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ABSTRACT

Malware-generating engines challenge typical malware analysts by requiring them to

quickly extract and upload to their customers' machines, a signature for each of a possi-

bly vast number of never-before-seen malware instances that an engine can generate in a

short amount of time In this thesis we propose and evaluate two methods for'linking va-

riants of engine-generated malware to its engine. The proposed methods use the w-gram

frequency vector (NFV) of the opcode mnemonics of an engine-generated malware in-

stance as a feature vector for the instance. An NFV is a tuple that maps «-grams with

their frequencies. The in-formation contained within the NFV of an engine-generated

malware instance is then used to attribute the instance to the engine. The first method im-

plements a Bayesian-like classifier that uses 1-gram frequency vectors of programs as

feature vectors. This method was successfully evaluated on a sample of benign programs

and one of malicious programs from the W 3 2. Simile family of self-mutating mal-

ware. The second method, which is an extension of the first method, uses optimized

2-gram frequency vectors as feature vectors and classifies malware by computing its

proximity to the average of the NFVs of instances known to have been generated by a

known engine. The second method was successfully evaluated on four

ma)ware-generating engines: W32 . Simile, W32.Evol, W32.NGCVK, and W32.VCL.

The evaluation yielded a set of four 1 7-tuples of doubles as signatures for each of the en-

gines, and achieved a 95% discrimination accuracy between a sample of benign programs

and samples of malware instances that were generated by these engines. Accuracies of

94.8% were achieved for engine signatures of size 6. 8 and, 14 doubles. We also used
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four k-rm classifiers which, unlike the second method, require the time-consuming task of

creating and storing one signature per known malware instance, to countercheck the ac-

curacies achieved by the second method. This work is inspired by successful methods for

attributing natural language texts to their respective authors. The proposed methods may

be viewed as filtering (or decision support) tools that malware detectors may use to de-

termine whether extensive engine-specific program analyses such as emulation and con-

trol tlow analysis are needed on a suspect program.
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Chapter 1

Introduction

This chapter presents the general problem of malware detection. We first give a

definition for the different types of malware, and then we give an overview of the tradi-

tional methods for detecting malware and how engine-generated malware challenges cur-

rent detectors. Finally we enumerate the methods proposed in this thesis to improve the

accuracy and speed of malware detectors at attributing engine-generated malware to its

engine.

LI A Brief Look at Malware

Malware, short for malicious software, is a program designed to potentially disrupt the

normal functioning of a system in which it executes [8, 9]. The term computer virus is

commonly used to mean malware, but the definition of malware expands to include other

forms of malicious programs. These programs include computer worms, Trojan Horses,

adware and spyware.

1.1.1 Classification

A computer virus is malware that, when executed, tries to attach itself to other

files without the knowledge of the user [2, 9]. Brain is one example of an early computer

virus [22] A computer worm is standalone malware (i.e.. it does not need to attach itself

to other files) that is able to spread across a network [2, 29]. A common example of this



type of malware is the 2003 SQL Slammer worm which spread fast and affected millions

of computers in a short period of time. In addition to causing damage to the infected sys-

tem, worms also consume a lot of bandwidth. A Trojan Horse is malware that appears

benign but may perform malicious actions that could allow unauthorized access to the

system on which it was installed. Adware is malware that generates unsolicited ads usual-

ly through pop ups. Spyware is malware that attempts to capture personal information and

transmit it to the attacker. Detailed definitions of these and other classes of malware are

given by Szor in [30] and by Aycock in [2].

Malware has evolved through various stages in an attempt to evade detection and

be able to execute its malicious payload. Armored viruses are those viruses which use

code obfuscation to make their code harder to reverse engineer, without altering its func-

tionality [30]. Figure 1.1 shows an example of an obfuscating transformation, where a

predicate is crafted so that its value is always "true" and so that the obfuscator is able to

insert an unreachable set of code fragments.

Figure 1.1: Code obfuscation: The predicate may be crafted so that the 'YES"
1

path will always be

taken. The 'NO' path is dead code that has been inserted for the sole purpose of hardening static

analysis.



Encryption of a malware's binary is another form of obfuscation where the intent

is to harden disassembly or make it impossible. Malware that encrypts its own code is of-

ten called polymorphic malware [30J. Kaspersky Lab determined that almost all of to-

day's malware are polymorphic, making it difficult to develop detection and disinfection

procedures within an acceptable time frame [14].

A morphing engine is a program whose purpose is to change the appearance or

the semantics of the malware. Malware which carries its own engine is called metamor-

phic malware [5, 8, 24]. A breakdown of the structure of a metamorphic malware is given

by Walenstein et al. [3, 34]. Malware which invokes a remote engine with the malware

code as input in order for the engine to transform its appearance or semantics is called

morphing malware [7]. (See Figure 1.2).

EVE

\ I

' v

'Engine' )

\ 7-1^- -J out Y

va r ia nt 1 variant 2 variant n

Figure 1.2: Morphing Engine: On input a malware instance, the engine is able to generate arbitrarily

many variants of that instance.

Metamorphic malware is henceforth viewed as a subclass of morphing malware. A va-

riant of a morphing malware is a program that was generated by a malware-morphing



engine [2, 8]. This work specifically targets malware, of any of the above classes, that is

generated by a machine, not by a human.

1.1.2 Current State of Threat

The last several years marked the start of a new period characterized by a rapid

increase in the number of malicious programs. Figure 1.3 shows the sharp increase in the

number of malware variants that was observed over the last few years by F-Secure, an

anti-virus company.
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Figure 1.3: Malware growth per year, the number of malicious programs tripled in 2008. Source

F-Secure, 2008Q4[13|.

According to Kaspersky Lab [14] there is separation of the design tasks by the

malware authors, where different people participate at the different stages of malware de-

sign, and later combine the work hence making it complex. Microsoft Security Intelli-

gence Report determined that there was a large increase in the number of worms detected

across the world in the first half of 2009. It also reports that computers in corporate envi-

ronments were more likely to be infected by worms than home computers. According to

Microsoft Security Intelligence Report, malware creators often release variants for a fam-



ily which are typically used in an effort to avoid being detected by security software.

Another factor that has contributed to a fast increase in the level of malware threats is the

availability of underground funding for malware hosting and distribution, which made

malware more accessible to cyber criminals [25].

There were approximately of 5.5 million malware instances analyzed in 2007,

which on average involved analyzing between 15.000 and 20,000 new malware instances

each day. This is more than four times the average number of malware instances analyzed

per day, compared to 2006 [31]. Another reason that has contributed to this rapid increase

is the hiring of professionals by malware shops. These professionals also do quality as-

surance to ensure the complexity of the software [4]. Malware authors automate the crea-

tion and spread of malware to ensure that the malware spreads fast and to challenge ma-

nual malware analysis [4].

Anti-virus companies, in an attempt to cap the rapid growth in volume, have come

up with generic detectors to detect a wider range of "related"* malware instances. This ap-

proach, though faster than using one signature per malware instance, has resulted in high

rates of false positives, where benign programs were mistaken for malicious. An example

of a false positive is when Kaspersky Lab misclassified Windows Explorer as malicious

in December 2007. Team-Cymru. a malware research firm, submitted 1000 samples of

malware to 32 different commercial antivirus firms. Out of these 1000 samples, 630 sam-

ples went unnoticed [10].



1.1.3 Engine-generated Malware

Engine-generated malware is that which has been generated by a machine, per-

haps after being given some user input. Malware generating engines include the so-called

"virus generation toolkits'" that are often available for free download by anyone over the

Internet, as well as morphing engines. We continue our discussion of morphing engines

to further illustrate the concept of a malware-generating engine.

Next Generation Virus Creation Kit »» fay Snaske—
JiVirusnarne
j
Encryption
Directory Traversal
JAnti Debugging / Anti Bat!
'Infection Type
JAPI Search Type
1 Encrypt Host
| Entry Point Obscurity
; Pef-Process Residency

Create

NGVCK O 45

About

Quit

Viiusname

Author {SnakeByte

Vitusname
f
NGVCK

Please enter name of the Author ( you *Q"
J and

the name the virus should have.

Figure 1.4 : The Next Generation Virus Creation Kit.

Morphing engines use source-to-source transformations such as code substitution

(e.g., code expansion and code compression), garbage insertion, code permutation, and

register renaming to modify a malware instance's appearance without necessarily pre-

serving its functionality [34]. Code expansion (see Figure 1.5 for an example) is a trans-

formation where one code segment is replaced with a larger code segment. An indirect

call instruction, for instance, can be morphed by computing the sum S of two variables on

the program's stack, which are known beforehand, and then jumping to the location

pointed to by S. Code compression (see Figure 1.5 for an example) is a transformation



where a code segment is replaced with a smaller code segment. Code compression also

aims at eliminating garbage instructions from the code. Code permutation (see Figure 1 .5

for an example) makes use of direct jump instructions to reorder the lines of code while

maintaining the control flow of the program being transformed. Garbage insertion (see

Figure 1 .5 for an example) adds do-nothing instructions to the malware code.

Examples of existing metamorphic malware include W32. Simile,

W95.Zmist and W32.Evol. Examples of malware generation toolkits include

W32 . NGCVK and W32 . VCL [11, 27, 29]. The gt

very user-friendly" interface of NGVCK is

shown in Figure 1 .4.

1.1.4 Malware Detection

Malware detectors (also referred to as anti-virus scanners) are programs whose main task

is to search their host computing system for the presence or absence of malware [5]. They

may also be invoked manually or automatically to determine whether a given program is

malware.

Since the size of malware code may range from just a few lines of code to a large

number of lines of code, including multiple procedure calls, malware detectors typically

use malware signatures (also called malware definitions) to detect malware. A malware

signature is a sequence of bytes and/or patterns that occur in malware's binary and that

can be used to uniquely identify the binary. A malware signature should be specific to the

identified malware or malware family so as to avoid false positives and false negatives.

Anti-virus analysts need to have an up-to-date knowledge of the current vulnera-

bilities and exploits which could be targeted by malware authors [29], this way a signa-



ture can be custom-built to recognize patterns in the malware code which indicate that the

code may be able to exploit a given vulnerability. They sometimes rely on submissions

by individuals and organizations of new malware samples for which signatures may not

yet have been extracted by the anti-virus analysts. Szor describes a number of approaches

used by anti-virus analysts to analyze malware. extract a signature for it, and then use the

signature for detection purposes [29]. Malware detection is discussed in more detail in

Chapter 2.

1.2 Challenges

In his pioneering work on computer viruses, Cohen formally proves that no mal-

ware detector can possibly be constructed that can perfectly detect all the current and fu-

ture malware instances in a finite amount of time [9J. One other, more practical, chal-

lenge that anti-virus analysts face is the need to provide a signature in a timely manner

while keeping up with the rate at which never-before-seen malware instances show up in

the wild, since malware signature databases must be updated frequently to add signatures

for newly released malware [33]. One condition for a malware detector to be efficient is

that the malware signature database be as small as possible in order to reduce the time

taken to update it and scan it. Also, if a malware signature database is large and requires

an inordinate amount of space and time to search and update, a user might be tempted to

ignore requests by the malware detector to update its database or to scan the computer for

the presence of malware.

In this thesis we propose a method for efficiently attributing engine-generated

malware to its engine, which we hope will address the challenge of having to store one



signatute for each of a possibly vast number of malware instances that a given engine

may be able to autonomously produce in a short amount of time.

Code Expansion

mcv eax , 1

6

push eax

mcv eax, 32

mcv eax, 1024

mcv edx, 32

push eax

mcv eax, 10

add eax,

6

push eax

push eax

-> ecv eax, 32

mcv eax, 1024

mcv edx, 36

sub edx,

4

cuah eax

Code Compression

mcv [esi+4 ] , 6 mcv[eai+4] ,

9

add [e3i+4] ,

3

pu3h eax -> mcv [ebp+8],eax

mcv eax, ecx

mcv [ebp+8
] , eax

pep eax

Code Permutation

push ebp

mcv ebp, esp

Garbage Insertion

jmn Li: push ebp push ebp

L2: mcv edi,dw ptr[ebp+0S] nop

mcv edi r dw ptr [efcp+0S]-»- jmp L3:

tesr e3i,e3i LI: mcv ebp,esp

mcv edi, dw ptr [etp+OC] jfflc L2:

cr edi, edi L3: test esi, e3i

xcr edx, edx mcv edi,dw ptr[ebpfG<

or edi, edi

xcr edx, edx

-* nop

mcv ebp, eap mcv efcp , esp

pep esp pep esp

Figure 1.5: Morphing Transformations: A selection of the source-to-source transformations used by

morphing engines to change the appearance of maiware in-stances.

1.3 Our Contributions

This thesis makes the following contributions.

• We propose and evaluate a method for discriminating between variants of the

W32 . Simile metamorphic malware and a sample of benign program. The me-
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thod uses an optimized instruction frequency vector of a program as a feature vec-

tor for the program. The method is successfully evaluated, with a success rate of

100%, for optimized instruction frequency vectors composed of only 4 real num-

bers.

• We propose and evaluate a method for attributing malware generated by the

W32.VCL engine, the W32.NGVCK engine, and the engines of W32. Simile

and W32 . Evol, to the engines. The method uses as feature vector for a program

the (possibly optimized) «-gram frequency vector of the program's opcode mne-

monics, for some positive integer n. The method is evaluated for n = 2, with a

success rate of 95% for optimized bigram frequency vectors composed of only 17

doubles. An accuracy of 94.8% was achieved for 6, 8 and 14 doubles. The method

asks that only the average of the optimized bigram frequency vectors of known

variants be used as a signature for the engine that generated the variants.

The proposed methods only require the malware detector to disassemble a suspect pro-

gram before feeding it into a classifier that implements the proposed methods.

1.4 Impact of Our Contributions

The proposed methods are expected to improve those detectors that use static and

dynamic program analyses to extract malware signatures in the following ways:

• Both methods were time efficient. A full experimental evaluation of the methods

(involving 500 different subjects) completed in 4 minutes. This is a relatively

good time, given the fact that the program was running on a Java virtual machine.
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• The second method allows the detector to be more space efficient. 1 he space re-

quired to store the best performing signature is the space needed to store 17

doubles.

• The detection accuracies of both methods, especially that of the second method,

suggest that the large body of work in forensic linguistics may be worth tapping

into. The proposed methods where inspired by works which have been successful-

ly used by forensic linguists to attribute natural language texts to their correspond-

ing authors.

1.5 Organization of this Thesis

Chapter 2 gives a detailed statement of the problem of detecting engine-generated

malware. Existing approaches for detecting engine-generated malware are investigated

and their contributions contrasted with those proposed in this thesis to attribute engine-

generated malware to its engine. Chapter 3 describes and evaluates the first detection me-

thod proposed in this thesis. This method uses a program's instruction frequency vector

to link the program to a known malware-generating engine. Chapter 4 describes and eva-

luates the second method that this thesis proposes to attribute engine-generated malware

to its engine. This method uses a program's w-gram frequency vector, for some positive

integer n, to attribute the program to its engine. Chapter 5 concludes this thesis and out-

lines directions for further work.



Chapter 2

The Detection Problem of

Engine-generated Maiware

In this chapter, we visit some of the existing methods for detecting

engine-generated maiware. Each of these methods falls under one or more of the ( 1 ) ge-

neric model, (2) the normalization model, and (3) the engine signature model for detect-

ing engine-generated maiware. We then provide a synopsis of our proposed detection

methods, which fall under the engine signature detection model of engine-generated

maiware.

2.1 Existing Detection Methods

In order to eventually detect a maiware signature, a maiware detector can start by statical-

ly analyzing a suspect program, dynamically analyzing it, or both.

• Static analysis. A suspect program is statically analyzed by going through one or

more of the normal steps in the program analysis pipeline. This is usually done by

disassembling a suspect program, extracting its control flow graph, and then

searching the control flow graph for sub-graphs that may signal a malicious intent

[8, 11, 21]. Static program analysis is inherently hard and may be challenged by

code obfuscation (see Figure 1.1). Figure 2.1 gives a high-level view of the mai-

ware analysis pipeline.
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Dynamic analysis. Malware detectors may also run a suspect program in a virtual

environment that simulates some computing platform. Malware emulation is the

use of a virtual machine to run a suspect program and monitor its behavior. An

emulator may execute a suspect program a given number of times with different

inputs, but the emulation process could become lengthy in a situation where the

program has to be emulated in a real-time environment or if a malware instance

attempts to test the patience of the emulator by entering a do-nothing loop that

will runs for a random amount of time [30].

Suspect

Binary
Disassembly

Êxtract

Procedures

Control Flow
Analvsis

Property

Verification

Malware Analysis Pipeline
A

i~\
Malicious Benign

Figure 2.1: Malware Analysis Pipeline

Program analysis tools have enabled malware detectors to fairly accurately discrimi-

nate between malicious programs and non malicious ones [7, 23], and any effort made by

a malware detector to detect malware will require a certain amount of program analysis.

The remainder of this section will describe those detection models (which also require

that a certain amount of program analysis be applied by the detector to suspect programs)

that were specifically designed to detect members of known malware families, including

engine-generated malware.
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2.1.1 Generic Detection

The generic detection model is that which requires a malware analyst to analyze a

suspect program by looking for those patterns that the malware analyst expects all of the

variants of that suspect program to have. This model has initially been devised to detect

variants of malware that have been manually generated by slightly altering an existing

malware instance, usually to fix a bug within the instance, or to modify the instance's

malicious behavior. This model is certainly applicable to those engine-generated malware

instances, provided the engine behaves in a manner similar to that of a human, by just al-

tering some "non-essential"" fragments of the malware code to fix a bug, or by slightly

modifying the malware's malicious behavior. Due to the high level of complexity, for a

human's point of view, of assembly language programs, humans typically prefer making

slight alterations to malware code (which is often written in assembly), over major over-

hauls.

Since it relies on the assumption that malware variants are no more than slight

modifications of the other variants, generic detection is not a good match for the problem

of detecting malware whose appearance and/or semantics may be drastically changed by

morphing engines. Engines, after all, are much better than humans (think compilers) at

making conservative decisions about the control flow of a program, and at deciding that

the insertion or deletion of a given set of code fragments from an assembly language pro-

gram will modify the input/output behavior of the program in unintended ways.

Geometrical detectors use the effects caused by a viral infection to the size of an infected

file (e.g. an attachment to a system file or a sudden increase in the file size). Since system
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files have known sizes, a change in their sizes may be interpreted as an infection. This

method effectively detects variants of the W9 5/ZMist metamorphic virus but is ineffec-

tive in the detection of non parasitic malware [29].

The generic detection model has actually not been successful at dealing with the

variant generation problem, even for those malware variants that were manually generat-

ed by slightly modifying existing malware instances. A VTest Labs, a German consulting

company that specializes in computer security, has reported in 2008 unacceptably high

levels of false positives and false negatives generated by commercial malware detectors

that use the generic detection model for detecting member of malware families. Their

main concern was that there was no systematic, scientifically testable way of verifying

whether a given generic signature, extracted in a lab by a human analyst, perhaps relying

on a set of "hunches" and with the help of a set of reverse engineering tools, would pro-

duce a single generic signature that is representative of a large enough (say, 90% or

above) portion of a malware family.

2.1.2 Normalization

Normalizers are programs that take as input a suspect program, simplify it in

some fashion (e.g.. by eliminating garbage instructions), and then analyze the output of

the normalizer to determine whether its output is similar to that of a known malware.

Nonnalizers aim to reduce the size of the signature space needed to store a signature for

each instance of engine-generated malware by assuming that multiple instances would be

"simplified" by the normalizer into a small set of normal forms [32]. Since the normalizer

construction problem is known to be unsolvable in general [32], existing methods for
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normalizing members of a given malware family may not always scale the problem of

normalizing the members of any malware family. Figure 2.2 gives a pictorial representa-

tion of the normalization model for detecting malware.

Variant 1

Normalize^

Variant 2 Variant 3

Normalized, Normalize ormalize

x\ /*/
Normal Fonn

Malware Detector

Figure 2.2: Normalization: A procedure is constructed that efficiently reduces each malware instance

to a normal form. Instances that belong to a given malware family are expected to be reducible to the

same normal form.

2.1.3 Engine Signatures

The engine signature model for detecting malware [5, 6] asks that forensic evi-

dence be extracted from a suspect program that can be used to link the suspect program to

a known malware-generating engine. This model was inspired by the success that foren-

sic linguists had in attributing, to their authors, documents written in some human lan-

guage such as English. Probabilistic and statistical methods been suggested to attribute

morphed malware variants to the morphing engine that generated them. Chouchane et al.

[7] suggested that Markov chains theory be used to model the morphing process of mal-
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ware variants, and then construct a filter for engine-generated malware that uses the mor-

pher transition matrix as a signature for the morpher.

EVE

variant 1 variant 2 variant n

i , ^i-:-:
:
i:

:
i
:
:

<r

ES

Malware Detector

Figure 2.3: Engine Signature: Instead of storing and managing a signature for each malware variant.

A single signature, that of the engine that generated the variants, is used to detect the variants.

Other statistical approaches use as feature vectors a code fragment's sequence of

system calls that is known to be executed by members of a given malware family [26].

These methods work well when the system calls are not obfuscated but. since they make

the assumption that the system calls used as a signature will not be changed by the mor-

pher, they are not of much help in detecting engine-generated malware where the engine

may or may not preserve the malware' s functionality.
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2.2 IFVs and NFVs as Feature Vectors

The proposed detection methods fall under the engine signature detection model

of engine-generated malware; they provide fast, approximate tools for attributing

engine-generated malware to the engine. The following metrics are used to construct a

program's feature vector:

1 A program's instruction frequency vector: This is the vector each of whose com-

ponents holds the frequency, in the program, of a given opcode mnemonic in the

instruction set architecture of the machine on which the program's binary is run-

nable. A program's instruction frequency vector is analogous to the word fre-

quency vector of a document written in some human language. Word frequency

vectors have been shown to contain enough information about a document's hu-

man author to enable a forensic linguist to tell what human author, in a given set

of authors, has written the document whose word frequency vector is being ex-

amined [18].

2 A program's 17-gram frequency vector: This is the vector each of whose compo-

nents holds the frequency, in the program, of a given w-gram, for some fixed posi-

tive integer n, of opcode mnemonics that occur in the instruction set architecture

of the machine on which the program's binary is runnable. A program's w-gram

frequency vector contains more information about the program than the program's

instruction frequency vector, since an w-gram frequency vector also capture the

rate at which the program's author tend to append a given opcode mnemonic to

any given sequence of n-\ opcode mnemonics. Forensic linguists have conducted
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a successful empirical evaluation of an authorship attribution method that used

word »-gram frequency vectors to attribute English documents to their authors

[18].

Optimization choices had to be made by us to reduce the size of a program's in-

struction frequency vector and w-gram frequency vector, as well as to allow us to conduct

our extensive experimental evaluations, which involved 500 different programs of vari-

ous sizes, so that they terminate within a reasonable amount of time. Subsequent chapters

elaborate on each of the above methods, describe the experiments that we have conducted

to evaluate them, and discuss the outcome of each of these experiments.



Chapter 3

Using IFVs to Detect Engine-generated

Malware

This chapter describes the first method that we have successfully tried to attribute

engine-generated malware to the engine that produced it. This method uses a statistic

about a suspect program, namely its instruction frequency vector (IFV), to determine

whether the program is engine-generated malware that has been generated by a known

malware generating engine. This method was successfully used to discriminate between

variants of the W32 . Simile malware and benign programs.

3.1 Motivation

The detection method described below only requires the malware's binary be dis-

assembled, saving the malware detector the trouble of having to run potentially time con-

suming program analyses on a suspect binary. Since the IFV of a program does not

change should the code permutation transformation be applied to the program, the detec-

tion accuracy is insensitive to the code permutation transformation that a morphing en-

gine may use, in addition to other source-to-source transformations, to change the ap-

pearance of its input malware variant. The method also reduces the space normally

needed to store a signature for each variant by only requiring that the IFV's of a sample
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of malware instances known to have been generated by a given engine be used to deter-

mine whether a suspect program has been generated by that engine.

3.2 Approach

An Instruction Frequency Vector (IFV) is a vector that maps opcode mnemonics

with their frequencies in an assembly language program. The frequencies of these opcode

mnemonics are recorded as entries in the IFV. IFVs are normalized so that the relative

frequencies of the opcode mnemonics are considered instead of the absolute ones. A pro-

gram's normalized IFV is then used as a feature vector for the program. Consider the fol-

lowing program P, reduced to its sequence of opcode mnemonics.

P : mov, add, mov, add, sub, push, add, mov, sub

Figure 3.1 shows the IFV of P. We will henceforth use the acronym IFV to refer

to a program's normalized instruction frequency vector.

mov add sub push

IFY(P): 3 3 2 1

Normalized: 0.33 0.22 0.22 0.11

Figure 3.1: Computing the Instruction Frequency Vector of P.

We measure the distance between two IFVs using the following distance measure.

hi-i

d{lFVx,lFVy) = {T ((IFVx) l

- (lFVy ))

2

,

where IFVX and IFVy are instruction frequency vectors of program x and program y, re-

spectively.
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Let L(X; S) denote the likelihood that a suspect program X is W32 . Simile giv-

en that a number of W32 . Simile instances are in the vicinity ofX. L(X; S) is expressed

as follows:

\sESim ; d(IFVYJF\0 <€\
L(X t S) = !

Number of trainers within £ of X

Let L(X; B) denote the likelihood that a suspect program X is benign given that a

number of benign instances are in the vicinity ofX. L(X; B) is expressed as follows:

_ \s€Bgn:d{lFVxt IFVb)<€\
L [A , o J

— ; ;
—

Numoer of trainers within £ of X

A discriminator between benign programs and malware generated by

W32 . Simile's engine can then be designed to operate as follows:

1

.

Take as input the IFV of a suspect program X.

2. Choose a threshold s > 0.

3. Find the IFV's of existing benign and W32 . Simile samples (trainers) that are

within of the IFV of the suspect program.

4. Compute the number ofW32 . Simile trainers within ofX

5. Compute the number of benign trainers within ofX

6. The family that has the highest number of trainers within s of X is declared to be

X~s family; if there is a tie, choose one at random.
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3.2.1 Evaluation

We downloaded W32 . Simile's eve program from vx.nellux.org [15]. We then

extracted the opcode mnemonics from the eve and performed the code substitution (ex-

pansion and compression), code permutation, and garbage insertion transformations.

These transformations simulated those described by The Mental Driller, the "author of

W32 . Simile, on how he implemented W32 . Simile's morphing engine [16]. This op-

tion (i.e., implementing a simulator for the engine) is more efficient and secure than ac-

tually running the malware and waiting for it to mutate, which it may or may not do on

any given run. One hundred variants of W32 . Simile's eve were generated using the

simulator.

We collected 100 benign programs. These benign programs were downloaded

from download.cnet.com [12] and sourceforge.net [28]. These programs were disassem-

bled using Ollydbg [17] and the IFV for each program was generated.

We grouped all of the benign and malicious IFVs into training and testing sets.

Each training set consisted of 50 instances from each sample and the remaining in-

stances were used for testing.

We then evaluated the six-step approach described in the previous section using

40 classifiers, by varying the threshold from 0.1 to 2.0, with an increment of 0.05. IFVs

were further optimized by considering only the RI most frequent instructions across the

collected samples, for some small positive integer RI, to construct the IFVs.
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We report our experimental results for Rl~4 and RI=5. Figure 3.2 and Figure 3.3

show the experimental results, in terms of accuracy, false positives, and false negatives,

for RI=4 and RI=5, respectively.

Accuracy for Rl = 4

— False Pos.

— False Neg
Ace.

Threshold

Figure 3.2 Evaluation results of the IFV classifier for RI=4 and 0.1< £ <2.0

Accuracy for Rl = 5

— False Pos.— False Neg.

Ace

Threshold

Figure 3.3 : Evaluation results of the IFV classifier for RI=5 and 0.1<£ <2.0



25

3.2.2 Discussion

Some of the classifiers achieved 100% discrimination accuracy between the sam-

ple of benign instances and that of the W32 . Simile instances. This level of accuracy

was achieved for RI=4 and c = 0.5, as well as for RI=5 and s = 0.7. This is a rather prom-

ising result since the number of instructions used to compute the feature vectors is small,

hence saving space and computation time. As the threshold approached 2, the classifiers*

decision making became not much different than random guessing. This is due to the fact

that the Euclidian norm of any (normalized) IFV is less than or equal to 1 . placing any

IFV within a threshold of no more than 2 of any other IFV.

One limitation of this approach is that it has to visit all of the samples while com-

puting the distance from a suspect program to each member of each sample to identify

those members that are within s of the suspect program.

The next chapter describes and successfully evaluates a more general method for

attributing malware to its engine, without the need to store the feature vectors of all of

those malware instances that are each known to have been generated by a specific engine.



Chapter 4

Using NFVs to Detect Engine-generated

Malware

In this chapter, we describe and then evaluate an approach that uses /7-grams to

attribute engine-generated malware to its engine. In our experiments we evaluate the ap-

proach for n=2. For n-\, the approach is similar to the approach described in Chapter 3.

For n—2, the approach is similar to that taken by Abou-Assaleh et al. [1] to separate mali-

cious programs from benign ones, but not to attribute malware to a known

malware-generating engine.

4.1 Motivation

We were motivated to implement this /7-gram method by the success of a work on

attributing human text to its author [18]. With this method, only one signature would

need to be computed and maintained to detect members of a given family of malware

known to have been generated by a known engine. This approach requires no program

analysis beyond disassembly except for malware that is generated in the form of an as-

sembly language program.

4.2 Approach

We use the term rc-gram to refer to a sequence of n opcode mnemonics. For in-
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stance, a 2-gram is a sequence of two opcode mnemonics. An n-gram Frequency Vector

(NFV) is a tuple that maps w-grams with their frequencies in a given sequence of n or

more opcode mnemonics. Consider the following program /\ reduced to its sequence of

opcode mnemonics.

P : mov, mov, add, mov, add, sub, push, add, mov, sub

Considering only the 2-grams that are composed of the 3 most frequent opcode

mnemonics in P, the NFV of/3
is computed as shown in Figure 4.1. The NFV compo-

nents for the "relevanf bigrams submov, subadd, and subsub are not displayed

in the figure, since these bigrams do not occur in P.

Movmov movadd movsub addmov addadd addsiib

NFV (5J : (1 2 12 1)

Normalized: (0.143 0.2S6 0.143 0.2S7 0.143)

Figure 4.1: Computing the bigram frequency vector of P, using only P's three most frequent opcode

mnemonics.

A program's NFV is treated as a feature vector (signature) for the program. The

signature for a family (P,-)l< i < I of programs is computed as follows:

li=1 NFV(P.)
Family Signature = —

,

where the + operation on two NFVs is the outcome of the component-wise addition of the

components of the operands.

Our distance measure on NFVs is given by:

d(NFv„NFv„) -ag(gaaaSf J
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which can also be expressed as

d(NFVx,NFV) = If., — ^^ ^-l

where m is the number of unique opcode mnemonics that are considered "relevant" by

the detector. d(NFVx, NFVy) computes the dissimilarity between NFVX and NFVV . For

identical strings of opcode mnemonics, this dissimilarity is 0.

Detection method 1 (Proposed method). In order to determine to which family, in a

given set of engine-generated malware families, a suspect program belongs, we designed

a classifier that computes the distance d between the NFV of the program and the signa-

ture of each family. (The NFV may not necessarily be taken whole; the detector may opt

to choose whatever «-gram it deems "'relevant** to the NFV.) The classifier compares the

label of the family that is closest (according to d) to the suspect program with the label of

the actual family of the suspect program. If the labels are different, then we increment the

mismatched counter. If the label of the suspect program is "benign** and that of the clos-

est family is "malicious", then we increment the false positive counter. If the label of the

suspect program is "malicious" and that of the closest family is "benign"*, then we incre-

ment the false negative counter. We then use the misclassification rate, false positive rate,

and false negative rate to evaluate the classifier.
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Figure 4.2: Engine Signatures: The signatures of the engines are used to attribute malware instances

to known engines.

(k-nn). We also used a ^-nearest neighbor classifier (k-nn). A k-nn classifier is an in-

stance based classifier that has been shown to be powerful enough for most classification

problems [20, 35]. Given a training set T of malicious programs, the NFVs of all the pro-

grams in T are labeled and then stored in a set S. The distances between a suspect pro-

gram's NFV and each of the NFVs in S are computed; the k nearest ones, for an a-priori

chosen k, are then selected to vote. The family, be it one of benign programs or one of
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engine-generated malware, that has the majority of the votes is declared by the classifier

to be that of the suspect program. Where there are ties a winner is selected at random.

4.2.1 Evaluation

We collected 100 instances of each of the following families: W32. Simile,

W32.Evol, W32.VCL, W32 .NGVCK and benigns.

The proposed approach was evaluated by using as feature vectors for the collected

programs the 2-gram frequency vectors of the programs. These frequency vectors were

not used whole to evaluate the classifiers, instead we experimented with two strategies

for choosing the most relevant bigrams for the collected families of programs.

1

.

RI. Consider only those bigrams that are composed of any two of the RI most fre-

quent opcode mnemonics across the collected programs, for some small positive

integer RI.

2. RB. Consider only those RB most frequent bigrams across the collected pro-

grams, for some small positive integer RB.

We divided each family into a training set of size 90 and a testing set of size 10. Our

first classifier (implementing the proposed method) used the average of each family's

NFVs as the family signature. Our second classifier (implementing k-rm) was evaluated

for k = 1 to 20. For each of the classifiers we performed a 10-fold cross validation [19].

We used a new testing set each time. Letting A, denote the classification accuracy for

each of the ten runs of the 10-fold cross validation, we took the average of the A,'s as a

A 4.4 _L AJixTA2 •-rt 10
Cross Accuracy —

performance measure for the classifiers. 1^
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Figure 4.3 shows the achieved classification accuracies (using the RI strategy) of

the proposed classifier, as well as the k-rm classifier for k=\, 5, 10, 15, and 20.

FS 1-nn 5-nn 10-nn 15-nn 20-nn

RI=1 0.200 0.200 0.200 0.200 0.200 0.200

RI = 2 0.252 0.400 0.400 0.400 0.400 0.400

RI = 3 0.850 0.958 0.936 0.936 0.928 0.930

RI = 4 0.852 0.996 0.988 0.988 0.982 0.978

RI = 5 0.698 0.992 0.976 0.964 0.964 0.958

RI = 6 0.768 0.988 0.976 0.964 0.956 0.948

RI = 7 0.834 0.994 0.992 0.970 0.964 0.954

RI = 8 0.824 1.000 1.000 0.996 0.974 0.964

RI = 9 0.852 0.996 0.994 0.992 0.978 0.964

RI=10 0.818 0.996 0.996 0.990 0.988 0.976

Figure 4.3 : Accuracies of the proposed classifier and those of k-nn. (RI feature selection strategy).

Figure 4.4 shows the achieved classification accuracies (using the RB strategy) of

the proposed classifier, as well as the &-nn classifier for k=\, 5, 10, 15, and 20.

4.2.2 Discussion

By taking the most frequent bigrams as the most relevant ones (i.e.. as features).

the proposed approach attained an accuracy of 95% using as family signature a 17-tuple

of real numbers. The signatures that enabled us to obtain this high level of accuracy are:

W32.Simile's Engine signature = (0.190, 0.030, 0.155, 0.048. 0.043. 0.057.

0.063,0.020, 0.076. 0.022. 0.0, 0.041. 0.109. 0.0, 0.122, 0.022. 0.0)

W32.Evol's Engine signature = (0.074. 0.026. 0.006. 0.326, 0.208. 0.014. 0.024. 0.073.

0.043. 0.048, 0.0. 0.071. 0.042, 0.0, 0.026. 0.019. 0.0)
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W32.VCL's Engine signature = (0.1 1 1, 0.238, 0.142, 0.027, 0.076, 0.063, 0.063.0.033,

0.009, 0.018, 0.018, 0.054, 0.042, 0.0, 0.040, 0.052, 0.013)

W32.NGVCK's Engine signature (0.132, 0.113, 0.106, 0.048, 0.203,0.018.

0.055. 0.038, 0.022, 0.017. 0.070. 0.122. 0.007, 0.0, 0.007, 0.020. 0.017)

Benign's "Engine signature" = (0.165. 0.173, 0.091, 0.061, 0.052, 0.060, 0.052, 0.046,

0.060, 0.028, 0.019, 0.043, 0.024, 0.029, 0.02. 0.031, 0.029)

FS 1-nn 5-nn 10-nn 15-nn 20-nn

RB = 3 0.650 0.846 0.844 0.822 0.830 0.824

RB = 4 0.884 0.968 0.940 0.924 0.926 0.922

RB = 5 0.940 0.990 0.978 0.978 0.974 0.964

RB = 6 0.948 0.988 0.988 0.974 0.964 0.962

RB = 7 0.946 0.988 0.986 0.972 0.970 0.962

RB = 8 0.948 0.984 0.982 0.972 0.958 0.956

RB = 9 0.932 0.988 0.986 0.980 0.968 0.966

RB=10 0.940 0.990 0.980 0.978 0.970 0.966

RB=11 0.882 0.996 0.976 0.960 0.954 0.940

RB=12 0.910 0.996 0.980 0.972 0.956 0.944

RB= 13 0.926 0.998 0.984 0.976 0.968 0.962

RB = 14 0.948 1.000 0.984 0.968 0.954 0.952

RB = 15 0.936 1.000 0.988 0.972 0.958 0.948

RB=16 0.938 1.000 0.986 0.972 0.962 0.958

RB= 17 0.950 1.000 0.992 0.980 0.966 0.966

RB = 18 0.926 1.000 0.994 0.978 0.964 0.964

RB = 19 0.916 1.000 0.996 0.978 0.960 0.962

RB = 20 0.940 1.000 0.988 0.962 0.954 0.958

Figure 4.4: Accuracies of the proposed classifier and those of k-nn. (RB feature selection strategy).
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These signatures are small compared to those that were generated using as fea-

tures the bigrams composed of the most relevant instructions available across the sam-

ples. The 7-nn classifier was 100% accurate for RB= 14 to 20.

The overall performance of the proposed method can be compared to that of k-nn by

examining the following measures:

• Accuracy. The proposed method achieved a 95% accuracy for RB=17. which is a

high level of accuracy. 7-nn and 5-nn achieved 100% accuracy for RB =14 to 20.

and for RI =5, respectively.

• Time efficiency. The proposed method is, in general, more time efficient than

k-nn: the proposed method creates a family signature once and uses it to recognize

new or never-before-seen programs that belong to that family. k-nn must visit all

of the training instances each time it has to attribute a suspect program to a known

engine by finding the suspect's nearest neighbors.

• Space efficiency. The proposed method is more space efficient than k-nn. The

proposed method stores only one family signature, as an array of doubles, to

represent all of the training instances. k-nn has to load all of the training instance,

perhaps one at a time, in order to classify a suspect program.



Chapter 5

Conclusions and Directions for Further

Work

5.1 Research Outcomes

We proposed a fast filter for engine-generated malware instances using /7-gram

Instruction Frequency Vector (NFV) as a feature vector to attribute a malware instance to

the engine which generated it. The filtering process is optimized by computing the fre-

quencies of only the ""most relevant" fl-grams, for some measure of relevance (e.g., most

frequent w-grams).

Our first filtering method used the 7 -gram frequency vectors of malware in-

stances, to attribute the instances to the engine that generated them. The approach was

successful in discriminating variants of the W32 . Simile metamorphic malware from

benign programs.

Our second filtering method used the 2-gram frequency vectors of engine-

generated malware instances, to attribute each instance to the engine which generated it.

This approach was successful in filtering malware generated by W32. Simile's engine.

W32.Evol's engine, W32.NGVCK, and W32.VCL. Our results indicated that a small

engine signature can be created using only the most frequent instructions or the most fre-

quent bigrams across all the instances that the detector has on hand. A signature of only

17 doubles gave us an accuracy of 95%. The feature selection strategy was also shown to
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be important, since the RB strategy discussed in Chapter 4, is more space efficient than

the RI strategy.

The proposed approaches have been successfully used in attributing natural lan-

guage texts to their human authors [18]. By analogy to the fact that human authors tend to

have distinct writing patterns, the engines generating the malware can also have distinct

features that can be computed from the malware.

5.2 Directions for Future Work

In the future, we will expand our study to improve the feature selection strategies

and experiment with different classifiers. We will experiment with larger numbers of

malware instances and different families of malware. We will also do a more extensive

examination of the existing body of knowledge in forensic linguistics to see if more me-

thods from this field could be applied to malware detection. We will also see if byte

«-gram frequency vectors would give us a level of accuracy that is at least as high as the

opcode NFV used in the experiments. With byte NFVs the detector would not even be

required to disassemble suspect programs.
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