in the
field, leaving the space of co-creative experiences largely
untouched. Some systems have focused on drama
management as a way of managing surface agency, such as
Façade (Mateas and Stern 2006) and the work done by
(Arinbjarnar and Kudenko 2008). Planning has also been
used as another way to manage surface agency in
interactive narrative systems, such as IN-TALE (Riedl and
Stern 2006), Mimesis (Thomas and Young 2007), Crystal
Island (McQuiggan et al. 2008) and work done by

Porteous, Cavazza, and Charles (2010). Despite
planning being considered a useful tool that provides an
engaging narrative experience to the user, it still suffers
from an authoring bottleneck and low (surface) user
agency in terms of the mutual construction of the story.

Thespian agents (Si, Marsella and Pynadath 2005)
behave based on models of emotions and social normative
behaviors in addition to having explicit author specified
plot design goals, but for the agents to decide on an action
they are offered bounded look-ahead policy. Moreover
Thespian agents have recursive beliefs about self and
others, e.g. my belief about your belief about my goals,
which forms a “theory of mind". Although Thespian agents
employ theory of mind they cannot act in the absence of
explicit goals and an explicit agreement between the agents
and each other. Thus Thespian agents cannot be used in
improvised / co-creative narrative as this kind of narrative
lacks the presence of explicit goals, which consequently
implies the difficulty in using planning which requires the
presence of unmistakable goals.

All of the systems described above have tried to find the
suitable tradeoff between authoring and narrative
generation versus user agency. However, as stated earlier,
they tend to focus on surface agency with no consideration
of how the user could experience deep agency in a co-
creative setting. Consequently, it can be seen that the
techniques described above are likely not promising
enough when it comes to on-the-fly story improvisation.
Improvisation is a narrative experience that emerges from
how individuals form experiences in their minds. Improv
actors have deep agency where their interactions on stage
plus any starting material or constraints given to them by
the audience solely contribute to the improvised scene.
Improvisers typically negotiate a shared mental model on
stage only through these diegetic actions on stage rather
than with explicit communication about the model
(Magerko, Dohogne and DeLeon 2011). Their shared
mental model encapsulates the actors’ beliefs about
themselves and about the other actors’ mental models.

Consequently, they negotiate their shared mental models
until a common ground status is reached, which is called
cognitive consensus. The following in this paper describes
our formal efforts for representing improv strategies for
reaching cognitive consensus about story elements (e.g.
negotiating who is portraying what kind of character) in a
step towards supporting deep agency in co-creative story
systems.

Improvisational Acting

Improvisational acting (improv), our exemplar for studying
processes and background knowledge that support deep
agency in interactive narratives, is a creative group
performance where actors co-construct stories on stage in
real time. Improvisational performances are typically
constrained by sets of game rules that guide how a scene
should be functionally performed (e.g. “only speak in
questions”) (Spolin 1963; Johnstone 1999). Scenes
additionally often involve some semantic priming (e.g.
audience suggestions) to help improvisers interpret events,
formulate beliefs, and build and repair their mental models.
Improv actors negotiate their shared mental model solely
through presentations to the ongoing scene rather than with
explicit communication about the model (Fuller and
Magerko 2011).

Shared mental models (SMMs) are a cognitive construct,
maintained through the process of reaching cognitive
convergence, that incorporates the development of mutual
beliefs from the team members’ individual mental models
until a common mental model is reached by the team
members, either explicitly or implicitly. Research on
shared mental models for enhancing team decision making
suggests that shared mental models enable communication
and mutual understanding; the stronger the shared mental
model the better tasks are accomplished (Yen et al. 2001).

Our empirical studies of improv actors have yielded
data that clearly maps the collaborative process of
improvising scenes to the team-oriented process of
building shared mental models (Magerko et al., 2009;
Magerko, Dohogne and DeLeon 2011).  In an improvised
scene, each improviser starts to act and build an individual
mental model based on how he observes the world around
him. However, improvisers often execute actions that can
be perceived or interpreted in many different ways
(Magerko, Dohogne and DeLeon 2011). Actors may
misinterpret dialogue because of confusion (e.g.
mishearing what another actor said). Physical motions can
often be interpreted as one of many semantic actions. For
example, if one actor holds their fists one on top of the
other and moves them from side to side, another actor
could interpret this as either raking, sweeping, churning
butter, or even dancing. To handle the ambiguities of these



presentations, improv actors’ mental models must deal
with inexact information continuously when improvising a
scene with others. In the following subsections, we briefly
present the stages improvisers deal with during a scene.
As is related below, the process of dealing with inexact
information in an improvised scene can be described as
observing divergences (i.e. noticing conflicting mental
models), repairing those divergences (i.e. attempting to
converge on a shared mental model), and accepting the
repair (i.e. seeing the result of the attempted repair).

Observing Cognitive Divergences
The ambiguous actions executed on stage and the ease with
which improvisers can misinterpret them can cause an
improviser to develop a mental model that differs from
others’ models. The state where improvisers’ mental
models differ from each other is called cognitive
divergence1. Through the process of cognitive
convergence, improvisers may repair their divergent
mental models to reach a state of consensus where
everyone agrees on the shared mental model (i.e. “getting
on the same page”) (Fuller and Magerko 2011). This is a
commonly reoccurring problem, where improvisers are
continuously negotiating elements about a scene’s
introduction, conflict, and conclusion (Sawyer 2003; Fuller
and Magerko 2011).

Divergence Repair Strategies
Improvisers employ different repair strategies to deal with
divergences as they occur (Fuller and Magerko 2011).
Repair strategies are either other-oriented or self-oriented.
Other-oriented repair strategies aim to affect someone
else’s mental model through presenting new concepts
(presentation) or correcting divergences (clarification).
Self-oriented repair strategies try to align one’s mental
model with others’ by learning more about the others’
models. For instance, an actor may communicate an
uncertain scene detail so that other actors may confirm it
(verification). Alternatively, the actor may introduce new,
vague information to the scene in order to observe how the
other improvisers react, hoping that this will reveal some
disambiguating information (blind offer). Repair strategies
help the agents update their mental models and approach
consensus.

Acceptance of Repairs
Acceptance is an intentional response to a repair attempt
(Fuller and Magerko 2011). After an attempted repair,
there are two possibilities that might occur. The first is that
the repair fails or goes unnoticed and therefore does not
resolve the current divergence. Subsequently, divergence
continues or a new one takes its place. The other
possibility is that the repair is met with agreement (Clark
and Schaefer 1989).

Repair Strategies and Situational Calculus

Improv actors utilize repair strategies when a cognitive
divergence exists about a particular scene element (e.g. the
character of one of the actors is unclear) in order to attempt
to reach cognitive consensus. The choice of a repair
strategy depends on the state of the agent’s mental model
in a specific frame of the world. For example, if the agent
has high confidence in his mental model and low
confidence in his partner’s mental model, the agent would
choose to do an action that is highly related to his
portrayed character trying to amend his partner’s mental
model (clarification repair strategy).  Due to the dynamic
nature of the agents’ shared mental model, situational
calculus is appropriate for the representation of repair
strategies. Situational calculus is a logic formalism, first
introduced by John McCarthy (1963), which was designed
for representing and reasoning about dynamic domains.

We have created a formal model that can enable
intelligent agents in interactive narratives to work in an
ambiguous environment where users and agents are
collaboratively contributing information to the scene that is
often unclear due to the ambiguous nature of human
communication (e.g. using gestures with a Kinect). In the
following we present the special domain fluents used in
our model to represent the repair strategies used by the
agents to accomplish cognitive consensus. These rules are
mainly triggered when a cognitive divergence is
encountered.

Independent predicates and functions:
Holds (p, S)—fluent p is true in situation S;
Do (a, S)—the situation that results from performing

action a in situation S; S1= Do (a, S)
Poss (a, S)—action a is executable in situation S.

Fluents that describe the state of the world:
BEL ( ) – whether an agent has a specific belief about a

relation or a proposition or not
COM ( ) – whether the agent committed or not
SMM_Bel ( ) – whether the agentx and agenty share the

same belief or not
Function fluents that describe the state of the world:

CONF ( ) returns the degree of confidence of agentx

about some knowledge
ICON () returns the iconicity of one piece of knowledge

to another
Actions that can be performed in the world:

PRES ( ) – provides the agent presents something
VER ( ) – provides the agent verifies something
BOFF ( ) – provides the agent offers something

Successor state axioms:
Each axiom is about a fluent not an action; f Holds in a
state after performing an action a.

1We currently ignore models built between the actors and the audience, though divergences can exist between them as well.



f true afterwards ↔ an action made f true ˅ f true already
and no action made f false

Ʉ a, s, f  (Holds f (do a S) (causes a s f ˅ Holds f s ˄ ¬
cancels a s f))

Repair Strategy: Presentation
Presentation is a common repair technique that
demonstrates what an improviser believes to be true. In
other words, presentation introduces new information to
the scene that relates to an individual’s mental model. In
knowledge disparity games such as Party Quirks,
presentation typically manifests as a “hint”. Presentation is
other-oriented (i.e. attempts to change another’s model
instead of their own) in intent that can be represented in
situational calculus as follows:

Action precondition axiom:
Poss (PRES (agentx, p), S) ↔ Holds (Bel (agentx, p),S) ˄
Holds (ICON (p, agentx, joint_activity)=high, S).

The above axiom states that agentx can possibly present
proposition p if agentx holds the belief p and p is highly
iconic to both agentx and the joint_activity in situation S.

Action effects axiom:
Poss (PRES (agentx, p), S) → COM (agenty, p)

The above axiom states that after agentx presents
proposition p in situation S, agenty is committed to respond
to p.

Successor state axiom:
Holds (BEL (agentx, p, S), Do (PRES (agentx, p), S)) ↔
causes (PRES (agentx, p), S, BEL (agentx, p, S)) ˅ (Holds
(BEL (agentx, p, S)) ˄ ¬ cancels (a , S, BEL (agentx, p, S))
˄ a= PRES (agentx, p))

This axiom states that it holds that agentx believes p after
presenting p that is because either presenting p causes
agentx to believe p or agentx already believes p and
presenting p does not change this belief.

Repair Strategy: Clarification
Clarification is another other-oriented repair technique
used by improvisers to correct any misunderstandings or
misinterpretations of information that has already been
communicated. It is different from presentation in that it
does not introduce any new concepts (unless those new
concepts are meant to clarify old ones). For various types
of clarification, see (Magerko, Dohogne and DeLeon
2011). Situational calculus rules for perceived clarification
are as follows:

Action preconditions axiom:
Poss (CLAR (agentx, p), S) ↔ Holds (BEL (agentx, is
(agentx, Char), CONF),_, S) ˄ CONF=high ˄ Holds
(SMM_Bel (agentx, BEL (agenty, is (agentx, Char),
CONF1), _,S) ˄ CONF1=low

The above axiom states that agentx can possibly clarify
proposition p if agentx has high confidence in its character
and agentx holds, in its shared mental model, that agenty

has low confidence in agentx character in situation S.

Action effects axiom:
Poss (CLAR (agentx, p), S) → COM (agenty, p)

This axiom states that after agentx clarifies proposition p in
situation S, agenty is committed to respond to p.

Successor state axiom:
Holds (BEL (agentx, p, S), Do (CLAR (agentx, p), S)) ↔
causes (CLAR (Agentx, p), S, BEL (agentx, p, S)) ˅ (Holds
(BEL (agentx, p, S)) ˄ ¬ cancels (a , S, BEL (agentx, p, S))
˄ a= CLAR (agentx, p))

This axiom states that it holds that agentx believes p after
doing clarification of p that is because either clarification
of p causes agentx to believe p or agentx already believes p
and doing clarification does not change this belief.

Repair Strategy: Verification
Verification is a self-oriented repair technique (i.e.
involves an attempt to change one’s own model). It occurs
when an improviser has an idea of what another’s mental
model might be; he often communicates his impression to
his scene partner(s) in order to verify it. Verification is not
always an exact formulation of what an improviser
believes. It can also manifest as a statement that is related
to a belief that an improviser wants to test for accuracy (i.e.
wants to verify). As we only focus on gestural interactions,
situational calculus rules focus only on actions as follows:

Action preconditions axiom:
Poss (VER (agentx, p), S) ↔ Holds (SMM_Bel(agentx,
BEL (agenty, is (agentx, Char), _), CONF, S) ˄ Holds
(SMM_Bel (agentx, BEL (agenty, joint_activity, _), CONF,
S) ˄ Holds (SMM_Bel (agentx, BEL (agenty, is (agenty,
Chary), _), CONF, S) ˄ CONF=low.

The above axiom states that agentx can possibly verify
proposition p if agentx has low confidence in agenty

belief(s) about agentx character, joint activity, and agenty

character (i.e. agenty mental model) in situation S.



Action effects axiom:
Poss (VER (Agentx, p), S) → COM (agenty, p)

The above axiom stated that after agentx verfies
proposition p in situation S, agenty is committed to respond
to p.

Successor state axiom:
Holds (Bel (agentx, p, S), Do (VER (agentx, p), S)) ↔
causes (VER (agentx, p), S, BEL (agentx, p, S)) ˅ (Holds
(BEL (agentx, p, S)) ˄  ¬ cancels (a , s, BEL (agentx, p, S))
˄ a= VER (Agentx, p))

This axiom states that it holds that agentx believes p after
doing verification of p that is because either verification of
p causes agentx to believe p or agentx already believes p
and doing verification does not change this belief.

Repair Strategy: Blind Offer
A blind offer (related to the canonical improv offer, which
is when an improviser presents a new potential
contribution to a scene) is the final self-oriented repair
technique. Improvisers use this term to describe when they
intentionally introduce new, vague, and poorly defined
information. The purpose of this action is for the
improviser’s scene partner(s) to take the information and
expand upon it, using the blind offer as an opportunity to
present or clarify their mental model(s). The designed
situational calculus rules are as follows:

Action preconditions axiom:
Poss(BOFF (agentx, p), S) ↔ Holds (Bel (agentx, MM
(agentx), low, S) ˄ Holds (SMM_Bel (agentx, MM(agenty),
CONF, S) ˄ Holds (BEL (agentx, p), S) ˄ Holds (ICON (p,
agentx, joint_activity)=high, S) ˄ CONF=low.

The above axiom states that agentx can possibly offer
proposition p if agentx has low confidence in its mental and
shared mental models and agentx believes p and p has low
iconicity to both agentx and the joint_activity in situation S.

Action effects axiom:
Poss(BOFF (agentx, p), S) → COM(agenty, p)

The above axiom states that after agentx offers proposition
p, agenty is committed to p in situation S.

Successor state axiom:
Holds (BEL (agentx, p, S), Do (BOFF (agentx, p), S)) ↔
causes (BOFF (agentx, p), S, BEL (agentx, p, S)) ˅ (Holds
(Bel(agentx, p, S)) ˄  ¬ cancels (a , S, BEL (agentx, p, S)) ˄
a= BOFF (agentx, p))

This axiom states that it holds that agentx believes p after
offering p that is because either offering p causes agentx to
believe p or agentx already believes p and offering it does
not change this belief.

As seen above, situational calculus allows the
representation and reasoning of the dynamic nature of
improvisation. It has the ability to capture the fuzziness
and uncertainty present in this domain due to imperfect
communication via gestures. Situational calculus
represents the repair strategies as a set of first-order logic
formulae along with a situation argument to each non-
eternal predicate which allows the agents to recognize
cognitive divergence when it occurs and subsequently
decide on a suitable repair strategy to use to address that
divergence. This model provides the AI agent with the
procedural representation of knowledge needed to interact
with a human interactor in the presence of ambiguous
gesture-based communication. This model serves as an
important step in preserving high user agency and
improvisational narrative generation simultaneously,
particularly within domains that rely on natural interfaces
as a way to introduce ambiguity in the communication
between user and computer. It is worth noting that the
limited space prevents us from providing an example of the
logic based implementation of the formalized axioms.

After an attempted repair, an acceptance state follows
that identifies if a repair strategy has failed or succeeded. If
the repair attempt fails or goes unnoticed this means that
the divergence continues or a new one has taken its place.
A repair attempt is successful when perceived or true
agreement takes place between the interactors (Fuller and
Magerko 2011). Therefore, acceptance does not necessarily
equate to cognitive consensus, but only defines a state that
follows a repair attempt. The ideal form of consensus is
true cognitive consensus, which is when an improviser
correctly accepts another improviser's mental model. It can
only be identified through explicit confirmation by all the
improvisers originally involved in the divergence (a
phenomenon we capture in our group interview data).
Cognitive consensus, however, can be partial: it only
means that at least one divergence has been resolved.

Discussion

The work presented here is an important step towards deep
user agency where the interactive narrative system focuses
on procedural knowledge for co-creating story content.

We have focused on the process of dealing with
cognitive divergences, which are natural occurrences in
any improvised scene.  Divergences are often followed by
repair strategies that allow improvisers to deal with their
mistakes and reach an understanding, using shared mental
models as the foundation for their construction of a scene.



The concept of a shared mental model begins to
approximate a theory of mind – a model of beliefs about
what others believe. Despite in its current state our
approach does not capture all of the complexities of a full
theory of mind because assessments are only based on
degrees of association, the shared mental models proposed
in this paper are enough for an improv agent to begin
improvising a scene while considering another agent’s
beliefs. Theory of mind is explored in systems like
Thespian, but while it includes subjective beliefs about a
user’s knowledge and capabilities, it includes nothing
about the user’s beliefs about the system.

In order to depict the repair strategies, traditional
techniques as planning would fail because of the absence
of explicit representation of goals, which are essential in
any planning process. On the contrary, situational calculus
captures the dynamic and fuzzy nature of improvisation,
specifically the reasoning underlying the repair strategies
to deal with cognitive divergence. The designed rules are
general enough to be employed in other domains that
involve ambiguity, such as argumentation (using natural
language) or an AI-based dancing game (using gestures).
However, transformation to other domains would likely
require editing the axioms to suit that new domain. Given
the increase in body-sensing inputs for console game
interfaces, being able to handle ambiguity in co-creative
settings, such as improvised theatre, dancing games, games
based on creative practices, etc. will become increasingly
important.

References

Arinbjarnar, M. and Kudenko, D. 2008. Schemas in Directed
Emergent Drama. Proceedings of ICIDS 2008.
Cavazza, M., Charles, F. and Mead, S. J. 2002. Interacting with
virtual characters in interactive storytelling. Proceedings of
AAMAS 2002.
Clark, H. H. and Schaefer, E. F. 1989. Contributing to discourse.
Cognitive Science. A Multidisciplinary Journal 13. .
Crawford, C. 2004. Chris Crawford on Interactive Storytelling.
New Riders Games, Berkeley, CA.
Fairclough, C. 2004. Story Games and the OPIATE System.
Ph.D. Dissertation, University of Dublin - Trinity College.
Harrell, F. 2005. Shades of Computational Evocation and
Meaning: The GRIOT System and Improvisational Poetry
Generation. In Proceedings of the 6th Digital Arts and Culture
Conference, 133-143.
Fuller, D. and Magerko, B. 2011. Shared Mental Models in
Improvisational Theatre. In Proceedings of the 8th ACM
Conference on Creativity and Cognition, Atlanta, GA.
Johnstone, K. 1999. Impro for Storytellers, Routledge.
McCarthy, J. 1963. A basis for a mathematical theory of
computation. In Computer Programming and formal systems.

Porteous, J., Cavazza, M. and Charles, F. 2010. Narrative
generation through characters' point of view. Proceedings of
AAMAS 2010.
Magerko, B., Manzoul, W., Riedl, M., Baumer, A., Fuller, D.,
Luther, K. and Pearce, C. 2009. An Empirical Study of Cognition
and Theatrical Improvisation. In Proceeding of ACM Conference
on Creativity and Cognition, Berekely, CA.
Magerko, B., Dohogne, P. and DeLeon, C. 2011. Employing
Fuzzy Concept for Digital Improvisational Theatre. Proceedings
of AIIDE 2011.
Mateas, M. and Stern, A. 2006. Façade: Architecture and
Authorial Idioms for Believable Agents in Interactive Drama.
Proceedings of IVA 2006.
McQuiggan, S., Rowe, J., Lee, S. and Lester, J. 2008. Story-based
learning: The impact of narrative on learning experiences and
outcomes. In the Proceedings of the Ninth International
Conference on Intelligent Tutoring Systems (ITS-2008).
Riedl, M., and Stern, A. 2006. Believable agents and intelligent
story adaptation for interactive storytelling. Proceedings of
TIDSE 2006, 1-12.
Roberts, D. L. and Isbell, C. L. 2008. A survey and qualitative
analysis of recent advances in drama management. International
Transactions on Systems Science and Applications, Special Issue
on Agent Based Systems for Human Learning.
Riedl, M. and Young, R. M. 2010. Narrative Planning: Balancing
Plot and Character. Journal of Artificial Intelligence Research.
Sawyer, R. K. 2003. Improvised dialogues: Emergence and
creativity in conversation. Westport, CT: Ablex Publishing
Corporation.
Si, M., Marsella, S. C. and Pynadath, D. V. 2005. THESPIAN:
An architecture for interactive pedagogical drama. In Proceeding
of the Twelfth International Conference on Artificial Intelligence
in Education. IOS Press.
Spolin, V. 1963. Improvisation for the theater: A handbook of
teaching and directing technique. Evanston, IL: Northwestern
University Press.
Thomas, J. M. and Young, M. 2007. Becoming scientists:
Employing adaptive interactive narrative to guide discovery
learning. In Proceedings of AIED-07, workshop on Narrative
Learning Environments.
Young, R. M., Riedl, M. O., Branly, M., Jhala, A., Martin, R. J.
and Saretto, C. J. 2004. An architecture for integrating plan-based
behavior generation with interactive game environments. Journal
of Game Development 1(1).
Yen, J., Yin, J., Ioerger, T., Miller, M., Xu, D. and Volz, R. 2001.
Cast: Collaborative agents for simulating teamwork. In
Proceedings of IJCAI.
Zhu, J. and Harrell. D. F. 2008. Daydreaming with Intention:
Scalable Blending-Based Imagining and Agency in Generative
Interactive Narrative, In the Proceedings of the AAAI 2008 Spring
Symposium on Creative Intelligent Systems.
Zhu, J., Ingraham, K. E. and Moshell, J. M. 2011. Back-Leading
through Character Status in Interactive Storytelling. Proceedings
of ICIDS 2011, 31-36.


