
Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2003

Kiosk Engine: A Platform Independent Solution For Multimedia Kiosk Engine: A Platform Independent Solution For Multimedia

Kiosks Kiosks

Manish Satish Shah
Columbus State University

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shah, Manish Satish, "Kiosk Engine: A Platform Independent Solution For Multimedia Kiosks" (2003).
Theses and Dissertations. 63.
https://csuepress.columbusstate.edu/theses_dissertations/63

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/63?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages

Digitized by the Internet Archive

in 2012 with funding from

LYRASIS Members and Sloan Foundation

http://archive.org/details/kioskengineplatfOOshah

Columbus State University

The College of Science

The Graduate Program in Applied Computer Science

Kiosk Engine

A Platform Independent Solution For Multimedia Kiosks

A Thesis in

Applied Computer Science

by

Manish Satish Shah

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2003

O

O

© 2003 by Manish Satish Shah

I have submitted this thesis in partial fulfillment of the requirements for the degree of

Master of Science.

*

4 30/03 / ~^r*Z%M*&**'

Date Manish Satish Shah

We approve the thesis of Manish Satish Shah as presented here.

\3

Date

/e
~~C-'£4£*&ir*&i

. _ „
-*%>?

Dr. Stan Kurkovsky, Assistant Professor

of Computer Science, Thesis Advisor

Date

W< 7 la i

-

fas JZ>

Dr. Bhagyavati, Assistant Professor

of Computer Science

Date

V. ~Zayrty
Dr. Vladimir Zanev, Associate Professor

of Computer Science

Ill

Abstract

In today's fast paced life saving time is the first priority of every business

organization and presenting information visually is a highly desirable and the easiest way

to impressively communicate to people. For that purpose, there are interactive devices

called kiosks, which display multimedia data on a display and are quite often attached to

other input/output hardware like keyboard, mouse, printer, etc. Most of today's kiosks are

custom made and are designed for specific set of target platform. The task of creating a

kiosk can turn out to be difficult and fairly time consuming. The aim of this thesis is to

research an easier and faster way to develop kiosks and to generalize the processing

power behind different kiosks by developing a driver program, which takes some form of

input and multimedia data and presents the information as a kiosk.

Putting it to reality, we developed a light-weight engine and called it Kiosk

Engine, KE for short. KE is designed to take input in the form of an XML file which

specifies the sources of multimedia data such as audio files, video files, text, image files

and documents along with some attributes such as size, color, location, order and

grouping with respect to other objects on the kiosk. As aimed, the processing power is

separated from data and hence all that is required to be changed for making different

kiosks is the multimedia data and the input XML file. Besides, platform independence is

achieved by using Java™ as the programming language. Hence Kiosks driven by Kiosk

Engine can run on any Java Virtual Machine [LindholmY03] that has the necessary

framework support.

IV

The report shows comparison of KioskEngine with other products on the market,

followed by a detailed explanation ofXML file structure for KioskEngine and the Java™

classes in KioskEngine. The intent of this thesis is also to demonstrate the capability of

Kiosk Engine by developing a working prototype, to research the future prospects of

Kiosk Engine and explore additional functionalities that could be incorporated into Kiosk

Engine with little extra work.

Table of Contents

Abstract iii

Table of Contents v

List of Figures vii

List of Tables viii

Acknowledgements ix

1. Introduction 1

2. Motivation 2

2.1 Desired Features 3

3. Survey of Other Products on the Market 4

3.1 The Apunix Kiosk Engine for the Java™ Platform 4

3.2 Kiosk-In-A-Box from Mass Multimedia, Inc 6

3.3 KioskEngine™ from Touch Controls, Inc 6

3.4 Our Product: Kiosk Engine (KE) 8

3.5 Comparison of Products 9

4. Data Representation in Kiosk Engine 11

4.1 The Structure ofXML file for KE 1

1

5. Implementation of Kiosk Engine 13

5.1 Other languages and development tools 13

5.1.1 Microsoft® Visual Basic 6 and Visual Basic .NET 13

5.1.2 Macromedia® Flash 14

5.2 Sun® Java™ 15

5.3 Comparison of Java™ with other languages and tools 18

6. Content Requirements 19

6.1 Elements ofXMLKiosk file for KE 19

6.1.1 <kiosk> tag 19

6.1.2 <screen> tag 20

6.1.3 <header> tag 21

6.1.4 <text> tag 22

6.1.5 tag 23

6.1.6 <action> and <target> tags 24

VI

6.1.7 <textArea> tag 25

6.1.8 <aud> tag 26

6.1.9 <vdo> tag 26

6.1.10 <file> tag 27

7. Program Architecture of Kiosk Engine 29

7.1 Conceptual Classes of Kiosk Engine 29

7.2 Application Flowchart 30

7.3 Java™ Classes 31

7.3.1 KioskEngine Class 31

7.3.2 ParseXML class 36

7.3.3 StringJEditorPane class 39

7.3.4 ImageJLabel class 41

7.3.5 AudioCombo class 43

7.3.6 VideoCombo class 44

7.3.7 ScreenString class 46

7.3.8 Screenlmage class 47

7.3.9 ScreenTextArea class 48

7.3.10 ScreenAudio class 49

7.3.11 ScreenVideo class 50

8. Proof of Concept 52

8.1 Useful Hints for putting together a Kiosk using KioskEngine 52

8.2 Pilot Application : Columbus State University (CSU) Kiosk 53

9. Extensibility of KioskEngine 56

10. Conclusion 57

References 58

Appendix: XML file for Columbus State University Kiosk 59

Vll

List of Figures.

Figure 1. Super Bowl (1998), at San Diego, CA 5

Figure 2. New Line Cinema (Lost In Space), at various countries 5

Figure 3. Screenshot of a Kiosk-in-a-Box 6

Figure 4. Ticketing Kiosk 7

Figure 5. Information Kiosk 8

Figure 6. Conceptual Class Diagram for Classes of Kiosk Engine 29

Figure 7. Flowchart describing the Operation of Kiosk Engine 30

Figure 8. Class Diagram of the KioskEngine Class 31

Figure 9. Class Diagram of the ParseXML Class 36

Figure 10. Class Diagram of the StringJEditorPane Class 39

Figure 11. Class Diagram of the ImageJLabel Class 41

Figure 12. Class Diagram of the AudioCombo Class 43

Figure 13. Class Diagram of the VideoCombo Class 44

Figure 14. Class Diagram of the ScreenString Class 46

Figure 15. Class Diagram of the Screenlmage Class 47

Figure 16. Class Diagram of the ScreenTextArea Class 48

Figure 17. Class Diagram of the ScreenAudio Class 49

Figure 18. Class Diagram of the ScreenVideo Class 50

Figure 20. Snapshot of Start Screen of the CSU Kiosk 53

Figure 21. Snapshot ofTower Screen of the CSU Kiosk 54

Vlll

List of Tables.

Table 1. Comparison of Features of Kiosk Products 10

Table 2. XML tags in XMLKiosk file for KioskEngine 12

Table 3. Comparison of Programming Languages 18

IX

Acknowledgements

It is a fortune to find opportunities for thanking those people towards whom one feels a

deep sense of gratitude and respect.

I am especially indebted and very thankful to Dr. Stan Kurkovsky, my thesis

advisor and Assistant Professor, Department of Computer Science, who delegated me

with the responsibility of developing such a wonderful project and with his confidence he

provided me the opportunity of working with him and his valuable guidance throughout.

I am honored to extend my gratitude and respect to my parents who have been a

source of encouragement for me.

I am also greatly thankful to the following faculty members for their valuable

encouragement and support,

Dr. Wayne Summers, Professor and Distinguished Chairperson, Department of Computer

Science

Dr. Bhagyavati, Assistant Professor, Department of Computer Science

Dr. Vladimir Zanev, Associate Professor, Department of Computer Science

With Regards,

Manish S. Shah

1. Introduction

Conveying a message in a best way requires high quality communication being done with

easy-to-access information. Graphical information supplemented with audio/video

information furnishes the best quality of message conveyed. Nowadays it is the focus of

every entrepreneur to save a customer's time and minimize manual intervention wherever

possible in order to save capital and maximize profit. Best suited in such environments

are Kiosks that provide all the required information to customers at virtually any location

with minimum monitoring efforts.

Literally, Kiosk is an interactive terminal with a display device, which presents

various types of information on a screen. Kiosks are typically used in locations where

self-service is required or something is to be displayed just for the sake of providing

information, for e.g. theatres, banks, convention centers, visitor stations, etc. They can

include various types of digital multimedia information such as images, decorative text,

audio, video, etc.

Retail kiosks are being incorporated by a large variety of retailers since first

introduced in 1980s [DouglasOO] in wide business areas such as banking, gaming,

internet access, self-checkout terminals, providing service/product information, etc. to

name a few. They have changed the paradigm of presenting multimedia information to

the target viewers. Needless to say, not far ahead in future, Kiosks are going to redefine

the means of electronic communication and the ways to do business.

2. Motivation

Transparent to the end user, the task of developing a kiosk is fairly time consuming and

nothing but easier said than done. Evidently, there is only a small number of companies

in the industry totally focused on development of kiosks and very few of them developing

with some sort of generalized software for all kiosks. Most of the kiosks once developed

are good for targeted systems only and do not provide any options for an easy change in

configuration.

Scarcely realized fact is that kiosks, like other software products, need two basic

things to keep it working, viz. data and processing power, but it is possible to draw a line

between the two. Isolating the two enables us to focus only on the data (images, audio,

video, etc.) and their organization and relieves us from worrying about developing the

processing power again and again. Focus of this thesis is to develop such a generic

program which acts as a processing power behind virtually any kiosk which intends to

use wide range of supported types of multimedia data.

More importantly,

What changesfrom one kiosk to another is the multimedia data and

their specified organization.

Thereby, it is our intent to research and develop an easy and fast way of

generating multimedia kiosks and backing them up with a generalized processing power

as a light weight application which can occupy very little memory and hence can run on a

wide range of systems including thin clients such as PDA's or wireless devices. Such a

concept will relieve lot of companies from programming for each kiosk on demand;

instead they would be able to speed up the process by focusing just on the organization of

their multimedia data, which is of paramount importance for more informative and

appealing kiosk.

2.1 Desired Features

Some of the features in mind before starting on the actual development of Kiosk Engine

were that the driving program should be able to present information differently from one

kiosk to another, based on the different inputs provided. The means of providing input

data should be cost-effective (meaning that it should not require expensive software or

excessive time) and easy to create, modify and store. Also, the program should be a

lightweight application and be able to run on majority of the platforms out in the market.

Besides, the five basic types of multimedia data to be supported by the resulting kiosks

driven by Kiosk Engine are text, images, documents (containing plain/rich text or

HTML), audio and video.

Taking into account these basic facts it is essential to explore, what do the

companies in the current Kiosk market has to offer, and then evaluate the chances of

existing products filling the gap of our needs and/or thus substantiate the probability of

success of Kiosk Engine to be able to provide adequate usefulness and fruitful results to

it's users.

3. Survey of Other Products on the Market

3.1 The Apunix Kiosk Engine for the Java™ Platform

Apunix [Apunix03], a software development company based in San Diego, CA, has

developed a multi-functional solution for kiosk development based on Java. With goals

of developing a robust, reliable and scalable solution for kiosks, Apunix have created a

software that provides a content creation tool and kiosk engine using which customer can

create a custom solution to meet their own needs and run it using their kiosk engine. As

promised by Apunix, they developed a platform independent solution in Java™

programming language, which integrates the multimedia data with the engine to create a

graphically rich kiosk.

The user has to use their development tool in order to specify the multimedia data

and design the kiosk, which at times may turn out to be time consuming and not so user-

friendly. Moreover, the logic of the flow of screens in the kiosk is also to be developed

using the tool, which is not the easiest possible solution. However, the kiosks developed

can be graphically rich containing text, images, audio, video, etc. and attractive

depending upon the creativity of the developer.

Some of the kiosks developed by Apunix using their product were deployed

successfully at several locations, the screenshots of some of which are shown next.

K£ ~ _jI

» l~« ^ I •#, 1 KJt ^EVENTS. FUN & SUN

SanDWgoZoo
WJu*.

•MDNi^flMMMi ami'
*tf ttM»M

P &nT
iidBl

Jgl MW-W1W
.'

i«S
A "™-^»1

>— w«f«f«» :j

1 fc«".*>*«i««lift*riUMfe*ft*|MM|

,J «»,,».-,•..„„

EH ^"".r-^*-^Mfc ^S
1U;*1 Hoi lAxIlp" »<».fB*il»l«^

9rwiH»HiW '

•%.
v
>^:**+ttt. «*Mt* >•*• l.il

|

*'>k
UJKi«Wtv> *-#(*«» jj^jj 4flT MHh 1

'.|«p|«M*<MiMi«M
. 3SJS
*\ I<w.»iMM«w^jwiwM—,^niwi>«»j(ii>..;. *- i^nff*

1*4. ...v, /.&^B

Figure 1. Super Bowl (1998), at San Diego, CA

Figure 2. New Line Cinema (Lost In Space), at various countries

This product is possibly the closest match to our aims, however, since it is not a

light weight application and it requires the development tool to be used to provide the

input, it does not exactly meet the exact feature requirements desired, as will be

summarized later.

3.2 Kiosk-In-A-Box from Mass Multimedia, Inc

Mass Multimedia Inc. [MassMlt03], a Colorado based company that offers touch-screen

systems since 1995, have developed a software called Kiosk-In-A-Box for developing

touch screen kiosk applications without programming. It is a software application

development tool that allows a user to create multimedia-based kiosks for Internet/local

deployment without any prior knowledge of programming. The product does however

suggest the user to have a basic knowledge on how to generate computer graphics. The

kiosks developed can contain images, text, sound and video clips and is capable of

running on Windows operating systems only.

Figure 3. Screenshot of a Kiosk-in-a-Box

3.3 KioskEngine™ from Touch Controls, Inc.

Touch Controls Inc. [Touch03], a California based company, has developed

KioskEngine™, which is a web-based software engine that allows a user to create a

custom kiosk multimedia program with a pre-structured built-in template. It provides pull

down menus and pre-configured graphic elements using which, a user, without any

programming knowledge can add text, photos, graphics and video clips and develop

intuitive web-based kiosk. KioskEngine™ can be hosted using either MS Personal Web

Server [MS03] or MS Internet Information Server [MS03] and is displayed and

administered using MS Internet Explorer® 4.0 [MS03] or higher web browser.

Consequently, the kiosks powered by KioskEnigne™ can be used only on Windows

95/98 or NT operating systems.

Following are a couple of screen-shots of point-of-sale kiosks provided by this

company.

Figure 4. Ticketing Kiosk

Figure 5. Information Kiosk

3.4 Our Product: Kiosk Engine (KE)

The program developed by us is called Kiosk Engine (KE), which can work as a driver of

a kiosk when provided with the input consisting of multimedia data, their description and

organization on the kiosk. Apart from the supported functionalities to be discussed in

brief below, there are a few additional functionalities of the Kiosk Engine that are

worthwhile to be noted here. The input to the program is an XML file, which describes

the sources, organization and presentation order and style of multimedia data. Kiosk

Engine parses the XML file, extracts the information and stores them in different types of

objects for each tag in the XML file, the format of which is to be described later.

Unlike most of the kiosks, which are platform dependent, Kiosk Engine was

aimed to be platform independent and henceforth run on virtually any platform with basic

media framework support consisting of JMF libraries [SunJMF03]. To achieve platform

independence, KE is programmed in the latest version of Java™ 2 programming

language, J2SE™ SDK v 1.4.001 [SunJ2SE03], which is available as of now. Besides,

to allow the use of multimedia data, Sun Microsystems, Inc., provides with a

framework/API called Java Media Framework [SunJMF03] to be used with Java

programs that intend to provide support for wide range of audio/video formats. It's fair to

stipulate henceforth, that Kiosk Engine can run either in a web browser as a Java™ applet

or standalone in a Java™ frame, on any Java Virtual Machine [LindholmY03] that uses

Java™ Runtime Environment, J2SE™ JRE v 1.4.0_01 [SunJ2SE03] and has JMF

libraries installed.

A brief discussion of input XML file, which describes the multimedia data to be

supported by Kiosk Engine, follows shortly. First, it will be informative to briefly

summarize the comparison of our Kiosk Engine with other products previously

mentioned.

3.5 Comparison of Products

Table 1 lists features against products and compares what our Kiosk Engine has to offer

compared to other products.

Table 1. Comparison of Features of Kiosk Products.

10

Our Kiosk

Engine

Apunix Mass Multimedia Touch Controls

Text support Yes Yes Yes Yes

Images support Yes Yes Yes Yes

HTML document

(.htm) support

Yes Yes Yes Yes

Audio files support Yes Yes Yes Yes

Video files support Yes Yes Yes Yes

Template-free

design (i.e. no

predefined

template designs to

be used only)

Yes Yes N/A No

Easy text inputs Yes No No No

Web-based or local

kiosk

Yes Yes Yes Web-based

only

Light weight

application

Yes No No No

Platform

Independent

Yes Yes No No

Software

requirements

JVM, JMF JVM,
Database

support

Win 95 or higher IlSorPWS,
IE 4.0 or

higher, Win
95/98/NT

4. Data Representation in Kiosk Engine

The format of the input file was chosen to be ofXML type for two favorable reasons. The

first reason, we needed to be able to create new tags for each basic type of data as an on-

demand basis and specify custom attributes for each tag. The second reason being, that it

should be easy to parse the file using Java™ to avoid creating a custom parser which

would add more classes to the code and processing time to the end product. XML

(extensible Markup Language) allows us to create new tags and specify custom

attributes to each tag. Java™ on the other hand has built in parser classes for viewing the

XML file as both, a Document using DOM (Document Object Model) classes or on an

event-driven basis using SAX (Simple API for XML) classes.

4.1 The Structure ofXML file for KE

This section describes the semantic structure of the XML file for KE, which we call as

XMLKiosk. For each Kiosk application to be developed there is a root node <Kiosk> in

the XMLKiosk file, which contains all the different tags to describe the entire kiosk. In

XML description tags are also referred as nodes or elements and each tag has a starting

and ending tag. At the next depth level there are two elements called <header> and

<screen>, which are the containers of different types of multimedia objects and both of

which can have all or any of the tags for the multimedia objects. In the context of this

project, the input XML file is designed to describe five basic types of multimedia data,

viz. text, images, documents, audio and video; each of which has tags called <text>,

, <textArea>, <aud> and <vdo> respectively. For each instance of any of the data

12

types on the kiosk there is a corresponding tag describing it in the file. The <text> and

 tags occasionally have <action> tag(s) to facilitate the browsing of kiosk from one

screen to another. Also each <aud> or <vdo> tag can have multiple <file> tags which

allows a single audio/video instance to allow playing multiple files alternatively.

Below is a summary of the different types of tags in a typical XMLKiosk file:

Table 2. XML tags in XMLKiosk file for KioskEngine

Element/Tag

Name
Parent

Tag
Attributes Comments

Kiosk None title, red, green,

blue, start

Root element of the multimedia kiosk XML
descriptor. Start specifies the id of the start

screen for the kiosk.

Header kiosk Id Header element has same contents as a Screen

element, but it is used by screens to display

common objects among different screens.

Screen kiosk id, header Screen is the main element of the kiosk. Each

screen has a id using which it is identified by

the interpreter. The header attribute has the id

of the header used by the screen.

Text header

/

screen

type, font, style,

size, xpos, ypos,

width, height,

color

Represents a small text element, the text

displayed will be of a uniform format.

Img header

/

screen

src, alt, xpos,

ypos, width,

height

Represents an Image to be displayed on the

kisok. The type can be JPEG or GIF.

Action text/img Type

[alt, dxpos,

dypos, dwidth,

dheight]

Defines when the action is to be performed

(ex: onclick)

Target action None Represents the target of the action, ie. typically

an id of an element / tag on/of the screen.

Textarea header

/

screen

src, type, xpos,

ypos, width,

height

Represents a document to be displayed from

the specified relative source. The document can

be of type .doc or .htm or plain text. HTML 3.0

version supported.

Aud header

/

screen

start, xpos, ypos,

width, height

Represents an instance of audio player to be

displayed.

Vdo header

/

screen

start, xpos, ypos,

width, height

Represents an instance of video player to be

displayed.

File aud/vdo id, title, src Represents each audio/video file in a player.

5. Implementation of Kiosk Engine

5.1 Other languages and development tools

Recalling the desired features that are discussed before, let us try to evaluate the choices

of different programming languages available, and justify that Java™ is the best suited

programming language to our needs in the present context.

Although there are a number of different programming languages and

development tools available, it is far beyond the scope of this report to list all of them.

Thus, we will only list a couple of languages/development tools that has the best chances

to be useful in fulfilling our requirements.

5.1.1 Microsoft® Visual Basic 6 and Visual Basic .NET

MS Visual Basic® 6 [MS03] is an event-driven Rapid Application Development (RAD)

tool which comes with a number of built-in ActiveX® [MSDN03] controls and reference

libraries to support development of multi-functional commercial applications. Playing

selected formats of audio and video is possible using Multimedia control [MSDN03]. The

functions provided by the Multimedia control depend on the hardware and software

configurations of the machine as it relies partly on the driver support that comes with the

Windows® operating system. Popular file formats supported by Multimedia control are

.mid, .wav and .avi. Besides, there are other controls such as PictureBox and Label for

displaying images and text, respectively. For working with XML, there comes a library

containing MSXML parser that exposes functions to work with XML files.

14

MS Visual Basic.NET [MS03] is the latest version of Visual Basic that comes

with similar controls and libraries such as Microsoft Windows Media® Player 9 Series

ActiveX control for audio/video and MSXML parser to work with XML.

Although, Visual Basic 6 and its .NET version has enough support to satisfy our

requirements in programming aspect, but, it does accompanies a few prices to be paid in

on the functional aspects desired for our project. An application developed in Visual

Basic has to be bundled with referenced library files for proper functioning, which will

take up more memory space on the target machine. Also, the application has to be

installed properly on the target machine which intends to run it, which predominantly,

can be only those machines that have Windows® 95 or higher operating system.

As it is evident from above, Visual Basic does not meet our requirements in

totality and hence it is not much feasible to develop Kiosk Engine using Visual Basic.

5.1.2 Macromedia® Flash

Macromedia Flash [MacroFlash03] is a development tool for creating rich Internet

content. It provides the users with tools to embed audio, video and other graphically rich

digital media objects into their application (a Flash movie file with .swf extension) and

create attractive and visually appealing front-ends.

Playing audio is easy as audio files can be imported by selecting the location and

can be embedded in the Flash movie. Flash MX, the latest version, allows embedding

video files of formats such as MOV (QuickTime), AVI (Audio Video Interleave) and

MPG/ MPEG (Motion Picture Experts Group) into a Flash movie [MacroVid03]. Flash

15

uses Sorenson Spark video codec to compress embedded video and store them in a high

quality but smaller file size. Tools for adding text and images also exist in Flash.

Flash is a streaming technology, which means that it is based on time frames and

hence the content displayed in a Flash movie is dependent on the Time Frame in which it

is added. Besides, Flash movies require Flash Player for displaying it. Since audio and

video files are embedded in the movie file, it increases the size of the movie and also

contradicts to our idea of separating data completely from the processing. Moreover,

working with XML is not supported natively in Flash and adding multimedia content in

the movie dynamically, is not possible. Adding more to it, since data is embedded within

the movie (.swf) file, it cannot be changed without reformatting the movie content.

Hence, it is clear that Flash does not fit into our requirements and cannot offer what we

desire to implement using it.

5.2 Sun® Java™

Java™ is an object-oriented programming language developed by Sun Microsystems®,

Inc., to develop standalone applications or web-based applets. For writing programs using

Java™, Sun Microsystems® provides development toolkit called Java Development

Toolkit (JDK) which comes with numerous built in application programming interfaces

(APIs). These APIs provide number of interfaces and classes which can be imported in

programs and used to work in wide variety of programming areas. Java™ is platform

independent, which means that programs written in Java™ can work on all major

platforms without being compiled again. The fact that makes this possible is the JVM

[LindholmY03] or in other words the Java™ Runtime Environment (JRE) been installed

16

on the target machine. The programs written in Java™, when compiled, gets converted to

bytecode which can be then interpreted by any Java Virtual Machine (JVM). A Java

Virtual Machine is any machine that has JRE [SunJ2SE03] installed on it. Java programs

work on a wide range on platforms including Windows™, Solaris™, Linux and virtually

on any computing hardware including Thin Clients, PDA's, embedded devices,

workstations and servers.

Swing is a part of Java Foundation Classes (JFC) [SunSwing03], which has built-

in features to help us develop graphical user interfaces (GUIs) and provides readymade

"lightweight" components to be used in applications/applets. Swing provides pluggable

look and feel and thus same program using Swing components can use Java™ look &

feel or the system's native look and feel. The components that are used for displaying

images and text in Kiosk Engine are called Imagelcon and JEditorPane, respectively.

Additionally, there is a JLabel component used to wrap around the Imagelcon and a

JScrollPane component that wraps around JEditorPane component to give it the

scrollable functionality. Moreover, as mentioned earlier, we also need support for

displaying documents, which is possible by using the same JEditorPane component.

JEditorPane is a text component whose behavior is dependent upon the type of the

document it is given to display. Depending on the type of the content, JEditorPane uses

the appropriate EditorKit to load the content and effectively morphs into the proper kind

of text editor.

Playing audio and video files from Java™ programs is easy with Java™ Media

Framework (JMF) API [SunJMF03]. JMF enables Java applications and applets to work

17

with audio, video and other time-based media. JMF API is an optional package that

extends the multimedia capabilities of J2SE™ and helps developers in making scalable

multimedia programs that can capture, playback and stream multiple media formats. With

a range of encoders and decoders provided by JMF API, it can offer support for various

rich media formats such as AVI and MPEG for video and MP3 for audio. Moreover, it

provides interfaces and classes, which can return visual components for controlling the

audio and video files at runtime.

Java programs can be written for standalone applications as well as web-based

applets. Standalone applications are those applications that are intended to run on a single

machine at one time. Applets however, are run from a Java enabled World Wide Web

browser. Applets are embedded into web pages, and a reference to the main class is

stored in the web page. While displaying the web page, the Java enabled browser uses the

reference to instantiate the applet on the local machine using the built in Java interpreter.

Java provides APIs to work with XML in both contexts; Document Object Model

(DOM) and Simple API for XML (SAX). The packages in J2SE that has the built in

parsers for DOM and SAX are org.w3c.dom, org.xml.sax and javax.xml.parsers. The

DOM views an XML file as a document and generates object instances for each tag

inside the document, whereas the SAX is an event-based parser that parses the XML file

one object at a time as and when an event triggers the action of parsing that tag.

For the context of our Kiosk Engine, we need to make the kiosk to be accessible

both standalone as well as web-based. To realize this idea, keeping in mind that

lightweight program was what we originally wanted to achieve, we use the same program

18

for both standalone as well as web-based purposes. For this, we make use of the main

applet for web-based access and the same applet embedded in a Java Frame for

standalone purposes.

5.3 Comparison of Java™ with other languages and tools

A summary of comparison of Java & other languages/tools discussed above, is

provided in form of features vs. languages/tools, in the table below:

Table 3. Comparison of Proj^ramming Languages

Java™ Visual Basic & Visual

Basic .NET
Flash

Text, HTML Yes Yes Yes

Image Yes Yes Yes

Audio, Video Yes Yes Yes

Data separate from program Yes Yes No
Standalone and web-based both Standalone Web-based

Platform independent Yes No No

It is clear from the previous discussion that Java meets our desired requirements,

offers all of the favorable API support that we can make use of in programming and it is

certainly the best fit for developing our Kiosk Engine (KE).

6. Content Requirements

6.1 Elements of XMLKiosk file for KE

Previously, we discussed the structure of the XMLKiosk file for KE in brief. This section

discusses the XMLKiosk file in detail with a detailed explanation of each

element/tag/node in the XMLKiosk file and its attributes, how they are used in the

program and what purpose they serve on the Kiosk screen. Also we will discuss the depth

of each tag (assuming depth starts at zero) and the constraints associated with it, such as

optional or maximum number of such tags allowed.

The Parser used for parsing the XML file is based on Document Object Model

(DOM) in terms ofwhich an XML file is referred to as a document.

6.1.1 <kiosk> tag

Example of the tag in an XMLKiosk file:

<?xml version = "1.0" ?>
<kiosk red = "0" green="0" blue="100" start="screenl">

<header id = "headerl">

</header>
<screen id = "screenl" header="headerl">

</screen>
</kiosk>

This is the root node of the XML document, so depth is 0. For each Kiosk application to

be made there is only one <kiosk> tag in the XML file. Note, that the spelling and the

20

format of all the tags should be exactly same as that specified in the example. All other

tags are inside this tag, but the direct children are <header> and <screen> tags.

Attributes

• red, green, blue : specify the background color of the kiosk when converted by

the program into RGB value.

• start : specifies the id of the first screen node to be processed and displayed in this

kiosk. This id value has to be the same as the unique id value specified in the

corresponding screen tag.

6.1.2 <screen> tag

Example of the tag in an XMLKiosk file:

<?xml version = "1.0" ?>
<kiosk red="0" green="0" blue="100" start="screenl">

<header id="headerl">

</header>
<screen id="screenl" header="headerl">

<aud> ... </aud>
<vdo> ... </vdo>
 ...
<text> ... </text>

<textArea> ... </textArea>
</screen>

</kiosk>

This is an optional tag and the depth is 1 as it is the direct child of root node. For each

Kiosk application to be made there can be upto 100 <screen> tags in the XML file. There

are five optional tags that can be contained in this tag corresponding to audio, video,

image, text and text documents to be displayed in one screen.

21

Attributes

• id : serves as the identification of this screen for <action> tags in the kiosk. Each

<screen> tag in the kiosk should have a unique id value (different from id values

of other screens in the kiosk).

• header : specifies the id of the header node to be processed and displayed along

with this screen. At runtime, the value of header attribute is used only if it is

different than the current header displayed.

6.1.3 <header> tag

Example of the tag in an XMLKiosk file:

<?xml version = "1.0" ?>
<kiosk red = "0" green="0" blue="100" start="screenl">

<header id="headerl">
<aud> ... </aud>
<vdo> ... </vdo>
 ...
<text> ... </text>

<textArea> ... </textArea>
</header>
<screen id = "screenl" header="headerl">

</screen>
</kiosk>

This is an optional tag and the depth is 1 as it is the direct child of root node. For each

Kiosk application to be made there can be any number of <header> tags in the XML file.

There are five optional tags that can be contained in this tag corresponding to audio,

video, text and text documents to be displayed in one screen.

22

Header nodes serves the purpose of displaying common objects between different

screens, which helps in minimizing the duplication of the same tag in multiple screen

tags. At runtime, the header displayed remains unchanged until a new header is

referenced. Multiple screens can share the same header.

Attributes

• id : serves as the identification of this header for the <screen> tags in the kiosk.

Each <header> tag in the kiosk should have a unique id value.

6.1.4 <text> tag

Example of the tag in an XMLKiosk file:

<text font= ,,

Serif" style="BOLDITALIC" size="16" xpos="200"
ypos="55" width ="200" height="30" color="LIGHT_GRAY">

Text to be displayed goes here

oction ... > <target> ... </target>

</action>

</text>

This is an optional tag and the depth is 2. For each <screen> & <header> pair of tags

combined there can be upto 100 <text> tags (At any time there is only one screen/header

pair being displayed on the kiosk screen). This restriction is placed in the program for

performance issues and it can be changed in the program. The text to be displayed

appears between <text> and </text> tags. It can optionally contain one <action>/<target>

pair of tags to facilitate browsing from one screen to another.

Attributes

• font, style, size, color : specify the appearance of the text on screen.

23

• xpos, ypos, width, height : Specifies the size and location of the text.

Possible values of attributes

• font : Serif, SansSerif, Monospaced, Dialog, Dialoglnput.

• style: BOLD, ITALIC, BOLDITALIC. All other values will result in PLAIN

font.

• color: BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,

MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW. All other values

will result in default BLACK color.

6.1.5 tag

Example of the tag in an XMLKiosk file:

<img src="foldername/filename.jpg" alt="About this Image"
xpos="575" ypos="80" width= ,, 120" height="465">

<action ... >

<target> ... </target>

</action>

This is an optional tag and the depth is 2. For each <screen> & <header> pair of tags

combined there can be upto 1 00 tags (At any time there is only one screen/header

pair being displayed on the kiosk screen). This restriction is placed in the program for

performance issues and it can be changed in the program. Each tag represents an

image to be displayed on screen. It can optionally contain upto 50 <action>/<target> pair

of tags to facilitate browsing from one screen to another.

24

Attributes

• src : specifies the relative location of the image file.

• alt : specifies a very short description or title for the image. It is displayed on

screen during some action, for e.g. when mouse cursor moves on the image.

• xpos, ypos, width, height : Specifies the size and location of the image.

6.1.6 <action> and <target> tags

Example of the tag in an XMLKiosk file:

oction type="onclick" alt="About this rectangle part of image"
dxpos="10" dypos="10 M dwidth="92" dheight="70">

<target>
screen 1

</target>
</action>

Both tags are optional but if they appear both have to be present to make sense. The depth

of <action> tag is 3 (its parent being a <text> or tag) and that of <target> tag is 4

(<action> tag being the parent). It facilitates browsing from one screen to another. The

value between the <target> tags specifies the id of the screen to be displayed as a result of

this action.

Attributes

• type : specifies when the action is to be performed (for e.g. "onClick").

• [alt] : optional attribute only for <action> tag, specifies a very short description or

title for this rectangular part of the image. It is displayed on screen during some

25

action (for e.g. when mouse cursor moves on the image) on this rectangular part

of image.

fxpos, ypos, width, height] : optional attributes only for <action> tag, specifies the

size and location of the rectangular part of image.

6.1.7 <textArea> tag

Example of the tag in an XMLKiosk file:

<textArea src="foldername/filename.htm" xpos="75" ypos="80"
width="120" height="465">
< /textArea

>

This is an optional tag and the depth is 2. For each <screen> & <header> pair of tags

combined there can be upto 100 <textArea> tags (At any time there is only one

screen/header pair being displayed on the kiosk screen). This restriction is placed in the

program for performance issues and it can be changed in the program. Each <textArea>

tag represents a document (.htm/.doc/.txt) from a file to be displayed on screen.

Attributes

• src : specifies the relative location of the document file.

• xpos, ypos, width, height : specifies the size and location (rectangular area) where

the document is to be displayed on screen.

26

6.1.8 <aud> tag

Example of the tag in an XMLKiosk file:

<aud start="song2" xpos="200" ypos="95" width="350"
height="25">

<file ... ></file>

</aud>

This is an optional tag and the depth is 2. For each <screen> & <header> pair of tags

combined there can be upto 10 <aud> tags (At any time there is only one screen/header

pair being displayed on the kiosk screen). This restriction is placed in the program for

performance issues and it can be changed in the program. Each <aud> tag represents an

audio player to be displayed on screen and can contain upto 25 <file> tags inside it.

Attributes

• start : specifies the id of the audio file to be started by default. The value should

correspond to the one of the id values of the <file> tags inside.

• xpos, ypos, width, height : specifies the size and location where the audio player is

to be displayed on screen.

6.1.9 <vdo> tag

Example of the tag in an XMLKiosk file:

<vdo start="song2" xpos="200" ypos="95" width="350'
height="25">

<file ... ></file>

</vdo>

27

This is an optional tag and the depth is 2. For each <screen> & <header> pair of tags

combined there can be upto 10 <vdo> tags (At any time there is only one screen/header

pair being displayed on the kiosk screen). This restriction is placed in the program for

performance issues and it can be changed in the program. Each <vdo> tag represents a

video player to be displayed on screen and can contain upto 25 <file> tags inside it.

Attributes

• start : specifies the id of the video file to be started by default. The value should

correspond to the one of the id values of the <file> tags inside.

• xpos, ypos, width, height : specifies the size and location where the video player is

to be displayed on screen.

6.1.10 <file> tag

Example of the tag in an XMLKiosk file:

<vdo start="songl" xpos="200" ypos="95" width="350" height="25">
<file id = "songl" title="File title on screen"

src="foldername/filename.mp3">
</file>

</vdo>

This is an optional tag and the depth is 3. For each <aud> or <vdo> tag there can be upto

25 <file> tags. This restriction is placed in the program for performance issues and it can

be changed in the program. Each <file> tag represents an audio/video file to be played in

the corresponding audio/video player on screen.

28

Attributes

• id : specifies the id of this file in this player. The value is used by the parent

<aud>/<vdo> tag to reference this file.

• tide : specifies a short title for this file to be displayed in the player on the screen.

• src : specifies the physical location of this file.

7. Program Architecture of Kiosk Engine

This section explains the overall architecture including significant details of each class of

the Kiosk Engine application. It starts with the conceptual class diagram followed by the

application flowchart and then explanation of each individual class and its significance in

the application.

7.1 Conceptual Classes of Kiosk Engine

Figure 6 presents a diagram of conceptual classes used in our implementation of Kiosk

Engine.

AudioCombo VideoCombo

0..*

displays-audio-player-using

0..*

displays-video-player-using

ImageJLabel displays-images-using KioskEngine

1

1

0..*

displays-text-using

1 0..*

StringJEditorPane

1

parses-xml-file-using

I 1

ScreenString manages-text-objects-using ParseXML manages-textArea-objects-using ScreenTextArea

0..* 1 1

7
i

1 V
0..*

manages-image-objects-using

Screenlmage
0..*

manages-video-objects-using

manages-audio-objects-using q .

i' o
*

ScreenAudio SaeenVideo

Figure 6. Conceptual Class Diagram for Classes of Kiosk Engine.

7.2 Application Flowchart

Figure 7 presents a flowchart describing the operation of Kiosk Engine.

30

Input XML file

KioskEngine instantiates an

object of ParseXML and passes

the XMLKiosk file to it

ParseXML parses one screen/header pair

from XMLKiosk file

No

Store the multimedia objects

KioskEngine uses the multimedia

objects to display them on screen

Yes

Wait for termination

Throw Exception

H End

Figure 7. Flowchart describing the Operation of Kiosk Engine.

31

7.3 Java™ Classes

Altogether there are eleven Java classes in Kiosk Engine application. This section

examines the details of each class in terms of its dependence on and usefulness for other

classes in the application and/or the role it plays for the successful execution of

application. Each subsection discusses one class in detail describing some of the

important methods in the class supplemented with pseudo code wherever significant.

7.3.1 KioskEngine Class

Figure 8 presents the class diagram of the KioskEngine Class.

KioskE ngine

d^>contentPane
d£>edltorSc roll Pane
^limgl con
^>jA udCombo
^>jEditPane
^>jEditPaneText
d?VjI mg Label
^>jV doCombo
^listener
^parser
^.player
^songN um
u^s tartA udFlag
<j£>startVdoFlag
i^>s tartA udio
<§£»startV ideo
<jj£>style

^CodeBase
^isStandA lone

clearAudioVldeoQ
destroy()
getA pplicationO bjectQ
getParameter(key : String, def : String)
getParserQ
init()
Vjblnit()
^main(args : Strlng[])
refreshAudio(songNum : int)

refreshl mage()
*refreshString()
^refreshTextA rea()
refres hV ldeo(songN um : int)

^setContents()
setParser(p : ParseXML)
setSongNum(s : int)
*start()
startAudioVideoO
*stop()

Figure 8. Class Diagram of the KioskEngine Class

32

This class extends directly from javax.swing.JApplet. Consequently, KioskEngine is an

Applet and hence it can run either in a web browser embedded within a HTML page or

standalone embedded in a Java Frame (an instance of class javax.swing.JFrame). It is the

main class (or the driver class) in the application and it is referenced directly by the

HTML page or Java Frame in which the kiosk runs. The important packages imported by

this class arejavax.swing andjavax.media.

When referenced from a HTML page, the path of the input XML file should be

passed as a parameter to this class relative to the directory in which this class exists. If

referenced from a Java Frame the input XML file should be named "kiosk.xml" and

placed in a folder named "xml" which resides in the directory in which this class exists.

This restriction in naming is placed in order for the application to be able to execute with

the click of a mouse button instead of a command prompt.

Following is a pseudo code for this class:

1

.

Create an object of ParseXML and instantiate it with the path ofXML file.

2. Parse the XML file using the instance of ParseXML.

3. Use the objects corresponding to the screen/header pair parsed by the instance of

ParseXML and use them to display the multimedia objects on the screen.

4. On termination, destroy any non-null objects remaining.

The execution order of the methods of this class is different at different times and

depends on the mode (standalone or from web browser) it is been executed in. It does

have a main method which is used only when the class is supposed to run as a standalone

33

application. The purpose of the main method is to create an instance of Java Frame and

embed KioskEngine applet inside it. This is required as an Applet cannot run standalone

by itself. When referenced from within a HTML page, the browser calls the methods of

this class in a predefined order being initQ, start(), stopQ and destroyQ. One of the

important methods which is called by start() method and which is responsible for the

addition of multimedia objects on the applet is jblnitQ. This method calls the individual

methods for displaying audio, video, text, image and documents in that order. Each of

those methods uses the objects in the parser to instantiate each object's position, size and

appearance on the screen.

Following are the methods corresponding to each multimedia object:

• refreshAudioQ: Corresponds to the <aud> tags in the XML file. Used for display

of audio players on the screen using instances of AudioCombo class. It populates

the combo box of each audio player with the sound files corresponding to it and

associates a control panel component to each player which facilitates forward,

rewind, start, stop and pause functions. It also allows controlling the volume and

the rate at which the file is to be played. Most popular audio file types supported

are .wav, .mid, .mp3 and .au.

• refreshVideoQ: Corresponds to the <vdo> tags in the XML file. Used for display

of video players on the screen using instances of VideoCombo class. It populates

the combo box of each video player with the video files corresponding to it and

associates a control panel (similar to the audio player) and a visual component to

34

display the video into. Most popular video file types supported are .avi, .mov and

•mpeg.

• refreshStringQ: Corresponds to the <text> tags in the XML file. Used for display

of text on the screen using instances of StringJEditorPane class. It sets the font,

size, color and location for each instance of StringJEditorPane and initializes it

with the text to be displayed. Besides it also populates the instance with any

actions to be performed (corresponding to <action> tags).

• refreshlmage()\ Corresponds to the tag in the XML file. Used for display

of images on the screen using instances of ImageJLabel class. It sets the size for

each instance, creates an instance of Imagelcon initiated with the path for the

image file and adds that instance of Imagelcon to the instance of ImageJLabel.

Besides it also populates the instance with any actions to be performed

(corresponding to <action> tags). Most popular image file types supported are

.bmp, .gif and .jpg.

• refreshTextAreaQ: Corresponds to the <textArea> tags in the XML file. Used for

display of documents on the screen using instances of JEditorPane class. Each

instance is initialized with the path of the document and assigned its size and

location on the screen. Also the instance is associated with an instance of

JScrollPane class which facilitates the scrolling of document on the screen. The

type of documents that can be displayed are .doc, .rtf, .htm and .txt. The version

of HTML supported is 3.0 so HTML tags corresponding to that version will only

35

be correctly interpreted. Moreover, the HTML files cannot be linked, so in one

instance only one HTML file can be displayed.

After these methods initialize the appropriate objects, the jblnitQ method adds those

contents to the applet and it is ready to be displayed. The browsing between screens is

handled by each individual objects through their implementation of event listener

method(s) in conjunction with the KioskEngine class. The applet keeps on running until it

either the browser/frame is closed, in the event of which, the applet's stopQ and destroyQ

methods are called in that order.

36

7.3.2 ParseXML class

Figure 9 presents the class diagram of the ParseXML Class.

ParseXML

i^ audio

^document
S£>filepath

^header
^>headerElements
^>headerNodes
(^>image

(^>root

^screen
S^screenElements
^string
^>text

^>video
<>red

<^green

<j>blue

^>isStandAlone

^screenNodes
^start

getAudio(i : int)

^getString(i : int)

^getFontColor(s : String)

*getFontStyle(s : String)

^getHeaderIndex(id : String)

^getlmage(i : int)

getScreenIndex(id : String)

^getTextArea(i : int)

*getVideo(i : int)

parselnit()
parseXMLFile(base : String, path : String)

%>rocessActionAndTarget(action : Node, im : Screenlmage, pos : int)

^processActiveTextElement(activeText : Node)
processAudElement(aud : Node, scrAud : ScreenAudio)

processFileNode(f : Node)
processHeaderNode(hdr : Node)
^processImgElement(img : Node, scrlmg : Screenlmage)
processScreenNode(scrNode : Node)
^processTextActionAndTarget(action : Node)
processTextAreaElement(text : Node, sta : ScreenTextArea)
^processTextElement(text : Node, st : ScreenString)

processVdoElement(vdo : Node, scrVdo : ScreenVideo)

Figure 9. Class Diagram of the ParseXML Class

This class plays a key role in the overall execution of the application and serves for one

of the main purpose in the application, which is parsing the XML file, without which the

application would not initiate and hence not work. The important packages (which

37

provide with built in parser classes) imported by this class are org.w3c.dom, org.xml.sax

andjavax.xml.parsers.

Following is a brief about important methods in the class:

• parseXMLQ: The class parses the XML file based on DOM (Document Object

Model) and obtains a document from the XML file. This document object is not

much useful as it is, but it helps to identify and extract useful tag information

from the XML document and provides useful methods for that purpose.

• parselnit(): After obtaining the document this method is used to parse the first

screen/header pair from the document.

• processScreenNode() and processHeaderNodeQ: The method for processing a

screen calls the method for processing its associated header (specified by header

attribute in XML). Functionally in both methods is same as both screen and

header can have the same types of contents inside it. Both methods use five

different methods for processing each of the five multimedia objects that can

appear in the XML file. The discussion about those five methods follows below.

• processTextElementQ: This method corresponds to <text> tags in the XML file. It

extracts attribute values, node contents and information from action/target tags (if

present) from the current text node passed as an argument and stores the data in

an instance of ScreenString class.

• processTextAreaElementQ: This method corresponds to <textArea> tags in the

XML file. It extracts attribute values from the current textArea node passed as an

argument and stores the data in an instance of ScreenTextArea class.

38

• processImgElementQ: This method corresponds to tags in the XML file. It

extracts attribute values and information from action/target tags (if present) for

the current image node and stores the data in an instance of Screenlmage class.

• processAudElement(): This method corresponds to <aud> tags in the XML file. It

extracts attribute values and information from file tags for the current audio node

and stores the data in an instance of ScreenAudio class.

• process VdoElement(): This method corresponds to <vdo> tags in the XML file. It

extracts attribute values and information from file tags for the current audio node

and stores the data in an instance of ScreenVideo class.

• getScreenlndexQ and getHeaderlndexQ: At runtime, during the occurrence of an

event these methods are used to identify the index value of the screen/header to be

processed based on its id value. That id is then passed as an argument to

processScreenNode() and processHeaderNode().

At any given time there parseXML can process only one screen/header pair and hence the

multimedia objects contained only in that screen/header pair will be stored and will be

accessible.

39

7.3.3 StringJEditorPane class

Figure 10 presents the class diagram of the StringJEditorPane Class:

StringJEditorPane

faction

fi£>theParser

^target

getAction()
getTarget()
mouseClicked(e : MouseEvent)
mouseEntered(e : MouseEvent)
setAction(a : String)

setTarget(t : String)

Figure 10. Class Diagram of the StringJEditorPane Class

This class extends directly from javax.swing.JEditorPane and it implements two

interfaces, namely MouseListener and MouseMotionListener, from the java.awt.swing

package which helps to track and respond to mouse motion and actions. Instances of this

class is used by the KioskEngine class and in turn each instance of this class will know

the about the corresponding instance of KioskEngine class which is using it.

JEditorPane is a type of text component which can display formatted text

according to specifications provided. By extending this class, an instance of

StringJEditorPane will also be a text component and will inherit all the useful methods

from the JEditorPane class that provide facility to set the font, style, size, color, etc. for

the text component.

By implementing the two interfaces this class becomes a listener for itself which

means that it would not be required to add instances of listeners to an instance of this

class. One of the important methods from the MouseListener interface that this class

implements is mouseClickedQ, which is called by the JRE at runtime when a mouse is

40

clicked on this text component. Notice that only those text components would respond to

mouse actions for which there is a corresponding <action>/<target> pair of tags within

the <text> tags; since it is not required that all text components should have an associated

action/target.

Following is a pseudo code for the mouseClickedQ method:

1

.

Get the instance of ParseXML currently used by the KioskEngine class.

2. Use the ParseXML instance to find the index of the screen id specified within

<target> tags.

3. Use the ParseXML instance to parse the particular screen (with its associated

header).

4. Stop any previous audio/video players from previous screen still being played.

5. Use the instance of KioskEngine class to display the multimedia objects on the

target screen.

41

7.3.4 ImageJLabel class

Figure 1 1 presents the class diagram of the ImageJLabel Class.

ImageJLabel

action

app
>defaultToolTip

dheight

^divCount
Ndwidth

>dxpos
^dypos
^finalTarget

>imgX
>imgY
^target

^theParser

>toolTip

getAction(pos : int)

getTarget(pos : int)

mouseClicked(e : MouseEvent)
^mouseMoved(e : MouseEvent)
setAction(a : String, pos : int)

^setBoundary(x : int, y : int, w : int, h : int, pos : int)

<NetDefaultTooffip(t : String)

setTarget(t : String, pos : int)

setTooffip(t : String, pos : int)

setXY(xval : int, yval : int)

Figure 11. Class Diagram of the ImageJLabel Class

This class extends directly from javax.swing.JLabel class and it implements two

interfaces, namely MouseListener and MouseMotionListener, from the java.awt.swing

package which helps to track and respond to mouse motion and actions. Instances of this

class is used by the KioskEngine class and in turn each instance of this class will know

the about the corresponding instance of KioskEngine class which is using it.

JLabel is a component which can display text as well as images. Although

displaying images is not directly supported by JLabel, however, images can be embedded

in objects of another class called Imagelcon. For displaying an image, the KisokEngine

creates an instance of Imagelcon and initializes it with the source path of the image file

and then adds this instance to the instance of ImageJLabel.

42

By implementing the two interfaces this class becomes a listener for itself which

means that it would not be required to add instances of listeners to an instance of this

class. It implements two important methods, mouseClicked() and mouseMovedQ from

interfaces MouseListener and MouseMotionListener, respectively. The implementation of

mouseMovedQ method allows to support the functioning of image maps to be created and

work properly. It is because of this method that a single tag (in the XML file) can

contain lot of <action> tags in order to respond differently based on which part of the

image the action occurred. This method is called every time the mouse cursor moves, and

based on the movement of the mouse cursor this method changes the tool-tip for the

image and internally the target to respond with.

Following is a pseudo code for the mouseMovedQ method:

1

.

Get the X and Y co-ordinates for the current position of the mouse cursor.

2. For each rectangular area defined in the XML for this image, check to see if the

cursor is inside any of the rectangle. If it is inside a rectangle change the cursor to

hand-shaped, set the tool-tip for that rectangle and set the corresponding target. If

its not inside any rectangle set default cursor and tool-tip.

The method mouseClickedQ is called by the JRE at runtime when a mouse is

clicked on this image component. Notice that only those image components would

respond to mouse actions for which there is/are corresponding <action>/<target> pair of

tags within the tags; since it is not required that all image components should have

an associated action/target.

Following is a pseudo code for the mouseClickedQ method:

43

1

.

Get the instance of ParseXML currently used by the KioskEngine class.

2. Use the ParseXML instance to find the index of the screen id specified within

<target> tags.

3. Use the ParseXML instance to parse the particular screen (with its associated

header).

4. Stop any previous audio/video players from previous screen still being played.

5. Use the instance of KioskEngine class to display the multimedia objects on the

target screen.

7.3.5 AudioCombo class

Figure 12 presents the class diagram of the AudioCombo Class.

AudioCombo

SJ>app
(§>count

^fSrc[]
%mtle[]
uSsellndex

itemStateChanged(e : ItemEvent)
setfSrc(s[] : String)

Figure 12. Class Diagram of the AudioCombo Class

This class extends directly from javax.swing.JcomboBox. By implementing the

ItemListener interface this class becomes a listener for itself which means that it would

not be required to add instances of listeners to an instance of this class. An instance of

this class is created by the KioskEngine class for each occurance of the audio player.

Each instance is populated with the list of sound files for that corresponding player. The

44

sound files are displayed in the combo-box in the order in which they are present in the

XML file.

To change the sound file being played the user can select the file from the drop-

down combo-box. To support switching between different sound files this class

implements the method itemStateChanged() of the ItemListener interface.

Following is the pseudo code for the itemStateChangedQ method:

1

.

Get the index of the sound file selected.

2. Refresh the audio player instance with the file source of selected index.

3. Start the audio player.

7.3.6 VideoCombo class

Figure 13 presents the class diagram of the VideoCombo Class.

VideoCombo

^count
q^fSrc[]

q$>mtie[]

^>sellndex

*itemStateChanged(e : ItemEvent)
setfSrc(s[] : String)

Figure 13. Class Diagram of the VideoCombo Class

This class extends directly from javax.swing.JcomboBox. By implementing the

ItemListener interface this class becomes a listener for itself which means that it would

not be required to add instances of listeners to an instance of this class. An instance of

this class is created by the KioskEngine class for each occurance of the video player.

Each instance is populated with the list of video files for that corresponding player. The

45

video files are displayed in the combo-box in the order in which they are present in the

XML file.

To change the video file being played the user can select the file from the drop-

down combo-box. To support switching between different video files this class

implements the method itemStateChanged() of the ItemListener interface.

Following is the pseudo code for the itemStateChanged() method:

1

.

Get the index of the video file selected.

2. Refresh the video player instance with the file source of selected index.

3. Clear area and start the video player.

46

7.3.7 ScreenString class

Figure 14 presents the class diagram of the ScreenString Class.

ScreenString

^.font : String

style : int

contents : String = ""

void

^ScreenString()

%ge tFont() : String

^setFont(s :

ge tStyle() :

^setStyle(in
getSizeO :

setSize(in :

ge tXposQ :

setXpo s(x :

^ge tYpos() :

^setYpos(y :

ge tZpos() :

^setZpo s(z :

getWidth()
^setW idth(w
ge tHe ight()

^setHeigh t(h

ge tColour()
^setColour(c
ge tContents()
setContents(s : String) : void
getAction() : String

^setAction(a : String) : void
getTarget() : String

^setTarget(t : String) : void

String)

int

: int) :

int

int) :

int

int) :

int

int) :

int

int) :

: int

: int)

: int

: int)

: String

String) : void
String

void

void

void

void

void

void

void

Figure 14. Class Diagram of the ScreenString Class

This class is essentially a data structure for holding string objects corresponding to <text>

tags inside the XML file. It has private data members which store the attributes specified

in the <text> tag such as font, style, size, color, position and associated action/target for

this text. The class contains get() and set() methods for accessing each of the attributes.

An instance of this class is created by the ParseXML class for each occurrence of <text>

tag in the XML file and initialized with the attributes. Those instances are then used by

47

the KioskEngine class and the attribute values are accessed from the data members for

displaying the text on the screen.

7.3.8 Screenlmage class

Figure 15 presents the class diagram of the Screenlmage Class.

Screenlmage

src : String = ""

<pos : int =

^ypos : int =

^width : int =

^height : int =

[JefaultToolTip : String = ""

>toolTip[] : String = new String [50]
3Ction[] : String = new String [50]

^target[] : String = new String [50]
>dxpos[] : int = new int [50]
jypos[] : int = new int [50]
Jwidth[] : int = new int [50]
Jheight[] : int = new int [50]

void

void

void

void

^Screenlmage()
getXposO : int

^setXpos(x : int)

getYposO : int

setYpos(y : int)

getWidthO : int

setWidth(w : int)

getHeightO : int

^setHeight(h : int)

getSrc() : String

^setSrc(s : String) : void

^ge tDXpos(pos : int) : int

^setDXpos(x : int, pos : int)

getDYpos(pos : int) : int

^setDYpos(y : int, pos : int)

4»getDWidth(pos : int) : int

setDWidth(w : int, pos : int) :

getDHeight(pos : int) : int

setDHeight(h : int, pos : int)

getDefaultToolTip() : String

setDefaultToolTip(alt : String)

getToolTip(pos : int) : String

setToolTip(alt : String, pos : int) : void

getAction(pos : int) : String

^setAction(a : String, pos : int) : void

getTarget(pos : int) : String

setTarget(t : String, pos : int) : void

void

void

void

void

void

Figure 15. Class Diagram of the Screenlmage Class

This class is essentially a data structure for holding image objects corresponding to

 tags inside the XML file. It has private data members which store the attributes

48

specified in the tag such as source, alt, size, position and associated

action/target(s) for this image. The class contains get() and set() methods for accessing

each of the attributes. An instance of this class is created by the ParseXML class for each

occurrence of tag in the XML file and initialized with the attributes. Those

instances are then used by the KioskEngine class and the attribute values are accessed

from the data members for displaying the image on the screen.

7.3.9 ScreenTextArea class

Figure 16 presents the class diagram of the ScreenTextArea Class:

ScreenTextArea

^>src : String

S£>xpos : int

^>ypos : int

u^zpos : int

^>width : int

^>height : int

ScreenTextA rea()

getSrcQ : String

setSrc(s : String) : void

*getXpos() : int

setXpos(x : int) : void

getYposO : int

setYpos(y : int) : void

getZpos() : int

setZpos(z : int) : void

getWidthQ : int

setWidth(w : int) : void

getHeight() : int

setHeight(h : int) : void

Figure 16. Class Diagram of the ScreenTextArea Class

This class is essentially a data structure for holding document objects corresponding to

<textArea> tags inside the XML file. It has private data members which store the

attributes specified in the <textArea> tag such as source, size and position. The class

contains get() and set() methods for accessing each of the attributes. An instance of this

49

class is created by the ParseXML class for each occurrence of <textArea> tag in the

XML file and initialized with the attributes. Those instances are then used by the

KioskEngine class and the attribute values are accessed from the data members for

displaying the document on the screen.

7.3.10 ScreenAudio class

Figure 17 presents the class diagram of the ScreenAudio Class.

ScreenAudio

>start : String = ""

<pos : int =

>ypos : int =

^width : int =
^height : int =

^count : int =

>fileld[] : String = new String [25]

^fileSrcf] : String = new String [25]

>fileTitle[] : String = new String [25]

^ScreenAudioQ
getStartQ : String

^setStart(s : String) : void

getXpos() : int

^setXpos(x : int) : void

^getYposQ : int

^setYpos(y : int) : void

^getWidth() : int

^setWidth(w : int) : void

^getHeight() : int

^setHeight(h : int) : void

getFileId(c : int) : String

^setFileId(s : String, c : int) : void

getFileTitle(c : int) : String

setFileTitle(s : String, c : int) : void

getFileSrc(c : int) : String

^setFileSrc(s : String, c : int) : void

Figure 17. Class Diagram of the ScreenAudio Class

This class is essentially a data structure for holding audio objects corresponding to <aud>

tags inside the XML file. It has private data members which store the attributes specified

in the <aud> tag such as start file, size, position and associated sound files for this text

50

described by <file> tags. The class contains get() and set() methods for accessing each of

the attributes. An instance of this class is created by the ParseXML class for each

occurrence of <aud> tag in the XML file and initialized with the attributes. Those

instances are then used by the KioskEngine class and the attribute values are accessed

from the data members for displaying the audio player on the screen.

7.3.11 ScreenVideo class

Figure 18 presents the class diagram of the ScreenVideo Class.

ScreenVideo

start : String = ""

<pos : int =

>ypos : int =

>width : int =

^height : int =

^count : int =

>fileld[] : String = new String [25]

^fileSrcj] : String = new String [25]

>fileTitle[] : String = new String [25]

^ScreenVideoQ
getStart() : String

setStart(s : String) : void

getXpos() : int

setXpos(x : int) : void

^getYpos() : int

setYpos(y : int) : void

%getWidth() : int

setWidth(w : int) : void

4getHeight() : int

setHeight(h : int) : void

%getFileId(c : int) : String

^setFileId(s : String, c : int) : void

getFileTitle(c : int) : String

setFileTitle(s : String, c : int) : void

getFileSrc(c : int) : String

^setFileSrc(s : String, c : int) : void

Figure 18. Class Diagram of the ScreenVideo Class

This class is essentially a data structure for holding video objects corresponding to <vdo>

tags inside the XML file. It has private data members which store the attributes specified

in the <vdo> tag such as start file, size, position and associated video files for this text

51

described by <file> tags. The class contains get() and set() methods for accessing each of

the attributes. An instance of this class is created by the ParseXML class for each

occurrence of <vdo> tag in the XML file and initialized with the attributes. Those

instances are then used by the KioskEngine class and the attribute values are accessed

from the data members for displaying the video player on the screen.

8. Proof of Concept

This section is focused on providing useful hints for putting together a kiosk using

KioskEngine followed by is an illustration of the idea applied to a pilot application.

8.1 Useful Hints for putting together a Kiosk using KioskEngine

When the target kiosk is intended to run in a browser then it is required to create an

HTML file which embeds an applet within itself and calls the KioskEngine class which

should be placed (along with other classes) in kioskengine folder. Also the path of the

xml file to be used by KioskEngine class has to be passed as a parameter to the applet.

When the target kiosk is intended to run standalone then the classes can be

packaged in a .jar file. In a standalone mode the packaged JAR application will use the

kiosk.xml file from the xml folder. This restriction is due to the filename already

specified in the KioskEngine class. The (double-click able) JAR application should be

placed in the parent folder of the folder in which the xml file is placed.

For best results it is useful to create a folder for each of the media types and for

xml file. The HTML or JAR application should be placed in the same folder as the

folders for the media and xml files. For example, assume that a kiosk demo application

called DEMO is created. Then the DEMO folder structure would look as below:

i=i -ill

L_J audc

Cj doc

LJ irr«c>35

j
CJ video

I
° ™* DemoKiosk.htm

j KioskEngine.jar

Figure 19. Folder Structure of a DEMO Kiosk Application

53

8.2 Pilot Application : Columbus State University (CSU) Kiosk

This sections discusses the pilot application titled "Columbus State University Kiosk"

which was developed in order to demonstrate a working model and the functionality of

KioskEngine. The kiosk intends to provide information about the map and individual

buildings on campus of the Columbus State University to the users.

The start screen consists of the map of Columbus State University and looks as below:

Columbus State

HjmdKjp pjrking jv«Uble jnd nwtad in jppropriMe loo.
Parking loU*rrm»ck»d j* vi\itm. fxvtty, tf.\fl & vtudrrrt

Please pttfc in appropriate lots Parkmq passes and deals
MUw from University Poke in the Healtn and SafetyCents

is State University Kiosk

hot spot : Clock Tower

Figure 20. Snapshot of Start Screen of the CSU Kiosk

l'.\ : M.uiish Shah, and

Dr. Stan Kurkovskv

54

The above start screen has some hot spots (clickable regions) corresponding to different

buildings on the map. When a user clicks on a hot spot the kiosk displays the screen

corresponding to that particular building.

When the user clicks on the hot spot corresponding to the "Clock Tower" as shown in the

previous figure the screen corresponding to "Clock Tower" is displayed and looks as

below:

images (tag)

k Tower

Welcome to Clock Tower, The-

70-foot clock tower and its

four six-foot clock faces are

visible across the campus,

and the tower's chimes,

which was formally activated

at it's dedication ceremony in

September 1991, chime out

the hour and half hour and

chime to commemorate
special occasions. Recognized

as the symbol of Formerly

Columbus College even

before its completion, the

Thomas Y, Whitley Clock

Tower is a monument to our

history, a tribute to our first

president, and a symbol of

our consta
'

ore information

text (<text> tag) HTML document

(<textArea> tag)

Figure 21. Snapshot of Tower Screen of the CSU Kiosk

55

The image on the top left corner takes user back to the main map and the text on the

bottom takes to further information about "Clock Tower". Similarly there are number of

different screens, each corresponding to a particular building on the map. The XML file

for this kiosk is included as an appendix towards the end.

9. Extensibility of KioskEngine

One of the immediate enhancements that can be made to the KioskEngine is to develop a

GUI-based editor which would allow users to select types of media for a screen and drag

and drop them on the screen on the desired location. The location for that object should

be detected by the editor and the attributes and information that it is supposed to display

should be easily editable using the property-list of that object. The editor would in effect

just build the XML file for the kiosk based on the design made by the user and not store

any graphical information for the kiosk. To allow making changes to a kiosk, the editor

can use KioskEngine to display how the current kiosk looks like and then save the

changes to the XML file based on the changes made by the user in the GUI editor. Such a

tool would help users to build kiosks quickly and easily.

Another add-on feature that is lucrative is to allow wireless support for kiosks.

For this to work, the KioskEngine can be modified such that it extracts information from

the XML file and creates corresponding WML (Wireless Markup Language) file(s) for

the kiosk that would essentially display textual information instead of graphical

information for each screen of the kiosk. The WML files for the kiosk can be hosted on a

WAP gateway and can be configured to allow particular group of users to access the

kiosk through their wireless devices such as PDA, Pocket PC, etc.

10. Conclusion

Certainly, KioskEngine is a very powerful multifaceted light-weight platform-

independent application, which can be used to run a variety of multimedia rich standalone

or web-enabled kiosks on various software and hardware platforms. It acts as a driver

program behind a kiosk and the program does not need to be changed from one kiosk to

another. The structure of the kiosk is provided in the form ofXML file as an input to the

KioskEngine and the data for the kiosk is completely separate from the program. As a

result of this, the structure of the kiosk can be modified or exported at any time and so

can be the multimedia data, both independent of each other. Moreover, various additional

functionalities and features can be added to the program to make it even more powerful.

References

[Apunix03]

[DouglasOO]

[LindholmY03]

[MacroFlash03]

[MacroVid03]

[MassMlt03]

[MS03]

[MSDN03]

[SunJ2SE03]

[SunJMF03]

[SunSwing03]

[Touch03]

The Apunix Kiosk Engine for the Java ® Platform, ©Apunix
Computer Services, 2003,

Website: http://wwvv.apunix.com/kiosk products/so ft\vare.html

Retail kiosks: Breaking new ground, By Mitchell Douglas, 12 Dec

2000, Website: http://www.kioskmarketplace.com/research.htm

The Java™ Virtual Machine Specification, 2
nd

Edition, By Tim
Lindholm and Frank Yellin, ©Sun Microsystems, Inc., 1999,

Website: http://java.sun.com/docs/books/vmspec/2nd-

edition/html/VMSpecTQC.doc.html

Macromedia Flash MX, ©Macromedia, Inc., 2003,

Website: http://www.macromedia.com/software/flash/

Using video in Macromedia Flash MX, ©Macromedia, Inc., 2003

Website: http://www. macromedia.com/suppoil/flash/imaKes video/

flash video/

Kiosk-In-A-Box Software, ©Mass Multimedia, Inc., 2003,

Website: http://www.touchscreens.com/kbox-full.html

Microsoft® Corporation, Microsoft®, 2003,

Website: http://www.microsoft.com/

Microsoft® Developer Network Home, Microsoft® Corporation,

2003, Website: http://msdn.microsoft.com

Java™ 2 Platform, Standard Edition (J2SE™), ©Sun
Microsystems, 2003, Website: http://java.sun.com/j2se/

Java™ Media Framework API, ©Sun Microsystems, Inc., 2003,

Website: http://iava.sun.com/products/iava-mediayjmf/index.html

Creating a GUI with JFC/Swing, ©Sun Microsystems, Inc., 2003

Website: http://iava.sun.com/docs/books/tutorial/uiswinK/

KioskEngine™ software, ©Touch Controls, Inc., 2003,

Website: http://www.publicaccesskiosks.com/pak/kioskenKine.htm

Appendix: XML file for Columbus State University Kiosk

<?xml version = "1.0" ?>
<kiosk red = "0" green = "102" blue="204" start="csumain">

< header id="csuheader">
<img src="images/csu/csu_logo.gif" alt="CSU MAP" xpos="0" ypos="0" width="72"
height="68">

<action type="onclick" alt="CSU MAP" dxpos="0" dypos="0" dwidth="72"
dheight="68">

<target>csumain</target>
</action>

</header>

<screen id="csumain" header="">
<img src="images/csu/kioskNameplate.jpg" alt="Columbus State University Kiosk"

xpos="0" ypos="531" width = "800" height="69">

<img src="images/csu/map80.jpg" alt="CSU MAP" xpos="0" ypos="0" width="800"
height="531">

<action type="onclick" alt="About Columbus State University" dxpos="60"
dypos="0" dwidth = "181" dheight="45">

<target>aboutcsu</target>
</action>

<action type="onclick" alt="Clock Tower" dxpos="344" dypos="201"
dwidth = "13" dheight="37">

<target>clocktowerl </target>

</action>

<action type= "onclick" alt="Simon Schwob Library" dxpos="232" dypos="215"
dwidth="51" dheight="25">

<target>libraryl</target>

</action>

<action type="onclick" alt="Lenoir Hall" dxpos="107" dypos="243"
dwidth="79" dheight="18">

<target>lenoirl</target>

</action>

<action type="onclick" alt="Richards Hall" dxpos="356" dypos="195"
dwidth="55" dheight="15">

<target>richardsl </target>
</action>

<action type="onclick" alt="Howard Hall" dxpos="256" dypos="202"
dwidth="70" dheight="12">

<target>howardl</target>
</action>

<action type="onclick" alt="Woodall Hall" dxpos="293" dypos="229"
dwidth = "33" dheight="18">

<target>woodalll</target>
</action>

<action type="onclick" alt="Davidson Student Center" dxpos="343"
dypos="249" dwidth="80" dheight="ll">

<target>davidsonl</target>
</action>

</screen>

<screen id="aboutcsu" header="csuheader">

60

<img src="images/csu/aboutPlate.jpg" alt= "Columbus State University Kiosk"

xpos="72" ypos="0" width = "728" height="68">

<textArea src="doc/csu/aboutCSU.htm" xpos="72" ypos="68" width="650"
height="517">
</textArea>

</screen>
<screen id = "clocktowerl" header="csuheader">

<img src="images/csu/towerPlate.jpg" alt="Clock Tower" xpos="72" ypos="0"
width = "728" height="68">

<img src="images/csu/ClockTowerl.jpg" alt="Clock Tower" xpos="72" ypos="198"
width = "161" height="288">

<img src="images/csu/towerinspring3.jpg" alt="Clock Tower in Spring" xpos="180"
ypos="68" width = "129" height="250">

<textArea src="doc/csu/towerl.htm" xpos="351" ypos="68" width="400"
height="417">
</textArea>
<text font="Serif" style="BOLDITALIC" size="14" xpos="351" ypos="500" width = "250"

height="30" color="BLACK">More information...

<action type="onclick">

<target>clocktower2</target>
</action>

</text>
</screen>

<screen id="clocktower2" header="csuheader">
<img src="images/csu/towerPlate.jpg" alt="Clock Tower" xpos="72" ypos="0"
width = "728" height="68">

<img src="images/csu/ClockTowerl.jpg" alt="Clock Tower" xpos="72" ypos="198"
width="161" height="288">

<img src="images/csu/towerinspring3.jpg" alt="Clock Tower in Spring" xpos="180"
ypos="68" width = "129" height="250">

<textArea src="doc/csu/tower2.htm" xpos="351" ypos="68" width="400"
height="417">
</textArea>
<text font="Serif" style="BOLDITALIC" size="14" xpos="351" ypos="500" width = "250"

height="30" color="BLACK">Previous information...

<action type="onclick">

<target>clocktowerl</target>
</action>

</text>
</screen>
<screen id="libraryl" header="csuheader">

<img src="images/csu/libraryPlate.jpg" alt="Simon Schwob Library" xpos="72"
ypos="0" width = "728" height="68">

<img src="images/csu/schwobl.jpg" alt= "Simon Schwob Library" xpos="72"
ypos="212" width="279" height="171">

<img src="images/csu/libraryl.jpg" alt="Simon Schwob Library" xpos="246" ypos="68"
width="279" height="171">

<textArea src="doc/csu/libraryl.htm" xpos="408" ypos="290" width="350"
height="210">
</textArea>

61

<text font="Serif" style="BOLDITALIC" size="14" xpos="508" ypos="510" width="250"
height="30" color= "BLACK" > More information...

oction type= "onclick" >

<target>library2</target>

</action>

</text>

</screen>
<screen id="library2" header="csuheader">

<img src="images/csu/libraryPlate.jpg" alt="Simon Schwob Library" xpos="72"
ypos="0" width="728" height="68">

<img src="images/csu/schwob2.jpg" alt="Simon Schwob Library" xpos="373"
ypos="68" width="231" height="120">

<img src="images/csu/girl_library.jpg" alt="Girl at Library" xpos="517" ypos="167"
width = "231" height="120">

<textArea src="doc/csu/library2.htm" xpos="72" ypos="221" width="400"
height="255">
</textArea>
<text font="Serif" style="BOLDITALIC" size="14" xpos="82" ypos="490" width="250"

height="30" color= "BLACK" > Previous information...

oction type= "onclick"

>

<target>libraryl</target>

</action>

</text>
</screen>
<screen id="richardsl" header="csuheader">

<img src="images/csu/richardsPlate.jpg" alt="Richards Hall" xpos="72" ypos="0"
width = "728" height="68">

<img src="images/csu/richardspicture.jpg" alt="Richards Picture" xpos="162"
ypos="68" width="120" height="156">

<img src="images/csu/richards3.jpg" alt="Richards entrance" xpos="50" ypos="210"
width="120" height="156">

<img src="images/csu/richardsl.jpg" alt="Richards Hall" xpos="440" ypos="68"
width="245" height="156">

<img src="images/csu/richards2.jpg" alt="Richards Hall" xpos="524" ypos="210"
width="245" height="156">

<textArea src="doc/csu/richardsl.htm" xpos="222" ypos="229" width = "300"

height="360">
</textArea>

</screen>

<screen id = "lenoirl" header="csuheader">
<img src="images/csu/lenoirPlate.jpg" alt="Lenoir Hall" xpos="72" ypos="0"
width = "728" height="68">

<img src="images/csu/lenoirplaque.jpg" alt="Lenoir Plaque" xpos="75" ypos="68"
width = "300" height="163">

<img src="images/csu/lenoirpicture.jpg" alt="Lenoir Picture" xpos="0" ypos="196"
width = "138" height="208">

<img src="images/csu/lenoirl.jpg" alt="Lenoir Hall" xpos="500" ypos="241"
width = "300" height="163">

62

<img src="images/csu/lenoir2.jpg" alt="Lenoir Hall" xpos="376" ypos="68"
width = "300" height="163">

<textArea src="doc/csu/lenoirl.htm" xpos="152" ypos="252" width="335"
height="325">
</textArea>

</screen>
< screen id = "howardl" header="csuheader">

<img src="images/csu/howardPlate.jpg" alt="Howard Hall" xpos="72" ypos="0"
width="728" height="68">

<img src="images/csu/howardl.jpg" alt="Howard Hall" xpos="268" ypos="68"
width = "246" height="153">

<img src="images/csu/howard2.jpg" alt="Howard Hall" xpos="72" ypos="288"
width = "246" height="153">

<img src="images/csu/howard3.jpg" alt="Howard Hall" xpos="465" ypos="288"
width = "246" height="153">

</screen>
<screen id = "woodalll" header="csuheader">

<img src="images/csu/woodallPlate.jpg" alt="Woodall Hall" xpos="72" ypos="0"
width="728" height="68">

<img src="images/csu/woodalll.jpg" alt="Woodall Hall" xpos="72" ypos="68"
width="243" height="389">

<textArea src="doc/csu/woodalll.htm" xpos="316" ypos="68" width="450"
height="417">
</textArea>

</screen>
<screen id="davidsonl" header="csuheader">

<img src="images/csu/davidsonPlate.jpg" alt="Davidson Student Center" xpos="72"
ypos="0" width = "728" height="68">

<img src="images/csu/davidsonl.jpg" alt="Davidson Student Center" xpos="72"
ypos="68" width="375" height="157">

<img src="images/csu/davidson2.jpg" alt="Davidson Student Center" xpos="550"
ypos="68" width="250" height="400">

<textArea src="doc/csu/davidsonl.htm" xpos="122" ypos="226" width="375"
height="417">
</textArea>

</screen>

</kiosk>

	Kiosk Engine: A Platform Independent Solution For Multimedia Kiosks
	Recommended Citation

	Kiosk Engine A Platform Independent Solution For Multimedia Kiosks

