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IN LONG-TERM TISSUE REGENERATION 

Kenneth Lay, Ph.D. 

The Rockefeller University 2017 

Adult stem cells are endowed with the remarkable ability to maintain, regenerate 

and repair tissues throughout the lifetime of the organism. Whether parsimonious 

utilization of adult stem cells is necessary to preserve their long-term potential has 

not been fully explored. I investigated this issue using the adult murine hair follicle 

stem cell (HFSC) as my paradigm. HFSCs reside in their niche called the bulge, 

and mostly remain in a quiescent state, becoming mobilized only transiently to fuel 

cyclical bouts of hair follicle regeneration. By ablating a key HFSC transcription 

factor, Forkhead Box C1 (FOXC1), I discovered that hair follicles underwent more 

rounds of regeneration and yet were unable to result in a thickening of the animal’s 

hair coat. Mechanistically, unlike WT HFSCs, FOXC1-deficient HFSCs failed to 

remain in prolonged durations of quiescence. Instead, they were primed to re-enter 

the cell cycle and launch new rounds of hair regeneration prematurely. After 

activation, they failed to re-establish quiescence promptly, and remained in a 

primed state to proliferate. In turn, their expression of cell adhesion proteins 

remained low. As new hairs grew, wild-type (WT) HFSCs that had returned to 

quiescence and restored their repertoire of adhesion-associated proteins were 

able to anchor their bulge niche and the older hairs in place. However, FOXC1-



deficient HFSCs were unable to do so, resulting in the gradual loss of their bulge 

and old hair coats. As the bulge is also a cellular source of HFSC-inhibitory factors, 

its loss exacerbated the inability of FOXC1-deficient HFSCs to maintain 

quiescence. Consequently, as these mutant mice aged, their hair coat appeared 

sparse. Indeed, their HFSC numbers and ability to regenerate new hairs upon 

stimulation had declined. Therefore, through FOXC1, HFSCs couple their 

quiescence to an adhesion-mediated niche maintenance to achieve long-term 

tissue homeostasis. 
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CHAPTER 1: INTRODUCTION 

1.1 Adult stem cells and their niche 

Most, if not all, tissues of an adult organism contain a resident population of 

stem cells, defined by their ability to self-renew, potential to adopt one or more 

differentiated cell fates, and capacity to last long-term. These adult stem cells are 

tasked with the responsibility of maintaining the tissues they reside in, 

differentiating into one or more specialized cell type(s) to replace those turned over 

during homeostasis or lost through injury, while keeping their numbers constant 

through self-renewal so as to perform its functions throughout the lifetime of the 

organism. 

Adult stem cells reside in specific locations within their tissues. Termed the 

“niche”, it refers to the local tissue microenvironment which maintains stem cells 

and influences their characteristics and behavior (Morrison and Spradling, 2008). 

1.2 The adult hair follicle and the hair cycle 

The adult mouse skin and its appendages contain stem cell populations. The 

hair follicle is connected to the epidermis via its infundibulum. Appended to each 

hair follicle below the infundibulum is the sebaceous gland. The region of the hair 

follicle below the sebaceous gland is called the isthmus, which in turn lies above 

an anatomically defined region termed the bulge. The bulge consists of two layers 
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of cells. The inner layer of terminally differentiated keratinocytes expressing keratin 

6 (K6) serve to anchor the club hair, which protrudes out of the skin to form the 

hair coat of the animal (Hsu et al., 2011). On the other hand, the outer layer 

comprises the long-term stem cells of the hair follicle, identified by pulse-chase 

label-retaining experiments (hereby termed bulge hair follicle stem cells, or Bu-

HFSCs) (Cotsarelis et al., 1990; Tumbar et al., 2004). Below the bulge lies the hair 

germ, which consists of shorter-lived stem cells (hereby termed hair germ hair 

follicle stem cells, or HG-HFSCs). The hair germ directly abuts the dermal papilla 

(DP), a condensed group of mesenchymal cells that represents the major source 

of activating signals for the hair follicle stem cells (HFSCs) (Figure 1). 

 

Figure 1. Schematic of the adult mouse hair follicle. 
Epi, epidermis (skin). Inf, infundibulum. SG, sebaceous gland. Isth, isthmus. Bu, 
bulge. HG, hair germ. DP, dermal papilla. 

	

By postnatal day 19 (P19), a full hair coat is formed on the surface of the animal. 

The hair follicle is a unique organ in that it undergoes periodic cycles of 
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regeneration. It can exist in three distinct stages, namely telogen, or rest; anagen, 

or regeneration; and catagen, or degeneration (Muller-Rover et al., 2001) (Figure 

2). At P19, hair follicles are in their “first telogen” and consists of a single bulge 

anchoring a single club hair. Approximately two to three days later, they enter 

anagen substage I, during which the HG-HFSCs respond to the DP’s activating 

signals by proliferating (Greco et al., 2009). In anagen II, the hair germ enlarges 

while Bu-HFSCs now become proliferative. In anagen III, Bu-HFSC proliferation 

peaks, giving rise to the outermost layer of the growing hair follicle called the outer 

root sheath (ORS), while the expanded hair germ forms a pool of transit-amplifying 

cells (TACs) termed the matrix that now surrounds the DP (Hsu et al., 2014; Hsu 

et al., 2011). At this point, TACs begin to differentiate into seven concentric layers 

of keratinized cells, giving rise to a new hair shaft encased by the inner root sheath 

(IRS) and companion layer. In anagen IV, Bu-HFSC proliferation wanes, the hair 

follicle grows even deeper, and the hair shaft extends upwards towards the skin 

surface along with its differentiated layers. This continues in anagen V, and by 

anagen VI, the hair shaft protrudes out of the skin. Anagen VI persists to lengthen 

the hair shaft as the TACs continue to proliferate (Figure 2).  

After a full-length hair shaft is achieved by around P35, hair follicles enter 

catagen, during which the TACs and the portion below the bulge degenerate via 

apoptosis, forming an epithelial strand. As the epithelial strand retracts upwards, 

some ORS cells survive and make a new bulge and hair germ. The surviving cells 

in the lower ORS will reconstitute the inner terminally differentiated K6+ layer of 

the new bulge; those in the mid-ORS will make the new hair germ; and finally, cells 
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in the upper ORS will form a new pool of Bu-HFSCs (Hsu et al., 2011). Completion 

of these processes marks the re-entry of the hair follicle into telogen (“second 

telogen”) by around P40. In the case of the pelage (back skin) hair follicle, it retains 

the older bulge and club hair alongside the newly formed bulge and club hair. As 

it undergoes more rounds of anagen, it can accumulate up to 4 bulges and club 

hairs (Figure 2). 

Figure 2. The adult hair follicle cycles through telogen, anagen and catagen. 
Schematic of the adult hair cycle. Hair follicles (HFs) undergo cycles of telogen 
(Tel, rest), anagen (Ana, regeneration) and catagen (Cat, degeneration) 
throughout the lifetime of the animal. Each HF generates a new bulge and new 
club hair with every anagen. Note that length of hair that protrudes out of the skin 
surface is not drawn to scale with that of hair follicle below the skin. Bu, bulge; HG, 
hair germ; DP, dermal papilla; ORS, outer root sheath; Mx, matrix; TACs, transit 
amplifying cells. 
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1.3 The hair follicle stem cell and its niche 

 

The HFSC niche is a plexus of activating and inhibitory signaling networks 

contributed by diverse cell types. The surrounding dermis, comprising multiple cell 

types including fibroblasts and adipocytes, produces high levels of bone 

morphogenetic proteins (BMP), mainly BMP2 and BMP4, which inhibit HFSCs and 

keep them in a quiescent state (Plikus and Chuong, 2008). In contrast, the 

adipocyte precursor cells secrete platelet derived growth factor α (PDGFα) which 

stimulate HFSC activity via the DP (Festa et al., 2011). The DP is the major source 

of HFSC-activating cues that include transforming growth factor β2 (TGFβ2), 

noggin (which inhibits BMP), fibroblast growth factor 7 (FGF7) and FGF10 

(Botchkarev et al., 2001; Greco et al., 2009; Oshimori and Fuchs, 2012; Rendl et 

al., 2005; Rosenquist and Martin, 1996; Woo et al., 2012). It has also been 

discovered that stem cell progeny can feedback to stem cells and influence their 

behavior. Within the bulge, the inner layer of Bu-HFSC-derived terminally 

differentiated cells also secrete high levels of BMP6 and fibroblast growth factor 

18 (FGF18) that in turn strongly inhibit HFSCs (Hsu et al., 2011). The TACs, 

derived from the HG, which in turn originates from Bu-HFSCs in the mid-ORS, 

secrete sonic hedgehog (SHH), that acts long-range to induce proliferation in the 

Bu-HFSCs during anagen II and III (Hsu et al., 2014). In these ways, HFSC activity 

is tightly regulated by its niche to ensure that sufficient proliferation can occur 

without excessiveness to generate new tissue. 
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1.4 Hair follicle stem cell quiescence and activation 

During telogen, several lines of evidence point to BMP signaling playing a 

significant role in maintaining HFSCs in a quiescent state. It has been 

hypothesized that cyclic BMP signaling in the surrounding dermis divides telogen 

into two phases: refractory telogen as characterized by high dermal BMP levels, 

and competent telogen as defined by lower dermal BMP signals. As these names 

suggest, HFSCs are unable to proliferate during refractory telogen, but are then 

able to exit their quiescent state during competent telogen when activating signals 

become strong enough to overcome the reduced dermal BMP levels (Plikus et al., 

2008). Indeed, skin implantation of beads coated with the BMP inhibitor noggin 

stimulates HFSC proliferation, while conditional ablation of BMP receptor 1a 

(BMPR1A) from HFSCs to eliminate their BMP signaling response is sufficient to 

cause them to proliferate and launch them into anagen much earlier than their WT 

counterparts (Botchkarev et al., 2001; Genander et al., 2014; Kobielak et al., 2003; 

Kobielak et al., 2007; Zhang et al., 2006).  

 Besides a reduction in BMP signaling, stabilization and nuclear translocation 

of β-catenin, which is an effector and transcriptional co-factor of active Wnt 

signaling, is crucial for the transition of HFSCs from telogen to anagen. HFSCs 

made to express a constitutively stabilized form of β-catenin (ΔN β-catenin) 

proliferate to initiate anagen earlier than their WT counterparts, similar to BMPR1a-

deficient HFSCs (Lo Celso et al., 2004; Lowry et al., 2005; Van Mater et al., 2003). 
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A two-step mode of activation has been established that governs the 

proliferation of HFSCs to fuel a new cycle of regeneration (Greco et al., 2009). With 

dermal BMP being reduced and further inhibited by DP-derived noggin, HG-

HFSCs, being more primed and directly abutting the DP, will proliferate first in 

response to the DP-derived TGFβ2, FGF7 and FGF10, marking the entry of 

telogen hair follicles into anagen I (Greco et al., 2009). TGFβ signaling in HG-

HFSCs induces expression of TMEFF1, which acts to further restrict BMP signals 

within the HFSC niche (Oshimori and Fuchs, 2012). This reduction in the BMP 

threshold is then sufficient to induce proliferation of Bu-HFSCs in anagen II. At this 

point, the expanded HG starts to form the matrix and secrete SHH, which further 

increases and sustains the proliferation of both matrix TACs and Bu-HFSCs in 

anagen III (Hsu et al., 2014).  

In contrast to the HG-HFSC-derived TACs which will proliferate throughout 

anagen, Bu-HFSCs will stop proliferating in anagen IV, when the hair follicle has 

grown to a certain depth such that the DP and SHH-producing matrix is now far 

away from the Bu-HFSCs, and inhibitory factors produced from the inner bulge 

layer now act to re-establish Bu-HFSC quiescence (Hsu et al., 2014). 

In these ways, the extrinsic HFSC niche is instrumental in maintaining HFSC 

quiescence during telogen, tightly regulating their activation for only a short window 

of time during anagen I-III, and returning them to quiescence during anagen IV-VI. 

Are there intrinsic mechanisms in place within HFSCs to govern their properties 

and behavior? Indeed, the ability to purify HFSCs has allowed us to explore this 

question.  
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1.5 Purifying and profiling hair follicle stem cell gene 
expression signatures 

The existence of slow-cycling cells within the hair follicle was first identified in 

1990 by Lavker and colleagues, who pulsed mice with a nucleotide analogue, 5-

bromo-2’-deoxyuridine (BrdU), and observed its retention in the bulge after hair 

follicles had undergone a regeneration cycle, when all other cycling cells had 

diluted it out, thereby refuting a long-established belief that the matrix TACs are 

the HFSCs (Cotsarelis et al., 1990). In 2004, Fuchs and colleagues asked whether 

these label-retaining cells (LRCs) of the bulge are stem cells. They devised a 

different pulse-chase strategy to label these slow-cycling LRCs, this time by 

fluorescence. Mice were engineered to express a keratin 5 (K5) promoter-driven 

tet-repressor-VP16, that bound to a tetracycline-responsive regulatory element 

(TRE) and induced the expression of histone H2B-green fluorescent protein (H2B-

GFP) specifically in the K5-expressing epidermis and hair follicles [pulse]. When 

these 4-week old mice undergoing the first adult hair cycle were fed with 

doxycycline, H2B-GFP expression began to shut down as tet-repressor-VP16 no 

longer bound to TRE. After a chase period of 4 weeks to 4 months, well after the 

completion of at least the first adult hair cycle, only cells within the bulge retained 

their original H2B-GFP label, confirming the findings by Lavker and colleagues 

(Tumbar et al., 2004). This paved the way for the purification of bulge LRCs by 

fluorescence-activated cell sorting (FACS) and profiling of their gene expression. 

Most importantly, they showed that in the normal hair cycle and in wound repair, 

these LRCs were utilized, documenting that they were indeed HFSCs (Morris et 
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al., 2004; Tumbar et al., 2004). Exploiting the gene expression profile of label-

retaining Bu-HFSCs, characteristic surface markers were then identified to 

facilitate the FACS-isolation of Bu-HFSCs without the need for K5-tet-VP16/TRE-

H2BGFP transgenes. This had led to Bu-HFSC culture and grafting experiments 

to establish their long-term stemness and their versatility to make entire new hair 

follicles, epidermis and sebaceous glands when grafted back onto mice (Blanpain 

et al., 2004). These findings sealed the fate of bulge LRCs as bona fide stem cells 

of the hair follicle. 

The ability to FACS-purify Bu-HFSCs resulted in a surge in efforts to 

characterize their defining genetic and molecular signatures. Transcription factors 

that are enriched in Bu-HFSCs relative to inter-follicular epidermal basal cells and 

matrix TACs have been uncovered to play key roles in establishing Bu-HFSC fate 

and behavior. During homeostasis, TCF3 [transcription factor 7 like 1, (T-cell 

specific, HMG box)] and TCF4 [transcription factor 7 like 2, (T-cell specific, HMG 

box)] maintain HFSCs in an undifferentiated state (Merrill et al., 2001; Nguyen et 

al., 2009; Nguyen et al., 2006), while SOX9 [SRY (sex-determining region Y)-box 

9] and LHX2 (lim-homeobox protein 2) suppress epidermal and sebaceous gland 

fates respectively to maintain HFSC identity (Folgueras et al., 2013; Kadaja et al., 

2014; Nowak et al., 2008; Vidal et al., 2005). NFATc1 (nuclear factor of activated 

T-cells c1) and LHX2 are critical to keep HFSCs in a quiescent state, as loss-of-

function mouse models resulted in premature entry of their hair follicles into 

anagen (Folgueras et al., 2013; Horsley et al., 2008; Rhee et al., 2006). TBX1 (T-

box 1), identified in an in vitro self-renewal RNA-interference (RNAi) screen of 
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transcription factors enriched in Bu-HFSCs relative to their progeny cells, is critical 

for Bu-HFSCs to maintain their numbers through multiple rounds of tissue 

regeneration (Chen et al., 2012). Additionally, NFIB (nuclear factor I B) mediates 

the crosstalk of HFSCs with melanocyte stem cells that also reside within the same 

niche to achieve behavioral synchrony between two distinct stem cell populations 

during tissue regeneration (Chang et al., 2013; Nishimura et al., 2002; Rabbani et 

al., 2011). 

1.6 Stem cells and aging 

As an organism ages, the ability of its tissues to keep up with its demands 

wanes. Tissue self-renewal slows down. Adult stem cells residing within these 

tissues would have served their function of maintaining tissue turn-over for much 

of the lifetime of the organism, and potentially accumulated a substantial amount 

of oxidative stress, cellular and DNA damage, or become senescent. Aging also 

causes alterations to the cells that make up the stem cell niche, and changes the 

composite of systemically circulating factors. Overall, stem cell tissue-regenerative 

potential and self-renewal capacity become compromised with age (Chakkalakal 

et al., 2012; Flach et al., 2014; Keyes et al., 2013; Oh et al., 2014; Rossi et al., 

2008; van Deursen, 2014). Therefore, much research is on-going to investigate 

stem cell aging mechanisms, find ways to rejuvenate aged stem cell function and 

improve the quality of life as we age.  
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Distinct adult stem cell populations have different levels of activity, depending 

on the needs and demands of their tissues. The intestinal crypt stem cells and skin 

epidermal stem cells self-renew more frequently as these epithelial tissues are 

constantly sloughed off and need to be replaced. On the other hand, hematopoietic 

stem cells divide infrequently as they leave the task of replacing blood cells to their 

transiently dividing multipotent progenitor cells which are more committed to 

differentiation. Skeletal muscles undergo limited self-renewal, thus their stem cells, 

termed satellite cells, also divide infrequently and play a more significant role 

during muscle injury (Busch et al., 2015; Collins et al., 2005; Fuchs, 2009; Sun et 

al., 2014). 

Hair follicles undergo periodic regeneration bouts. Therefore, like 

hematopoietic stem cells and satellite cells, HFSCs stay in prolonged periods of 

quiescence, or inactivity, during telogen, with mechanisms in place to tightly 

regulate their activation. It has been demonstrated that as mice age, hair follicles 

stay in telogen for longer periods of time, and when they do enter anagen, the 

duration is shorter, resulting in a concomitant reduction in hair length. Indeed, 

when aged HFSCs (24-month old) were stimulated to proliferate and regenerate 

new hairs, they displayed a delayed response in proliferation when compared to 

young HFSCs (2-month old). This defect was recapitulated by the reduced in vitro 

colony forming efficiency of aged HFSCs compared to young HFSCs. Normally, 

HFSCs down-regulate the BMP signaling target gene NFATc1 to exit quiescence 

and begin proliferating. However, in aged mice, BMP signals in the dermal 

environment are much higher, causing stimulated aged HFSCs to maintain high 
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levels of NFATc1, the inhibition of which can rescue their delayed response in 

proliferation. Importantly, repetitive stimulation of young HFSCs to undergo 

regeneration multiple times within a short duration caused them to acquire an aged 

HFSC phenotype, both in terms of their function, self-renewal capacity and gene 

expression (Keyes et al., 2013).  

While quiescence is not a hallmark feature of stem cells, its establishment 

greatly restricts unnecessary stem cell proliferation, thereby protecting them 

against metabolic stress and preserving their genomic integrity. These ensure that 

stem cells can live long-term while retaining their stemness (Cheung and Rando, 

2013; Stewart et al., 2008). Yet, inevitably, adult stem cell function still becomes 

compromised as the organism ages. For my thesis, I aim to explore the extent to 

which stem cells have an unlimited capacity for self-renewal and tissue 

regeneration, or whether there are intrinsic factors that restrict this capacity, using 

in vivo HFSCs as my paradigm. Are there novel ways by which HFSCs maintain 

quiescence? Are there autonomous mechanisms for stem cells to know when to 

proliferate and regenerate tissues, and when to remain quiescent? Is the quiescent 

state required to maintain the long-term self-renewal capacity and differentiation 

potential of HFSCs? 
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CHAPTER 2: THE ROLE OF FOXC1 IN MAINTAINING 
HAIR FOLLICLE STEM CELL QUIESCENCE 

2.1 Introduction 

Similar to the quiescence factors LHX2 and NFATc1, the transcription factor 

Forkhead Box C1 (FOXC1) was first observed to be enriched in hair follicle 

progenitor cells (P-cadherin-positive) relative to inter-follicular basal epidermal 

cells (P-cadherin-negative) in the developing E17.5 embryo (Rhee et al., 2006). 

Expression of these transcription factors remain enriched in Bu-HFSCs relative to 

basal epidermal cells in the adult skin (Blanpain et al., 2004). Further, the 

regulatory regions of Foxc1 and Nfatc1 genes share similar epigenetic marks 

which suggest that both genes are strongly transcribed in the quiescent telogen 

Bu-HFSCs and down-regulated in anagen Bu-HFSCs (Lien et al., 2011).  

FOXC1 belongs to the Forkhead Box transcription factor family whose 

members contain the conserved Forkhead (FH) DNA-binding domain. The FOXC1 

FH domain is a variant of the helix-turn-helix motif, comprising 3 α-helices, 2 β-

sheets and 2 large loops that form “wing-like” structures that together contribute to 

the organization, nuclear localization, DNA-binding specificity and efficiency, and 

transactivation capability of FOXC1 (Saleem et al., 2004).  

In humans, the most notable condition that features a mutation in FOXC1 is 

Axenfeld-Rieger syndrome, which is characterized by abnormalities in the anterior 

segment of the eye such as a thinner iris and an off-center pupil, and can lead to 
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glaucoma, vision loss or blindness often during late childhood or adolescence 

(https://ghr.nlm.nih.gov/condition/axenfeld-rieger-syndrome). In mice, pan-

deletion of FOXC1 causes neonatal lethality with hydrocephalus (accumulation of 

cerebrospinal fluid in the brain), eye defects and skeletal abnormalities (Kume et 

al., 1998). In addition to brain, eye and bone, FOXC1 also plays important roles in 

embryonic development of somites, kidney, gonad, heart and vasculature (Kume 

et al., 2000; Kume et al., 2001; Mattiske et al., 2006a; Mattiske et al., 2006b; Seo 

et al., 2006; Seo and Kume, 2006; Zarbalis et al., 2007).  

FOXC1 has been implicated in various signaling pathways. During vascular 

development, FOXC1 directly regulates the expression of two components of the 

Notch signaling pathway that specifies an arterial cell fate in endothelial cells: DLL4, 

the ligand for Notch signaling, and HEY2, the Notch signaling downstream target 

(Hayashi and Kume, 2008; Seo et al., 2006). During calvarial bone development, 

FOXC1 integrates FGF and BMP signaling to induce expression of Alx4 and Msx2 

for the proliferation of bone osteoprogenitor cells and ensure proper bone 

patterning and growth (Rice et al., 2003; Rice et al., 2005). During eyelid 

development, binding of FGF10 to its receptor FGFR2 leads to expression of 

BMP4 and the downstream BMP signaling target gene FOXC1 that induces eyelid 

closure (Huang et al., 2009; Kidson et al., 1999; Kume et al., 2001; Smith et al., 

2000). Last but not least, FOXC1 maintains corneal transparency by preventing 

vascular endothelial growth factor (VEGF) signaling and angiogenesis through the 

inhibition of metalloproteinases (MMPs), thereby restricting extra-cellular matrix 

(ECM) degradation and VEGF bioavailability, providing a pathological mechanism 
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for Axenfeld-Rieger syndrome (Seo et al., 2012). Many of these pathways have 

been implicated in HFSC maintenance (BMP), activation (FGF10) and 

differentiation (BMP, Notch) (Genander et al., 2014; Greco et al., 2009; Kobielak 

et al., 2007; Pan et al., 2004; Yamamoto et al., 2003). 

Two recent studies have elucidated non-autonomous roles of FOXC1 on 

influencing stem and progenitor cell behavior via their niche. First, FOXC1 is 

necessary for specification and maintenance of the bone marrow mesenchymal 

progenitor CAR (CXCL12-abundant reticular) cells, and their expression of 

CXCL12 and SCF (stem cell factor), which in turn preserve hematopoietic 

stem/progenitor cell numbers (Omatsu et al., 2014). Second, FOXC1 expression 

in the head mesenchyme sustains radial glial cell proliferation in the cerebellar 

ventricular zone during embryonic development (Haldipur et al., 2014). 

To investigate a potential role of FOXC1 in hair follicle stem cells, I engineered 

FOXC1 loss-of-function mouse models by crossing conditional Foxc1flox mice to 

two different Cre-recombinase mouse lines. The entire coding region of the Foxc1 

gene is located in its single exon, hence loxP sequences were introduced into its 

5’ upstream region and 3’ untranslated region such that its whole coding sequence 

will be deleted upon Cre recombination (Sasman et al., 2012). K14-Cre targeted 

the conditional knockout (cKO) of Foxc1 in all epithelial cells, including hair follicles, 

from as early as E14.5, when K14 starts to be expressed in the embryo (hereby 

referred to as Foxc1-K14Cre-cKO) (Vasioukhin et al., 1999). Sox9-CreER targeted 

Foxc1 ablation specifically in hair follicles (not epidermis) when mice were treated 

with tamoxifen to induce Cre nuclear localization at desired timepoints (hereby 
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referred to as Foxc1-Sox9CreER-cKO) (Soeda et al., 2010b). The Sox9CreER 

mouse line also had the loxP-STOP-loxP-YFP (yellow fluorescence protein) 

cassettes inserted into one of their Rosa26 (R26) loci such that when Cre was 

active, it also acted on the loxP sites to remove the STOP codon and enable YFP 

expression, which thus acted as a faithful reporter for cells with Cre activity and all 

of their subsequent progeny. I did not introduce the R26-YFP allele into Foxc1-

K14Cre-cKO mice when I first started the project so as to avoid introducing the 

R26-YFP mouse C57BL/6 background into their pure Black Swiss strain 

background and minimize hair cycle variations due to mouse strain differences 

(see details of mouse strains in Materials and Methods).  

2.2 Results 

2.2.1 FOXC1 expression in adult mouse skin 

2.2.1.1 Generating a FOXC1 antibody 

While a commercially available antibody efficiently detected FOXC1 in paraffin-

embedded tissue sections, I also needed an antibody to co-stain FOXC1 with other 

proteins in frozen tissue sections. To that end, I generated a FOXC1 antibody. The 

coding region that encodes the last 200 amino acids of the FOXC1 protein, which 

is the least conserved among the FOX transcription factors and excludes the 

conserved Forkhead DNA binding domain, was cloned out and introduced into a 

pGEX vector for expression in BL21 Escherichia coli cells. The resultant GST-
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tagged FOXC1 protein fragment was extracted, purified on a polyacrylamide gel 

and introduced into guinea pigs as an antigen to generate a polyclonal FOXC1 

antibody (see Materials and Methods for details).  

FOXC1 expression pattern in various stages of the hair cycle was observed in 

fresh-frozen and paraffin-embedded tissues obtained from Foxc1-K14Cre-cKO 

mice and their WT littermates at different stages of the hair cycle, namely 1st 

telogen, anagen and catagen. The newly generated FOXC1 antibody was 

validated by confirming its staining pattern in frozen tissue sections with that of the 

commercially available antibody in paraffin-embedded sections, and by verifying 

its absence of staining in Foxc1-cKO tissues.  

2.2.1.2 Expression of FOXC1 and other HFSC genes in telogen 

In 1st telogen, FOXC was detected in all compartments of the hair follicle, but 

was especially prominent in the infundibulum and isthmus, also known to contain 

stem cells that refuel these upper regions of the HF. In the bulge, FOXC1 could be 

found in both the Bu-HFSC layer and the inner K6+ bulge layer. It was also 

detected in a subset of HG-HFSCs that is closer to the bulge. While FOXC1 

staining was also detected in the sebaceous gland appended to the hair follicle, it 

was absent in the inter-follicular epidermis. FOXC1 was not detected in Foxc1-

K14Cre-cKO tissue sections, thereby validating the specificity of the antibodies 

and the efficiency of Foxc1-knockout by K14Cre (Figure 3A).  
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Expression of other key HFSC genes, including NFATC1, LHX2, SOX9 and 

TCF4, was also investigated in the Foxc1-cKO tissues, and was not found to be 

perturbed in the absence of FOXC1 (Figure 3B). 
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Figure 3. Expression of FOXC1 and other key HFSC transcription factors in 
telogen. 
(A) FOXC1 expression pattern in telogen, and validation of Foxc1-cKO efficiency 

and FOXC1 antibody by immunofluorescence and paraffin 
immunohistochemistry. Antibodies (Abs) are color-coded according to the 
fluorescent secondary Abs used. Epi, epidermis; Inf, infundibulum; SG, 
sebaceous gland; Isth, isthmus; Bu, bulge; HG, hair germ; DP, dermal papilla. 

(B) Expression of key HFSC transcription factors in WT vs. Foxc1-cKO. Note that 
CD34 expression in Foxc1-cKO bulge tends to be weaker than WT. 
Scale bars = 30 μm. 
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2.2.1.3 FOXC1 expression in anagen 

In anagen, FOXC1 expression was maintained in all compartments of the hair 

follicle, as in telogen, be it when Bu-HFSCs were proliferating in earlier anagen 

(AnaIII) or quiescent in later anagen (AnaIV). FOXC1 was also detected in some 

upper-most ORS cells just below the bulge, but absent in the mid- or lower-ORS. 

Within the newly emerging anagen hair bulb, FOXC1 was expressed in the inner 

root sheath (IRS) as it co-localized with the IRS markers AE15 and GATA3. 

Therefore, in anagen, FOXC1 was expressed in Bu-HFSCs, some Bu-HFSC 

progeny ORS cells, and in 3 of the 7 differentiated cell layers of the new hair follicle 

(Figures 4A and 4B). Loss of FOXC1 did not seem to perturb the differentiation 

process as no differences were observed in the companion, IRS and hair shaft 

layers based on K6, AE13, AE15 and GATA3 expression (Figure 4B). However, 

Foxc1-K14Cre-cKO hair coat frequently appeared rough and dull, in contrast to 

WT hair coat which looked smooth and shiny. Surface electron microscopy (SEM) 

revealed that the ends of Foxc1-K14Cre-cKO hairs were kinked, which could 

account for the differences observed in hair coat appearance (Figure 4C, courtesy 

of Dr. Amalia Pasolli). 

2.2.1.4 FOXC1 expression in catagen 

As hair follicles degenerated, FOXC1 was absent in the retracting epithelial 

strand, but was expressed in the bulging region above the epithelial strand. This 

bulging region would eventually enter the new bulge and constitute its inner K6+ 
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layer. FOXC1 expression was also maintained in all other compartments of the 

hair follicle, including Bu-HFSCs, as in telogen and catagen (Figure 4D). 
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Figure 4. Expression of FOXC1 in anagen and catagen. 
(A) FOXC1 expression in anagen. 
(B) FOXC1 is expressed in anagen bulge, including HFSCs marked by CD34, and 

in the inner root sheath (IRS) layers marked by AE15 and GATA3.  
(C) Scanning EM reveals kinked ends of Foxc1-cKO hairs, marked by asterisks (*), 

courtesy of Dr. Amalia Pasolli. 
(D) FOXC1 is expressed in the retracting portion of the catagen HF, above the 

caspase 3 (CASP3)-positive epithelial strand (ES). 
Scale bars = 30 μm. 
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2.2.2 Depletion of FOXC1 results in faster hair cycling and impacts long 
term hair coat maintenance 

To observe hair cycle progression under native conditions, I shaved the dorsal 

back of Foxc1-K14Cre-cKO and WT mice after each round of hair cycling, starting 

from the first hair coat in 1st telogen at P19. Shaving clipped off hairs to reveal the 

skin surface without injuring the underlying hair follicular cells. This allowed for 

pinpointing of hair cycle stage according to the transition of skin color from pink 

(telogen) to grey and black (anagen), as melanocyte stem cells also proliferate 

together with HFSCs and differentiate to deposit black pigment onto the hair 

follicles, resulting in an increasing darkening of the skin (Muller-Rover et al., 2001; 

Plikus and Chuong, 2008). Generation of a second hair coat and entry into 2nd 

telogen occurred normally, suggesting that anagen and catagen were unperturbed 

by loss of FOXC1 (Figure 5A). However, Foxc1-K14Cre-cKO mice entered their 

next anagen and regenerated their third hair coat dramatically earlier than WT 

littermates (Figure 5B). Indeed, incorporation of the nucleotide analogue 5’-bromo-

2’-deoxyuridine (BrdU) confirmed the precocious S-phase entry and proliferation 

of Foxc1-cKO HFSCs, indicating a shortening of the typically extended 2nd telogen 

(Figure 5C).  

In subsequent hair cycles, Foxc1-K14Cre-cKO mice continued to display 

significantly shortened telogens relative to their WT counterparts. By 9 months of 

age, many Foxc1-K14Cre-cKO mice were in their 7th telogen, while WT mice were 

still in their 4th telogen as they had undergone significantly more hair cycles with 

shortened telogen durations during the same period of time (Figures 5D and 5E). 
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By these criteria, the major defect arising from loss of FOXC1 appeared to be a 

failure to maintain extended telogens, resulting in a dramatic increase in the 

frequency of hair cycling through most of the lifetime of the animal.  

Despite the overall markedly abridged telogens, Foxc1-K14Cre-cKO HFs still 

experienced a modest age-related extension in telogen length, a feature that is 

more conspicuous in WT HFs and which has been attributed to a rise in macro-

BMP levels in aging skin (Keyes et al., 2013).  However, in contrast to their WT 

counterparts, even though young Foxc1-K14Cre-cKO mice generated grossly 

normal hair coats, their hair coats became strikingly sparser and frequently greyed 

as they aged (Figure 5F). This suggested that the bulge niche and its residents 

might be functionally impacted through excessive utilization during frequent hair 

cycling. 
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Figure 5. Depletion of FOXC1 from HFs causes faster hair cycling, yielding a 
sparser hair coat with age. 
(A) 1st hair coat of Foxc1-cKO and WT mice appeared at the same age. When 

shaved at P19 (1st Tel), skin of both Foxc1-cKO and WT were observed to 
darken from pink to grey and black in a similar way as they progressed through 
anagen (1st Ana). When the newly formed 2nd hair coat was shaved again at 
P35, skin of both Foxc1-cKO and WT were also observed to lose pigmentation 
in a similar way as they underwent catagen (Cat). 

(B) Foxc1-cKO mice regenerated their 3rd hair coat much earlier than WT mice. 
(C) Immunofluorescence of Foxc1-cKO HF sagittal section at P50, depicting 

precocious Bu-HFSC activation and earlier entry into anagen than WT. 
(D) Recovered hair coats of mice were shaved repeatedly to monitor hair cycles 

long-term.  
(E) Foxc1-cKO mice underwent more frequent hair cycling and exhibited markedly 

shorter intervals between hair cycles. Left, data are mean ± SD. Right, “time 
between recovery” refers to the time at which > 80% of the hair coat had 
recovered after shaving; box-and-whisker plot: midline, median; box, 25th and 
75th percentiles; whiskers, minimum and maximum. **p < 0.01; ****p < 0.0001. 

(F) Representative example of hair coat of WT and Foxc1-cKO mice at 1.5 to 2 
years of age. Pink box indicates zoomed-in view of lateral side of hair coat. 
Note visibility of skin (with some pigmented spots) underneath a sparse hair 
coat in Foxc1-cKO. Scale bars = 30 μm. 
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2.2.3 FOXC1 is necessary to establish a multiple-bulge hair follicle 
architecture, and maintain HFSC numbers and function with age 

To explore the consequences of FOXC1 loss further, I quantified Bu-HFSC 

numbers in young (P19, 1st telogen and P42, 2nd telogen) and aged (≥ 1.5 years) 

mice. In 1st telogen, both WT and Foxc1-K14Cre-cKO HFs had one bulge with no 

significant differences in Bu-HFSC numbers. However, in 2nd telogen, while WT 

HFs had established a two-bulge architecture, Foxc1-K14Cre-cKO HFs still had 

only one bulge, and failed to expand their Bu-HFSC numbers like WT HFs did 

(Figures 6A-C). This one-bulge phenotype persisted in subsequent hair cycles: 

while WT hair follicles had up to three and four bulges in 3rd and 4th telogen 

respectively, Foxc1-K14Cre-cKO hair follicles continued to maintain only one 

(Figure 6D).  

Once an old club hair is shed, the bulge structure disappears. Therefore, in aged 

mice, WT hair follicles continued to maintain a 2-4 bulge architecture, while Foxc1-

K14Cre-cKO hair follicles still had only one bulge. Notably, their bulges were 

frequently smaller and contained dramatically fewer Bu-HFSCs when compared to 

both aged WT hair follicles and young Foxc1-K14Cre-cKO hair follicles (Figures 

6C and 6E). By these criteria, starting from 2nd telogen, Foxc1-K14Cre-cKO Bu-

HFSC numbers appeared to wane with subsequent hair cycles. 

To test the ability of aged Foxc1-K14Cre-cKO HFSCs to regenerate hairs, I 

depilated the hair coat, which removed the club hair and its associated K6+ inner 

bulge layer, a potent source of HFSC-inhibitory factors BMP6 and FGF18, thereby 

stimulating HFSC proliferation and anagen entry (Hsu et al., 2011). Interestingly, 
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both young and aged Foxc1-K14Cre-cKO HFSCs proliferated one day earlier than 

their WT counterparts (Figures 6F and 6G). However, by 5 days post-depilation, 

young and aged WT hair follicles and young Foxc1-K14Cre-cKO hair follicles had 

progressed to mid-anagen, but some aged Foxc1-K14Cre-cKO hair follicles were 

still in early anagen, even though their HFSCs in the bulge and upper outer root 

sheath (ORS) showed signs of proliferation (Figure 6H). Consequently, despite an 

initial accelerated response, aged Foxc1-K14Cre-cKO HFSCs regenerated a hair 

coat more slowly than their aged WT and young mutant counterparts, suggesting 

a functional decline (Figure 6I). 
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Figure 6. Without FOXC1, HFs fail to maintain multiple bulges and club hairs 
and display reduced HFSCs. 
(A) Whole-mount immunofluorescence of WT and Foxc1-cKO 1st telogen (left 

panel) and 2nd telogen (right panel) HFs. CD34 (green) marks outer bulge layer 
(HFSCs); K6 (red) marks inner bulge layer; red autofluorescence marks club 
hair.  

(B) Quantification of 2nd telogen HFs with one bulge in dorsal skin (n ≥ 4 mice, ≥ 
80 HFs from each mouse). Box-and-whisker plot: midline, median; box, 25th 
and 75th percentiles; whiskers, minimum and maximum. ****p < 0.0001. 

(C) Quantification of total number of CD34+ HFSCs (both basal-Bu and 
suprabasal-Bu) per whole-mount HF (n ≥ 2 mice, ≥ 10 HFs per mouse). ****p 
< 0.0001; ns, non-significant. 

(D) Whole-mount immunofluorescence of WT and Foxc1-cKO HFs in 3rd and 4th 
telogen. Note the increase in bulge numbers in WT but persistent one-bulge 
phenotype in Foxc1-cKO. CD34 expression is frequently weaker in Foxc1-cKO. 

(E) Whole-mount immunofluorescence of HFs in aged (≥ 1.5 years) WT and 
Foxc1-cKO animals. Bu, bulge; HG, hair germ; SG, sebaceous gland. 

(F) Sagittal section immunofluorescence of HFs which were depilated and then 
pulsed with BrdU for 24 hr. Skin biopsies were retrieved at t = 24 and 48 hr 
post-depilation (pd). PCAD (P-cadherin) stains HG and outlines Bu. Note that 
both aged and young Foxc1-cKO HFs responded faster than WT. 

(G) Quantification of BrdU+ cells in Bu and HG 24 hr post-depilation (n = 2 mice, 
≥ 10 HFs per mouse). **, p < 0.01; **** p < 0.0001. 

(H) Sagittal sections from Day 5 post-depilated mice indicated that aged Foxc1-
cKO HFs progressed to regenerate new hairs more slowly than WT. 

(I) Tracking of hair coat recovery post-depilation. Note that despite the faster 
response to depilation, hair coat recovery was delayed in aged Foxc1-cKO 
mice. Scale bars = 30 μm unless indicated otherwise. 
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2.2.4 FOXC1-deficient hair follicles can make a new bulge but fail to 
maintain the older one 

Intrigued by the one-bulge phenotype, I wanted to know how it arises, and if it 

results in more than just thinning of the hair coat. I first determined whether 

FOXC1-deficient HFs failed to establish their new bulge or precociously lost their 

old one. To test the former, I employed a nucleotide analogue pulse-chase strategy. 

In late anagen (anagen VI), while Bu-HFSCs and cells in the upper and middle 

ORS had ceased proliferation, lower ORS cells were still proliferating. When these 

lower ORS cells were pulsed with BrdU and chased, some of these BrdU-labeled 

ORS cells in WT HFs survived the ensuing catagen and made the K6+ inner layer 

of the telogen new bulge, while the old bulge remained unlabeled (Hsu et al., 2011). 

In Foxc1-K14Cre-cKO HFs, the single bulge displayed BrdU-retaining K6+ cells, 

indicating that it was newly formed, just like the WT new bulge (Figure 7A). 

To confirm that the old bulge was lost, I traced the old (first) hair coat by dyeing 

it in 1st telogen and tracking it through 1st anagen (Figure 7B). In WT late anagen 

hair follicles, the dyed hairs persisted, but most of the dyed hairs in Foxc1-K14Cre-

cKO hair follicles were gradually lost during late anagen (Figure 7C). 

Immunofluorescence confirmed that WT hair follicles consisted of an old bulge 

which anchored a dyed hair and a new bulge which anchored a non-dyed hair; by 

contrast, Foxc1-K14Cre-cKO hair follicles consisted of a single new bulge 

anchoring a non-dyed hair (Figure 7B). These data indicated that with every hair 

cycle, Foxc1-K14Cre-cKO hair follicles were able to generate a new bulge and new 

club hair, but failed to maintain the old ones. 
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Figure 7. FOXC1-deficient HFs can make a new bulge but fail to maintain the 
old one. 
(A) Strategy to pulse proliferating lower ORS cells with BrdU during 1st anagen 

and analyze the pattern of label-retaining cells (LRCs) in 2nd telogen. Note that 
the Foxc1-cKO single bulges displayed the LRC pattern expected of a newly 
formed and not old bulge.  Quantification shown is respective percentages of 
WT new bulge, WT old bulge and Foxc1-cKO bulge that had retained BrdU 
label in their inner layer (n = 2 mice, 30 HFs per mouse). 

(B) Dyeing of 1st telogen hair coat and tracing it through 1st adult hair cycle to 2nd 
telogen. Note the retention of dyed hairs in WT 2nd telogen, but the near 
absence of dyed hairs in Foxc1-cKO 2nd telogen. Immunofluorescence of 2nd 
telogen HFs depicts WT old bulge anchoring old (dyed) hair, WT new bulge 
anchoring new (non-dyed) hair, and Foxc1-cKO single bulge also anchoring a 
new (non-dyed) hair. Scale bars = 30 μm. 

(C) Dyed mice were tracked closely in late anagen to monitor fate of dyed hairs. 
Note that mice illustrated here entered 1st anagen ~2 days later than described 
in Figure 1. 
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2.2.5 Preservation of the old bulge contributes to HFSC quiescence 

To investigate whether the old bulge plays a functional role in regulating hair 

cycling, I forced WT hair follicles to lose their old bulge precociously, thereby 

phenocopying Foxc1-K14Cre-cKO HFs. To do so, I depilated them in 1st telogen 

(P19) to remove the club hair and inner K6+ bulge layer, and then allowed them to 

generate a new bulge and club hair. I also shaved the un-depilated posterior region 

to monitor natural hair cycle progression (Figures 8A and 8B).  Both depilated and 

un-depilated halves generated new hairs and entered 2nd telogen by ~P40 (Figure 

8B). However, while the posterior hair follicles now had two bulges and two club 

hairs, the anterior hair follicles had only one (Figure 8C).  

I then shaved the new hairs to continue monitoring the hair cycle. While the 

posterior two-bulge hair follicles stayed in 2nd telogen for ~6.5 weeks, the anterior 

one-bulge HFs remained in 2nd telogen for only ~2.5 weeks before regenerating a 

full hair coat precociously (Figures 8B and 8H, WT 2-Bu vs. WT 1-Bu).  The 

anterior-posterior boundary was maintained throughout both hair cycles, indicating 

that precocious anagen occurred specifically in one-bulge hair follicles only. The 

converse experiment was repeated (posterior half, depilated; anterior half, shaved) 

with analogous results (Figure 8E). Under the conditions used, hair follicles were 

age-, sex- and strain-matched, thereby providing compelling evidence that the 

presence of the old bulge contributed to HFSC quiescence. Based upon the 

existing literature, I attribute this to the contribution of inhibitory signals, particularly 

FGF18 and BMP6, emanating from 1) the suprabasal Bu-HFSCs, which arise from 
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the interface between two adjacent bulges and which are no longer present in one-

bulge hair follicles (Blanpain et al., 2004), and 2) the K6+ inner layer of the old 

bulge (Hsu et al., 2011). 

Consistent with this notion and with a prior report that Foxc1 is a downstream 

target of BMP signaling in proliferative hair progenitors (Genander et al., 2014), I 

did not see significant changes in Fgf18 and Bmp6 transcripts on a per K6+ inner 

bulge cell basis in Foxc1-K14Cre-cKO one-bulge hair follicles, but we confirmed a 

reduction of inner bulge cell numbers, in addition to the complete absence of 

suprabasal Bu-HFSCs (Figure 8D). In this regard, the microenvironment of the 

Foxc1-K14Cre-cKO bulge was likely to be reduced over WT for these inhibitory 

factors, a feature that would allow stimulatory signals to overcome the threshold 

for HFSC activation more easily. 

2.2.6 Loss of FOXC1 in the presence of the old bulge also shortens telogen 

Despite the impact of the old bulge, its loss was not sufficient to fully account 

for the acutely constrained telogen observed in Foxc1-K14Cre-cKO hair follicles 

(Figure 8H, WT 1-Bu vs. cKO 1-Bu). Therefore, it was important to determine 

whether FOXC1 loss alone was sufficient to elicit telogen shortening under 

conditions where two bulges existed. To accomplish this, I used Sox9CreER to 

induce Foxc1 ablation in two-bulge hair follicles during 2nd telogen (at ~P50), 

shaved hair coats to observe hair cycle progression, and quantified telogen 

duration as time taken for at least 50% of the shaved skin to enter anagen (Figures 
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8F and 8G). I found that loss of FOXC1 alone shortened the 2nd telogen of these 

two-bulge hair follicles, but to a lesser extent than when coupled with loss of the 

bulge (Figure 8H). It was important to note that these hair follicles maintained their 

old bulges when they precociously entered anagen, but would lose them later and 

display a one-bulge phenotype in their next telogen (Figure 8I). This lends further 

support to my hair dye experiment results (Figure 7C) which suggested that the 

process of bulge loss occurred during late anagen. Taken together, these data 

demonstrated that loss of FOXC1 influenced HFSC activity in at least two different 

ways. 
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Figure 8. The old bulge contributes to HFSC quiescence.  
(A) Methodology of hair-shaving and hair-depilation/waxing. Note that depilation 

of HFs removes the club hair and associated K6+ inner layer from the bulge, 
while shaving only clips away hairs at the skin surface. 

(B) Strategy to force WT 2nd telogen HFs to have only one bulge. HF schematics 
next to mouse photos depict HF state after waxing/shaving and completion of 
anagen/catagen. 1st telogen (P19) HFs were depilated by waxing, and entered 
1st anagen at the same time as their shaved counterparts. By 2nd telogen (P40), 
shaved-HFs had two bulges/club hairs, while waxed-HFs had only one 
bulge/club hair. All HFs were then shaved to observe entry into 2nd anagen. 
Tel, telogen; Ana, anagen; Cat, catagen. 

(C) Whole-mount-immunofluorescence to validate strategy. Most 1st telogen-
shaved-HFs had two bulges/club hairs, whereas 1st telogen-waxed-HFs largely 
had one bulge/club hair only. Scale bar = 100 μm. 

(D) Left, qRT-PCR of SC-inhibitory factors from FACS-purified K6+ inner bulge 
cells. Data are mean ± SEM. Right, quantification of K6+ cell number per HF. 
Box-and-whisker plot: midline, median; box, 25th and 75th percentiles; whiskers, 
minimum and maximum (n ≥ 2 mice, ≥ 10 HFs per mouse). Note that although 
Bmp6 and Fgf18 were only slightly reduced on a per cell level, there were fewer 
K6+ inner bulge cells in FOXC1-deficient HFs, resulting in an overall reduced 
density of cells expressing these inhibitory factors. 

(E) When HFs in the posterior (post) dorsal skin were forced to have one bulge, 
they recapitulated the precocious anagen phenotype of the anterior (ant) one-
bulge HFs in (B), as evidenced by greying and darkening of posterior skin while 
anterior skin remained pink.  

(F) Strategy to induce Foxc1-KO in 2nd telogen two-bulge HFs using Sox9CreER. 
Mice were treated with tamoxifen for 5 days and observed for progression into 
anagen. Inset of mouse image depicts criteria to determine telogen duration, 
which was time taken for at least 50% of dorsal skin to enter anagen (as judged 
by greying, blackening or appearance of hair).  

(G) Left, Sox9CreER induces R26-YFP expression efficiently and specifically in 
HFs. Right, qRT-PCR shows the efficient deletion of Foxc1 in FACS-purified 
Bu-HFSCs. Data are mean ± SEM (n = 3 mice). Scale bar = 30 μm. 

(H) 2nd telogen duration determined by criteria described in (F). WT two-bulge HFs, 
WT one-bulge HFs (post-depilation-recovery), Foxc1-Sox9CreER-cKO two-
bulge HFs and Foxc1-K14Cre-cKO one-bulge HFs were compared. Box-and-
whisker plot: midline, median; box, 25th and 75th percentiles; whiskers, 
minimum and maximum (n ≥ 10 mice).  **p < 0.01; ****p < 0.0001. 

(I) Left, after tamoxifen treatment in 2nd telogen and allowing HFs to progress 
through anagen à 3rd telogen, Foxc1-Sox9CreER-WT HFs had 2 or 3 bulges, 
while cKO HFs maintained their old bulges when they entered anagen 
precociously, but lost them by 3rd telogen. Right, quantification of number of 
bulges per 3rd telogen HF (n ≥ 4 mice, 70 ≥ HFs from each mouse). ns, non-
significant; ****p < 0.0001. Scale bar = 30 μm. 
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2.2.7 FOXC1 re-establishes and maintains quiescence of HFSCs after their 
activation 

To explore Bu-HFSC-intrinsic effects resulting from the loss of FOXC1, I 

performed RNA sequencing (RNA-seq) on late anagen and 2nd telogen Bu-HFSC 

populations purified by fluorescence activated cell sorting (FACS). Late anagen 

Bu-HFSCs were obtained from Foxc1-Sox9CreER-cKO mice in which Foxc1 

deletion was induced in the prior 1st telogen, while 2nd telogen Bu-HFSCs were 

purified from both Foxc1-K14Cre-cKO (one-bulge) and Foxc1-Sox9CreER-cKO 

(two-bulge) hair follicles. In addition to YFP (for Foxc1-Sox9CreER), antibodies 

against CD34 (Bu-HFSC marker), α6 (marker of basal epithelial cells, including 

Bu-HFSCs) and SCA1 (marker of epidermis, for exclusion) were used for FACS 

purification (Figure 9A). I first investigated transcripts (with FPKM > 1) that were 

significantly up-regulated (p-value < 0.05, false-discovery rate (q-value) < 0.05) 

upon FOXC1 loss and found that these were enriched for genes encoding cell 

cycle-associated proteins, be it anagen or 2nd telogen hair follicles with one bulge 

or two bulges (Figures 9B-F and 10A; see Materials and Methods for RNA-seq 

data analysis details). 

Since up-regulation of cell cycle genes upon FOXC1 loss was persistent across 

all stages of the hair cycle, I asked if these Foxc1-cKO Bu-HFSCs could even exist 

in a quiescent state. Cell cycle profiling was performed on FACS-purified Bu-

HFSCs using a DNA dye to quantify DNA content, and Ki67 to distinguish G0 

(quiescent) cells from cells in G1, S, G2 or M phases of the cell cycle. Analysis in 

late anagen confirmed that while WT Bu-HFSCs had largely returned to 
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quiescence (G0, as judged by DNA content and absence of Ki67) following their 

proliferative activity in early anagen, an appreciable fraction of Foxc1-cKO Bu-

HFSCs remained in the cell cycle (non-G0), although most cells had also returned 

back to quiescence (Figure 10B). A similar trend was observed in 2nd telogen, at a 

time when almost all WT Bu-HFSCs were in quiescence (Figure 10C).  

Further evidence to support the increased proliferative capacity of Foxc1-cKO 

Bu-HFSCs came from in vitro studies in which FACS-purified Bu-HFSCs were co-

cultured with feeder fibroblasts for 2 weeks and allowed to make colonies. Indeed, 

Foxc1-cKO Bu-HFSCs exhibited greater colony formation efficiency, analogous to 

that displayed by cultured HG-HFSCs that were also more primed to proliferate in 

vivo (Greco et al., 2009) (Figure 10D).   

Taken together, loss of FOXC1 delayed the return of anagen Bu-HFSCs from 

an activated state to a quiescent state, and also primed telogen Bu-HFSCs to 

proliferate precociously, suggesting that FOXC1 acts to re-establish Bu-HFSC 

quiescence during anagen and maintain it during telogen.  

 Previously, it was shown that absence of the quiescence-associated NFATc1 

causes de-repression of the cell cycle gene Cdk4, precocious HFSC activation and 

premature hair cycling (Horsley et al., 2008). Interestingly, when I conditionally 

ablated Nfatc1 in hair follicles, I discovered that in addition to their precocious hair 

cycle entry, hair follicles also displayed a one-bulge phenotype (Figure 10E). 

These data led me to hypothesize that upon loss of either FOXC1 or NFATc1, the 

HFSC-intrinsic proliferative activity itself may contribute to both faster hair cycling 

and loss of the bulge; the bulge loss in turn couples with this HFSC-intrinsic 



41 

proliferative nature to further accelerate future hair cycles. I will re-address this 

hypothesis in a later section. 
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Figure 9. RNA-seq summary of up-regulated genes in Foxc1-cKO Bu-
HFSCs. 
(A) FACS strategies to purify Bu-HFSCs from late anagen and 2nd telogen. 
(B) Summary of transcriptional profiling of Foxc1-cKO vs. WT Bu-HFSCs in late 

anagen by RNA-seq. Shown here are significantly up-regulated genes (FPKM > 
1, p < 0.05, q < 0.05).  

(C) Gene ontology (GO)-biological process (BP) term analysis of significantly up-
regulated genes in late anagen. 

(D) Summary of transcriptional profiling of Foxc1-cKO vs. WT Bu-HFSCs in 2nd 
telogen by RNA-seq. Shown here are significantly up-regulated genes (FPKM > 
1, p < 0.05, q < 0.05). 

(E) GO-BP term analysis of significantly up-regulated genes in 2nd telogen.  
(F) Genes in the GO-cell cycle term, commonly up-regulated in both late anagen 

and 2nd telogen, are shown. 
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Figure 10. Governance of HFSC quiescence is necessary to maintain the old 
bulge. 
(A) Heat map to illustrate changes in expression of cell cycle genes (listed in Figure 

9F) through the 1st hair cycle. Tel, telogen; Ana, anagen. 
(B) Cell cycle analysis of late anagen (substages Ana V and Ana VI) Bu-HFSCs by 

flow cytometry and quantification of percentages of cells in various phases of 
the cell cycle. Ki67 marks cycling cells; DNA content distinguishes cells in 
S/G2/M from G1/G0). Data are mean ± SEM (n ≥ 3 mice). *p < 0.05; ***p < 
0.001; p**** < 0.0001. 

(C) Cell cycle analysis of 2nd telogen Bu-HFSCs by flow cytometry and 
quantification of percentages of cells in various phases of the cell cycle. “Mid” 
and “sides” refer to midline and lateral regions of dorsal skin from which cells 
were analyzed. Data are mean ± SEM (n ≥ 3 mice). ***p < 0.001; ****p < 0.0001. 

(D) Colony formation efficiency of Foxc1-cKO compared to Foxc1+/- Het Bu-HFSCs. 
Left, 2nd telogen FACS-purified Bu-HFSCs were cultured in vitro for two weeks 
and allowed to form colonies, which were then fixed and stained with 
Rhodamine B. Middle, number of colonies formed per 33,000 cells plated. Right, 
area of each colony. Data are mean ± SEM (n ≥ 3 mice, triplicates per mouse). 
**p < 0.01; ****p < 0.0001. 

(E) Whole-mount immunofluorescence of Nfatc1-cKO HFs, showing a one-bulge 
phenotype. Since NFATC1 loss enhances Bu-HFSC proliferative activity, the 
one-bulge phenotype suggests that deregulation of quiescence may contribute 
to premature loss of the old bulge. Scale bar = 100 μm. 
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2.2.8 FOXC1 ensures anchorage of old bulge to prevent its loss during 
anagen 

Before exploring the possible relation between stem cell quiescence and bulge 

maintenance, I sought to understand how FOXC1 acts to preserve the old bulge. 

Since the old hairs were lost in anagen (Figures 7C and 8I), I examined the genes 

that were significantly down-regulated in Foxc1-cKO anagen Bu-HFSCs prior to 

their loss, and found an enrichment of cell-cell and cell-extracellular matrix (ECM) 

adhesion transcripts, along with those encoding various intermediate filament 

components (Figure 11).  

Hypothesizing adhesion to be the underlying defect causing the bulge loss, I 

tracked the fate of the old bulge and club hair using keratin 24 (K24). In 1st telogen, 

K24 was expressed specifically by Bu-HFSCs (Figure 12A). In anagen, besides 

labeling the old Bu-HFSCs, K24 also labeled a region of the newly growing HF that 

was adjacent to the old bulge, hence marking the site of the future new bulge. 

Throughout WT anagen, the old bulge resided next to this new bulge site and 

below the adipophilin-expressing sebaceous gland (Figures 12B and 12D, top 

panel).  

In striking contrast, the Foxc1-cKO old bulge became separated from the new 

bulge site as the emerging new hair moved past it. As anagen progressed, the old 

bulge was seen above the sebaceous gland and sometimes even near the skin 

surface, being completely excluded from the new bulge region (Figures 12B and 

12D, bottom panel). This process eventually resulted in the one-bulge hair follicle 

observed in 2nd telogen (Figure 12C). 
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I further observed that this process sometimes left a trail of K24+ cells behind 

the old bulge, suggesting that HFSCs were being lost along with it (Figure 12D, 

bottom panel). Indeed, by flow cytometry, Foxc1-cKO HFs displayed few if any 

suprabasal Bu-HFSCs (CD34Hiα6Lo), and a reduction in the proportion of basal Bu-

HFSCs (CD34Hiα6Hi) (Figure 12E). Additionally, as quantified earlier, Foxc1-cKO 

Bu-HFSC numbers were lower than WT beginning in their 2nd telogen (Figure 6C). 

Finally, I performed a “hair-pull test” by applying an adhesive surgical tape and 

then peeling it off from the hair coat. Indeed, many more hairs came out from 

Foxc1-cKO than WT skin, indicating that Foxc1-cKO hairs were plucked out more 

easily than WT hairs (Figure 12F). Together, these data suggest that FOXC1 

functions in part to ensure adequate adhesion of the old bulge to prevent its loss 

during anagen. 
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Figure 11. RNA-seq summary of down-regulated genes in Foxc1-cKO Bu-
HFSCs. 
(A) Summary of transcriptional profiling of Foxc1-cKO vs. WT Bu-HFSCs in late 

anagen by RNA-seq. Shown here are significantly down-regulated genes 
(FPKM > 1, p < 0.05, q < 0.05). 

(B) Gene ontology (GO)-biological process (BP) term analysis of significantly 
down-regulated genes in late anagen. 

(C) GO-cellular component (CC) term analysis of significantly down-regulated 
genes in late anagen. 
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Figure 12. FOXC1 functions to anchor the old bulge during hair growth. 
(A) K24 expression in 1st telogen HFs. Note its restriction to the outer layer of 

bulge, i.e. Bu-HFSCs. 
(B) Position of old bulge relative to new bulge (marked by K24) and sebaceous 

gland (marked by adipophilin) in anagen HFs. 
(C) K24 expression in 2nd telogen HFs. Note the persistence of the old bulge/club 

hair but its complete exclusion from the new bulge in Foxc1-cKO HF. 
(D) Immunofluorescence of sagittal sections of anagen HFs. K24 marks the old-

Bu-HFSCs and the new bulge region in newly growing HFs. K6 marks the 
inner layer of the old bulge and the companion layer of the new HF. PCAD (P-
cadherin) marks the relatively undifferentiated progenitors of the HF, including 
those of the bulge and sebaceous gland (SG). Scale bars = 30 μm 

(E) Flow cytometry analysis of dorsal skin epithelial cells in 2nd telogen. Depicted 
are singly dissociated HF cells that were negative for SCA1 (marker of basal 
epidermis) and positive for CD34 (surface marker of Bu-HFSCs) and α6 
integrin (surface marker of all basal epithelial cells). Note that Foxc1-cKO HFs 
have only CD34Hi basal Bu-HFSCs, but lack the suprabasal-Bu-HFSC 
population characteristic of the interface between two bulges. 

(F) Tape assay. A surgical tape was affixed to the hair coat, then peeled off to 
assess amount of hairs that come off with the tape (n = 3 mice). 
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2.2.9 Proliferative Bu-HFSCs display reduced E-cadherin 

Since loss of FOXC1 perturbed the transcription of genes encoding cell-ECM 

adhesion molecules, I FACS-purified Bu-HFSCs and tested their ability to adhere 

to different ECM components in vitro. Although cell-ECM adhesion defects could 

still be rooted in matrix production and organization, I did not observe significant 

differences in the ability of Foxc1-cKO and WT Bu-HFSCs to adhere to these 

various substrata (Figure 13A). 

On the other hand, my data presented in Chapter 2.2.7 raised the intriguing 

possibility of a link between stem cell-intrinsic proliferative behavior and a 

reduction in intercellular adhesion. These two cellular events often occur 

concomitantly in different biological contexts, prompting me to address whether 

the propensity of Foxc1-cKO Bu-HFSCs to proliferate might impact their 

intercellular adhesion. 

I first noticed a possible compromise in adhesion between Foxc1-cKO Bu-

HFSCs in vitro, when I performed immunofluorescence for E-cadherin (ECAD), the 

central core of adherens junctions, to distinguish between epithelial cells (ECAD-

positive) and co-cultured fibroblast feeder cells (ECAD-negative). I frequently 

observed reduction in ECAD intensity in cultured Foxc1-cKO Bu-HFSCs when 

compared to WT Bu-HFSCs (Figure 13B). When RNA-seq indeed revealed 

reduced expression of cell adhesion transcripts in the absence of FOXC1 loss 

(Figure 11), I focused on analyzing ECAD expression as a read-out of cell 

adhesion in vivo. In WT telogen HFs (Figure 13D, left panel), both basal (inset a) 
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and suprabasal (inset b) CD34+ Bu-HFSCs showed intense junctional ECAD 

immunolabeling, irrespective of whether they were in contact with themselves or 

with the inner K6+ layer. However, in Foxc1-cKO HFs, junctional ECAD 

immunolabeling was reduced, especially at sites where Bu-HFSCs contacted each 

other (Figure 13D, right panel). This was intriguing given that ECAD’s gene, Cdh1, 

was not affected transcriptionally by loss of FOXC1 (Figure 13C). Additionally, in 

contrast to the well-organized bi-layer of compacted cells in WT bulge, Foxc1-cKO 

bulge often consisted of three layers of disorganized and elongated cells (Figure 

13D).  

I pursued these tantalizing hints at a relation between cell proliferation and 

intercellular adhesion by monitoring ECAD protein levels in WT Bu-HFSCs as they 

underwent the hair cycle (Figure 13E). Interestingly, Bu-HFSCs displayed their 

highest levels of ECAD when they were quiescent during telogen. Strikingly, they 

down-regulated ECAD protein levels dramatically as they became proliferative 

during early anagen. ECAD levels were up-regulated again as Bu-HFSCs returned 

back to quiescence in late anagen (Figure 13E). In this way, ECAD protein (but not 

mRNA, Figure 13C) expression inversely correlated with cell cycle gene 

expression, which was high in early anagen, down-regulated in late anagen, and 

further reduced in telogen (Figure 10A).  

Although Foxc1-cKO Bu-HFSCs exhibited similar ECAD expression dynamics, 

they exhibited lower levels than WT Bu-HFSCs at each stage throughout the hair 

cycle. This was especially evident in late anagen and telogen (Figure 13E), a 

feature which corresponded to their atypical persistence in the cell cycle as 
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revealed by RNA-seq and cell cycle profiling (Figure 10). Taken together, the 

failure of Foxc1-cKO Bu-HFSCs to return to quiescence and up-regulate ECAD 

promptly in late anagen could generate a mechanically weakened cell-cell 

adhesion state, which could account for the loss of the old bulge as the newly 

growing hair pushed pass it. 
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Figure 13. Exploring cell-ECM and cell-cell adhesion properties of Foxc1-
cKO Bu-HFSCs. 
(A) In vitro cell adhesion assay. Top, FACS-purified WT and Foxc1-cKO Bu-

HFSCs were plated on collagen I, fibronectin, laminin-511 or matrigel-coated 
polyethylene-glycol 24-well culture plates in equal numbers in triplicates (n=2 
mice). After 1 hr, non-adherent cells were washed away and adherent cells 
were fixed, permeabilized and stained for keratin-14 (K14). Odyssey infrared 
scanner was used to visualize K14+ cells, which are depicted here as individual 
greyscale dots within each well (see Materials and Methods). Bottom, total area 
of individual adherent cells covering each well was calculated using Image J 
and presented as percentage of total well area. 

(B) Immunofluorescence of cultured Bu-HFSCs in vitro. Note the localization of 
ECAD at WT cell-cell junctions but reduced ECAD intensity at Foxc1-cKO cell 
borders. Scale bar = 30 μm. 

(C) Cdh1 transcript level from RNA-seq. FPKM, fragments per kilobase of 
transcript per million mapped reads. 

(D) Immunofluorescence of 2nd telogen HFs to analyze ECAD localization.  Inset 
(a) zooms in on basal-Bu-HFSC layer in both WT and Foxc1-cKO; note that the 
compacted, organized bilayer of cells, characteristic of the WT bulge, is 
disorganized and displays extraneous cells in the Foxc1-cKO bulge. Inset (b) 
zooms in on suprabasal-Bu-HFSC layer in WT. Scale bar = 30 μm. 

(E)  
(F) Immunoblotting of FACS-purified Bu-HFSCs illustrates dynamic changes in 

ECAD levels during the hair cycle. Quantifications are mean ± SEM of ≥ 3 
independent replicates normalized to WT using GAPDH as loading control. 
Note that FOXC1 loss reduces overall ECAD levels but does not alter their 
dynamics during the hair cycle. 
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2.2.10    Direct perturbation to cell-cell adhesion is sufficient for bulge loss 

Finally, to functionally test if reduction in ECAD was sufficient to cause the bulge 

loss in Foxc1-cKO hair follicles, I conditionally ablated Cdh1. Since Cdh1fl/fl x 

K14Cre mice exhibit early aberrations in hair follicles (Tinkle et al., 2004), I used 

Sox9CreER to efficiently induce Cdh1 ablation in 2nd telogen hair follicles (Figure 

14A). At this time, some hair follicles had begun to display a disorganized bulge 

with three cell layers (Figure 14A), similar to that frequently observed in Foxc1-

cKO hair follicles (Figure 13D). I then allowed hair follicles to progress from 2nd 

telogen à 2nd anagen à 3rd telogen. 

I checked for timing of 2nd anagen entry. Unlike FOXC1 loss mediated by the 

same Sox9CreER (Figure 8H), ECAD loss did not result in precocious anagen, 

suggesting its putative role downstream of Bu-HFSC proliferation. However, like 

Foxc1-cKO HFs (Figure 12D), as Cdh1-cKO HFs were undergoing their 2nd 

anagen, their bulge was mis-localized relative to the newly specified bulge region 

(Figure 14B). Moreover, as the old bulge moved upward, some K24+ cells moved 

with it and were excluded from the new bulge region, while others were left behind 

ectopically (Figure 14B, arrow). 

Subsequently by 3rd telogen, like Foxc1-cKO hair follicles (Figures 6A, 6B and 

8I), most Cdh1-cKO hair follicles displayed single bulges (Figure 14C). Overall, 

with the exception of the precocious entry into the hair cycle, the bulge loss 

phenotype seen with depletion of ECAD bore resemblance to that of Foxc1-cKO 

hair follicles.  
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Consistent with the fact that Foxc1-cKO Bu-HFSCs displayed only reduced and 

not silenced ECAD, the full Cdh1 ablation in hair follicles resulted in a more severe 

phenotype, evident in their single bulge displaying a highly aberrant structure 

(Figure 14C). Based upon these collective data, I conclude that the loss of the old 

bulge in Foxc1-cKO hair follicles was predicated upon enhanced proliferative 

activity of Bu-HFSCs, coupled with reduced ECAD. 

 

 

Figure 14. Reducing intercellular junctions between HFSCs contributes to 
the loss of the old bulge during new hair growth. 
(A) Strategy to ablate Cdh1 gene expression in skin HFs by using Sox9-CreER 

mice. Immunofluorescence images depict loss of ECAD after tamoxifen 
treatment and appearance of disorganized cells within the bulge, compared 
with WT.  

(B) Immunofluorescence of sagittal sections of Cdh1-cKO anagen HFs depicting 
the position of the old bulge relative to the newly specified bulge. Arrow points 
to a trail of K24+ cells, left behind as the old bulge moved upwards. 

(C) Immunofluorescence of WT and Cdh1-cKO 3rd telogen HFs. Quantifications 
show that most Cdh1-cKO HFs had only one bulge by their 3rd telogen. Box-
and-whisker plot: midline, median; box, 25th and 75th percentiles; whiskers, 
minimum and maximum (n ≥ 4 mice, ≥ 80 HFs per mouse). ***p < 0.001. Scale 
bars = 30 μm unless indicated otherwise. 
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2.3 Discussion 

2.3.1 Summary of results 

 The ability to make tissue(s) is a necessary feature of all stem cells, regardless 

of differences in the dynamics of tissue regeneration. In vitro, many tissue stem 

cells, including epidermal and HFSCs, can be passaged long-term without loss of 

their tissue regenerating capability (Green, 1991; Huch et al., 2013; Jones et al., 

1995; Sato and Clevers, 2015; Sato et al., 2009). In vivo, stem cell markers can 

lineage-trace progeny that survive in tissues long-term (Barker et al., 2007; 

Samokhvalov et al., 2007), although a recent detailed study of hematopoietic stem 

cells (HSCs) self-renewal suggests that adult homeostasis may be sustained by 

multiple short-term stem cells that receive rare input from polyclonal long-term 

HSCs (Busch et al., 2015; Sun et al., 2014). In all of these cases, the outcome is 

long-term ability to regenerate the tissue.  

Less is clear about the multiple facets which are required to balance stem cell 

usage within the native tissue. Mice lacking FOXC1 in their hair coat allowed me 

to explore this captivating issue. In dissecting their complex phenotype that arises 

by the loss of a single transcription factor, I unearthed a variety of ways in which 

HFSCs interact with their environment to govern their proliferation and conserve 

their tissue regenerating potential. Specifically, I found that FOXC1 loss in hair 

follicles causes the following: 1) Bu-HFSCs become primed to proliferate, as 

evidenced by their cell cycle status, earlier response to an activating stimulus in 
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vivo, and increased colony forming efficiency in vitro; 2) Bu-HFSCs express lower 

ECAD levels in part due to their proliferative nature; 3) hair follicles lose their old 

bulge as a result of the compromised cell-cell adhesion, and fail to expand their 

stem cell numbers and thicken the animal’s hair coat; 4) hair follicles consequently 

accelerate their hair cycling; 5) when aged, hair follicles fail to maintain Bu-HFSC 

numbers and regenerate new hairs promptly, leading to a markedly sparse hair 

coat. 

2.3.2 Two is better than one: the role of the older bulge 

My work has established an importance for the unique property of mouse pelage 

hair follicles to preserve their older bulge(s). Following embryonic and early 

postnatal morphogenesis, both WT and Foxc1-cKO adult P19 hair follicles exist in 

1st telogen as a single bulge anchoring a single club hair. 1st telogen typically lasts 

only 2 to 3 days, because shortly after, HFSCs proliferate in anagen to make a 

new hair and new bulge. However, unlike WT hair follicles which will retain the 

older bulge(s) as they undergo more rounds of regeneration, Foxc1-cKO hair 

follicles always lose their prior bulge whenever they make a new one, and thus 

never advance past their initial starting point of having only one bulge. A critical 

repercussion is the loss of local inhibitory factors emanating from both K6+ inner 

bulge (Hsu et al., 2011) and suprabasal Bu-HFSCs that normally form the interface 

between two bulges (Blanpain et al., 2004). This becomes manifest in the failure 

of either FOXC1-deficient Bu-HFSCs, or WT Bu-HFSCs in a one-bulge 
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environment, to stay in prolonged quiescence. Moreover, although ablation of 

Foxc1 in a two-bulge hair follicle did shorten the stem cell quiescence period, 

indicative of an intrinsic defect, the presence of the second bulge nevertheless 

delayed the precocious anagen entry of the active bulge as compared to that seen 

in Foxc1-cKO one-bulge hair follicles. 

These findings are relevant in light of other hair follicles such as rodent whiskers, 

which do not accumulate multiple bulges and, like Foxc1-cKO pelage hair follicles, 

also exhibit shorter telogen durations, as evident in the appearance of a new 

whisker shortly after (~1 week) the old whisker has stopped growing in length. 

Similar to the old club hair and bulge loss observed in Foxc1-cKO anagen hair 

follicles, the old whisker also falls off when the new whisker is still growing. 

Intriguingly, the whisker could undergo 7 growth cycles within the first 8 months, 

resembling Foxc1-cKO hair follicles that could undergo up to 6 hair cycles within 

the first 9 months of age (Figure 4E) (Ibrahim and Wright, 1975). 

Overall, my results provide compelling evidence that prior bulges participate in 

regulating HFSC quiescence and hair cycling. Indeed, excessive tissue 

regeneration and stem cell expenditure have no favorable outcome in FOXC1-

deficient mice, as their hair coat remains thin. My findings suggest that furry 

mammals have acquired a means to generate new bulges and preserve the older 

ones in order to maintain tissue regenerative potential for the lifetime of the animal. 

It has been demonstrated that HFSCs that have undergone fewer divisions are 

set aside in the old bulge to participate in wound healing, while those with more 

divisions are recycled into the new bulge and tasked with homeostatic hair 
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regeneration (Hsu et al., 2011). A WT hair follicle almost never accommodates 

more than four bulges. What happens to the older bulges is still unknown. An 

intriguing idea is that once a bulge sheds its old hair, its HFSCs with their low 

division history fold into the newer bulge(s) and “rejuvenate” the HFSC pool to 

improve its efficiency in hair cycling and wound repair. 

2.3.3 A distinct hair loss mechanism 

Intercellular adhesion defects are also at the root of another mouse mutant that 

fails to maintain its hair coat, namely mice lacking the desmosomal glycoprotein, 

desmoglein 3 (DSG3) (Koch et al., 1998). That said, the mechanism of bulge and 

club hair loss by Foxc1-cKO hair follicles seems to be distinct from Dsg3-KO mice, 

which lose their entire hair coat during telogen, and hence undergo cyclical balding. 

By contrast, Foxc1-cKO mice lose only their old club hairs (and not the newly 

generated hair) during anagen, and thus continuously display a new hair coat layer. 

Moreover, the adhesive defect in Dsg3-KO hair follicles was attributed to reduced 

adhesion between the two bulge layers, while that in Foxc1-cKO hair follicles 

appears to involve inter-HFSC adhesion, resulting in a failure to retain the old bulge 

HFSCs. 

The hair loss process that is thought to occur naturally is termed exogen, in 

which the club hair is shed from the hair follicle. Because it happens infrequently 

in WT pelage hair follicles, multiple bulges accumulate. When it does happen, it 

largely coincides with anagen (Higgins et al., 2009; Milner et al., 2002). 
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Interestingly, Foxc1-cKO hair follicles also lose their club hairs in late anagen. 

However, while exogen is thought to involve the proteolytic shedding of the club 

hair from the bulge in situ without loss of Bu-HFSCs, due to the balance between 

proteases and protease inhibitors tipping in favor of the former (Higgins et al., 

2009), Foxc1-cKO hair follicles appear to lose their old bulge (K24+ HFSCs, K6+ 

inner cells, and club hair) in its entirety. Expression of the transcripts encoding 

these proteases and protease inhibitors that influence exogen was also not 

changed in Foxc1-cKO Bu-HFSCs. Additionally, Foxc1-cKO bulge loss appears to 

take place only when subjected to a stimulus, which in the hair cycle is the 

mechanical force imposed by the newly growing hair during anagen. By contrast, 

during telogen, the single bulge remains in position. As more is learned about the 

normal process of exogen, the extent to which Foxc1-cKO mice might serve as a 

model of premature exogen should become more apparent. 

2.3.4 An aged phenotype not normally observed in WT 

Mouse pelage hair follicles employ multiple strategies to keep their stem cells 

quiescent and restrict the number of hair cycles to only what is necessary to 

maintain a full hair coat. As such, the hair coats of aged and young mice are usually 

quite similar in appearance. However, when mice are forced by repeated depilation 

to undergo excessive hair cycling, their hair coat greys, suggesting a deleterious 

impact on melanocyte stem cells which are activated along with Bu-HFSCs during 

regeneration (Endou et al., 2014).  In this regard, it is interesting that the Foxc1-
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cKO hair coat also greyed as mice aged. Since Foxc1 ablation was restricted to 

the epithelium, its effects on melanocytes appeared to be a secondary 

consequence. While future studies will be needed to dissect the precise 

mechanisms, the hair greying could reflect over-usage of melanocyte stem cells 

during the more frequent hair cycling, a failure of a smaller bulge to accommodate 

sufficient melanocyte stem cells, or defective crosstalk between FOXC1-deficient 

HFSCs and WT melanocyte stem cells.  

In the context of hematopoietic SCs (HSCs), their “exhaustion” is typically 

determined by their decline in ability to reconstitute the entire hematopoietic 

system when subjected to serial transplantation. It has been suggested that the 

less proliferative HSCs from aged mice of longer-lived strains reconstitute the 

blood more efficiently than the more proliferative HSCs from aged mice of shorter-

lived strains, suggesting a more rapid functional exhaustion in the latter (Orford 

and Scadden, 2008). Here, I propose a highly analogous case of HFSC exhaustion, 

in which FOXC1-deficient Bu-HFSCs are able to cope with tissue maintenance in 

young mice but, having undergone more rounds of cell division and tissue 

regeneration than WT, find themselves impaired in their ability to maintain their 

numbers and make new hairs promptly in aged mice. This is especially intriguing 

given that hair follicles naturally set aside stem cells that have divided more 

frequently for new rounds of hair production (Hsu et al., 2011), and FOXC1 loss 

further expends their activity. 
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2.3.5 Intercellular adhesion, E-cadherin and stem cell biology 

ECAD serves important functions in the Drosophila germline stem cells (GSCs). 

In the testis, ECAD orientates the centrosome and spindle of GSCs in mediating 

their adhesion to their niche hub cells (Inaba et al., 2010). In the ovary, GSCs 

adhere to their niche cap cells via ECAD, whose loss results in their departure from 

their niche (Song et al., 2002). As such, ECAD mediates the competition of female 

GSCs for niche occupancy, whereby only WT GSCs with higher ECAD expression 

stay adhered to the cap cells. This potentially acts as a quality control mechanism 

to keep only the functional and less differentiated GSCs within their niche (Jin et 

al., 2008).  

In the hair follicle bulge, HFSCs also adhere to their niche K6+ cells via ECAD, 

as evidenced by high ECAD expression between these two cell layers. Additionally, 

the adherence of Bu-HFSCs to one another is also mediated at least in part by 

ECAD (Figure 12B). My results indicated that when ECAD-mediated cell adhesion 

was perturbed, either by reducing ECAD protein levels (as in Foxc1-cKO hair 

follicles) or by completely ablating ECAD expression (as in Cdh1-cKO hair follicles), 

bulge integrity became perturbed 1) within the bulge, in which the usually well-

compacted bilayer of bulge cells became disorganized, sometimes having 

extraneous cells present in between the two cell layers; and 2) between two bulges, 

in which the adhesion of the older bulge to the newly forming bulge became 

compromised, consequently resulting in its complete loss in every hair cycle.  
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The timing of bulge loss in anagen suggests that the reduction of ECAD leads 

to a weakening of intercellular connections within the bulge that are necessary to 

withstand the mechanical pressures of hair protrusion.  In this regard, it is notable 

that adherens junctions are needed to organize actin-myosin based filament 

networks across skin epithelial cells and are also important in sensing and 

activating tension-based signaling (Schlegelmilch et al., 2011; Silvis et al., 2011; 

Vasioukhin et al., 2000). Although the precise mechanisms involved in bulge 

retention remain to be elucidated and could involve more than ECAD, these 

relations provide a plausible working model for how loss of FOXC1 might be linked 

functionally to the reduced threshold in withstanding the mechanical tension 

necessary to anchor the reserve SC pool throughout subsequent hair cycles. 

My studies suggest that the proliferative nature of Foxc1-cKO Bu-HFSCs can 

partly account for their reduced ECAD protein levels. Thus, as evidenced in WT 

Bu-HFSCs, ECAD levels inversely correlated with cell cycle status throughout the 

periodic bouts of tissue regeneration. FOXC1 plays a critical role to re-establish 

Bu-HFSC quiescence and restore levels of adhesion proteins, including ECAD. In 

its absence, cells remain proliferative while cell adhesion gene expression and 

ECAD levels remain low, ultimately causing the loss of the bulge and its associated 

consequences. 

As for Cdh1-cKO bulge, while ECAD expression was completely abolished, 

there was detectable up-regulation of P-cadherin (PCAD) expression, consistent 

with previous reports (Figure 13C; Tinkle et al., 2007). PCAD could be partially 

compensating for ECAD loss by maintaining adhesion of Bu-HFSCs to their K6+ 
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niche cells, but it could not rescue the loss of the old bulge. Notably, its 

organizational defects became more apparent after completing one round of hair 

cycle, whereby multiple Bu-HFSC layers were more obviously detected. This could 

be due to retention of cells left behind by the old bulge that got lost in the prior hair 

cycle, or due to defects in making the new bulge. It would be interesting to address 

these issues and improve our understanding of how adhesion molecules function 

to enable SCs to take up residence in and organize themselves within their niche. 
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2.4 Materials and Methods 

Mice and procedures 

Foxc1flox mice were obtained from Dr. Tsutomu Kume (Sasman et al., 2012). K14-

Cre, Sox9-CreER, Nfatc1flox, Cdh1flox and Rosa26Flox-Stop-Flox-YFP were described 

previously (Aliprantis et al., 2008; Boussadia et al., 2002; Mao et al., 1999; Soeda 

et al., 2010a; Vasioukhin et al., 1999). Sox9-CreER was activated by 

intraperitoneal (i.p.) injection of tamoxifen (75 μg/g body weight, in corn oil) once 

a day for 2-3 days. 5-bromo-2’-deoxyuridine (BrdU, Sigma, 25 μg/g body weight) 

or 5-ethynyl-2’-deoxyuridine (EdU, Thermo Fisher Scientific, 25 ug/g body weight) 

was injected intra-peritoneal (i.p.) into mice twice a day before putting mice under 

anesthesia to obtain a skin biopsy or before lethal administration of CO2. For 

depilation experiments, molten wax was applied onto the hair coats of anesthetized 

mice and peeled off after hardening. For the tape assay to analyze hair adhesion, 

a narrow strip of cloth surgical tape of fixed length was attached onto hairs of 

anesthetized mice and peeled off. For hair dye experiment, hairs of anesthetized 

mice were dyed using a glow-in-the-dark red hair color cream for 30-40 min before 

rinsing dye off under warm water. Dyed hair coats were visualized by fluorescence 

under Leica dissection scope. All animals were maintained in an animal facility 

approved by The Association for Assessment and Accreditation of Laboratory 

Animal Care (AAALAC), and procedures were performed with protocols approved 

by Rockefeller University’s institutional animal care and use committee (IACUC) 

members and staff. 
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Hair Cycle Analysis 

HFs were staged based on Muller-Rover et al. (Muller-Rover et al., 2001). To track 

hair cycles, full-length telogen hairs were trimmed with electric clippers to reveal 

back skin. HF entry into anagen was determined by darkening of skin and 

reappearance of hair. Completion of anagen and catagen and re-entry into telogen 

were determined by appearance of full-length hairs and loss of pigmentation in 

skin. Hairs were trimmed again to observe entry into next anagen. Mice were 

checked in this way twice a week for long-term monitoring of hair cycle status. 

Progression of first and second hair cycles in Black Swiss and C57BL/6J strains 

were verified to be largely similar. Foxc1flox (Black Swiss) X K14-Cre (CD1) mice 

were back-crossed for ≥ 4 generations to pure Black Swiss mice to achieve a 

background strain of > 90% Black Swiss. Foxc1flox (Black Swiss) X Sox9CreER ; 

R26-YFP (C57BL/6J) mice were of mixed background. Cdh1flox (C57BL/6J) X 

Sox9CreER ; R26-YFP mice were of C57BL/6J strain. Hair cycle phenotypes were 

consistently observed in both genders of mice. 

 

Antibodies 

The following antibodies and dilutions were used: FOXC1 (guinea pig, 1:1000, 

Fuchs Lab), P-cadherin (goat, 1:200, R&D), CD34 (rat, 1:100, eBioscience), LHX2 

(rabbit, 1:2000, Fuchs Lab), SOX9 (rabbit, 1:1000, Fuchs Lab), NFATc1 (mouse, 

1:100, Santa Cruz), TCF4 (rabbit, 1:250, Cell Signaling), BrdU (rat, 1:100, Abcam), 

K6 (guinea pig, 1:2000, Fuchs Lab), K24 (rabbit, 1:5000, Fuchs Lab), K14 (rabbit, 
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1:500, Fuchs Lab), E-cadherin (rabbit, 1:5000, Cell Signaling), glyceraldehyde 

phosphate dehydrogenase (GAPDH, mouse, 1:2500, Abcam). Nuclei were stained 

with 4’6’-diamidino-2-phenylindole (DAPI). EdU click-iT reaction was performed 

according to manufacturer’s directions (Thermo Fisher). 

 

FOXC1 antibody construction 

The coding region that encodes the last 200 amino acids of FOXC1 was cloned 

into pGEX-4T1 vector (GE Healthcare). BL21 Escherichia coli cells were 

transformed with the construct and induced to express the GST-tagged FOXC1 

protein fragment by isopropyl β-D-1-thiogalactopyranoside (IPTG). Bacterial 

cultures were lysed with bacterial protein extraction reagent (B-PER, Pierce) then 

sonicated and centrifuged. Agarose-glutathione beads were added to the 

supernatant to allow binding of GST-tagged protein overnight. Beads were washed 

on cellulose acetate filter spin cups (Pierce). Glutathione solution was used to elute 

the GST-tagged protein. The eluted protein was purified on a 4-12% Bis-Tris 

polyacrylamide gel and excised. The purified protein was introduced as an antigen 

into guinea pigs to generate FOXC1 polyclonal antibody (Covance). Bleeds from 

guinea pigs were obtained every 3 weeks and tested, with the 8th bleed starting to 

reveal strong and specific FOXC1 signal. 

 

Histology and Immunofluorescence 

To prepare sagittal skin sections for immunofluorescence microscopy, backskins 

were embedded in OCT, frozen and cryosectioned (20 μm). Sections were fixed 
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for 10 min in 4% paraformaldehyde (hereby termed PFA) in phosphate-buffered 

saline (hereby termed PBS) at room temperature (hereby termed RT) and 

permeabilized for 20 min in PBS + 0.3% Triton (hereby termed PBST). To prepare 

whole-mounts for immunofluorescence microscopy, adipose tissue was scraped 

from backskins, which were then incubated (dermis side down) on 2.5 U/ml 

dispase + 20 mM EDTA for 2 hr at 37°C. Epidermis and hair follicles were 

separated from dermis, fixed in 4% PFA for 30 min at RT and permeabilized for 30 

min in 0.5% PBST. Sections and whole-mounts were blocked for 1-2 hr at RT in 

2% fish gelatin, 5% normal donkey serum, 1% BSA, 0.2% - 0.3% Triton in PBS. 

Primary antibodies (Abs) were incubated overnight at 4°C and secondary Abs 

conjugated to Alexa 488, 546 or 647 were incubated for 1-2 hr at RT. Mouse 

antibodies were incubated with M.O.M. block (Vector Laboratories) according to 

manufacturer’s directions. Images were acquired with Zeiss Axio Observer Z1 

equipped with ApoTome.2 through a 20x air objective or Zeiss LSM780 laser-

scanning confocal microscope through a 40x water objective. 

Immunohistochemistry 

Backskins were fixed in 4% PFA at 4°C overnight, washed twice with PBS at RT, 

dehydrated through an ethanol series (50%, 70%, 80%, 95%, 100%) and citrus 

clearing solvent, and incubated in molten paraffin at 37°C overnight. Backskins 

were then embedded in paraffin and 8 µm sections were cut using a microtome. 

De-paraffinization and rehydration of sections was performed through a series of 

citrus clearing solvent and ethanol (100%, 95%, 70%, 50%). Sections were then 
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washed in PBS before undergoing antigen retrieval, which was performed in 0.01 

M sodium citrate, pH 6.0, in a pressure cooker. Endogenous peroxidase activity 

was quenched with 0.3% hydrogen peroxide in PBS for 30 minutes at RT. Blocking 

and incubation of primary and secondary antibodies were done as per 

immunofluorescence procedure (see above). Primary antibody used was FOXC1 

(goat, 1:500, Abcam). ImmPRESS horseradish peroxidase (HRP) anti-goat IgG 

polymer (Vector Laboratories) and 3,3-diaminobenzidine (DAB) peroxidase 

substrate kit (Vector Laboratories) were used to detect FOXC1. Sections were 

mounted with cytoseal (Richard-Allan Scientific) and imaged on Zeiss Axioskop 2 

through a 20x objective lens. 

Fluorescence-activated cell sorting (FACS) 

To prepare single cell suspensions from telogen backskin, subcutaneous fat was 

scraped off with a scalpel and backskin was placed (dermis side down) on 0.25% 

trypsin-EDTA (Gibco) at 37°C for 35-45 min. To prepare single cell suspensions 

from anagen backskin, backskin was placed (dermis side down) on 2.5 mg/ml 

collagenase (Sigma) in Hank’s balanced salt solution (HBSS, Gibco) at 37°C for 

45 min, dermal side was scraped off with a scalpel, and remaining epidermal side 

was transferred to trypsin at 37°C for 20 min. To obtain single epithelial cell 

suspensions, hair follicles and epidermal cells were scraped off gently from all 

trypsinized backskins with a scalpel and filtered with strainers (70 μm, followed by 

40 μm). Dissociated cells were re-suspended in 4% chelated fetal bovine serum 

(FBS) in PBS (vol/vol) and incubated with the appropriate antibodies for 20 min at 
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4°C. For cell cycle profiling, dissociated cells were fixed with 4% PFA for 30 min at 

RT and permeabilized with 0.1% PBST for 20-25 min at RT prior to antibody 

incubation for 20 min at RT. The following antibodies were used: CD34-eFluor660 

(1:100, eBioscience), α6-PE (1:100, BD Biosciences), Sca1-Percp-Cy5.5 (1:1000, 

eBioscience), Ki67-Pe-Cy7 (1:400, eBioscience). DAPI was used to exclude dead 

cells. FxCycle violet stain (Invitrogen) was used to analyze DNA content. Cell 

purification was performed on FACS Aria sorters equipped with Diva software (BD 

Biosciences). FACS analyses were performed using LSRII FACS Analyzers and 

then analyzed using FlowJo program. 

Cell Culture 

FACS-purified HFSCs were plated in equal numbers, in triplicates, onto mitomycin 

C-treated 3T3-J2 dermal fibroblasts in E-media supplemented with 15% (vol/vol) 

serum and 0.3 mM calcium. For colony forming efficiency assay, cells were 

cultured for 14 days, then fixed and stained with 1% (wt/vol) Rhodamine B (Sigma). 

Colony diameter and colony number were quantified using scanned images of 

culture plates in Image J. For cell adhesion assay, FACS-purified HFSCs were 

plated in equal numbers, in triplicates, onto polyethylene-glycol 24-well culture 

plates coated with matrigel (BD Biosciences), collagen I (BD Biosciences), 

fibronectin (Millipore) or laminin 511 (BioLamina). After 1 hr, non-adherent cells 

were washed off and adherent cells were fixed with 4% PFA for 10 min at RT and 

permeabilized with 0.3% PBST. Cells were incubated with antibody against keratin 

14 (K14) overnight at 4°C and with Odyssey secondary antibody for 1 hr at RT. 
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Imaging was performed on an Odyssey infrared scanner (LI-COR). Quantification 

of well area occupied by K14+ adherent cells was performed using Image J. 

 

RNA purification, RNA-Seq and qRT-PCR 

Total RNA was purified from FACS-purified cells by directly sorting cells in Trizol 

LS (Sigma), followed by extraction using Direct-Zol RNA mini-prep kit (Zymo 

Research). RNA quality was determined using an Agilent 2100 Bioanalyzer and all 

samples sequenced had RNA integrity numbers >8. mRNA library preparation 

using Illumina TrueSeq mRNA sample preparation kit and single-end sequencing 

on Illumina HiSeq 2000 were performed at Weill Cornell Medical College Genomic 

Core Facility (New York). Alignment of reads was done using Tophat with the mm9 

build of the mouse genome. Transcript assembly and differential expression were 

performed using Cufflinks with Refseq mRNAs to guide assembly (Trapnell et al., 

2012). Differentially expressed genes were used in GO term analysis to find 

enriched functional annotations using DAVID (Huang da et al., 2009a, b). All RNA-

seq datasets have been deposited in the Gene Expression Omnibus (GEO) 

database, with accession no. GSE77256. For real-time qRT-PCR, equivalent 

amounts of RNA were reverse-transcribed using Superscript III (Thermo Fisher). 

cDNAs were normalized to equal amounts using primers against Ppib2. qRT-PCR 

was performed with SYBR green PCR Master Mix (Sigma) on an Applied 

Biosystems 7900HT Fast Real-Time PCR system.  
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Immunoblotting 

FACS-purified Bu-HFSC protein lysates were prepared using RIPA buffer. Gel 

electrophoresis was performed using 4% - 12% NuPAGE Bis-Tris gradient gels 

(Thermo Fisher) and transferred to nitrocellulose membranes (Amersham). 

Membranes were blocked in 5% milk in PBS containing 0.1% Tween 20 (PBSTw) 

for 1 hr at RT, incubated with primary antibodies overnight at 4°C and with 

secondary antibodies conjugated with HRP for 1 hr at RT. HRP was detected using 

ECL (Amersham).  

 

Scanning electron microscopy 

Samples were fixed in 2% glutaraldehyde, 4% PFA and 2 mM CaCl2 in 0.05 M 

sodium cacodylate buffer, pH 7.2, at RT for > 1 hr, dehydrated, critical-point dried, 

mounted, and sputter coated with gold palladium. Scanning electron microscopy 

images were obtained using a field emission scanning electron microscope (model 

1550; LEO Electron Microscopy, Inc.). 

 

Statistical Analysis 

Data were analyzed and statistics were performed using unpaired two-tailed 

Student's t test and ANOVA (Prism5 GraphPad). Significant differences between 

two groups were noted by asterisks (*:p<0.05; **:p<0.01: ***:p<0.001; 

****:p<0.0001).	  
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CHAPTER 3: STEM CELL ADHESION AND ACTIVITY 
 

3.1 Introduction 

	

3.1.1 Comparing Foxc1-cKO and Cdh1-cKO hair follicles 

	

The proliferative propensity of Foxc1-cKO Bu-HFSCs and the associated 

reduction in adhesion protein levels led me to uncover the dynamic changes in E-

cadherin (ECAD) expression that normally occur in Bu-HFSCs as they switch 

between quiescence and activation during the hair cycle.  Re-establishment of the 

quiescent state and a concomitant increase in ECAD are critical to preventing the 

loss of older bulges and hairs as new ones are being made.  

Although both Foxc1-cKO and Cdh1-cKO hair follicles displayed perturbations 

in their bulge architecture and failed to maintain the old bulge during anagen, they 

also exhibited differences in their phenotypes. First, the bulge structure was more 

perturbed in Cdh1-cKO wherein ECAD was completely ablated, as opposed to the 

subtler changes observed in Foxc1-cKO in which ECAD was still present at 

reduced levels. Second, while Foxc1-cKO hair follicles entered anagen 

precociously, Cdh1-cKO hair follicles were not observed to have such a hair cycle 

entry phenotype. 

Since compromised cell adhesion seems to occur downstream of the inability 

of Foxc1-cKO Bu-HFSCs to maintain an extended quiescence, and it can indirectly 

accelerate Foxc1-cKO Bu-HFSC re-entry into a proliferative state via causing 
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bulge loss, I next asked if perturbing cell adhesion is sufficient to directly cause 

Bu-HFSCs to exit quiescence prematurely. Given my initial findings in Cdh1-cKO 

hair follicles, I wondered how ECAD loss causes such dramatic changes in the 

stem cell niche architecture. If loss of cell-cell adhesion does influence cell 

proliferation, why do ECAD-deficient hair follicles not cycle prematurely like 

FOXC1-deficient hair follicles do? If it does not influence cell proliferation, does the 

perturbation of the stem cell niche influence the timing of hair regeneration? 

3.1.2 Cell-ECM and cell-cell adhesion 

 Cellular adhesion is paramount to maintaining tissue integrity. Both cell-ECM 

and cell-cell interactions enable cells to form contiguous physical and 

communication networks with their surroundings, and integrate signaling pathways 

to influence their shape, motility, polarity, proliferation and differentiation, both 

during homeostasis and in response to changes in their environment. In the skin, 

basal cells express adhesion receptors known as integrins, which are αβ 

heterodimers that bind various ECM proteins including collagen, laminin and 

fibronectin. Integrins connect skin epithelial cells to their ECM via two molecular 

complexes: a) hemidesmosomes, which link the keratin intermediate filaments to 

the ECM, and b) focal adhesions, which connect their actin cytoskeleton to the 

ECM (Barczyk et al., 2010; Winograd-Katz et al., 2014). 

 On the other hand, cells adhere to each other via four major junctions. Gap 

junctions facilitate the exchange of small molecules and electrolytes between cells, 
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while tight junctions, adherens junctions and desmosomes, arranged in this order 

from apical side to basal side of cells, form the junctional complex. Tight junctions 

seal neighboring cells and allow paracellular diffusion of ions and solutes between 

cells, while adherens junctions and desmosomes link up the actin and intermediate 

filament components of the cytoskeleton of connected cells respectively 

(Nekrasova and Green, 2013; Zihni et al., 2016). 

3.1.3 Adherens junctions and loss-of-function studies 

 The adherens junction is a calcium-dependent adhesion complex that consists 

of three distinct components: transmembrane cadherins, armadillo family 

members and cytoskeletal adapter proteins. In the skin, the main cadherins 

expressed are the classical cadherins E-cadherin (ECAD) and P-cadherin (PCAD). 

The extracellular portion of ECAD and PCAD is composed of five repetitive 

extracellular cadherin (EC) domains that physically bind cadherin-expressing 

neighboring cells, while the intracellular portion is composed of a juxtamembrane 

domain and a catenin-binding domain. The juxtamembrane portion is bound by the 

armadillo family member, p120, which serves to stabilize the adherens junction 

complex, and the catenin-binding domain is bound by the cytoskeletal adapter 

protein β-catenin. β-catenin in turn binds to α-catenin which ultimately serves as 

the physical link between the adherens junction complex and the actin 

cytoskeleton of the cell (Gumbiner, 2005; Takeichi, 2014). 
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 In the skin, the functions of the adherens junction and its various components 

have been explored in detail. In the embryonic epithelium, ECAD needs to be 

repressed by the WNT signaling transcription factor LEF1 to enable placode 

downgrowth during HF morphogenesis, which is inhibited when ECAD is 

overexpressed (Jamora et al., 2003). When the developing epidermis lacks ECAD, 

the basal layer remains largely intact due to an upregulation of PCAD, but the 

terminally differentiated layers, which do not upregulate PCAD, become perturbed 

(Tinkle et al., 2004). A combined loss of ECAD and PCAD in turn causes more 

severe cell junction perturbations and a defective skin barrier (Tinkle and Fuchs, 

2008). p120 and α-catenin have been found to play roles beyond their cell 

adhesion function. While p120-cKO epidermis does not display a barrier defect, it 

becomes hyperplastic due to an upregulation of NFκB signaling and expression of 

inflammatory cytokines, which is rescued by immune cell suppression with 

dexamethasone (Perez-Moreno et al., 2006). α-catenin-cKO epidermis also 

exhibits hyperproliferation due to sustained RAS-MAP-kinase signaling and 

increased Yap signaling following its nuclear translocation, independent of cell 

adhesion defects (Schlegelmilch et al., 2011; Vasioukhin et al., 2001; Vasioukhin 

et al., 2000).  

While most studies have focused on the roles of various adherens junction 

components in the epidermis, less emphasis has been placed on HFs. HFs that 

lack ECAD are short, brittle and mis-angled as intercellular gaps appear in the 

differentiated layers that form during anagen (Tinkle et al., 2004). While dissecting 

the function of WNT signaling in HFSCs, one study demonstrated that HFs that 
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have β-catenin ablated only in Bu-HFSCs remain in telogen for prolonged periods 

without entering anagen, but when stimulated to regenerate, these β-catenin-cKO 

Bu-HFSCs adopt a sebaceous gland fate instead (Lien et al., 2014; Merrill et al., 

2001). 

Since I had found that reduction of ECAD expression in Bu-HFSCs occurs 

downstream of increased proliferation, I wanted to investigate if direct perturbation 

of cell adhesion would have a downstream effect on proliferative activity of adult 

stem cells.  Much of the work on how ECAD influences cell proliferation have been 

performed in vitro (Benham-Pyle et al., 2015; Kim et al., 2011; McClatchey and 

Yap, 2012; Perrais et al., 2007). The mouse hair follicle presents an ideal model 

system to elucidate the functions of ECAD in vivo, specifically in adult stem cells, 

for the following reasons: a) HFSCs reside in an architecturally defined niche, the 

bulge, which anchors and maintains the hair coat; b) HFSCs adhere to each other 

at least via ECAD-based adherens junctions (Figure 12D); c) HFSCs also adhere 

to their inner bulge K6+ niche cells at least via ECAD (Figure 12D); and d) the 

periodic nature of HF regeneration provides a tractable model to investigate how 

cell-cell adhesion can influence stem cell activity and therefore tissue production.  
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3.2 Results 

3.2.1 ECAD-cKO HFs exhibit an aberrant stem cell niche architecture 

As described in Chapter 2.2.10, I engineered ECAD-cKO mice by introducing 

Sox9CreER ; R26-LSL-YFP to Cdh1fl/fl background, in which flox sites were 

inserted to flank exons 6 to 11 of Cdh1 (Boussadia et al., 2002). Using an inducible 

CreER that was specific to hair follicles allowed me to control the timing of 

knocking-out ECAD only in the hair follicles and avoid defects in the epidermis 

(hereby termed ECAD-cKO). When 2nd telogen mice were treated with tamoxifen, 

ECAD was efficiently depleted by one month post-tamoxifen. At this time, the bulge 

structure began to show abnormalities. Instead of an organized bi-layer of cells, in 

which the outer Bu-HFSCs were uniformly arranged next to the inner bulge cells, 

many ECAD-cKO bulges displayed more than two cell layers. Careful analysis 

revealed that these extra cell layers were CD34+ and expressed one of the stem 

cell markers, TCF4, suggesting that they were likely Bu-HFSCs and not extra K6+ 

inner bulge cells, of which there was still only one layer (Figure 15A). Quantification 

of multiple hair follicles in backskin samples revealed that most ECAD-cKO hair 

follicles had perturbations in their bulges, be it in the new bulge or old bulge (Figure 

15B).  

 Immunofluorescence of various adhesion proteins further demonstrated the 

disorganization of the HFSC niche upon ECAD loss. F-actin, the cytoskeletal 

component to which the adherens junction complex binds, revealed the highly 
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disorganized cells within the bulge, and β4-integrin staining showed some 

discontinuities in the basement membrane. PCAD antibody signal is usually 

stronger in the hair germ than in the bulge of WT HFs, but when ECAD was ablated, 

the bulge expressed PCAD as highly as the hair germ, consistent with previous 

reports that PCAD was upregulated in the absence of ECAD (Tinkle and Fuchs, 

2008; Tinkle et al., 2004). Despite the disorganization, Bu-HFSCs appeared to 

maintain junctions with each other, as further demonstrated by antibody staining 

against the adherens junction proteins p120, α-catenin and β-catenin, and 

desmosomal components including desmoglein 3, plakoglobin and desmoplakin 

(Figures 15C and 15D).  

 Western blotting of FACS-purified Bu-HFSC protein lysates confirmed the 

efficient deletion of ECAD and the striking up-regulation of PCAD in ECAD-cKO 

HFs (Figure 15E). Since the genes encoding ECAD (Cdh1) and PCAD (Cdh3) are 

located in tandem on the same chromosome, the increase in PCAD could be due 

to the disruption in the genome following the removal of six exons upon 

Sox9CreER induction. To test this, I generated lentiviruses harboring a H2B-RFP 

reporter and a short hairpin RNA (shRNA) that efficiently knocked down Cdh1 

transcripts without perturbing the genome, injected these lentiviruses into E9.5 WT 

embryos in utero, and allowed these Cdh1-KD mice to grow to the age of 2nd 

telogen (~P50). While the bulge architecture of these Cdh1-KD HFs was not 

perturbed due to the mosaicism of the knockdown, western blotting of FACS-

purified Cdh1-KD RFP(+) Bu-HFSCs and WT uninfected RFP(-) Bu-HFSCs from 

the same mice revealed the efficient knockdown of ECAD and the upregulation of 
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PCAD, suggesting that the robust PCAD increase in the absence of ECAD did not 

occur at the genomic level, but rather as a functional compensation (Figure 15F). 
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Figure 15. Analyzing bulge architecture and expression of junctional 
complex proteins upon ECAD loss. 
(A) Left, ECAD is more highly expressed in bulge (Bu) than hair germ (HG) of WT 

HF, and is efficiently deleted in KO. Insets show magnified view of organized 
bilayer in WT bulge and disorganized KO bulge with extraneous cells. Middle, 
WT bulge exhibits one layer of K6+ inner bulge cells and one layer of CD34+ 
Bu-HFSCs, while KO bulge exhibits one layer of K6+ cells and two layers of 
CD34+ Bu-HFSCs. Insets show magnified view. Right, extra KO Bu-HFSCs 
maintain expression of a HFSC transcription factor TCF4. Insets show 
magnified view. 

(B) Hair follicles are scored based on whether they have distortions (extra cell 
layers) in new bulge only, old bulge only, or both bulges (n = 2 mice, N = 40 
HFs). 

(C) Expression of F-actin and various adherens junction proteins. α-CAT, α-
catenin; β-CAT, β-catenin. 

(D) Expression of various desmosomal proteins. DSG3, desmoglein 3; DP1/2, 
desmoplakin 1/2. 

(E) Western blotting of various adherens junction proteins in FACS-purified Bu-
HFSCs from Cdh1-Sox9CreER mice. 

(F) Western blotting of ECAD and PCAD in FACS-purified Bu-HFSCs from Cdh1-
KD mice. 

Scale bars = 30 μm. 
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3.2.2 Bu-HFSCs proliferate precociously without contributing to new HF 
regeneration in the absence of ECAD  

 

 To test if the extraneous cell layers in the ECAD-cKO bulge was due to 

proliferation of Bu-HFSCs, I pulsed mice with EdU for 24 hr before harvesting skin 

samples. Indeed, ECAD-cKO bulges displayed varying degrees of proliferation, as 

revealed by quantification of EdU+ Bu-HFSCs within each bulge of individual HFs 

(Figure 16A). This precocious proliferative activity in the ECAD-cKO bulge 

preceded any hair germ proliferation, going against the well-established 2-step 

sequential activation of HG-HFSC à Bu-HFSC at anagen initiation during WT HF 

regeneration. Strikingly, the old bulge, which is highly quiescent and proliferates 

only in response to wounding (Hsu et al., 2011), became proliferative in the 

absence of ECAD (Figure 16A). These data strongly suggest that the aberration 

of the telogen HF bulge upon ECAD loss was due to the premature proliferation of 

the otherwise quiescent Bu-HFSCs.  

 One would expect that the increased proliferative capacity of the ECAD-cKO 

Bu-HFSCs would result in precocious hair cycling, similar to that observed in 

Foxc1-cKO HFs. However, the opposite result was observed: ECAD-cKO HFs 

stayed in telogen for longer durations than Het or WT HFs before eventually 

entering anagen to generate a new hair coat (Figure 16B). Interestingly, when 

challenged by depilation, both HG-HFSCs and Bu-HFSCs of ECAD-cKO HFs 

responded, initiated anagen and regenerated new hairs at around the same time 

as those of WT or Het HFs (Figure 16C).  
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Figure 16. ECAD-cKO Bu-HFSCs proliferate precociously without 
regenerating new hairs. 
(A) Left, WT telogen (Tel) Bu-HFSCs are largely quiescent (as judged by absence 

of EdU), and begin to proliferate only after HG-HFSCs are activated (EdU+) in 
anagen I (AnaI); in contrast, KO telogen Bu-HFSCs are proliferative even in the 
absence of HG-HFSC proliferation. Right, Quantification of number of EdU+ 
cells in old bulge and new bulge, with black bars denoting mean±SEM (n = 2 
mice, N = 40 HFs per mouse). 

(B) Telogen duration of ECAD-cKO HFs is longer than sex-matched WT or Het 
counterparts. By 4 months of age, WT or Het mice have generated a new hair 
coat and entered 3rd telogen, but KO mice are still in 2nd telogen (n ≥ 3 mice 
per genotype). 

(C) ECAD-cKO HG-HFSCs and Bu-HFSCs respond upon depilation (waxing), as 
shown by incorporation of EdU at Day 2 post-wax, and regenerate a new hair 
coat at the same time as WT. Scale bars = 30 μm. 
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3.2.3 RNA-seq revealed enrichment of genes associated with inflammatory 
response following ECAD loss 

 Various signaling pathways have been found to be inhibited by ECAD-based 

adherens junctions to result in the inhibition of cell growth and proliferation in vitro, 

including epidermal growth factor receptor (EGFR) and Hippo-YAP signaling (Kim 

et al., 2011; Perrais et al., 2007). Indeed, cultured FACS-purified ECAD-cKO Bu-

HFSCs grew as clusters of cells that did not form junctions with one another (Figure 

17A), despite expressing PCAD (Figure 17B), and remained proliferative even 

upon reaching confluency (Figure 17C), as opposed to WT Bu-HFSCs that formed 

cell-cell junctions within well-defined colonies (Figures 17A and 17B) and exhibited 

contact inhibition (Figure 17C). ECAD-cKO Bu-HFSCs also exhibited a more 

elongated cell shape that resembled that of mesenchymal cells, but were still 

epithelial in nature as evidenced by K14 staining and absence of the mesenchymal 

marker vimentin (Figure 17D). 

To identify novel signaling pathways that could act downstream of ECAD and 

confer a quiescence property to Bu-HFSCs, I performed RNA-seq on Bu-HFSCs 

FACS-purified from ECAD-cKO and Het mice. Alignment of reads to the mm10 

build of the mouse genome was performed using Sliced Transcripts Alignment to 

a Reference (STAR) software (Dobin et al., 2013), and read counts were analyzed 

for differentially expressed genes using DESeq2 (Love et al., 2014). 1987 genes 

were statistically significantly changed (p < 0.05), of which 793 were down-

regulated (fold change ≤ -1.5) and 1194 were up-regulated (fold change ≥ 1.5) in 

the absence of ECAD.  
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I performed KEGG (Kyoto Encyclopedia of Genes and Genome) pathway 

analysis to identify signaling pathways and networks that were altered downstream 

of ECAD loss. Among the down-regulated genes, signaling pathways that were 

significantly changed include TGFβ, Ras, Rap1, Wnt and Mapk (Table 1). On the 

other hand, the most significantly changed pathway among the up-regulated genes 

was cell cycle, which was expected given the proliferation phenotype of the ECAD-

cKO Bu-HFSCs. Surprisingly, a huge number of pathways that were significantly 

changed below that were related to immune responses. These included tumor 

necrosis factor (TNF) signaling, herpex simplex infection, antigen processing and 

presentation, cytokine-cytokine receptor interaction, human T-cell lymphotropic 

virus type 1 (HTLV-1) infection, Hepatitis B, Influenza A, Jak-STAT signaling and 

NFκB signaling amongst others. Indeed, the two most highly up-regulated genes, 

with a 32-fold increase, were chemokine ligands 2 and 1 (Ccl2, Ccl1), both of which 

function to recruit immune cells such as dendritic cells and monocytes to sites of 

inflammation. “DNA replication” was also ranked highly as expected, and further 

below the list were apoptosis, p53 signaling pathway, Fanconi anemia pathway, 

base excision repair and homologous recombination, all of which pointed towards 

an up-regulation of DNA repair mechanisms or components of the apoptotic 

pathway, likely following damage incurred during cell division and DNA replication 

(Table 2). 

To validate the RNA-seq data, especially with respect to the up-regulated 

genes, I investigated the skin immune cell milieu after loss of ECAD by performing 

immunofluorescence for CD45, a general immune cell marker. Notably, immune 
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cells did not reside near the bulge of the WT HF, where the HFSCs reside. 

However, in the absence of ECAD, an increased number of CD45+ immune cells 

accumulated around the bulge, which had already developed defects in its 

organization and cell layers (Figure 18). This specificity of immune cell localization 

to the bulge, and not to the epidermis, which still expressed ECAD and did not 

exhibit a hyperproliferative phenotype, ruled out a general skin inflammatory 

response. This supports the notion that an up-regulation of cytokine expression 

and immune responses specifically within the ECAD-cKO Bu-HFSCs, as revealed 

by RNA-seq, recruited immune cells to their vicinity. Whether this is a cause or 

consequence of the Bu-HFSC proliferation and disorganization phenotypes 

remains to be determined. 
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Figure 17. ECAD-cKO Bu-HFSCs differ from WT in cell and colony 
morphology in vitro. 
(A) WT and KO Bu-HFSCs were FACS-purified and co-cultured with feeder 

fibroblast cells in vitro for 2 weeks. While WT cells form junctions with each 
other in a colony with well-defined edges, KO cells do not form junctions and 
merely exist as clusters. K14 was used to distinguish Bu-HFSCs from feeder 
cells. 

(B) Cultured KO Bu-HFSCs express PCAD but still fail to form cell-cell junctions. 
(C) WT Bu-HFSCs exhibit contact inhibition when confluent, but KO Bu-HFSCs 

continue to proliferate despite reaching confluency. 
(D) KO Bu-HFSCs maintain their epithelial nature (K14+) and do not express 

vimentin, which are expressed by the surrounding feeder cells. 
Scale bars = 30 μm 
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Table 1. KEGG pathway analysis of genes down-regulated in ECAD-cKO 
Bu-HFSCs vs. Het  

KEGG term P-value 
Neuroactive ligand-receptor interaction 0.004391511 
Metabolism of xenobiotics by cytochrome 
P450 0.004709852 
TGF-beta signaling pathway 0.004791515 
Glutamatergic synapse 0.007290345 
Ras signaling pathway 0.010791497 
Vascular smooth muscle contraction 0.012891568 
Drug metabolism - cytochrome P450 0.022813837 
Rap1 signaling pathway 0.038260611 
Glutathione metabolism 0.045820465 
Glycosphingolipid biosynthesis - ganglio 
series 0.051275016 
Wnt signaling pathway 0.058900993 
Metabolic pathways 0.059078362 
Ether lipid metabolism 0.093338613 
MAPK signaling pathway 0.094182488 
Melanogenesis 0.096680445 
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Table 2. KEGG pathway analysis of genes up-regulated in ECAD-cKO Bu-
HFSCs vs. Het 

KEGG term P-value 
Cell cycle 4.78E-14 
TNF signaling pathway 3.56E-10 
Herpes simplex infection 6.00E-10 
Antigen processing and 
presentation 2.67E-08 

DNA replication 3.09E-07 
Cytokine-cytokine receptor 
interaction 5.42E-07 

HTLV-I infection 5.48E-07 
Apoptosis 5.91E-06 
Osteoclast differentiation 9.92E-06 
Hepatitis B 9.93E-06 
Influenza A 1.57E-05 
p53 signaling pathway 2.29E-05 
Viral myocarditis 3.90E-05 
Jak-STAT signaling pathway 8.63E-05 
Measles 1.02E-04 
Inflammatory bowel disease 
(IBD) 1.16E-04 

NF-kappa B signaling pathway 1.28E-04 
Graft-versus-host disease 1.54E-04 
Viral carcinogenesis 1.56E-04 
Toxoplasmosis 2.53E-04 
Epstein-Barr virus infection 2.77E-04 
Small cell lung cancer 3.00E-04 
Allograft rejection 3.07E-04 
Amoebiasis 3.86E-04 
Tuberculosis 5.11E-04 
Type I diabetes mellitus 7.65E-04 
Cell adhesion molecules 
(CAMs) 0.001062282 

RIG-I-like receptor signaling 
pathway 0.001684951 

Hepatitis C 0.00215579 
Fanconi anemia pathway 0.00236418 
Phagosome 0.002539278 
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MicroRNAs in cancer 0.005114966 
Rheumatoid arthritis 0.007426065 
Autoimmune thyroid disease 0.007463676 
Adipocytokine signaling 
pathway 0.008232676 

Leishmaniasis 0.011006194 
Progesterone-mediated 
oocyte maturation 0.011464807 

Primary immunodeficiency 0.012402721 
ECM-receptor interaction 0.012442698 
Toll-like receptor signaling 
pathway 0.013616957 

Base excision repair 0.01425673 
African trypanosomiasis 0.01425673 
Homologous recombination 0.020880764 
Pathways in cancer 0.022390129 
Hematopoietic cell lineage 0.022922273 
Oocyte meiosis 0.025205421 
Pertussis 0.026605432 
Natural killer cell mediated 
cytotoxicity 0.040441231 

NOD-like receptor signaling 
pathway 0.041940809 

Legionellosis 0.045531159 
Focal adhesion 0.05526631 
MAPK signaling pathway 0.060914272 
Staphylococcus aureus 
infection 0.06776068 

Amyotrophic lateral sclerosis 
(ALS) 0.073227421 

Chagas disease (American 
trypanosomiasis) 0.074860544 

Pyrimidine metabolism 0.074860544 
Pancreatic cancer 0.08127409 
FoxO signaling pathway 0.088221055 
Intestinal immune network for 
IgA production 0.093966324 

One carbon pool by folate 0.094306301 
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Figure 18. Skin sagittal sections reveal recruitment of CD45+ immune cells 
around ECAD-cKO bulge. 
Scale bar = 30 μm. 

3.3 Discussion and future directions 

3.3.1 ECAD loss causes downstream ectopic proliferation of Bu-HFSCs, 
resulting in stem cell niche architectural disruption 

 Following embryonic hair follicle morphogenesis that forms the first hair coat, 

and a round of early adult hair cycling thereafter to form the second hair coat, hair 

follicles enter an extended telogen phase, during which HFSCs remain quiescent. 

It was during this time when I induced knock-out of Cdh1, the gene encoding the 

adherens junction component ECAD, in hair follicles.  

During a normal telogen à anagen transition, quiescent Bu-HFSCs respond to 

activating cues and become proliferative, during which ECAD becomes down-

regulated (Figure 13D), perhaps to allow Bu-HFSCs and their progeny to divide 

and move out of their bulge niche. Interestingly, these Bu-HFSC progeny do not 
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divide perpendicularly to their basement membrane and cause an expansion of 

the bulge. Rather, they divide along their basement membrane and move 

downwards to form an ORS that encases the newly growing anagen hair follicle in 

an orchestrated manner (Hsu et al., 2011; Niessen et al., 2013).  

When ECAD was ablated from quiescent Bu-HFSCs, they exited quiescence 

and proliferated despite the absence of activating cues that drive anagen entry. In 

the absence of a down-growing hair follicle, Bu-HFSCs and their progeny remained 

within the bulge. The disruption to adherens junctions within and between the two 

bulge layers, together with this consequent proliferation of the outer Bu-HFSC 

layer, resulted in a “remodeling” of the bulge to accommodate the extra cells. In 

spite of this, these bulge cells could still form cell-cell junctions, since components 

of desmosomes appeared to be unaffected, at least based on immunofluorescence 

and RNA-seq data. PCAD staining at the cell junctions also intensified, suggesting 

that PCAD could be compensating partially for ECAD loss. However, it has been 

reported that ECAD is required for proper localization of key proteins that form tight 

junctions in the developing embryonic skin (Tunggal et al., 2005). It would be 

necessary to dissect if inducing loss of ECAD in the adult HF will affect tight 

junctions that have already been established. Further validation of the expression 

of these various junctional proteins by western blotting, and ultrastructural analysis 

by electron microscopy (EM), are required. 

  However, the precocious proliferation of ECAD-cKO Bu-HFSCs did not set off 

anagen entry. This was due to the absence of HG-HFSC proliferation, since the 

hair germ did not express junctional ECAD as highly as the bulge and could be 
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spared of phenotypes directly associated with ECAD loss (Figure 14A). However, 

it was surprising that these hair follicles remained in telogen longer than their Het 

or WT counterparts, for which there could be several reasons. First, the hair germs 

of ECAD-cKO HFs were frequently smaller or indistinguishable from the bulge 

(Figures 15 and 16 immunofluorescence panels); careful quantification of whole-

mount hair follicles and skin sagittal sections is required. Second, ECAD-cKO Bu-

HFSCs could be secreting factors that non-autonomously inhibit HG-HFSC activity; 

more thorough analysis of the RNA-seq data and validation by qPCR will provide 

more insights. Third, immune cells recruited to the bulge could exert a non-

autonomous inhibition on HG-HFSC proliferation, or influence the surrounding 

dermal cells by delaying the reduction in global BMP signals that is necessary to 

initiate anagen entry.  

 If formation, maintenance and turn-over of tight junctions are indeed affected 

by ECAD loss, a consequent defect in the skin barrier could elicit the observed 

gene expression changes associated with immune responses and the recruitment 

of immune cells. While the inter-follicular epidermis remains intact, external agents 

could still enter the skin through the hair follicle orifice along the club hair, and 

come into contact with the suprabasal layers of the hair follicle, including the K6+ 

inner bulge layer that is also ECAD-deficient. Ultrastructural analysis by EM, and 

devising an adult barrier assay to check for penetration of colored dyes through 

the hair follicle, are critical to determine the presence of a hair follicle barrier defect. 
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3.3.2 An immune response was mounted in the absence of ECAD 

 The recruitment of immune cells to the ECAD-cKO bulge was striking and 

surprising. Are the immune cells a cause or consequence of the ectopic Bu-HFSC 

proliferation and bulge niche disruption? To distinguish between the two 

possibilities, the timing of events by sampling hair follicles at regular timepoints 

following induction of Cdh1-cKO has to be elucidated. This would answer the 

following questions: a) when ECAD is efficiently depleted; b) when the precocious 

proliferation of Bu-HFSCs begins; c) whether the recruitment of immune cells to 

the bulge occurs before or after Bu-HFSC proliferation and bulge disorganization; 

and d) how long the immune cells persist around the bulge, and how they behave 

as HFs eventually overcome the delay and enter anagen. 

Next, it is important to investigate the types of immune cells that are recruited 

to the bulge by both immunofluorescence of sagittal skin sections and flow 

cytometry analysis of dissociated skin samples using a panel of antibodies against 

various immune cell type-specific surface markers, including CD3 (T-cells), CD64 

(macrophages), MHC Class II (dendritic cells, macrophages) and CD11c (dendritic 

cells, monocytes) amongst others.  Finally, it would be critical to suppress the 

immune response at an appropriate timepoint before immune cell recruitment, 

either by dexamethasone, a general immune suppressant, or by immune cell type-

specific antibody depletion. If the bulge phenotype is rescued, the immune cells 

are likely a cause; if the phenotype persists or worsens, they are probably a 

consequence.  
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Up-regulation of genes associated with DNA damage repair and apoptosis 

could suggest that Bu-HFSCs are accumulating damage from their precocious 

proliferative activity, and those that die by apoptosis need to be cleared out. 

Consequently, this could account for the up-regulation of genes associated with 

immune cell recruitment and response. Immunofluorescence can be performed on 

whole-mount and sagittal sections of HFs for phosphorylated H2AX check for DNA 

double-stranded breaks, and caspase 3 and terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) to detect apoptosis and DNA fragmentation. If 

more cell death is occurring, differences in caspase 3 staining between basal and 

suprabasal Bu-HFSCs can be quantified, given that basal epidermal cells without 

the adherens junction component α-catenin are much less susceptible to 

apoptosis than their suprabasal counterparts (Livshits et al., 2012). 

3.3.3 Investigating the direct cause of Bu-HFSC proliferation upon ECAD 
loss 

Mice with an epithelial-specific knockout of another adherens junction 

component, p120, display a hyper-proliferative skin epidermis. The mechanism is 

cell adhesion-independent, because even in the presence of an intact skin barrier, 

p120-cKO epidermal keratinocytes up-regulate NFκB signaling, which induces 

pro-inflammatory responses. In this case, the hyper-proliferation was rescued 

when immune cells were suppressed with dexamethasone (Perez-Moreno et al., 

2006).  
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Here, I present a similar proliferative phenotype but in the context of the hair 

follicles and in particular their stem cells, a less explored area compared to the 

interfollicular epidermis in terms of hyper-proliferative phenotypes caused by 

perturbation to cell junctions. If the immune cells are not causing the phenotype, 

investigating the mechanism immediately downstream of ECAD loss will be critical 

to understanding how these Bu-HFSCs proliferate and result in a profound 

recruitment of immune cells. This signaling pathway might, or might not, be 

occurring in proliferating WT Bu-HFSCs during a physiological telogen à anagen 

entry.  To this end, gene expression profiling of WT anagen II proliferating Bu-

HFSCs vs. telogen quiescent Bu-HFSCs can be performed to uncover the changes 

that normally occur during Bu-HFSC proliferation, then compared to those 

observed with ECAD-cKO Bu-HFSC proliferation, along with the differences that 

occurred upon FOXC1 loss that also influences Bu-HFSC quiescence. Some of 

the possible signaling pathways as suggested from the ECAD-cKO RNA-seq data 

include TNF and NFkB signaling (Table 2). It has been demonstrated that drug 

inhibition of Jak-Stat signaling is sufficient to induce anagen entry (Harel et al., 

2015), and intriguingly, the up-regulation of Jak-Stat signaling in ECAD-cKO Bu-

HFSCs (Table 2) could account for the delayed entry of these hair follicles into 

anagen. Immunohistochemistry, immunofluorescence and western blotting for 

transcriptional effectors of these various signaling pathways, including p65, 

phosphorylated-Stat1 and phosphorylated-Stat3 must be performed to analyze 

changes in their expression and localization patterns upon ECAD loss. 
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3.3.4 Implications for EMT and cancer biology 

 

 The transcriptional repression of ECAD expression occurs during epithelial-to-

mesenchymal transition (EMT), which is believed to be a critical driver of cancer 

progression. Cells in the invasive front of an epithelial tumor tend to exhibit 

characteristics of EMT, including expression of the EMT-initiating transcription 

factors Snail, Twist and Zeb, elongated cell shape, reduced ECAD levels and 

overall weakened intercellular adhesion, all of which are believed to enable tumor 

progression as these leading edge cells gain motility, remodel and invade through 

the basement membrane (Nieto et al., 2016). Moreover, increasing evidence have 

also pointed to functional roles of increased PCAD levels in tumor progression, 

such as promoting dissemination and migration of ovarian epithelial cancer cells, 

and potentiating insulin-like growth factor 1 receptor signaling and increasing Snail 

expression in oral squamous cell carcinoma  (Ko and Naora, 2014; Paredes et al., 

2012). 

 Here, I present an in vivo stem cell model, in which Bu-HFSCs that are 

genetically knocked out for ECAD gain higher PCAD levels, become more 

proliferative and are able to remodel their surrounding basement membrane and 

ECM such that the bulge can now expand and accommodate extraneous Bu-

HFSCs, recapitulating at least in part cells in the invasive front of a malignant tumor. 

However, expression of the EMT-initiating transcription factors was not changed 

upon loss of ECAD, consistent with a previous study reporting that ECAD loss does 

not induce EMT in non-malignant breast cancer cells (Chen et al., 2014). While 
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this fits with the notion that ECAD repression occurs as a consequence of the EMT 

process, delineating the direct downstream consequences of ECAD loss will help 

dissect how EMT can contribute to malignant tumor progression through ECAD 

repression. Over-expression of PCAD in WT HFs will delineate whether the 

phenotypes in ECAD-cKO HFs are caused by a loss of ECAD, over-expression of 

PCAD or a combination of both. 

3.4 Materials and Methods 

Antibodies and immunofluorescence 

The following antibodies were used for immunofluorescence: β4 (1:200, BD 

Biosciences), α-catenin (1:1000, Sigma), β-catenin (1:1000, BD Biosciences), 

desmoglein 3 (1:500, MBL), plakoglobin (1:500, BD Biosciences), desmoplakin 

1&2 (1:500, Millipore), keratin 14 (1:500, Biolegend), vimentin (1:500, Cell 

Signaling) and CD45 (1:100, Biolegend). Phalloidin (1:100, Fisher) was used to 

detect F-actin. The following antibodies were used for immunoblotting: p120 (1:500, 

Zymed), PCAD (1:1000, R&D) and β-catenin (1:1000, BD Biosciences). 
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CHAPTER 4: CONCLUSION 

My findings best fit a model as follows. During early anagen, WT Bu-HFSCs 

proliferate and down-regulate ECAD expression so as to move out of their niche 

and fuel hair regeneration. As anagen progresses, WT Bu-HFSCs cease 

proliferation, re-establish quiescence and restore ECAD levels. As such, they are 

able to anchor the old bulge in place as the new hair follicle emerges and grows 

alongside it. When hair follicles return to telogen, they retain the old bulge 

alongside the newly made bulge. The presence of the old bulge helps to keep 

HFSCs in quiescence, by virtue of inhibitory factors emanating from its inner bulge 

layer and the suprabasal cells existing between the two bulges. In this way, telogen 

becomes longer, and hair cycling is restricted. When WT mice age, their HFSC 

numbers are maintained, and hair coats remain thick and replete with pigmentation 

(Figure 19, top panel). 

Loss of FOXC1 leads to elevated cell cycle transcripts and enhanced HFSC 

activity, resulting in premature entry of HFSCs into anagen. Proliferating Foxc1-

cKO Bu-HFSCs also down-regulate ECAD expression during early anagen. 

However, as anagen progresses, they fail to re-establish quiescence and up-

regulate ECAD promptly. This heightens the sensitivity of the old bulge to 

mechanical stress induced by new hair growth. Eventually, the old bulge becomes 

extruded and lost as Foxc1-cKO Bu-HFSCs are unable to anchor it in place. Hair 

follicles re-enter telogen with only the newly made bulge. The absence of the old 

bulge, together with the intrinsic inability of Foxc1-cKO HFSCs to remain quiescent 
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for prolonged periods, further accelerates Foxc1-cKO HFSC activity and usage by 

lowering the threshold for their activation. This results in Foxc1-cKO hair follicles 

undergoing many more rounds of regeneration than WT hair follicles do over time. 

As Foxc1-cKO mice age, their Bu-HFSC numbers and function decline, resulting 

in a sparser hair coat that is often depigmented (Figure 19, bottom panel). 

Figure 19. Proposed model for the role of FOXC1 and adhesion in HFSCs. 

While stem cell activity results in dynamic downstream changes in ECAD during 

progression of the hair cycle, direct perturbation to ECAD in turn is sufficient to 

affect stem cell quiescence downstream. In the near complete absence of ECAD, 

Bu-HFSCs become proliferative. An up-regulation of PCAD does not seem to 
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compensate, since an otherwise organized bulge structure now becomes 

perturbed as extra Bu-HFSCs persist. However, the precocious Bu-HFSC 

proliferation did not result in earlier entry into anagen. Rather, hair follicles remain 

in telogen for an even longer time as HG-HFSCs remain quiescent. Intriguingly, 

ECAD-cKO Bu-HFSCs up-regulate genes involved in immune responses, and 

immune cells become recruited specifically to the bulge and not to other regions 

of the skin. It is noteworthy that Foxc1-cKO Bu-HFSCs do not exhibit such 

increases in expression of immune response-associated genes. Ongoing work will 

elucidate the sequence of Bu-HFSC proliferative and immune cell recruitment 

events, and whether the immune cells are a cause or consequence of the 

phenotypes associated with ECAD loss. 

In conclusion, distinct tissues of the adult body have different turnover rates 

during homeostasis, necessitating various stem cell activity and usage. When not 

utilized for self-renewal or differentiation, many adult stem cells adopt, or are 

maintained, in a reversible state of inactivity known as quiescence. It is believed 

that the quiescence state can protect stem cells from metabolic stresses and 

preserve their genomic integrity, so that they can last through the lifetime of the 

organism. For my thesis, I asked if quiescence is essential to preserve this life-

long tissue-regenerating ability of adult stem cells. Indeed, at least for the pelage 

hair follicle in the context of its native environment, prudence in conserving its stem 

cell activity, through the role of FOXC1 in establishment and coupling of stem cell 

quiescence to adhesion, is essential to maintain its stem cell numbers and 

preserve its tissue-regenerating potential throughout the lifetime of the animal.	
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