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Introduction 

Conceptual models are often understood as efforts that happen before systems are being built or 

software code is written. They are primarily described as mental models that are in an early stage 

in the abstraction and as a simplification process that happens during the modeling phase. As 

long as the resulting implementation has an unambiguous interpretation for all users, this view of 

conceptual models may be sufficient.  

 

However, the notion of conceptual models and their role presented in this chapter is different. 

When moving applications from the stand-alone mode into the realm of services in a service-

oriented architecture, or into the domain of system of systems, it is essential for systems and 

services to be annotated with their respective assumptions, constraints, and simplifications. The 

resulting meta-data describing the conceptualization of systems and services allows machines or 

intelligent agents to identify applicable solutions, select the best available solution, compose 

services or systems, and orchestrate their execution to provide the functionality required for a 

given application. Thus, conceptual models must contribute to these machine-readable artifacts, 

and these artifacts must be part of the conceptual model. In this chapter, the necessity of such 

artifacts for valid compositions in the system of systems and service-oriented architecture 

domain will be shown. 

 

In order to support the evaluation and analysis of composability and interoperability challenges 

for model-based complex systems, the Levels of Conceptual Interoperability Model (LCIM) was 

developed and applied successfully in different domains, such as defense, homeland security, 

and energy. The LCIM can be used as a guide for topics that have to be dealt with in order to 

support compositions of systems or services so that misalignments can be avoided in the 

different layers of interoperation: technical, syntactical, semantic, pragmatic, dynamic, and 

conceptual. 

 

Within this chapter, the focus will be on artifacts needed for describing the information exchange 

requirements of systems and services that have to be captured during the conceptual modeling 

activities to ensure composability of models and interoperability of systems or services. This 
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approach will be generalized into three engineering methods based on the application of systems 

engineering principles: data engineering, process engineering, and constraint engineering. The 

objective is to capture the results of conceptual modeling efforts in machine-interpretable form in 

order to enable and facilitate the composition of systems or services into system of systems or 

service oriented architectures. 

 

The chapter starts by analyzing the interoperation challenges of model-based systems to motivate 

the LCIM. It shows how artifacts that belong to the conceptual modeling realm must be used to 

deal with these challenges. The chapter then focuses on the challenges inherent to data exchange 

between systems and introduces the notion of data engineering. The principles of data 

engineering are extended to analyze the requirements for processes that consume or produce data 

leading to process engineering and to understand the assumptions and constraints placed on 

systems and services leading to constraint engineering. All three engineering methods are 

described and artifacts that should result from the conceptual modeling process are identified. 

The common theme is the need for a standardized way to formally specify the conceptualization. 

A formal specification of a conceptualization, however, is the definition of an ontology, which 

leads to the evaluation of ontological means to express the results of the conceptual modeling 

phase in machine-understandable form. The chapter closes with a summary and description of 

the way forward to integrate conceptual models into the life cycle of systems in a service-

oriented architecture or a system of systems. 

 

Interoperation Challenges for Model-based Complex Systems 

In order for two systems to interoperate, they need to fit together. The working definition of 

interoperation used in this chapter is simply: two systems can interoperate if they are able to 

work together to support a common objective. Traditionally, systems that are able to interoperate 

are referred to as interoperable systems. The Institute of Electrical and Electronics Engineers 

(IEEE, 1990) defines interoperability as “the ability of two or more systems or components to 

exchange information and to use the information that has been exchanged.” 

 

Unfortunately, multiple definitions of interoperability exist that are ambiguous. Petty and Weisel 

spawned very fruitful discussions on the differences and commonalities of interoperability and 

composability with their paper (Petty & Weisel, 2003). They show that the definitions are 

primarily driven by the challenges of technical integration and the interoperation of implemented 

solutions. Model-based complex systems are further adding a new category of challenges. The 

working definition for a model-based complex system results from the definition of the 

combined terms: a system is made up of several components that interact with each other via 

interfaces; a complex system has many components that interact via many interfaces that 

represent typically non-linear relations between the components; model-based systems use an 

explicit formal specification of a conceptualization of an observed or assumed reality. While 

complexity already plays a major role in the traditional view of interoperability, the model-based 

aspect is not often considered. To explicitly deal with challenges resulting from differences in 

the concepts the term composability is used. 
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As with interoperability, the definitions used for the term composability are manifold. Petty, et 

al.  (2003) compiled the various definitions and used them to recommend a common definition 

embedded into a formal approach. Fishwick (2007) proposed, in his recent analysis, the 

restriction of the scope of composability to the model level, and follows the recommendations of 

Page, et al. (2004). Page recommends distinguishing between three interrelated but individual 

concepts all contributing to interoperation: 

 Integratability contends with the physical/technical realms of connections between 

systems, which include hardware and firmware, protocols, networks, etc.  

 Interoperability contends with the software and implementation details of 

interoperations; this includes exchange of data elements via interfaces, the use of 

middleware, mapping to common information exchange models, etc. 

 Composability contends with the alignment of issues on the modeling level. The 

underlying models are purposeful abstractions of reality used for the conceptualization 

being implemented by the resulting systems. 

 

The same recommendation is supported by Tolk (2006), where the importance of these 

categories for the domain of modeling and simulation is made obvious. An evaluation of current 

standardization efforts shows that the focus of these standards lies predominately on the 

implementation level of interoperability and doesn’t consider the specialty of models 

sufficiently, which is in the modeling process as an activity that purposefully simplifies and 

abstracts reality and constrains the applicability of the model in the form of assumptions and 

constraints. While interoperability deals with simulation systems, composability deals with 

models, hence Interoperability of Simulation Systems requires Composability of Conceptual 

Models! Using the categories of Page et al., the case can be made that integratability assures the 

existence of a stable infrastructure such as a reliable network, interoperability assures that 

simulation systems can be federated with each other, and composability assures that the 

underlying conceptualizations are aligned – or at least not contradictive. Conceptual models 

capturing the information needed are therefore essential. This point is emphasized in (Benjamin, 

Akella, & Verna, 2007, p. 1082):  ―The semantic rules of the component simulation tools and the 

semantic intentions of the component designers are not advertised or in any way accessible to 

other components in the federation. This makes it difficult, even impossible, for a given 

simulation tool to determine the semantic content of the other tools and databases in the 

federation, termed the problem of semantic inaccessibility. This problem manifests itself 

superficially in the forms of unresolved ambiguity and unidentified redundancy. But, these are 

just symptoms; the real problem is how to determine the presence of ambiguity, redundancy, and 

their type in the first place. That is, more generally, how is it possible to access the semantics of 

simulation data across different contexts? How is it possible to fix their semantics objectively in 

a way that permits the accurate interpretation by agents outside the immediate context of this 

data? Without this ability—semantic information flow and interoperability—an integrated 

simulation is impossible.” 

 

Following the objective of this chapter, the resulting engineering task is to capture the necessary 

conceptualization as they are utilized and annotated by systems semantically accessible to other 

systems so that they can make use of the information to select applicable solution, choose the 
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best available, compose the part solutions to deliver the overall solution, and orchestrate the 

execution. For the remainder of this chapter, the terms ―service‖ and ―system‖ are used 

interchangeably.  

 

In other words, the idea is to make the system semantically transparent for intelligent agents so 

that they can understand the objectives, inputs, outputs, content, assumptions, and simplifications 

captured in conceptualizations. Zeigler (1986) published a model explaining what is necessary 

for machine-based understanding. He identified three requirements that are applicable in the 

context of understanding the conceptualization and implementation as well: 

 Perception – The observing system has a perception of the system that needs to be 

understood. In Zeigler’s model, perception is not a cognitive process but is simply 

capturing sensor input. Nonetheless, it implies that data and processes characterizing the 

observed system must be observable and perceivable by the observing system that shall 

help to identify, select, compose, and orchestrate the observed systems. It also implies 

that all data needed for these tasks are provided by the applicable systems that are 

observed.  

 Meta-Models – The observing system has an appropriate meta-model of the observed 

system. The meta-models represent the categories of things the observing system knows 

about. As such, each meta-model is a description of data, processes, and constraints 

explaining the expected behavior of an observed system. Without such a meta-model of 

the observed system, understanding for the observing system is not possible. In Zeigler’s 

model, machine-based understanding can be defined as identifying an applicable meta-

model. In the context of this chapter this means that the intelligent agent must have 

available meta-models that can be used to map perception in support of  the tasks of 

identification, selection, composition, and orchestration. 

 Mapping – Mappings between observations resulting in the perception and meta-models 

explaining the observed data, processes, and constraints do exist, are identified, and are 

applied in the observing system. 

In summary, the artifacts that are derived during the conceptual modeling phase must therefore 

be perceivable and it must be possible to map them to meta-models that can be used to describe 

system behavior in the system-of-systems environment or service behavior in service-oriented 

architectures. 

 

The related work on the challenges of interoperability and composability enabling the attainment 

of these objectives led to the development of the LCIM. As documented in Tolk (2006), the 

LCIM is the result of several composability and interoperability efforts. During a NATO 

Modeling & Simulation Conference, Dahmann (1999) introduced the idea of distinguishing 

between substantive and technical interoperability.  In his research on composability, Petty 

(2002) enhanced this idea. In his work, he distinguished between the implemented model and the 

underlying layers for protocols, the communication layers, and hardware. Realizing the need to 

explicitly address the conceptual layer, Tolk and Muguira (2003) published the first version of 

the LCIM, which was very data-centric. The discussions initiated by the LCIM work, in 

particular the work of Page et al. (2004) and Hofmann (2004), resulted in the currently used 

version, which was first published by Turnitsa (2005). The following figure shows the evolution 
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of layered models of interoperation resulting in the LCIM. 

 
Figure 1: Evolution of Levels of Interoperation (Tolk, 2006, p. 57) 

 

As shown, the LCIM exposes six levels of interoperation, namely: 

 The technical level deals with infrastructure and network challenges, enabling systems to 

exchange carriers of information. 

 The syntactic level deals with challenges to interpret and structure the information to 

form symbols within protocols. 

 The semantic level provides a common understanding of the information exchange. On 

this level, the pieces of information that can be composed to objects, messages, and other 

higher structures are identified. 

 The pragmatic level recognizes the patterns in which data are organized for the 

information exchange, which are in particular the inputs and outputs. These groups are 

often referred to as (business) objects. 

 The dynamic level adds a new quality by taking the response of the system in form of 

context of the business objects into account. The same business object sent to different 

system can trigger very different responses. It is also possible that the same information 

sent to the same system at different times can trigger different responses. 

 Finally, assumptions, constraints, and simplifications need to be captured. This happens 

on the conceptual level. 

Wang, et al. (2009) show the descriptive and prescriptive potential of the LCIM and evaluate a 

first set of artifacts, in particular those defined by the simulation interoperability standards IEEE 

1516, the High Level Architecture, and the Base Object Models (BOM) standard recently 
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developed by the Simulation Interoperability Standards Organization (SISO). As documented by 

King (2007), the elusiveness of the conceptual level requires the orchestrated application of all 

existing part solutions. This orchestration requires a conceptual model that supports all views and 

all levels of interoperation. 

 

The definition of conceptual models used in this chapter is based on Robinson (2007, p. 283): ―A 

conceptual model is a non-software specific description of the computer simulation model (that 

will be, is or has been developed), describing the objectives, inputs, outputs, content, 

assumptions and simplifications of the model.” Robinson argues that the conceptual model 

establishes a common viewpoint that is essential to developing the overall model. Conceptual 

modeling captures aspects of interoperability that extend software definition. It specifically 

addresses understanding the problem, determining the modeling and project objectives, model 

content (regarding scope, structure and level of detail), and identifying assumptions and 

simplifications. 

 

The consequence of these observations is that decisions made in the conceptual modeling phase 

will influence whether two systems can interoperate or not, even if these decisions are not 

explicitly obvious from the implementation. If two such systems are still composed with (or 

without) this knowledge, the resulting composition will be conceptually misaligned and will 

produce inappropriate results. In the worst case, the user will not be aware and use the results of 

such compositions in support of decisions, which can result in harm on loss for the user and the 

domain being supported. 

 

This observation is not completely new. The importance of well-documented conceptualizations 

as a distinguishable product and the basis for simulation system specifications and 

implementations for the related domain of validation and verification is also emphasized by 

Sargent (2001). Brade (2000) introduced a series of artifacts allowing the tracing of  results and 

recommendations back to the sponsor’s needs thus capturing the resulting model developer’s 

intention. While Brade’s artifacts are still mainly designed for human consumption, Muguira and 

Tolk (2005) introduced at least partly readable models to capture the developer’s intention to 

avoid the composition of simulation system with insufficiently aligned models. 

 

As mentioned before, the necessity to support fully machine-understandable artifacts capturing 

the results of the conceptual modeling phase ensures that composability emerges from the idea to 

compose systems from existing systems (system of systems engineering) or from services 

(service-oriented architectures). In both application cases is it crucial to be aware of objectives, 

inputs, outputs, content, assumptions, and simplifications of the underlying models. 

 

Yilmaz (2004) introduced the phrase Contextualized Introspective Simulation Models to describe 

the need of model-based applications to communicate their assumptions, constraints, inputs, 

outputs, and other elements of the conceptual model in order to improve reuse and 

composability. He shows that intelligent software agents can be used as placeholders and 

ambassadors to negotiate with other intelligent software agents representing other systems to find 

out whether a composition is possible. Again, this requires capturing the conceptual model in a 
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machine-readable formal specification. Additional contributions and relevant related work can be 

found in the domain of agent-mediated interoperability and semantic web-services, such as 

described by Sycara (2002), Burstein and McDermott (2005), and Yilmaz and Tolk (2006). 

 

This chapter recommends ontological means to capture the conceptual model. A common 

definition for an ontology is a formal specification of a conceptualization (Gruber, 1993). It can 

be argued that the use of ontological means to represent conceptual models in machine-

understandable form is quasi motivated per definitionem: ontologies are the required 

specification of the conceptualization, and as they are formal, machines can read them and 

reason about them. However, there are very practical observations that support this decision as 

well. West (2009) gives an example for practical applications of ontologies in connection with 

modeling of data for a significant business. A more theoretic introduction to the use of 

ontological means has recently been published by Guizzardi and Halpin (2008) in their special 

issue on conceptual modeling in the Journal of Applied Ontologies. The discussion on 

ontological means in support of systems engineering are ongoing. 

 

In summary, ontological means are at least a promising candidate to describe artifacts. These 

artifacts can be used to capture the results of conceptual modeling in form of objectives or 

developer’s intent, business objects in form of inputs and outputs, content, assumptions and 

simplifications. As they are based on formal mathematics, they can be encoded in machine-

readable form. These artifacts can be used to annotate solutions to enable their reuse in system of 

systems or as services in service-oriented architectures as they provide the means to describe the 

systems thus allowing the identification of applicable solutions and the selection of the best 

available solution. The artifacts ensure that candidate solutions can interoperate on the technical, 

syntactical, semantic, pragmatic, dynamic, and conceptual level of interoperation. 

 

Within the following sections, the interoperation requirements for data-centric solutions will be 

presented, as this domain is the one best known in the community. This section will be followed 

by a presentation of current work in the field. The chapter will close with a short survey of 

ontological means and their application. 

 

Data-centric Interoperation Requirements 

In order to collaborate, systems need at least to be able to provide the required input parameters 

of services provided by partners and to make sense of their output parameters. These parameters 

set up the information exchange between two systems. The current practice of information 

exchange modeling is divided into two main categories: 

 The first category uses peer-to-peer agreements between sending and receiving systems. 

The systems have to mutually agree to the matches between the information provided by 

the sender, and they have to agree to how this information is understood by the receiver. 

Such agreements only require the definition of a common protocol and format, such as an 

IEEE1516 Federation Object Model Template (OMT) or an extensible markup language 

(XML) schema. The content has to be agreed upon between the peers. 

 The second category uses a predefined model for the communication. This model is 
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shared by the systems and they agree that information they provide will follow this 

model. Examples are all forms of predefined messages, the protocol data units (PDU) 

defined by IEEE1278 for Distributed Interactive Simulation (DIS) application, or 

reference models for the IEEE1516, such as the Real-time Platform Reference (RPR) 

Federation Object Model (FOM). 

In both categories, the emphasis lies on data structure and context of an exchange of information 

between systems. In this view, a system is well and completely defined by its interface 

describing which structures which content can be produced or consumed in which context 

(leading to an ―it’s all about data movement‖ frame-of-mind  in some M&S related 

communities). 

 

The research of the authors of this chapter resulted in a recommendation to distinguish between 

information exchange requirements, information exchange capabilities, and information 

exchange needs. Too often developers assume that if information can flow from one system to 

another, this automatically ensures that the information can flow back as well. This, however, 

cannot be the general case. It is necessary to distinguish between the ability of a system to be the 

source or the target of a piece of information, i.e., the ability to produce the desired information 

or to consume the desired information. A simple example shows that both capabilities are not 

identical: if the desired information to be exchanged is the sum of all individual entities in a 

group and their center of gravity – as often used to aggregate vehicles into a military unit – a 

system that represents the original entities can produce the desired information, but it cannot 

consume the information for its own use. Furthermore, not all information that potentially could 

be exchanged needs to be exchanged in support of a common operation or business process. It 

would be a waste of resources to engineer all information exchange possibilities if it is already 

known that only a small subset will really be needed. These observations motivate the following 

definitions (Tolk et al., 2008): 

 The set of related data elements in context needed to fulfill the operational or business 

requirements constitute information exchange requirements. In other words, this is the 

information required by the operational user of the system or system of systems.  

 Information exchange capability is defined for each system. It is the set of related data 

elements, in context, that can be provided by the systems. This is the information that can 

be published or produced by a service or system. 

 Information exchange need is also defined for each system. It is the set of data elements, 

in context, that can be consumed by the system. This is the information that can be 

subscribed to or consumed by a service or system. 

Conceptual models must support the definition of information requirements, capabilities, and 

needs. The task is not trivial, in particular when looking at integration challenges of legacy 

systems into a system of systems. 

 

The view of many system developers is that systems supporting the same domain naturally are 

using very similar, if not the same, conceptualization. However, the principle documented by 

Odgen and Richards (1923) still holds. Odgen and Richards distinguish between referents, 

concepts, and symbols to explain why communication often fails. Referents are objects in the 

real (or an assumed or virtual) world. When we communicate about the referents, we use 
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perceptions or interpretations of these referents and capture them in concepts that reflect our 

viewpoint of the world as object, etc. and then use symbols to talk about our concepts. 

 

The following figure shows the relation of this semiotic triangle to the M&S domain, as it is well 

known to M&S experts. They will easily recognize the similarity to the earlier mentioned 

validation and verification models as recommended by Sargent (2001) – where real world 

domain, conceptual model, and implemented model are distinguished – or the framework for 

M&S as recommended in Zeigler (2000) – the experimental frame with the source model, the 

model, and the simulator. 

 
Figure 2: The Semiotic Triangle for M&S 

 

It should be pointed out that the implementation does not reveal why the conceptualization was 

chosen, only which one was chosen. A common conceptualization can result in different 

implementations. In order to ensure composability, the conceptualization decisions need to be 

captured in addition to the implementation decision. 

 

If the information exchange modeling category falls into the category of predefined models for 

the communication, the predefined model used serves as a common interpretation between two 

models when they exchange information. The PDUs defined in the DIS IEEE1278 Standard are a 

very good example of this case. This standard was developed in support of the armed forces to 

enable the exchange of information between simulators that collaborate on a virtual battle field, 

such as main battle simulators and infantry fighting vehicles. Whenever a preconceived event 

happens – such as one tank firing at another, two system colliding, artillery ammunition being 

used to shoot into special area, a report being transmitted using radio, a jammer being used to 

suppress the use of communication or detection devices, and more – the appropriate PDU is 

selected from the list of available PDUs and used to transmit the standardized information 

describing this event. The advantage of this solution is that every participant knows exactly what 

information needs to be provided and can be expected. The disadvantages are that every new 
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event requires a new PDU, which means an extension of the standard, and – this is of particular 

interest for conceptual modeling – similar events will be reduced to the information used to 

describe them using the same PDU. What are only similar events in the simulators become 

equivalent events in the information exchange. If the system is sensitive regarding its initial 

conditions or exposes even quasi-chaotic behavior, such small adjustments can result in very 

different results. 

 

The same observations made for IEEE1278 are true if other forms of predefined common 

information exchange models are used, such as the Real-time Platform Reference (RPR) 

Federate Object Model (FOM) as defined by the Simulation Interoperability Standards 

Organization (1999) or the Modeling Architecture for Technology, Research, and 

Experimentation (MATREX) FOM used by the US Army, as described by LeSueur , et al. 

(2006). The use of common messages, such as military messages in order to drive military 

command and control systems from a synthetic environment also falls into this category. 

Conceptually, it doesn’t matter if the message is delivered in the form of a military text message 

or as a replication working on a military database: in both cases the information exchange is 

defined by the predefined model of these messages or replication instructions. 

 

For conceptual modeling of information exchange, the main focus in the category of predefined 

models for the communication has to contribute to answering the question of whether the 

recommended – and in practical application often even mandated – predefined model for 

information exchange is sufficient and reflects all aspects of the operationally relevant 

information exchange requirements as well as the system specific representations as they are 

captured in the information exchange needs and information exchange capabilities. It should be 

pointed out that as – every other model – the predefined model is also an abstraction of reality 

with its assumptions, constraints, and simplifications. In the worst case, the information 

exchange capabilities and needs of participating systems will be shoehorned into a potentially 

inappropriate information exchange model.  

 

In case the alternative category is used, which does not rely on predefined models but peer-to-

peer agreements between sending and receiving systems, no predefined data must be used. This 

means, however, that every information exchange needs to be evaluated regarding its validity. 

With a predefined, and in some cases standardized, model as the backbone for information 

exchange, common understanding of which concepts are modeled and encoded by which 

symbols in the system is possible. For peer-to-peer agreements on the other hand, a formal way 

to capture the elements of the semiotic triangle for information exchange is needed, namely 

which concepts are used to capture the referents and how are they encoded in the 

implementation. As mentioned in last paragraph, this is needed for the predefined models as 

well, as it makes no difference if the information exchange is conceptually modeled between the 

information exchange means described by two systems or by one system and the predefined 

model. 

 

Meta-data registries have been defined to support the consistent use of data within organization 

or even across multiple organizations. In addition, they need to be machine-understandable to 
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maximize their use. Logically, the recommended structures for meta-data registries are strong 

candidates for capturing the results of conceptual modeling for information exchange. Part III of 

ISO/IEC 11179 Meta-data Registry (MDR) Standard defines structures that can be used for the 

purpose identified in this chapter. The following figure is based on the recommendations given 

in this standard as used in recent publications on model-based data engineering (MBDE) and 

extended in the following sections of this chapter as well. It shows four meta-data domains 

needed to capture data representation and implementation: 

 The conceptual domain describes the concepts that were derived in the conceptualization 

phase of the modeling process. This domain comprises all the concepts that are needed to 

describe the referent or referents relevant to the information exchange. 

 The property domain describes the properties that are used to describe the concept. 

Concepts are characterized by the defining properties. ISO/IEC 11179 refers to this 

domain as the data element concepts. 

 The property value domain comprises the value ranges, enumeration, or other appropriate 

definition of values that can be assigned to a property. ISO/IEC 11179 refers to this 

domain as the value domain. 

 Property instances capture the pieces of information that can be exchanged. They 

minimally comprise the value of one property, which can be interpreted as updating just 

one value, or they can become an n-tuple of n properties describing a group of associated 

concepts, which represents complex messages or updates for several objects. ISO/IEC 

11179 calls these property instances data elements. 

Property
Domain

(Defining Properties)

Conceptual
Domain

(Propertied Concepts)

Property
Instance

(Value of a Property
defining a Concept)

Property Value
Domain

(Assignable Values)

0..* 1..1

0..* 1..1

1..11..1

0..* 0..*

Represented
by ….

Representing

Represented
by ….

Representing

Expressed
by ….

Expressing

Having Specifying

Conceptual Model resulting in Propertied Concepts

Implementation resulting in Data Specifications

 
Figure 3: Domains of Information Exchange Modeling 
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Traditionally, only the property instances are captured. From what has been specified in this 

chapter so far it becomes obvious that information needs to be specified in the context of the 

results of the underlying conceptualization to ensure the required semantic transparency. As the 

referent itself cannot be captured, because it is replaced by its conceptualization, the information 

exchange model must at least capture the conceptualization of the model used and cannot be 

limited to the symbols used for its implementation. Tolk, et al. (2008) introduce first ideas on 

how to use these structures to enable self-organization of information exchange, if machines are 

not only able to understand how the implementations are related to the conceptualization, but 

how conceptualizations of different models are related to each other. The following section 

introduces how these domains support data engineering. 

 

Data Engineering 

The notion of data engineering was introduced in the NATO Code of Best Practice (NCOBP) for 

Command and Control Assessment (NATO, 2002, p. 232) in support of the integration of 

heterogeneous data sources for common operations and operational analysis. While the NCOBP 

was written by international NATO experts, its application is not limited to military systems. The 

NCOBP was created more as an application-oriented introduction on how to conduct operations 

research studies on complex, complicated, and wicked problems, such as the command and 

control challenge in a multi-national organization with many independently developed 

information systems and not necessarily always aligned doctrinal viewpoints.  

The NCOBP introduced data engineering as an engineering method to ensure that valuable 

resource data are best utilized. As defined in the NCOBP, data engineering consists of the 

following four main areas: 

 Data Administration: Managing the information exchange needs including source, 

format, context of validity, fidelity, and credibility. As a result of the processes in this 

area the data engineer is aware of the data sources and their constraints. 

 Data Management: The processes for planning, organizing, and managing of data 

including definition and standardization of the meaning of data as of their relations. 

Using the processes of this area, the data engineer unambiguously defines the meaning of 

the data. 

 Data Alignment: Ensuring that data to be exchanged exist in all participating systems. 

Using the results of data management, target data elements needs and source data abilities 

can be compared. The data engineer identifies particular gaps that need to be closed by 

the system engineers responsible for the participating systems. 

 Data Transformation: Technical process of mapping data elements from the source to the 

target. If all data are captured in the first three processes, data transformation can be 

automated by configuring XML translators (Tolk and Diallo, 2005). 

MBDE introduces the notion of a Common Reference Model (CRM) in support of t data 

engineering processes. In MBDE, the definition of a common namespace captured in the form of 

a logical model is the starting point. The CRM captures the objects, attributes, and relationships 

that are susceptible of being exchanged during a federation. It is worth mentioning that in theory 

the four areas of data engineering are well-defined steps that can be conducted consecutively. In 

practical applications, however, systems and services are hardly ever documented as is needed 
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for this application, so data engineering becomes an iterative process. Furthermore, it should be 

pointed out that the CRM is not a fixed model comparable to the predefined information 

exchange models described in the previous section, rather the CRM is gradually modified to 

reflect new concepts needed, requiring extensions, or to reflect new properties or additional 

property values, requiring enhancement of the CRM. The CRM is therefore the means-enabling 

mediation between the different viewpoints of the information exchange model as derived from 

the information exchange capabilities and needs of aligned services and systems based on the 

information exchange requirements derived from the operational use that need to be supported. 

 

In the remainder of this section, we will show how to use the domains of information exchange 

modeling introduced earlier to directly support the areas of MBDE. 

 

The first area of data engineering is data administration. If the data are not already structured and 

documented in form of an object or data model, this step is necessary. Conceptual modeling in 

support of data administration classifies each information exchange elements either as a value 

(V) that can be grouped with other property values of its domain (D) that can be assigned to 

property (P), or as a property can be grouped to identify a propertied concept (C), or as a concept 

that can be related to other concepts. At the end of this process, the domains of information 

exchange modeling for the information exchange capability (what can be produced as a data 

source) and the information exchange need (what can be consumed as a data target) for each 

system or service is documented. The following figure documents the result for two systems (or 

services) A and B: 

C P

D V

P C

V D

A A

A A

B B

B B

 
Figure 4: Data Administration 

 

The second area of data engineering is data management. Using the logical information exchange 

modeling elements, the concepts (C) and the defining properties (P) of information exchange 

capability models and information exchange need models, common concepts and properties are 

identified. The result is a set of propertied concepts to which the elements of the information 

exchange capability models can be mapped and that can be mapped to the elements of the 

information exchange need models. In the case of MBDE, these propertied concepts build the 

CRM, which is the logical model of the information exchange that can take place between the 
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systems or services. It is worth stating that this shows that such a logical CRM always exists, 

whether it is made explicit or not, as whenever a property from system A is mapped to a property 

of system B.  This constitutes a property that makes sense in the information exchange between 

the two systems, which is expressed by the CRM. The concepts of the CRM serve two purposes: 

 They build the propertied concepts of the properties of the CRM and as such help the 

human to interpret the information exchange categories better. In particular when a CRM 

is derived from the information exchange requirements, this is very helpful. 

 They conserve the context of information exchange for the receiving systems, which is 

their information exchange need. 

The following figure shows the result of the data management processes for two systems A and 

B: 

C P

D V

P C

V D

P

C

A A

A A

B B

B B

CRM

CRM

 
Figure 5: Data Management 

 

The third area is data alignment. In this area of data engineering, it is necessary to distinguish 

between the logical and physical aspect of data alignment. Logically, information can be 

exchanged between two systems if the properties of system A have properties in system B that 

are logically equivalent, which means that there is a connection via the CRM. Not every property 

in system A will have a counterpart in system B, and only for those properties that are connected 

to a property of the CRM that is part of the information exchange requirements model, is the 

mapping operationally required. If a connection from system A to system B exists for every 

property of the CRM representing a piece of the information exchange requirement, system A 

and B are logically aligned under the CRM. It is worth mentioning that logical alignment is not 

mathematically symmetrical and dependent on the CRM.  

 

The next step is the physical alignment. While two properties may be aligned under the CRM 

logically, their actual representations can be a challenge, as the property value domains must be 

equivalency classes, or at least the class of the information exchange need property value domain 

must be in the range of the information exchange capability property value domain. The 

modeling and simulation literature deals with problems derived from this step under the term 

multi-resolution modeling (Davis and Huber, 1992, Davis and Hillestad, 1993, Reynolds et al., 

1997, Davis and Bigelow, 1998). 
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Within this chapter, we define system A to be aligned with system B under the CRM if they are 

logically aligned and an injective function can be constructed from the property value domain of 

the source property in system A to the target property in system B. The following figure shows 

the result of these steps. 

C P

D
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C

A A

A

A

B B

B

B

CRM

CRM

CRM

CRM

 
Figure 6: Data Alignment 

 

Finally, data transformation can map the information exchange elements to each other. This 

process of data mediation between the different viewpoints represented in the participating 

systems is already specified by the other three areas of data engineering, so that this step can be 

automated by using the results of the first three areas: 

 Data administration provides the needed structures of the information exchange 

capabilities (system A) and information exchange needs (system B). 

 Data management provides the identification of common properties on the logical level, 

resulting in the CRM. The CRM can be constrained to those concepts and properties that 

satisfy the information exchange requirements of the operation to be supported. 

 Data alignment evaluates the logical alignment and the physical alignment. For each 

property in the CRM representing a part of the information exchange requirement, a 

logical counterpart is needed in the information exchange capability of system A (data 

can be produced) and in the information exchange need of system B (data can be 

consumed). In addition, the property value domains used to implement these properties 

must be mapped to each other. 

 The result is a function that maps all relevant information exchange elements of system A 

under the CRM to the logically correct information exchange elements of system B. If the 

relations between A and B or not only injective, but also surjective, an inverse function 

exists as well. 

The following figure illustrates the final result of data transformation: 
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Figure 7: Data Transformation 

  

Tolk and Aaron (2009) give application examples of MBDE using real-world CRM derived from 

projects conducted for the US Army and the US Joint Forces Command and show how these 

applications can be generalized. In their contribution, they emphasize in particular the necessity 

of an efficient engineering management in addition to the conceptual and technical constraints. 

 

Process Engineering and Constraint Engineering 

While the emphasis so far has been on the information exchange model in the form of 

conceptually understanding what information exchange elements are exchanged between 

systems, the LCIM described earlier in this chapter clearly motivates two additional methods, 

namely process engineering and constraint engineering: 

 Data engineering focuses clearly on the syntactic and semantic layers of the LCIM. 

However, it only touches the pragmatic layer and is of only limited use for the remaining 

layers. 

 To understand how the data are used within a system or what is needed to produce the 

data so it can be transmitted or how the system states are going to change once the data 

are produced or consumed requires a similar formalism for processes, similar to the one 

introduced for data in the previous section. This is the subject of ongoing research and 

will result in process engineering. 

 The assumptions, constraints, and simplifications about a model are part of conceptual 

modeling, and are important elements that need to be evaluated if two systems or services 

are to be composable. These assumptions are often not reflected in the implementation 

and unfortunately are rarely documented. Spiegel et al. (2005) present a simple physics-

based model of the falling body problem to show how many assumptions are implicitly 

accepted within models, and how hard it is for experts to reproduce them ―after the fact.‖ 

Capturing constraints and assumptions in machine-understandable form is the subject of 

ongoing research and will result in constraint engineering. 
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While both engineering methods (process and constraint engineering) are currently not as mature 

as data engineering regarding applications, we will give an overview of the current state of 

research in the remainder of this section. 

Tolk, et al. (2009) describe process engineering, similar to data engineering as an approach to 

align the process of separate systems.  As with data engineering, process engineering follows a 

method of four areas: 

 Process Administration: The processes that are included in the systems to be made 

interoperable must be identified, including the source of each process, and the operational 

context in which it acts. 

 Process Identification: This involves organizing and managing the processes, and their 

specifications. Each process must be specified in order to enable the following steps. The 

requirements for such a specification will be defined in the next paragraph. 

 Process Alignment: The defining attributes of the processes, as organized within process 

management, determine where, in the life of the system, the process will occur, and what 

affect it has internally on the system, as well as what the process means externally for 

interoperability. These attributes must be aligned so that the resulting effects of 

interacting processes can be determined. 

 Process Transformation: Finally, if the resulting effects of interacting processes do not 

produce a desired outcome, it may be necessary to perform some transformation to one or 

more attributes of some of the processes in question. The data concerning the processes 

that results from the first three steps will enable this to happen. 

 

In order to apply the steps of these four areas of process engineering, specifics concerning each 

process must be made available, namely a detailed enough description of the specific 

characteristics of each process is required. A process description language and a process- 

algebra designed in support of process engineering are objects of ongoing research, resulting so 

far in the identifications of first process-defining attributes: 

 Initialization Requirements: Unambiguous definition of process-specific object-attribute 

values that must exist, including object-object relationships that must be in place, for the 

process to be feasible. Additionally, system operational requirements for the initialization 

of the process are specified, if required. 

 Time: Capturing the dynamic characteristics of the process, such as when does the 

process start and how long it takes to complete the process, and in terms of complex 

processes, the rate of progress.  

 Effects: A process affects some change in the attribution of an object in the system.  

Complex processes may affect more than one attribute in a single object, or perhaps more 

than one object.  In this category of defining attributes, the range of these effects that take 

place, including how these effects occur, are captured. The changed attributes can 

identity attributes of the system, or can possibly be coincidental attributes. 

 Halting Requirements: Some processes will terminate given a certain passage of 

operational time, others require specification of what conditions cause the process to halt.  

This specification is more likely to be required for a complex process (where more than 

one attribute or object change is part of the process specification) than for a simple 
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process. 

 Post-conditions: The state of the system once a process has halted including specifying 

the nature of the process or related processes once it has expired, such as termination, 

waiting in idle mode, etc. 

Once a process description language that captures these attributes is formally presented and used 

to define processes within a model of a system, then the application of  process-algebra will lead 

to the four steps of process engineering that can be understood and supported by machines. 

Current research focuses on extensions into this direction using the web-ontology description for 

services, such as OWL-S (Martin et al., 2004). Related ideas have been published by Rubino et 

al. (2006) and others. 

 

King (2009) describes the foundation for constraint engineering. In this work, he outlines a 

process for capturing and aligning assertions as well as a formalism to enable the envisioned 

machine support. Using the falling body problem described by Spiegel et al. (2005) mentioned 

earlier, he captures all applicable forces in an ontology using the Protégé Tool. He next develops 

a formalism to represent assertions, as the assertions must be encoded in a knowledge 

representation language to make them machine-understandable. Each proposition consists of its 

axioms and logical assertions that relate it to other concepts and propositions. Having the 

constraints and the assertion formalized as recommended here, it then becomes possible to 

compare the assertions, assumptions, and constraints using logical reason to identify 

incompatibilities on the conceptual level, as envisioned in King (2007). The idea is captured in 

the following figure. 

 

 
 

 

As stated above, building and manipulating these lists requires an ontology to express the 

assertions, and a formalism for representing them. The formal model of assertion has four 

components that are described in the following list. 

 Use function: The use function describes the role of the assertion in potentially modifying 

system behavior. The value will be the one of the terms in the following list: [uses | does 

not use | ignores | requires | denies]. The use function plays an important role in 

processing assertion lists. It establishes the relevance of the proposition with respect to 

the model and with respect to the role of the proposition when integrating the model with 

a system. 

 Referent: The referent of an assertion is the entity to which it refers. A referent can be an 

object, a model, a process, a data entity, a system, or a property of one of these. When an 

assumed to be aligned 
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Figure 8: Evaluating Compatibility of Assertion Lists (King, 2009) 
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assertion acts as a constraint, the referent is what is being limited by the proposition. 

 Proposition: The proposition of an assertion is the statement that it is making. 

Propositions are not restricted to simple concepts—they may encompass the content 

expressed by theories, books, and even whole libraries. 

 Scope: This is an optional description that extends the portions of the overall system to 

which the assertion applies. Scope can limit consideration to a system component, the 

system as a whole, the environment of the system, or to combinations of these (e.g., 

component-environment scope means that the scope of assertion is the relationship 

between the component and its environment.) If scope is not specified, then the assertion 

has component scope. Scope can be stated explicitly or implicitly. 

The formal description of an assertion is therefore a tuple structured as: 
Assertion <=> (referent useFN Proposition <scope>) 

 

In order to apply these ideas, three steps need to be conducted, that are captured in the following 

list. The viewpoint is slightly different from the data and process engineering areas, but the 

results are comparable. 

 Capture assertions: The first step is capturing the assertion propositions (assumptions, 

constraints, implemented considerations and competencies) for the model, system and 

environment that are known within the scope or that are otherwise important. Each 

proposition represents a concept that is initially expressed as a natural language statement 

about the problem, one or more of its components, or a particular solution. The result of 

this step is the formal identification of the main concepts that will form the basis of the 

ontology content. 

 Encode propositions: The list of propositions expressed in natural language statements 

must be encoded in a knowledge representation language to make them machine-

understandable. Each proposition will consist of axioms and logical assertions that relate 

it to other concepts and propositions. In this step, this encoding happens. King (2009) 

used the Protégé Tool, but every other tool supporting the encoding in logical form is 

applicable. The second step finally consists of assigning the use function, referent and 

scope to each proposition in both the model and the system lists.  Experience in the 

research shows that the analyst should be prepared to make several iterations through this 

process step as the assertion lists are refined. The output of this step is list of statements 

encoded in a knowledge representation language—the list of assertions for the both 

component and system. 

 Compare assertion lists: The task of comparing assertion lists requires a multi-level 

strategy that is described in detail in King (2009). The full details go beyond the scope of 

this chapter except to note that the comparison is steered by the use function assigned to 

each proposition in the previous step. The method is used to compare the list of assertions 

about the model to be composed with the statements about the system (see Figure 8).   

Each proposition represents a concept and there are different ways that concepts can 

match. The topic of semantic similarity—deciding if, and how closely concepts match—

is the subject of much current study, particularly with respect to research into the 

Semantic Web. The issue is a complex process influenced by many different factors or 

characteristics, however analysis such as performed by Kokla (2006) reveals four 
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possible comparison cases between concepts: equivalence, when the concepts are 

identical in meaning; subsumption (partial equivalence), when one concept has broader 

meaning than the other; overlap (inexact equivalence), when concepts have similar, but 

not precisely identical meanings; and difference (non-equivalence), when the concepts 

have different meanings.  The first three are potentially useful for comparing assertions 

lists. Testing for equivalence is straightforward and involves searching for text or label 

matches.  Subsumption is handled by first order logic or a subset of FOL such as a 

Description Logics reasoner operating on an OWL-DL ontology.  Determining overlap 

requires greater sophistication in reasoning, such as analogical reasoning described by 

Sowa and Majumdar (2003) or the agent-based metalevel framework for interoperation 

presented by Yilmaz and Paspuletti (2005).   

 

King (2009) showes that with these steps it was possible to capture conceptual misalignments of 

services that did not show up on the implementation level. In other words: without capturing the 

results of conceptual modeling appropriately, these services would not have been identified as 

not composable, and a composition of them would have been technically valid but conceptually 

flawed, leading to potentially wrong results. Depending on the application domain such as 

simulation composition is used in, such conceptual misalignment can lead to significant harm 

and even the loss of human lives or economic disasters, in particular when decision makers base 

their decisions on flawed analysis. 

 

In summary, conceptual modeling must produce machine-readable artifacts in support of the 

levels of interoperation identified in the LCIM. On the conceptual level, assertions need to be 

defined to avoid conceptual misaligned compositions. On the dynamic level, the system states 

governing the processes need to be captured. Process engineering lays the foundation for this by 

defining the artifacts for the pragmatic level. Data engineering focuses on the semantic and the 

syntactic level. Research work is ongoing and will hopefully soon lead to agreed terms and 

standardized artifacts on all layers of interoperation. 

 

It is worth mentioning that the rigorous application of mathematics ensures the consistency of 

conceptualizations and their implementations and not that the conceptualizations are correct. In 

other words, it is possible to evaluate if two different conceptualizations can be mapped to each 

other and if transfer functions exists between resulting implementations. The three engineering 

methods described here support this evaluation and enable the support thereof by machine, if all 

needed artifacts are available and can be observed as discussed earlier in this chapter. 

 

Ontological Means 

In order to express all these findings in machine-understandable form, the means provided by 

current simulation standards, such as IEEE1278 and IEEE1516, are not sufficient. Ontological 

means have been applied for similar tasks in the context of the Semantic Web, so that they are at 

least potential candidates for support of semantic simulation interoperation as well. Obrst (2003) 

introduced a spectrum of ontological means that is captured in principal in the following figure: 
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Figure 9: Ontological Spectrum and Methods 

 

The ontological spectrum emphasizes the viewpoint that ontologies are not a radically new 

concept, but that they are a logical step in the process of increasingly organizing data: starting 

with pure enumeration, thesauri relate similar terms and taxonomies relate them in an order. 

Capturing assumptions and constraints adds the conceptual component. Formulating them in 

form of logical expressions and axioms leads to logical theory and makes the represented 

artifacts understandable for software systems, such as intelligent agents. 

 

Recker and Niehaves (2008) broadened the scope, limits and boundaries regarding ontology-

based theories for conceptual modeling beyond the pure technical discussions by focusing on 

three additional questions: 

 What does it mean to engage in conceptual modeling? 

 What does it mean to evaluate the outcome of conceptual modeling? 

 What does it mean to achieve quality in conceptual modeling? 

Following the work of Recker and Niehaves (2008), it is possible to distinguish between 

conceptual models that are defined to collectively construct an artifact that reflects subjectivity 

and purpose on one hand side, and conceptual models that are defined to produce a direct 

representation of an external reality on other hand. The viewpoint presented in this chapter 

favors the second viewpoint, as we request a machine-understandable description of the system 

or the service in order to identify applicable solutions, select the best one of these, compose the 

solutions and orchestrate their execution. This can be easier achieved by direct objective 

representation, although the subjective aspects can become interesting with that as well. 

Furthermore, Recker and Niehaves (2008) distinguish between testing of conceptual models by 



DRAFT – Not for Public Release 

 

 DRAFT – NOT FOR PUBLIC RELEASE  

comparing them to a reference model of reality versus consensus building of experts. In the light 

of machine-understanding, only the first option makes sense. Finally, the quality needs to be 

measured by the degree to which properties of the modeled portion of reality are represented in 

the conceptual model. The alternative presented by Recker and Niehaves (2008) – its perception 

as a good model by a social community – is not objective driven. Nonetheless, remembering the 

lessons recorded in Tolk and Aaron (2009), a consensus between engineers and managers is 

mandatory for successful procedures for data engineering, including the conceptual modeling 

aspects. As such, the observations of Recker and Niehaves (2008) deserve special attention for 

setting up the necessary management structures. 

 

Summary 

In this chapter, we introduced ongoing research exploiting the concepts needed to annotate 

systems and services to enable to identify applicable solutions, select the best solutions of those 

available, compose the solutions, and orchestrate their execution. We showed that artifacts 

developed during conceptual modeling are necessary to enable composable solutions and that 

means provided by the ontological spectrum can be used to capture them in machine-readable 

form. Without such annotations that include conceptual modeling results, the concepts of system 

of systems and service-oriented architectures remain will incomplete. 

 

Conceptual modeling for composition of model-based complex systems supported by the 

methods of data engineering, process engineering, and constraint engineering produces the 

artifacts necessary to enable the lossless mediation between viewpoints as captured in the 

conceptualization of different models. The concept of lossless mediation between viewpoints of 

models is superior to prescribing an enterprise wide data model, as it identifies shareable 

information between models that need to contribute to a common operation instead of 

shoehorning the underlying conceptualizations into yet another viewpoint. 

 

The rigorous application of mathematics to produce artifacts for annotation is a necessary 

requirement to enable consistent systems of systems or service-oriented architectures as 

envisioned in the introduction of this chapter. The ultimate goal must be to capture also the 

system specifications and requirements in appropriate mathematical structures to allow agent to 

identify, select, compose, and orchestrate systems and services that satisfy these specifications 

and requirements. Therefore, this chapter is only the first step in setting a common research and 

alignment agenda for conceptual modelers, system architects, requirement developers for net-

centric operations, and other communities that contribute already or that will contribute in the 

future to this common domain of interest. 
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