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While navigating their environment, many animals keep track of their angular 

heading over time. However, a neuronal-circuit architecture for computing 

heading remains unknown in any species. In this thesis, I describe a set of 

neurons in the Drosophila central complex whose wiring and physiology provide 

a means to shift an angular heading estimate when the fly turns. I show that 

these clockwise- and counterclockwise-shifting neurons each exist in two 

subtypes, with spatiotemporal activity profiles that suggest opposing roles for 

each subtype at the start and end of a turn. Shifting neurons are required for the 

heading system to properly track the fly's heading in the dark, and their 

stimulation induces a shift in the heading signal in the expected direction. I also 

provide evidence that the angular position of visual landmarks is flexibly 

associated with the fly’s internal heading estimate as it explores its environment. 

A specific circuit-level model based on known cell types is proposed to account 

for this flexible association. The central features of the biological circuits 

described here are analogous to computational models proposed for head-



direction cells in rodents and may inform how neural systems, in general, perform 

angular calculations. 
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Chapter 1 | Introduction 

Animals everywhere are navigating. The arctic tern migrates from the 

south to the north pole (Egevang et al. 2010), sea turtles swim across the Atlantic 

Ocean (Fuxjager, Eastwood, and Lohmann 2011), and monarch butterflies fly 

between Canada and Mexico (Reppert, Gegear, and Merlin 2010). Humbler 

animals navigate over shorter distances, but with no less importance to their 

survival. For example, honeybees direct each other towards a source of nectar 

(von Frisch 1967). After finding food during a meandering outbound search from 

the nest, ants can walk directly back home (Wehner and Srinivasan 2003). At the 

heart of each of these complex navigational routes is the basic computation of 

“where am I heading?”. The first step towards a neurobiological understanding of 

this computation came with the discovery of head direction cells in rats (Taube, 

Muller, and Ranck 1990a). More recently, evidence for heading-sensitive cells 

has emerged in other species (Varga and Ritzmann 2016; Heinze and Homberg 

2007; Finkelstein et al. 2015), including Drosophila (Seelig and Jayaraman 2015) 

(heading is used here to refer more ambiguously to the animal’s orientation, 

without specifying head direction or body direction, since in some cases – as in 

when the animal’s head and body are tethered - the two cannot be 

distinguished). However, the neuronal mechanisms that build these heading 

signals remain unknown in any species. This thesis characterizes how a 

neuronal circuit in the fruit fly, Drosophila melanogaster, computes the fly’s 

heading. 
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To frame these results within the broader context of spatial navigation, I 

first review the behavioral evidence for the existence of an internal sense of 

heading and space in animals. Second, I review the physiology of neuronal 

systems that respond specifically to navigational variables, including head-

direction. Finally, I review the neural network models that have been proposed to 

explain how the physiological properties of head-direction cells and other 

spatially-responsive neurons are constructed from more basic inputs. 

Behavioral evidence for spatial navigation in animals 

We first consider the behavioral evidence for animals having a sense of 

heading (i.e. an internal representation of one’s heading in the world) and a 

sense of 2D space (i.e. an internal representation of one’s location in the world) 

and, if so, how these senses might be used during spatial navigation. 

It is instructive to first note what sorts of navigational behaviors do not 

require an explicit sense of heading or space, as described above. One can 

travel in specific directions and end up in specific locations without storing any 

explicit information related to which way one is heading or where one is located 

in 2D space. For example, a bacterium can navigate towards higher 

concentrations of a nutrient by changing its rate of turning, such that the 

bacterium makes fewer turns when the nutrient concentration increases over 

time (Berg and Brown 1972). What is stored in the bacterium is the change in the 

concentration of the nutrient over time (the last few seconds) (Block, Segall, and 
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Berg 1982), rather than an internal map of the concentrations of nutrients over 

space. Larger cells and organisms can navigate gradients by also measuring 

concentration changes over space, by comparing concentration differences 

across their length (Swaney, Huang, and Devreotes 2010). These cells, however, 

also do not maintain any internal record of their heading or position in space, but 

rather navigate by always measuring the direction in which higher concentrations 

are present in their immediate vicinity. Thus, an organism’s ability to statistically 

move in a specific direction (e.g. towards increasing nutrient concentrations) or 

even to a specific position (e.g. to the location with maximum nutrient 

concentration) is not necessarily evidence for an explicit internal sense of 

heading or 2D space. 

In contrast to chemotaxis, the ability to navigate certain types of mazes is 

more likely to require a sense of heading or space, as in the maze learning 

example in Figure 1.1 (Tolman, Ritchie, and Kalish 1946). Rats were trained to 

find food at the end of the training maze in Figure 1.1a. After starting at point A, 

the rats had to enter the circular arena, and then navigate through the indirect 

path shown towards the food box at point G. Rats learned to reliably run to the 

food box along the only available path after several training sessions. After 

training, the rats were placed in the test maze in Figure 1.1b. In this test maze, 

the initial path that led to the food box was purposefully blocked. In addition, 18 

new paths exited radially from the circular arena, without leading to any food. The 

trained rats were placed at the usual starting point A and their behavior was 
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monitored. The rats ran straight ahead into the original arm that would have led 

them to the food box in the training maze. After hitting the road block, the rats 

returned to the circular arena and started to explore different options. After 

exploring for some time, the rats eventually committed to follow one of the radial 

paths to its end, after which the trial was ended. The distribution of rats choosing 

each radial path is shown in Figure 1.1c, and is re-plotted in polar coordinates in 

Figure 1.1d. The rats chose path #6 most commonly. This path is highlighted with 

the red arrow in Figure 1.1b-d, and corresponds to the path pointing directly 

towards the original food box in the training maze.  
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Figure 1.1 | Rats flexibly navigate towards their goal. 

a, Training maze in which rats were trained for 4 days to reach the food box (G) 
after starting from the bottom of the maze (A). b, Test maze in which rats were 
tested on the 5th day. Rats were placed at the bottom of the maze (A) and 
allowed to enter the alley that would normally lead them to the food box (CD in 
a). Since this alley was blocked, the rats returned to the main chamber and then 
chose an alternative alley, after which the trial was ended. The dotted red line in 
a and b was added as a visual aid to highlight the best path. c, Distribution of 
alternative alleys chosen in the test trial. Numbered paths on the x-axis 
correspond to the alleys in b. d, Data in c replotted in circular coordinates. The 
red arrows in b-d highlight the same “best” path in each representation of the 
maze. Adapted from Tolman et al. 1946. 



 6 

 

 This experiment provided evidence for an abstract, internal sense of 

heading and space. In contrast to the chemotaxis example, the rat could not 

directly sense its target (e.g. the food) in the test maze (indeed it was not even 

present) and therefore could not find it by navigating a gradient (e.g. by following 

increasing food odor concentrations). The rat also could not memorize a series of 

associations between sensory inputs and navigational decisions for each point 

along the maze, since it had to execute an alternate path (with new sensory 

inputs) for the first time in the test maze. In addition, the choice of which alternate 

path to take required the rat to store spatial relationships in its environment. 

These results strongly suggested that the rat had to store its current position, the 

position of its target, the heading angle that would achieve the shortest path 

between these two positions, and its current heading angle. The rat would then 

be able to determine the shortest path that pointed most directly towards its 

target.  

The maze learning example also highlights the advantages of having a 

sense of heading and 2D space. Indeed, if chemotaxis is such a successful 

method for navigating gradients, why would one need a sense of space in the 

first place? The first reason is that a sense of space endows an organism with a 

memory of how to reach a target that cannot be directly sensed (for example, if a 

pizza shop is too far away to see or smell). The rat does not immediately sense 

the food in Figure 1.1, and must therefore remember the location of the food to 
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navigate towards it. The rat would not be able to accomplish this task if it were 

relying solely on chemotaxis (indeed the food is absent in Figure 1.1b). A second 

reason is that a sense of space is more flexible in that, by building a map, one 

can use many more environmental cues along with their spatial relationships to 

successfully navigate towards one’s target, even if those environmental cues are 

not of any interest in themselves. For example, one might use landmarks to help 

orient one towards a target (for example, the 66th street and 1st Ave street signs), 

even if the landmarks themselves are not intrinsically rewarding, or even near the 

target. A sense of space is also flexible in that one can use spatial relationships 

in order to execute alternative paths to reach the same goal. For example, if a 

barrier is placed in between one’s current position and one’s target position (as in 

Figure 1.1b), a sense of space provides flexibility in choosing alternative routes 

that will still lead to the same target destination.  

The maze learning example in Figure 1.1 also highlights one framework 

for how a sense of angular heading might be used; the rat likely used its sense of 

heading to choose the path that pointed towards a previously visited location. 

This maze learning example is also somewhat complicated in that the rats 

needed to have a sense of their position, as well as their target location, in 2D 

space, from which they could extract the angular heading to optimally reach their 

destination. A second framework for how a sense of heading might be used is for 

an animal to simply navigate in a specific direction – i.e., keep a fixed bearing 

relative to a distant landmark like the sun for many minutes or hours. In this case, 
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the animal matches its current internal sense of heading with its desired heading 

angle, without requiring any knowledge of where it is located in 2D space. 

Animals might keep a fixed bearing for extended periods when navigating to a 2D 

target location for the first time, like a migratory animal performing its first 

migration. It may be that a sense of 2D space is used in this scenario, and that 

the target location is innately stored in a spatial map from birth, guiding a fixed 

bearing trajectory from the starting location. On the other hand, the animal may 

simply have an innate target angle that it wishes to travel in rather than a 2D goal 

location that it aims to reach. As an example, newborn loggerhead turtles migrate 

across the North Atlantic Ocean. These newborn turtles orient in response to 

experimentally-induced magnetic fields in a direction that is consistent with the 

direction the turtle would take given the magnetic field at each point along its 

route (Fuxjager, Eastwood, and Lohmann 2011). A second example is the 

migration of newborn monarch butterflies, which migrate from Canada to Mexico 

each fall. Newly eclosed monarch butterflies normally migrate in a southwesterly 

direction from eastern Canada to Mexico. If these butterflies are displaced to 

western Canada, they still navigate southwest, even though their new starting 

location would require them to travel in a southeasterly direction (Mouritsen et al. 

2013). In these cases, navigation might require a sense of heading, but not 

necessarily a sense of 2D space. 

It is interesting to consider from an evolutionary standpoint whether a 

sense of heading and a sense of 2D space evolved together, or if one came first. 
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One might expect that a sense of heading is more primitive, since a sense of 

heading is more directly tied to the immediate behavioral decision of which 

direction to go in at every point along a trajectory. A sense of space, on the other 

hand, is one additional step removed from immediate behavioral decisions 

because the direction in which the animal should head must be calculated from 

information about one’s current position and one’s target position. Indeed, a 

sense of 2D space might have no use without a sense of heading, whereas the 

converse is not necessarily true, as the migratory examples above might 

indicate. A sense of space might then be built in addition to a sense of heading to 

endow an animal with greater flexibility in navigating its environment. Empirically, 

however, it is not known (to my knowledge), whether any animal has a sense of 

heading without also having a sense of space. 

In this thesis, I will discuss how a sense of heading is computed in the fruit 

fly, Drosophila melanogaster. The navigational capabilities of this species have, 

unfortunately, been less well documented. One of the best examples, in a 

laboratory setting, was the demonstration that freely walking flies can find a cold 

spot in an otherwise hot arena by making use of panoramic visual cues (Ofstad, 

Zuker, and Reiser 2011). After 10 training trials, flies reliably walk along directed 

trajectories towards the cold spot by making use of its fixed location in reference 

to the visual environment. If flies perform this task using a similar algorithm to the 

one described above for Figure 1.1, then this would suggest that flies have a 

sense of heading that they use to direct themselves towards their target. 
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Interestingly, this task requires a class of neurons that innervate the ellipsoid 

body, a donut-shaped structure at the center of the fly brain, and the same 

structure found to be involved in tracking the fly’s heading in this work (see 

Chapter 3, page 43) and in a recent study (Seelig and Jayaraman 2015). A 

second example that points to the existence of an internal sense of heading in 

flies is in a task where the fly was shown to be able to navigate towards the 

position of a landmark that had recently disappeared (Strauss and Pichler 1998). 

In this task, a freely walking fly is placed in a circular arena with two vertical 

stripes displayed 180º apart on a panoramic, cylindrical display (one at 0º and 

one at 180º). The fly tends to be attracted to the vertical stripes and walks back 

and forth between the two (after reaching one stripe, the fly turns around and 

walks back towards the other stripe, and so on). During the middle of the fly’s 

trajectory between the two stripes, say as it moves from 0º to 180º, the two 

original stripes are removed, and a new stripe is displayed at 90º for a few 

seconds. The fly becomes temporarily attracted to the new stripe at 90º and turns 

in its direction until the 90º stripe disappears, a few seconds into the fly’s 

trajectory toward it. After the 90º stripe disappears, the fly is left with no visual 

landmarks, but nevertheless tends to resume its original trajectory (or at least 

makes a directed turn) towards where the original 180º stripe was displayed. 

Since the arena contains no visual cues to guide the turn toward the original 

stripe, this result implies that the fly had a memory of which way to go. 

Interestingly, flies cannot effectively perform this task if one silences the same 
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class of neurons that innervate the ellipsoid body and are essential for the heat 

maze task described above (Neuser et al. 2008). 

 

The physiology of heading- and position-sensitive neurons 

Whereas behavioral experiments have suggested a sense of 2D space 

and heading in a wide variety of animals, neurophysiological experiments have 

provided more direct evidence for such navigational systems in the brains of 

several species. Here I focus on the neurophysiology of rodent navigational 

systems, since these are the best studied at the neural level. I also highlight 

some studies in insects to provide a context for the work presented in this thesis. 

 

Heading-sensitive neurons 

In 1984, James Ranck provided the first neurophysiological evidence for a 

sense of heading with the discovery of head-direction cells in the rat 

postsubiculum (Ranck 1984). These initial observations were then followed up 

quantitatively by Jeffrey Taube (Taube, Muller, and Ranck 1990b; Taube, Muller, 

and Ranck 1990a) working in Ranck’s laboratory. Head-direction cells are aptly 

named: each cell fires maximally when the rat’s head points in a specific direction 

(called the cell’s preferred direction). This head direction response is quite 

specific: it is minimally affected by the animal’s movements, its body orientation 

or its position in space (Taube, Muller, and Ranck 1990a). Different head-
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direction cells fire maximally at different head directions, and are roughly equally 

distributed across head directions (Taube, Muller, and Ranck 1990a).  

 Through systematic environmental perturbations, Ranck and colleagues 

demonstrated that the head-direction signal, while influenced by sensory inputs, 

is not a sensory signal itself, but rather reflects an abstract head-direction signal 

built from sensory inputs and internal calculations. First, the head-direction signal 

is strongly influenced by visual cues. If a rat is placed in a cylindrical arena with a 

single cue card and the card is rotated by 180º (the rat is temporarily removed 

from the arena during this rotation), then the preferred direction of head-direction 

cells also rotates by 180º. When the cue is rotated back to its original position, 

the preferred direction of head-direction cells also rotates back to its original 

position. Furthermore, the preferred direction vectors for a given head direction 

cell are parallel for different positions in the arena, and do not converge towards 

a single point in space, indicating that these cells do not track the orientation of 

an object relative to the rat’s head, but rather the rat’s head’s allocentric 

orientation in the world (Taube, Muller, and Ranck 1990a). Second, when the 

lights are turned off, the head-direction signal persists and continues to integrate 

the animal’s movements in the dark (McNaughton and Chen 1991; Mizumori and 

Williams 1993). The cell’s directional response (i.e. its ability to fire when the 

head points in a particular direction) tends to degrade over several minutes in the 

dark, as expected if the rat’s internal sense of head direction drifts relative to its 

actual head direction in the world (Mizumori and Williams 1993). Moreover, the 
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head direction signal is abolished (even when the lights are turned on) if the 

vestibular system is impaired (Muir et al. 2009; Stackman and Taube 1997), 

indicating a strong dependence of the head direction signal on the rat’s ability to 

sense head rotations. That head-direction cells continue to fire and integrate the 

rat’s head rotations in complete darkness suggests that these cells’ directional 

properties are primarily driven by an intrinsic network property that integrates the 

rat’s head movements rather than being a direct function of sensory signals, 

since the rat has no external directional cues to use when the lights are off. (The 

only other directional signal remaining is the earth’s magnetic field, but head 

direction cells do not follow a consistent north-south coordinate system when a 

rat is moved to a different room (Mizumori and Williams 1993).) Visual 

landmarks, when available, likely play a role in correcting for accumulating errors 

in the angular integration process driven by this intrinsic network.  

Head-direction cells as a population operate within the same frame of 

reference. For example, the preferred directions of two head direction cells 

recorded simultaneously rotate together by the same amount if a cue is rotated 

by 180º, or if the cue is removed and the preferred firing directions reset to a 

different reference angle (Taube, Muller, and Ranck 1990b). These results 

indicate that the relative offset between the preferred directions of different head 

direction cells is maintained across environments – an important property when 

considering the underlying circuit mechanism for generating the head direction 

signal. 
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Head direction cells are found across multiple regions in the mammalian 

brain, including the postsubiculum, where they were originally discovered (Ranck 

1984; Taube, Muller, and Ranck 1990a), the entorhinal cortex, the anterodorsal 

thalamic nucleus (ADN) and the lateral mammillary nucleus (LMN), among others 

(Taube 2007). The head direction cells in each of these areas are not identical, 

with different peak firing rates and tuning curve shapes (Taube 2007). Notably, 

the head-direction cells in the lateral mammillary nucleus (LMN) show 

modulations of their head-direction signal as a function of the rat’s angular head 

velocity, with cells in the left and right hemispheres being modulated in opposite 

directions for clockwise and counterclockwise rotations of the head (Stackman 

and Taube 1998; Blair, Cho, and Sharp 1998). These LMN cells may be 

particularly important in combining angular head velocity and head direction 

signals to integrate the rat’s head direction over time. Indeed, if the LMN is 

lesioned, the head-direction signal in the ADN is abolished (Blair, Cho, and 

Sharp 1998). In turn, if the ADN is lesioned, the head-direction signal in the 

postsubiculum is abolished (Goodridge and Taube 1997). If the postsubiculum is 

lesioned, however, the head-direction signal in the ADN remains largely intact 

(Goodridge and Taube 1997). These sequential lesion effects are consistent with 

the general flow of anatomical projections from the LMN à ADN à 

postsubiculum (Taube 2007), and with the generation of the head-direction signal 

being upstream in this pathway, particularly in the LMN, where head-direction 

and angular head velocity signals are carried in the same cell (Taube 2007). It is 
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important to note, however, that lesioning the postsubiculum and other areas did 

produce some milder impairments in the properties of ADN head direction cells. 

For example, the ADN head direction cells no longer rotated with a cue by the 

correct amount if the postsubiculum was lesioned (Goodridge and Taube 1997), 

indicating that the postsubiculum might play a role in landmark orientation. 

Although not comprehensive, these results suggest that different properties of 

the head direction signal are generated in different brain regions. 

 

Position-sensitive neurons 

Although the work in this thesis focuses on heading-sensitive neurons, I 

also wish to highlight the properties of position-sensitive neurons in rodents, in 

particular grid cells, because (1) head-direction cells share some physiological 

properties with grid cells, suggesting that similar circuit mechanisms might 

generate both signals in one- and two-dimensions, respectively, and (2) one 

function of head-direction cells may be to aid in building the activity profiles of 

grid cells. 

In 1971, John O’Keefe and Jonathan Dostrovsky provided the first 

neurophysiological evidence for a sense of space with the discovery of place 

cells in the rat hippocampus (O'Keefe and Dostrovsky 1971). Place cells fire 

when the rat occupies specific locations (typically one, or a few) within an 

experimental arena. Hippocampal place cells are also modulated by other 

factors, including non-spatial stimuli and the animal’s own behavior (M.-B. Moser, 
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Rowland, and Moser 2015). The hippocampus receives major inputs from the 

lateral entorhinal cortex (LEC) and the medial entorhinal cortex (MEC) (Witter et 

al. 1989; Lavenex and Amaral 2000; Oh et al. 2014). Whereas cells in the LEC 

are only weakly spatially responsive (Hargreaves et al. 2005), some cells in the 

MEC respond to the rat’s location as strongly as hippocampal place cells (Fyhn 

et al. 2004). One type of spatially-responsive MEC cell, the grid cell, responds 

periodically at multiple locations in a hexagonal grid over space (Hafting et al. 

2005). (A second type, not discussed further here, is the border cell, which fires 

when the animal is close to a wall (Solstad et al. 2008).) Grid cells are organized 

into discrete modules, with each module increasing in grid scale (the spacing 

between firing peaks) by a factor of ~1.4 going from the dorsal to ventral MEC 

(Stensola et al. 2012). Whereas the location of the rat is ambiguous for a given 

grid cell, it can be unambiguously defined if the entire grid cell system is 

considered as a whole for sufficiently small environments (Rowland, Roudi, and 

Moser 2016).  

Like head direction cells, the spatial firing patterns of place cells and grid 

cells rotate with a landmark cue (Bostock, Muller, and Kubie 1991; Hafting et al. 

2005). Also like head direction cells, grid cells from the same module maintain 

their spatial firing patterns relative to each other when the rat is placed in a new 

environment, even though the spatial phase or orientation of the grid may change 

relative to the borders of the arena (Fyhn et al. 2007; Stensola et al. 2012). Place 

cells, however, do not preserve their spatial firing patterns relative to each other 
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across environments, a process known as remapping (Muller and Kubie 1987; 

Leutgeb et al. 2005). Indeed, a place cell that fired in one environment may not 

even fire in the next (Leutgeb et al. 2005). These results show that, like head 

direction cells, all grid cells within the same module shift or rotate by the same 

amount, whereas this is not true of place cells. 

Although grid cells were discovered in the medial entorhinal cortex (MEC), 

and head direction cells were discovered in the postsubiculum, these two cell 

types are now known to be anatomically intermingled in these regions. Head 

direction cells are also present in deeper layers of the MEC (Sargolini et al. 

2006), and grid cells are also present in the dorsal pre- and para-subiculum 

(Boccara et al. 2010) (confusingly, the dorsal pre-subiculum is also called the 

postsubiculum in Taube et al. 1990 based on anatomical characterizations by 

van Groen and Wyss 1990). Moreover, cells that respond to the rat’s speed, 

called speed cells, were also recently identified as a fourth cell type (after 

including border cells). That these cell types are anatomically intermingled is 

consistent with the possibility that head direction and speed cells contribute to 

generating grid cells, by integrating the animal’s direction and speed (i.e. its 2D 

velocity vector) to calculate its current position. It is also worth noting that head-

direction cells do not necessarily encode the rat’s direction of travel, which can 

differ from the rat’s head direction. This discrepancy would somehow have to be 

resolved if this head direction signal is used to properly integrate the rat’s 

position in space. 
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Although many studies have focused on the role of the hippocampus and 

medial entorhinal cortex in spatial navigation, other studies have argued that 

these structures play a role in memory more generally, with spatial variables (i.e. 

one’s location) being one of many components in these memories (Eichenbaum 

and Cohen 2014). For example, patient HM, whose hippocampus and medial 

temporal lobe were surgically removed, could not remember spatial as well as 

non-spatial facts or events beyond several minutes (Squire, Stark, and Clark 

2004; Eichenbaum and Cohen 2014). Moreover, in rats, place cells in the 

hippocampus and grid cells in medial entorhinal cortex can also map to non-

spatial variables like sound frequencies (Aronov, Nevers, and Tank 2017). These 

studies, among others (Eichenbaum and Cohen 2014), suggest that the 

hippocampus and entorhinal cortex are involved in multiple processes, including, 

but not exclusive to, spatial navigation. 

 

Orientation maps in insects 

Well before the work I will describe in this thesis, some indirect 

neurophysiological evidence existed that insects might carry a heading signal. 

These lines of evidence centered around the fact that many insects sense 

polarized light to aid in their navigation. Because light scatters with a predictable 

polarization angle as a function of the angle at which it hits the atmosphere, the 

pattern of polarized light across the blue sky is yoked to the sun in a systematic 

fashion and thus this celestial cue can act as a proxy for the position of the sun 
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(when the sun is obscured by clouds, for example). Many insects use the pattern 

of polarized light in the sky as an absolute reference signal to estimate their 

orientation in relation to the sun (Rossel and Wehner 1982). For example, ants 

and bees use the sky’s pattern of polarized light as a compass cue to help direct 

them back to their nest or hive after finding food (Wehner 1989). Neurons that 

respond to polarized light, with a tuning curve that peaks at a specific polarization 

angle, were discovered and characterized in insects (Homberg et al. 2011), with 

a focus on locusts (Homberg 2004). These polarization-sensitive neurons form a 

pathway from the dorsal rim of the eye (which contains photoreceptors 

specialized to detect polarized light) to the central complex, a group of central 

neuropil conserved across insect brains (Homberg 2008), also see Chapter 2. 

The key finding was that polarization-sensitive neurons innervate one component 

of the central complex, the protocerebral bridge (or bridge), in such a way that 

neurons with similar preferred polarization angles were near each other in the 

bridge and the preferred angle rotated systematically as one moved across the 

structure from left to right.(Heinze and Homberg 2007). The sequential ordering 

of different polarization-orientation sensitivities across the bridge suggested that 

when the insect was oriented in one direction, a certain pattern of activity would 

exist in the bridge and this activity pattern would slide around the bridge when 

the animal turned clockwise or counterclockwise in the world, thus forming some 

sort of mapping between the activity of the bridge and the animal's orientation in 

the world. These studies, however, only involved measuring polarized-light tuning 
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curves in identified cells in non-behaving locusts; the authors could not measure 

neurophysiological responses in the bridge in behaving locusts due to 

experimental limitations, which meant that the activity of neurons during an actual 

navigational task could only be indirectly inferred. 

More recently (during the course of my thesis), Seelig and Jayaraman 

2015 showed that the activity in a set of cells that tile the ellipsoid body (and 

other structures) in the fly central complex (see Figure 3.1 page 46) collectively 

tracks the fly’s orientation as it walks on a ball in a virtual environment (Seelig 

and Jayaraman 2015). The properties of these neurons closely resemble those 

of head direction cells in mammals in that the ellipsoid body heading signal is 

updated by the angular position of visual cues, but it also persists in complete 

darkness, where its angular value must be updated by integrating the fly’s 

clockwise and counterclockwise turns. The interaction between these cells and a 

second heading-related cell type described in this thesis is the subject of Chapter 

3. 

 

Neuronal models for building a heading and position signal 

One year after the publication of head direction cells in 1990 (Taube, 

Muller, and Ranck 1990a), McNaughton et al. proposed the first circuit 

mechanism for a sense of heading based on these neurophysiological results 

(McNaughton and Chen 1991). This model was then refined in Skaggs et al. into 
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the predominant model for head direction cells in the field to this day (Skaggs et 

al. 1995).  

In this model, head direction cells are arranged in a circular circuit as in 

Figure 1.2. Head direction cells excite each other locally and inhibit each other 

distally (i.e. everywhere else) along the ring. These two features produce a single 

activity peak along the ring, given properly tuned synaptic weights. Within a 

certain range of synaptic weight parameters, at least one activity peak is 

guaranteed to exist because recurrent local excitation produces a positive 

feedback loop that continues to increase the strength of a local activity peak that 

starts out very weak. On the other hand, only one peak is stable because two or 

more peaks will compete via their distal inhibitory interactions until one peak wins 

and inhibits all the others.  
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Figure 1.2 | Neuronal model proposed for head direction cells in Skaggs et 
al. 1995.  

See text for a description of the model. 

To rotate the activity peak around the ring as a function of the animal's 

turning behavior, a set of rotation neurons is added: two for each head-direction 

cell in the ring. One rotation cell projects clockwise, and the other projects 

counterclockwise to excite the neighboring head direction cells in the ring. 

Rotation cells in turn receive two inputs: one is an excitatory input from head 

direction cells, the second is an excitatory input from a third cell type that senses 

the animal’s turning velocity, called vestibular neurons in Figure 1.2. These 

vestibular neurons come in two subtypes: one is active when the animal turns 
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right, and the other is active when the animal turns left. The “right turn” vestibular 

neuron excites all clockwise-projecting rotation neurons and the “left turn” 

vestibular neuron excites all counterclockwise-projecting rotation neurons. In this 

way, all clockwise-projecting rotation neurons receive excitatory inputs when the 

animal turns right, whereas counterclockwise-projecting rotation neurons receive 

excitatory inputs when the animal turns left. A given rotation cell, however, only 

fires if it receives inputs from both a head direction cell and a vestibular cell. The 

result of this interaction is that when the animal turns right while its head direction 

cells are maximally active at 0º along the ring, the only rotation cells that fire are 

those projecting from 0º in the ring in the clockwise direction (although all 

clockwise-projecting rotation neurons receive excitatory inputs from the vestibular 

cells, these inputs, without the added input from the head-direction cells, are not 

strong enough to trigger action potentials). The rotation cells near 0˚ excite the 

head direction cells at +10º along the ring. Through the same inhibitory 

interactions that produce a single activity peak (see description above), the head 

direction cells at 10º inhibit the head direction cells at 0º, maintaining the width of 

the head direction cell activity peak along the ring such that the activity peak 

shifts clockwise rather than simply expanding in the clockwise direction. Finally, 

the head direction cells at +10º now excite the rotation cells at +10º, while the 

now inactive head direction cells at 0º no longer excite the rotation cells at 0º, 

returning the system to its original state, except shifted 10º clockwise. The same 

process of rotating the activity peak along the ring can then continue from its 
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current position, given the current angular velocity of the animal’s head, as 

signaled by the vestibular neurons. This neuronal model for angular integration is 

further discussed in Chapter 3. 

A key feature of this circuit is that its inputs, in the form of the vestibular 

neurons, hold no information concerning the animal’s head direction – only its 

angular head velocity. The animal’s current head direction is then computed 

using the internal dynamics of the circuitry, as described above. A second 

important point is that, the “vestibular neurons” may be better thought of as 

signaling the animal’s angular head velocity through many sensory modalities or 

internal signals including, but not exclusive to, vestibular signals, proprioceptive 

signals from the animal’s legs, efference copy signals of the animal’s motor 

command to turn, and visual motion cues informative on the rate of rotation of the 

animal. Regardless of their origin, these signals can be combined into one 

“angular head velocity” signal that is then mathematically integrated into the 

animal’s current head position. A third point is that this model is susceptible to 

noise in that fluctuations in the balance between clockwise- and 

counterclockwise-projecting neurons tends to lead to drift in the head direction 

signal. While important, this concern is not specific to this model, since any 

integration process will lead to drift if there is noise in the system. How this drift 

might be mitigated is further discussed in Chapter 3, page 89. When it is not pitch 

black, one way to correct for drift is to use visual landmarks as absolute 
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reference points to anchor the system's orientation estimate, which I discuss 

next. 

It is also known that head direction cells can make use of landmarks in the 

environment (such as a cue card in the head direction experiments described 

above) as reference points to correct errors made by the angular integration 

process. To implement this property in the model, Skaggs et al. 1995 introduce a 

fifth class of neurons, called visual feature detectors, or visual cells in Figure 1.2 

(Skaggs et al. 1995). These visual cells were hypothesized to respond to specific 

visual features (like a small oriented edge) at specific retinal positions. Different 

visual cells were hypothesized to respond to different azimuthal positions of a 

given feature, or to different visual features. Each single visual cell was proposed 

to have weak synaptic connections to every head direction cell in the ring, with 

the key property that these weak connections increase in strength as a function 

of coincident activity between the visual cell and downstream head direction 

cells. This learning rule has the following effect. Suppose that a landmark is very 

far away, such that every time the animal’s head points North, the landmark 

appears at the same position on the animal’s retina, and the same “landmark” 

detector is active. Other “landmark” detectors are active when the animal’s head 

points northeast, east, etc. Looking at the animals’ compass, the same head 

direction cells are also active whenever the animal’s head points North, at least 

for some time before errors in the angular integration process begin to 

accumulate. During this process, connections between this specific landmark 
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detector visual cell and “North” encoding head direction cells potentiate relative 

to the connections between the same visual cell and other head direction cells 

because the North head-direction cells tend to be coactive with this visual 

neuron. Similarly, other detector cells that respond to the same landmark at other 

retinal positions become associated with other head direction cells around the 

ring. In this way, the system can learn the positions of static landmarks to correct 

for errors in angular integration over time. This model also has the useful 

property that if an object is not static, for example if the object is another animal 

that moves around, the feature detectors that recognize that object will not 

associate with any head direction cell because the two are not co-active enough. 

The system would thus pick out only static landmarks – which are useful for 

orienting the heading signal – to associate with the head-direction cells. How a 

landmark association process of this sort might take place in the fly brain is 

discussed in Chapter 4 (page 106).   
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Chapter 2 | Identifying turning-related neurons 

This project started with the goal of identifying neurons whose activity 

could be clearly linked to a behavior (broadly defined, at the outset), which I 

could reliably observe in tethered flies. I constrained myself to behaviors 

exhibited on a tether because I knew that such behaviors may allow me to 

ultimately record the activity of identified neurons while the behavior unfolded 

(Maimon, Straw, and Dickinson 2010; Seelig et al. 2010).  Specifically, I 

performed a screen for cells that, when experimentally activated, would elicit a 

reproducible action or sequence of actions from the fly. To repeatedly access the 

same neurons from fly to fly, I stimulated genetically-defined neurons by 

expressing the ATP-gated cation channel P2X2 (Zemelman et al. 2003; Ruta et 

al. 2010) under the control of different Gal4 driver lines and applying ATP 

through a pipette on the neurites of the relevant cells while the fly was tethered 

and walking on a floating, air supported ball (see Methods). These initial walking 

experiments were performed without tracking the ball; we added the ability to 

perform real-time ball tracking in later experiments in Chapter 3. Because this 

screening method is low-throughput and labor intensive, I only tested Gal4 lines 

that had already produced an effect in freely walking flies in a previously 

published screen of 835 Gal4 lines from the NP collection (Hayashi et al. 2002) 

that used the cold-activated TRPM8 channel and the heat-activated TrpA1 

channel to stimulate neurons (Flood et al. 2013). The ATP-P2X2 screen was not 

simply a repeat of the TRPM8/TrpA1 screen because by applying ATP to specific 
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neuropils (rather than heating or cooling the whole animal), (1) I could activate 

specific subsets of neurons within Gal4 lines that drove expression 

promiscuously, in many different cell classes, thus potentially identifying which 

specific neurons were actually driving the behavior, (2) I could activate neurons 

on one side of the brain and (3) I could ensure that the stimulated behavior was 

measurable in tethered flies. 

Although the initial search was broad in that I was open to studying a wide 

range of behaviors, I was particularly interested in finding neurons whose 

activation would lead to turning left or right, since this behavior could be 

reasonably tied to spatial navigation in freely moving insects. I got lucky. Of the 

30 Gal4 lines that I screened, I found two that elicited behavioral effects: one line 

reliably elicited abdomen bending (NP0351-Gal4), and one line reliably elicited 

turning (NP0212-Gal4). The characterization of this turn-inducing line (NP0212-

Gal4) is the focus of this chapter, and the specific subset of cells that I stimulated 

in this line are the major focus of this thesis (Chapter 3). The data presented in 

this chapter are anecdotal because my goal is to simply describe the path by 

which I arrived to studying the cells of interest. I characterize the function of 

these neurons more rigorously and comprehensively in Chapter 3. 

 

Anatomy of NP0212 expression 

NP0212-Gal4 drives strong expression in a set of neurons that innervate 

the central complex, a group of centrally located structures that span the midline 
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in insect brains (Figure 2.2a-c). The NP0212-driven neurons that I stimulated 

specifically innervate three of these structures: the protocerebral bridge, the 

ellipsoid body, and noduli (Figure 2.2d-f). These neurons are called P-ENs, with 

each letter in the three-letter acronym representing one structure that these cells 

innervate in the central complex. P-ENs are the focus of this chapter and Chapter 

3. Other neurons in the NP0212 Gal4 line also innervate a fourth central complex

structure, the fan-shaped body. NP0212-Gal4 also drives expression in many 

other neurons in the brain and thoracic ganglion. 
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Figure 2.1 | P-ENs are a main component of NP0212-labeled neurons in the 
protocerebral bridge. 

a, Schematic of a fly. b, Posterior view of fly brain, enlarged from the dotted 
rectangle in a. c, Central complex, enlarged from the solid rectangle in b. The 
protocerebral bridge, ellipsoid body and noduli are highlighted in dark grey. d, 
Schematic of a P-EN neuron, the main component of NP0212-labeled neurons in 
the protocerebral bridge. P-EN stands for protocerebral bridge, ellipsoid body 
and noduli. e, Maximum z-projection of central brain in which PA-GFP driven by 
NP0212 was photoactivated in 1-2 glomeruli in the protocerebral bridge. The 
protocerebral bridge-innervating neurons in NP0212-Gal4 also innervate the 
ellipsoid body and the noduli. f, Labeling of 1-2 P-EN neurons with the multicolor 
flipout method (pink, see Methods) and neuropil (grey) highlighting the 
protocerebral bridge, ellipsoid body and noduli. P-ENs are labeled from a 
different Gal4 line (12D09-Gal4). Gal4 lines other than NP0212-Gal4 (like 12D09-
Gal4) that are selective for P-ENs in the bridge and ellipsoid body are used in 
Chapter 3. 
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Stimulating one side of the bridge in NP0212 elicits a turn towards the 

opposite side 

In my first experiments, I stimulated the left or right protocerebral bridge in 

NP0212 as the fly was walking on a ball (Figure 2.2a-f, see Methods). When I 

stimulated the left side of the protocerebral bridge, the fly turned to the right on 

the ball, and vice versa when I stimulated the right side of the bridge (Figure 

2.2e-f). To test whether this turning was due to a motor program that was 

specifically tied to the legs, I repeated the experiment in a flying fly (see 

Methods). Again, when I stimulated the left protocerebral bridge, the fly turned to 

the right as it was flying, and vice versa when I stimulated the right bridge (Figure 

2.2g-k). Since the NP0212 driver line induced Gal4 expression in several neuron 

classes in the bridge, it was formally possible that activating one set of neurons 

drove turning while walking and activating a different set of neurons drove turning 

while flying. However, under the parsimonious assumption that the same 

neurons elicited the same sign of turning under two completely different modes of 

locomotion, then the underlying neurons could drive turning independent of the 

specifics of the motor program (i.e., flying vs. walking). In principle, activating a 

sensory percept could have driven a common turning response in both flight and 

walking, but these neurons were located at the center of the fly brain, several 

synapses removed from any primary sense organ, suggesting that the activated 

neurons may not be pure sensory neurons. I reasoned, therefore, that these cells 

might be involved in some abstract process related to spatial navigation. 
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Discovering an abstract, internal system related to spatial navigation was 

particularly interesting because animals across phyla navigate using completely 

different modes of locomotion (e.g., walking, flying, swimming, crawling, etc.), but 

internal calculations related to one's orientation might have more shared features 

across animals and might therefore be of broader interest to the neurobiological 

community, beyond the study of Drosophila. 

 

 

  



33 

Figure 2.2 | Finding turning-related neurons through a stimulation screen. 

a, Schematic of central complex with stimulation pipette. b, Posterior view of 
NP0212>mCD8-GFP brain with schematized stimulation pipette in the left 
protocerebral bridge. GFP is in green. Neuropil is in magenta. c, Same as b, for 
stimulation of the right protocerebral bridge. d, Schematic of stimulating neurons 
in a walking fly. The pipette is loaded with ATP in order to stimulate P2X2-
expressing neurons. The fly is viewed from the front. e, The fly turns right after 
stimulating the left protocerebral bridge (the pipette is on the right side in the 
image because the camera is facing the fly). f, The fly turns left after stimulating 
the right protocerebral bridge. The motion of the fly’s legs and the ball are difficult 
to convey in sequential images, and ball tracking was not implemented at this 
stage in the project, and therefore no quantification of these walking experiments 
are available (only the raw movies). Extensive quantification of walking behavior 
in relation to protocerebral bridge activity and stimulation is presented in Chapter 
3. g, Schematic of stimulating neurons in a flying fly. The fly is viewed from
below. h, Image of fly flying before stimulation. White dashed lines highlight the 
angle of its wings. i, Image of fly turning after stimulating the left protocerebral 
bridge. The white dashed lines are reproduced from h. The red dashed lines 
highlight the new angles of the wings as the fly turns to the right. j-k, Same as h-
i, for stimulating the right protocerebral bridge. The fly turns left, in the opposite 
direction compared to h-i. 
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A second set of neurons in NP0212 is required for spontaneous 

turning 

To corroborate the stimulation effect, I inhibited synaptic transmission in 

the same NP0212-Gal4 line using the temperature-sensitive dynamin mutant, 

shibirets (Poodry and Edgar 1979). In flies expressing shibirets, synaptic 

transmission should be abrogated in the targeted cells when the animal is held 

above 29˚C, but should be normal at room temperature. To determine if inhibiting 

NP0212 neurons would inhibit turning (i.e. produce the opposite result of 

stimulation), I expressed shibirets driven by NP0212-Gal4 and measured flight 

behavior at elevated bath temperatures. When I performed this experiment in 

flying flies, I observed a drastic reduction in the flies’ rate of spontaneous turning, 

which was initially a promising result. However, this inhibitory effect was not likely 

due to the same neurons that I had stimulated in the protocerebral bridge for the 

following reasons. First, I could not reproduce the shibirets effect on turning in 

other Gal4 lines that drove expression in the same protocerebral bridge neurons. 

Second, the effect of reduced turning persisted after I eliminated (or greatly 

minimized) NP0212-driven expression of the relevant protocerebral bridge 

neurons by expressing in those neurons (using a different enhancer that targets 

the same cells) a Gal4 transcriptional repressor, Gal80. These results pointed to 

a second cell type within NP0212-Gal4 that was required for the fly to perform 

spontaneous turns. Another student in the Maimon laboratory has continued to 
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investigate which neurons in the NP0212 driver line are required for spontaneous 

turning in Drosophila. 

Asymmetric activity in the protocerebral bridge during turning 

The behavioral effects of stimulating neurons can be difficult to interpret 

functionally without knowing the normal physiological patterns of activity in the 

circuit. I therefore measured neuronal activity in the protocerebral bridge in 

NP0212-Gal4 during natural turns in flight using the genetically-encoded calcium 

indicator GCaMP6f (Figure 2.3, see Methods). In these initial imaging 

experiments, I only analyzed raw imaging frames, which do not lend themselves 

easily to averaging across flies, since the protocerebral bridge does not have 

exactly the same shape nor does it occupy exactly the same position in each fly; 

thus, only analyses from sample flies are shown in this chapter (the other flies in 

the dataset showed similar results). In Chapter 3, I parse the protocerebral bridge 

into its individual glomeruli, allowing me to “align” the data across flies, and 

systematically analyze all flies together. The initial analyses presented in this 

chapter are included to describe the path by which I arrived at the interpretations 

presented in Chapter 3. Each conclusion presented here from this initial imaging 

dataset is analyzed more rigorously and comprehensively in Chapter 3. 

In these initial imaging experiments, I elicited turning via a more 

naturalistic approach. Rather than stimulating neurons in the brain, I presented 

an expanding visual disc on an LED arena, which simulates an object looming 
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towards the fly (like a fly swatter, see Methods). Tethered, flying flies routinely 

and reliably turn away from such looming stimuli. These imaging experiments 

produced two important insights. The first insight was that when the fly turned left 

due to the looming stimulus approaching from the right, the left bridge became 

more active than the right (Figure 2.3a). Likewise, when the fly turned right due to 

the looming stimulus approaching from the left, the right bridge became more 

active than the left (Figure 2.3b). To dissociate whether this effect was due to the 

position of the visual stimulus or to the direction of the turn, I presented looming 

stimuli directly in front of the fly. With such central looms, flies turned either to the 

left or to the right on any given trial, with the direction chosen seemingly at 

random, even though the visual stimulus was identical across trials. In these 

conditions, the protocerebral bridge activity clearly followed the direction of the 

fly’s turns even though the visual stimulus was the same (Figure 2.3c-e). Only 

one sample fly out of four is shown because the raw imaging frames do not lend 

themselves easily to averaging across flies; the other three flies showed similar 

results (data not shown). 

Note that this measured right-left asymmetry during natural turning was 

opposite in sign to the direction of turning driven by stimulating one side of the 

bridge. One interpretation of this sign mismatch is that in the ATP/P2X2 

stimulation experiments, flies might interpret the artificial activation of one side of 

the bridge as an indication that they are turning in a specific direction, and then 

compensated for this undesired turning percept (induced by ATP) by producing a 
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behavioral turn in the opposite direction. However, a concern for any rigorous 

interpretation of the ATP/ P2X2 stimulation experiments described here is the fact 

that the stimulation protocol I initially used for discovering the P-ENs produced an 

activation of these cells that was very strong in comparison to physiological 

levels, as assessed by simultaneous stimulation and [Ca2+] imaging from P-ENs 

(data not shown). It is for these reasons that I did not comprehensively analyze 

or extensively repeat the experiments described in Figures 2.2. Rather, I used 

these initial results to motivate a few more first-pass analyses of the physiological 

activity in these cells (see immediately below) and, ultimately, a much more 

comprehensive examination of these cells in walking flies, with more 

physiological levels of stimulation (see Chapter 3). 
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Figure 2.3 | Initial characterization of an asymmetric and periodic signal in 
the protocerebral bridge. 

a, Change in bridge activity in NP0212>GCaMP6f for one of four flies (other flies 
not shown). The fly was presented with an expanding disk on its right, and in 
response turned left. (Left) Left-right wing beat amplitude for all trials. A leftward 
deviation indicates a left turn. (Center) The change in bridge activity across trials. 
The mean activity in the 0.1 s prior to the disc expanding was subtracted from the 
mean activity 0.3-1.4 s after (the time period during which the fly turned). (Right) 
Schematic of the expanding-disk stimulus presented on the right. b, Same as a, 
for an expanding disk presented on the left and the fly turning right. c, Same as 
a, for an expanding disk presented in the center, and where the fly turned left. d, 
Same as c, for when the fly did not turn strongly in response to the central 
expanding disk. e, Same as c, for when the fly turned right in response to the 
central expanding disk. f-i, Centroids from k-means clustering (k=8) of the 
change in bridge activity (as defined for a-e) in each trial for one fly. The bridge 
was masked in order to only cluster information from the bridge. 4/8 centroids are 
shown. The other centroids are either very similar to f-i, or show relatively little 
activity across the bridge. The centroids are reordered by hand to highlight the 
activity peaks gradually shifting clockwise, or to the right, in the protocerebral 
bridge. Note that I only imaged one plane for these initial experiments. The 
expected number of missing glomeruli are outlined in white (their positions are 
not known exactly, these are drawn only as a visual aid). Solid-outlined glomeruli 
highlight the remaining glomeruli innervated by P-ENs (and NP0212). Dashed-
outlined glomeruli highlight the remaining glomeruli not innervated by P-ENs (or 
NP0212). The activity peaks are separated by approximately 8 glomeruli, 
counting the absent, outlined glomeruli in the middle. Also note that the exact 
position of a peak that borders on un-sampled glomeruli is less well defined. 
White arrows designate the positions of activity peaks observable within the 
imaging plane. 



 39 

Periodic activity in the protocerebral bridge 

The above analysis of the NP0212 GCaMP signal in the bridge in flying 

flies considered the average activity in the bridge across left turns and across 

right turns. However, when I analyzed the same signals on a trial-by-trial basis, 

the GCaMP signals were more variable. Specifically, I never saw the whole left 

bridge or the whole right bridge activated on any given trial (like one sees in the 

averages of Fig. 2.3a-e). Rather, on single trials, I observed 2-3 peaks of 

activity––occupying different glomeruli or sectors of the bridge––that were active 

on each side of the bridge on any given trial, with the peaks occupying different 

positions along the bridge across trials, whether for left or right turns. 

Furthermore, whenever one set of 2-3 glomeruli was active on the left bridge, I 

observed the same associated set of 2-3 glomeruli being co-active on the right 

bridge, indicating that the left and right bridge are linked in their activity in some 

fashion, and not completely independent. To further analyze the GCaMP activity 

patterns, I performed a cluster analysis of the activity across trials, using k-

means clustering of the imaging frames. The aim of this analysis is to isolate a 

relatively small number of representative frames from the dataset, starting from 

the anecdotal observation that many individual frames appear to have very 

similar patterns of activity. Specifically, for each trial, I computed the change in 

the GCaMP signal during disc expansion (i.e. I subtracted the mean signal -0.1 to 

0 s from the mean signal 0.3 to 1.4 s relative to the start of the disc expansion). 

Pixels from surrounding regions outside the bridge were masked (set to zero) in 
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order to only analyze the bridge activity. I then treated each “change in GCaMP” 

frame from each trial as a 1D vector of pixel intensities (for example, with a 

length of 5100 if the original image dimensions were 51x100 pixels). Each trial, or 

1D vector, was treated as one sample point (in 5100-dimensional space, in the 

example above) in the k-means clustering algorithm. This clustering algorithm 

attempts to find the positions of a given number (“k”) of centroids, or points, that 

minimize the total distance between each sample point and its nearest centroid 

by iteratively testing different centroid positions. Ultimately, this method isolated 

frames with similar activity patterns and allowed me to visualize the averages of 

those frames. This approach revealed the second central insight from these 

imaging experiments: the activity in the bridge appeared to consist of a set of 

activity peaks (smaller than the entire side of a bridge) whose position shifted by 

the same amount along the left and right side of the bridge (Figure 2.3f-i, putative 

activity peaks are highlighted with arrows). That is, the data were consistent with 

the peaks always being ~8 glomeruli apart, taking into account that some 

glomeruli in the middle of the bridge were beyond the imaging plane in these 

initial single-z-plane imaging experiments (subsequent experiments 

systematically imaged all glomeruli in the bridge, see Chapter 3). Finally, the 

activity pattern appeared periodic in that if one imagined the activity peaks 

systematically shifting along the bridge, they would eventually wrap around and 

return to the same position from which they started (Figure 2.3f-i). Only one 
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sample fly out of four is shown here; the other three flies showed similar results 

(data not shown). 

Interpreting protocerebral bridge activity patterns 

Considering that these bridge neurons were involved in turning, both from 

the stimulation-induced turning experiments and from the GCaMP signals 

described above, I reasoned that the most likely periodic signal that could be 

carried in these neurons was the fly’s orientation (since turning velocity is not 

periodic). This interpretation was further bolstered by the discovery of an 

orientation signal in a different set of central complex neurons, which innervate 

the ellipsoid body. I first learned about these other neurons at a seminar given by 

Vivek Jayaraman (Columbia Workshop on Brain Circuits, Memory and 

Computation, March 16-17, 2015) and later read about them in the associated 

publication (Seelig and Jayaraman 2015). In addition to the ellipsoid body, the 

neurons in the Seelig and Jayaraman 2015 study also innervate the 

protocerebral bridge and the gall. These cells are called E-PG neurons, with the 

"E", "P" and "G", representing the three central complex structures that they 

innervate (see Chapter 3). I found that in my early experiments performed in 

flying flies, I could not reliably detect an orientation signal in the form of smoothly 

moving activity peaks in the bridge in real time. This was true both in the open-

loop tethered-flight experiments with looming objects described above and even 

when I placed the fly in a simple virtual reality condition, where its own wing 
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movements controlled the angular velocity of a bar in closed-loop, simulating 

flight with a distant static landmark, like the sun. Given the failure to observe a 

reliable heading signal in tethered flight, I reasoned that these virtual reality 

experiments might be better suited to a fly walking on a ball, since here I could 

measure the effect of the fly’s leg movements on the ball, rather than inferring the 

fly’s intention to turn purely from the movements of its wings, as is done in flight. 

It is also possible that the fly receives more appropriate proprioceptive feedback 

from its legs when it is tethered and walking on a ball compared to the feedback 

from its wings when it is tethered and flying. These tethered walking experiments 

indeed revealed reliable heading signals in real time and these signals helped in 

determining the functional interactions between P-ENs and E-PGs, which is the 

focus of Chapter 3. 
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Chapter 3 | A neuronal circuit architecture for angular 

integration 

This chapter describes the interaction between two sets of central complex 

neurons that function in a circuit to track the fly’s heading. A neuronal shifting 

mechanism is proposed to account for the ability of this system to track the fly’s 

heading without landmark cues. This mechanism is akin to models proposed for 

rodent head direction cells. The immunohistochemistry presented in this chapter 

was performed and analyzed by Atsuko Adachi. 

Heading signals in the central complex 

I focus on two cell types that make direct connections between the 

protocerebral bridge and the ellipsoid body in the fly central complex: E-PGs 

(ellipsoid body-protocerebral bridge-gall neurons, also PBG1–8.b-EBw.s-

D/Vgall.b (Wolff, Iyer, and Rubin 2015) or EIP (Lin et al. 2013), Figure 3.1a-b) 

and P-ENs (protocerebral bridge-ellipsoid body-noduli neurons, also PBG2–9.s-

EBt.b-NO1.b (Wolff, Iyer, and Rubin 2015), PEN (Lin et al. 2013), or shifting 

neurons herein, Figure 3.1a-b). The dash separates the structure(s) from which 

the neuron receives input (i.e. putative dendrites, as assessed by thinly shaped 

neurites) from the structures to which the neuron outputs (i.e. putative axonal 

terminals, as assessed by larger, bleb-shaped terminals). For example, P-ENs 

take inputs from the bridge and send outputs to the ellipsoid body and noduli, 
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based on the morphology of their arborizations (Wolff, Iyer, and Rubin 2015). 

Each cell type tiles both the protocerebral bridge and the ellipsoid body. 

To assess the role of E-PGs and P-ENs in building an internal heading 

signal, I first measured calcium levels in each cell type separately using the 

genetically encoded calcium indicator, GCaMP6m (T.-W. Chen et al. 2013), 

under two-photon excitation (see Methods). I imaged P-ENs from two 

independent Gal4 driver fly lines, VT032906-Gal4, which I call P-EN1, and 

VT020739-Gal4, which I call P-EN2, since I observed differences in their 

physiology in later experiments (see below). In all figures, the fly brain is viewed 

from the posterior side, such that the left bridge is displayed on the left and the 

right bridge on the right. In all experiments, the fly was tethered (Maimon, Straw, 

and Dickinson 2010) and walking on an air-cushioned ball (Seelig et al. 2010; 

Moore et al. 2014) at the center of a cylindrical (270˚ panoramic) LED arena 

(Reiser and Dickinson 2008) (Figure 3.1c, see Methods). I presented the fly with 

either a dark screen or a bright vertical bar that rotated in closed loop with the 

fly’s behavior, simulating a fixed, distant, landmark (Figure 3.1c, see Methods). In 

both conditions, I observed two or three periodic peaks of activity in the bridge for 

each cell type, with a periodicity of approximately 8 glomeruli (Figure 3.1d-i, 

Figure 3.2a-i, Figure 3.3, see Methods). In all cell types, these peaks moved in 

unison to the left or right along the bridge as the fly turned right or left, 

respectively. Since these bridge signals are periodic, their position can be 

estimated by taking a Fourier transform of the 18-element vector of bridge activity 
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from each time point and extracting the phase of the Fourier component at 8 

glomeruli (Figure 3.2a-i, Figure 3.3, see Methods). This phase (i.e. the position of 

these peaks in the bridge) quantitatively tracks the virtual heading of the fly 

(Figure 3.1g-l). Given a bar in closed-loop, the phase tracks the bar’s position 

with an offset that is typically constant for many minutes, but differs from fly to fly 

(Figure 3.2j-l). Put another way, the calcium activity of each glomerulus responds 

to the position of the bar with a tuning curve that peaks at a specific bar position 

on the arena (Figure 3.4). In the dark, however, the phase tracks the fly’s 

heading with an error that accumulates over time, consistent with a system that 

integrates self-motion inputs (Figure 3.3). These properties, measured for three 

cell types in the bridge, are very similar to those previously observed for rodent 

head-direction cells (Taube, Muller, and Ranck 1990a; Taube, Muller, and Ranck 

1990b) and E-PGs in the ellipsoid body (Seelig and Jayaraman 2015). 
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Figure 3.1 | The activity of three cell types in the bridge tracks the fly’s 
heading. 

a, Schematic of the bridge and ellipsoid body in the fly brain. b, Example E-PG 
and P-EN neurons. c, I imaged a tethered fly walking on a ball with an LED 
arena. d-f, GCaMP6m images for each cell type. (Left) Each z slice, outlining 
glomeruli. (Right) Z-projected bridge volumes over time. Scale bars, 20 µm. g-i, 
(Left) Bridge activity as the fly walks with a bar in closed-loop. (Right) Phase of 
the bridge activity and bar position. The 90º gap in the back of the arena is 
highlighted in gray. j-l, Correlations between phase and ball-position and phase- 
and ball-velocity. Each circle represents one fly. The mean and s.d. across flies 
are shown. P-ENs are in orange and E-PGs in blue throughout.  
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Figure 3.2 | Processing of protocerebral bridge signals from E-PG, P-EN1 
and P-EN2 neurons in the presence of a closed-loop bar.  

a, Processing of the EPG>GCaMP6m signal to generate the plot in Figure 3.1g. 
From left to right: raw mean signal in each glomerulus over time, z-score 
normalization for each glomerulus independently, ∆F/F normalization for each 
glomerulus independently, power spectrum of the ∆F/F signal computed for each 
time point (row) independently. The E-PG phase of the ∆F/F signal is overlaid on 
each GCaMP plot in black. b, E-PG phase (blue) shifted with a constant offset to 
best match the bar position (dark grey). c-d, Same as a, except for P-EN1, 
originally plotted in Figure 3.1h. The fact that P-EN cells do not innervate the 
middle two glomeruli of the bridge makes the power spectrum analysis slightly 
more complex. Specifically, black arrows highlight transient peaks in the power 
spectrum at approximately 16 glomeruli, which are artifacts of the P-EN GCaMP 
peaks crossing the center of the bridge. d, From left to right: P-EN1 ∆F/F signal 
with the middle two glomeruli filled in by averaging signals located one period (8 
glomeruli) away, power spectrum of the ‘filled in’ ∆F/F bridge signal (note 
absence of artefactual peaks at 16 glomeruli), P-EN phase extracted from the 
Fourier component with a period of 8 glomeruli of the ‘filled in’ ∆F/F bridge signal 
(orange), shifted with a constant offset to best match the bar position (dark grey). 
e-f, Same as c-d, for P-EN2, originally plotted in Fig. 1i. In all plots showing bar 
position over time, the gap in the arena where the bar is not displayed is shown 
in grey. g-i, Periodicity of the bridge signal at peak power in the power spectrum 
for each cell type. Each circle represents one fly. The mean and s.d. are shown. 
j-l, Offsets that minimize the distance between GCaMP phase and bar position 
for all 50 s trials for each cell type. Only data where the bar was visible were 
included in computing the offsets. In l, fly 10 only had 3 bar trials. See Methods 
for details. a.u.: arbitrary units. DFT: discrete Fourier transform. 
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Figure 3.3 | Processing of protocerebral bridge signals from E-PG, P-EN1 
and P-EN2 neurons in the dark.  

a, Processing of the E-PG>GCaMP6m signal to generate the plot in Figure 3.5g. 
Bridge signals are plotted over time as in Figure 3.2a, except in the dark. b, 
Phase from the ∆F/F signal and ball position. Because the phase and ball 
position drift over time in the dark, I did not align the two signals by finding the 
best offset over the entire trial; rather, I nulled the offset between the GCaMP 
phase and ball heading at time zero, letting the signals naturally drift over time. 
For display purposes, I applied a constant gain to the ball position signal, which I 
determined from the slope of a linear regression between the GCaMP phase- 
and ball-velocity. c-d, P-EN1 signals (originally plotted in Figure 3.13a) over time 
as in Figure 3.2c-d, except in the dark. e-f, Same as c-d, except for P-EN2 
(originally plotted in Fig. 4b). The ball position gains are 0.75 for E-PG (b), 1.0 for 
P-EN1 (d), and 0.89 for P-EN2 (f). For P-EN1, the slope of the linear regression 
between phase- and ball-velocity was poorly estimated (see Discussion) and 
thus I hand-picked the gain (1.0) in this case. That these gains are not all equal 
does not mean that each cell type has its own gain (see Discussion). Note the 
different timescale compared to Figure 3.2. Also note the time window was 
expanded in a-b, compared to Figure 3.5g, to be the same length as c-f. g-i, 
Periodicity of the bridge signal at peak power in the power spectrum for each cell 
type. Each circle represents one fly. The mean and s.d. are shown. a.u.: arbitrary 
units. DFT: discrete Fourier transform. 
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Figure 3.4 | Example visual tuning curves in E-PG, P-EN1 and P-EN2 
neurons across glomeruli in the protocerebral bridge.  

a-c, Tuning curves of GCaMP activity as a function of bar position for each 
glomerulus in a sample fly for E-PGs (a), P-EN1s (b) and P-EN2s (c). Data 
associated with bar positions in the 90º gap in the back of the arena (and are not 
visible) are not shown. The mean and s.d. across time points for each 22.5º bar 
position bin are shown. 
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A model for angular integration 

Do P-ENs and E-PGs interact in a circuit to track the fly’s heading? The 

first clue came from analyzing a previous anatomical study (Wolff, Iyer, and 

Rubin 2015) for how each cell type maps between the bridge, a linear array of 18 

glomeruli, and the ellipsoid body, a circular array of 8 tiles (Wolff, Iyer, and Rubin 

2015) (Figure 3.5a). This analysis revealed that left- and right-bridge P-ENs 

project clockwise and counterclockwise, respectively, to the ellipsoid body 

(Figure 3.5a, orange arrows, Figure 3.6a-l, Table 3.1). E-PGs, on the other hand, 

project without shifting from the ellipsoid body to the bridge (Figure 3.5a, blue 

arrows). While the full connectome for this circuit will surely reveal more 

complexity, this coarse level of description already suggests a path by which an 

activity peak could propagate clockwise or counterclockwise around this circuit 

when the fly turns. For example, supposing reciprocally excitatory interactions 

between E-PGs and P-ENs, E-PG activity in tile 5 of the ellipsoid body would 

activate P-EN cells in glomerulus 5 in both the left and right bridge (Figure 3.5a, 

using a slightly modified numbering scheme from the one used in Wolff, Iyer, and 

Rubin 2015, see Figure 3.6a-d). If, when the fly turns right, the right-bridge P-

ENs were to become more active than their left-bridge counterparts (Figure 

3.5b), these right-bridge P-ENs would drive the E-PGs in tile 4 in the ellipsoid 

body, shifting the E-PG activity peak by one tile counterclockwise (Figure 3.5c). 

The E-PG activity in tile 4 in the ellipsoid body would then reverberate back to 

activate P-ENs in glomerulus 4 in the bridge, shifting P-ENs to the left in the 
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bridge in unison with E-PGs (Figure 3.5d). If the fly continued to turn right, the E-

PG and P-EN activities would continue propagating leftward in the bridge and 

counterclockwise in the ellipsoid body, with stronger turning driving larger 

asymmetries in P-EN activity and the E-PG peak to propagate faster. The 

opposite sequence of events would cause the E-PG peak to rotate clockwise in 

the ellipsoid body if the fly turned left. In this way, an asymmetry in the activity of 

the right versus left P-ENs could cause the E-PG signal to rotate in one direction 

or the other in response to the fly turning. 
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Figure 3.5 | P-EN neurons in the left and right bridge are asymmetrically 
active when the fly turns, consistent with an anatomically-inspired model 
for neural integration. 

a-d, How an asymmetry in left and right P-EN neurons might rotate the E-PG 
phase (see text). Note that I use a revised numbering scheme. e-g, Bridge 
activity and accumulated phase in constant darkness for each cell type. Arrows 
highlight right-left asymmetries when the fly turns. h-j, Right - left bridge activity 
(bottom) triggered on the fly’s turning velocity (top). The mean and s.e.m. across 
turns are shown. k-m, Right - left bridge activity vs turning velocity. Thin lines 
represent single flies. Thick lines represent the mean across flies. h-m are 
averaged over bar and dark conditions. 
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Figure 3.6 | P-EN neuroanatomy: explanation for the numbering scheme, 
sytGFP localization, and multicolor single cell labeling.  

a, Numbering used in the literature for the protocerebral bridge and ellipsoid 
body. b, Rearrangement of the left- and right-bridge and a linearized ellipsoid 
body that highlights the pattern of anatomical projections for E-PGs and P-ENs. 
Arrows indicate the expected direction of signaling (dendrite to axon) for each 
cell (Wolff, Iyer, and Rubin 2015; Lin et al. 2013) (also see e-f). The dashed line 
in a shows where the ellipsoid body is opened to display it linearly. Tile 1 is 
repeated as a visual aid, since the ellipsoid body is circular. c-d, Same as a-b, 
except using our revised numbering. In d, the numbers are constant along each 
column (with the exception that glomerulus 9 from either side of the bridge 
matches up with ellipsoid body tile 1), highlighting the fact that E-PGs project 
within the same column, whereas left-bridge P-ENs project to the right (+1, or 
clockwise) and right-bridge P-ENs project to the left (-1, or counterclockwise). 
This mapping cannot be so easily summarized with the numbering scheme in b. 
e-f, Sample images of synaptotagmin-GFP (labeling putative axonal terminals) 
and tdTomato (labeling the entire cell) expressed in P-EN1 (e) and P-EN2 (f) 
neurons. These data are consistent with P-ENs having presynaptic terminals in 
the ellipsoid body and noduli, but few, if any, in the protocerebral bridge. g-l, 
Sample multicolor flip out images for P-EN neurons driven by VT032906-Gal4 (P-
EN1, g-h), VT020739-Gal4 (P-EN2, i-j), and 12D09-Gal4 (P-EN2, k-l). The 
multicolor flip out method (Nern, Pfeiffer, and Rubin 2015) allows one to visualize 
single randomly selected cells from a Gal4 driver line (which might label a dense 
thicket of cells) in their entirety, like a multi-color Golgi stain. Neuropil is in grey. 
Single neurons are in color. Glomerulus numbers, including ‘L’ for left and ‘R’ for 
right, are shown in the bridge. After tracing each neuron from the bridge to the 
ellipsoid body, Atsuko labeled the terminals in the ellipsoid body with the bridge 
glomerulus from which they originated, using our revised numbering scheme (c-
d). VT032906-Gal4 contains a neuron type that passes near the bridge, but does 
not innervate the bridge, ellipsoid body or noduli, for example the green neuron in 
g. VT020739-Gal4 contains a neuron type that innervates the noduli, but not the
ellipsoid body or bridge, for example the blue neurons innervating the noduli from 
the sides in j. Virtually all neurons labeled in the bridge and ellipsoid body were 
consistent with being P-ENs (see Table 3.1). 12D09-Gal4 very rarely revealed 
flip-outs of protocerebral bridge local neurons, not shown here (seeTable 3.1). 
sytGFP: synaptotagmin-GFP, pb: protocerebral bridge, eb: ellipsoid body, no: 
noduli. These immunohistochemistry experiments were performed by Atsuko 
Adachi. 
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Turning velocity signals in P-ENs 

Consistent with this model, in addition to the GCaMP peaks shifting along 

the bridge (Figure 3.1), I observed an asymmetry in the amplitude of the left and 

right P-EN peaks, but not E-PG peaks, when the fly turned (Figure 3.5e-g, white 

arrows). To quantify this asymmetry, I subtracted the GCaMP signal averaged 

across all glomeruli in the left bridge from that averaged across the right bridge, 

and computed the time course of this right – left GCaMP signal triggered on the 

start of left and right turns (Figure 3.5h-j, see Methods). When the fly turned right, 

I observed a transient increase in activity on the right bridge relative to the left 

(hereafter referred to as the bridge asymmetry) for both P-EN lines, and vice 

versa when the fly turned left (Figure 3.5h,i). I observed this asymmetry when the 

fly turned in the dark –– or with a closed-loop bar –– (Figure 3.7) indicating that 

the asymmetry does not require visual inputs. 

In principle, a fly can know how fast it is turning based on vestibular, 

proprioceptive, efference copy, or visual-motion cues. Our tethered preparation, 

unfortunately, precludes testing the role of vestibular cues, which I do not 

consider further. The fact that the asymmetry persists in darkness argues that 

proprioceptive and/or efference copy inputs are sufficient to generate a rotation 

of the central-complex heading system. However, it is possible that visual motion 

cues also serve a role in angular integration (not just landmark based updating) 

when present.  Consistent with a role for visual cues in angular integration, I also 

observed a P-EN asymmetry when the fly was not physically turning, but rather 
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was viewing panoramic visual motion (i.e. optic flow) that it would normally 

experience during a real turn (Figure 3.8). I designed the optic flow stimulus as 

an array of (1.875˚) dots, each of which appeared on the screen, moved four 

pixels (7.5˚) to the left or right, and then disappeared and reappeared elsewhere 

on the screen (Newsome and Pare 1988) (see Methods). Such a limited-lifetime-

dots motion stimulus contains only visual motion (i.e. optic flow) information and 

no coherent landmark (positional) information to drive a P-EN asymmetry. The 

fact that the P-EN asymmetry could be driven by a pure motion stimulus of this 

sort indicates that this asymmetry is also sensitive to visual cues informative on 

the animal's angular velocity, not just proprioceptive or efference copy signals. 

Interestingly, I found that on trials in which the fly performed a locomotor turn in 

response to the visual motion (i.e., performed the classical optomotor response), 

the P-EN asymmetry was generally weaker than on trials in which the fly did not 

perform a behavioral turn in response to the motion, on average (Fig. 3.8 orange 

curves have a weaker deflection on the bottom eight panels compared to the top 

eight panels). The simplest interpretation of this result is that the P-EN bridge 

asymmetry is driven by a weighted interaction of visual motion inputs and 

proprioceptive/efference copy inputs onto P-ENs. In this view, on trials where the 

fly performed an optomotor response, the visual motion inputs informed the 

heading system that the fly was turning in one direction and 

proprioception/efference-copy inputs informed the system that the fly was turning 
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in the other direction, leading to a smaller net asymmetry in the P-ENs than in 

trials where the fly performed no optomotor response. 

Independent of the exact origin of the asymmetry in P-ENs, the model in 

Figure 3.5a-d would suggest that the harder the fly turns the stronger the 

asymmetry should be in P-ENs, in order to drive a faster rotation of the heading 

system. Consistent with this prediction, I found a quantitative, positive 

relationship between right - left GCaMP and the fly’s turning velocity for both P-

EN lines (Figure 3.5k,l), but not E-PGs (Figure 3.5m) (see Methods). This bridge 

asymmetry between left and right P-ENs could therefore provide the quantitative 

signal necessary for integrating the fly’s turns over time. 
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Figure 3.7 | P-EN1 and P-EN2 bridge asymmetry during turns in closed-loop 
bar and dark conditions, computed with z-score and ∆F/F normalizations.  

a-c, Right - left bridge activity (bottom) and the fly’s turning velocity (top), 
averaged over multiple turns, for P-EN1s (a), P-EN2s (b), and E-PGs (c), as in 
Figure 2h-j, in closed-loop bar conditions. The right – left GCaMP signal is 
computed from z-score normalized data. d-f, Same as a-c, except in constant 
darkness. g-l, Same as a-f, except the right – left GCaMP signal is computed 
from ∆F/F normalized data. The mean and s.e.m. across turns are shown. Only 
data where the bar was visible on the front 270º of the LED arenea were included 
for closed-loop bar plots. See Methods for details. 
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Figure 3.8 | P-EN1 and P-EN2 asymmetries are driven in part by optic flow. 

a, Sample trajectory of one of hundreds of dots used to create our optic flow 
stimulus. Each dot appeared at a random location, traveled 4 azimuthal pixels 
(7.5º), and then disappeared. The dashed circle is drawn as a point of reference, 
and is not actually presented on the screen. b-c, Right - left P-EN1 bridge activity 
during open-loop optic flow to the left (b) and to the right (c) at 45º/s (left column) 
and 90º/s (right column) during trials where the fly did not, on average, turn (± 
10º/s) in response to the optic flow stimulus. d-e, Same as b-c, for P-EN2 
neurons. f-i, Same as b-e, except trials were only included if the fly turned with 
the direction of optic flow (>10º/s in the direction of optic flow). The mean and 
s.e.m. across trials are shown. For display, the stimulus position was nulled at 
time zero to highlight the movement of the stimulus. In trials where flies turned 
with the direction of optic flow, the direction of visual motion experienced on their 
retinas is opposite to that expected if the visual motion were in closed-loop. This 
condition would lead to visual and proprioceptive/efference copy inputs with 
opposite signs into the P-EN bridge asymmetry. That I observe a weaker 
asymmetry in f-I compared to b-e argues that these two inputs (likely alongside 
vestibular inputs) are somehow combined to generate the P-EN bridge 
asymmetry. 



64 



65 

Spatiotemporal relationships across cells 

A second prediction of the anatomical model in Figure 3.5a-d is that E-PG 

and P-EN activity peaks should occupy similar positions in the bridge. I therefore 

imaged E-PGs simultaneously with either P-EN1s or P-EN2s, with E-PGs 

expressing GCaMP6f (T.-W. Chen et al. 2013), and P-ENs expressing 

jRGECO1a, a red-shifted calcium indicator (Dana et al. 2016) (Figure 3.9, see 

Methods). In the bridge, I observed that the calcium peaks from both P-EN lines 

shift in unison with E-PGs (Figure 3.9a-d). However, the two P-EN lines differed 

greatly in that P-EN1 and E-PG peaks are in phase with each other (Figure 

3.9a,c), whereas, surprisingly, the P-EN2 and E-PG peaks are nearly in 

antiphase (Figure 3.9b,d) (see Methods for averaging bridge signals after phase 

nulling). Anatomical experiments argued that I imaged genuine P-ENs in both 

Gal4 lines (Figure 3.6g-l , Table 3.1), but that the P-EN1 and P-EN2 Gal4 lines 

target different subsets of P-ENs (Figure 3.10). It is due to these physiological 

and anatomical differences that I operationally defined two P-EN subtypes: P-

EN1 and P-EN2. 

What are the implications of these in-phase and nearly antiphase activity 

peaks in the bridge on the interactions between P-ENs and E-PGs? Since P-ENs 

likely output (directly or indirectly) onto E-PGs in the ellipsoid body (Wolff, Iyer, 

and Rubin 2015; Lin et al. 2013) (Figure 3.6e-f), I replotted the mean GCaMP 

signal measured from each bridge glomerulus (Figure 3.9c-d) over the 

appropriate tile in the ellipsoid body (Figure 3.9e-f), using the anatomical 
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mappings described above (Wolff, Iyer, and Rubin 2015) (Figure 3.6a-d). For E-

PGs, the two peaks in the bridge map to a single peak in the ellipsoid body 

(Figure 3.9e,f, blue curves), as expected (Seelig and Jayaraman 2015). 

However, the two P-EN peaks in the bridge map to either side of the single E-PG 

peak in the ellipsoid body (Figure 3.9e,f, orange curves) because of their offset 

anatomy (Figure 3.5a). Furthermore, the positions of these P-EN peaks are 

inverted across the two P-EN subtypes: the right bridge peak maps to the left 

flank of the E-PG ellipsoid body-peak for P-EN1 (Figure 3.9e, dashed orange 

curve) but to the right flank for P-EN2 (Figure 3.9f, dashed orange curve). The 

reverse is true for the left bridge peak in each cell type. 

To evaluate whether these projected activity patterns match the actual 

patterns in the ellipsoid body, I performed dual imaging from E-PGs and either P-

EN1s or P-EN2s in the ellipsoid body. With E-PGs, I observed a single, sharp 

peak in the ellipsoid body  (Figure 3.9i-l), as expected (Seelig and Jayaraman 

2015). With P-ENs, I had the null expectation, based on summing the left and 

right bridge signals after projecting to the ellipsoid body, that I would observe a 

broad GCaMP peak for P-EN1 and a broad valley for P-EN2 at the position of the 

E-PG peak (Figure 3.9g,h). Surprisingly, however, P-ENs in both lines also 

showed a single sharp peak in the ellipsoid body, which overlapped with the E-

PG peak (Figure 3.9i-l). 

Since the E-PG and P-EN activity peaks looked so similar in dual imaging 

experiments in the ellipsoid-body, and also because the shape of the GCaMP 
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peaks in P-EN axonal terminals in the ellipsoid body did not match our 

expectations based on having imaged their dendrites in the protocerebral bridge, 

we were concerned that the P-EN signals in ellipsoid-body dual imaging 

experiments might have reflected a bleed through artefact of signals from the E-

PG channel. I therefore performed control experiments where I imaged single cell 

classes in both the bridge and ellipsoid body at the same time, by capturing a 

larger imaging volume that encompassed both structures. These experiments 

revealed the same positions of peaks for E-PG, P-EN1 and P-EN2 cell classes in 

the bridge and ellipsoid body as predicted from the dual imaging experiments, 

thus arguing against our dual-imaging results being due to bleed through 

between indicator channels (Figure 3.11). 

The results on Figure 3.9i-l thus argue that broad P-EN1 and P-EN2 

calcium signals are reshaped by presynaptic modulation in the ellipsoid body, the 

mechanism for which should be investigated in future work. Despite this 

reshaping, I nevertheless observed an asymmetry in P-EN activity relative to the 

E-PG peak in the ellipsoid body (hereafter referred to as the ellipsoid body 

asymmetry) when the fly turned (Figure 3.9m-p, see Methods). Specifically, P-

EN1 activity increased on the leading edge of the moving E-PG peak (Figure 

3.9m,o) and P-EN2 activity increased on the trailing edge (Figure 3.9n,p), 

consistent with the sign of the bridge asymmetry during turns (Figure 3.5h-i,k-l), 

the relative phase of P-EN1 and P-EN2 to E-PG activity in the bridge (Figure 
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3.9c-d), and the known anatomical mappings of P-ENs and E-PGs between the 

bridge and ellipsoid body (Figure 3.9e-f). 

Since GCaMP and jRGECO1a (the two calcium indicators used for dual 

imaging) have different kinetics, it was possible that the asymmetries observed in 

Figure 3.9m-p were artefacts of one indicator changing faster than the other––

even if the changes in [Ca2+] occurred at the same rate in all cell classes––when 

the heading signal rotated around the ellipsoid body. The fact that P-EN1s lead 

the E-PGs and P-EN2s trail the E-PGs, however, speaks against this sort of 

explanation, since in both cases P-ENs expressed jRGECO1a and E-PGs 

expressed GCaMP6f. Moreover, I performed control experiments where I imaged 

GCaMP6f and jRGECO1a both co-expressed in the same cells, E-PGs, and I did 

not observe an obvious lead or lag in the calcium signal measured from either 

indicator, arguing against these results being due to different indicator kinetics 

(Figure 3.11). Finally, I note that the ellipsoid body asymmetry is not specific to 

the lag times chosen for the data in Figure 3.9m-p, but is also present at other 

lag times relative to the fly behaviorally turning (Figure 3.12). 
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Figure 3.9 | The P-EN1 activity peak leads, and the P-EN2 peak trails, a 
rotating E-PG peak in the ellipsoid body, as predicted by their activity in the 
bridge.  

a-b, Co-imaging E-PGs (GCaMP6f) with P-EN1s (a) or P-EN2s (b) (jRGECO1a) 
in the bridge in constant darkness.  c-d, Phase-nulled signals in the bridge, 
averaged over time. e-f, Bridge data from c-d replotted onto the ellipsoid body 
using each cell type’s anatomical projection pattern (Wolff, Iyer, and Rubin 2015). 
g-h, Sum of the left- and right-bridge curves in e-f (scales adjusted). i-j, Co-
imaging E-PGs with P-EN1s or P-EN2s in the ellipsoid body. k-p, Phase-nulled 
signals in the ellipsoid body averaged over when the fly was walking straight (k-
l), turning left (m-n) or turning right (o-p). Arrows indicate the velocity of the 
peaks. The P-EN ellipsoid body asymmetries were significantly different during 
turning and walking straight (p<0.02), and during turning left and right (p<0.01). 
The mean and s.e.m. across flies are shown. c-h and k-p are averaged over bar 
and dark conditions.  
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Figure 3.10 | Co-labeling of P-EN1 and P-EN2 driver lines. 

a-c, Maximum z-projection of a brain with 12D09-driven neurons expressing GFP 
and VT032906-driven neurons expressing tdTomato. a, GFP (12D09) signal. b, 
tdTomato (VT032906) signal. c, Composite of a and b. Based on physiological 
experiments, VT032906 primarily labels P-EN1 neurons, whereas 12D09 
primarily labels P-EN2 neurons (Figure 3.9, Figure 3.11b,d). As expected, most 
P-EN neurons are primarily labeled by one of the two drivers, however some 
neurons are labeled by both (examples denoted with asterisks). d-f, Same as a-
c, except with VT020739-driven neurons expressing tdTomato. Based on 
physiological experiments, both 12D09 and VT020739 primarily label P-EN2 
neurons (Figure 3.9, Figure 3.11c-d). As expected, almost all labeled P-EN 
neurons are labeled by both P-EN2 drivers. 



72 

Figure 3.11 | Simultaneous imaging of the protocerebral bridge and 
ellipsoid body for each cell type separately and dual-color imaging of 
GCaMP6f and jRGECO1a in E-PGs in the ellipsoid body.  

a, I imaged the bridge and ellipsoid body in the same fly, at the same time, using 
a tall z-stack that encompassed both structures, to determine the relationship 
between the signals measured in each structure. b, Phase-nulled P-EN1 signals 
measured in the bridge (orange) and ellipsoid body (grey). The signals measured 
in the bridge were replotted onto the ellipsoid body using the P-EN projection 
pattern. c-d, Same as b, for P-EN2 signals from VT020739-Gal4 (c) and 12D09-
Gal4 (d). e, Diagram as in a, except for imaging E-PGs, with the bridge in blue. f, 
Same as in b, for E-PGs, with the left and right bridge in blue. In b-d, f, the mean 
and s.e.m. across flies are shown (in f, the s.e.m. for the bridge curves (blue) are 
omitted for clarity). Both the bridge and ellipsoid body signals are nulled using the 
ellipsoid body phase. Note that the positions of the left- and right-bridge peaks 
are inverted between P-EN1 and P-EN2. These results are consistent with the 
dual imaging experiments in Figure 3.9, and argue that the results in Figure 3.9 
were not due to crosstalk between the red and green channels. g, Schematic 
illustrating imaging from the ellipsoid body. h-j, Phase-nulled ellipsoid body 
signals of GCaMP6f and jRGECO1a co-expressed in E-PGs, computed for when 
the fly turned left (h, -300º/s), walked straight (i, 0º/s) or turned right (j, +300º/s), 
300 ms before the calcium signal, as in Figure 3.9k-p. The mean and s.e.m. 
across flies are shown.  I observed no consistent, strong asymmetries in the 
jRGECO1a and GCaMP6f signals during left or right turns when both indicators 
are expressed in E-PGs. These data argue that the asymmetries I observed in 
dual imaging of P-ENs and E-PGs in the ellipsoid body (Figure 3.9m-p) were not 
an artifact of indicator kinetics. Data are averaged over bar and dark conditions. 
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Figure 3.12 | Analysis of the ellipsoid body asymmetry in P-EN1s and P-
EN2s relative to E-PGs in the ellipsoid body.  

a, Mean E-PG and P-EN1 activity in the ellipsoid body triggered on when the fly 
was turning to the left (-300 º/s, upper panel) or right (+300 º/s, lower panel), as 
in Figure 3.9m-p, except over time. The P-EN1 and E-PG signals were phase-
nulled using the E-PG phase. b, Same as a, except for P-EN2 activity. c-d, 
Analyzing the two-color imaging experiments in Figure 3.9i-p, I calculated the 
cross correlation between the ellipsoid body asymmetry in P-EN1 (c) or P-EN2 
(d) and the E-PG phase velocity in the ellipsoid body. A positive correlation 
indicates an increased P-EN signal in the direction where the E-PG peak is 
moving. A positive lag indicates that the P-EN asymmetry comes after the 
change in the E-PG phase. Thus, the P-EN1 peak tends to lead the E-PG peak 
whereas the P-EN2 peak tends to lag behind the E-PG peak. Note that I also 
observe a smaller negative, late peak in the signal driven by the P-EN1 Gal4 and 
a smaller positive, early peak in the signal driven by the P-EN2 Gal4, suggesting 
that each Gal4 line contains some number of both P-EN1 and P-EN2 cells, but 
with more of one than the other. e-f, Same as in c-d, except the P-EN ellipsoid 
body asymmetry is correlated with the fly’s turning velocity. A positive lag 
indicates that the P-EN asymmetry comes after the fly turns. Arrows indicate the 
lag where the mean correlation was greatest. In c-f, thin lines represent single 
flies, thick lines represent the mean across flies. Data are averaged over bar and 
dark conditions. 
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Given that P-EN1 and P-EN2 cells have inverted spatial activity patterns, 

how are they coordinated in time? I found that when the activity peaks moved in 

the bridge, the P-EN1 bridge asymmetry was evident early, prior to the onset of 

the peaks moving, whereas the P-EN2 bridge asymmetry came on late, after the 

peaks were already moving, as measured by averaging these signals triggered 

on movements of the peaks (Figure 3.13a-c, see Methods). A cross correlation 

analysis also showed this timing difference between P-EN1 and P-EN2 in the 

bridge (Figure 3.13d) and the ellipsoid body (Figure 3.12c-d).  I will discuss 

possible interpretations of these different spatiotemporal activity profiles between 

P-EN1 and P-EN2 cells later in the chapter, but suffice it to say here that the 

early right-left asymmetry in P-EN1s and the locations where P-EN1 activity 

peaks reside in the bridge (overlapping the E-PG peaks) are both entirely 

consistent with the model proposed in Figure 3.5a-d. 
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Figure 3.13 | Timing of P-EN1 and P-EN2 bridge asymmetries. 

a-b, Bridge activity during phase shifts (vertical black lines) in constant darkness 
for P-EN1 (a) and P-EN2 (b). White arrows highlight right-left asymmetries. c, 
Right - left bridge activity (bottom) triggered on long phase changes (top). The 
mean and s.e.m. across phase shifts are shown. d, Correlation between right - 
left bridge activity and phase velocity vs time lag between the two signals. Thin 
lines represent single flies. Thick lines represent the mean across flies. c-d are 
averaged over bar and dark conditions. Note the different rotation scales in a-b. 
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Blocking P-ENs impairs integration 

If P-EN neurons serve an important role in moving the E-PG peak, then 

impeding P-EN synaptic output should impair the ability of the E-PG peak to 

properly update its position when the fly turns. I expressed shibirets, which 

prevents synaptic vesicle recycling in a temperature dependent manner (Poodry 

and Edgar 1979), in each P-EN line, and measured E-PG activity in the bridge 

using GCaMP6f (Figure 3.14). When I impeded P-EN synaptic output by bringing 

the bath temperature to 32ºC (see Methods), the E-PG signal failed to 

consistently track the dynamics of the fly’s heading in the dark (Figure 3.13b, 

black arrows, c-d, see Methods). Note that at 34ºC, the E-PG signal appeared 

dim or blurred, indicating a stronger effect, but which made it difficult to properly 

estimate the E-PG phase. I therefore performed the experiments at 32ºC, 

expecting that P-ENs are only partially impaired. Moreover, I did not measure a 

consistent impairment on the ability of the E-PG phase to track a closed-loop bar 

in the same flies (Figure 3.15a-d). These experiments argue that proper synaptic 

transmission in P-ENs is specifically necessary for this circuit’s ability to integrate 

the fly’s heading without a visual landmark (i.e., perform angular integration). 
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Figure 3.14 | The effect of blocking P-EN synaptic transmission on the E-PG 
phase in the dark. 

a-b, E-PG activity in the bridge with P-EN1 cells expressing shibirets at 22ºC (a) 
and at 32ºC (b). Arrows highlight atypical deviations in the E-PG phase from the 
ball’s heading at 32º. c, E-PG phase velocity vs ball velocity in a control and P-
EN1>shibirets fly in constant darkness. R: Pearson correlation coefficient. d, 
Correlations of data in c, for three P-EN-Gal4 lines. Each circle represents one 
fly. The mean and s.e.m. across flies are shown. The cold-to-hot changes in 
correlation are significantly different between P-EN>shibirets and control groups 
(p<0.01). Note the different rotation scales in a-b.  
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Figure 3.15 | The effects of blocking P-EN synaptic transmission on the 
ability of E-PGs to track a landmark. 

a-b, E-PG activity in the bridge from the same fly as in Fig. 4e-f (P-
EN1>shibirets), except with a closed-loop bar, at 22ºC (a) and at 32ºC (b). c, 
Correlations between phase- and bar-velocity, for three P-EN-Gal4 lines driving 
shibirets, with parental controls. Each circle represents one fly. The mean and 
s.e.m. across flies are shown. d, Same as c, except plotting circular correlations 
between phase and bar position. Only data where the bar was visible in the front 
270º of the arena were used for calculating correlations. Trials where the bar was 
visible for less than 10 s were excluded, with some flies having no trials passing 
this criterion. The total number of flies (without excluding flies that did not pass 
the above criterion) for each genotype is shown. The mean and s.e.m. across 
included flies are shown. Only VT020739-Gal4 seems to affect the ability of the 
E-PG signal to track a visual landmark, suggesting that perhaps this effect is due 
to non-P-EN neurons targeted by this line, for example visual lobe neurons, or 
that this effect requires the stronger Gal4 expression in P-ENs in this line.  
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Activating P-ENs shifts E-PG activity 

Is an experimentally induced asymmetry in P-ENs sufficient to shift the E-

PG activity peak in the expected direction? I stimulated P-ENs, with 1-2 glomeruli 

resolution, on the left or right bridge by expressing the ATP-gated cation channel 

P2X2 (Zemelman et al. 2003) and locally releasing ATP from a pipette (see 

Methods), while measuring E-PG activity in the bridge using GCaMP6f (Figure 

3.16a-c). When I locally excited P-ENs in the left bridge, the E-PG peaks 

appeared (on both sides of the bridge) to the right of the stimulated glomerulus, 

and vice versa when P-ENs were excited on the right bridge (Figure 3.16d-i), for 

both P-EN1 and P-EN2 Gal4 lines. These stimulation data are consistent with an 

excitatory relationship (direct or indirect) between P-ENs and E-PGs, which is 

also consistent with P-ENs being immunoreactive for choline acetyltransferase 

(ChAT) (Figure 3.18) (acetylcholine is the primary excitatory transmitter in the 

central nervous system of flies). Given that P-EN2 activity is normally anti phase 

relative to P-EN1s, the same bridge asymmetry in P-EN1s and P-EN2s would 

thus be expected to produce opposing movements on the E-PG phase (Figure 

3.16d-g). Control experiments without ATP and without Gal4 argue that I 

specifically stimulated P-ENs (Figure 3.17e-j). These experiments demonstrate 

that inducing a strong asymmetry in P-ENs shifts the E-PG activity peak in the 

expected direction relative to the stimulated glomerulus. 

Remarkably, I noticed that the fly occasionally performed a behavioral turn 

immediately after the local release of ATP (e.g., Figure 3.16d-g, asterisks). To 
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quantify this effect, I parsed each stimulation event based on whether the phase 

moved left or right in the bridge (as measured 250 ms after the ATP pulse), and 

computed the average turning velocity of the fly in each case, time-locked to the 

time of stimulation (Figure 3.19a-c). Normally, the phase moves right when the fly 

turns left (Figure 3.19c, triggered on movements of the phase regardless of 

stimulation in the same flies, see Methods for Culling individual turns or phase 

shifts). However, during stimulation, as the phase moved right, the fly turned right 

(Figure 3.19), as if to return the E-PG phase to its original position just prior to 

stimulation (the E-PG phase was momentarily controlled by the stimulation and 

therefore could not return to its original position, see Figure 3.16 asterisks). This 

interpretation implies that the fly reacts to the change in phase. Indeed, the 

change in phase precedes the fly’s turn during stimulation events, as measured 

by a cross-correlation (Figure 3.19d-e, using time points within a 0-1 s window 

after each ATP pulse), in contrast to the normal sequence of events where the 

phase updates after the fly’s movements (Figure 3.19f, using time points outside 

the 0-1 s window after each ATP pulse). To compute the correlation at each time 

lag, the behavioral turning data was shifted by the appropriate time lag relative to 

the phase velocity imaging data (see Methods for Comparing data acquired at 

different sampling frequencies). These effects are not apparent with no ATP in 

the pipette, if the Gal4 transgene is not present, or if the same data are parsed 

based on whether the left or right bridge was stimulated (data not shown). This 
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analysis provides the first indication of how the fly’s heading signal influences its 

turning behavior. 
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Figure 3.16 | P-EN neurons medially excite E-PG neurons in the bridge, 
consistent with a model for neural integration.  

a, An ATP-filled pipette is inserted into the brain. b-c, Stimulating P2X2-
expressing P-ENs in the bridge is expected to excite E-PGs in the medial 
neighboring glomerulus. d-e, E-PG bridge activity while stimulating P-EN1 
neurons in the left (d) or right (e) bridge. f-g, Same as d-e, for P-EN2 neurons. h-
i, Phase-nulled E-PG activity after P-EN1 (h) or P-EN2 (i) stimulation. Thin lines 
represent the mean response in each fly. Thick lines represent the mean across 
flies. Asterisks highlight events when the fly turned against the movement of the 
E-PG phase. See Methods for details. j, Summary model: P-EN and E-PG 
interactions projected onto a single ring. Only ellipsoid body tiles are represented 
for clarity. k-l, Same as j, highlighting P-ENs that are active when the fly turns left 
(k), or right (l). 
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Figure 3.17 | Controls for the P2X2 experiments. 

a, The change in the phase-nulled E-PG>GCaMP6f and ATP (Alexa594) signals 
during an ATP pulse, with P-EN1s expressing P2X2. I subtracted the average E-
PG signal at -0.3 to 0.0s from the average at 0.7 to 1.0s with respect to the time 
of the pressure pulse, highlighting the effect of the stimulation. I subtracted the 
average Alexa594 (ATP) signal at -0.3 to 0.0 s from the average immediately (1 
frame) after stimulation. The irregular dips in the E-PG signal are due to the fact 
that the E-PG phase was not uniformly distributed immediately before 
stimulation. Both signals were phase-nulled using the position of the pipette. b, 
Same as a, except without ATP in the same flies. c-d, Same as a-b, except with 
P-EN2s expressing P2X2. e-f, Same as a-b, except with no Gal4 as a control for 
the specificity of P2X2 expression. Thin lines represent single flies, and thick lines 
represent the mean across flies. 
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Figure 3.18 | Immunoreactivity for neurotransmitter markers in P-EN1 and 
P-EN2. 

a-j, Co-labeling of VT032906-Gal4 (P-EN1, a-e) and VT020739-Gal4 (P-EN2, f-j) 
neurons in green with anti-ChAT (a,f), anti-DVGLUT (b,g), anti-tyrosine 
hydroxylase (anti-TH, c,h), anti-GABA (d,i) and anti-dVGAT (e,j) in magenta.  
Both P-EN lines are positive for ChAT. VT032906-Gal4 (P-EN1) seems to also 
have vGlut-positive P-ENs.  
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Figure 3.19 | Flies turn in response to a stimulated change in the heading 
signal. 

a, Turning velocity and E-PG phase velocity triggered on P-EN1 focal stimulation, 
when the E-PG phase shifted left (left panel) or right (right panel) immediately 
after the ATP pulse. b, Same as a, for P-EN2 stimulation. c, Same as a, except 
triggered on the E-PG phase velocity, regardless of stimulation. Pooled from 
same recordings as P-EN1 and P-EN2 stimulation. Mean and s.e.m. across ATP 
pulses (a-b) or phase shifts (c) are shown. d, Cross-correlation between E-PG 
phase velocity and turning velocity during P-EN1 stimulation (1 s window after 
ATP pulse). e, Same as d, for P-EN2 stimulation. f, Same as d, except for all 
other time points (not within 1 s window after ATP pulse). Pooled from same 
recordings as P-EN1 and P-EN2 stimulation.  
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Discussion 

Working Model 

My working model for how the central complex heading system updates 

during a right turn in the dark is as follows (see Figure 3.5a-d, Figure 3.16j-l). The 

fly sends a motor command to the legs to turn right, causing the fly (or ball, as 

measured in our system) to start turning. A few hundred milliseconds later, 

turning-related signals arrive to the protocerebral bridge, driving higher activity in 

P-EN1 dendrites in the right bridge compared to the left. This elevated activity in 

right-bridge P-EN1 dendrites drives elevated activity in their axons, on the 

counterclockwise edge of the E-PG activity peak in the ellipsoid body, causing 

the E-PG peak to rotate counterclockwise. The opposite sequence of events 

rotates the E-PG peak clockwise during a left turn. This model also requires 

additional inhibitory circuitry to maintain the width of the E-PG peak in the face of 

spreading E-PG activity due to P-EN excitation. 

Sources of the turning-related bridge asymmetry 

The P-EN bridge asymmetry is likely driven by multiple signals informative of the 

fly rotating. For example, this asymmetry is evident when the fly turns in the dark 

(Figure 3.7), suggesting that it is driven by proprioceptive feedback or an 

efference copy of the motor command to turn. In addition, this asymmetry can 

also be driven by visual motion (Figure 3.8) and perhaps vestibular inputs, which 

were not present in our experiments since the fly never actually rotated. Neurons 
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that could bring asymmetric signals into the left and right bridge, to drive an 

asymmetry in P-ENs, have been anatomically identified (Figs. 3R & 18D-F and 

Figs. 3S & 18A in Wolff et al. 2015). 

Potential roles for P-EN1s and P-EN2s 

Whereas previous models for angular integration (Skaggs et al. 1995; K. 

Zhang 1996; Redish, Elga, and Touretzky 1996; Sharp, Blair, and Brown 1996; 

McNaughton et al. 2006) have only required P-EN1-like neurons, I observe a 

second set of asymmetrically active neurons (P-EN2) biased to the trailing edge 

of the ellipsoid body E-PG peak, typically expressing asymmetric activity a 

couple hundred milliseconds after the rotation of the heading signal. A 

parsimonious interpretation of this result is that, given their relative timing, the 

early, P-EN1 cells start the movement of the E-PG peak, like a gas pedal, and 

the late, P-EN2 cells stop its movement, like a brake. However, interpreting the 

P-EN2 asymmetry as a brake implies that a moving E-PG peak would otherwise 

continue rotating – a property not featured in models of the rodent head-direction 

system (Skaggs et al. 1995; K. Zhang 1996; Redish, Elga, and Touretzky 1996; 

Sharp, Blair, and Brown 1996; McNaughton et al. 2006). Another interpretation is 

that P-EN1s are the main drivers of angular integration, whereas P-EN2s serve a 

different role. Note that the shape of the P-EN1 peaks are relatively sharp, like 

that of the E-PG peaks, whereas the P-EN2 peak are broader. Indeed, the P-

EN2 signal closely approximates a sinusoid along the bridge (Figure 3.9d). A 
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sinusoidal signal may contribute to trigonometric vector computations, for 

example if combined with the animal’s speed. Finally, note that P-EN1 signals 

tended to be weak except when the flies were turning (leading to high variance in 

bridge signals when the flies walked straight, Figure 3.9c), whereas P-EN2 

signals were more persistently active, even during straight-walking periods. 

Together, these observations may help pinpoint the functional differences 

between these cells classes (also see section below for how P-EN2s might 

participate during directed walking). Further work will be needed to rigorously test 

such functional hypotheses for P-EN1s and P-EN2s. 

Limiting the effects of noise on integration 

One limitation of integration models is that noise in the system leads to drift in the 

integrated signal over time. Experimentally, we observe drift in the E-PG heading 

signal when the fly walks in the dark (Figure 3.5). An interesting point related to 

this observation is that the situation may be qualitatively different when the fly is 

standing compared to when it is walking. When the fly is walking, E-PG and P-

EN neurons receive a bilateral boost in activity compared to when the fly is 

standing (Figure 3.20, see Methods). This boost in activity saturates at low 

walking speeds, suggesting that it represents a binary standing or walking signal, 

as opposed to a quantitative signal for forward velocity (Figure 3.20b,f,j). The 

right – left bridge asymmetry, on the other hand, is relatively unaffected by 

forward walking speed (Figure 3.20d,h,l). The bilateral boost in signal strength 
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during walking compared to standing might be useful in the following way. P-

EN1s require both a heading-related phase input (presumably from E-PGs) and 

an angular-velocity-related asymmetric input to be active (Figure 3.5). Noise in 

the angular-velocity-related asymmetric input will lead to drift in the E-PG phase, 

since the asymmetric input will drive variable spike rates in P-EN1s, which will 

likely lead to variable movements of the E-PG peak. However, if the E-PG input 

to P-EN1s is significantly decreased when the fly is not walking (as suggested by 

the data in Figure 3.20b), the same noise in the asymmetric input will drive fewer 

suprathreshold depolarizations, and therefore fewer action potentials in P-EN1s. 

Such a mechanism would limit the effect of any noise in the angular-velocity 

inputs on driving rotations of the heading signal during standing periods 

specifically. When the system needs to integrate angular heading velocity during 

walking, however, it seems to boost the P-EN1 activity level. I hypothesize that 

this boost acts to bring P-ENs closer to action potential threshold so that their 

synaptic output (driven by their spike rates) begins to match the asymmetric 

angular-velocity inputs and thus the fly’s turning velocity. Put another way, when 

the fly is walking, its angular velocity is some quantitative value above or below 

zero and the P-EN1 asymmetry attempts to estimate this value as accurately as 

possible, with some unavoidable errors. When the fly is standing, however, the 

central complex heading system can, in principle, assume that the fly's angular 

velocity is exactly zero. By strongly reducing P-EN1 and E-PG activity levels (and 

presumably their spike rates) the system might achieve a much lower rate of drift 
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in the E-PG heading estimate. This idea is consistent with the bilateral boost in 

activity seen in both E-PG and P-EN1 neurons (Figure 3.20b,f). A similar 

mechanism may operate in P-EN2s (Figure 3.20j), however, their specific role 

within this circuit is less clear than that of P-EN1s. 
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Figure 3.20 | Total bridge activity increases during walking. 
a, Total (right + left) E-PG bridge activity vs. turning velocity (22.5º/s, or π/8 rad/s 
bins). b, Total E-PG bridge activity vs. forward velocity (0.25 mm/s bins). c-d, 
Same as a-b, for right – left E-PG bridge activity. e-h, Same as a-d, for P-EN1. i-
l, Same as a-d, for P-EN2. Thin lines represent one fly. Thick lines represent the 
mean across flies. Scales are identical across plots for each metric. 
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The role of compass-like signals in the central complex in relation to behavior. 

I observed relatively long (200 to 600 ms) latencies between the ball’s 

rotation and the updating of the phase signal in the central complex in our 

experiments (see Methods for computing correlations). As a result, we favor the 

interpretation that the E-PG/P-EN phase, in these conditions, is updated by the 

flies’ locomotor behavior, rather than this phase signal acting like a steering 

wheel to turn the fly. That said, even if the E-PG/P-EN phase does not directly 

induce the fly to turn left or right in these experiments, it is likely that flies build 

internal heading signals so that they can use them to guide navigational behavior 

under at least some conditions. Interestingly, when I experimentally shifted the E-

PG phase in Figure 3.16a-i, the fly occasionally turned in response to this 

stimulation, and in a direction that would normally bring the E-PG phase back to 

its original position (in many cases, the E-PG phase remained yoked to a 

constant position for a few seconds due to the stimulation and therefore could not 

immediately return to its original position, Figure 3.19). These results suggest 

that the fly might attempt to maintain a desired heading, as estimated by its E-PG 

phase, and behaviorally turns to correct any deviation from this desired heading. 

Indeed, I commonly observed flies to maintain a constant heading angle (i.e. they 

kept the closed-loop bar near a single, apparently desired, angular position in the 

arena) for many seconds or minutes (Figure 3.15a-b) rather than perform 

seemingly random exploration. It is interesting to note that, while attempting to 
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maintain a constant heading angle, the fly often overshoots its mean or “goal” 

angle in either direction. Under these circumstances, one might interpret the P-

EN2 signal, which occurs late during a turn and has the opposite sign as the P-

EN1 signal, as one that is appropriate for returning the E-PG signal in 

anticipation of the fly making a second, corrective turn back towards the “goal” 

angle. In this interpretation, P-EN2s might be considered to carry a predictive 

signal to help rotate the E-PG bolus in the expected upcoming turn direction of 

the fly, perhaps to compensate for delays associated with updating based solely 

on sensory inputs like proprioception or optic flow. 

Comments on the kinetics observed in E-PG, P-EN1 and P-EN2 neurons 

Whereas E-PG, P-EN1, and P-EN2 all showed their peak turn-related 

activity a few hundred milliseconds after the animal’s turning behavior, their 

activity in relation to one another, and in relation to the rotation of the E-PG/P-EN 

phase signal, showed a clear, and tight, temporal structure (e.g., Figure 3.13a-d, 

Figure 3.12c-d). Specifically, P-EN1 asymmetries arise first, then the E-PG peak 

starts rotating, then the P-EN2 asymmetries arise as the E-PG peak stops 

rotating in the initial direction.  All this happens a few hundred milliseconds after 

the fly (ball) moves. 

Note that the phase measured from VT032906-Gal4 (P-EN1) was 

particularly sluggish in tracking the fly’s turning behavior (Figure 3.1h, Figure 

3.5e, Figure 3.13a). Specifically, in VT032906>GCaMP6m flies, the phase signal 
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in the central complex updated (i.e., showed its peak cross-correlation time with 

behavior) only ~600 ms after the fly turned (see Methods), unlike the ~300 ms 

latency observed in P-EN2 and E-PG lines. This sluggishness is not interpreted 

to mean that P-EN1 neurons are physiologically delayed in their activation, by 

300 ms, with respect to P-EN2 and E-PG neurons, since when I imaged P-EN1 

and E-PG neuron types simultaneously in the same fly (Figure 3.9), the P-EN1 

activity peak actually leads the E-PG activity peak during turns (Figure 3.9m,o, 

Figure 3.12c). Rather, I interpret the slow P-EN1 phase kinetics in our 

GCaMP6m imaging experiments as supporting a model in which P-EN1 cells 

normally function to drive the movement of the heading signal in the central 

complex, but where P-EN1 synaptic kinetics are slowed down due to the calcium 

buffering effects of high GCaMP6m levels; I had to use multiple copies of 

GCaMP6m in the P-EN1 recordings, specifically, to visualize their signals (see 

Methods). The added GCaMP load in P-EN1s could then slow down the 

movement of the heading phase, leading to a longer delay between behavior and 

phase updating. It is expected that in the VT032906>GCaMP6m flies, the E-PG 

and P-EN2 phases are similarly delayed with respect to behavior. Note that in 

Figure 3.13c, where I show that the P-EN1 bridge asymmetry arises early and 

the P-EN2 asymmetry arises late, during turns, I align these asymmetries to the 

movement of the GCaMP phase, a neuronal signal, not the fly’s behavior, 

minimizing concerns related to the behavioral latency just mentioned. Moreover, I 

also found that the P-EN1 asymmetry is early and the P-EN2 asymmetry is late 
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when imaging in the ellipsoid body, where P-ENs expressed a different calcium 

indicator, jRGECO1a. 

Comments on P-ENs and E-PGs not overlapping in the innermost and outermost 

glomeruli of the protocerebral bridge 

P-ENs innervate the outer eight glomeruli on either side of the protocerebral 

bridge, whereas E-PGs innervate the inner eight glomeruli on either side. If P-

ENs and E-PGs are to form an integration circuit, how would an activity peak 

carried by E-PGs and P-ENs cross the “gap”, where P-ENs and E-PGs do not 

overlap in the bridge, to rotate around this circuit indefinitely (as I observe it to 

do)? 

First, I note that, while the two cell types do not overlap completely in the 

bridge, they do overlap in the ellipsoid body. If P-ENs output (directly or 

indirectly) to E-PGs in the ellipsoid body (Wolff, Iyer, and Rubin 2015; Lin et al. 

2013) (Figure 3.6e-f), every P-EN neuron innervating a tile in the ellipsoid body 

has two matching E-PG neurons innervating the two wedges within that tile. 

However, there is a gap when information flows back to the bridge: how do P-

ENs receive inputs in the outermost glomeruli in the bridge (1L and 9R, using our 

numbering scheme) from the current heading estimate, if not from E-PGs (which 

do not project to 1L or 9R)? 

A possibility I favor is that a cell type identified by Wolff et al. 2015 as 

distinct from, but very similar to, E-PGs connects wedges 1L and 1R in the 
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ellipsoid body to glomeruli 1L and 9R in the bridge (ie. the outermost glomeruli 

not innervated by E-PGs). This cell is depicted in Figure 3J of Wolff et al. 2015 

and is perfectly suited for ‘closing the gap’ between E-PGs and P-EN1s in the 

outermost glomeruli of the bridge. This cell type is not labeled in the Gal4 driver 

line I used for imaging E-PGs. 

Second, the interaction between E-PGs and P-EN2s in the bridge is likely 

indirect because the P-EN2 peaks are anti phase relative to the E-PG peaks. 

Indeed, there exists a set of local neurons in the protocerebral bridge (PB18.s-

Gx∆7Gy.b, or “∆7” neurons in Figure 18B in Wolff et al. 2015), whose anatomy 

suggests that they might link the activation of E-PGs to that of P-EN2s. If one 

closely examines the anatomy of the ∆7 neurons, it becomes clear that if ∆7 

neurons were to receive direct inputs from E-PGs, ∆7 neurons would be perfectly 

poised to have maximal transmitter release at the anti-phase locations in the 

bridge, which is where P-EN2’s are maximally active.  Because ∆7’s tile the 

entire bridge, if they were to receive inputs from E-PGs and output to P-EN2s, 

they too could help explain how E-PG output influences P-EN2 physiology in the 

outermost glomeruli. 

That P-ENs and E-PGs do not overlap in the innermost glomeruli does 

not, in principle, present an obstacle for the circuit model proposed here, if P-ENs 

output to E-PGs in the ellipsoid body (where there is complete overlap) and if E-

PGs output to P-ENs in the bridge, with the additional neurons mentioned above 

to complete the overlap in the outermost glomeruli. In this scenario, the circuit 



99 

can continue to rotate indefinitely, and the E-PGs innervating the innermost 

glomeruli may interact with other neurons in this circuit (such as the ∆7 neurons 

mentioned above, PBG1-8.s-EBt.b-D/Vgall.b neurons, and other neurons 

innervating the innermost glomeruli (Wolff, Iyer, and Rubin 2015)). 

Similarities between angular integration in Drosophila and rodents 

The physiology of E-PGs closely resembles that of rodent head-direction cells in 

the presubiculum and other areas (Taube, Muller, and Ranck 1990a; Taube 

2007), whereas the physiology of left and right P-ENs resembles that of head-

direction and angular head velocity-sensitive cells in the left and right lateral 

mammillary nucleus (Stackman and Taube 1998; Blair, Cho, and Sharp 1998). 

Whereas the fine scale anatomy for the rodent head-direction system is 

unknown, the models proposed to account for its physiological properties 

(Skaggs et al. 1995; K. Zhang 1996; Redish, Elga, and Touretzky 1996; Sharp, 

Blair, and Brown 1996; McNaughton et al. 2006) bear a strong resemblance to 

the anatomically-inspired model proposed here (compare Figure 3 in Skaggs et 

al.1995 with Figure 3.16j-l), suggesting that insects and mammals may use 

common mechanisms to update their sense of heading. Although apparently 

hard-wired to integrate turning velocities, the essential features of this circuit are 

general enough to integrate other variables (including two- or more-dimensional 

variables (McNaughton et al. 2006)) over time, and may therefore appear in other 

integrating neural systems such as the mammalian grid cell system (Hafting et al. 
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2005; McNaughton et al. 2006; Sargolini et al. 2006), among others (Robinson 

1989; Major and Tank 2004; Pastor, la Cruz, and Baker 1994; Aksay et al. 2001). 
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Table 3.1 | Characterization and classification of individual neurons 
identified by multi color flip out in three P-EN Gal4 lines. 

These tables show a summary of the entire multi color flip out data sets used in 
generating Figure 3.6g-l. Each row represents an individual neuron. Information 
about the glomerulus, tile, and nodulus to which each neuron projects is shown in 
the PB (protocerebral bridge), EB (ellipsoid body) and Noduli columns, 
respectively, as well as a fourth column (Other Neuropil) for other structures. The 
revised numbering scheme is shown (see Figure 3.6a-d). PB glomerulus 
numbers are preceded by ‘L’ for left or ‘R’ for right. NI: Not identifiable because 
the signal was too weak or the density of labeled neurites was too high. Asterisks 
mark tiles that were assigned to a neuron based on color and not by tracing the 
axon, either because the axonal signal was too weak or because the density of 
labeled neurites was too high. FLPL and FLPG5 refer to the flippase transgenes 
used for high and low density neuron labeling, respectively (Nern, Pfeiffer, and 
Rubin 2015). Note that the vast majority of neurons identified by multicolor flip 
out, in all Gal4 lines, were consistent with the known anatomy of P-ENs. 2/41 
neurons imaged in R12D09 were consistent with being PB local neurons instead 
of P-ENs.  
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Gal4 Line Cell 
# Brain PB 

glomerulus # 
EB 

tile # Nodulus Other 
Neuropil  

consistent 
with PEN 

unambiguously 
PEN 

VT032906 1 1 (FLPL) L1 2 NI ✓ 

VT032906 2 1 (FLPL) L2 3 right, NO1 ✓ ✓ 

VT032906 3 1 (FLPL) L3 4 right, NO1 ✓ ✓ 

VT032906 4 1 (FLPL) R7 6 left, NO1 ✓ ✓ 

VT032906 5 1 (FLPL) R8 7 left, NO1 ✓ ✓ 

VT032906 6 2 (FLPL) L1 2 right, NO1 ✓ ✓ 

VT032906 7 2 (FLPL) L2 3 right, NO1 ✓ ✓ 

VT032906 8 2 (FLPL) L3 4 right, NO1 ✓ ✓ 

VT032906 9 2 (FLPL) L4 5 NI ✓ 

VT032906 10 2 (FLPL) L5 6 right, NO1 ✓ ✓ 

VT032906 11 2 (FLPL) L6 7 right, NO1 ✓ ✓ 

VT032906 12 2 (FLPL) L7 8 right, NO1 ✓ ✓ 

VT032906 13 2 (FLPL) R3 NI NI ✓ 

VT032906 14 2 (FLPL) R4 3 left, NO1 ✓ ✓ 

VT032906 15 2 (FLPL) R5 4 left, NO1 ✓ ✓ 

VT032906 16 2 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT032906 17 2 (FLPL) R7 6 left, NO1 ✓ ✓ 

VT032906 18 2 (FLPL) R8 7 left, NO1 ✓ ✓ 

VT032906 19 3 (FLPL) L1 2 right, NO1 ✓ ✓ 

VT032906 20 3 (FLPL) L1 right NO2V FB  

VT032906 21 3 (FLPL) L3 4 right, NO1 ✓ ✓ 

VT032906 22 3 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT032906 23 3 (FLPL) L5 6 right, NO1 ✓ ✓ 

VT032906 24 3 (FLPL) L6 7 right, NO1 ✓ ✓ 

VT032906 25 3 (FLPL) R3 NI NI 

VT032906 26 3 (FLPL) R4 3 left, NO1 ✓ ✓ 

VT032906 27 3 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT032906 28 3 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT032906 29 3 (FLPL) R8 left, NO2V FB  

VT032906 30 4 (FLPL) L2 3 right, NO1 ✓ ✓ 

VT032906 31 4 (FLPL) L3 4 right, NO1 ✓ ✓ 

VT032906 32 4 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT032906 33 4 (FLPL) L5 6 right, NO1 ✓ ✓ 

VT032906 34 4 (FLPL) L7 8 right, NO1 ✓ ✓ 

VT032906 35 4 (FLPL) R4 3 left, NO1 ✓ ✓ 

VT032906 36 4 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT032906 37 4 (FLPL) R8 7 left, NO1 ✓ ✓ 

VT032907 38 4 (FLPL) R9 8 left, NO1 ✓ ✓ 
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VT032906 39 5 
(FLPG5) L6 7 right, NO1 ✓ ✓ 

VT032906 40 5 
(FLPG5) R9 8 left, NO1 ✓ ✓ 

VT032906 41 6 
(FLPG5) L7 8 right, NO1 ✓ ✓ 

VT032906 42 7 
(FLPG5) L3 4 right, NO1 ✓ ✓ 

VT032906 43 7 
(FLPG5) 5 FB 

VT032906 44 8 
(FLPG5) R4 3 left, NO1 ✓ ✓ 

VT032906 45 8 
(FLPG5) R8 7 NI ✓ 

total 45 41/45 37/45 

Gal4 Line Cell 
# Brain PB 

glomerulus # 
EB 

tile # Nodulus Other 
Neuropil  

consistent 
with PEN 

unambiguously 
PEN 

VT020739 1 1 (FLPL) L3 NI NI ✓ 

VT020739 2 1 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT020739 3 1 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT020739 4 1 (FLPL) R5 4 left, NO1 ✓ ✓ 

VT020739 5 1 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 6 2 (FLPL) L6 7 right, NO1 ✓ ✓ 

VT020739 7 2 (FLPL) L6 7 right, NO1 ✓ ✓ 

VT020739 8 2 (FLPL) L7 NI NI ✓ 

VT020739 9 2 (FLPL) R5 4 left, NO1 ✓ ✓ 

VT020739 10 2 (FLPL) R9 8 NI ✓ 

VT020739 11 2 (FLPL) R9 8 NI ✓ 

VT020739 12 3 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT020739 13 3 (FLPL) L4 5 right, NO1 ✓ ✓ 

VT020739 14 3 (FLPL) R4 3 left, NO1 ✓ ✓ 

VT020739 15 3 (FLPL) R5 4 left, NO1 ✓ ✓ 

VT020739 16 3 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 17 3 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 18 3 (FLPL) R8 7* NI ✓ 

VT020739 19 4 (FLPL) L1 2 right, NO1 ✓ ✓ 

VT020739 20 4 (FLPL) L1 2 right, NO1 ✓ ✓ 

VT020739 21 4 (FLPL) L1 2 right, NO1 ✓ ✓ 

VT020739 22 4 (FLPL) L5 6* NI ✓ 

VT020739 23 4 (FLPL) L7 8 right, NO1 ✓ ✓ 

VT020739 24 4 (FLPL) L7 8 right, NO1 ✓ ✓ 

VT020739 25 4 (FLPL) R2 1* left, NO1 ✓ 

VT020739 26 4 (FLPL) R5 4 left, NO1 ✓ ✓ 

VT020739 27 4 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 28 4 (FLPL) R8 7* NI ✓ 

VT020739 29 4 (FLPL) R8 7* NI ✓ 
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VT020739 30 4 (FLPL) R9 8 NI ✓ 

VT020739 31 5 (FLPL) L2 3 right, NO1 ✓ ✓ 

VT020739 32 5 (FLPL) L3 4 right, NO1 ✓ ✓ 

VT020739 33 5 (FLPL) L6 7* right, NO1 ✓ 

VT020739 34 5 (FLPL) R2 1 left, NO1 ✓ ✓ 

VT020739 35 5 (FLPL) R4 3 left, NO1 ✓ ✓ 

VT020739 36 5 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 37 5 (FLPL) R6 5 left, NO1 ✓ ✓ 

VT020739 38 5 (FLPL) R8 7 left, NO1 ✓ ✓ 

VT020739 39 6 
(FLPG5) R2 1 left, NO1 ✓ ✓ 

VT020739 40 6 
(FLPG5) R4 3 left, NO1 ✓ ✓ 

VT020739 41 7 
(FLPG5) L2 3 right, NO1 ✓ ✓ 

VT020739 42 7 
(FLPG5) L4 5 right, NO1 ✓ ✓ 

VT020739 43 7 
(FLPG5) R9 8 left, NO1 ✓ ✓ 

total 43 43/43 32/43 

Gal4 Line Cell 
# Brain PB 

glomerulus # 
EB 

tile # Nodulus Other 
Neuropil  

consistent 
with PEN 

unambiguously 
PEN 

R12D09 1 1 (FLPL) L1 2 right, NO1 ✓ ✓ 

R12D09 2 1 (FLPL) L3 4 right, NO1 ✓ ✓ 

R12D09 3 1 (FLPL) L4 5 right, NO1 ✓ ✓ 

R12D09 4 1 (FLPL) L4 5 right, NO1 ✓ ✓ 

R12D09 5 1 (FLPL) L6, R5 

R12D09 6 1 (FLPL) R3 2 left, NO1 ✓ ✓ 

R12D09 7 1 (FLPL) R4 3 left, NO1 ✓ ✓ 

R12D09 8 1 (FLPL) R5 4 left, NO1 ✓ ✓ 

R12D09 9 1 (FLPL) R9 8 left, NO1 ✓ ✓ 

R12D09 10 2 (FLPL) L5 6 right, NO1 ✓ ✓ 

R12D09 11 2 (FLPL) L6 7 right, NO1 ✓ ✓ 

R12D09 12 2 (FLPL) L8 1 right, NO1 ✓ ✓ 

R12D09 13 2 (FLPL) R3 2 left, NO1 ✓ ✓ 

R12D09 14 2 (FLPL) R4 3 left, NO1 ✓ ✓ 

R12D09 15 2 (FLPL) R6 5 left, NO1 ✓ ✓ 

R12D09 16 2 (FLPL) R6 5 left, NO1 ✓ ✓ 

R12D09 17 3 (FLPL) L1 2 NI ✓ 

R12D09 18 3 (FLPL) L2 3 right, NO1 ✓ ✓ 

R12D09 19 3 (FLPL) L4 5 right, NO1 ✓ ✓ 

R12D09 20 3 (FLPL) L4 5 right, NO1 ✓ ✓ 

R12D09 21 3 (FLPL) L6 7 right, NO1 ✓ ✓ 

R12D09 22 3 (FLPL) L6 7 right, NO1 ✓ ✓ 
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R12D09 23 3 (FLPL) R2 1 left, NO1 ✓ ✓ 

R12D09 24 3 (FLPL) R3 2 left, NO1 ✓ ✓ 

R12D09 25 3 (FLPL) R5 4 left, NO1 ✓ ✓ 

R12D09 26 3 (FLPL) R8 7 left, NO1 ✓ ✓ 

R12D09 27 3 (FLPL) R9 8 left, NO1 ✓ ✓ 

R12D09 28 4 (FLPL) L1 2 right, NO1 ✓ ✓ 

R12D09 29 4 (FLPL) L3, R2 

R12D09 30 4 (FLPL) L4 3 NI ✓ 

R12D09 31 4 (FLPL) L7 8 right, NO1 ✓ ✓ 

R12D09 32 4 (FLPL) R6 5 left, NO1 ✓ ✓ 

R12D09 33 4 (FLPL) R8 7 left, NO1 ✓ ✓ 

R12D09 34 4 (FLPL) R8 7 left, NO1 ✓ ✓ 

R12D09 35 5 
(FLPG5) R8 7 left, NO1 ✓ ✓ 

R12D09 36 5 
(FLPG5) R8 7 left, NO1 ✓ ✓ 

R12D09 37 5 
(FLPG5) L1, L9 

R12D09 38 6 
(FLPG5) R3 2 left, NO1 ✓ ✓ 

R12D09 39 6 
(FLPG5) R6 5 left, NO1 ✓ ✓ 

R12D09 40 7 
(FLPG5) R4 3 left, NO1 ✓ ✓ 

R12D09 41 7 
(FLPG5) R9 8 left, NO1 ✓ ✓ 

total 41 38/41 36/41 
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Chapter 4 | Flexibly learning angular landmark positions. 

When the fly navigates in the dark, the E-PG heading signal, or phase, tracks the 

fly’s heading with an accumulating drift over time (Figure 3.3). When the fly 

navigates with a closed-loop bar that simulates a distant, static landmark, 

however, the E-PG phase tracks the fly’s heading much more faithfully over time 

(Figure 4.1, reproduced for convenience from Figure 3.1g and Figure 3.2j). With 

a closed-loop bar, the E-PG phase does not perfectly match the position of the 

bar at all moments in time––there still appears to be small errors in the mapping 

between the bar position and E-PG phase––however, the E-PG phase does not 

accumulate errors over time. This observation strongly suggests that the bar 

imparts positional information to the E-PG neurons (i.e. which angle the E-PG 

bolus should reside at), thus correcting for errors in the angular integration 

process. In other words, a mapping exists between each bar position on the 

arena and each phase value of the E-PG heading signal, preventing drift 

between the two. This chapter deals with the possible mechanisms for how this 

mapping is determined. 
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Figure 4.1 | E-PG properties during closed-loop bar 

a, Trial structure. b, (Left) E-PG bridge activity during closed-loop bar. (Right) E-
PG phase and bar position. The gap in the arena behind the fly where the bar is 
not visible is highlighted in grey. c, Offsets between the E-PG phase and bar 
position for each trial in each fly. Offsets are only computed when the bar is 
visible. Data reproduced for convenience from Figure 3.1g and Figure 3.2j. 
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Two models for mapping landmark positions 

The space of possible mechanisms for mapping the angular position of a 

landmark in the world relative the fly’s head (i.e. the angular position of the blue 

bar on our panoramic display) to the position of the E-PG phase in the central 

complex can be divided into two broad classes: one where the mapping is 

permanent and hardwired during development, and a second where the mapping 

is flexible, and learned or modified during the lifetime of the fly. These two 

classes – permanent and flexible – can also be considered from the point of view 

of circuitry (Figure 4.2). In the first model, where the bar-phase mapping is 

permanently set, a “bar” neuron, tuned to respond to a bar at specific retinal 

positions, synapses onto one tile in the ellipsoid body (or glomerulus in the 

bridge) (Figure 4.2a, upper panel). The next “bar” neuron connects bar positions 

45º over on the retina to the next tile 45º over in the ellipsoid body (Figure 4.2a, 

lower panel). This mapping would have to be shifted by a constant angle during 

development to produce the different bar-phase offsets observed in different flies 

(Figure 4.1c). 

In the second model, where the bar-phase mapping is flexible, each 

neuron weakly connects one range of bar positions to all wedges (and E-PGs) in 

the ellipsoid body. However, the strength of each connection is then modulated 

over time, with the connections in some wedges becoming stronger, and others 

weaker, allowing the “bar” neuron to drive activity in only some wedges (E-PGs) 

and thus impart positional information onto the system. A simple model might 



109 

work as follows. Even when the bar is not present, there is always an E-PG 

activity peak in the bridge (Figure 3.5g) and ellipsoid body (Figure 3.9i,j, Seelig 

and Jayaraman 2015, and shown schematically in Figure 4.2c). If the strength of 

a synapse between a “bar” neuron and an E-PG neuron increases as a function 

of coincident activity in these two cells, then when the bar first appears (Figure 

4.2d), the “bar” cell that responds to this bar position will become associated 

specifically with the E-PG neurons that are already active (Figure 4.2e). When 

the fly turns left, the E-PG activity peak rotates clockwise in the ellipsoid body, 

while the bar rotates clockwise on the retina; a new “bar” neuron that responds to 

this bar position now becomes associated with the new set of active E-PG 

neurons (Figure 4.2f). Over time, each “bar” neuron becomes associated with 

specific E-PG neurons, generating the bar-phase mapping across all bar and 

heading positions. This model is analogous to (and inspired by) the model 

presented by Skaggs et al. 1995. 
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Figure 4.2 | Circuit architectures for mapping landmarks to a heading signal 

a, Model for permanent mapping between landmark positions and E-PG neurons. 
Each neuron tuned to a specific bar position maps to one tile in the ellipsoid 
body. b, Model for a flexible mapping between landmark positions and E-PG 
neurons. Each neuron tuned to a specific bar position maps to all tiles in the 
ellipsoid body. c-f, Model for how a flexible mapping is set dynamically over time. 
c, An E-PG activity peak in the dark. d, A bar appears, driving activity in a “bar” 
neuron responsive to this bar position. e, Coincident activity in the active “bar” 
neuron and the active E-PG neurons strengthens synapses between the two. f, 
As the fly turns left, the bar rotates clockwise on the retina, and the E-PG peak 
rotates clockwise in the ellipsoid body, strengthening the pair of newly active 
“bar” and E-PG neurons in the clockwise direction. 
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Stability of the mapping between a landmark and the E-PG phase 

To simulate a distant, static landmark, I presented a single bright blue bar 

that rotated in closed-loop with the fly (see Methods). Whereas the real world 

contains many nearby objects and distant landmarks, I used this reduced visual 

stimulus to simplify the sensory inputs to the fly as much as possible. The effect 

of multiple visual features on E-PG activity is also briefly discussed below. 

To distinguish between the permanent and flexible models, I analyzed 

whether the mapping between bar positions and the E-PG phase can change 

within the same fly. Since the mapping between the E-PG phase and bar position 

is approximately linear, I used the mean offset between the E-PG phase and the 

bar position as a metric to quantify this mapping (the mean offset is defined as 

the circular mean of the difference between the E-PG phase and the bar position 

for a given trial or time period). In a permanent bar-phase mapping model, this 

offset can never change over time within a single fly, whereas in a flexible model 

it can change. I only computed the offset between the E-PG phase and bar 

position for sample points in which the bar was visible on the LED display (i.e. 

not during times when the bar resided in the 90º gap in the arena, directly behind 

the fly). In the initial experiments described in Chapter 3, each fly was presented 

with six 50 s "trials" in which the arena was completely dark, interleaved with six 

50 s trials in which a closed-loop bar was present (Figure 4.1a). In these 

conditions, the offset between the E-PG phase and bar position was typically 

relatively constant from trial to trial within a fly (Figure 4.1c), even though each fly 
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experienced 50 s of darkness in between each closed-loop bar trial (which is 

enough time for the E-PG phase to drift away from the bar position). This result 

shows that the bar-phase mapping can be stored for at least 50 s without the bar. 

However, the offset was also clearly different from fly to fly (Figure 4.1c). If the 

mapping is permanently set during development, then the circuit would have to 

be wired differently in each fly. 

To test whether the bar-phase mapping is truly permanent, or if it can be 

reset within the same fly, I imaged each fly twice, waiting for 32 minutes in 

between each recording as the fly walked in constant darkness. Each fly was 

presented with the following six trials prior to the 32 minute break: 30 s dark, 60 s 

closed-loop bar, 30 s dark, 30 s closed-loop bar, 30 s dark, and 30 s closed loop 

bar. After waiting 32 minutes, I repeated the same six trials (Figure 4.3a). For 

most flies, the offset was constant for the first three bar trials, which were 

separated by 30 s of darkness (Figure 4.3b,d). However, for several flies, the 

offset was also consistently different in the last three trials after 32 minutes in 

darkness, compared to the first three trials (Figure 4.3c,d, obvious flies in which 

this was the case are highlighted with a red box), showing that a relatively stable 

offset can be reset after 32 minutes in the dark. These results indicate that the 

bar-phase mapping is not permanently set during development, but rather 

learned as the fly experiences visual features in its environment. Indeed, the first 

time that the fly is placed in the experimental setup and exposed to the closed-

loop bar likely represents such a “learning” event. 
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One can also consider whether the stability of the offset increases as the 

fly is exposed to the bar for longer times. From this perspective, it is interesting to 

note that the flies in Figure 4.1 (from Chapter 3) were exposed to the bar for 

longer times overall than the flies in Figure 4.3, which might explain why the 

offsets in Figure 4.1c appear more stable from trial to trial than in Figure 4.3d. 

Moreover, I was careful to not present the fly with a bar during the setup period 

for the experiments analyzed for Figure 4.3 (i.e. when aligning the fly and finding 

the central complex for imaging), whereas in the experiments analyzed in Figure 

4.1 the flies sometimes saw a bar in closed-loop before the first trial. The 

experiments in Figure 4.1 and 4.3 also differed in the length of dark trials (50 s 

vs. 30 s), further complicating any comparison across data sets. Systematic 

experiments, where only one variable is changed at a time, should be used in the 

future to rigorously test whether the offset is more stable if the fly is exposed to 

the bar for longer periods of time. 

Associating landmark positions for the first time 

The flexible model described in Figure 4.2b-f predicts that the E-PG phase 

should respond differently to the bar during the first instance it appears on the 

screen, before any bar-phase mapping has been learned by the system, 

compared to subsequent exposures to the bar in closed loop, after a bar-phase 

mapping has been learned. I therefore compared the first dark-to-bar transition to 

the second and third transitions in each experiment. In the first transition, the E-
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PG phase sometimes continued integrating the fly’s heading from the position it 

happened to be in when the bar first appeared (e.g. Figure 4.3e), consistent with 

the hypothesis that the mapping, in these cases, was initialized by the conjoined 

activity of E-PGs and the visual inputs to the system at the moment the bar first 

appeared on the screen. During subsequent bar appearances (after 30 s dark 

periods), however, the E-PG phase often jumped to a specific location in the 

bridge, whose offset to the bar's position on the visual display often matched the 

bar-phase offset from the previous bar trial (Figure 4.3f), suggesting that the 

mapping was learned in the first trial(s) and was being recalled in subsequent 

trials. To quantify this effect, I computed the absolute distance between the bar-

phase offset at each time point and the average bar-phase offset in a 5 s 

window, starting 5 s after the start of a bar trial (Figure 4.3g), when the bar-phase 

mapping is likely to be set. This metric quantifies, at each time point before and 

after the bar appears, how many degrees the E-PG phase offset is from the 

offset measured 5 s after the bar appears. I refer to this angular value as the 

mapping error, or simply error, for short. In the first dark-to-bar transition, the 

error seems to gradually approach near zero at 5-10 s (Figure 4.3g, upper 

panel), consistent with the bar-phase mapping being gradually formed over time 

via the circuit’s intrinsic integrative process. Note that the error values in the 5-10 

s window in Fig. 4.3g are typically a little above zero, instead of at zero, because 

if the bar-phase offset fluctuates above and below its mean, the absolute 

distance between the offset and its mean (i.e. the error as defined above) will be, 
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on average, non-zero (whereas the signed distance from the mean is, on 

average, zero by definition). During subsequent dark-to-bar transitions, however, 

this error quickly drops to near zero at the start of the bar trial (Figure 4.3g), 

consistent with the system “recalling” the bar-phase mapping and correcting its 

phase immediately. Put another way, the bar immediately imparts positional 

information to the E-PG neurons during the 2nd and 3rd trials, but has a less 

immediate effect during the 1st trial.  

In the extreme case where the bar-phase mapping is immediately set the 

instant the bar first appears, then one would have expected the blue curve in Fig. 

4.3g to reach near zero at the start of the bar trial after gradually decreasing to 

this level in the seconds in the dark immediately before. That is, if all flies 

behaved like the example fly in Figure 4.3e, where the phase faithfully followed 

the bar starting from where the phase was already located immediately prior to 

the bar's appearance, then the mean error (the thick blue line) would have been 

near zero at the start of the first bar trial in Figure 4.3e (top panel). The fact that 

we did not observe this effect , but rather observed higher initial error values that 

approached to near zero at later time points, suggests that perhaps the mapping 

takes several seconds, and that the fly’s heading system is still effectively relying 

on its error-prone angular integration process for these several seconds before 

the mapping is fully set. Another caveat is that I did not have full control over 

whether the bar was visible in these experiments: even during a closed-loop bar 

trial, the bar was invisible to the fly when it passed through the 90º gap in the 
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back of the arena. To alleviate this concern, only trials where the bar was visible 

for at least 80% of the time during the first 5 seconds of the bar trial are shown in 

Figure 4.3g. In addition, I also excluded showing sample points during which the 

bar was invisible to the fly. 

Put quantitatively, the initialization model would predict that the y-axis 

error signal for the blue curve in Fig. 4.3g would be closer to zero than chance 

prior to the bar's appearance. The average error for a uniform distribution of 

offsets is 90º (shown with a dotted line in Figure 4.3g), which is roughly the mean 

error value observed during dark trials (i.e. -10 s to -5 s in Figure 4.3g). A lower-

than-chance error is not immediately apparent in the blue mean curve in Figure 

4.3g, where the error at time zero in the first dark-to-bar transition is roughly 

similar to that in the subsequent dark-to-bar transitions. There is, however, a 

trend for the error in the first transition to dip below 90º chance levels a few 

seconds before the start of the bar trial, whereas for subsequent transitions the 

error tends to remain close to chance levels until the start of the bar trial. These 

results might point to an initialization process, but more data would be required to 

properly test this prediction. 



117 

Figure 4.3 | Stability of the mapping between E-PG phase and bar position 

a, Trial structure (note differences from Figure 4.1a). b, Entire first recording of E-
PG neurons. For display, the E-PG phase is shifted by a constant offset to best 
match the bar position in trial 1. This offset is shown below the panel. The gap in 
the arena behind the fly where the bar is not visible is highlighted in grey. c, 
Same as b, for the second recording. Note the different offset compared to b. d, 
Bar-phase offsets for each trial in each fly. The circular mean and circular s.d. for 
each trial are shown. Note trials 4-6 were performed 32 min after trials 1-3. The 
fly was in the dark during these 32 min. Red boxes highlighted flies where the 
offset is consistently different in the first three trials compared to the last three 
trials. e, First dark-to-bar transition in c (fly #1, recording #2). The gap in the 
arena where the bar is not visible is highlighted in grey. During the dark trial, the 
entire arena is highlighted in grey. The “virtual” bar position (or ball position) is 
shown for the dark trial. f, Third dark-to-bar transition in c. Note the jump in the 
E-PG phase when the bar first appears. g, Absolute difference in the offset at 
each time point and the mean offset 5-10 seconds after the start of the bar trial, 
for the first dark-to-bar transition (top panel) and the second and third dark-to-bar 
transitions (bottom panel) (referred to as the error, see text for details). Thin lines 
represent single trials, thick lines represent the mean across trials. Only trials 
where the bar was visible for at least 80% of the time during the first 5 s of the 
bar trial are shown. In addition, errors are not shown for when the bar is not 
visible. Note the sharp drop in the error at the start of the bar trial in the second 
and third transitions compared to the first transition. 
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Discussion 

I propose the following model for how landmark positions are associated 

with different E-PG neurons, or, equivalently, internal heading estimates. An 

activity peak always exists in E-PG neurons, whether visual stimuli are present or 

not (Figure 3.3). At the time a visual feature first appears, it drives activity in a 

“feature detector” neuron, which synapses weakly onto all E-PG neurons. The 

coincident activity in this feature detector neuron and the subset of E-PG neurons 

that are currently active specifically strengthens synaptic connections between 

these two cell populations. When the fly turns left, the visual feature rotates 

clockwise on the retina, and the E-PG activity peak rotates clockwise in the 

ellipsoid body. The synaptic connections between these two new sets of active 

feature detector and E-PG neurons also become strengthened. As the fly 

explores its environment, each visual feature position becomes associated with a 

subset of E-PG neurons, completing the mapping between different retinal 

positions of this visual feature and the fly’s sense of heading. Every time the 

visual feature appears at a specific position on the fly’s retina, specific E-PG 

neurons become activated, yoking the fly’s internal sense of heading to this 

visual feature. 

This model, if true, explains why the offset is different from fly to fly 

because the initialization conditions (i.e. the initial E-PG phase and the initial bar 

position) are not controlled. The model also explains how multiple visual features 

(of which there are presumably many in the fly’s natural environment) become 
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associated with a single, coherent heading signal (data not shown, Seelig and 

Jayaraman 2015) because each visual feature is independently mapped to the 

same E-PG phase. The preliminary data shown here provide initial support for 

two more fundamental predictions of the flexible-mapping model: (1) that the 

landmark mapping is not permanent, and (2) that the mapping may be initialized 

the first time the fly is exposed to the landmark. 

One reason for the weak effects in the E-PG phase “predicting” the 

eventual bar-phase offset (i.e., why the blue curve in Fig. 4.3g is not near zero 

prior to the bar's appearance) may be that the visual feature neuron system is not 

perfectly naïve when the bar is first displayed, in that some synapses between 

visual feature detectors and E-PGs may have already been strengthened relative 

to others prior to the experiment (due to each fly's idiosyncratic visual experience 

prior to the experiment). This caveat may be addressed by “resetting” synaptic 

strengths by waiting for longer times in the dark before starting the experiment. 

Another caveat is that I did not have full control over whether the bar was visible 

in the experiments to date (the fly controlled the position of the bar which could, 

in some trials, reside in the back of the arena). This concern was addressed to 

some degree by selecting for trials where the bar was present for greater than 

80% of the time in the first 5 s after the bar trial started (see above). In future 

experiments, it would be convenient to experimentally ensure that the bar is 

always visible to the fly, either by having it jump between the two edges of the 

arena at -135º and +135º as the fly rotates the ball, or by having it be ~90˚ in 
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width, or bigger, so that at least one edge is always visible. These experiments 

are currently in progress. 

A third prediction of the flexible-mapping model, not tested here, is that E-

PGs should become most strongly associated with features that consistently 

move in lock step with the fly’s heading. These would be fixed features of a room 

or an outdoor environment, like a distant mountain, rather than other nearby 

insects that are moving around. One way to test this prediction in our controlled 

setup is to add random noise to the position of the bar, simulating an 

independently moving agent/animal in the real world, and vary the relative 

contributions of the fly’s heading vs. the external noise contribution to the position 

of the bar. One would expect that the bar-phase association becomes poorer as 

the weight of the noise component is increased. Such a result would argue that 

the fly’s heading signal emphasizes static landmarks over objects that move 

independently of the fly. This would make sense since static objects are a more 

reliable source of information for one's orientation in the world in comparison to 

moving objects, like other animals. A fourth prediction of this model is that visual 

neurons sensitive to the same visual feature (i.e., vertical bars) but with receptive 

fields in different positions of the arena are independently associated with the E-

PGs. Similarly, neurons tuned to different bar orientations, but with receptive 

fields in overlapping regions of the arena are also independently associated to 

the E-PG phase location (to the degree that the fly’s visual system can 

discriminate between such features). To test this prediction, one might make the 
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bar visible in only one 90˚ quadrant of the arena (while keeping track of the bar 

as it rotates outside of this 90º quadrant) during the first trial and then, in the 

second trial, present the bar in a non-overlapping 90˚ quadrant to test if the bar-

phase mapping is independently learned in the two quadrants (i.e. if the bar-

phase offset in the second quadrant is determined by the bar-phase offset in the 

first quadrant). One can then present the bar in both quadrants at the same time 

in a third trial, to determine if and how these two learned bar-phase associations 

are merged together (i.e. if the mappings, or offsets, are initially different in each 

quadrant, how do they eventually become the same, as is expected for a 

continuous linear mapping between bar positions and E-PG phases). Similarly, 

one can show a vertical bar in the first trial, and a 45º bar (or another visual 

feature) in the second trial, performing the same analyses as with the quadrant 

experiments. 

Of the known neurons that innervate the Drosophila central complex, the 

ellipsoid ring neurons represent the best candidates for the “feature detector” 

neurons described above. First, each ring neuron outputs to the entire ellipsoid 

body, as in Figure 4.2. Second, ring neurons are visually responsive and have 

relatively small receptive fields, and collectively respond to different feature 

orientations and positions on the retina (Seelig and Jayaraman 2013). Third, ring 

neurons have been implicated in place (Ofstad, Zuker, and Reiser 2011) and 

orientation (Neuser et al. 2008) learning in Drosophila, consistent with a role in 

associating landmark positions with the fly’s heading signal. Fourth, ring neurons 
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strongly express both NMDA receptor subtypes (Wu et al. 2007), a synaptic 

receptor that is thought to serve a central role in implementing the detection of 

coincident activity in pre- and postsynaptic cells. NMDA receptors in ring neurons 

specifically are also required for an olfactory learning task that requires 

navigating to one of two odor sources (Wu et al. 2007). 

One wrinkle with regard to NMDA-receptor expression is that one would 

expect these receptors, in the simplest implementation of the proposed model, to 

be expressed in E-PGs because the typical location of NMDA receptors is in the 

postsynaptic cell (and in the above model, ring neurons would synapse onto E-

PGs). NMDA receptors open only if both glutamate is present at the synpase 

(i.e., if the presynaptic cell is active) and the membrane is depolarized (i.e, if the 

postsynaptic cell is simultaneously active); this feature is what allows for 

coincidence detection (Malenka et al. 1989). However, NMDA-receptor 

expression is not obviously detectable in E-PGs, the post-synaptic cells of 

interest here (Wu et al. 2007), suggesting that the model cannot work exactly as 

advertised (or coincidence detection occurs in E-PGs via a process that 

bypasses any need for NMDA receptors).  If NMDA receptors do serve a role, 

one possibility is that each ring neuron additionally receives presynaptic inputs 

from E-PG neurons (or neurons with E-PG-like properties). In this configuration, 

the NMDA receptors are pre-synaptically localized in the ring neuron terminals, 

but are post-synaptic to an axo-axonic synapse made by an E-PG (or E-PG-like) 

neuron that carries a heading signal. Calcium influx through NMDA receptors in 
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ring neurons could then trigger an induction of potentiation in the ring neuron 

presynaptic terminal; the expression of the potentiation could then occur through 

a presynaptic change in the same terminal (e.g. in the probability of release or 

quantal size, etc.) or a post-synaptic change in E-PGs––like an insertion of new 

channels into the post-synaptic membrane triggered by the arrival of an 

anterograde signal from the ring neuron (Kuntz, Poeck, and Strauss 2017), or 

even a post-synaptic change in the ring neuron terminal (since in this case ring 

neurons are both pre- and post-synaptic to E-PGs).The possibility that pre-

synaptic NMDA receptors mediate potentiation is not completely unreasonable, 

given that presynaptic NMDA receptors have been described in the mammalian 

brain, and are thought to underlie presynaptic plasticity (Corlew et al. 2008), 

although their role is not as well studied as for postsynaptically-localized NMDA 

receptors (Paoletti, Bellone, and Zhou 2013). 

Pinning down the specific cells, synapses and molecules involved in 

landmark association will provide a handle to more directly test the association 

model described above. My current focus is on determining if and how ring 

neurons are involved in associating landmark positions. 
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Chapter 5 | Discussion 

This thesis describes the discovery of a heading signal in the Drosophila 

central complex (Chapter 2), evidence for how this neuronal circuit integrates the 

fly’s turns over time (Chapter 3), and evidence for how this heading signal uses 

visual landmarks to update its heading estimate (Chapter 4). The circuit models 

described in Chapter 3 and Chapter 4, however, were partial models in the sense 

that only a few cell types relevant to each feature (e.g. angular integration and 

landmark association) were discussed, while assuming other circuit properties 

were generated by other cell types. In this chapter, I discuss a more 

comprehensive model for how for the protocerebral bridge – ellipsoid body circuit 

builds a heading signal and updates that signal based on the fly’s behavior and 

directional cues in the fly’s environment. This work was done in collaboration with 

Christoph Kirst, who has implemented these qualitative models in quantitative 

neuronal network simulations (not shown here). 

In the model described here, I focus on the protocerebral bridge and the 

ellipsoid body because (1) to date, the physiological evidence for a heading 

signal comes from imaging these two structures (although our lab has 

convincing, unpublished evidence for heading signals in the fan-shaped body), 

and (2) all the cell types that innervate the protocerebral bridge are likely known 

(Wolff, Iyer, and Rubin 2015), alongside the projection patterns between the bridge 

and the ellipsoid body. It remains possible that the heading signal is generated 

elsewhere, and then sent to the ellipsoid body and protocerebral bridge. 
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However, given that the P-ENs possess the appropriate properties for rotating 

the E-PG activity peak in the ellipsoid body and the bridge (Chapter 3), it seems 

likely that the heading signal is “operated on” within the bridge – ellipsoid body 

circuit, and that the other essential features of the heading signal are also 

generated within these two interconnected structures. Indeed, it turns out that 

reasonable models for generating the heading signal can be built using the 

known cell types in this circuit, which is the focus of this chapter. In any case, 

that the heading signal is built within the bridge – ellipsoid body circuit will be my 

assumption throughout this chapter. 

Overview of the E-PG heading signal in the central complex 

The protocerebral bridge is composed of a linear array of 18 glomeruli that 

straddle the brain's midline, with 9 glomeruli on each side. The ellipsoid body is 

composed of a circular array of 8 tiles (shaped like pizza slices), each of which 

contains 2 wedges (16 wedges total). A single E-PG neuron innervates a single 

glomerulus in the bridge and a single wedge in the ellipsoid body. E-PGs tile the 

ellipsoid body and bridge systematically such that each half of the bridge maps to 

every second wedge along the ellipsoid body. Put another way, E-PG neurons 

projecting to the left and right bridge innervate alternating wedges in the ellipsoid 

body. 

When imaging E-PG neurons with a calcium indicator, only a fraction of E-

PG neurons is active at any given time. These active neurons are positioned 
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close to each other, producing a single peak of activity in the ellipsoid body. This 

single E-PG activity peak is present at all times in our experiments. When the fly 

is stationary, the activity peak is present and stationary. When the fly turns right, 

the activity peak rotates counterclockwise in the ellipsoid body. The velocity with 

which the activity peak rotates in the ellipsoid body quantitatively matches the 

fly’s turning velocity, even without landmark cues. In this way, the fly integrates 

its angular velocity into its angular position, or heading (Chapter 3, Seelig and 

Jayaraman 2015). 

Because the fly has no absolute reference point in the dark, the position of 

the activity peak tends to drift apart from the fly’s virtual orientation over time. 

However, if the fly is presented with a visual landmark, the position of the activity 

peak now tracks the angular position of the landmark, and therefore the fly’s 

heading within this virtual environment, without drift over time. The offset 

between the landmark’s angular position and the activity peak in the ellipsoid 

body differs from fly to fly. In other words, when the bar is directly in front, in one 

fly the E-PG peak might be at the top of the ellipsoid body whereas in the next fly 

it might be at the bottom; in both flies the peak would rotate clockwise when the 

fly turns left, just from a different starting point. In this thesis, I use a bright blue 

bar as a visual landmark, but the situation is obviously more complex in real life, 

where there are typically many nearby and distant objects that the system can 

use as reference points. Importantly, it has been shown that even if multiple 

landmarks are presented, there is only one stable E-PG activity peak in the 
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ellipsoid body (Seelig and Jayaraman 2015), arguing that the system's goal is to 

generate a single heading estimate based on all the available sensory or 

internally generated information. 

E-PGs have very similar dynamics in the protocerebral bridge, except 

here, E-PG neurons have two activity peaks, one on each side of the bridge, that 

move to the left or right depending on whether the fly turns right or left, 

respectively. The same E-PG neurons that are active in the bridge are active in 

the ellipsoid body (Chapter 3). 

Thus, in E-PG neurons alone, many important properties of this system 

are evident: (1) E-PG activity in the ellipsoid body takes the form of a single 

peak, with a relatively constant shape, (2) the activity peak persists when the fly 

is standing in the dark, (3) the activity peak rotates when the fly turns, and (4) the 

activity peak can be yoked to the angular position by means of a visual landmark. 

This chapter outlines a framework for how the known cell types in the 

protocerebral bridge – ellipsoid body circuit might contribute to these properties, 

based on knowledge of their anatomy and E-PG and P-EN physiology. Many 

details of this circuit remain unknown – in particular, the connections between 

cells, and the physiology of the cell types beyond E-PGs and P-ENs. This 

framework is therefore largely untested, but is presented with the hope of guiding 

future experiments and analyses. Indeed, it has proven useful so far in guiding 

my own experiments. 
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Persistent activity 

In “building” the E-PG signal, a good starting point is to ask how E-PG 

activity is generated – this activity can then be modified in various ways to 

produce the observed moving activity peak that correlates with the fly’s heading. 

E-PG activity seems to persist at all times: in the dark, where there is no visual 

input, and when the fly is standing still, where there are no changing 

proprioceptive or motor inputs. These observations suggest (but do not 

unambiguously prove) that E-PG activity is generated as an intrinsic property of 

the central complex circuit. A simple circuit mechanism to achieve this property is 

for E-PGs to excite E-PGs at the same locus, either directly or indirectly, thereby 

creating a positive feedback loop that generates E-PG activity. This could occur 

through two known anatomical paths. First, E-PGs seem to have both dendrites 

and axon terminals in the ellipsoid body (Atsuko Adachi, personal communication 

and Lin et al. 2013), which may allow E-PGs to directly excite each other at the 

same locus (Figure 5.1a). It is also worth noting that the E-PG arbor in the 

ellipsoid body is not perfectly contained within a single wedge, but in fact bleeds 

into neighboring wedges (Figure 10 in Wolff et al. 2015). This anatomical spread 

might allow E-PGs to not only excite (or be excited by) E-PGs in the same wedge 

but also neighboring wedges, reinforcing activity in a cluster of wedges rather 

than in a single, self-contained wedge. A second anatomical path for explaining 

persistent activity in E-PGs is based on the description of another cell class by 

Wolff et al. (2015), called P-EGs (protocerebral-bridge-ellipsoid-body-gall 
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neurons) that interconnect the bridge and ellipsoid body (Figure 5.1b). Like E-

PGs, a single P-EG neuron innervates a single glomerulus in the bridge, but 

unlike E-PGs, a P-EG neuron innervates an entire tile (or 2 wedges) in the 

ellipsoid body. Furthermore, P-EGs likely receive inputs from the bridge and send 

outputs to the ellipsoid body (Wolff, Iyer, and Rubin 2015), the opposite flow of 

information predicted for E-PGs. If one follows an E-PG neuron and a P-EG 

neuron innervating the same glomerulus in the bridge, the two neurons also 

overlap in the ellipsoid body, with the E-PG neuron innervating one wedge within 

the same tile innervated by the P-EG neuron (Figure 5.1b). For example, E-PGs 

in wedge L5 in the ellipsoid body project to glomerulus 5 in the left bridge. P-EGs 

innervating glomerulus 5 in the left bridge project to tile 5 in the ellipsoid body, 

which includes wedges L5 (the starting point for the E-PG neuron) and R5. If E-

PGs and P-EGs reciprocally excite each other, a positive feedback loop would 

maintain an activity peak in the absence of external inputs. A third possibility for 

recurrent excitation is through P-EN1s. Although P-ENs from the left- and right-

bridge project to either side of the E-PG activity peak (Figure 3.9), the sum of their 

activities in the ellipsoid body remains centered on the E-PG activity peak, 

provided the fly is not turning (Figure 3.9). Although the projection of P-EN activity 

to the ellipsoid body is broader than the original E-PG peak (Figure 3.9), the E-PG 

activity may be reshaped by inhibitory feedback in the ellipsoid body (see below). 

One reason to discount the relative importance of this mechanism is that P-EN1s 

are particularly weak when the fly is not turning, and thus may only play a strong 
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role as the fly turns. On the other hand, when P-ENs were inhibited with shibirets, 

E-PG activity tended to decrease when the fly was in the dark, particularly at 

higher temperatures (Figure 3.12). This effect may be due to the E-PG activity 

peak becoming unstable because of a lack rotational control from the integration 

system, or it may be due to generally lower levels of activity because of a loss of 

an excitatory input. A fourth possibility is that E-PGs or P-EGs (or both) are 

intrinsically active without synaptic inputs. On its own, however, this mechanism 

would not explain why only one E-PG active peak is observed, because E-PGs 

with a tendency to be persistently active would mean that each E-PG neuron is 

active independent of the activity of all the other E-PG neurons. If intrinsic 

membrane properties of E-PGs mediated the persistent activity, then the rule that 

only one bolus of activity is observed in the ellipsoid body would have to be 

achieved by other means, like structured inhibition in the form of lateral inhibition 

(see below) or structured excitation in the form of recurrent excitation acting on 

local and neighboring wedges (e.g. P-EGs, P-ENs, E-PG arbors that bleed into 

neighboring wedges). These four options for explaining persistent activity are 

also not mutually exclusive, and may each play a part in fine-tuning the shape 

and general levels of activity in this highly recurrent circuit. 
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Figure 5.1 | A framework for building a heading signal with known cell 
types. 

a, Persistent activity in E-PG neurons through E-PG«E-PG local excitation, 
within and across wedge boundaries. b, Persistent activity in E-PG neurons 
through E-PGàP-EG excitation in the bridge, and the return P-EGàE-PG 
excitation in the ellipsoid body. c, Lateral inhibition through the local neurons, or 
“∆7” neurons, in the bridge. ∆7 neurons output anti-phase (or 4 glomeruli) relative 
to where they receive inputs. “∆7” refers to the 7-glomerulus spacing in between 
synaptic outputs in a single neuron. These outputs thus have a periodicity of 8, 
closely matching the periodicity in E-PG and P-EN activity. d, Global inhibition 
through the ring neurons in the ellipsoid body. Each ring neuron takes input from 
one microglomerulus in the lateral triangle, and outputs to all angles in the 
ellipsoid body. e, Integration through an asymmetry in P-EN activity, driving a 
directional shift in the E-PG peak. f, Turning-related asymmetric input into P-EN 
neurons through SPS-P neurons that each output to one half of the bridge. Only 
P-EN neurons that are also excited by the E-PG neurons (directly or indirectly) 
fire due to an asymmetric input. g, Landmark association through ring neurons 
innervating all angles in the ellipsoid body. Ring neurons receive inputs from one 
microglomerulus, each of which responds to a specific feature at a specific retinal 
position (Seelig and Jayaraman 2013). Synapses between ring neurons and E-
PGs are modulated over time to “associate” visual features at specific retinal 
positions to specific E-PG neurons, or internal heading estimates. Solid lines 
delineate glomeruli in the protocerebral bridge and tiles in the ellipsoid body. 
Dashed line delineate wedges (half-tiles) in the ellipsoid body. 
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Shaping activity through lateral or global inhibition 

While E-PG neurons in one locus in the ellipsoid body are active, all other 

E-PG neurons are inactive. When the fly turns, some E-PG neurons that were 

previously inactive become active and vice versa. A feedback mechanism seems 

to constrain the number of active E-PG neurons, and furthermore to ensure that 

these active E-PG neurons are all clustered at the same position in the ellipsoid 

body and protocerebral bridge. One mechanism to achieve this property is for 

active E-PG neurons to suppress all other E-PG neurons, a process known as 

lateral inhibition (Figure 5.1c). A second mechanism is for active E-PG neurons to 

suppress all E-PG neurons, including the active subset, which is called global 

inhibition (Figure 5.1d). Lateral inhibition could be achieved through the 

protocerebral bridge local neurons (PB18.s-Gx∆7Gy.b), which appear to send 

outputs anti phase (i.e. glomerulus i+4) with respect to where they receive inputs 

(i.e. glomerulus i) in the bridge (Figure 5.1c, Figure 18B in Wolff et al. 2015). 

Collectively, the bridge local neurons output to the entire bridge. Lateral inhibition 

through local neurons might work in the following way. If local neurons were 

excited by E-PGs and inhibited P-EGs, then an E-PG activity peak at glomerulus 

2 in the bridge would suppress P-EG activity at glomerulus 6 in the bridge 

through the action of local neurons. If E-PGs and P-EGs reciprocally excite each 

other (as described above), inhibiting one cell type would effectively inhibit both, 

and suppress E-PG activity anti phase with respect to the E-PG activity peak. 

Alternatively, local neurons could also directly inhibit E-PGs at glomerulus 6, if E-
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PGs were to also receive inputs in the bridge. That the local neuron inputs are 

fairly broad (Figure 18B in Wolff et al. 2015) suggests that their collective output 

is considerably broader than the width of the E-PG activity peaks in the bridge, 

which might be necessary for restricting the E-PG activity to its observed width. 

A second possibility is that active E-PGs suppress all E-PGs, including the 

active E-PGs, through global inhibition via neurons that innervate the entire 

protocerebral bridge or the entire ellipsoid body (Figure 5.1d). Several candidates 

may fill this role based on their anatomy. For example, dopaminergic neurons 

innervate the entire bridge (Wolff, Iyer, and Rubin 2015) or the entire ellipsoid body 

(Kong et al. 2010). A second set of possibilities are the ellipsoid body ring neurons, 

which innervate single microglomeruli in the lateral triangle and concentric rings 

in the ellipsoid body (Seelig and Jayaraman 2013). Many ring neurons are 

immunopositive for the generally inhibitory neurotransmitter GABA (Z. Zhang et al. 

2013), and are therefore poised to globally inhibit ellipsoid body-innervating 

neurons. For example, if ring neurons are excited by E-PGs from each wedge 

and, in turn, inhibit E-PGs in all wedges, an E-PG activity peak in one locus 

would inhibit E-PG activity everywhere, including itself. The recurrent activity of 

E-PGs within the active locus (see persistent activity), would necessarily have to 

exceed the inhibition from the ring neurons at the location of the activity peak for 

this mechanism to work in explaining persistent activity. It is worth noting that 

such a mechanism would not in itself enforce a single peak, like the bridge local 

neurons would. However, if combined with local recurrent excitation between 
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neighboring wedges, for example through E-PG arbors that bleed into 

neighboring ellipsoid body wedges (see above), a single E-PG activity peak 

could be enforced. 

Integration 

Once the shape and persistence of the E-PG activity peak is established, 

it has to be moved around the protocerebral bridge and ellipsoid body to track the 

fly’s heading. When the fly turns right, the E-PG activity peak rotates counter-

clockwise in the ellipsoid body and leftward in the protocerebral bridge with a 

velocity that matches the fly’s turning velocity (Figure 3.13g). How does the 

activity peak rotate in the correct direction with the correct velocity? The cell type 

that likely mediates this property is the P-EN cell class (Figure 5.1e and Chapter 

3). A single P-EN neuron takes input from a single glomerulus in the bridge and 

outputs to a single tile in the ellipsoid body. P-ENs are different from E-PGs and 

P-EGs, however, in that left P-ENs project clockwise and right P-ENs project 

counter-clockwise from the bridge to the ellipsoid body. For example, whereas an 

E-PG neuron from wedge L5 in the ellipsoid body projects to glomerulus 5 in the 

left bridge, a P-EN neuron from glomerulus 5 in the left bridge projects to tile 6 in 

the ellipsoid body, thus projecting clockwise. The opposite is true for right-bridge 

P-ENs: a P-EN neuron from glomerulus 5 in the right bridge projects to tile 4 in 

the ellipsoid body, thus projecting counterclockwise. No other known cell type 

has this crucial anatomical property. If E-PGs and P-ENs reciprocally excite each 
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other, an E-PG activity peak can propagate clockwise or counterclockwise in the 

ellipsoid body through an asymmetry in the activity of these clockwise- and 

counterclockwise-projecting P-EN neurons. Such an asymmetry exists in the P-

EN neurons, and is time-locked to moments when the fly turns, with the correct 

sign to rotate the E-PG activity peak in the expected direction. This asymmetry 

quantitatively matches the fly’s turning velocity, as expected if such an 

asymmetry is to quantitatively integrate the fly’s turns (Chapter 3). 

A twist is that P-EN neurons exist in two subtypes, which can be 

differentiated based on their physiology. The first (P-EN1) has an asymmetry in 

its activity that is biased to the leading edge of a moving E-PG activity peak in the 

ellipsoid during a turn, and comes on at the beginning of each turn. The second 

(P-EN2) has an asymmetry that is biased to the trailing edge, and comes on at 

the end of each turn. These physiological properties suggest a role for P-EN1s 

and P-EN2s in starting and stopping the E-PG activity peak at the beginning and 

end of a turn, respectively. Yet, it is not obvious whether the E-PG activity peak 

requires a stopping mechanism, which would imply that the E-PG activity peak 

would otherwise continue rotating and overshooting the correct position. Future 

experiments will be needed to fully clarify the roles of the two P-EN subtypes 

(especially P-EN2s). 

How do P-ENs receive an asymmetric input when the fly turns? Since 

clockwise- and counterclockwise-projecting P-ENs are segregated in the left and 

right bridge, the neuron delivering an asymmetric input could innervate the entire 
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left or the entire right bridge. Indeed, neurons projecting from the superior 

posterior slope (SPS) to the protocerebral bridge, called SPS-P neurons, fit this 

criterion (Figure 5.1f). One would predict that during a right turn, the right-bridge-

innervating SPS-P neuron becomes more active than its counterpart on the left, 

and vice versa during a left turn (assuming excitatory interactions between SPS-

Ps and P-ENs). 

Landmark tracking 

When the fly is in the dark, the E-PG phase drifts apart from the fly’s heading 

over time, because the fly has no feedback as to its absolute heading. When a 

visual feature is presented to the fly in closed-loop, as if it were a stationary 

object in the real world, the E-PG activity peak matches the angular position of 

this visual cue (Figure 3.1), with an offset that is typically constant from trial to 

trial, but that can change if the cue is absent for long periods of time (Figure 4.3). 

This offset is also different from fly to fly (Figure 4.1). Furthermore, multiple visual 

features do not produce multiple E-PG activity peaks – only a single E-PG 

activity peak is ever present (Seelig and Jayaraman 2015). 

How do these properties arise? One potential solution is that each 

landmark position sends an input to a specific locus in the bridge or ellipsoid 

body. Since different flies have different mappings between the position of the 

landmark and the E-PG activity peak, this wiring would have to be different for 
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each fly. This mechanism is also inconsistent with the observation that the offset 

can change over time within a fly (Figure 4.3). 

A second potential solution is that each landmark position sends inputs to 

the entire bridge or ellipsoid body, and these inputs are modified as the fly 

explores its environment and associates different visual features with different 

internal heading estimates (Figure 5.1g). A specific mechanistic model for how 

this association might work is as follows. Since an E-PG activity peak is present 

at all times, the activity peak will happen to be at some position the moment a 

visual feature appears. At that moment, two sets of neurons are simultaneously 

active: the “visual feature” neuron that responds to that position of the visual 

feature on the retina, and the set of active E-PG neurons that make up the E-PG 

activity peak. The synapses from the active visual feature neuron that connect to 

the active E-PGs then become strengthened, effectively associating this visual 

feature at that retinal position with that heading estimate (or E-PG neurons). The 

next time this visual feature appears at this position on the retina, the visual 

feature neuron will drive activity in the same E-PG neurons. As the fly changes 

its heading, the E-PG activity peak rotates in the ellipsoid body, and the visual 

feature rotates on the retina; the connections between these co-active pairs of E-

PG neurons and visual feature neurons in turn become strengthened. The range 

of visual feature positions can thus be mapped to the range of E-PG neurons. In 

this way, the offset, or mapping, between the position of the landmark and the E-

PG activity peak is initialized when the landmark is first presented to the fly; 
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indeed, the E-PG phase interacts differently with the bar during its first 

presentation compared to subsequent presentations, after the mapping is set 

(Figure 4.3). 

This mechanism would explain why the mapping is different in each fly, 

since when the bar first appears, its location is random, both on the arena 

(because the bar is controlled by the fly), and with respect to the fly’s internal 

heading estimate. This mechanism also explains how multiple visual features (of 

which there are presumably many in the fly’s natural environment) can be 

mapped to a single, coherent heading estimate, since each visual feature, and 

each visual feature position, is mapped independently to the same heading 

estimate. Another feature of this model is that visual features that are not well 

correlated with the fly’s heading are not strongly mapped to the E-PG heading 

estimate. This simple property would allow the fly to ignore moving objects, like 

other animals, while at the same time using static landmarks in its environment to 

calibrate its internal heading estimate. 

The main candidate cell class to implement these properties are the 

ellipsoid body ring neurons (Figure 5.1g). Each ring neuron innervates one ring 

with a specific radius, spanning the entire range of angles in the ellipsoid body. 

Importantly, ring neurons respond to visual features with small receptive fields 

that tile azimuthal and vertical space. They are numerous, which could provide 

support for different visual (or other) features at many azimuthal positions. Ring 

neurons have been implicated in place (Ofstad, Zuker, and Reiser 2011) and 
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orientation (Neuser et al. 2008) memories, consistent with a role in learning the 

orientations of landmarks. Finally, ring neurons express both NMDA receptor 

subunits (Wu et al. 2007), which are implicated in coincidence detection (Malenka 

et al. 1989), the fundamental learning rule in the association model described 

above. 

One issue with this model is that NMDA receptors are expected to be 

localized on the postsynaptic cell, which, in the model above, is the E-PG neuron 

and not the ring neuron. One way to resolve this issue is for ring neurons to 

receive an additional presynaptic input from E-PG, or E-PG-like, neurons (this 

configuration is described in more detail in the Chapter 4 Discussion). This circuit 

diagram is incidentally very similar to the one for global inhibition, where E-PGs 

both output to and receive inputs from (directly or indirectly) ring neurons. If the 

same ring neurons are used for both landmark association and global inhibition, 

the inhibition may no longer be strictly global, since the landmark association 

model assumes that synaptic strengths are modulated along the ring. I also note 

that, if the visual feature neuron is inhibitory, as this specific model would 

suggest, the ring neuron-to-E-PG synapse should decrease in strength as a 

function of coincident activity between the two cells to achieve the same property 

– in other words, less inhibition (and therefore more excitation) where the visual

feature neuron and the E-PG neuron are co-active. 
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Similarities in physiology between the fly and rat head direction 

system 

The physiological properties of E-PG neurons are remarkably similar to that of 

head direction cells in rats. E-PGs from a single glomerulus and single head-

direction cells respond to a specific range of bar, or cue, positions with a roughly 

Gaussian-shaped response curve (Figure 3.4, Taube, Muller and Ranck 1990a). 

If the cue is rotated, the preferred firing direction of E-PGs and head-direction 

cells follows the rotation of the cue (data not shown, Seelig and Jayaraman 2015, 

Taube, Muller and Ranck 1990b). The heading signal in E-PGs and head 

direction cells persists in the dark, although it drifts over time relative to the 

animal’s absolute position in its environment (Figure 3.3, Figure 3.7, Seelig and 

Jayaraman 2015, McNaughton and Chen 1991, Mizumori and Williams 1993). 

Moreover, the preferred firing directions of E-PGs from different glomeruli and of 

different head direction cells are maintained relative to each other across 

environmental perturbations  – in other words, if two E-PG neurons or head 

direction cells have preferred firing directions that are 90º apart in one 

environment, they will continue to have the same relative separation of 90º in a 

second environment, even though their mapping with respect to the environment 

is seemingly arbitrary (Figure 4.3, Seelig and Jayaraman 2015, Taube, Muller 

and Ranck 1990b). These results indicate that E-PG and head-direction cells 

rotate their preferred firing directions coherently as a unit. 
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In turn, the physiological properties of P-EN neurons strongly resemble 

that of head direction cells located in the lateral mammillary nucleus (LMN). P-

ENs in the left- and right-bridge are asymmetrically active when the fly turns left 

or right. Similarly, two studies have shown that head direction cells in the left and 

right LMN are differentially active when the rat’s head turns left or right 

(Stackman and Taube 1998; Blair, Cho, and Sharp 1998). Both studies observe 

a shift in the preferred firing direction of head direction cells in the LMN during 

right and left head turns. These shifts are reminiscent of the shifts in the P-EN1 

or P-EN2 activity peak relative to the E-PG activity peak in the ellipsoid body 

when the fly turns, and perhaps serve the same function to shift the head 

direction system in the correct direction with the correct speed. Stackman and 

Taube 1998 also observed differences in the peak firing rate of head direction 

cells when the rat’s head turned right vs. left, which is also consistent with the 

different calcium activity levels observed in left and right P-ENs (defined as P-

ENs whose cell bodies are in the left or right hemisphere) during turns. Moreover, 

the LMN appears to be the only area where both angular head velocity cells and 

head direction cells have been observed (although the entire mammalian brain 

has not been explored in this regard, comprehensively), and is therefore likely 

where angular head velocity is integrated into head direction (Taube 2007). 

Consistent with this idea, an intact LMN appears to be required for the head 

direction signal in downstream areas, like the anteriodorsal thalamic nuclus 

(ATN) (Blair, Cho, and Sharp 1998). The fine-scale anatomy for how angular 
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head velocity signals are combined with head direction signals remains unknown 

in the rodent head direction system. 

Similarities between models for the heading system in flies and 

rodents 

The core model for rat head direction cells is outlined in Figure 3 in 

Skaggs et al. 1995, adapted in Figure 5.2a. “Classical” head direction cells, which 

respond selectively to the animal’s head direction, are arranged in a circular 

network – although there is no known anatomical basis for this arrangement in 

rodents. Head direction cells excite each other locally, and inhibit each other 

distally (i.e. everywhere else around the ring). Given the correct tuning of 

synaptic weight parameters, these two properties ensure that only one peak of 

activity along the ring is stable over time. These two properties might in practice 

be implemented by two or more different cell types in Drosophila, as outlined 

above in this Discussion. For example, local excitation might be implemented by 

direct connections between E-PGs, or positive feedback from P-EGs and even P-

ENs (see Persistent activity, Figure 5.2b). Lateral inhibition would most likely be 

implemented by the protocerebral bridge local neurons (or “∆7” neurons). A 

second option is for global inhibition to be implemented by a cell type such as the 

ellipsoid body ring neurons (see Shaping activity through lateral or global inhibition) 

(Figure 5.2b). 
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In order for the activity peak to rotate in response to the animal turning, 

thus shifting the animal’s internal heading estimate, Skaggs et al. add a set of 

rotation cells, which receive inputs from head direction cells at a given position in 

the ring and project clockwise or counterclockwise to the neighboring head 

direction cells in the ring (Figure 5.2a). When the rat’s head turns right, the 

clockwise-projecting rotation cells at the activity peak become more active than 

their counterclockwise-projecting counterparts, thus shifting the head direction 

cell activity peak clockwise. In Drosophila, P-ENs are the strongest (and perhaps 

the only) candidate to implement this function, given their physiology and 

anatomy (Figure 5.2b). The balance of activity between clockwise- and 

counterclockwise-projecting rotation cells is determined by inputs that are 

sensitive to the animal’s angular head (or body) velocity (called vestibular cells in 

Figure 5.2a): one input innervates all clockwise-projecting rotation cells, and the 

second input innervates all counterclockwise-projecting rotation cells. In 

Drosophila, this asymmetric input might be carried by the SPS-P neurons (Figure 

5.1f), each of which innervates one side of the bridge (specifically, the outer 8 

glomeruli innervated by P-ENs), and therefore either all clockwise- or all 

counterclockwise-projecting P-EN neurons (Figure 5.2b). This asymmetric input 

may, however, also be carried by other neurons that provide input to the 

protocerebral bridge and that are modulated in a left/right manner. 
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Figure 5.2 | Similarities between models for the fly and rat heading systems 

a, Adapted from Figure 3 in Skaggs et al. 1995. Model for how the rat head 
direction signal is built, based on head-direction cell physiology. b, Mapping the 
cell types in the Drosophila protocerebral bridge – ellipsoid body circuit onto the 
model from Skaggs et al. 1995. The physiology for E-PGs and P-ENs is 
presented here and in Seelig and Jayaraman 2015, while the physiology for the 
other cell types remains unknown. The anatomy of the Drosophila cell types in b, 
are discussed in Figure 5.1. 
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Finally, in order for the head direction system to respond to visual 

landmarks, Skaggs et al. proposed a set of “visual cells” that send synaptic 

outputs to all head direction cells. Each visual cell responds to a particular 

feature at a particular retinal position (Figure 5.2a). Visual cells collectively 

respond to the range of relevant visual features and tile retinal space. The visual 

cell à head direction cell connections are then modulated as a function of 

coincident activity between the two cells, such that a coherent mapping is 

generated between the animal’s visual environment and its internal heading 

estimate over time as the animal explores its environment. Because of their 

number, anatomy and physiology, ellipsoid body ring neurons seem the best 

poised to fulfill this role (Figure 5.2b, see Chapter 4 and Landmark tracking in this 

Chapter) 

Perhaps it should be no surprise that if the physiological properties of 

heading-sensitive cells in Drosophila are so similar to those of head direction 

cells in rats, then the models proposed to account for these properties should 

also be similar. I note, however, that the Drosophila model was arrived at 

independently by analyzing the physiological and anatomical properties of P-EN 

and E-PG cells (I was fairly ignorant of rodent head direction cell models before 

realizing that the Drosophila- and rodent-inspired models were so similar, thanks 

to Christoph Kirst). That an independently-derived and anatomically-inspired 

model for the Drosophila heading system happens to match, at its core, the 

models proposed for the rat head direction system seems to support the 
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hypothesis that mammals and flies compute an internal heading estimate in a 

fundamentally similar way. However, it should be noted that the Drosophila 

model is not yet fully verified, and that even more work is needed to 

independently assess this claim in the rodent head direction system. 

Nevertheless, these results provide unprecedented similarities, and, most 

provocatively, hint at potential homologies, between the mammalian and insect 

navigational systems. 

Extending the heading model to compute other variables 

Another interesting point is that the core features of this circuit model may 

apply to other neuronal processes other than computing one’s heading. In a 

sense, heading is one of the simplest variables to compute, since it is one-

dimensional and only takes on a fixed range of values because it is periodic. But 

the simple framework of shifting a peak of activity to encode a variable may also 

apply to computing other variables, such as one’s position in space, a two- (or 

three-) dimensional variable which, in principle, can take on ever-increasing 

values. Indeed, attractor models for grid cells are fundamentally two-dimensional 

extensions of the one-dimensional head direction cell model (McNaughton et al. 

2006). Grid cells are periodically active, forming a hexagonal pattern of activity 

over two-dimensional space (Hafting et al. 2005). A simple model for this 

hexagonal structure is to suppose that grid cells excite each other within short 

distances, but inhibit each other further out in a ring, with few or no connections 
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past a certain distance (similar to head direction cells, except that the inhibition is 

limited to a certain distance). This arrangement of connections can lead to 

multiple activity peaks, and various patterns of activity, including alternating 

stripes of activity and inhibition (like ocular dominance columns in visual cortex) 

and the hexagonal grid of activity peaks seen in grid cells (McNaughton et al. 

2006). The activity peaks can be shifted across the two-dimensional network 

through two orthogonally projecting sets of shifting neurons (analogous to the 

one set of “rotation” or P-EN neurons in the heading system models described 

above) – in other words, one for moving in x and one for moving in y. The relative 

activity between these right/left and up/down shifting neurons would be related to 

the animal’s heading and speed. Consistent with this notion, grid cells are 

intermingled with head direction and speed cells, suggesting that the animal’s 2D 

velocity vector is used to compute its position. In this way, an activity peak could 

move in two dimensions in response to the animal’s two-dimensional 

displacements. 

Computing on the heading signal to produce behaviorally meaningful 

signals 

One can go even further, and speculate how these activity peaks can be 

computed on to generate behaviorally meaningful signals. It is one thing to 

generate a neuronal heading signal, but this signal is of no use if it just sits in the 

middle of the brain without in some way informing the animal’s behavior. The 
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immediate, proximal motor decisions made by a navigating animal are how much 

to turn left or right, or go straight at each point in time – whether it is randomly 

searching for food or migrating across an ocean. Heading and position signals 

are abstractions that are useful as feedback to these primary turning motor 

decisions, but without this link to behavior they are of no use in themselves. This 

section describes one idea for how this link could be made. 

In thinking about mechanisms for how an abstract heading signal is 

converted into a turning signal, it is useful to differentiate between one’s current 

heading and one’s target heading. The target heading is the heading that the 

animal attempts to maintain, and that presumably directs it along the shortest 

path towards its target location (like its home, or food, see Chapter 1). The goal 

of the animal in this case is to match its current heading estimate with its target 

heading. Taking the fly circuit as a concrete example, a target heading signal 

could be “layered” onto the ellipsoid body as a second activity peak, carried by a 

different set of “target” neurons. The “target” activity peak’s angular position is 

within the same frame of reference as the current heading estimate signal (i.e. 

the E-PG activity peak), since it is overlaid on the same structure. The goal of the 

animal is then to turn left or right in order to match the E-PG phase (which is 

controlled by turning) with the target phase (which is not controlled by turning). 

The output of this circuit could be a simple “turning drive” signal that drives the fly 

to turn left or right as a quantitatively varying function of the relative offset 

between the E-PG and target phases. If the E-PG phase is positioned 
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counterclockwise relative to the target phase, then the fly should turn left to move 

the E-PG phase clockwise, towards the target phase, and vice versa if the E-PG 

phase is positioned clockwise relative to the target phase. The further the E-PG 

phase is from the target phase, the stronger the “turning drive” might be; one 

would want to turn slower as one nears the target in order to not overshoot it. 

Such an arrangement effectively creates a closed-loop system that controls the 

fly’s heading. To change its heading, the fly would simply move the position of 

the target activity peak, and the system then attempts to turn the fly towards this 

new target heading. How this target heading is computed in the first place is not 

yet known, but might be derived from the position of the animal relative to a 

target location, as described in Chapter 1. This idea is consistent with the 

observation in Chapter 3 (Figure 3.19) that the fly turns in response to a 

stimulated change in the E-PG phase, and in a direction that would return the E-

PG phase back to its original position, consistent with the central complex having 

a “target” heading signal. 

 How could the target heading signal and the current heading signal 

interact to produce a “turning drive” signal? As described above, the turning drive 

signal should change sign (i.e. from “turn left” to “turn right”) when the E-PG 

phase appears clockwise or counterclockwise relative to the target phase. One 

implementation of this computation is to effectively run P-ENs “backwards”. P-

ENs effectively copy the E-PG peak twice, one for each side of the bridge, 

projecting each peak to either side of the original E-PG peak in the ellipsoid body 
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(Figure 3.9). Taking P-EN2s as an example, the P-EN2 peak in the left bridge 

projects to the counterclockwise side of the E-PG peak in the ellipsoid body, and 

vice versa for the right bridge P-EN2 peak (Figure 5.3a-b). If, then, the E-PG peak 

appears counterclockwise relative to the target peak in the ellipsoid body, the P-

EN2s receiving phase inputs from the right bridge, but not the left bridge, overlap 

with the target peak (Figure 5.3c). If P-EN2s were to receive excitatory inputs from 

the target cells in the ellipsoid body, then the right P-EN2s would become more 

active than the left P-EN2s (Figure 5.3c). Conversely, the left P-EN2s would 

become more active if the E-PG peak appears clockwise relative to the target 

peak (Figure 5.3e). If the E-PG and target peaks are aligned, P-EN2s would not 

be asymmetrically active (Figure 5.3d). In this way, the right-left asymmetry in P-

EN2s would satisfy the properties for the “turning drive” signal described above, 

and would in effect compute this signal given a target phase in the ellipsoid body. 

Interestingly, P-ENs (both P-EN1 and P-EN2) output to a third structure, the 

noduli, which pool the left and right P-ENs separately. The turning drive toward 

the goal could be easily extracted from comparing the summed activity in the left 

and right noduli. Unlike the model described in Chapter 3, this model predicts 

that the P-EN2 asymmetry arises from intrinsic interactions within the ellipsoid 

body and not from an external asymmetric input to the bridge. 
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Figure 5.3 | Model for behavioral control of heading 

a, Phase-nulled E-PG and P-EN2 signals in the bridge, averaged over time. b, Bridge 
data from a replotted onto the ellipsoid body using each cell type’s anatomical projection 
pattern (Wolff, Iyer, and Rubin 2015). a-b reproduced from Figure 3.9. c, Same as b, 
with activity in postulated “target neurons” in black. E-PG phase is offset 90º 
counterclockwise relative to the target phase, meaning the fly is oriented 90º clockwise 
relative to its target heading. The target activity peak overlaps with the right P-EN2 peak. 
Supposing the target cells excite P-EN2s in the ellipsoid body, the right P-EN2s will 
become more active than the left P-EN2s. The fly should turn left to reach its target 
heading. d, Same as c, except the E-PG and target phases are aligned. P-EN2s are not 
asymmetric, and the fly should not turn. e, Same as c, except the E-PG phase is offset 
90º clockwise relative to the target phase. The target peak overlaps with the left P-EN2 
peak, and the left P-EN2s become more active than the right P-EN2s. The fly should 
turn right. 
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This model makes some predictions that are consistent with P-EN2 

properties, including the late timing of their asymmetry (the turning drive should 

increase as the fly moves away from its goal, late during a turn) and the fact that 

(unphysiologically) strong stimulations can drive the fly to turn in the expected 

direction based on this model (Figure 2.2). 

This turning drive model is difficult to validate, however, without 

experimental access to the postulated “target” neurons. One way to bypass this 

issue is to analyze times when the fly maintains a constant heading, and 

therefore where the “target” heading angle can be inferred from the fly’s 

behavior. At first glance, it appeared to me that the P-EN2 asymmetry might be 

consistent with the turning drive model in that the P-EN2 asymmetry changed 

sign as the fly’s heading oscillated on either side of the inferred target heading 

(e.g. the behavior in Figure 3.15a-b). However, during longer behavioral 

deviations from the inferred target angle, I found that the P-EN2 asymmetry 

resolved quickly, sometimes seconds before the animal behaviorally corrected 

itself and returned its heading toward the goal, which is inconsistent with the P-

EN2s carrying an error-from-goal signal in their [Ca2+] levels. Moreover, the P-

EN2 asymmetry reappeared during the return turn of the fly to the inferred target, 

where one would have expected an already present asymmetry to disappear. 

These interpretations are limited by the fact that we are inferring the fly’s target 

heading from its behavior. One may be able to test these ideas more rigorously 



155 

by discovering the cells that carry the target heading angle (perhaps residing in 

the ellipsoid body or fan-shaped-body). 

Even if this model does not apply to P-EN2s, it is presented as a possible 

framework that may apply to other cell types, or other neuronal systems, to 

mediate goal directed navigation. More generally, this model introduces the idea 

of multiple “layers” of activity peaks that can move independently of each other 

with respect to environmental, behavioral or internal variables, but that can also 

interact with each other to produce new and potentially behaviorally meaningful 

signals, such as whether to turn left or right, and by how much. 

Conclusions 

This thesis describes the discovery of an internal sense of heading in the 

fruit fly, Drosophila melanogaster, and how this internal heading estimate rotates 

when the fly turns. Further experiments argue that visual landmarks are 

associated with this internal heading estimate over time, and a model for how this 

process could work is presented. The proposed neuronal circuit architectures for 

the fly heading system share fundamental similarities with those proposed for 

head direction cells in mammals, and point to mechanistic links between spatial 

navigation in mammals and insects. 
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Methods 

Fly stocks 

Flies were raised with a 12 hour light, 12 hour dark cycle at 25ºC. All 

physiological experiments were performed with 1-3 day old females. In Chapter 3 

each fly had at least one wild-type white allele. Flies were selected randomly for 

all experiments. I was not blind to the flies' genotypes. For the behavioral 

stimulation experiments (Figure 2.2) I used w ; NP0212-Gal4 / UAS-mCD8GFP ; 

+ / UAS-P2X2 flies. For the initial imaging experiments (Figure 2.3), I used w ; 

NP0212-Gal4 / + ; + / UAS-GCaMP6f (Bloomington Drosophila Stock Center, 

BDSC #52869) flies. For experiments imaging one cell type (Figure 3.1, Figure 

3.5e-m, Figure 3.13a-d, Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.7, Figure 3.8, 

Figure 3.11a-f, Figure 3.13, Figure 3.19, Figure 4.3), I used + (Canton S, 

Heisenberg Lab) / w ; UAS-GCaMP6m (Bloomington Drosophila Stock Center, 

BDSC #42748) ; VT032906-Gal4 (Vienna Drosophila Resource Center, VDRC 

#202537) for P-EN1, + / w ; 60D05-LexA (BDSC #52867) / LexAop-tdTomato 

(Ruta Lab) ; VT020739-Gal4 (VDRC #201501) / UAS-GCaMP6m (BDSC 

#42750) for P-EN2, and + / w ; + ; 60D05-Gal4 (BDSC #39247) / UAS-

GCaMP6m flies for E-PG. For imaging P-EN1 or P-EN2 simultaneously with E-

PGs (Figure 3.9, Figure 3.12), I used + / w ; 60D05-LexA / LexAop-GCaMP6f 

(BDSC #44277) ; VT032906-Gal4 / UAS-jRGECO1a (BDSC #63794), and + / w ; 

60D05-LexA / LexAop-GCaMP6f; VT020739-Gal4 / UAS-jRGECO1a flies, 

respectively. As a control for differences in calcium indicator kinetics, I imaged 
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GCaMP6f and jRGECO1a in the same cell type (Figure 3.11g-j), E-PGs, using + / 

w ; UAS-GCaMP6f (BDSC #42747) / + ; 60D05-Gal4 / UAS-jRGECO1a flies. For 

the shibirets experiments (Figure 3.14, Figure 3.15a-d), I used three Gal4 lines to 

drive shibirets in P-ENs: VT032906-Gal4 (P-EN1), VT020739-Gal4 (P-EN2), and 

12D09-Gal4 (P-EN2, BDSC #48503). I used pJFRC99-20XUAS-IVS-Syn21-

Shibire-ts1-p10 inserted at VK00005 (referred to here as UAS-shibirets) to drive 

shibirets (Rubin Lab). For each ‘X-Gal4’ line, I used + / w ; 60D05-LexA / LexAop-

GCaMP6f ; X-Gal4 / UAS-shibirets, and + / w ; 60D05-LexA / LexAop-GC6aMPf ; 

X-Gal4 / + flies as a control. I also used + / w ; 60D05-LexA / LexAop-GCaMP6f ; 

+ / UAS-shibirets flies as a control without Gal4. For P-EN stimulations (Figure 

3.16, Figure 3.17), I used + / w ; 60D05-LexA / LexAop-GCaMP6f ; X-Gal4 / 

UAS-P2X2 (Ruta Lab), where X was either VT032906 (P-EN1) or VT020739 (P-

EN2). I used + / w ; 60D05-LexA / LexAop-GCaMP6f ; + / UAS-P2X2 as a control 

without Gal4. For multicolor flip out experiments (Table 3.1, Figure 3.6g-l), I used 

57C10-FLP / + ; + ; 10xUAS-FRT.stop-myr::smGdP-HA, UAS-FRT.stop-

myr::smGdP-V5-THS-10xUAS-FRT.stop-myr::smGdP-FLAG / X-Gal4, where X 

was VT032906, VT020739 or 12D09. I used either 57C10-FLPL (BDSC #64087) 

or 57C10-FLPG5 (BDSC #64088) to label more or fewer neurons, respectively. 

To label putative axon terminals with synaptotagmin-GFP (Figure 3.6e-f), I used 

+ / w ; + / UAS-syt-GFP (BDSC #6925) ; X-Gal4 / UAS-tdTomato (BDSC #32221) 

flies, where X was VT032906 or VT020739. To co-label different P-EN driver 
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lines, I used + / w ; 12D09-LexA (BDSC #54419) / LexAop-myrGFP (BDSC 

#32210) ; X-Gal4 / UAS-tdTomato, where X was VT032906 or VT020739. 

Immunohistochemistry 

We dissected fly brains in S2 medium at room temperature, and fixed them in 1% 

paraformaldehyde at 4ºC overnight. Fixed brains were washed 3 times for 30-60 

min with PAT3 (0.5% Triton X-100 and 0.5% Bovine Serum Albumin in 

Phosphate Buffered Saline), then blocked with 3% NGS in PAT3 for 1.5 hours at 

room temperature. I incubated brains with primary and secondary antibodies as 

previously described (Nern, Pfeiffer, and Rubin 2015), and mounted them in 

VectaShield (Vector Labs). To analyze the neurotransmitter composition of P-

ENs (Figure 3.18), Atsuko incubated separate brains with the following 

antibodies: anti-VGLUT (a gift from A. DiAntonio) at 1:10,000, anti-GABA (Sigma) 

at 1:200, anti-VGAT (a gift from D. Krantz) at 1:300, anti-ChAT (Developmental 

Studies Hybridoma Bank, or DSHB) at 1:100, or anti-tyrosine hydroxylase 

(Millipore) at 1:500. For each neurotransmitter, Atsuko co-stained with anti-GFP 

(Rockland) at 1:1,000 to label P-ENs driven by each Gal4 line, and nc82 antibody 

(DSHB) at 1:50, where possible, to label neuropil. For co-labeling tdTomato with 

GFP (Figure 3.6e-f, Figure 3.10), Atsuko used anti-DsRed antibody (Clontech) at 

1:1,000. For the multicolor flip out experiments (Figure 3.6g-l, Table 3.1), Atsuko 

used antibodies as previously described (Nern, Pfeiffer, and Rubin 2015). I 
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imaged the central complex using a 40x 1.20NA objective on a Zeiss LSM780 

confocal microscope with 0.58 or 1.0 µm separating each optical slice. 

Tethered walking setup 

The tethered-walking preparation was based on Seelig et al. 2010. The ball was 

6.35 mm (1/4 inch) in diameter, had a mass ranging from 42 to 46 mg, and was 

shaped from Last-A-Foam FR-4618 (General Plastics). To shape the ball from 

raw foam, we (Kunal and I) machined a steel concave file with the same diameter 

as the ball, with sharp edges to cut the foam. The ball rested in an aluminum 

base with a concave hemisphere 6.75 mm (17/64 inch) in diameter. A 1 mm 

channel was drilled through the bottom of the hemisphere and connected to air 

flowing at approximately 260 mL/min. 

Behavioral imaging 

For all walking experiments, I imaged the fly and ball from the front under 850 nm 

illumination with a Prosilica GE680 camera (Allied Vision Technologies) 

externally triggered at 50 Hz, with a zoom lens (MLM3X-MP, Computar) set at 

0.3X. For all flying experiments (Figure 2.2, Figure 2.3), I imaged the fly from 

below under 850 nm illumination, with a Prosilica GE680 camera triggered at 100 

Hz. The lens also held an OD4 875 nm shortpass filter (Edmund Optics) to block 

the two-photon excitation laser (925 nm or 1035-1040 nm). The camera was 
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used both to position the fly and to track the ball for walking experiments, or to 

track the fly’s wings for flying experiments. 

Wing tracking 

I tracked the angle of the fly’s wings with respect to its body axis in real time 

using software developed by Andrew Straw (Maimon, Straw, and Dickinson 

2010) (Figure 2.3). 

Ball tracking and closed-loop experiments 

I tracked the ball using FicTrac software (Moore et al. 2014). The ball was 

marked with irregular black spots, which allowed a single camera (see Behavioral 

Imaging) facing the fly to track all three rotational axes of the ball in real time at 

50 Hz. Pablo verified the accuracy of the FicTrac software using a servo motor 

rotating a ball at known velocities. A plastic square was laser-cut with a hole at 

the center so that it fit as a sleeve on the ball holder, under the ball. The plastic 

square was aligned to the fly, such that its side edges were parallel to the fly’s 

body axis. This plastic square was then used to calibrate the FicTrac tracking 

system to the fly’s frame of reference (in other words, to determine which 

rotational axis represented forward, heading, and sideways walking). Pablo 

modified FicTrac to output analog voltages corresponding to the angular position 

of the ball along each axis through a digital to analog converter (USB-3101, 

Measurement Computing). In closed loop experiments, I used the heading axis 
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voltage output to control the azimuthal position of a bar displayed on the LED 

arena. That is, when the fly turned left, the bar rotated right, and vice versa, 

simulating the natural visual input a turning fly would experience due to a 

prominent, stationary, visual landmark at infinity. 

LED arena and visual stimuli 

We used a cylindrical LED arena (Reiser and Dickinson 2008), spanning 270º in 

azimuth, and 81º in height. Pixels were spaced by 1.875º. The empty quadrant of 

the arena was positioned directly behind the fly. I used blue LEDs (BM-

10B88MD, Betlux Electronics), covered by five sheets of blue filter (Tokyo Blue, 

Rosco) to reduce detection of the blue LEDs by the two-photon’s photomultiplier 

tubes. For all experiments, the microscope was surrounded by a black shroud to 

block light from the monitors, and all light-emitting sources inside the shroud 

other than the LED arena were covered with black tape. For the expanding disc 

stimulus (Figure 2.3), I presented a bright blue disc that expanded over 400 ms, 

simulating a disc approaching the fly at constant speed, until the height of the 

disc reached the height of the arena (the fly tended to turn in the last 100 ms of 

this expansion). For the bar stimulus, I presented a single bright bar, 6 pixels 

wide (11º) and spanning the height of the arena. The bar did not jump across the 

90º gap in the arena behind the fly; rather, I kept track of the bar position behind 

the fly without displaying it. For the dark stimulus, all LEDs were turned off. For 

the moving dots stimulus (Figure 3.8), I generated a series of frames – one for 
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each azimuthal pixel (spaced by 1.875º) – where single-pixel (1.875º pitch) dots 

appear at a random location, travel for 4 pixels, and then reappear at a new 

random location. I chose this stimulus to separate the contributions of position 

and velocity of a moving object (like a bar), since here the fly cannot track the 

position of any single dot for more than 7.5º (4 frames). In the last 4 frames 

before the stimulus wraps around (ie. rotates 360º), the new pixels appear at a 

location that would disappear 4 frames over when the stimulus begins to wrap 

around. In this way, the optic flow proceeds uninterrupted for an infinite number 

of rotations. The total number of dots remains constant, and the same number of 

dots disappear (and reappear) each frame (including those not shown behind the 

fly). In Figure 3.8, I presented this stimulus in closed-loop, which I interrupted 

with 1 s open-loop rotations of the moving dots stimulus (45º and 90º to the left or 

right) every 6 s. 

Fly tethering and preparation 

Flies were anesthetized at 4ºC. Files were tethered to a custom holder that was 

identical to that used in previous studies (Maimon, Straw, and Dickinson 2010) 

for tethered flight experiments. For tethered walking experiments, the holder was 

the same except that the back wall was pitched to 45º instead of 90º, allowing 

more light to reach the objective (Figure 3.1c, the fly’s wings required the space 

taken up by the 45º back wall to go back and forth during tethered flight). Flies 

were fixed to the holder by gluing the thorax and the front of the head between 
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the eyes with glue cured by blue light (Bondic). Additional glue was applied to the 

posterior side of the head in order to stabilize the head for the dissections. The 

head was pitched forward during tethering to provide a posterior view of the 

central complex. I cut a window in the cuticle immersed in saline at the centre of 

the posterior side of the head to gain optical and pipette access to the central 

complex. The holder to which each fly was tethered was placed in a base at the 

center of the LED arena, under the objective. The holder was stabilized by 

magnets in the holder and the base. The ball holder was mounted on a 

manipulator to adjust the position of the ball under each fly. 

Calcium imaging 

We used a two-photon microscope with a movable objective (Bruker) and custom 

stage (ThorLabs, Siskiyou). For two-photon excitation I used a Chameleon Ultra 

II Ti:Sapphire femtosecond pulsed laser (Coherent). For imaging GCaMP6m or 

GCaMP6f alone, I tuned the laser to 925nm, while for dual imaging of GCaMP6f 

and jRGECO1a, I used 1035-1040nm light, to excite both fluorophores 

simultaneously. Emitted light was split by a 575 nm dichroic mirror. I used a 490-

560 nm bandpass filter (Chroma) for the green channel in single indicator 

experiments (Figure 3.1, Figure 3.5e-m, Figure 3.13, Figure 3.14, Figure 3.15). 

For dual imaging of GCaMP6f and jRGECO1a (Figure 3.9, Figure 3.11g-j, Figure 

3.12) I used a 500-550nm bandpass filter for the green channel, and a 585-

635nm bandpass filter for the red channel, except for dual imaging of E-PGs and 
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P-EN2 in the bridge (Figure 3.9b,d), where I used a 490-560nm bandpass filter 

for the green channel. I detected light signals with GaAsP detectors 

(Hamamatsu). I used a 40x 0.8 NA objective (Olympus) for imaging the brain. I 

perfused the brain with extracellular saline composed of, in mM: 103 NaCl, 3 KCl, 

5 N-Tris(hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES), 10 trehalose, 

10 glucose, 2 sucrose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2, 4 MgCl2, and bubbled 

with 95% O2 / 5% CO2. The saline had a pH of 7.3-7.4, and an osmolarity of 

280±5 mOsm. The temperature of the bath was controlled by flowing the saline 

through a Peltier device, with feedback from a thermistor in the bath (Warner 

Instruments). This thermistor measurement was used to set the bath to 22ºC or 

32ºC for the shibirets experiments. To image the protocerebral bridge, I selected 

a region framing the bridge, about 140 x 50 pixels in size. For Figure 2.3, I 

imaged a single plane, which did not sample the entire protocerebral bridge (e.g. 

not the medial glomeruli). For all other protocerebral bridge imaging, I scanned 

through 2 or 3 z-planes separated by 7-9 µm using a Piezo motor to achieve a 

volumetric scanning rate of 5-7 Hz. To image the ellipsoid body, I selected a 

region 64 x 64 pixels in size and scanned through 3 z-planes separated by 7-9 

µm at 5-7 Hz. 

Trial structure 

For all experiments in Chapter 3, except the shibirets experiments, I interleaved 

closed-loop bar (1.0x gain) and dark screen trials. For single cell type GCaMP6m 
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imaging in the bridge (Figure 3.1, Figure 3.5e-m and Figure 3.13a-d), I presented 

each fly with six 50 s trials of each visual stimulus. For single cell type 

GCaMP6m imaging in the bridge and ellipsoid body (Figure 3.11a-f), I presented 

each fly with two 50 second trials of each visual stimulus. For dual cell type 

GCaMP6f and jRGECO1a imaging (Figure 3.9, Figure 3.11g-j, Figure 3.12), I 

presented each fly with one to two 20-30 second trials of each visual stimulus. 

For imaging E-PGs with P-EN-shibirets (Figure 3.14), I presented each fly with 

two 50 s trials each of closed-loop bar and a dark screen (and other stimuli not 

analyzed here) for each temperature. For the optic flow stimuli (Figure 3.8), I 

presented 16 blocks of the four stimuli (-45º/s, +45º/s, -90º/s, +90º/s open loop 

optic flow) to each fly. The order of the four open loop stimuli was randomized 

within each block. Half of the 1 s open loop stimuli were separated by 5 s of 0.5x 

gain closed loop optic flow, and half by 5 s of 1.0x gain closed loop optic flow. 

For the experiments in Chapter 4, I again interleaved dark and closed-loop bar 

experiments, with the first trial always dark (this was randomized in Chapter 3). In 

addition, the offset between the bar and the ball was randomized for each trial in 

order to ensure a random starting position for the bar at the start of each trial. 

The trial order was 30 s dark, 60 s bar, 30 s dark, 30 s bar, 30 s dark, 30 s bar for 

each recording. Two recordings were performed in each fly, with 32 min in the 

dark in between. 
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Data acquisition and alignment 

All data were digitized at 10 kHz using a Digidata 1440 (Axon Instruments), 

except for the two-photon scanning images, which were acquired using 

PrairieView (Bruker). Behavioral, stimulus and two-photon scanning data were 

aligned using triggers acquired on the same Digidata 1440. For the stimulation 

experiments in Figure 2.2, an LED flashed onto the camera during stimulation to 

align the video with the stimulation time. 

Comparing data acquired at different sampling rates 

When comparing two-photon imaging (~5-7 Hz) and behavioral data (50 Hz) 

within a fly on a time-point-by-time-point basis (Figure 3.1j-l, Figure 3.5k-m, 

Figure 3.13c-d, Figure 3.2j-l, Figure 3.4, Figure 3.12e-f, Figure 3.15c-d), I 

subsampled behavioral data to the imaging frame rate by computing its mean 

during each volumetric imaging time point. Because different flies were imaged at 

slightly different frame rates depending on the size of the region of interest, when 

averaging across flies or across turns (Figure 3.5h-j, bottom row, Figure 3.13c,d, 

thick lines, Figure 3.7, Figure 3.8, Figure 3.12a-d), I linearly interpolated each 

time series to a common time base of 10 Hz, and then averaged over these 

interpolated time series. 
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Data analysis 

Two photon images were first registered using python 2.7 (see Image 

registration). These images were then manually parsed in Fiji (Schindelin et al. 

2012) (see Parsing imaging data). All subsequent data analysis was performed in 

python 2.7. I did not exclude flies from any analysis, except for the jRGECO1a 

experiments, where a few recordings were excluded because the red signal was 

too weak (0/20 flies for Figure 3.9c, 1/12 flies for Figure 3.9d, 8/22 flies for Figure 

3.9k, 0/11 flies for Figure 3.9l). In analyzed jRGECO1a flies, I also sometimes 

excluded the second of two sets of stimuli because of jRGECO1a bleaching. If I 

do not exclude any data, our conclusions are unaltered. No statistical method 

was used to choose the sample size. 

Image registration 

Two-photon imaging frames were computationally registered by translating each 

frame in x and y to best match the time-averaged frame for each z-plane. I 

registered multiple recordings from the same fly to the same time-averaged 

template for each z-plane, unless a significant shift was introduced in between 

recordings. Rarely, time points were discarded from analysis if the registration 

failed because the signal in a particular frame was too weak. I did not register 

dual cell type imaging data from the ellipsoid body, but rather just analyzed the 

raw data directly. 
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Processing imaging data 

Regions of interest were manually defined in Fiji (Schindelin et al. 2012). For the 

protocerebral bridge, I manually defined regions delineating each glomerulus 

from the registered time-average of each z-plane (Figure 3.1d-f, left). Note that 

E-PGs do not innervate the outer two glomeruli of the bridge, and P-ENs do not 

innervate the inner two glomeruli (Wolff, Iyer, and Rubin 2015), and thus no 

region was defined for these glomeruli for the respective cell type. In P-EN2 

GCaMP experiments, tdTomato was expressed in E-PGs, which helped us parse 

glomeruli. For P-EN1 GCaMP experiments, two copies of UAS-GCaMP and 

VT032906-Gal4 were required to produce enough signal, and therefore tdTomato 

was not used for parsing glomeruli. For the ellipsoid body recordings, I first 

smoothed the imaging data with a 2-pixel (~ 2 µm) gaussian. I manually defined 

an ellipsoid body region of interest from the time-average of each z-plane. I then 

subdivided these regions into 16 equal wedges radiating from a manually 

selected center, as done previously (Seelig and Jayaraman 2015). Note that 

while E-PGs tile the ellipsoid body in 16 wedges, and P-ENs tile the ellipsoid 

body in half the number of tiles (Wolff, Iyer, and Rubin 2015), I used the same 16 

wedge analysis for both as an equal means of comparing the two signals. I 

calculated the mean pixel value for each glomerulus or wedge across z-planes 

for each time point, producing a matrix of raw mean intensity values for each 

region over time. I then calculated ∆F/F values for each glomerulus or wedge 

independently, by defining F as the mean of the lower 5% of raw values in a 
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given glomerulus or wedge over time. I also normalized each glomerulus or 

wedge independently with a z-score, which measures how many standard 

deviations each time point is from the mean. I used this metric to estimate bridge 

asymmetries (Figure 3.5e-m, Figure 3.13a-d), since it tended to better normalize 

constant, absolute differences in intensity across glomeruli, which may arise due 

to differences in the number of cells per glomerulus targeted by each Gal4 line, 

or the amount of GCaMP in each cell. I observed the same asymmetries in the 

bridge using ∆F/F, but with more variability (Figure 3.7). 

Analysis of periodicity and phase 

To analyze the protocerebral bridge signal, I started with a matrix of ∆F/F values, 

where each row represents a time point, and each column represents a 

glomerulus. I took the Fourier transform of each row, or time point, 

independently, and observed a consistent peak at a periodicity of ~8 glomeruli for 

each cell type (the peak periodicity of the power spectrum averaged over time is 

shown in Figure 3.2g-i for closed-loop bar and Figure 3.3g-i for dark conditions). 

Given that this periodicity was relatively constant over time (Figure 3.2a-f, Figure 

3.3a-f), I extracted the phase from the Fourier component with a period of 8 

glomeruli for each time point independently. When overlaid on the protocerebral 

bridge GCaMP time series, this phase accurately tracks the shift in the 

protocerebral bridge over time (Figure 3.2a-f, Figure 3.3a-f). For the ellipsoid 

body, I computed the population vector average, as previously described (Seelig 
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and Jayaraman 2015). For summary analyses, and for the dual-imaging sample 

traces (Figure 3.9a-b, i-j), the phase was filtered with a 3-point moving average. 

To calculate the offset between the phase and bar position (Figure 3.2j-l), I 

computed the circular mean of the difference between the phase and bar position 

during time points when the bar was visible to the fly. I shifted the phase by this 

constant offset in Figure 3.1g-i, Figure 3.2b,d,f, and Figure 3.15a-b. In Figure 

3.5e-g, Figure 3.13a-b, I nulled the accumulated phase and ball position at time 

zero, and applied a gain to the ball heading to best match the phase: 1.0 for 

Figure 3.5e (P-EN1), 1.40 for Figure 3.5f (P-EN2) and 0.75 for Figure 3.5g (E-

PG), 1.0 for Figure 3.13a (P-EN1), 0.89 for Figure 3.13b (P-EN2). I interpret 

these different gains measured in different flies to be the result of experimental 

variability rather than the three cell types operating under different gains. Indeed, 

when I imaged E-PGs and P-ENs simultaneously in the same fly (Figure 3.9), 

their peaks moved in unison (ie. with the same gain) along the bridge and 

ellipsoid body. 

Correlation analysis 

For closed-loop bar experiments, I computed the circular correlation (Fisher and 

Lee 1983) between GCaMP phase and bar position (Figure 3.1j-l, “position”). For 

experiments in the dark, I computed the Pearson correlation between GCaMP 

phase velocity and ball velocity (Figure 3.1j-l, “velocity”, Figure 3.14c-d). I 

correlated velocities instead of position for dark screen data since the phase 
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tended to drift away from the ball’s heading without a visual landmark. I 

calculated these correlations for different time lags between the phase and ball 

signals, and in each figure I report the correlation at the time lag where the 

correlation was highest. Specifically, the phase was delayed by 300 ms relative 

to the ball for E-PG and P-EN2 neurons in Figure 3.1j,l, and by 600 ms for P-EN1 

neurons in Figure 3.1k. The sign of these delays suggests that the heading 

system updates in response to the fly turning, not vice versa, although more 

experiments are needed (see Supplemental Discussion).  The longer delay for P-

EN1 compared to P-EN2 and E-PG was likely an artifact of over-expressing 

GCaMP6m in P-EN1 rather than reflecting a genuine biological difference among 

cell types (see Discussion). For example, in other imaging experiments where I 

measured P-EN1 activity side-by-side with E-PG activity, I observed that the P-

EN1 peak actually leads the E-PG peak (Figure 3.9m,o). In Figure 3.14c-d, the 

time lag where the correlation was highest between E-PG GCaMP phase- and 

ball-velocity was 200 ms (rather than 300 ms), which was the time lag used for 

the correlation values reported in this figure; this shorter delay was likely due to 

the fact that in Figure 3.1 I used GCaMP6m, and in Figure 3.14c-d I used 

GCaMP6f. For the P-EN>shibirets experiments (Figure 3.14), I computed the 

difference between the velocity correlations at 22ºC and 32ºC for each fly. I then 

used a two-sided Wilcoxon rank-sum test to reject the null hypothesis that this 

difference was the same in each of the three P-EN-Gal4, UAS-shibirets fly 

populations and in the respective P-EN-Gal4- or UAS-shibirets-only populations 
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(p<0.01 for all individual comparisons). For all phase correlations, I only included 

data where the fly was walking with a speed of at least 1 mm/s. I also required 

the peak activity (the mean of the top two values in the bridge) to be greater than 

0.8 ∆F/F, to ensure the phase was properly estimated. 

Computing the bridge asymmetry or total activity as a function of 

turning velocity or speed 

For each time point, I subtracted the mean z-score normalized signal in the left 

bridge from that in the right bridge (referred to as the bridge asymmetry). I binned 

these bridge asymmetries based on the turning velocity of the fly in 30º/s bins, 

and computed the mean asymmetry in each bin (Figure 3.5k-m). I repeated this 

process for different time lags between the bridge asymmetry and the fly’s 

turning behavior, to find the lag at which the slope (measured between -200º/s 

and +200º/s) was the steepest. The curve computed at this time lag (bridge 

asymmetry lagging by +400 ms with respect to behavior for P-EN1 and P-EN2) is 

shown in Figure 3.5k,l.  (Many other lags, before and after +400 ms, also show a 

significant positive slope for P-EN1 and P-EN2.) The time lag chosen does not 

affect the E-PG curve, whose slope is always near zero. The same approach 

was taken to plot the bridge asymmetry vs. speed, as well as total bridge activity 

vs. turning velocity and speed in Figure 3.20. 
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Culling individual turns or phase shifts 

To isolate individual turns (Figure 3.5h-j) or phase shifts in the bridge (Figure 

3.13c, ), I detected peaks in the turning velocity or phase velocity signal, 

respectively. In both cases, I first smoothed the velocity signal by convolving it 

with a gaussian (300 ms s.d.). From this smoothed velocity signal, I isolated 

peaks with a minimum peak height of 30º/s and a minimum peak width of 0.5 s 

for the turns and the phase shifts. I further required that each peak be isolated 

from other peaks with a minimum distance of 1.5 s. I aligned the turning velocity 

or phase velocity and bridge asymmetry signals to the start of each turn or phase 

shift. 

Phase nulling 

To compute the average GCaMP signal in the bridge or ellipsoid body 

independent of phase (Figure 3.9c-d, k-p), I computationally shifted the GCaMP 

signals at each time point so that the phase was the same across all time points. 

To achieve this phase nulling, I first interpolated the GCaMP signal at each time 

point to 1/10 of a glomerulus or wedge with a cubic spline. I then shifted this 

interpolated signal by the phase estimate at that time point. In the ellipsoid body, 

this shift is naturally circular. In the protocerebral bridge, I wrapped the signal 

around the same side of the bridge, such that values shifted past the left edge of 

the left bridge would return on the right edge of the left bridge, and so on, in order 

to preserve left and right asymmetries. This was possible since each side of the 
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bridge innervated by a given cell type consisted of 8 glomeruli, which matched 

the period of the signals. Once I nulled the phase, I computed the mean signal 

over time when the fly was walking straight (Figure 3.9c-d,k-l, computed for 0º/s 

±30º/s). For the ellipsoid body, I also averaged the phase-nulled signal over 

times when the fly turned at 300º/s ±30º/s to the left (negative) or right (positive). 

In Figure 3.9k-p, I show these phase nulled plots at the time lag where the P-EN1 

or P-EN2 ellipsoid body asymmetry (see below) and the fly’s turning velocity 

showed a maximum correlation (Figure 3.12e-f, black arrows). In Figure 3.9 I 

nulled both the P-EN and E-PG signals using the E-PG phase. In Figure 3.11a-f, 

I nulled both the bridge and ellipsoid body signals using the ellipsoid body phase. 

In Figure 3.11g-j, I nulled both the GCaMP6f and jRGECO1a signals using the 

GCaMP6f phase (analogous to Figure 3.9). In Figure 3.16h-i, and Figure 3.17, I 

nulled both the GCaMP6f and Alexa594 signals using the position of the pipette. 

Computing the ellipsoid body asymmetry in P-ENs 

To compute the ellipsoid body asymmetry in P-ENs (Figure 3.12c-f), I integrated 

the P-EN signal 180º clockwise and counter-clockwise from the E-PG phase, and 

subtracted the integrated counter-clockwise (left on the linearized plots) signal 

from the integrated clockwise (right on the linearized plots) signal. I used a two-

sided Wilcoxon rank-sum test to reject the null hypothesis that the ellipsoid body 

asymmetry in P-ENs was the same when the fly was turning to the left at –300˚/s 

(Figure 3.9m-n) vs. walking straight (Figure 3.9k-l), and turning to the right at 
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+300˚/s (Figure 3.9o-p) vs. walking straight (Figure 3.9k-l).  All p values were < 

0.02 when analyzing either z-score normalized data (not shown) or ∆F/F 

normalized data (shown in Figure 3.9k-p).  The null hypothesis that the ellipsoid 

body asymmetry in P-ENs was the same when the fly turned left (Figure 3.9m-n) 

vs. turned right (Figure 3.9o-p) was rejected for both P-EN1 and P-EN2 (p<0.01), 

using a two-sided Wilcoxon rank-sum test with either z-score or ∆F/F normalized 

data. 

P-EN stimulation 

To stimulate one-side of the bridge in Figure 2.2, I expressed mCD8-GFP (to 

localize the bridge) and the ATP-gated cation channel P2X2 driven by NP0212-

Gal4. I dissolved Na2ATP (A7699, Sigma) in extracellular saline at 10 mM. This 

ATP solution was loaded into a pipette and released onto one side of the bridge 

with brief (50 ms – 200 ms) pressure pulses in the pipette using a Pneumatic 

PicoPump (PV820, World Precision Instruments). 

To measure the effect of stimulating P-ENs on E-PGs, I expressed GCaMP6f in 

E-PGs and the ATP-gated cation channel P2X2 in either P-EN1 or P-EN2 cells 

(see Fly Stocks). Na2ATP (A7699, Sigma) was dissolved in extracellular solution 

(see Calcium imaging) at 1mM, and stored in aliquots at -80ºC. Working solutions 

of 0.5 mM ATP for VT032906-Gal4 or 0.1 mM ATP for VT020739-Gal4, with 20 

µM Alexa594 were prepared the same day as the experiment, and loaded into a 

pipette with a bore <1 µm in diameter. I adjusted the concentration of ATP to 
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provide as gentle a perturbation as possible, as measured by the E-PG signal 

shapes remaining the same, and the E-PG phase returning to following the fly’s’ 

movements a few seconds after the stimulation. 0.5 mM ATP was used for the 

controls without Gal4. The pressure in the pipette was controlled using a 

Pneumatic PicoPump (PV820, World Precision Instruments), and the pressure 

recorded using a Pressure Monitor (PM 015R, World Precision Instruments). I 

applied pressure pulses ranging from 5-20 psi with a 20 ms duration. The pipette 

was controlled using a PatchStar micro manipulator (Scientifica). To access the 

bridge, I locally applied 0.5 mg/mL collagenase type 4 (Worthington) through a 

pipette, while keeping the bath at ~30ºC, to breach the sheath above the bridge. 

For dual imaging of GCaMP6f and Alexa594, I used a 500-550nm bandpass filter 

for the green channel, and a 585-635nm bandpass filter for the red channel. I 

computed ∆F/F values for Alexa594 by defining the baseline, F0, as the mean of 

the lowest 5% of values in the entire bridge, rather than independently for each 

glomerulus, since the glomerulus-independent normalization is meant to 

compensate for varying GCaMP baselines across glomeruli, presumably due to 

varying levels of GCaMP expression, or the amount of innervation within each 

glomerulus. In Figure 3.16h-i and Figure 3.17, both channels were nulled using 

the position of the pipette, which differed from fly to fly. In Figure 3.16h-i, I 

averaged the E-PG signal 0.7-1.0 s after stimulation, and the Alexa594 (ATP) 

signal during the first frame after stimulation. In Figure 3.17, I computed the 

change in each phase-nulled signal by subtracting the average over 0.3 s before 
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stimulation from the averages in Figure 3.16h-i for each channel. The examples 

in Figure 3.16d-g highlight events where I stimulated P-ENs at the glomerulus 

where I expected P-EN1 or P-EN2 peak activity immediately prior to stimulation 

based on the measured E-PG phase (see Figure 3.9). All stimulations are 

included in the phase-nulled averages in Figure 3.16h-i. All stimulation 

experiments were performed in the dark. 
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