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The human dopamine receptor 4 (hD4R) is a seven-transmembrane helical G 

protein-coupled receptor (GPCR) found in neural synaptic membranes. The 

neurotransmitter dopamine binds to and activates the hD4R, which is involved in 

central nervous system pathways that modulate cognition and circadian rhythms. 

The hD4R is the primary dopaminergic receptor for the atypical anti-psychotic 

drug clozapine, which is used to treat schizophrenia and other cognitive 

disorders. The hD4R gene is unique among the superfamily of GPCR-encoding 

genes because within the human population, it contains a variable number of 

tandem repeat (VNTR) exon polymorphism. Because of the VNTRs, the length of 

the primary structure of one of the intracellular loops of the hD4R can vary 

dramatically among individuals. Attempts have been made to correlate different 

VNTR structures with different behavioral traits – for example, a specific variant 

of hD4R is robustly correlated with attention deficit hyperactivity disorder. Like 

other GPCRs, hD4R functions at the plasma membrane by binding an 

extracellular ligand, in this case dopamine, to regulate an intracellular signaling 

cascade. The density of hD4R at the plasma membrane and its distribution within 



the neuron/synapse dictate the cellular response to dopamine. Despite the 

importance of hD4R in neuronal signaling, the molecular mechanisms regulating 

its cellular expression and degradation are unclear. Isopeptide ubiquitination of 

lysine residues on the cytoplasmic surface of various GPCRs regulates receptor 

abundance at the membrane by promoting protein degradation. I have studied 

the role of the ubiquitin-proteasome system in the cellular degradation of hD4R, 

and show here that hD4R protein levels are regulated through both a canonical 

and a non-canonical ubiquitination pathway. Site-directed mutagenesis of lysine 

residues, as well as mutagenesis of the atypical ubiquitin acceptors serine and 

threonine, led to an additive increase in mutant hD4R protein abundance in a 

cellular expression model. Chemical inhibition of the proteasome increased levels 

of the wild-type hD4R, but not the lysine, serine, and threonine null mutant. Both 

isopeptide ubiquitination of lysine and ester bond ubiquitination of serine and 

threonine were detected on hD4R in a model protein expression system using 

immunoprecipitation techniques. A proximity ligation assay was used to quantify 

isopeptide and ester bond ubiquitination in this protein expression system and to 

detect ubiquitination of hD4R in mouse primary cortical neurons. Together, these 

data support the hypothesis that hD4R is proteasomally degraded after 

isopeptide ubiquitination of lysine residues and ester ubiquitination of serine and 

threonine residues. The ubiquitination and subsequent degradation of hD4R 

represents a mechanism for cellular control over hD4R protein levels. While the 

low abundance of hD4R protein produced in heterologous expression systems 



has previously been limiting for biochemical and structural biology techniques, 

the degradation-resistant hD4R mutants presented here overcomes this limitation 

and may facilitate future research, including the identification of dopamine 

receptor interacting proteins (DRIPs). hD4R joins a small number of proteins that 

are known to be modified by ubiquitination via ester bonds. This work also 

describes novel techniques to confirm and quantify ester-bond ubiquitination for a 

given membrane protein within a cell. 
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CHAPTER 1: Introduction 

1.1 G protein-coupled receptors 

G protein-coupled receptors (GPCRs) are the central component in a 

complex signaling system that has evolved to communicate information from the 

extracellular environment to the cellular interior. GPCRs are polytopic membrane 

proteins with seven transmembrane (TM) α-helices embedded in the plasma 

membrane to create distinct extracellular and intracellular domains. The human 

genome contains genes encoding approximately 730 different GPCRs, and each 

GPCR has a characteristic cellular expression pattern and pharmacology. 

Agonistic ligands, which generally engage receptors at the extracellular surface, 

bind with high specificity and affinity and result in receptor activation. A ligand-

induced change in protein conformation accompanies the formation of the 

receptor-ligand complex and extends through the TM helices to the cytoplasmic 

surface of the receptor. Relatively dramatic conformational changes in the 

receptor’s cytoplasmic surface, including an opening of the helical bundle, then 

facilitate the binding of a specific intracellular heterotrimeric guanine nucleotide-

binding regulatory protein (G protein). The formation of a “ternary complex” 

(ligand-receptor-G protein) induces the release of guanosine diphosphate (GDP), 

which is rapidly replaced with guanosine triphosphate (GTP), within the α subunit 
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of an intracellular G protein. The agonist-induced GDP/GTP exchange causes 

the dissociation of the G protein α subunit from its G protein β and γ subunits and 

from the active receptor. The activated G protein, which essentially functions as a 

molecular switching mechanism, then initiates intracellular signaling cascades 

either through the direct effects of the GTP-bound α subunit, or the liberated G 

protein βγ subunit, depending on the specific cellular context. 

The basic mechanism of GPCR signaling is relatively narrowly utilized in 

nature. All eukaryotes – from yeast to humans – utilize GPCRs to facilitate cell-

to-cell communication or to monitor the extracellular environment (de Mendoza et 

al., 2014), but GPCR orthologs are not found, for example, in bacterial 

organisms. In addition to a conserved function, GPCRs posses a highly 

conserved protein structure. The prototypical GPCR has an extracellular amino-

terminus (N-term), seven TM domains, and an intracellular carboxy-terminus (C-

term). There are three extracellular loops (EC1, EC2, and EC3), and three 

intracellular loops (IC1, IC2, and IC3) (Figure 1-1). Within the confines of the 7-

TM structure, there is great diversity in the length and composition of the termini, 

loops, and TM helices. Post-translational modifications (PTMs), including N- and 

O-linked glycosylation, tyrosine sulfation and disulfide bond formation, especially 

involving the N-term tail, can vary widely among different GPCRs. 
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Figure 1-1 Prototypical GPCR structure. 

A GPCR has an extracellular amino-terminus (N-term), seven transmembrane 

(TM) domains (blue), and an intracellular carboxy-terminus (C-term). There are 

three extracellular loops (EC1, EC2, and EC3), and three intracellular loops (IC1, 

IC2, and IC3). The approximate extent of the plasma membrane region is shown 

in orange. 
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Within the human genome, there are approximately 730 GPCRs 

(Fredriksson et al., 2003). Despite having a similar structure and general 

mechanism of activation, these GPCRs bind a diverse array of ligands and 

contribute to diverse cellular processes. GPCR ligands can range in size from a 

photon of light, which is detected by a chromophore cofactor in visual pigments, 

(Sakmar et al., 2002)to a 30-kDa protein hormone(Szkudlinski et al., 2002). The 

majority of GPCR ligands are small molecules and peptides, including types of 

odorants(Buck and Axel, 1991), neuromodulators(Civelli, 2012), and 

approximately 25% of all FDA-approved small-molecule drugs(Overington et al., 

2006). In humans, there are four different classes of G protein α subunits that 

can be activated by GPCRs and, through various secondary messengers 

including cyclic adenosine monophosphate (cAMP), diacylglycerol (DAG), and 

inositol trisphosphate (IP3), can initiate various protein signaling 

cascades(Wettschureck and Offermanns, 2005). Furthermore, there appear to be 

signaling cascades that can be activated by the interaction of GPCRs with 

cellular proteins other than G proteins, including β-arrestin(DeWire et al., 2007). 

At the cellular level, the consequences of GPCR-initiated signaling cascades can 

include protein phosphorylation, regulation of gene transcription, and apoptosis. 

At the organismal level, the consequences of GPCR-initiated signaling cascades 

can include sensory perception, regulation of behavior, and immune 

function(Wettschureck and Offermanns, 2005). 
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GPCRs are expressed throughout the mammalian body (Regard et al., 

2008; Vassilatis et al., 2003), and at the organismal level, regulating the spatial 

distribution and level of cell-surface expression of GPCRs appears to be vital to 

human health. Aberrant expression of GPCRs has been associated with 

numerous disease states, including tumorigenesis. For example, the induced 

aberrant expression of a GPCR has been shown to be sufficient to induce 

tumorigenesis(Mazzuco et al., 2007) and the expression of a constitutively active 

GPCR has been shown to cause uveal melanoma – the first case of a GPCR 

oncogene(Moore et al., 2016). At the cellular level, the regulation of GPCR 

protein levels at the cell surface is also important to human health, and at least 

20 GPCRs have been found to be upregulated in at least 14 different types of 

cancer, where their activation contributes to inappropriate cell survival as well as 

metastasis(Dorsam and Gutkind, 2007). For example, the upregulation of the C-

X-C chemokine receptor 4 (CXCR4), which mediates targeted cell migration, is 

necessary for Her2-mediated breast cancer metastasis(Li et al., 2004). Human 

disease can also result from insufficient levels of protein at the cell surface. For 

example, a lack of the visual GPCR rhodopsin at the surface of the disc 

membrane in rod cells results in autosomal-dominant retinitis 

pigmentosa(Hollingsworth and Gross, 2012). The presence of GPCRs at the 

cellular surface can be dictated by rates of transcription and translation as well as 

multiple PTMs. One PTM often used to regulate GPCR protein levels and 

localization is ubiquitination, which is the primary focus of this dissertation. 
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1.2 Isopeptide Ubiquitination 

Protein modification via covalent attachment of the small protein ubiquitin 

was first reported in the 1970s in a series of inter-related studies. Ira Goldknopf 

and Harris Busch discovered that a polypeptide could be attached to the histone 

protein H2A via an isopeptide (Goldknopf et al., 1977). Separately, David 

Schlesinger and Gideon Goldstein identified a polypeptide, which as cited in the 

title of their 1975 publication, “is probably represented universally in living cells.” 

They later renamed the polypeptide ubiquitin (Goldstein et al., 1975). Both 

aforementioned groups published preliminary sequential Edman degradation 

results for these polypeptides (Olson et al., 1976; Schlesinger and Goldstein, 

1975). Margaret O. Dayhoff, the creator of the first protein sequence repository 

and author of the Atlas of Protein Sequence and Structure, determined that these 

polypeptides were in fact the same, and that ubiquitin was attached to H2A via an 

isopeptide linkage (Hunt and Dayhoff, 1977). 

After 25 years of accelerating biochemical and proteomics work, we now 

know that covalent attachment of an ubiquitin molecule is a common PTM and is 

catalyzed by a series of enzymatic reactions (Figure 1-2). First, a ubiquitin-

activating enzyme (E1) binds adenosine triphosphate (ATP), Mg2+, and free 

ubiquitin. The E1 enzyme then catalyzes the acyl-adenylation of the ubiquitin C-

term. The ubiquitin adenylate intermediate is then attacked by an active site 
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cysteine residue in the E1 enzyme, resulting in a thioester attachment between 

the E1 cysteine and ubiquitin C-term (Ciechanover et al., 1982)(Schulman, 

2009)(Schulman and Harper, 2009). A protein-protein interaction between the E1 

and the ubiquitin-conjugating enzyme (E2) then promotes the transfer of thioester 

ubiquitin from E1 to an active site cysteine in E2 (Hershko et al., 1983)(Olsen, 

2013)(Olsen and Lima, 2013). Finally, the ubiquitin ligase enzyme (E3) is 

responsible for substrate recognition and the transfer of ubiquitin from E2 to the 

substrate (Hershko et al., 1983). 

Figure 1-2 Ubiquitination reaction pathway. 

Ubiquitin (Ub, orange) is attached via a thioester bond to a cysteine (C) on the 

ubiquitin-activating enzyme (E1, dark gray) through an ATP-dependent process. 

Ub is then transferred to the ubiquitin-conjugating enzyme (E2, gray), where it is 

also attached via a thioester bond. An ubiquitin ligase enzyme (E3, light gray) 

then facilitates the covalent deposition of Ub on the target protein (blue). A RING 

family E3 ligase is shown here as an example. Adapted from (Rotin and Kumar, 

2009). 
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There are two major families of E3 ligases, with separate mechanisms of 

action. The RING domain-containing enzyme may be one component in a multi-

protein complex responsible for substrate recognition and ubiquitination. In the 

case of the RING family of E3s, the E3 works as a scaffold that brings the 

substrate and E2-ubiquitin complex in close proximity (Deshaies and Joazeiro, 

2009). Alternatively, in the HECT family of E3s, there is a conserved active site 

cysteine in the E3 that forms a thioester bond with ubiquitin before it is attached 

to the substrate (Rotin and Kumar, 2009). 

Despite the fact that ubiquitin is attached via a thioester bond to the active-

site cysteine residues of E1, E2, and in some cases E3 enzymes, until 2005 it 

was believed that ubiquitin was only attached to protein substrate lysine residues 

or N-terms via isopeptide bonds. The human genome encodes two potential E1 

enzymes, 28 E2s, and over 600 E3s. The majority (95%) of E3s are members of 

the RING family (Li et al., 2008). There are also 79 human deubiquitinases 

(DUBs) that contribute to protein regulation by enzymatically removing ubiquitin 

residues from substrate proteins (Komander et al., 2009). 

Ubiquitin can be attached to a substrate in a variety of configurations. 

First, a single substrate residue can be attached to a single ubiquitin molecule 

(monoubiquitination) or to a string of multiple ubiquitin molecules attached to one 

another (polyubiquitination). In the case of polyubiquitination, subsequent 

ubiquitin molecules can be attached at many different residues within ubiquitin, 

including up to seven different ubiquitin lysine residues. The most commonly 
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observed sites of polyubiquitination attachment within ubiquitin itself are lysine 48 

and lysine 63. Furthermore, polyubiquitin chains can be linear or branched. 

Finally, recent evidence exists for further PTMs of the ubiquitin molecules 

themselves, including phosphorylation, acetylation, SUMOlyation (small ubiquitin-

like modifier), and neddylation (Swatek and Komander, 2016). Neddylation is the 

process whereby the protein NEDD8 (neural-precursor-cell-expressed 

developmentally down-regulated), a ubiquitin-like polypeptide, is linked to its 

protein target. Any given protein substrate then may have multiple residues which 

can be subsequently modified, adding to the complexity and potential 

heterogeneity of a protein’s ubiquitination state. 

The potential biological consequences of protein ubiquitination was first 

understood in the 1980s. Aaron Ciechanover, Irwin Rose, and Avram Hershko 

discovered the mechanism of ATP-dependent proteolysis, which was in fact 

regulated by protein ubiquitination and subsequent proteasomal degradation 

(Ciechanover et al., 1980; Hershko et al., 1980). Degradation via the proteasome 

is now viewed as the canonical consequence of isopeptide ubiquitination of 

protein substrates. Recent work has sought to define the specific ubiquitin 

modification (in terms of length and linkage) that induces interaction with the 

proteasome. It is thought that configurations containing four ubiquitin molecules 

(though not necessarily all in a single chain) and lysine 48-based linkages 

specifically promote proteasomal degradation (Lu et al., 2015; Thrower et al., 

2000). 
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It is also now clear that ubiquitination of protein substrates can have 

signaling consequences beyond proteasomal degradation (Chen and Sun, 2009). 

The most well understood non-proteolysis consequence of ubiquitination is the 

ubiquitin-dependent activation of the IκB kinase complex. The downstream 

consequence of IκB kinase activation is translocation of the transcription factor 

NF-κB from the cytoplasm to the nucleus (Chen et al., 1996). As with 

proteasomal degradation, an effort has been made to determine precisely which 

ubiquitin conformations are required for IκB kinase activation. Currently, it 

appears that N-term linked and lysine 63-linked polyubiquitination are both 

required for IκB kinase activation (Emmerich et al., 2013). Ubiquitination, but not 

proteasomal degradation, has also been shown to be important for DNA repair 

and chromatin dynamics. A family of proteins containing ubiquitin-binding 

domains seems to be vital to non-proteolytic ubiquitin signaling (Chen and Sun, 

2009). Ubiquitination also has a role, outside of proteasomal degradation, in the 

regulation of membrane proteins, including GPCRs. 

1.3 Trafficking and Ubiquitination of GPCRs 

The ubiquitination of a GPCR was first reported in 2001. In the last 15 

years it has been discovered that at least 40 GPCRs are modified by ubiquitin 

(Jean-Charles et al., 2016). Due to the inherent difficulties of proteomics studies 

of membrane proteins, most GPCR ubiquitination research has focused not on 
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the specific type of ubiquitin attachment, but rather on the cellular consequences 

of ubiquitination. In the majority of cases of known GPCR ubiquitination, the 

modification regulates receptor trafficking, which in turn can influence receptor 

signaling. The process of GPCR transport to and removal from the cell surface 

can be influenced by receptor ubiquitination. 

GPCR mRNA is translated into the protein at the rough endoplasmic 

reticulum (ER), and co-translational insertion of the protein occurs, such that the 

N-term and EC loops are in the ER lumen and the C-term and IC loops are in the 

cytoplasm (a process called membrane translocation). GPCRs have been shown 

to interact with chaperone proteins in the ER that are capable of both assisting in 

protein folding and identifying misfolded proteins (Young et al., 2015). Quality 

control is performed in the ER to ensure that only properly folded proteins reach 

the cell surface. Quality control is conducted via the ER-associated degradation 

(ERAD) pathway, which is ubiquitin-dependent. During the ERAD process, 

misfolded proteins are ubiquitinated by E3 enzymes that are also embedded in 

the ER membrane. Substrate ubiquitination triggers the removal of the misfolded 

protein from the ER (a process called retrotranslocation) and degradation of the 

substrate via the proteasome (Figure 1-3) (Christianson and Ye, 2014). A number 

of GPCRs are subjected to ERAD processing, including a series of opioid 

receptors (Petaja-Repo et al., 2001). Additionally, ERAD is the mechanism by 

which disease-associated mutations in GPCRs, including the well-studied case of 

rhodopsin mutations associated with rod cell degeneration in autosomal-
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dominant retinitis pigmentosa, lead to receptor degradation (Hollingsworth and 

Gross, 2012). 

At least four other PTMs are known to occur on GPCRs in the ER. N-

linked glycosylation is the addition of sugar molecules to asparagine residues 

within the GPCR N-term. O-linked glycosylation occurs at serine or threonine 

residues. Tyrosine sulfation also can occur in the the ER at the N-term of 

GPCRs, and the extent of tyrosine sulfation can affect the ligand affinity of 

receptor agonists as demonstrated in the case of chemokine receptors, in 

particular CXCR4 (Veldkamp et al., 2008). GPCR glycosylation is thought to 

occur in the ER and is correlated with successful surface expression (Young et 

al., 2015). Palmitoylation is the attachment of lipid molecules to the GPCR – 

canonically on cysteine residues in the C-term. Palmitoylation of GPCRs is also 

believed to occur during ER processing and is correlated with receptor cell 

surface expression (Chini and Parenti, 2009). 

GPCRs that are properly folded leave the ER via vesicular transport. The 

GPCRs then travel through the ER-Golgi intermediate complex, the Golgi 

apparatus and the trans-Golgi network (Figure 1-3). It is believed that GPCRs 

undergo further processing in the Golgi, including additional O-glycosylation 

(Young et al., 2015). GPCRs then exit the Golgi, dependent upon specific protein 

sequence motifs in the N-term and C-term of the protein (Dong et al., 2007). 

Traveling via vesicle, GPCRs arrive at the plasma membrane and join the cell 

surface via exocytosis. 
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Figure 1-3 Role of ubiquitin in GPCR trafficking.  

GPCRs travel from the ER (light blue), through the Golgi (dark blue), to the 

plasma membrane (gray). Attachment of ubiquitin (Ub, orange circle) to a GPCR 

in the ER targets that receptor for proteasomal degradation via ERAD. At the 

plasma membrane, agonist binding (red circle) promotes phosphorylation-

dependent internalization of receptors into endosomes (yellow). Canonically, an 

ubiquitinated receptor in an endosome is destined for lysosomal degradation 

(orange) while non-ubiquitinated receptors can be recycled back to the plasma 

membrane (green). Adapted from (Dores and Trejo, 2012). 
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GPCR levels at the cell surface are dictated by both the rate of trafficking 

from the ER to the plasma membrane and the rate of removal from the plasma 

membrane via endocytic vesicles. The internalization of GPCRs from the cell 

surface after receptor activation contributes to receptor desensitization (Figure 1-

3). Desensitization is the terminology for the observation that subsequent 

repeated stimulation of a cell or tissue by the same stimulus results in 

progressively less response. The desensitization process allows for fine-tuning of 

the linear response range, dependent on previous levels of ligand binding 

(Gainetdinov et al., 2004). In yeast, internalization of GPCRs is directly 

dependent upon receptor ubiquitination. In mammals, however, the mechanism 

of endocytic internalization is dependent upon another PTM: phosphorylation. 

After ligand binding and G protein activation, G protein-coupled receptor kinases 

(GRKs) phosphorylate serine and threonine residues on the cytoplasmic surface 

of the receptor. Phosphorylation of serine and threonine residues then recruits β-

arrestin proteins that in turn recruit the protein machinery for endocytosis 

(Gainetdinov et al., 2004). 

While the process of internalization for mammalian GPCRs is 

phosphorylation-dependent, the fate of internalized receptors is ubiquitin-

dependent. The most widely studied and understood role of GPCR ubiquitination 

is in regulating whether internalized receptor will be returned to the cell surface (a 

process called recycling) or destroyed. According to the canonical mechanism of 

desensitization, an ubiquitin molecule attached to a GPCR inside an endocytic 
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vesicle will be bound by proteins called, endosomal-sorting-complex-required-for-

transport (ESCRT) proteins. ESCRT machinery will then facilitate the combining 

of the vesicle with a lysosome, leading to the degradation of the receptor (Alonso 

and Friedman, 2013). Alternatively, if an internalized receptor is not ubiquitinated, 

the vesicle is not bound by ESCRT machinery and is capable of returning to the 

cell surface (Figure 1-3). While GPCR ubiquitination does promote receptor 

degradation, it is not through the proteasomal pathway that dominated 

ubiquitination studies of the 1980s and 1990s. Receptor ubiquitination leading to 

lysosomal degradation has been observed for a number of GPCRs, including the 

β2 adrenergic receptor, a number of chemokine receptors including CXCR4, and 

opioid receptors. The enzymes required for ubiquitination and in some cases also 

deubiquitination for these receptors have been determined, as have the specific 

steps of lysosomal degradation that are ubiquitin-dependent (Jean-Charles et al., 

2016). 

The number of copies of a given GPCR at the plasma membrane 

influences how a cell responds to extracellular ligands. Ubiquitination of GPCRs 

helps to regulate the abundance of receptors at the plasma membrane through, 

1) ERAD processes controlling the quality and number of receptors leaving the

ER for the cellular surface, and 2) lysosomal degradation processes controlling 

the fate of receptors leaving the cellular surface after activation. It is likely that 

there are consequences of GPCR ubiquitination outside of their canonical roles in 

regulating proteasomal and lysosomal degradation. For example, ubiquitination 
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of GPCRs could be utilized directly in receptor signaling in a mechanism similar 

to the activation of IκB kinase complex. It is also likely that many more GPCRs 

are ubiquitinated than we currently appreciate. It has been shown in HEK293T 

cells that the D1, D2, and D5 dopamine receptors are ubiquitinated, though the 

details of ubiquitin attachment and the consequence of ubiquitination is unknown 

(Jean-Charles et al., 2016; Rondou et al., 2008). In the dissertation that follows, I 

present evidence for the ubiquitination of a dopamine-binding GPCR, the human 

dopamine receptor 4 (hD4R), at both lysine residues and serine/threonine 

residues, and determine the consequences of hD4R ubiquitination on its 

degradation. 

1.4 Human dopamine receptor 4 

The human proteome contains five GPCRs that recognize the modulatory 

neurotransmitter dopamine as their primary agonist ligand. Despite all binding the 

same endogenous ligand, these receptors vary in their distribution within the 

body, their protein sequence and structure, and their G protein coupling 

specificity. The human dopamine receptor 1 (hD1R) and the human dopamine 

receptor 5 (hD5R) are expressed exclusively in post-synaptic cells, contain a long 

C-term, and couple predominantly to Gαs (the “stimulatory” G protein) ultimately 

leading to cAMP production. Alternatively, hD2R, hD3R, and hD4R can be 

expressed in pre- and/or post-synaptic cells, contain a long IC3 loop, and couple 
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predominantly to Gαi/o (the “inhibitory” G protein, or so-called “other” G protein) 

leading to the inhibition of cAMP production (Beaulieu and Gainetdinov, 2011). 

In 1991, only three human dopamine receptors had been discovered - 

hD1R, hD2R, and hD3R. At that time the antipsychotic drug clozapine used 

mainly for treatment of schizophrenia was characterized as “atypical” because it 

was hypothesized to work through both serotonin and dopamine pathways, but 

none of the known dopamine receptors had sufficient binding affinity for the drug 

to be potential targets (Meltzer, 1991). Therefore, Hubert Van Tol and colleagues 

hypothesized that a fourth dopamine receptor must exist. Through homology-

based cloning, Van Tol cloned the gene DRD4 that encodes hD4R and showed 

that hD4R affinity for clozapine was an order of magnitude greater than its 

affinities for hD1R, hD2R, and hD3R (Van Tol et al., 1991). 

Shortly after cloning DRD4, Van Tol and coworkers noticed that a number 

of variants of DRD4 were present in the human population. They described a 48-

base pair variable number of tandem repeat (VNTR) polymorphism in the third 

exon of DRD4, which encodes the IC3 loop in hD4R (Van Tol et al., 1992). There 

can be anywhere from 2 to 11 repeats in DRD4, though the most common are 2, 

4, or 7 repeats (Figure 1-4). These are not perfect repeats; while all repeats are 

proline-rich, the exact amino acid sequence is not identical for each repeat 

segment within a variant. Further variability exists in that multiple alleles of the 2, 

4, or 7 repeat exist with minor codon changes within the repeat region (Lichter et 

al., 1993). 
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Figure 1-4 VNTR in hD4R IC3. 

hD4R contains 2-11 repeats (blue squares) in IC3. Repeats are 16-amino acid 

residues long; repeat sequences are not identical, but are proline-rich. The most 

common hD4R variants are 2-repeat (hD4.2R), 4-repeat (hD4.4R), and 7-repeat 

(hD4.7R). The amino acid sequence for the most common allele of each variant 

is shown. 
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The hD4R receptor gained public recognition after two articles reported a 

correlation between the 7-repeat variant of DRD4 and novelty seeking behavior in 

humans (Benjamin et al., 1996) (Ebstein et al., 1996). The correlation between 

the 7-repeat variant and novelty seeking has not withstood meta-analysis (Kluger 

et al., 2002), but the initial articles spurred the publication of numerous further 

studies checking for associations between DRD4 variants and various aspects of 

human behavior, personality traits, and mental health. The U.S. National Library 

of Medicine online database PubMed.gov shows that an average of nearly 1 

paper per week has been published analyzing DRD4 polymorphisms from 2004 

to 2016. The majority of results that do find a positive correlation are not 

reproducible, in part because of great variability in the methods used to classify 

alleles (Pappa et al., 2015). 

However, one association does seem to be routinely reproduced and 

holds true during meta-analysis: the correlation between the DRD4 7-repeat 

alleles and diagnosis of attention deficit hyperactivity disorder (ADHD) (Li et al., 

2006). An outstanding question in the field is how the correlation between the 7-

repeat variant and ADHD may be explained by the molecular pharmacology of 

hD4R, its cell biology, and its neural signaling. 

Understanding the expression pattern of hD4R protein in the brain has 

been challenging due to difficulties in finding antibodies or ligands that are 

sufficiently selective for hD4R over hD2R and hD3R. One immunohistology study 

did provide evidence that hD4R is likely expressed in g-aminobutyric acid 
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(GABA) ergic (or GABA-producing) neurons within a variety of brain structures, 

including the cerebral cortex and hippocampus. Additionally, evidence exists for 

hD4R expression in pyramidal neurons, especially in the prefrontal cortex 

(Mrzljak et al., 1996). These results have been corroborated by evidence from 

mRNA- and ligand-based studies (Vullhorst, 2013). hD4R expression has also 

been observed at high levels in the human retina (Matsumoto et al., 1995) and 

pineal gland (Bai et al., 2008). 

In the brain hD4R seems to be present specifically in fast-spiking, 

parvalbumin-expressing (PV+), GABAergic interneurons. These neurons are 

relatively easy to identify in the brain and have therefore become a highly studied 

cell type – both at the molecular and circuit levels. It is clear that PV+ 

interneurons have a role in a number of brain functions, including gamma-

oscillations (Hu et al., 2014). Gamma-oscillations are measurable neural 

oscillations between 20-80 Hz. The presence of gamma-oscillations is correlated 

with attention (Benchenane et al., 2011), and decreased gamma-oscillations are 

correlated with cognitive impairment and psychiatric disease (Uhlhaas and 

Singer, 2012). The activation of PV+ interneurons is associated with the 

generation of gamma-oscillations while the inhibition of PV+ interneurons is 

associated with reduction in gamma-oscillations (Cardin et al., 2009; Sohal et al., 

2009). A role has emerged for hD4R in the regulation of these gamma-

oscillations. A specific hD4R agonist is capable of increasing gamma-oscillation 

power (Andersson et al., 2012b). It seems that hD4R works with ErbB4 (a 
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receptor tyrosine kinase with neuregulin-1 as a ligand) and N-methyl-D-aspartate 

(NMDA) receptor (a glutamate activated ion channel) to exert a modulatory effect 

on gamma oscillations (Andersson et al., 2012a). These studies have renewed 

interest in hD4R as a drug target – now focusing on ameliorating cognitive 

deficits as opposed to being an anti-psychotic agent. 

The cell biological and signaling properties of hD4R are of great interest 

and have the potential to serve as a bridge between genetic- and circuit-level 

understanding of the receptor. However, detailed studies of hD4R variants have 

been hampered because expression levels of the receptor in heterologous 

expression systems are extremely low, the receptor appears to be 

heterogeneous due to PTMs, and its signaling pathways appear to be pleiotropic. 

hD4R is glycosylated on the N-term and palmitoylated on the C-term (Zhang and 

Kim, 2016). Proper folding of hD4R may be a limiting factor in trafficking of the 

receptor to the cell surface (Van Craenenbroeck et al., 2005), and it appears that 

hD4R may not be internalized through the canonical phosphorylation- and β-

arrestin-dependent mechanism (Spooren et al., 2010). hD4R binds endogenous 

dopamine and activates predominantly Gαi/o which leads to a decrease in cAMP 

production . Depending on the cellular context, hD4R activation can have various 

downstream signaling outcomes. A few examples include activation of NF-κB 

(Zhen et al., 2001), transactivation of the receptor tyrosine kinase PDGFRβ (Gill 

et al., 2010), and suppression of NMDA function (Qin et al., 2016) . 



22 

Identification of dopamine receptor interacting proteins (DRIPs) of hD4R is 

also an activate field of study. It is hypothesized that identifying additional DRIPs 

will increase our knowledge about hD4R signaling and its regulation. The IC3 

loop of hD4R is extremely proline-rich and filled with potential SH3 (Src-homology 

3) binding domains, a common motif in protein-protein interactions. Oldenhoff

and colleagues demonstrated that the SH3 domain-containing adaptor proteins 

Grb and Nck2 interact with the hD4R IC3 (John Oldenhof et al., 1998). hD4R has 

also been shown to interact with other GPCRs. hD4R and hD2R dimerize to 

regulate release of glutamate in the striatum (González et al., 2012a). 

Dimerization of hD4R with adrenergic receptors in the pineal gland regulates 

melatonin production (González et al., 2012b). hD4R has also been shown to 

directly interact with potassium channels and regulate their trans-membrane 

voltage currents (Lavine et al., 2002). The lab of Kathleen Van Craenenbroeck 

identified the E3 adaptor protein KLHL12 as a hD4R DRIP. They determined that 

overexpression of KLHL12 promoted hD4R ubiquitination, including on non-lysine 

residues, but did not find evidence of KLHL12-associated degradation of hD4R 

(Rondou et al., 2008) (Rondou et al., 2010) (Skieterska et al., 2015). 

The many genetic studies that correlate DRD4 VNTR alleles with 

variations in human behavior and health have motivated a series of experiments 

comparing the function of hD4R protein variants. The 2-repeat protein variant 

(hD4.2R) has a repeat region in IC3 that is 32-amino acid residues in length while 

the 7-repeat protein variants (hD4.7R) has a repeat region that is 112-amino acid 
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residues in length (Figure 1-4). The difference in IC3 loop size is substantial, 

especially considering that the non-repeat region of the receptor is 355-amino 

acids in length. The repeat region causes hD4R variants to have hugely different 

cytoplasmic surfaces in the region attributable to G protein binding. However, 

standard GPCR functional assays show little to no change in hD4R ligand 

binding, G protein coupling, or downstream signaling (Kazmi et al., 2000) 

(Asghari et al., 1994) (Asghari et al., 1995). Functional differences in VNTR 

variants have appeared in a few studies characterizing hD4R-DRIP interactions, 

including hD2R dimerization (González et al., 2012a). Recent data have 

suggested that hD4R in pyramidal neurons of the prefrontal cortex has two 

potentially related roles, 1) regulating NMDA receptor levels, and 2) regulating 

neural oscillations. It seems that expression of hD4.7R, but not hD4.4R, leads to 

both aberrant NMDA degradation and imbalance in excitatory/inhibitory network 

bursts in the prefrontal cortex (Qin et al., 2016; Zhong et al., 2016). The authors 

suggest that the difference in hD4.7R function in pyramidal neurons may explain 

the correlation between the 7-repeat DRD4 allele and diagnosis of ADHD. 

Further understanding the cellular regulation of hD4R is critical if we aim to 

utilize hD4R as a drug target in the context of cognitive disorders or ADHD. 

Through my thesis research project on hD4R, I have discovered a mechanism 

that regulates hD4R protein levels. Regulation of hD4R protein levels is 

dependent upon both canonical ubiquitination of hD4R lysine residues and non-

canonical ubiquitination of serine and threonine residues. 
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1.5 Ester and Thioester Ubiquitination 

As described earlier, it has been known that ubiquitin attachment to the 

substrate protein could occur via isopeptide bonds with the primary amine of 

lysine residues. However, in 1998 it was also discovered that the primary amine 

on the N-term of a protein is also sufficient for isopeptide ubiquitination 

(Breitschopf et al., 1998). Now, N-term ubiquitination is widely recognized, even 

within polyubiquitin chains (Swatek and Komander, 2016). It has also long been 

recognized that the attachment of ubiquitin to cysteine residues via thioester 

bonds occurs in the active sites of enzymes of the ubiquitination pathway (Figure 

1-2). 

An additional example of non-canonical cysteine ubiquitination was more 

recently recognized. Upon infection with Kaposi’s sarcoma-associated 

herpesvirus (KSHV), host immune defense proteins are downregulated. Major 

histocompatibility complex I (MHC I) molecules are ubiquitinated by the 

modulator of immune recognition 1 (MIR1) E3 ubiquitin ligase encoded in the 

genome of KSHV and subsequently degraded. In 2005, Cadwell and Coscoy 

determined that, unexpectedly, mutation of the MHC I molecule’s cytoplasmic 

lysine residues to arginine did not fully prevent degradation. A cytoplasmic 

cysteine residue was sufficient for down-regulation of MHC I in a MIR1-

dependent pathway (Cadwell and Coscoy, 2005). Therefore, it was hypothesized 

that MIR1 was able to ubiquitinate MHC I on lysine via isopeptide bonds as well 
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as cysteine residues via thioester bonds in order to promote degradation (Figure 

1-5). 

 The degradation of host defense proteins after viral E3 ubiquitination on 

non-lysine residues is not unique to MIR1. It was quickly determined that lysine- 

less MHC-I molecules could also be marked for degradation via the mK3 E3 

ubiquitin ligase encoded in the genome of the mouse γ-herpesvirus. In the case 

of mK3, lysine, serine, and threonine residues, but not cysteine residues were 

sufficient for degradation (Wang et al., 2007). Ubiquitination of hydroxyl-

containing residues serine and threonine would require the attachment of 

ubiquitin via ester bonds (Figure 1-5). The E3 ligase Vpu, encoded by the human 

immunodeficiency virus (HIV) is capable of inducing degradation of two host 

defense proteins – CD4 and BST-2/tetherin. Vpu ubiquitinated targets lysine, 

serine, and threonine residues in order to promote degradation (Magadán et al., 

2010) (Tokarev et al., 2011). 

 



26 

Figure 1- 5 Ubiquitin acceptor residues and linkage bonds. 

Ubiquitin can be attached to target proteins on lysine residues through isopeptide 

bonds (orange), serine and threonine residues through ester bonds (blue), and 

cysteine residues through thioester bonds (green). 



27 

The catalysis of ester and thioester ubiquitination of protein substrates is 

not limited to viral E3 ligases. Ester and/or thioester ubiquitination of proteins in 

the absence of viral infection has been observed in yeast, plants, flies, frogs, and 

mammals (Weber et al., 2016) (Gilkerson et al., 2015) (Domingues and Ryoo, 

2012) (Vosper et al., 2009) (Tait et al., 2007). 

A predominant consequence of known cases of ester and thioester 

ubiquitination has been in targeting proteins for proteasomal degradation, 

especially via ERAD. Shimizu and colleagues determined that a mammalian 

ERAD E3 ligase Hrd1 ubiquitinates the known ERAD substrate NS-1 

nonsecreted immunoglobulin light chain via ester ubiquitination. Furthermore, 

Shimizu determined that chemical disruption of ER protein folding increased 

overall cellular levels of ester ubiquitination, suggesting ester ubiquitination may 

be a common mechanism of ERAD E3s (Shimizu et al., 2010). Recently, it was 

also shown that a yeast ERAD E3 ligase, Doa10, is capable of inducing 

ubiquitination of ester as well as isopeptide ubiquitination of ERAD substrates. 

Separate E2 ubiquitin conjugating enzymes, however, were used for isopeptide 

and ester ubiquitination (Weber et al., 2016). 

Proteasomal degradation of ester and thioester ubiquitinated proteins can 

also occur outside of the ER. For example, the proneural transcription factor 

Ngn2, which is active for only a small temporal window in development, is 

ubiquitinated via isopeptide, ester, and thioester ubiquitination before being 

proteasomally degraded (McDowell et al., 2010). The pro-apoptotic protein Bid is 
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auto-inhibited by its N-term. In order for apoptosis to proceed, the N-term is 

cleaved from Bid by a protease, and the N-term fragment must be degraded in 

order to prevent further binding. It has been shown that the N-term fragment is 

ubiquitinated by isopeptide, ester, and thioester bonds in order to induce rapid 

proteasomal degradation (Tait et al., 2007). 

Though the majority of examples of ester and thioester ubiquitination lead 

to protein degradation, just as with isopeptide ubiquitination, there is at least one 

example of ubiquitin serving to regulate protein function. The proteins Pex5p and 

Pex20p serve to shuttle proteins from the cytosol to the peroxisome. In order to 

return to the cytosol to bind more peroxisome-bond proteins, thioester 

ubiquitination of these proteins is required (Carvalho et al., 2007) (Léon and 

Subramani, 2007). 

Ester and thioester ubiquitination are still under-recognized and under-

studied PTMs. In part, the lack of recognition is likely due to the difficulty in ester 

and thioester ester bond identification using mass spectrometry analysis – a 

widely used technique in the ubiquitination field. I present herein evidence for 

ester ubiquitination, but not thioester ubiquitination, in the regulation of protein 

levels of hD4R, and I provide a quantitative method for detecting hD4R ester 

ubiquitination. 
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CHAPTER 2: Materials and Methods 

2.1 DNA constructs and mutagenesis 

DNA constructs for hD4.2R-1D4, hD4.4R-1D4, hD4.7R-1D4 and the non-

physiological hD4.NRR-1D4 in the pMT vector were constructed by Dr. Lenore 

Snyder (Kazmi et al., 2000). The open reading frames of these constructs were 

cloned into the pcDNA3.1 vector using EcoRI and NotI restriction enzymes. The 

original pMT constructs include a C-term 1D4 epitope (amino acid sequence: 

TETSQVAPA) and a 9-amino acid linker between the C-term of hD4R and the 

1D4 epitope sequence (amino acid sequence: GKNPLGVRK). In all pcDNA3.1 

constructs used in this thesis, the 9 amino acid linker region is present, but the 

two lysine residues are mutated to arginine. Mutations were made utilizing the 

QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent 

Technologies). In the creation of the KØ mutant all 4 endogenous lysine residues 

were mutated to arginine. In the creation of the STØ mutant cytoplasmic serine 

and threonine residues were mutated to alanine. The KSTØ mutant combines KØ 

and STØ mutations. For the CØ mutant, 4 cysteine residues in the IC3 loop of 

the hD4.2R-1D4 were mutated to alanine. The TagMaster Site-Directed 

Mutagenesis Kit (GM Biosciences) was used to create an hD4R mutant with N-

term myc epitope as well as a mutant with the OLLAS epitope between hD4R C-

term and 1D4. For baculovirus generation, hD4R-1D4 genes were added to 
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pFBDM using EcoRI and NotI restriction enzyme sites. The pCMV10-3XFLAG-

ubiquitin construct was a gift of Dr. Andrian Marchese, Medical College of 

Wisconsin (Marchese and Benovic, 2001). The Gqi5 construct was a gift of Dr. 

Bruce Conklin (Coward et al., 1999) (Addgene plasmid # 24501). The pGEX2T-

Nck and pGEX2T-Grb2 constructs were gifts from Dr. Hubert Van Tol (John 

Oldenhof et al., 1998). A control expressing only glutathione s-transferase (GST) 

was created using the QuikChange Lightning Site-Directed Mutagenesis Kit 

(Agilent) to delete the Nck gene from the pGEX2T-Nck construct. 

 

2.2 Baculovirus production 

 

 The pBFDM constructs containing hD4R-1D4 genes were transformed into 

DH10BAC E. coli cells and plated on LB Agar with kanamycin, tetracycline, 

gentamicin, X-gal, and IPTG for a blue/white screen. A single white colony was 

grown in LB liquid media (plus kanamycin, tetracycline, and gentamicin) 

overnight and the resulting Bac-mid was isolated using a modified mini-prep kit 

(Qiagen) and isopropanol precipitation. The 10-15 μg of bac-mid was then 

transfected into 10x106 Sf9 cells in 1 mL Grace’s Insect Medium (Invitorgen) 

using 15 μL of Cellfectin II reagent (ThermoFisher Scientific). Cells were cultured 

at 27 °C without CO2, rotating at 120-150 rpm. After 4 hours cells were 

supplemented with 4 mL Sf-900 II SFM (Gibco). 48 hours after transfection cells 

were supplemented with an additional 5 mL Sf-900 II SFM. 96 hours after 
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transfection 1 mL of FBS (Gemini BioProducts) was added to the media, and the 

P1 virus was harvested and filtered. The P2 virus was generated by infecting 

3x108 Sf9 cells (in 100 mL of Sf-900 II SFM) with 1 mL of P1 virus. 24 hours after 

infection, 100 mL of media were added. 72 hours after infection, 10 mL of FBS 

was added to the media, and the P2 virus was harvested and filtered. The P2 

virus was then used for infection of HEK293T cells. The bac-mid and P1 virus are 

stable for up to 6 months. The P2 virus is also stable up to 6 months and can be 

snap frozen in liquid nitrogen and stored at -80 °C with little effect on infection 

efficiency. 

2.3 HEK293T cell culturing and protein expression 

HEK293T cells were grown in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with GlutaMAX and 4.5 g/L glucose (Gibco) containing 10% FBS 

(source) in a 5% CO2 atmosphere at 37 °C. All cells used in this thesis were 

between passage number 3 and 25. 

2.3.1 Transient transfection of HEK293T 

For most experiments presented in this thesis, HEK293T cells were 

transiently transfected with Lipofectamine and Plus reagents. Exceptions are 

detailed below. For transfection in a 6-well plate, HEK293T cells were plated at 
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7x105 cells per well onto PDL-coated plates 1 day before transfection. On the day 

of transfection, 0.875 μg total of plasmid DNA was combined with 5 μL Plus 

Reagent (Invitrogen) in 200 μL of DMEM (no FBS) and incubated for 15 minutes. 

A mixture of DMEM (200 μL) and Lipofectamine reagent (Invitrogen, 10 μL) was 

then added to the DNA solution, and the mixture was incubated for an additional 

15 minutes. The mixture was then added to the cells in a total volume of 1 mL. 

After 3-5 hours the cells were supplemented with 1 mL of DMEM with 20% FBS. 

24 hours after transfection, the media was removed and replaced with 2 mL of 

DMEM with 10% FBS. Assays were initiated 48 hours after transfection. For 

transfection in a 10 cm dish, HEK293T cells were split at a ratio of 1:5 24 hours 

before transfection, and a similar protocol was performed using 3.5 μg DNA with 

10 μL Plus reagent in 750 μL DMEM and 17 μL Lipofectamine reagent in 750 μL 

DMEM. The total volume of transfection was 4 mL, and the cells were 

supplemented with 4 mL DMEM with 20% FBS. 24 hours post-transfection the 

media was replaced with 8 mL of DMEM with 10% FBS. 

For most sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) assays, the entire quantity of transfected DNA was pcDNA3.1-hD4R-1D4. 

For ubiquitination experiments, half the DNA was pcDNA3.1-hD4R-1D4 and half 

was 3X-FLAG-ubiquitin. For immunofluorescence experiments and qualitative 

PLA in HEK293T cells, 1/7 of the total DNA was pcDNA3.1-hD4R-1D4 and the 

remainder was empty pcDNA3.1 vector. 
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2.3.2 Treatment with inhibitors 

For lysosome inhibition experiments, cells were grown in the presence of 

chloroquine diphosphate (Sigma) for 4 hours and SDF1α (PeproTech) for 3.5 

hours before collection. For proteasomal inhibition experiments, cells were grown 

in the presence of bortezomib (Cell Signaling Technology, 1 pM to 1 µM) for 12 

hours before collection. For the initial screening of degradation inhibitors, the 

following concentration of each inhibitor was included in the cell culture media for 

6 hours before collection: 10 μM MG132 (Cayman Chemical), 10 μM ALLM 

(Santa Cruz Biotech), 10 μM Eeyarestatin I (Sigma), 10 μM bortezomib (Cell 

Signaling), 50 μM Chloroquine diphosphate (Sigma), 10 μL of DMSO. 

2.3.3 Transient transfection of HEK293T for calcium flux assay 

For calcium flux assays, HEK293T cells were transiently transfected 

directly into a poly-D-lysine (PDL)-coated 384-well plate (Corning) using 

Lipofectamine 2000 (Invitrogen). The day of transfection, 30 ng/well of DNA was 

incubated in 5 μL/well DMEM for 5 minutes. A mixture of 0.075 μL/well 

Lipofectamine 2000 and 5 μL/well DMEM was then added to the DNA solution 

and incubated for an additional 20 minutes. HEK293T cells were then trypsinized 

and resuspended in DMEM with 20% FBS, and 10 μL/well of cell solution (at 

8x105 cells/mL) was added to the DNA and Lipofectamine 2000 mixture. A total 
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of 20 μL of solution was then added to each well of the 384-well plates and 

incubated for 48 hours before the assay. The ratio of Gqi5 DNA to pcDNA3.1-

hD4R-1D4 was 1:10. 

2.3.4 Baculovirus infection of HEK293T 

HEK293T cells were infected with pFBDM baculorvirus. On the day of 

infection, HEK293T cells were trypsinized and resuspended in 20% FBS DMEM. 

1 mL cells (at 1.5x105 cells/mL) was added to each gelatin-coated 35 mm glass 

bottom dishes No 1.5 (MatTek), followed by the addition of 0.8 mL of P2 virus 

and 0.2 mL DMEM (no FBS). Cells were incubated for 48 hours before 

processing. 

2.4 Membrane preparations of HEK293T cells 

For preparation of membranes containing hD4R-1D4, transiently 

transfected HEK293T cells were harvested via scraping with a rubber policeman 

in 1 mL PBS with aprotinin and leupeptin per 10 cm plate. Cells were then 

washed in an additional 1 mL per 10 cm plate PBS with aprotinin and leupeptin. 

Washed cell pellets were resuspended in hypotonic lysis buffer (1 mM Tris-HCl 

pH 6.8, 10 mM EDTA, 0.1 mM PMSF, and 10 μg/mL aprotinin and leupeptin) – 

approximately 1 mL buffer per 3 10 cm plates. Cells were then forced through a 
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23-guage needle 3 times, and a 26-guage needle 3 times. 1 mL of 35.5% (w/w) 

sucrose solution in buffer A (20 mM Tris-HCl pH 6.8, 150 mM NaCl, 1 mM 

MgCl2, 1 mM CaCl2, 10 mM EDTA) was added to a TLS-55 centrifuge tube 

(Beckman). The lysed pellets were slowly layered on top of the sucrose solution. 

Tubes were centrifuged at 22,000 rpm at 4 °C for 20 min. The membrane layer 

was removed with a 23-guage needle and moved to TLA 100.3 centrifuge tubes 

(Beckman) and washed with 3 mL of buffer A with PMSF. Membranes were 

centrifuged at 60,000 rpm, 4 °C, for 30 minutes. The membrane pellet was then 

resuspended in 1 mL buffer A with PMSF using a 27-guage needle and washed 

again with 3 mL buffer A with PMSF and spun at 60,000 rpm, 4 °C, for 30 

minutes. Pellets were frozen -20 °C. 

2.5 SDS-PAGE and immunoblot 

In order to perform SDS-PAGE analysis, transiently transfected HEK293T 

cells were washed in 1 mL per 10 cm plate PBS with protease inhibitors and then 

scraped from the plate in an additional 1 mL of PBS with protease inhibitors using 

a rubber policeman. After harvesting, cell pellets were solubilized with RIPA 

buffer (Thermo) with protease inhibitors, PMSF, NaF, Na3VO4, and benzonase at 

4 °C for 1 hour. Lysates were spun at 10,000 rpm, 4 °C for 10 min and then 

normalized for total protein using the DC Protein Assay (BioRad). Normalized 
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lysates were combined with LDS load buffer (NuPAGE) and DTT (100 mM) and 

run on a 4-12% Bis-Tris gel (NuPAGE) at approximately 150 V. 

2.5.1 Chemiluminescent detection of immunoblot 

For detection with chemiluminescent reagents, gels were transferred to 

immobilon-P membrane (Millipore). The membranes were blocked with 5% milk 

and immunoblotted with 1D4 antibody (1:1000 dilution for the detection of hD4R-

1D4) and anti-mouse-HRP secondary (Novex 16066). A sample processing 

control was analyzed by SDS-PAGE and immunoblotting with actin antibody 

(Abcam 8227, 1:10,000 dilution) and anti-rabbit HRP secondary (Novex 16110). 

Membranes were treated with ECL detection reagents (Thermo Scientific) prior to 

being exposed to HyBlot CL autoradiography film (Denville Scientific Inc.). 

2.5.2 IR detection of immunoblot 

For some experiments (including the chloroquine incubation assays, CØ 

mutant expression analysis, and variant protein levels), IR-conjugated secondary 

antibodies were used to detect immunoblots. In this case, a gel was transferred 

to immobilon-FL membrane (Millipore). The membrane was blocked with 

Odyssey blocking buffer (LI-COR) and co-incubated with 1D4 and actin primary 
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antibodies. Secondary antibodies were conjugated to IR probes (LI-COR) and 

scanned using the LI-COR Odyssey Sa. 

2.5.3 Quantification of immunoblots 

In order to measure the increase in protein expression upon bortezomib 

treatment, chemiluminescent immunoblots were quantified. Films were scanned, 

and Adobe Photoshop was used to convert images to gray scale. Using ImageJ, 

the relative area of each band on a single film was measured using the “analyze 

gels” function. The intensity of the 1 pM band for each mutant was normalized to 

1 – resulting in the fold-change value for all higher concentration samples. The 

fold-change for each concentration in biological replicates (2 for wt, and 3 for KØ, 

STØ, and KSTØ) were averaged, and standard deviation was calculated. In order 

to insure that high expression mutants were being analyzed in the linear range of 

chemiluminescent detection, KSTØ hD4.4R-1D4 samples were diluted 10-fold 

before SDS-PAGE and immunoblot analysis. The trend of little to no increase in 

KSTØ protein levels with increasing bortezomib concentrations was maintained. 

Furthermore, 1 biological replicate for each mutant was also analyzed by SDS-

PAGE and immunoblot analysis with IR detection. Quantification of IR detection 

immunoblots yielded the same trend observed for quantified chemiluminescent 

immunoblots. 
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2.6 Expression and purification of GST-DRIPs 

pGEX2T constructs (GST alone, GST-Nck, or GST-Grb2) were 

transformed into BL21 DE3 Gold E. coli (Agilent) and plated onto LB-Agar plates 

with ampicillin. Bacteria were grown in liquid LB with ampicillin to an OD of 

approximately 0.6. Protein expression was then induced with the addition of 1 

mM IPTG. After 2 additional hours of growth, cells were pelleted and frozen. In 

order to purify GST-DRIPs, cell pellets were thawed and resuspended in Lysis 

buffer (PBS with 1% Tween-20, & TritonX-100, 10 mM DTT, aprotinin, and 

leupeptin). The cell solution was sonicated and centrifuged. The resulting lysate 

was incubated with glutathione sepharose 4B slurry (Amersham) for 1 hour at 

room temperature, shaking. The beads were washed twice with lysis buffer 

before lysate binding. After lysate binding, the beads were washed three times 

with lysis buffer. In cases where specific elution of GST or GST-DRIPs was 

required, beads were incubated in 50 mM glutathione (reduced) for 30 minutes at 

room temperature, shaking. For DRIP IPs proteins were also concentrated using 

microcon spin columns (Sigma). In some cases, Grb2 was cleaved from the GST 

fusion by incubating GST-Grb2 attached to glutathione sepharose beads with 

thrombin overnight at room temperature. 
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2.7 Immunoprecipitations (IPs) and pulldowns 

In order to detect protein-protein interactions as well as covalent protein 

modifications such as ubiquitination, proteins and protein complexes were 

purified from cellular lysates and membranes using IPs and glutathione-based 

pulldowns. 

2.7.1 GST pulldowns 

GST-DRIPs or GST alone were expressed and bound to glutathione 

beads, as detailed in section 2.7. After washing the GST-bound beads with lysis 

buffer to remove non-specific interactions, the coated beads were resuspeded in 

RIPA buffer. The coated beads were then combined with membrane preparations 

containing hD4R-1D4 (also resuspended in RIPA), and the bead and protein 

complexes were incubated overnight at 4 °C, rotating. The beads were then 

washed 3 times with RIPA buffer before non-specific elution of protein complexes 

with LDS and DTT for 1 hour at 37 °C, shaking. The quantities of GST-DRIPs 

were assay by SDS-PAGE and coomassie staining while the presence of hDR-

1D4 was assayed by SDS-PAGE and immunoblot with 1D4 antibody. 
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2.7.2 1D4 IPs 

HEK293T cells expressing hD4R-1D4 were washed in 1 mL PBS with 

protease inhibitors and then scraped from the plate in an additional 1 mL of PBS 

with protease inhibitors using a rubber policeman. After harvesting, cell pellets 

were solubilized with RIPA buffer (Thermo) containing protease inhibitors, PMSF, 

NaF, Na3VO4, and benzonase at 4 °C for 1 hour. Lysates were centrifuged at 

10,000 rpm, 4 °C for 10 min and then normalized for total protein using the DC 

Protein Assay (BioRad). For ubiquitination IP assays, normalized lysates were 

incubated with limiting quantities of 1D4 antibody-coated protein G dynabeads 

(Invitrogen 10003D) incubated overnight at 4 °C. For hD4R-DRIP co-IPs, 

membrane preparations containing hD4R-1D4 were solubilized with RIPA and 

combined with purified GST or GST-DRIPs and 1D4-conjugated sepharose 

beads for overnight incubation a 4 °C. Beads were washed three times in RIPA 

buffer, and then the protein was eluted either specifically with 1D5 peptide 

(approximately 350 μg/mL peptide, on ice, 1 hour) or generally using LDS buffer 

and DTT (37 °C, 1 hour, shaking). 

2.7.3 Distinguishing ester versus isopeptide ubiquitination 

In order to identify ester bond ubiquitination via IP, HEK293T cells were co-

transfected with hD4R-1D4 mutants and 3X-FLAG-ubiquitin. After IP with the 1D4 
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antibody, 1D5 eluates were treated with PNGaseF (NEB), and then split in half. 

One aliquot was incubated with 50 mM NaOH (pH 12.3) for 1 hour at 37 °C. The 

other aliquot was incubated with an equivalent volume PBS (pH 7.6) for 1 hour at 

37 °C. The samples were then analyzed by SDS-PAGE and immunoblot with 1D4 

and anti-FLAG antibodies. 

2.7.4 myc IPs 

Co-IP of GST-DRIPs with myc epitope-tagged hD4R constructs was 

performed similarly to 1D4 co-IP detailed in section 2.8.2, but using anti-myc 

9E10 antibody (Sigma) and ultralink A/G resin (Pierce). 

2.7.5 OLLAS IPs 

In order to perform co-IP of GST-DRIPs with OLLAS epitope-tagged hD4R 

constructs, protein G dynabeads (Invitorgen) were coated with purified anti-

OLLAS antibody. The beads were then used to isolate hD4R proteins by 

incubating solubilized membrane preparations with antibody-coated beads for 1 

hour at 4 °C. The beads were then washed 3 times in RIPA buffer and combined 

with bacterial lysates containing GST-Grb2, purified GST-Grb2, or cleaved Grb2. 

Protein complexes were incubated with the beads overnight at 4 °C, shaking, 

before washing and elution with LDS and DTT for 1.5 hours at 37 °C. 
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2.8 Calcium flux assays 

 

48 hours after transfection, HEK293T cells expressing hD4R-1D4 and Gqi5 

were incubated with FLIPR calcium 4-assay kit dye for 1 hour in the tissue culture 

incubator. The fluorescence (Ex 488 nM, Em 530 nM) of the wells were then 

recorded, using Flex Station II 384 (Molecular Devices) while a dose curve of 

quinpirole was added to wells, in triplicate, from 0-100 nM (wt and KØ) or 0-500 

nM (STØ and KSTØ). Normalized Max-Min fluorescence for each well was 

plotted for each dose curve, and a 4-parameter fit was used to calculate EC50 for 

each construct.  

 

2.9 Immunofluoresence (IF) 

 

 The following conditions were optimized using IF: fixation conditions, 

blocking solution, primary antibody concentration, and antibody incubation times. 

The optimal protocol is listed here. HEK293T cells were transiently transfected as 

described in section 2.4.1. 24 hours after transfection, cells were trypsinized and 

plated on gelatin-coated coverslips. 24 hours after trypsinization, cells were 

washed with PBS containing calcium and magnesium and fixed in ice-cold 

methanol at -20 °C for 5 minutes. Samples were blocked with 0.5% BSA in PBS 

containing calcium and magnesium for 1 hour at room temperature. Primary 

antibodies against 1D4 and endogenous ubiquitin (Abcam 7780) were diluted in 
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the BSA blocking solution at 1:1000 and 1:250, respectively. Fixed cells were 

incubated with primary antibodies overnight at 4 °C before washing and 

incubation with anti-mouse-Alexa594 and anti-rabbit-Alexa488 secondary 

antibodies. After washing and staining with nuclear dye, cells were imaged at 

60X magnification using the FSX100 microscope. 

2.10 Proximity ligation assays (PLA) 

Qualitative PLA in HEK293T cells was performed on HEK293T cells 

transiently transfected with wt hD4R-1D4. PLA was performed following DuoLink 

detection kit (Red, Sigma) recommendations, and the custom solutions for 

fixation, blocking, and antibody dilution detailed above for IF. Samples were 

mounted in Duolink mounting medium with DAPI (Sigma-Aldrich). 

For quantitative PLA, HEK293T cells were infected with baculovirus as 

described in section 2.4.4. PLA was performed as described for qualitative PLA, 

but using the Abcam 134953 ubiquitin primary antibody at 1:1000 dilution and the 

DuoLink Detection Reagents Green (Sigma-Aldrich) kit. Anti-mouse-Alexa594 

fluorescent secondary antibody was used to detect infected cells. Samples were 

mounted in Duolink mounting medium with DAPI (Sigma-Aldrich). 

Mouse cortical neurons were cultured and transfected as described in 

section 2.12. After 48 hours, cells were washed twice in DPBS, fixed in 10% 

formalin for 10 min at RT, washed again with DPBS, and permeabilized with 
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0.4% CHAPSO for 10 min at RT. Cells were then processed following 

manufacturer’s instructions for DuoLink Detection Reagents Far Red (Sigma-

Aldrich), using 1D4 and anti-ubiquitin (Abcam 7780) primary antibodies. After 

PLA processing, cells were stained with phalloidin-Alexa488 in order to visualize 

neuronal architecture. Samples were mounted in Duolink mounting medium with 

DAPI (Sigma-Aldrich). 

2.10.1 Microscopy of PLA 

Confocal images of PLA-treated neurons were acquired with a Nikon A1RSi 

point scanning confocal inverted microscope using a 60X oil immersion objective. 

Excitation lasers of 405, 488, and 640 nm were used. Images from single 

confocal planes are shown. Image processing (cropping and adding of scale 

bars) were done in NIS Elements. The brightness and intensity of the images 

was adjusted in Adobe Photoshop CS6 and the final figure was made in Adobe 

Illustrator CS6. 

For quantitaive PLA in HEK293T cells, 20X magnification Z-stack images 

(every 1.5 to 2 μm) were captured using FSX100 Olympus microscope. Exposure 

times were held constant while imaging samples within each experimental 

replicate. A total of four fields of view were obtained for each sample. All image 

processing was done using ImageJ. Nuclei were counted to obtain the total 

number of cells per image. Z-stacks were used to calculate maximum 
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projections, and the channels were split. The green channel was converted to a 

32-bit grayscale image and the number of PLA dots were programmaticaly 

detected. To obtain the number of infected cells, 1D4 IF (red) and DAPI (blue) 

were used. Cells were considered transfected if a full ring of red surrounded the 

entire circumference of the blue nucleus. 

2.10.2 Analysis of quantitative PLA 

Quantifications of PLA in HEK293T cells were performed by Mariluz Soula 

under my mentorship. The average number of PLA signals per cell of a control-

infected plate was considered the background signal. For each image, the 

average background signal (average of all four images obtained from the control 

infection) was multiplied by the total number of cells to give the total number of 

backround foci in the image. The number of background foci were subtracted 

from the total number of PLA signals in the image. The difference was divided by 

the number of infected cells to account for variable infection efficiencies, 

resultting in the average number of PLA signals per transfected cell per image. 

For each of the five biological replicates there were four fields analyzed for each 

mutant. 

Data from the five replicates was pooled for each mutant giving a total of 20 

fields analyzed. Using Prism, a one way ANOVA followed by Tukey’s multiple 
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comparisons test was used to compare the mean of each group to that of every 

other group. Significance was determined by a p-value <0.05. 

 

2.11 Culturing and transfection of mouse cortical neurons 

 

Mouse cortical neurons were cultured by Birgitta Wiehager. Transfections 

were performed by Dr. Sophia Schedin-Weiss, with my input. Cortices were 

dissected from 16-17-day C57Bl/6 mouse embryos (E16.5). The isolated cortical 

neurons were seeded on the inner well of 35 mm glass bottom dishes No 1.5 

(MatTek) that had been pretreated with PDL. The neurons were grown for 6 days 

in vitro (DIV) in selective Neurobasal medium containing 2% B27 (Invitrogen) and 

1% L-glutamine (Invitrogen) at 37 °C in a cell incubator (humidified, 5% CO2) until 

the day of transfection. Primary neurons were transfected with 0.2 μg pcDNA3.1-

hD4R-1D4 using 0.6 μL Lipofectamine 3000 and 0.4 μl P3000. Growth medium 

was removed to keep a total volume of 70 μl during the initial stage of the 

transfection. After incubating for 4 hours, excess growth medium was added to 

the dishes. 
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2.12 Antibody production 

The 1D4 antibody and the antibody against the E.coli OmpF Linker and 

mouse Langerin fusion Sequence (OLLAS) epitope were prepared by protein G 

purification of the culture media from hybridoma cell lines grown in a hollow fiber 

cartridge. This work was performed in collaboration with Manija Kazmi and Dr. W 

Vallen Graham. 

2.12.1 Culturing 1D4 hybridoma 

The 1D4 mouse hybridoma cell line was cultured in a hollow fiber cartridge 

(FiberCell) in serum-free DMEM with GluatMAX for 11 months, following 

FiberCell protocol instructions. Cultured media containing secreted antibody was 

harvested from the cartridge every 48-72 hours, depending on the glucose 

consumption rate of the cells. Harvested media was frozen and -20 °C. 

2.12.2 Purifying 1D4 antibody 

1D4 antibody was purified from cultured media using FPLC and a HiTrap 

Protein G column (GE healthcare). A total of 3 g of antibody was purified. 

Antibody was concentrated to 1 or 10 mg/mL and stored in PBS with 10% 

glycerol and 0.02% sodium azide at -80 °C. 
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2.12.3 Culturing OLLAS antibody hybridoma 

The rat hybridoma cell line expressing the antibody against the OLLAS 

epitope was cultured in serum-free DMEM in a hollow fiber cartridge (FiberCell) 

for 6 months. Cultured media containing secreted antibody was harvested from 

the cartridge every 48-72 hours, depending on the glucose consumption rate of 

the cells. Harvested media was frozen and stored at -20 °C. 

2.12.3 Purifying OLLAS antibody 

Antibody recognizing the OLLAS epitope was purified from cultured media 

using FPLC and a HiTrap Protein G column (GE healthcare). A total of 300 mg of 

antibody was purified. Antibody was concentrated to 10 mg/mL and stored in 

PBS with 10% glycerol and 0.02% sodium azide at -80 °C. 



49 

CHAPTER 3: Proteasomal degradation of hD4R through isopeptide and 

ester ubiquitination 

3.1 Degradation of hD4R 

3.1.1 Mutation of hD4R lysine residues increases hD4R protein levels 

hD4R contains four lysine residues, all of which are located on the 

cytoplasmic surface of the receptor (Fig 3-1). Three lysine residues are present in 

IC3, near but not within the VNTR polymorphism; the fourth lysine residue is in 

the cytoplasmic tail. The four lysine residues of hD4R are conserved in number 

and position in the mouse D4R homolog (Fig 3-1), while the rat homolog contains 

one additional lysine residue. In the most common variant of hD4R, hD4.4R, 

lysine residues comprise less than 1% of the total amino acids. All other human 

dopamine receptors have 2.25-5% lysine residues (Figure 3-1). Although the 

lysine residues in hD4R are conserved, their role in regulating hD4R was 

previously unappreciated. 
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Figure 3-1 Lysine residues of D4R. 

A) Graphic representation of the lysine residues (black) in hD4R. The 1D4

epitope is shown in gray. B) Comparison of percentage of residues that are lysine 

for hD4R compared to other human GPCRs. C) Conservation of lysine residues 

in D4R orthologs. 
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I proposed to label the four lysine residues of hD4.4R with chemical 

crosslinkers in order to identify hD4R DRIPs (described in further detail in 

Chapter 4). I created a mutant of hD4.4R-1D4 where all four lysine residues were 

mutated to arginine (KØ). KØ hD4.4R-1D4 was intended to serve as a negative 

control for crosslinking of hD4R/DRIP since lysine but not arginine residues can 

be labeled with N-hydroxysuccinimide (NHS). Unexpectedly, SDS-PAGE 

immunoblot analysis revealed that a much greater amount of KØ hD4.4R-1D4 is 

present in transiently transfected HEK293T cells compared with wild type (wt) 

hD4.4R-1D4 (Fig 3-2).  

Figure 3-2 Protein levels of wt and KØ hD4R-1D4.  

HEK293T cells transiently transfected with hD4R-1D4 constructs were 

solubilized. Normalized cellular lysates were subjected to SDS-PAGE and 

immunoblot analysis with 1D4. Sample processing controls were subjected to 

immunoblot with anti-actin antibody. 

 

To verify that the change in protein level was due to the absence of lysine 

residues rather than the presence of arginine residues, lysine residues were 

mutated to alanine (Fig 3-3). Individual lysine to arginine mutations were also 

created, and these individual mutants show that there was an additive effect for 
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all four lysine residues (Fig 3-3). Based on the serendipitous observation of 

protein level changes after lysine mutation, it was hypothesized that lysine 

residues regulate protein levels of hD4R through ubiquitination and subsequent 

degradation. 

 

 

Figure 3-3 Lysine residues contribute additively to hD4R protein levels.  

A) Mutation of lysine to arginine versus alanine. HEK293T cells transiently 

transfected with hD4R-1D4 constructs – wt, KØ, or a mutant where all four lysine 

residues were mutated to alanine (KØA) - were solubilized. Normalized cellular 

lysates were subjected to SDS-PAGE and immunoblot analysis with 1D4. Sample 

processing controls were subjected to immunoblot with anti-actin antibody. B) 

Individual mutations of hD4R lysine residues. HEK293T cells transiently 

transfected with hD4R-1D4 constructs containing a single lysine to arginine point 

mutant were solubilized. Normalized cellular lysates were subjected to SDS-

PAGE and immunoblot analysis with 1D4. Sample processing controls were 

subjected to immunoblot with anti-actin antibody.  
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3.1.2 hD4R is degraded proteasomally but not lysosomally 

Ubiquitination of lysine residues can mediate protein degradation through 

several pathways. In order to test whether and how wt hD4R protein is being 

degraded, cells expressing wt hD4.4R-1D4 were incubated with inhibitors to 

various protein degradation pathways. GPCRs that have been ubiquitinated at 

the plasma membrane are canonically degraded by lysosomes. Therefore, cells 

were incubated the lysosomal inhibitor chloroquine diphosphate. Cells were 

incubated with inhibitors of proteasomal degradation (bortezomib, MG132), the 

ERAD pathway (Eeyarestatin I), and calpain degradation (ALLM, MG132). 

Protein levels of wt hD4.4R-1D4 increased substantially upon incubation with 

bortezomib, a potent and specific inhibitor of the 26S proteasome. Chloroquine 

diphosphate had little effect on hD4.4R-1D4 protein levels (Fig 3-4). 
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Figure 3-4 The effect of degradation inhibitors on hD4.4R-1D4 protein 
levels.  

HEK293T cells expressing wt hD4.4R-1D4 were incubated with inhibitors to 

proteasome (10 μM MG132, 10 μM bortezomib), calpain (10 μM MG132, 10 μM 

ALLM), lysosome (50 μM chloroquine disphosphate), and ERAD (10 μM 

Eeyarestatin I) degradation pathways. Normalized cellular lysates were subjected 

to SDS-PAGE and immunoblot analysis with 1D4. Sample processing controls 

were subjected to immunoblot with anti-actin antibody. 
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Cells expressing wt hD4.4R-1D4 were incubated with increasing 

concentrations of lysosomal and proteasomal inhibitors (Figure 3-5). A five-fold 

increase in chloroquine diphosphate had no impact on hD4.4R-1D4 protein 

levels. The chemokine receptor CXCR4 is known to be ubiquitinated and 

lysosomally degraded after treatment with the agonist SDF1-α (Marchese and 

Benovic, 2001). Therefore CXCR4-1D4 was used as a positive control for 

lysosomal degradation assays. Cells expressing CXCR4 were incubated with 

SDF1-α in the presence or absence of chloroquine diphosphate (Figure 3-5). 250 

μM chloroquine diphosphate was sufficient to inhibit SDF1-α-induced 

degradation of CXCR4, but had no effect on hD4R protein levels. These data 

suggest that constitutive hD4R degradation is not lysosome-dependent. Next, 

cells expressing wt hD4.4R-1D4 were treated with a dose curve of bortezomib. 

There was a striking positive correlation between bortezomib concentration and 

hD4.4R-1D4 protein levels. A quantification of two biological replicates of this 

bortezomib dose curve show an approximately five-fold increase in protein level 

for cells incubated with 1 μM bortezomib versus 1 pM. These data suggest that 

wt hD4R is constitutively degraded proteasomally, and not lysosomally in 

HEK293T cells. 



	  

 56 

 

 

 

Figure 3-5 hD4R is degraded proteasomally but not lysosomally.  

A) HEK293T cells expressing CXCR-1D4 were incubated with the agonist SDF1-

α in the presence or absence of chloroquine diphosphate. Normalized cellular 

lysates were subjected to SDS-PAGE and immunoblot analysis with 1D4 and 

anti-actin antibody. B) HEK293T cells expressing wt hD4R-1D4 were incubated 

with increasing concentrations of chloroquine diphosphate. Normalized cellular 

lysates were subjected to SDS-PAGE and immunoblot analysis with 1D4 anti-

actin antibody. C) HEK293T cells expressing wt hD4R-1D4 were incubated with 

increasing concentrations of bortezomib. Normalized cellular lysates were 

subjected to SDS-PAGE and immunoblot analysis with 1D4. D) Immunoblot 

bands from C, plus 1 additional replicate, were quantified via densitometry. The 

fold-change increase in intensity compared to the 1 pM bortezomib sample is 

plotted against bortezomib concentration. 
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To test whether low levels of wt hD4R protein were the result of post-

translational degradation or low rates of protein expression, attempts were made 

to determine the half-life of wt hD4.4R-1D4 protein. Radioactive pulse-chase 

experiments as well as translation inhibition experiments were performed. 

However, neither protocol yielded clear or quantifiable results. Protein levels of wt 

hD4R before inhibition of translation or pulse-chase are already near the limit of 

detection by immunoblot and autoradiogram. These assays failed likely because 

they were dependent upon quantifying decreases in wt hD4R-1D4 protein levels. 

Experiments utilizing degradation inhibitors (Figure 3-4 and 3-5) and residue 

mutation (Figure 3-2 and 3-3) are not subject to this limitation as they increase wt 

hD4R protein levels and therefore have been used successfully. 

3.1.3 Mutation of hD4R lysine residues does not disrupt receptor function 

The KØ hD4.4R-1D4 mutant may be useful for understanding the role of 

lysine residues in hD4R degradation. However, residue mutation can lead to 

misfolding of the protein, which can disrupt protein levels. To confirm that the KØ 

hD4.4R-1D4 mutant was a biologically relevant control, KØ hD4.4R-1D4 function 

was tested through a GPCR signaling assay. I utilized the calcium flux assay, 

which quantifies the extent of intracellular calcium release after ligand binding 

and G protein activation. Calcium flux is canonically a consequence of GPCR 

activation through the of Gαq subunit. However, hD4R has been shown to bind 
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most strongly to Gαi and Gαo subunits. In order to more robustly measure the 

calcium flux of hD4R, a chimeric G protein was co-expressed with hD4R-1D4.

The chimeric protein (Gqi5) is composed of the Gαq subunit fused to the five C-

term residues of Gαi that mediate GPCR binding; Gqi5 was shown previously to 

boost calcium flux signaling for GPCRs whose primary interaction is not with Gαq 

(Coward et al., 1999). I optimized the use of this chimera in a high-throughput 

calcium flux assay previously adapted in the Sakmar lab. The results of calcium 

flux after activation of wt hD4.4R-1D4 by the agonist quinpirole in the presence or 

absence of the Gqi5 chimera is shown in Figure 3-6. Fluorescence levels increase 

after ligand addition at 20 seconds, indicative of calcium release in the absence 

of the Gqi5 chimera, but the maximum fluorescence level is greatly increased 

upon chimera expression. HEK293T cells expressing Gqi5 without co-expression 

of hD4.4R-1D4 show no fluorescence increase upon quinpirole stimulation. 

With an optimized high-throughput calcium flux assay, hD4R activation 

was quantified using a dose curve of quinpirole, and an EC50 for the agonist with 

the receptor was calculated. A representative dose curve for wt hD4.4R-1D4 is 

shown in Figure 3-6. Repeated dose curves with wt hD4.4R-1D4 routinely yielded 

EC50 for quinpirole between 1 nM and 2 nM. 
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Figure 3-6 Calcium flux assay for wt hD4R with the ligand quinpirole. 

A) Representative fluorescence during calcium flux assay for HEK293T cells

expressing wt hD4R-1D4 in the presence (black) or absence (gray) of Gqi5 when 

stimulated with 2 μM quinpirole at 20 sec. B) Representative dose curve of wt 

hD4R-1D4 stimulated with quinpirole in the presence of Gqi5. EC50 of wt hD4R-

1D4 is 1.1 nM. 

Calcium flux assays with KØ hD4.4R-1D4 (Figure 3-7) show that the EC50 

for quinpirole with KØ hD4.4R-1D4 was also between 1 and 2 nM. The fact that 

the efficacy of calcium flux is equivalent for the KØ and wt receptor suggests that 

the lysine mutations in KØ hD4.4R-1D4 do not substantially change the receptor 

folding or function, making it a biologically relevant control for studying lysine-

mediated degradation of hD4R. 
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Figure 3-7 Calcium flux of KØ hD4R-1D4.  

A) Graphic representation of the lysine to arginine mutations (orange) in KØ 

hD4R-1D4. The 1D4 epitope is shown in gray. B) Representative dose curve of 

wt hD4R-1D4 (gray) and KØ hD4R-1D4 (black) stimulated with quinpirole in the 

presence of Gqi5. EC50 of KØ hD4R-1D4 is 1.2 nM. 
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3.1.4 KØ hD4R is degraded proteasomally 

The role of lysine residues in the proteasomal degradation of wt hD4.4R-

1D4 was tested using the KØ hD4.4R-1D4 mutant. It was predicted that there 

would be little to no effect of bortezomib concentration on KØ hD4.4R-1D4 

protein levels since the receptor should be unable to undergo lysine-mediated 

ubiquitination and degradation. Surprisingly, however, there was a dose-

dependent increase in protein level for KØ hD4.4R-1D4 upon proteasome 

inhibition (Figure 3-8). Protein levels increased approximately 3-fold between 1 

pM and 100 nM bortezomib. The total fold change of KØ hD4.4R-1D4 was less 

than that of wt receptor. These data support the hypothesis that lysine residues 

play some role in degradation of the receptor, but do not completely account for 

the massive degradation of wt hD4R. 



62 

Figure 3-8 Proteasomal degradation of KØ hD4R-1D4. 

A) HEK293T cells expressing KØ hD4R-1D4 were incubated with increasing

concentrations of bortezomib. Normalized cellular lysates were subjected to SDS-

PAGE and immunoblot analysis with 1D4. B) Immunoblot bands from A, plus 2 

additional replicates, were quantified via densitometry. The fold-change increase 

in intensity compared to the 1 pM bortezomib sample for KØ hD4R-1D4 is plotted 

against bortezomib concentration. KØ hD4R-1D4 fold-change (black) is 

compared to wt hD4R-1D4 fold-change (gray). 
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3.1.5 Generation of serine and threonine null hD4R mutants 

In the past decade it has become clear that residues other than lysine can 

be ubiquitinated (see section 1.5). One form of non-lysine ubiquitination is ester 

ubiquitination on serine or threonine residues. Ester bond ubiquitination is less 

thermodynamically stable than isopeptide bond ubiquitination on lysine residues, 

but has still been shown to promote protein degradation. In order to test if hD4R 

is ubiquitinated on serine and threonine residues through an ester bond, a 

cytoplasmically serine and threonine null mutant of hD4.4R was made. There are 

38 total serine and threonine residues in hD4.4R. Mutations were limited to 

cytoplasmic residues, which would be accessible to enzyme cascade required for 

ubiquitination. 15 serine and threonine residues exist on the cytoplasmic surface 

of hD4.4R (Figure 3-9). Utilizing a multi-site mutagenesis strategy all 15 of 

cytoplasmic serine and threonine residues were to alanine. Additionally, a mutant 

that was null in cytoplasmic serine and threonine residues and null in lysine 

residues was made. 
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Figure 3-9 Cytoplasmic serine and threonine residues in hD4R-1D4.  

Graphic representation of the cytoplasmic serine and threonine residues (black) 

and 1D4 epitope (gray) in hD4R-1D4. Residue number and identity are shown. 
 

The mutants completely lacking cytoplasmic serine and threonine residues 

were incapable of fluxing calcium after stimulation with quinpirole, as shown in 

Figure 3-10. Shifts in the EC50 of a receptor mutant would suggest changes to 

ligand affinity or G protein coupling. However, such a dramatic inability to signal 

is likely due to massive changes in the protein including misfolding and 

potentially mistrafficking of the receptor. hD4.4R mutants which were unable to 

induce calcium flux in the presence of quinpirole were considered not 

physiologically relevant. Therefore, starting with the fully cytoplasmic serine and 

threonine null receptor, individual residues were mutated back to serine or 



65 

threonine in order to find the mutant that had the least number of potentially 

ubiquitinatable residues while still maintaining receptor function. 

Figure 3-10 Calcium flux assay for wt hD4R-1D4 and serine and threonine 
to alanine mutants with the ligand quinpirole.  

A) Representative calcium flux for wt hD4R-1D4 in the presence of Gqi5 when

stimulated with 0-800 nM quinpirole at 20 sec. B) Representative calcium flux for 

hD4R-1D4 with 15 serine and threonine to alanine mutations, in the presence of 

Gqi5 when stimulated with 0-800 nM quinpirole at 20 sec. 
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Two threonine residues – T61 at the TM1/cytoplasm border and T401 at 

the TM7/cytoplasm border – were required to restore calcium flux capabilities to 

hD4.4R. It is possible that mutation of these residues disrupted receptor folding 

and membrane insertion. A receptor mutant where only 13 cytoplasmic serine 

and threonine residues were mutated to alanine were able to induce calcium flux, 

and this mutant is referred throughout this thesis as the serine and threonine null 

mutant (STØ hD4.4R-1D4) (Figure 3-11). It should be noted that it remains 

possible that the threonine residues at the TM/cytoplasm border could be 

ubiquitinated. Additionally, the exogenous 1D4 epitope tag on the hD4R C-term 

contains one serine and two threonine residues. A second mutant, KSTØ 

hD4.4R-1D4 was also generated; it combines the 13 cytoplasmic 

serine/threonine-to-alanine mutations with the four lysine-to-arginine mutations 

present in KØ hD4.4R-1D4 (Figure 3-11). 
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Figure 3-11 STØ and KSTØ mutants of hD4R-1D4. 

hD4R mutants with potentially ubiquitinatable residues (black), lysine to arginine 

mutations (orange), and serine or threonine to alanine mutations (blue), and the 

1D4 epitope (gray) denoted in graphical presentations (top) and residue number 

table (bottom). 
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3.1.6 STØ and KSTØ hD4R flux calcium 

Calcium flux assays were performed for STØ and KSTØ hD4.4R-1D4. The 

EC50 for quinpirole with STØ hD4.4R-1D4 and KSTØ hD4.4R-1D4 were both 

approximately 10 nM (Figure 3-12). While these mutants are clearly capable of 

binding quinpirole and activating a G protein, their EC50 is shifted 10-fold 

compared with wt hD4.4R-1D4. This change may be due to a role for one or 

more of the mutated serine or threonine residues in mediating calcium flux 

independent of protein misfolding. It is possible that such substantial mutation of 

the cytoplasmic surface of the receptor disrupts G protein coupling, including pre-

coupling of the G protein and GPCR, which has been proposed to modulate 

agonist affinity. Despite the difference in calcium flux performance and the 

presence of potentially ubiquitinatable residues, these mutants were deemed the 

best possible negative control for determining the role of serine and threonine 

residues in hD4R degradation. 
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Figure 3-12 Calcium flux of hD4R-1D4 mutants.  

Representative dose curve of wt hD4R-1D4 (gray), KØ hD4R-1D4 (orange), STØ 

hD4R-1D4 (blue), and KSTØ hD4R-1D4 (black) stimulated with quinpirole in the 

presence of Gqi5. EC50 of STØ hD4R-1D4 is 9.9 nM and EC50 of KSTØ hD4R-

1D4 is 10.6 nM. 
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3.1.7 Mutation of hD4R serine and threonine residues increases hD4R 

protein levels 

If ester ubiquitination regulates hD4R protein levels, then STØ and KSTØ 

mutants should have increased protein levels compared with wt hD4R. 

Therefore, the protein levels of STØ hD4.4R-1D4 and KSTØ hD4.4R-1D4 were 

compared with wt and KØ hD4.4R-1D4 (Figure 3-13). Strikingly, mutation of 

cytoplasmic serine and threonine residues in STØ hD4.4R-1D4 substantially 

increased protein levels, and an additive effect between lysine, serine, and 

threonine levels was observed in KSTØ hD4.4R-1D4. These data support the 

hypothesis that lysine, serine, and threonine residues in the wt receptor all 

regulate protein degradation. 

Figure 3-13 Protein levels of STØ and KSTØ hD4R-1D4. 

HEK293T cells transiently transfected with hD4R-1D4 mutants were solubilized. 

Normalized cellular lysates were subjected to SDS-PAGE and immunoblot 

analysis with 1D4. Sample processing controls were subjected to immunoblot 

with anti-actin antibody. 
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3.1.8 Serine and threonine residues contribute to hD4R proteasomal 

degradation 

The STØ hD4.4R-1D4 and KSTØ hD4.4R-1D4 mutants were also 

subjected to proteasome inhibition experiments. STØ hD4.4R-1D4 protein levels 

increased approximately 2-fold between 1 pM and 1 μM concentrations of 

bortezomib (Figure 3-14). The increase STØ hD4.4R-1D4 protein level upon 

bortezomib treatment was less than that of wt hD4R-1D4. The combined 

increase for STØ hD4.4R-1D4 (2-fold) and KØ hD4.4R-1D4 (3-fold) is 

approximately the total increase for wt (5-fold). Additionally, the KSTØ hD4.4R-

1D4 mutant shows little to no increase in protein expression, as was originally 

anticipated for the KØ hD4.4R-1D4 mutant. The slight increase in protein levels 

at 1 μM could be due to ubiquitination of the serine and threonine residues 

present at TM/cytoplasm borders and/or the 1D4 epitope tag. Together, these 

bortezomib dose curves support the hypothesis that lysine, serine, and threonine 

residues all contribute to the proteasomal degradation of wt hD4R. 
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Figure 3-14 Proteasomal degradation of STØ and KSTØ hD4R-1D4. 

HEK293T cells expressing hD4R-1D4 mutants were incubated with increasing 

concentrations of bortezomib for 12 hours. Normalized cellular lysates were 

subjected to SDS-PAGE and immunoblot analysis with 1D4. Immunoblot bands 

from 3 biological replicates were quantified via densitometry. The fold-change 

increase in intensity compared to the 1 pM bortezomib sample for STØ hD4R-

1D4 and KSTØ hD4R-1D4 are plotted against bortezomib concentration. STØ 

hD4R-1D4 fold-change (blue) and KSTØ hD4R-1D4 fold-change (black) are 

compared to KØ hD4R-1D4 (orange) and wt hD4R-1D4 fold-change (gray). 
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3.1.9 Mutation of hD4R cysteine residues does not change hD4R protein 

levels 

The fact that protein levels of KSTØ hD4.4R-1D4 are not substantially 

increased by bortezomib addition suggests that the majority of wt hD4R 

proteasomal degradation is due to ubiquitination on lysine, serine, and threonine 

residues and no others. However, the possibility that hD4R could be degraded 

after thioester ubiquitination of cysteine residues was still tested. There are two 

C-term cysteine residues on hD4R that are palmitoylated and required for proper 

receptor trafficking and function. The remaining cytoplasmic cysteine residues 

exist within the VNTR region. In order to simplify the mutagenesis approach the 

two repeat variant hD4.2R-1D4 was utilized for thioester ubiquitination studies. 

All 4 cytoplasmic, non-palmitoylated cysteine residues were mutated to alanine 

(CØ) (Figure 3-15). Protein levels of CØ hD4.2R-1D4 were not substantially 

increased compared with wt hD4.2R-1D4 (Figure 3-15). Therefore it is 

hypothesized that thioester ubiquitination of hD4R does not contribute to hD4R 

proteasomal degradation. 
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Figure 3-15 Protein levels of CØ hD4R-1D4. 

A) Graphic representation of the cysteine to alanine mutations (green) in the CØ

2-repeat hD4R-1D4. The 1D4 epitope is shown in gray. B) HEK293T cells 

transiently transfected with 2-repeat hD4R-1D4 mutants were solubilized. 

Normalized cellular lysates were subjected to SDS-PAGE and immunoblot 

analysis with 1D4 and anti-actin antibody. 
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3.2 Ubiquitination of hD4R 

3.2.1 IP demonstrates ubiquitination of hD4R 

The data presented so far are consistent with ubiquitination mediating 

proteasomal degradation of hD4R; however, there is no evidence to show 

ubiquitin modification hD4R. IP experiments are standard in the field of 

ubiquitination biology, and were used to detect ubiquitination of hD4R. hD4.4R-

1D4 was expressed in HEK293T cells and purified using the 1D4 antibody. The 

IP eluate was then tested for the presence of ubiquitin protein via SDS-PAGE 

and immunoblot. Initial experiments utilizing an antibody against endogenous 

ubiquitin for the immunoblot did not detect ubiquitin in 1D4 IP eluates. However, 

previous studies of GPCR ubiquitination were also unable to detect receptor 

modification using anti-ubiquitin antibodies. Instead, co-expressed a GPCR with 

a FLAG-tagged ubiquitin protein and detected ubiquitination using a anti-FLAG 

antibody (Marchese and Benovic, 2001). Therefore 3X-FLAG-ubiquitin was co-

expressed with wt hD4.4R-1D4, and 1D4 IP eluates were analyzed by SDS-

PAGE and immunoblot with anti-FLAG antibody (Fig 3-16). A high MW flag signal 

indicative of poly-ubiquitination was observed on the anti-FLAG immunoblot. 

These data support the hypothesis that wt hD4R is covalently modified by 

ubiquitination. 
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Figure 3-16 Detection of wt hD4R-1D4 ubiquitination via IP. 

wt hD4R-1D4 was IP’d from HEK293T cell lysates and analyzed by SDS-PAGE 

and immunoblot with 1D4 and anti-FLAG antibody. Immunoblot with anti-FLAG 

antibody detects FLAG-ubiquitin. 

3.2.2 IP demonstrates isopeptide and ester ubiquitination of hD4R 

In order to determine the residues in wt hD4R to which ubiquitin is 

attached, the IP was repeated with KØ hD4.4R-1D4, STØ hD4.4R-1D4, and 

KSTØ hD4.4R-1D4, and eluates were treated with NaOH. Ester bonds that 

connect ubiquitin to serine or threonine residues are sensitive to base-catalyzed 

hydrolysis while the isopeptide bonds that attach ubiquitin to lysine residues are 

not. Therefore, if FLAG signal remains in the eluate after base treatment, it is 
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presumed to be the result of isopeptide-linked ubiquitin. Alternatively if FLAG 

signal disappears upon base treatment, it is presumed to be the result ester-

linked ubiquitin. hD4.4R-1D4 were IP’d with limiting amounts of 1D4 antibody so 

that eluates for each IP contained approximately equal amounts of receptor, 

despite the substantially different levels of receptor in the cell lysate. Eluates 

were split and treated with NaOH (pH 12.3) or PBS (pH 7.6) and immunoblotted 

for both 1D4 and FLAG signal (Figure 3-17). In the case of wt hD4.4R-1D4, 

where lysine, serine, and threonine residues are present, FLAG signal was 

detected both in the presence and absence of NaOH. In the case of KØ hD4.4R-

1D4, where serine and threonine are the only ubiquitinatable residues present, 

FLAG signal was diminished upon NaOH treatment, consistent with ester bond 

ubiquitination. The FLAG signal in STØ hD4.4R-1D4, where lysine residues are 

present, was maintained upon base treatment. Finally, the KSTØ hD4.4R-1D4 

eluate showed little to no FLAG signal regardless of NaOH treatment, consistent 

with lack of ubiquitinatable residues. IP analysis suggests that ubiquitin 

molecules are attached to hD4R through isopeptide and ester bonds. 
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Figure 3-17 Detection of isopeptide bond and ester bond ubiquitination of 
hD4R via IP.  

hD4R-1D4 mutants were IP’d from HEK293T cell lysates then treated -/+ NaOH 

before SDS-PAGE and immunoblot. Immunoblot with anti-FLAG antibody detects 

FLAG-ubiquitin. NaOH-sensitivity indicates the presence of ester-linked 

ubiquitination (at serine and threonine) and NaOH-insensitivity indicates 

isopeptide ubiquitination (at lysine). Red * show antibody bands from IP. 

 

3.2.3 PLA demonstrates ubiquitination of hD4R 

 

Detecting ubiquitination by IP has many drawbacks. PLA allows for 

detection of ubiquitination, but unlike IP, would also 1) provide information on the 

subcellular localization of ubiquitinated receptor 2) be adaptable to technically 

challenging systems like primary neurons and 3) allow for quantitative 

comparison between mutants. PLA has been utilized to detect PTMs, but has not 

previously been used to detect GPCR ubiquitination or ester ubiquitination of any 
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target proteins. To perform PTM detection via PLA, two primary antibodies raised 

in separate species are added to cells fixed on cover glass (in this case the 1D4 

antibody and an antibody against endogenous ubiquitin). The cells are then 

incubated with orthogonal secondary antibodies to which DNA oligomers are 

attached. A solution containing DNA ligase enzyme and additional DNA 

oligomers is added to the cover glass. If the oligomers attached to the secondary 

antibodies against the two epitopes are within close proximity (theoretically 30 

nm) the additional oligomers will bridge the antibody-attached oligomers forming 

a circular piece of DNA after ligation. Finally, a solution containing DNA 

polymerase, nucleotides, and fluorescent probes is added to the cover glass. If a 

circular piece of DNA has been formed, the polymerase will perform rolling circle 

amplification, and the fluorescent probes will adhere to the rolling circle 

amplification product (Figure 3-18). This will result in a dot detectable via 

fluorescence microscopy at the cellular location of the ligation product, inferred to 

be the location of ubiquitinated receptor (Söderberg et al., 2006). 
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Figure 3-18 PLA protocol. 

 Adapted from OLINK Bioscience. The use of the 1D4 antibody and an antibody 

against endogenous ubiquitin in step 1 allows for detection of ubiquitinated hD4R 

in step 6. 
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Conditions of fixation, blocking, and antibody incubation for HEK293T cells 

expressing hD4.4R-1D4 were optimized using IF. IF with 1D4 and ubiquitin 

antibodies under optimized conditions are shown in Figure 3-19. 

Figure 3-19 IF of wt hD4R-1D4 and endogenous ubiquitin. 

HEK293T cells expressing wt hD4R-1D4 were fixed and incubated with 1D4 

antibody (green), antibody against endogenous ubiquitin (red), and nuclear dye 

(blue).  

3.2.3.1 Qualitative PLA in HEK293T cells 

Qualitative PLA was performed on HEK293T cells transiently transfected 

with wt hD4.4R-1D4. Ubiquitinated wt hD4.4R-1D4 was detected, and the 

subcellular localization of the ubiquitinated receptors was determined. As shown 

in Figure 3-20, fluorescent dots representative of ubiquitinated receptor are 

present both 1) in an area close to the nucleus, potentially the ER, and 2) on or 

near the plasma membrane. 
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Figure 3-20 PLA of wt hD4R-1D4 in HEK293T cells. 

HEK293T cells expressing wt hD4R-1D4 were fixed and incubated with 1D4 

antibody and antibody against endogenous ubiquitin before performing PLA 

reaction. PLA dots (red) represent sites of close proximity between 1D4 and 

ubiquitin antibodies. A fluorescent secondary antibody recognizing 1D4 (green) 

was used to identify positively transfected cells. Cells were stained with a nuclear 

dye (blue). A maximum projection from the z-stack is shown. 
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3.2.3.2 Quantitative PLA in HEK293T cells 

One potential criticism of the qualitative PLA shown in Figure 3-20 is that 

close proximity between 1D4 antibody and ubiquitin antibody could occur without 

covalent attachment between hD4R and ubiquitin. For example, an hD4R DRIP 

could be ubiquitinated, bringing the two antibodies within 30 nm, resulting in a 

fluorescent dot. In order to control for this possibility, quantitative PLA was 

performed on wt hD4.4R as well as hD4.4R mutants. PLA dots resulting from 

non-specific interactions would be present in cells expressing KSTØ hD4.4R-

1D4, while dots resulting from covalent attachment of ubiquitin to hD4R should 

not. While it is possible that ubiquitination of the few remaining serine and 

threonine residues on the KSTØ hD4.4R-1D4 cytoplasmic surface (see section 

3.1.5.), would result in PLA dots, IP experiments suggest that there is little to no 

covalent ubiquitination of this receptor mutant. 

One of the greatest challenges for analyzing PLA on transfected cells is 

the low efficiency of lipid-based transfections. Transfected cells scarce in 

qualitative PLA samples, and for quantitative analysis high transfection efficiency 

was vital. Therefore a baculovirus infection system to efficiently deliver hD4R 

DNA into cells was developed. After cloning hD4.4R-1D4 open reading frames 

into the pFBDM plasmid viruses containing hD4.4R DNA were generated. A 

summer student from the Rockefeller University Summer Undergraduate 
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Research Fellowship program, Mariluz Soula, worked to optimize conditions for 

infecting HEK293T cells with baculovirus.  

Using the baculovirus infection system instead of lipid-based transfection, 

Soula then performed quantitative PLA on HEK293T cells expressing wt hD4.4R-

1D4, KØ hD4.4R-1D4, STØ hD4.4R-1D4, or KSTØ hD4.4R-1D4, or a negative 

control protein. Soula quantified the number of PLA dots per transfected cell for 

multiple fields of view for each condition. Some PLA dots were present, as 

before, in non-transfected cells. Single antibody experiments determined that this 

was due to lack of specificity of the endogenous ubiquitin antibody. The number 

of dots per transfected cell could not be calculated for the negative control since 

transfection efficiency could not be assessed. In order to account for non-specific 

PLA signal in the negative control, Soula subtracted the average number of dots 

per total number of cells in the negative control replicates from each hD4.4R-1D4 

sample before calculating the final number of dots per transfected cell. Soula 

performed 4 biological replicates of this experiment, and the compiled data is 

shown in Figure 3-21. Despite the fact that there were still PLA dots in KSTØ 

hD4.4R-1D4 samples (even after controlling for the non-specific ubiquitin 

antibody), there was a statistically significant (p<0.001) difference in the number 

of dots for KSTØ versus wt hD4.4R-1D4. These data support the hypothesis that 

there is specific ubiquitin attachment to wt hD4R. Furthermore, the average 

numbers of PLA dots per cells transfected with STØ hD4.4R-1D4 and KØ 

hD4.4R-1D4 are intermediate – between KSTØ and wt - suggesting that both 
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isopeptide and ester bond ubiquitination are contributing to wt ubiquitination. The 

fact that KØ hD4.4R-1D4 PLA levels are most similar to wt and STØ levels are 

most similar to KSTØ may even suggest that the non-canonical ester bond 

modification is the predominant form of wt hD4R ubiquitination. 

Figure 3-21 Quantitative PLA of hD4R-1D4 mutants. 

HEK293T cells expressing wt hD4R-1D4 were fixed and incubated with 1D4 

antibody and antibody against endogenous ubiquitin before performing the PLA 

reaction. The average number of PLA dots per infected cell are presented. Five 

biological replicates were performed per construct, totaling approximately 280 

infected cells quantified for each. A one-way ANOVA followed by Tukey’s 

multiple comparisons test was used to compare wt and mutant hD4R-1D4.  

**** represents p≤0.001 and * represents p≤0.02. All other comparisons (not 

indicated) had a p≥0.05. 
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3.2.3.3 Qualitative PLA in primary neurons 

Data on hD4R ubiquitination has been generated in the HEK293T cell 

system. However, hD4R is predominantly expressed in the brain. Therefore a 

neuronal cell system would be more physiologically relevant for testing hD4R 

ubiquitination. Utilizing IP experiments would require dual transfection and 

substantial amounts of material, both of which would have been extremely 

difficult in primary neurons. PLA has been routinely used in neuronal systems 

(Schedin-Weiss et al., 2013). While visiting the center for Alzheimer’s Research 

at the Karolinska Institutet, I worked with Sophia Schedin-Weiss to transfect 

cultured mouse cortical neurons with wt hD4.4R-1D4 and perform PLA to test for 

ubiquitinated receptor (Figure 3-22). These neurons expressed endogenous 

mD4R, and many ubiquitinatable residues are conserved between hD4R and 

mD4R, making this a suitably relevant cell system. As in the HEK293T system, 

PLA dots representative of ubiquitinated receptor appeared both in the soma of 

the neuron, likely in the ER, and also in the neurites, on or near the plasma 

membrane. These results demonstrates that while the consequences of hD4R 

ubiquitination so far have been shown in a model tissue culture system, the 

modification also occurs in primary mouse neurons. 
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Figure 3-22 hD4R ubiquitination in neurons. 

PLA analysis shows ubiquitinated wt hD4R-1D4 in transfected primary mouse 

cortical neurons. Phallodin (green) and DAPI (blue) show cellular architecture, 

while the PLA dots (red) represent ubiquitinated hD4R. Single channel isolations 

are shown on the left, a full-scale merge is shown in center, and on the right are 

zoomed-in views of areas highlighted in the center panel (A-C).  Scale bars 

represent 10 μm. 
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3.3 Influence of VNTR on hD4R degradation 

3.3.1 The 2-, 4-, and 7-repeat hD4R variants are degraded via isopeptide 

and ester bond ubiquitination 

hD4R contains a VNTR in the human population. Ubiquitination and 

degradation have been shown in the most common variant, hD4.4R. To 

determine if protein degradation was consistent between hD4.4R and other 

common variants, multi-site mutagenesis was used to create a KØ, STØ, and 

KSTØ mutant of hD4.2R-1D4 and hD4.7R-1D4. Intriguingly, despite the fact that 

the 2, 4, and 7 repeat variants have drastically different numbers of total amino 

acids, the number of ubiquitinatable residues remains nearly constant. The most 

prevalent 4-repeat allele encodes for two serine residues within the 64 amino 

acid long repeat region. The most prevalent 2-repeat allele encodes for one 

serine residue within its 32 amino acid long repeat region, and the most prevalent 

7-repeat allele encodes for one serine residue within its repeat region, despite 

containing 112 total amino acids total. Since the number of ubiquitinatable 

residues is similar between variants, it was hypothesized that 1) degradation via 

isopeptide and ester bond ubiquitination is consistent for all variants and 2) 

degradation of this receptor may be quite biologically important. 

Protein levels for the wt and null mutants for each hD4R-1D4 variant were 

determined via SDS-PAGE and immunoblot. As shown in Figure 3-23, the 
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qualitative protein level patterns for receptor mutants are consistent between 

variants. For the 2-repeat, 4-repeat, and 7-repeat variants, wt protein levels were 

low and levels were increased in KØ and STØ. For the 2-repeat and 4-repeat 

variant there was an additive effect of lysine, serine, and threonine residues as 

seen in the very high protein levels for KSTØ. When normalizing for loading (as 

assayed by the actin immunoblot), it appears there is not an additive effect of 

lysine, serine, and threonine mutation for the 7-repeat variant. The reason for 

such a difference is not clear. 

Figure 3-23 Protein levels of hD4R-1D4 VNTR variants. 

HEK293T cells transiently transfected with wt, KØ, STØ, and KSTØ mutants of 2-

repeat (hD4.2R-1D4), 4-repeat (hD4.4R-1D4), and 7-repeat (hD4.7R-1D4) 

variants were solubilized. Normalized cellular lysates were subjected to SDS-

PAGE and immunoblot analysis with 1D4. The membrane was also probed with 

anti-actin antibody. 
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3.3.2 The VNTR repeat region is required for serine and threonine-mediated 

hD4R degradation 

In order to understand the role that the repeat region might play in 

regulating receptor protein levels, KØ, STØ, and KSTØ mutants were created for 

a “no repeat” variant hD4.NRR-1D4. This variant does not exist in the human 

population, but was previously created to determine the role of the hD4R repeat 

region in G protein binding (Kazmi et al., 2000). This variant is missing not only 

the two serine residues within hD4.4R repeat region, but also four more 

serine/threonine residues flanking the repeat region. As shown in Figure 3-24, 

while KØ hD4.NRR-1D4 levels are greater than those of wt hD4.NRR-1D4, the 

STØ hD4.NRR-1D4 mutant has protein levels similar to wt hD4.NRR-1D4 levels. 

Additionally, KSTØ hD4.NRR-1D4 levels are equivalent to KØ hD4.NRR-1D4. 

This suggests that isopeptide but not ester bond ubiquitination is responsible for 

degradation of the no repeat variant. 
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Figure 3-24 Protein levels of hD4R-1D4 no repeat variant. 

Graphical representation of serine and threonine residues (black) in hD4R 

variants (left). HEK293T cells transiently transfected with wt, KØ, STØ, and 

KSTØ mutants of hD4.4R-1D4 (top) or hD4.NRR-1D4 (bottom) were solubilized. 

Normalized cellular lysates were subjected to SDS-PAGE and immunoblot 

analysis with 1D4 and anti-actin antibody (right). 
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The proteins levels of receptor mutants of the no repeat variant were 

quantified and graphed along with the protein levels of the 2-repeat, 4-repeat, 

and 7-repeat variant (Figure 3-25). 

Figure 3-25 Quantification of hD4R-1D4 variant protein levels . 

Immunoblots from Figure 3-23 and 3-24 were performed in triplicate. The protein 

levels were normalized for actin. The fold-change in mutant protein level 

compared to wt was calculated for each variant. 
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Again, it appears that the no-repeat variant is subject to degradation via 

isopeptide bonds but not ester bonds. There are multiple possible explanations 

for this observation. First, it could be that the only serine and threonine residues 

responsible for degradation of hD4.4R are the six (or a subset thereof) that are 

deleted in hD4.NRR. In order to test this possibility, a hD4.4R-1D4 mutant where 

only those six residues were mutated to alanine (Repeat:STØ hD4.4R-1D4) was 

created. If only those six residues were important for ester ubiquitin-based 

degradation, then the Repeat:STØ hD4.4R-1D4 mutant should have protein 

levels equal to STØ hD4.4R-1D4. However, as shown in Figure 3-25, 

Repeat:STØ hD4.4R-1D4 had levels closer to wt. In fact, the inverse of this 

mutant (where the six residues in and near the repeat region of hD4.4R are left 

intact and only the other cytoplasmic serine and threonine residues are mutated 

[NonRepeat:STØ hD4.4R-1D4]) has protein levels similar to STØ hD4.4R-1D4. 
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Figure 3-26 Role of hD4R repeat region in protein level regulation. . 

Graphical representation of partial serine/ threonine to alanine mutants (blue, 

left). Residues were mutated exclusively in the repeat region (Rep) or exclusively 

outside the repeat region (NonRep). HEK293T cells transiently transfected with 

mutants of hD4.4R-1D4 were solubilized. Normalized cellular lysates were 

subjected to SDS-PAGE and immunoblot analysis with 1D4. The membrane was 

also probed with anti-actin antibody (right). 

Based on these data, the most likely explanation for the difference 

between STØ mutants of hD4.4R and hD4.NRR is that the repeat regions – but 

not necessarily the ubiquitinatable residues within them -- are required for ester 

ubiquitin-based degradation of hD4.4R. For example it may be possible that the 

ubiquitination machinery required for ester ubiquitination (but not isopeptide 

ubiquitination) binds in the repeat region of hD4R. 
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CHAPTER 4: hD4R Dopamine Receptor Interacting Proteins (DRIPs) 

4.1 DRIP GST pulldowns 

The initial goal of my thesis research proposal was to gain a greater 

understanding of hD4R biology by identifying hD4R DRIPs. Specifically, I was 

interested in performing comparative, quantitative proteomics to identify hD4R 

DRIPs that interact non-uniformly with the hD4R variants. hD4R variants, – either 

2 repeat, 4 repeat, 7 repeat, or the no repeat control –  would be incubated with 

neuronal lysates, and interacting proteins would be co-purified with the receptors. 

Eluates of the purifications would be digested with trypsin, and labeled with 

isobaric tags before the samples were pooled. The isobaric tag would ensure that 

any given peptide present in each of the original eluates would have the same 

mass to charge ratio in the first round of mass spectrometry (MS). During the 

second round of MS a unique mass identifier would be released, providing a 

relative ratio of the given peptide in the original samples (Figure 4-1). Mass 

spectrometry analysis would provide 1) a list of hD4R DRIPs and 2) hD4R variant 

binding preferences for every DRIP. 



	  

 96 

 

Figure 4-1 Identification of hD4R DRIPs using quantitative MS/MS.  

hD4R variants would be isolated and incubated with neuronal lysates. Interacting 

proteins would then be purified by co-IP, and eluates would be digested and 

labeled with an isobaric tag (various colors). Samples would be pool and 

submitted to MS/MS analysis. Results would include a list of hD4R DRIPs and 

their relative ratios in the eluates. 
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4.1.1 Model DRIPs: Grb2 and Nck 

As a first step to identify novel hD4R DRIPs, pulldowns were performed 

with hD4R and known DRIPs. The adaptor proteins growth factor receptor-bound 

protein 2 (Grb2) and non-catalytic region of tyrosine kinase adaptor protein (Nck) 

are both SH3 domain-containing proteins that have been previously shown to 

interact with the IC3 region of hD4R (John Oldenhof et al., 1998). Specifically, 

Grb2 and Nck interact with the SH3 binding domain that borders the VNTR region 

of hD4R. Oldenhof and colleagues found no difference in the affinity of Grb2 and 

Nck for VNTR variants. In order to facilitate identification and purification of 

DRIPs, GST-DRIP fusion proteins were created (Figure 4-2). A GST alone 

negative control, which should not interact with hD4R, was also generated. 

Protocols for GST-DRIPs expression in E. coli and GST-DRIP purification with 

glutathione sepharose were optimized. 

Figure 4-2 Model hD4R DRIPs. 

GST-Grb2 and GST-Nck constructs were used to optimize hD4R DRIP co-IP 

conditions. GST alone served as negative control. 
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4.1.2 hD4R stabilized mutants 

 

 Purified hD4R protein was also required to perform hD4R/DRIP pulldowns. 

The 4-repeat variant hD4.4R-1D4 is the most common variant and was used for 

the first hD4R/DRIP pulldowns. Receptors needed to be isolated from intact cells 

so that the cytoplasmic domains of hD4R could be exposed to neuronal lysate 

proteins. However, simply solubilizing the cells could disrupt receptor folding. 

Therefore, membrane fractions of cells expressing hD4.4R-1D4 were isolated via 

ultracentrifugation in the presence of 35.5% sucrose solution (NEVILLE, 1960). 

 A substantial amount of purified receptor was required for hD4R/DRIP 

pulldowns. The wt hD4.4R-1D4 protein exists in low abundance in transfected 

HEK293T cells. However, a version of hD4R where all 4 lysine residues are 

mutated to arginine (KØ hD4.4R-1D4) exists at much higher levels in cell lysates 

(Fig. 3-2). Furthermore, functional studies show that KØ hD4R-1D4, which is 

stabilized against proteasomal degradation, is functional. In the calcium flux 

assay, KØ hD4.4R-1D4 and wt hD4.4R-1D4 have indistinguishable EC50 values 

for the ligand quinpirole (Fig. 3-7).  

The lysine-to-arginine mutations in KØ hD4.4R-1D4 do not disrupt 

receptor function in calcium flux assays. Therefore it was hypothesized that these 

mutations would also not significantly disrupt most hD4R/DRIP interactions. In 

order to test the hypothesis, a preliminary pulldown between the purified GST-

DRIPs and two variants of hD4.4R-1D4: wt and KØ was performed. Membrane 
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preparations from cells expressing either wt hD4.4R-1D4 or KØ hD4.4R-1D4 

were added to sepharose beads with pre-bound GST-DRIPs. After the receptors 

and DRIPs were incubated for 2 hours, the beads were washed, and the bound 

proteins were eluted. The amount of GST-DRIP in each eluate was assayed via 

coomassie stained SDS-PAGE, and the presence of hD4.4R-1D4 was assayed 

via immunoblot with the 1D4 antibody. As shown in Figure 4-3, wt hD4.4R-1D4 

and KØ hD4.4R-1D4 behaved similarly in the GST-DRIP expression assay. 

Neither receptor was detected in the eluates of glutathione beads coated in GST 

alone or GST-Nck. Both receptors were detected in the eluate of GST-Grb2-

coated glutathione beads, at levels approximately proportional to the level of 

receptor input. It was concluded that wt and KØ hD4.4R-1D4 have a similar 

protein-protein interaction profile, including with the known DRIP Grb2. Since KØ 

hD4.4R-1D4 was equivalent in function and also had substantially increased 

protein levels, all further hD4R/DRIP experiments were performed with the KØ 

hD4.4R-1D4 protein. 
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Figure 4-3 Using stabilized KØ hD4R-1D4 for DRIP identification. 

Membrane preparations from cells expressing wt or KØ hD4R-1D4 were 

combined with glutathione beads coated in GST alone or GST-DRIPs. Eluates 

were tested for receptor presence via 1D4 immunoblot (top, IB) and GST or GST-

DRIP levels via coomassie stain (bottom). 
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4.1.3 GST pulldowns 

In order to further validate the hD4R/Grb2 interaction, glutathione beads 

coated in GST-DRIPs were used to pull down hD4R variants. As shown in Figure 

4-3, hD4.4R-1D4 does not interact with the GST tag alone. Therefore, the 

successful pulldown of hD4.4R-1D4 with GST-Grb2-coated beads is likely due to 

direct interaction between Grb2 and hD4.4R-1D4. In order to confirm that the site 

of interaction between Grb2 and hD4R facilitating the pulldown is in fact the SH3 

binding domains in hD4R IC3, pulldowns were conducted a “no repeat” 

(hD4.NRR-1D4) variant. The hD4.NRR-1D4 receptor has a deletion in IC3 that 

includes the repeat region and the flanking SH3 binding domain. The hD4.NRR 

receptor is not a naturally-occurring variant, but rather a laboratory-made control. 

GST-DRIP-coated gluthatione beads were incubated with membrane 

preparations from cells expressing either hD4.4R-1D4 or hD4.NRR-1D4. The 

GST-DRIP purification was evaluated by coomassie-stained SDS-PAGE while 

the hD4R/DRIP interaction was assayed by SDS-PAGE and immunoblot with the 

1D4 antibody. Despite approximately equal receptor and DRIP input, hD4.4R-

1D4 was eluted with GST-Grb2 while hD4.NRR-1D4 was not (Figure 4-4). 

Therefore, it was concluded that the point of interaction of Grb2 with hD4.4R-1D4 

is in the region missing in hD4.NRR-1D4 – the SH3 binding domain and/or the 

repeat region. 
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GST-Nck did not appear to have a robust interaction with hD4R-1D4 

(Figure 4-4). Oldenhof and colleagues did find that Nck had lower affinity than 

Grb2 for hD4R, and some long exposures suggested that there might be some 

hD4R-1D4 present in GST-Nck pulldowns (John Oldenhof et al., 1998). More 

importantly, Oldenhof and colleagues used different methods and buffers for their 

identification of hD4R DRIPs, which may explain the difference in results for 

GST-Nck and hD4R interactions. Based on the robust, SH3 domain-dependent 

interaction between hD4.4R-1D4 and GST-Grb2, GST-Grb2 was used as a 

model DRIP to optimize conditions for the identification of novel hD4R DRIPs. 
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Figure 4-4 Specific interaction between Grb2 and the hD4R SH3 binding 
domain.  

Membrane preparations from cells expressing 4-repeat (D4.4R) or no repeat 

(D4.NRR) KØ hD4R-1D4 were combined with glutathione beads coated in GST 

alone or GST-DRIPs. Eluates were tested for receptor presence via 1D4 

immunoblot (top, IB) and GST or GST-DRIP levels via coomassie stain (bottom). 
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4.2 hD4R co-IPs 

GST-DRIP-coated beads were successfully used to pull down hD4R and 

quickly and easily assay hD4R/Grb2 interactions. However, in order to efficiently 

identify new DRIPs, it would be necessary to isolate the receptor from the protein 

mixture and find DRIPs in the resulting eluate. Therefore, the interaction between 

hD4.4R-1D4 and GST-Grb2 was assayed using co-IP. 

4.2.1 1D4 antibody co-IP 

The 1D4 epitope is the 9 amino acids on the C-term of the prototypical 

GPCR rhodopsin (MacKenzie et al., 1984). The 1D4 epitope is widely used as a 

C-term epitope for GPCRs like hD4R, where specific antibodies against the 

endogenous protein sequence are not easily raised, and has been successfully 

used for enrichment of multiple GPCRs for proteomic studies (Wong, 2009). The 

monoclonal 1D4 antibody is commercially available from limited sources and at a 

very high cost. Therefore I worked with Manija A. Kazmi and Dr. W Vallen 

Graham to produce 1D4 antibody from the hybridoma cell line. We cultured the 

hybridoma cell line for 11 months in a hollow fiber cartridge, harvesting the 

growth medium every 48-72 hours. Protein G was then used to purify over 3 

grams of 1D4 antibody. The resulting 1D4 antibody was utilized for IPs and 

immunoblots presented in this thesis. 
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In order to test the fidelity of the hD4R/Grb2 interaction, purified GST-

DRIP proteins were combined with isolated membranes expressing hD4.4R-1D4 

or hD4.NRR-1D4 and subsequently IP’d with 1D4 antibody. The eluates of the 

co-IP were then analyzed by SDS-PAGE and immunoblot. Immunoblot with the 

1D4 antibody were used to assess hD4R protein levels, and an antibody against 

GST was used to assess the abundance of GST-DRIPs. In contrast to the highly 

specific interaction identified via GST pulldown, there was a substantial amount 

of GST-Grb detected in the eluate of the negative control, hD4.NRR-1D4 (Figure 

4-5). Furthermore, GST alone could be detected in eluates of 1D4 co-IPs. 

Given the low background in hD4R/DRIP interactions in GST pulldown 

experiments, it was hypothesized that non-specific interactions were an artifact of 

the 1D4 antibody co-IP procedure. Therefore, numerous alternative methods for 

preparation of hD4R-1D4 protein, preparation of DRIPs, and reaction conditions 

including buffer, time, and temperatures were tested. Co-IP between hD4R-1D4 

and endogenous Grb2 in HEK293T cells via 1D4 antibody also resulted in 

detection of Grb2 in hD4.NRR-1D4 co-IP eluates. It was also determined that 

GST-Grb2 and GST alone could be detected in eluate of 1D4 antibody beads in 

the absence of hD4R-1D4. Therefore, it was hypothesized that the 1D4 antibody 

itself might be responsible for the non-specific detection. 
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Figure 4-5 Non-specific interactions in 1D4 IPs. 

Membrane preparations from cells expressing 4-repeat (D4.4R) or no repeat 

(D4.NRR) KØ hD4R-1D4 were combined with GST alone or GST-DRIPs. The 

1D4 antibody was used to co-IP hD4R and DRIPs. Eluates were tested for GST 

or GST-DRIPs via immunoblot with anti-GST antibodies (top) and hD4R levels 

were tested via immunoblot with 1D4 antibody (bottom, IB). 
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4.2.2 Anti-myc antibody co-IP 

Multiple epitope/antibody pairs were tested to find conditions that 

produced low background signal during co-IP. The Myc antibody showed low 

interaction with GST as compared to 1D4. Therefore, hD4.4R-1D4 and 

hD4.NRR-1D4 constructs with N-term myc epitopes were created. However, 

performing the pulldown assay with GST-DRIPs and isolated membranes from 

cells expressing myc-hD4R-1D4 also resulted in non-specific interactions 

between Grb2 and hD4.NRR (Figure 4-6). 
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Figure 4-6 Non-specific interactions in myc IPs. 

Membrane preparations from cells expressing 4-repeat (D4.4R) or no repeat 

(D4.NRR) KØ hD4R-1D4 were combined with GST alone or GST-DRIPs. The 

myc antibody was used to co-IP hD4R and DRIPs. Eluates were tested for GST 

or GST-DRIPs via immunoblot with anti-GST antibodies (top) and hD4R levels 

were tested via immunoblot with 1D4 antibody (bottom, IB). 
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4.2.3 Anti-OLLAS antibody co-IP 

The rat antibody against the E. coli OmpF Linker and mouse Langerin 

fusion Sequence epitope (OLLAS) was developed at The Rockefeller University 

in 2007. The antibody has high specificity and affinity for the OLLAS epitope, and 

has been shown to be superior to many commercially available antibodies for use 

in IPs (Park et al., 2008). Like the 1D4 antibody, the antibody against OLLAS is 

not readily commercially available. Therefore, together with Manija A. Kazmi and 

Dr. W Vallen Graham, I cultured the anti-OLLAS antibody hybridoma cell line in a 

hollow fiber cartridge for 6 months. Over 300 mg of anti-OLLAS antibody was 

purified using protein G. The resulting antibody was used for IP and immunoblots 

within this thesis. 

A hD4R construct with a C-term OLLAS epitope was created, as well as 

an OLLAS epitope-containing rhodopsin construct. These constructs were 

successfully expressed in HEK293T cells, as assayed via immunoblot with the 

anti-OLLAS antibody. The C-term OLLAS epitope did not disrupt hD4R 

functionality as assayed by calcium flux assay on the hD4.4R-OLLAS receptor. 

Conditions for IP of hD4R-OLLAS and rhodopsin-OLLAS were optimized. 

However GST-Grb2 was detected in the eluate of the IP of hD4.NRRR, which 

does not contain the SH3 binding domain through which Grb2 interacts with 

hD4R. 
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Figure 4-7 Non-specific interactions in OLLAS IPs. 

Membrane preparations from cells expressing 4-repeat (D4.4R) or no repeat 

(D4.NRR) KØ hD4R-1D4 were combined with GST alone or GST-DRIPs. The 

OLLAS antibody was used to co-IP hD4R and GST-Grb2. Eluates were tested for 

Grb2 via immunoblot with anti-Grb2 antibody. 

Due to the high background signal in co-IP-based hD4R/DRIP interaction 

studies and the interesting cell biological studies of hD4R protein regulation that 

were ongoing (see Chapter 3), attempts at identifying novel hD4R DRIPs were 

discontinued. 
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CHAPTER 5: Discussion and future perspectives 

5.1 hD4R DRIPs 

I proposed a method for the identification of novel hD4R DRIPs. A protocol 

to detect hD4R/DRIP interactions using GST-DRIPs and glutathione-based 

pulldowns was successfully developed. In order to identify unknown hD4R 

DRIPs, however, protein complexes would need to be purified using an epitope 

on the receptor, not the DRIP. Therefore several attempts were made to co-IP 

DRIPs with epitope-tagged hD4R. In all cases of co-IP, non-specific interactions 

were detected. Therefore identification of novel hD4R DRIPs was not pursued 

further. 

5.1.1 Future perspectives on DRIP identification 

The identification of hD4R DRIPs could still be conducted via co-IP with an 

antibody against a C-term or N-term epitope on hD4R. While qualitative 

immunoblots detected prohibitively high levels of non-specific binding, it is 

possible that a quantitative method such as comparative proteomics with tandem 

mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) 

could detect differences in the amount Grb2 in the co-IP eluates for hD4R with 

and without the SH3 binding domain. If significantly more Grb2 co-IP’d with the 
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SH3 domain-containing variant hD4.4R-1D4 compared with the hD4.NRR-1D4, 

then the quantitative comparative proteomics technique would corroborate 

Oldenhof’s original result. Therefore the technique could be confidently used to 

identify novel DRIPs. If there was not a detectable more Grb2 in eluates of 

hD4.4R co-IP than in eluates of hD4.NRR co-IP, Grb2 would be classified as a 

non-DRIP in the proteomics assay. However, previous studies by Oldenhof and 

colleagues and my own glutathione-based pulldowns show that Grb2 is in fact a 

specific DRIP – meaning the proteomics result would be a false negative. It 

would be possible to conduct the proteomics screen for DRIPs with the 

understanding that the false-negative rate may be high. That would not, however, 

diminish the integrity of any positive hits in the screen. It may be that a number of 

DRIPs exist with specificity for hD4R that is greater than the specificity of the 

Grb2/hD4R interaction, and those potential DRIPs could be discovered using the 

approach outlined in Figure 4-1. 

5.1.2 Degradation-resistant hD4R as a tool 

The wt hD4R receptor is substantially degraded via the proteasome, 

leading to low receptor levels. Therefore biochemical and structural studies of the 

receptor that require large amounts of protein have been a struggle. The attempt 

at identifying hD4R DRIPs presented in this thesis was facilitated by the use of a 

degradation-resistant hD4R mutant. A mutant form of hD4R where the only four 
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lysine residues in the receptor are mutated to arginine (KØ) has much higher 

protein levels than wt (Fig 3-2) since proteasomal degradation of the mutant 

receptor is partially inhibited (Fig 3-8). The KØ mutant receptor has an EC50 for 

the agonist ligand quinpirole (as assayed via intracellular calcium release [Fig 3-

7]) unchanged from that of wt receptor. Additionally, the KØ and wt receptors 

have a similar profile of hD4R DRIP interactions (Fig 4-3). 

The KØ mutant receptor may be of value for a number of other 

experiments. Determining the physical structure of cytosolic proteins such as 

kinases through techniques such as x-ray crystallography and protein NMR has 

greatly advanced the ability to target these proteins with small molecule drugs. 

Many attempts have been made to generate GPCR structures and to discover 

potential drugs capable of targeting the receptors. GPCR structural studies are 

challenging because of the highly unstable nature of these receptors outside of 

the native membrane environment. Structural studies of hD4R specifically are 

furthermore complicated because of the low protein levels in cell expression 

systems. The use of KØ hD4R would facilitate structural studies would by 

allowing for the purification of a greater amount of receptor without compromising 

the functional integrity of the protein. 

In the time since the hD4R/Grb2 interaction experiments were performed, 

it has been discovered that mutation of cytoplasmic serine and threonine 

residues to alanine leads to further stabilization of hD4R (Fig 3-13). The STØ and 

KSTØ mutants might also be useful in studies of hD4R that require large 
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amounts of purified protein; however, the STØ and KSTØ mutants did have a 10-

fold shift in EC50 for quinpirole compared with wt receptor. The function of these 

mutants should be further characterized before use in structural studies of hD4R. 

5.1.3 OLLAS epitope applications 

The OLLAS epitope and antibody pair was used to co-IP hD4R/DRIP 

interactions (Fig 4-7). In order to use the OLLAS epitope and antibody for co-IP, I 

optimized OLLAS epitope detection via immunoblot and OLLAS epitope 

purification via IP. I also helped to produce and purify over 300 mg of the 

antibody. The OLLAS epitope and antibody have since been utilized in other 

GPCR studies. Specifically, the epitope/antibody pair have been utilized to 

immobilize the chemokine receptor CCR5 in order to conduct single molecule 

studies of receptor/ligand interactions. The low dissociation constant of the 

epitope/antibody pair means that OLLAS is well-suited for immobilization of a 

receptor over a long period of time. The OLLAS-based immobilization technology 

is now being developed as a general enabling technology for pharmacological 

studies of GPCRs. 
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5.2 hD4R ubiquitination and degradation 

The activation of D4R in the brain has numerous pre-synaptic and post-

synaptic consequences (Vullhorst, 2013). A role is emerging for D4R in 

regulation of gamma-oscillation power, highlighting the specific importance of 

D4R in cognition compared with other dopamine receptors (Andersson et al., 

2012a; Kocsis et al., 2013) . We have uncovered a molecular mechanism 

controlling cellular levels of the hD4R protein through ubiquitination, raising the 

possibility that hD4R function may be regulated by its protein abundance. 

Canonically ubiquitination of GPCRs at the plasma membrane is ligand-

dependent and promotes lysosomal degradation of internalized receptors over 

recycling back to the plasma membrane (Marchese and Benovic, 2001). Our data 

suggest a deviation from the canonical model of GPCR ubiquitination in two 

ways. First, we detected ubiquitination of hD4R through PLA and IP in the 

absence of exogenous ligand (Fig 3-17, Fig 3-20, Fig 3-21, Fig 3-22). Secondly, 

treatments with lysosomal and proteasomal inhibitors (Fig 3-5) demonstrate that 

ubiquitin-dependent degradation of hD4R is proteasomal.  Taken together, our 

data support a model of extensive proteasomal degradation of hD4R following 

ligand-independent isopeptide ubiquitin. 

Our results are potentially consistent with a role for ubiquitination and 

proteasomal degradation of misfolded GPCRs in the ER, as is the case for the δ 

opioid receptor (Petaja-Repo et al., 2001). PLA can be used to visual the 
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subcellular localization of ubiquitinated receptor, and demonstrated that a 

perinuclear population of ubiquitinated hD4R exists. It is possible that the 

perinuclear population of hD4R is ubiquitinated in the ER due to misfolding and 

subsequently degraded by the proteasome. However, in both primary mouse 

cortical neurons and HEK293T cells, ubiquitinated receptors were also detected 

at the plasma membrane. Previous reports show that ubiquitinated receptors at 

the plasma membrane are often degraded via lysosomes, but the chloroquine 

dose curve experiments show that hD4R is not lysosomally degraded (Fig 3-5). 

The consequences of ubiquitination of hD4R in the plasma membrane are not 

clear, but may be an example of proteasomal degradation of a plasma 

membrane protein or a currently unappreciated role in controlling hD4R signaling 

beyond degradation. 

We detect a role for ester bond ubiquitination in hD4R degradation. We 

have demonstrated that the lysine-less KØ hD4R-1D4 mutant is ubiquitinated 

and proteasomally degraded (Fig 3-17, Fig 3-21, Fig 3-8). Additionally, we have 

made a cytoplasmically serine-less and threonine-less mutant STØ hD4R-1D4 

(Fig 3-11) that still retains protein function (Fig 3-12). We have confirmed the that 

the non-lysine ubiquitination is specifically ester bond ubiquitination through 

quantifying the ubiquitination and proteasomal degradation of STØ hD4R-1D4 

(Fig 3-17, Fig 3-21, Fig 3-14). Finally, we made a functional lysine-less, and 

cytoplasmically serine-less and threonine-less mutant KSTØ hD4R-1D4 (Fig 3-

12) where ubiquitination and proteasomal degradation are substantially
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diminished (Fig 3-17, Fig 3-21, Fig 3-14). Combined with the fact that cytoplasmic 

cysteines did not influence hD4R protein levels (Fig 3-15), the lack of increase in 

KSTØ protein levels upon bortezomib treatment suggest that isopeptide and 

ester bond ubiquitination – but not thioester ubiquitination – regulate hD4R 

protein levels via proteasomal degradation. 

The hD4R contains a VNTR in IC3. It is important to note that the 16-

amino acid repeat sequence is not perfectly replicated in each repeat region. 

While all repeat segments are prline-rich, the amino acid identity between proline 

residues is variable both within a given allele and amongst the alleles present in 

the human population. Intriguingly, despite the substantial differences in total 

amino acid number among hD4R variants, the ubiquitinatable residues (lysine, 

serine, threonine) are nearly constant for the most common 2-repeat, 4-repeat, 

and 7-repeat alleles (Chang, 1996). For the 2-repeat, 4-repeat, 7-repeat, and a 

non-physiological no-repeat variant, the hD4R-1D4 protein is not degraded 

efficiently when lysine to arginine mutations are introduced. For all physiological 

variants tested (2-repeat, 4-repeat, and 7-repeat) efficient degradation is also 

inhibited by serine to alanine and threonine to alanine mutation. For the 2-repeat 

and 4-repeat variants, protein levels are substantially higher when lysine, serine, 

and threonine mutations are combined, indicating that both ester and isopeptide 

ubiquitination are likely to contribute to degradation of these receptor variants. 

The biological significance of the lack of additive effect for the 7-repeat variant 

and lack of ester ubiquitination for the no-repeat variant is not clear at this time. 



118 

5.2.1 Identifying E3 ligases responsible for hD4R ubiquitination 

Attempts have been made to determine the ubiquitination machinery 

responsible for hD4R degradation. Two likely candidates are the E3 ubiquitin 

ligases KLHL12 and Hrd1, both of which are endogenous in HEK293T cells. 

KLHL12 was previously found to interact with the IC3 of hD4R via a yeast two-

hybrid screen and to promote receptor ubiquitination, on lysine and non-lysine 

residues (Rondou et al., 2008) (Skieterska et al., 2015). However, over-

expression of KLHL12 did not decrease hD4R protein levels, as would be 

predicted if it initiated hD4R degradation (Rondou et al., 2010). Hrd1 is an ER-

associated E3 ubiquitin ligase that promotes ubiquitination of ERAD substrates 

including GPCRs (though it has not previously been linked to hD4R) and has 

been shown to promote ester ubiquitination (Shimizu et al., 2010). 

If KLHL12 or Hrd1 promoted hD4R ubiquitination and subsequent 

degradation, hD4.4R-1D4 protein levels would increase upon siRNA knockdown 

of the responsible E3 ligase. HEK293T cells were transfected with wt hD4.4R-

1D4 and siRNA against either KLHL12 or Hrd1 and then monitored hD4.4R-1D4 

protein levels. Treatment with siRNA did not change hD4.4R-1D4 levels, though 

in the case of Hrd1, knock-down of the protein was not apparently successful, 

and in the case of KLHL12 the level of knockdown could not be determined due 

to the lack of suitable antibody (previous reports all monitored epitope-tagged 

protein, not endogenous). 
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Future attempts to identify the E3 ligase(s) responsible for hD4R 

degradation should consider a CRISPR based deletion of the ligases if they are 

not essential genes. Furthermore, future knockdown or knockout attempts should 

be assay by monitoring RNA levels of KLHL12 – eliminating the need for an 

antibody against the endogenous protein. Additionally, a dominant-negative Hrd1 

construct has been reported 4 (Kikkert et al., 2004). If Hrd1 is responsible for 

hD4R ubiquitination and subsequent degradation, co-transfection of hD4R and 

the dominant negative Hrd1 gene should increase hD4R protein levels. 

Intriguingly, the hD4.NRR-1D4 receptor mutant seems to be degraded via 

isopeptide but not ester bond ubiquitination (Fig 4-24). Mutating the serine and 

threonine residues in hD4.4R-1D4 that are deleted in hD4.NRR does not 

phenocopy STØ hD4.4R-1D4, suggesting that the presence of the repeat region 

itself is required for hD4R ester ubiquitination. A likely explanation is that the E3 

ligase required for ester ubiquitination binds in the hD4R repeat region. 

Intriguingly, such a hypothesis would suggest that separate enzymes are 

required for isopeptide versus ester ubiquitination. 

5.2.2 Ubiquitination and phosphorylation 

A ubiquitinated GPCR at the plasma membrane must be internalized 

before it can be lysosomally degraded. GPCR desensitization via internalization 

is canonically dependent upon agonist-induced phosphorylation of cytoplasmic 



120 

serine and threonine residues via G protein-coupled receptor kinases. A single 

serine or threonine residue cannot be simultaneously phosphorylated and 

ubiquitinated. Suggestively, hD4R has been previously shown to be resistant to 

agonist-induced desensitization via the canonical pathway (Spooren et al., 2010). 

The same study qualitatively detected basal phosphorylation of one of the six 

cytoplasmic serine residues, but none of the cytoplasmic threonine residues in 

the hD4R IC3 loop. It is intriguing to hypothesize that phosphorylation may 

regulate which hD4R residues are available for ester ubiquitination – and vice 

versa. 

5.2.3 Biological consequences of hD4R degradation 

Non-isopeptide ubiquitination was first discovered in 2005 when Cadwell 

and Coscoy reported ubiquitination of a “Lysine-less” MHC-I cytoplasmic domain 

through a viral E3 ligase (Cadwell and Coscoy, 2005). More recent examples 

show that lysine-less proteins can be ubiquitinated in mammalian, insect, plant, 

and yeast cells regardless of viral infection (Shimizu et al., 2010) (Boban et al., 

2015) (Gilkerson et al., 2015) (Domingues and Ryoo, 2012) . Ester and thioester 

ubiquitination have been detected in cases where massive, rapid degradation of 

the target protein has been advantageous. For example, a number of studies 

have shown that viral ubiquitination of host defense proteins (including MHC 

proteins and BST-2/thetherin) leads to substantial degradation – presumably 
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promoting viral success (Cadwell and Coscoy, 2005) (Tokarev et al., 2011) 

(Magadán et al., 2010) (Ishikura et al., 2010) (Herr et al., 2009). Additionally, the 

neural transcription factor Ngn2 needs to be active only during a precise window 

in development, suggesting that rapid degradation of the protein may be required 

for preventing aberrant activity after this window has passed (Vosper et al., 

2009). 

Several substrates of ester ubiquitination are targets of the ERAD 

pathway. ERAD promotes swift and substantial degradation of misfolded proteins 

in the ER in order to support cell survival (Christianson and Ye, 2014). It is 

possible that ester ubiquitination of misfolded hD4R protein in the ER promotes 

rapid degradation via the ERAD pathway (see section 5.2). However, we also 

observe hD4R ubiquitination outside of the ER, suggesting the modification is 

acting outside of the ERAD system. 

One alternative reason – beyond ERAD degradation of misfolded proteins 

- that massive degradation of hD4R could be biologically advantageous is that 

hD4R has a role in the circadian cycle. Soon after the discovery of the DRD4 

gene, DRD4 mRNA was detected at high levels in the retina, (Matsumoto et al., 

1995) and many years later was also observed at high levels in the pineal gland 

(Kim et al., 2010). D4R protein function in the retina is important for circadian, 

light-adapted vision (Jackson et al., 2012). In the pineal gland, the presence of 

D4R at sunrise inhibits melatonin synthesis and release, while its absence at 

sunset allows for melatonin production (González et al., 2012b). While 
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transcription and translation of D4R are known to follow a circadian rhythm in the 

retina and pineal gland, massive proteasomal degradation of hD4R via isopeptide 

and ester ubiquitination may enable a rapid decrease in protein levels at sunrise. 

Previous evidence exists for degradation-regulated circadian protein rhythms; 

studies have shown that the ubiquitin-proteasome system and specifically KLHL 

proteins are important for maintaining retinal health (Campello et al., 2013). 
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5.3 Ester and thioester ubiquitination 

5.3.1 Known cases of ester and thioester ubiquitination 

Non-isopeptide ubiquitination has been reported for a total of 22 proteins 

spread over 5 species. The current list of proteins known to be ubiquitinated by 

ester and/or thioester bonds is presented in Table 5.1. 

5.3.2 Under-recognition of ester and thioester ubiquitination 

Isopeptide ubiquitination has been recognized for much longer than ester 

or thioester ubiquitination, and a great many examples of isopeptide 

ubiquitination have been discovered. Isopeptide ubiquitination has been detected 

on at least 5000 proteins in the human proteome alone (Kim et al., 2011). 

Ubiquitination originally was defined by the isopeptide bond linkage. In their 1980 

publication, Ciechanover and Hershko characterized the linkage between 

proteins destined for degradation and the ubiquitin polypeptide as being resistant 

to treatment with basic or reducing agents (Ciechanover et al., 1980). Now, loss 

of ubiquitination upon NaOH treatment is used as the standard assay for 

detection of ester bond ubiquitination, and DTT sensitivity is used to detect 

thioester bond ubiquitination (Wang et al., 2007) (Tait et al., 2007). 
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 Table 5- 1 Cases of ester and thioester ubiquitination 

Target proteins and gene names are listed along with non-lysine residues that are 

known to be ubiquitinated by ester bonds (serine [S] and threonine [T]) or thioester 

bonds (cysteine [C]). Any enzymes known to be required for addition or removal of 
ubiquitin are listed, along with literature references. 

Protein Gene Residue Enzymes References

Major histocompatibility 
complex I

HLA.A2, 
HLA.B7 CST Mir1, mK3

Cadwell (2005), 
Cadwell (2008), 
Wang (2007),     
Herr (2009)

Peroxin 20 PEX20 C Leon (2007)

Peroxisomal targeting 
signal 1 receptor PEX5 C

Pex12p, 
Pex4p, 
USP9X

Carvalho (2007), 
Williams (2007),  
Grou (2012), 
Schwartzkopff (2015)

BH3-interacting domain 
death agonist BID C Tait (2007)

Neurogenin-2 NEUROG2 CST Vosper (2009), 
McDowell (2010)

CD4 CD4 ST Vpu Magadan (2010)
T cell antigen receptor α PTCRA S Hrd1 Ishikura (2010)

Nonsecreted 
immunoglobulin light chain IGK ST Hrd1 Shimizu (2010)

Immunoblobulin G1 Fab 
heavy chain VHCH1 ST Hrd1 Shimizu (2010)

α1-antitrypsin variant null 
(Hong Kong) SERPINA1 ST Hrd1 Shimizu (2010)

Homocysteine-responsive 
endoplasmic reticulum-
resident ubiquitin-like 
domain member 1 protein

HERPUD1 ST Hrd1 Shimizu (2010)

Transitional endoplasmic 
reticulum ATPase (p97) VCP ST Hrd1 Shimizu (2010)

Bone marrow stromal 
antigen 2 (tetherin) BST2 ST Vpu Tokarev (2011)

Neurogenin-3 NEUROG3 CST Roark (2012)

Asi2 ASI2 ST Doa10, Ubc6 Boban (2015)

Indole-3-acetic acid1 Auxin-
responsive protein IAA1 ST Gilkerson (2015)

Vma12-DegAB ST Doa10, Ubc6 Weber (2016)

Protein transport protein 
SBH2 SBH2 ST Doa10, Ubc6 Weber (2016)

Dopamine receptor 4 DRD4 ST KLHL12 Peeler (in review), 
Skieterska (2015)
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Ubiquitination was studied for 25 years before ester and thioester ubiquitin 

linkages were discovered. During those 25 years, many assumptions were made 

that must now be re-evaluated. For example, it is widely assumed that a lysine-

free mutant protein is in fact a ubiquitin-free protein. Lysine-free mutants have 

served as the standard negative control to study the consequences of 

ubiquitination. The degradation of lysine-free mutants via the ubiquitin-

proteasome system, however, has been well characterized multiple times since 

2005, including in this thesis. In the case of hD4R and many other proteins, ester 

ubiquitination appears on the wt protein and lysine-null mutants. However, some 

researchers have found that proteins, which in wt form are only ubiquitinated via 

isopeptide bonds, can be ubiquitinated via ester and thioester bonds when lysine 

residues are mutated. Regardless of whether ester ubiquitination of a given 

protein is a normally occurring modification or an artifact of lysine mutation, the 

assumption that lysine-free mutants are also ubiquitin-free mutants should be 

revised. For example, Michael Tanowitz and Mark von Zastrow determined that 

the δ opioid receptor was degraded lysosomally, but that mutation of all 

cytoplasmic lysine residues did not significantly inhibit lysosomal degradation. 

They concluded, therefore, that ubiquitination was not required for lysosomal 

degradation of the receptor (Tanowitz and Zastrow, 2002). While isopeptide 

ubiquitination may not be necessary, it could be that ubiquitin attached through 

ester or thioester bonds are sufficient for degradation of this receptor. 
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Lysine-free ubiquitin is used to characterize whether a given protein is 

mono- versus poly-ubiquitinated, based on the assumption that poly-ubiquitin 

chains can only form through isopeptide bonds between ubiquitin molecules. 

While examples of ester or thioester-based polyubiquitination have not been 

described, there is no reason to think that ubiquitin itself could not be 

ubiquitinated on serine and/or threonine residues. Therefore, the use of a lysine-

null ubiquitin construct for determination of mono- versus poly-ubiquitination 

should be reconsidered. 

5.3.2.1 Mass spectrometry as a tool for studying ubiquitination 

One reason that ester and thioester ubiquitination is under-recognized is 

the struggle to identify these bonds through MS/MS. MS/MS is a widely used tool 

in the study of PTMs, including isopeptide ubiquitination. MS/MS analysis is a 

standard assay for identifying ubiquitinated lysine residues for a given protein. 

Furthermore, quantitative proteomics has allowed for careful characterization of 

isopeptide ubiquitination, including the prevalence of specific linkages and ligase 

activity, on a global scale (Ordureau et al., 2015). In general, such MS/MS 

analysis has not detected ubiquitin linkages on serine, threonine, or cysteine 

residues. After the discovery of non-isopeptide ubiquitination, specific efforts 

were made to develop MS/MS techniques for the detection of ester and thioester 

ubiquitination. Using stable isotope labeling with amino acids in cell culture 
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(SILAC), one group was able to identify peptides that were likely to contain a 

ubiquitin modification, including peptides devoid of lysine residues. However, 

despite multiple efforts, they were unable to directly detect an ester or thioester 

linkage on any specific residues, though isopeptide linkages on lysine residues 

were readily detected (Anania et al., 2013). In the last year, however, the first 

report of MS/MS identification of an ester linkage between a serine residue and 

ubiquitin has been published. The base-sensitive ester bond was preserved only 

when peptide purification and subsequent resuspension was performed in the 

presence of 20 mM acetic acid (Weber et al., 2016). The identification of 

conditions for MS/MS that preserve the ester bond between serine and ubiquitin 

should lead to the increase in detection of non-isopeptide ubiquitination. 

5.3.2.2 Mutational analysis for identification of ester and thioester 

ubiquitination 

In addition to the challenge in detecting ester and thioester ubiquitination 

via MS/MS, the field of non-isopeptide ubiquitination is stunted by the difficulty in 

performing mutational analysis for ester and thioester ubiquitination. Lysine 

residue mutation has been vital to the field of isopeptide ubiquitination (though at 

times the results with these mutants have been misinterpreted). Removal of all 

serine and threonine residues in a given protein often requires a substantial 

number of mutations. Lysine residues comprise 5.6% of the total residues in the 
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human proteome. In contrast, serine and threonine residues together comprise 

over 13% of the amino acids in the human proteome. Substantial mutations can 

lead to serious protein misfolding, and therefore differences between wild type 

proteins and serine- and threonine-null mutants may result from factors other 

than the ubiquitination state of the protein. Researchers in the field of non-

isopeptide ubiquitination have therefore struggled to find physiologically relevant 

negative controls (Tait et al., 2007). In this thesis I have demonstrated that 

mutation of all serine and threonine residues on the cytoplasmic surface and 

TM/cytoplasm border leads to a non-functional hD4R mutant. However, I was 

able to identify mutants where the majority of cytoplasmic serine and threonine 

residues are mutated, but the receptor is still functional – creating a 

physiologically relevant negative control for hD4R ester ubiquitination. 

 

5.3.4 Serine and threonine residues in degradation motifs 

 

 As described more fully in section 1.5, non-isopeptide ubiquitination often 

leads to rapid, proteasomal degradation of the modified protein. In 1986 Scott 

Rogers and colleagues discovered that the presence of a motif rich in proline, 

glutamic acid, serine, and threonine residues (PEST motif) was correlated with 

short protein half-life specifically due to proteasomal degradation (Rogers et al., 

1986). The PEST motif is found in 25% of eukaryotic proteins (Singh et al., 2006) 

and specifically prevalent in neurotransmitter receptor GPCRs (Tovo-Rodrigues 



129 

et al., 2014). Some evidence exists that suggests phosphorylation of serine 

residues in a PEST motif contribute to proteasomal degradation (García-Alai et 

al., 2006). However, it is also tempting to speculate that ester ubiquitination of the 

PEST motif may be signaling for the degradation of PEST domain-containing 

proteins. 

5.3.5 Enzymes regulating ester and thioester ubiquitination 

Understanding a given PTM requires an understanding of the proteins 

responsible for “writing” and “erasing” the modification. The field of isopeptide 

ubiquitination has carefully described the E1/E2/E3 enzyme cascade responsible 

for depositing the modification on target proteins, and more recently the role of 

DUBs in removing the modification has become more clear (Swatek and 

Komander, 2016). 

A number of E2 and E3 ligases have been identified in the “writing” of 

ester and thioester ubiquitination as well, as shown in Table 5.1. The enzymes 

for ester and thioester ubiquitination seem to be a subset of the ligases 

responsible for isopeptide ubiquitination (as opposed to a distinct set). It is 

currently unclear what defines an E3 ligase capable of promoting ester and 

thioester ubiquitination. For example, the closely related MIR1 and MIR2 

enzymes encoded by KSHV are both capable of inducing isopeptide 

ubiquitination of host MHC I molecules, while only MIR1 promotes thioester 
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ubiquitination (Cadwell and Coscoy, 2005). In yeast, the Ubc6 E2 enzyme seems 

to favor ubiquitination on serine and threonine residues while Ubc7 favors 

ubiquitination on lysine residues (Weber et al., 2016). As more examples of ester 

and thioester ubiquitination emerge, along with the responsible enzymes, 

characteristics common to enzymes responsible for non-isopeptide ubiquitination 

may emerge as well. 

The removal of isopeptide ubiquitination by DUBs is now well 

characterized. DUBs, as currently defined, are a family of isopeptidases that 

function through an active site cysteine. One example of a DUB removing a non-

isopeptide ubiquitin modification has been described thus far. The thioester 

ubiquitination of Pex5p seems to be removed by the protein USP9X. USP9X was 

shown to have thioesterase as well as isopeptidase activity (Grou et al., 2012). 

Further investigation of enzymes capable of removing ester and thioester 

ubiquitination should be performed. Additionally, the sensitivity of ester and 

thioester bonds to alkaline and reducing conditions, respectively, mean that these 

modifications may be removed through non-enzymatic methods within the cell. 

Careful analysis of subcellular localization and microenvironment would be 

required to determine the non-enzymatic loss of ester and thioester 

ubiquitination. 
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5.4 Conclusions 

hD4R is ubiquitinated via isopeptide and ester bonds and subsequently 

degraded by the proteasome. Ubiquitination and degradation serve as a method 

for cellular control of hD4R protein levels. Protein levels of hD4R may contribute 

to the physiological consequences of hD4R signaling – including roles in 

cognition and human mental health. The generation of mutants which are 

resistant to ubiquitination and degradation provide tools to enhance the study of 

hD4R, especially structural studies. hD4R also serves as a model for the rarely 

described ester bond ubiquitin modification. hD4R may be the first example of a 

protein where ester and isopeptide ubiquitination are mediated by separate 

enzymes. PLA is a tool capable of assaying ester versus isopeptide ubiquitination 

quantitatively and in physiologically relevant model systems. 
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