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The isomerization of uridine to pseudouridine (Ψ), known as pseudouridylation, is the 

most abundant post-transcriptional modification of stable RNAs. Due to technical 

limitations in pseudouridine detection methods, studies on pseudouridylation have 

historically focused on ribosomal RNAs, transfer RNAs, and spliceosomal small nuclear 

RNAs, where Ψs play a critical role in RNA biogenesis and function. For decades, Ψ 

research was confined to this small subset of cellular RNAs ,owing to limitations in 

methods for Ψ detection. Interest in this modification was reinvigorated, however, with 

reports that Ψ is conditionally induced in different environmental contexts and that 

pseudouridylation of certain codons recoded amino acid incorporation. Pseudouridine has 

thus revealed itself as a dynamic modification capable of fine-tuning RNA function.  

 In this thesis, I describe how I attempted to develop a high-throughput technique 

to identify novel sites of pseudouridylation throughout the whole transcriptome. By 

identifying what transcripts are subject to pseudouridylation, I hoped to better understand 

Ψ’s functional role. While pursuing this work, a series of deep sequencing methods — 

Pseudo-seq, Ψ-seq, PSI-seq, and CeU-seq — were published that mapped Ψ positions 

across the entire transcriptome with single nucleotide resolution. Collectively, these 

methods greatly expanded the catalogue of pseudouridylated transcripts and revealed 

conditionally-dependent sites of pseudouridylation in response to cellular stress. With 



  

four techniques available, I undertook a critical analysis of their results, uncovering a 

comparatively small subset of robustly detectible putative Ψ sites. This analysis 

underscored the merits and limitations of each approach. 

 Having identified areas for improvement in the available Ψ-detection approaches, 

I adapted Ψ-seq to profile sites of pseudouridylation in the protozoan parasite 

Trypanosoma brucei. My efforts at transcriptome-wide Ψ-detection, however, were 

undercut by an inability to experimentally replicate Ψ-seq. 

As much as this thesis documents an endeavor to better understand the functional 

role of pseudouridylation, it also documents systematic and thorough experimental 

failure. In so doing, the work detailed in this thesis highlights a need within the sciences 

to foster increased transparency and reproducibility.
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CHAPTER 1. Introduction1 

The central dogma, enunciated by Crick in 1958 and the 

keystone of molecular biology ever since, is likely to prove 

a considerable oversimplification. 

— Anonymous, 1970 

 

 

A central question in biology is how life’s great diversity and complexity results from a 

genetic alphabet composed of a mere four letters: adenine (A), cytosine (C), guanine (G), 

and thymine (T). Conceived in 1958 by Francis Crick, the central dogma of biology 

proposes a neat linear flow of genetic information from one gene to one protein — that 

DNA is transcribed into RNA that is then translated into protein. While the central dogma 

is certainly a workable model, it has long been considered a crude oversimplification that 

fails to recognize the plastic processes that occur beyond what is strictly encoded in the 

genomic sequence. In particular, RNA is subject to a whole host of modifications — from 

splicing to transcript-content modification — as it relays genomic information to the 

cellular machinery. The expansive catalog of transcriptional modifications highlights that 

RNA is no mere mediator of “hard-coded” genetic content, but instead plays a vital and 

dynamic role in cellular function. 

1.1 A primer on post-transcriptional modifications 

RNA is subject to over 100 types of chemically distinct post-transcriptional modifications 

that span all three phylogenetic domains — Archaea, Bacteria, and Eukarya [79]. RNA 
                                                
1 Portions of this chapter were published in [131]. 
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modifications were first identified in the 1950s during the early days of RNA biology, 

underscoring their ubiquity in the transcriptome [26,28]. Over the last six decades, 

modifications have been identified in a range of RNA species where they play a pivotal 

role in refining RNA structure and function.  

 Transfer RNAs (tRNAs) are the most highly modified transcripts, with an average 

of 17% of their total nucleotide content subject to post-transcriptional modification [57]. 

Although RNA modifications are not required for tRNAs to adopt their famed cloverleaf 

shape, modifications allow tRNAs to adopt subtly different conformations as needed. For 

instance, while dihydrouridine adds conformational flexibility where present, 

pseudouridine adds rigidity. Three-dimensional nucleotide maps of Escherichia coli and 

Saccharomyces cerevisiae ribosomal RNAs (rRNAs) have also revealed that the bulk of 

modifications (~95% and 60%, respectively) occur in regions important for translation, 

such as the A, P, and E sites of tRNA- and mRNA-binding [29]. In messenger RNAs 

(mRNAs), 2ʹ-O-methylated ribonucleotides, such as N6,2ʹ-O-dimethyladenosine (m6Am), 

are often found in the 5ʹ untranslated region (UTR) and mark the beginning of transcripts 

[68]. Deamination modifications in mRNAs, which convert adenosine to inosine or 

cytidine to uracil, can also diversify the coding sequence of target transcripts or alter their 

stability when directed to the 3ʹ UTR [13,23,98,102]. 

Our increasing knowledge of the location of RNA modifications, like the ones 

listed above, has deepened appreciation for the wide-ranging roles they play in fine-

tuning molecular function. Once thought to be constitutive, some chemical modifications, 

such as ribose methylation, have been found to be reversible, while others, such as 

pseudouridylation, can be induced in response to changes in environment. The dynamic 
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changes in RNA modification states are reminiscent of the DNA epigenome, and have 

thus led to coinage of the terms “RNA epigenome” or the “epitranscriptome.” 

1.2 Pseudouridine: the fifth ribonucleoside 

The most abundant of the post-transcriptional modifications, pseudouridine (Ψ) was the 

first to be discovered and is often referred to as “the fifth ribonucleoside” [26,28,79]. Ψ is 

the C5-glycoside isomer of uridine that results when the N1-C1ʹ bond linking the uracil 

base to the ribose sugar is broken. The base is then rotated 180º around the N3-C6 axis 

and a non-canonical C5-C1ʹ glycosidic bond is formed (Figure 1.1) [21]. 

 

 
Figure 1.1. Isomerization of uridine to pseudouridine. 

Pseudouridylation begins with the breakage of the N1-C1ʹ bond followed by a 

180° base rotation around the N3-C6 axis. The resulting Ψ contains an additional 

hydrogen bond donor (red) and a C5-C1ʹ base-sugar linkage (blue). 

 
 

 Ψ’s designation as a fifth ribonucleoside is fitting given its unique physiochemical 

properties with respect to its U isomer. Following isomerization, the Watson-Crick edge 

of uridine remains unchanged, allowing for Ψ-A base pairing. Important to note, the 

Uridine

O
H H

OH OH

HO

H H

N1

NH

O

O

3

6

5 C }
O

H H

OH OH

HO

H H

NH

O

O

HN
1 3

6

C5

}
Ψ synthase

Pseudouridine



 

 4 

resulting Ψ has an additional hydrogen bond donor at the N1 position. In an RNA chain, 

Ψ’s ability to coordinate a structural water molecule via its N1H group confers added 

rigidity to RNA structure by increasing base stacking and adding extra hydrogen bonds 

between the base and its phosphate backbone. Additionally, N1H-mediated water 

coordination has been reported to increase Ψ/A base-pairing stability compared to the 

U/A pair [90]. Ψ’s additional hydrogen bond donor has also been thought to contribute to 

novel base pairing interactions in Ψ-containing RNA [21,96]. In fact, recent structural 

studies demonstrate that the ribosome can accommodate non-canonical codon-anticodon 

base pairing mediated by a pseudouridylated sense codon, the functional import of which 

is discussed later in this chapter [37]. 

 

1.3 Site-specific pseudouridylation is catalyzed by two distinct mechanisms 

Site-specific pseudouridylation is catalyzed by pseudouridine synthases (PUSs) through 

one of two distinct mechanisms: a protein-only (stand-alone) mechanism and a box 

H/ACA snoRNP-catalyzed (guide-dependent) mechanism [112]. Stand-alone 

pseudouridylation is catalyzed by a single PUS that recognizes its particular substrate, 

either through a specific consensus motif or secondary structure [14,16,78,110].  

 On the other hand, RNA-dependent pseudouridylation is mediated by an RNA-

protein (RNP) complex, consisting of four core proteins — Nhp2p, Gar1p, Nop10p, and 

the Ψ-synthase Cbf5 (Nap57/dyskerin in mammals) — assembled on a box H/ACA small 

nucleolar RNA (snoRNA) scaffold. Each H/ACA snoRNA folds into a conserved 

hairpin-hinge-hairpin-tail structure (Figure 1.2). Each hairpin contains a unique single-

stranded internal loop — the pseudouridylation pocket — that is complementary to a 

specific sequence in a substrate RNA, flanking 3-10 nucleotides on either side of a 
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particular target uridine [41,91]. The substrate RNA base pairs with the Ψ pocket, 

positioning the target uridine at the base of the upper stem of the hairpin where Cbf5 then 

site-specifically catalyzes pseudouridylation. Notably, the pseudouridylation pocket’s 

short guide sequence is split by a hairpin structure that is variable in length, making it 

difficult to computationally predict a particular H/ACA snoRNA’s target RNA for 

pseudouridylation. While several stand-alone PUSs are not required for cell viability, 

Cbf5 deficiency is lethal. High-throughput sequencing techniques have identified a 

growing set of snoRNAs with unknown target sites, suggesting there is still much of the 

Ψ landscape left to be charted [22,54,71,105,128]. 

 

 

Figure 1.2. Schematic of eukaryotic box H/ACA snoRNP complex. 

H/ACA snoRNA forms a hairpin-hinge-hairpin tail structure, which coordinates four core 

proteins: Nhp2, Nop10, Gar1, and Cbf5. The guide sequence in the pseudouridylation 

pocket base pairs with the complementary substrate RNA, directing the site-specific 

isomerization of the target U by the Ψ-synthase Cbf5 (figure courtesy of Yi-Tao Yu). 

 

pseudouridylation
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1.4 Hints at the biological significance of pseudouridylation 

Pseudouridine’s distinct structural properties make it unsurprising that Ψs are well-

known to cluster in evolutionarily conserved and functionally important regions of stable 

noncoding RNAs (ncRNAs). Over the years, appreciation for the significant role 

pseudouridylation plays in RNA function has grown. Ψ’s functional relevance has been 

well-documented in rRNAs, where pseudouridylation is required for ribosome biogenesis 

and translational fidelity and efficiency, and in small nuclear RNAs (snRNAs), where 

specific Ψ residues have been identified as necessary for proper pre-mRNA splicing 

[12,56,70,127,130]. Furthermore, many Ψs in rRNAs and snRNAs are conserved across 

species, occurring at identical or near-identical sites [29,126].  

1.4.1 Pseudouridylation is conditionally induced in different cellular contexts 

Once thought to be a constitutive modification, pseudouridylation has been found to be 

inducible in response to cellular stress and differentiation, suggesting pseudouridylation 

may provide a dynamic regulatory mechanism for RNA function [11,88,125]. 

Following heat shock and nutrient deprivation, two novel Ψs were identified in 

yeast U2 spliceosomal snRNA: Ψ56 and Ψ93 [125]. While Ψ56 conversion is catalyzed 

by the stand-alone PUS Pus7, Ψ93 is targeted by the H/ACA snoRNP complex guided by 

snR81 [125]. Notably, both inducible Ψs are flanked by sequences that deviate from the 

canonical motifs recognized by Pus7 and snR81. For instance, the Ψ pocket of snR81 — 

known to modify Ψ42 in U2 snRNA and Ψ1051 in 25S rRNA — pairs with two 

mismatches to the sequence flanking Ψ93. This finding is contradictory to previously 

identified constitutive RNA-dependent targets of pseudouridylation, which pair with 

perfect sequence complementarity (i.e. without mismatches) to their corresponding guide 
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snoRNAs. Imperfect sequence complementarity between the guide and substrate RNAs is 

therefore a likely hallmark of conditionally inducible Ψ targets. Importantly, Ψ93 

interferes with pre-mRNA splicing, suggesting a role in altering gene regulation in 

response to nutrient deprivation.  

Developmentally dependent Ψ28 in U6 spliceosomal snRNA, which is guided by 

the stand-alone PUS Pus1, has been found to initiate a filamentous growth program in 

yeast, which is triggered by, for instance, nitrogen- or glucose-starved environments or 

exposure to fusel alcohols [11]. Ψ28 is not present during log-phase growth and is not 

induced by other standard stress conditions, such as heat-shock, indicating that this 

alternate site of pseudouridylation is induced by filamentation-specific environmental 

stressors. Like Ψ93 in U2 snRNA, U6-Ψ28 affects pre-mRNA splicing, this time 

reducing the splicing efficiency of suboptimal introns. Altered splicing to target 

transcripts may therefore activate mRNAs necessary for filamentous growth, or inactivate 

those that inhibit such a growth program. 

1.4.2 Pseudouridylation alters amino acid decoding 

Ψ has long been known to play a role in translation of mRNAs. rRNA pseudouridylation 

is essential for translation fidelity, and pseudouridylated anticodons have been shown to 

alter ribosomal decoding in echinodermal mitochondrial RNA [115]. However, because 

the possibility of mRNA pseudouridylation had never been closely studied, the effect of 

pseudouridylation in protein-coding transcripts remained unknown. While studies on 

pseudouridylation had traditionally focused on its role in tRNAs, snRNAs, and rRNAs, 

largely due to their abundance, there was no reason to assume that pseudouridylation 

substrates should be restricted to this class of noncoding RNAs. 
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 Given that the structure of H/ACA snoRNAs is so well-conserved, guide RNAs 

can theoretically be engineered to target pseudouridylation to any RNA of interest by 

modifying the guide sequence in the Ψ pocket [53]. In a proof of principle experiment, 

the Yu group at University of Rochester Medical Center engineered guide RNAs derived 

from the naturally occurring yeast H/ACA snoRNA SNR81 to target pseudouridylation to 

mRNA to investigate the effect of Ψ in protein-coding transcripts. Ψ was artificially 

targeted to a premature stop codon within a reporter mRNA to monitor translation 

termination efficiency. Interestingly, introducing Ψ into each of the known stop codons 

(UAA, UAG, UGA) suppresses translation termination by directing the incorporation of 

biochemically and structurally similar amino acids. Specifically, ΨAA and ΨAG code for 

serine and threonine, while ΨGA codes for tyrosine and phenylalanine [61]. Further 

studies have confirmed similar nonsense-to-sense codon conversion in bacteria, 

suggesting that Ψ-mediated recoding is conserved in prokaryotes and eukaryotes [37].  

Ψ’s recoding potential is strengthened by structural studies that demonstrate the 

ribosome can accommodate non-canonical codon-anticodon base pairing mediated by a 

pseudouridylated sense codon [37]. The crystal structure was resolved for ΨAG pairing 

with the tRNASer anticodon stem loop AGI. The decoding center’s unexpected plasticity 

suggests that Ψ may similarly recode sense codons, thereby expanding the genetic code 

and generating protein diversity beyond what is encoded in genomic DNA. This finding 

is all the more intriguing given the possibility of condition-dependent pseudouridylation 

events in coding regions in response to changes in environment. In fact, ΨUU, which is 

derived from the phenylalanine-encoding UUU codon, has been found to code for 

cysteine and tyrosine (Yu, personal communication). While some groups have 
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theoretically predicted what other pseudouridylated sense codons could be coding for, 

they still agree that more experimental data are needed before more accurate predictions 

can be made [96]. 

 In vitro-transcribed mRNAs in which every U residue is pseudouridylated have 

also been found to exhibit enhanced stability and translation efficiency when delivered in 

vivo [62]. Important to note, however, is that fully pseudouridylated mRNAs synthesized 

for this study were translated into functional proteins (i.e. GFP, lacZ, and luciferase). 

While the protein products were not sequenced to determine if Ψ facilitated alternate 

amino acid incorporation, the likelihood that a functional protein would result from 

multiple codon recoding events is low. Consequently, the number or density of Ψs within 

a particular protein-coding transcript could perhaps play a role in Ψ-mediated recoding. 

1.5 Methods of pseudouridine detection 

Pseudouridine was first identified as an unknown ribonucleoside in 1951 by subjecting 

calf liver RNA isolates to ion-exchange chromatography [26]. Because Ψ is mass-silent 

with respect to U, rather labor-intensive chromatographic techniques continued to be the 

prevailing method for Ψ detection. These methods took advantage of the effect of Ψ’s 

additional hydrogen bond donor on migration. As the field advanced, a combination of 

RNase digestion, radiolabeling, and chromatography-based methods produced the first 

pseudouridine maps in tRNAs and rRNAs [47,52,113]. Notably, these approaches 

required large amounts of purified RNA as a starting material, and were thus limited to 

studying only highly abundant RNA species. 

 In 1993, a method was developed by Bakin and Ofengand taking advantage of the 

carbodiimide CMC (N-Cyclohexyl-Nʹ-(2-morpholinoethyl)carbodiimide metho-p-
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toluenesulfonate) to label Ψ residues [7]. Under physiological conditions, CMC acylates 

guanosine (G) at the N1 position and uracil at the N3 position (Figure 1.3A). Notably, 

isomerization to Ψ creates an additional CMC conjugation site, so CMC acylates Ψ 

residues at the N1 and N3 positions. CMC adducts are susceptible to alkaline hydrolysis 

(pH=10.4), except in Ψ where CMC remains specifically and irreversibly bound at the N3 

position. Traditionally, the method has been coupled to primer-extension assays to map 

sites of pseudouridylation, as Ψ-CMC adducts result in reverse transcriptional (RT) arrest 

one base downstream of a Ψ site (Figure 1.3B). Ψ-CMC is thus detectable as a distinct 

stop, whereas without conjugation to CMC, Ψs are indistinguishable from U by the 

reverse transcriptional machinery. Since the CMC/RT approach was introduced, it has 

become the primary means of Ψ detection. 

 

 

Figure 1.3. CMC specifically labels Ψ and causes RT arrest one base 3' to Ψ. 

(A) CMC specifically labels pseudouridine. Following alkaline hydrolysis, CMC (red) 

remains bound to the N3 position of Ψ. (B) Reverse transcription using a primer specific 

to U2 snRNA maps Ψ-CMC-mediated RT arrest sites (right lane) when compared to 

mock-treated control (left lane). 
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 While the CMC/RT approach is not quantitative, CMC derivatization has been 

coupled to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) 

to quantify the relative abundance of derivatized Ψ [97]. When CMC is conjugated to its 

Ψ target, it can be detected as a distinct mass shift of 252 Da. A key limitation of this 

method, which is discussed more in the next chapter, is its reliance on uniform 

derivatization of CMC to its targets for accurate quantitation. 

 In more recent years, limitations inherent in CMC derivatization have 

incentivized the development of CMC-independent techniques. In particular, site-specific 

RNase H cleavage of a candidate Ψ site was combined with splinted ligation, 

ribonuclease digestion, and thin layer chromatography to identify hypothesized sites of 

pseudouridylation [75]. The method, termed Site-specific Cleavage And Radioactive-

labeling followed by Ligation-assisted Extraction and Thin-layer chromatography 

(SCARLET), has the added benefit of quantitatively detecting the extent to which a 

particular Ψ is modified. In addition, mass spectrometry techniques have been developed 

to exploit Ψ’s unique physiochemical features independent of CMC conjugation. More 

specifically, Ψ’s noncanonical C–C glycosidic bond yields a unique fragmentation 

pathway following collision-induced dissociation (CID), the products of which can be 

detected by liquid chromatography tandem mass spectrometry (LC-MS/MS) [1].  

 Site-specific Ψ-mapping for each of the methods summarized above, however, 

requires prior knowledge of the Ψ-containing sequence of interest, preventing an 

unbiased detection approach. In addition, with the exception of SCARLET, the current 

methods have been developed to detect Ψ in relatively abundant RNAs, ruling out 

detection of Ψ in more lowly expressed transcripts, such as mRNAs. 
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1.6 Statement of the problem 

The advent of high-throughput RNA sequencing and the development of increasingly 

sophisticated bioinformatic methods to analyze the resulting data have led to the creation 

of techniques to specifically map RNA modifications across the transcriptome. For 

instance, utilizing an m6A-specific antibody to immunocapture modified transcripts has 

allowed for transcriptome-wide localization of m6A, while analyzing specific RT-arrest 

and nucleotide misincorporation profiles has led to the global identification of N1-

methyladenosine (m1A) residues [32,49]. Modification maps have allowed for the 

generation of testable hypotheses to continue probing the functional relevance of the 

modification in question.  

In contrast to the growing body of work pointing to the biological functions of 

pseudouridylation, further inquiry was limited by the available methods for site-specific 

Ψ detection. For instance, despite pseudouridine’s recoding potential, pseudouridylation 

of native mRNA transcripts had never been observed. Elucidating the role of 

pseudouridylation in naturally occurring RNAs would therefore require the development 

of a high-throughput, unbiased, and sensitive approach to identify Ψs. As a result, I set 

out to develop a deep-sequencing approach for Ψ detection, outlined in Chapter 2, 

adapting CMC derivatization to a high-throughput format.  

During my pilot Ψ-profiling experiments, three CMC-based approaches to 

transcriptome-wide detection were published, with a fourth technique released shortly 

thereafter. Collectively, these methods — called Pseudo-seq, Ψ-seq, PSI-seq, and CeU-

seq, in order of publication — catalogued thousands of novel sites of pseudouridylation 

across a number of species and in a range of environmental contexts. The availability of 
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four independent yet interrelated methods provided a unique opportunity for a critical, 

cross-method comparison of their respective results. I therefore undertook such a 

comparative analysis, which revealed previously undiscussed shortcomings of each 

approach, detailed in Chapter 3. I then applied lessons learned from the caveats I 

uncovered to improve the now available Ψ-detection approaches. 

The original aim of mapping where Ψ sites are was to understand what Ψ sites do. 

In other words, Ψ-detection approaches were developed to better understand the role 

pseudouridylation plays in biological systems. As a result, I chose to apply my 

improvements to characterize Ψ profiles at two life cycle stages in the digenetic 

protozoan parasite Trypanosoma brucei. In so doing, I hoped to begin to unravel the role 

differential pseudouridylation might play in cellular differentiation. However, my 

preliminary experiments in this system revealed unanticipated concerns surrounding 

robust, reproducible high-throughput CMC-based Ψ detection, discussed in Chapter 4.  

Beyond pseudouridylation, an underlying theme in this thesis is the importance of 

well-documented experimental failure. Therefore, I have attempted to rigorously 

investigate and characterize potential sources of my failure to implement high-throughput 

Ψ-detection. I hope the work undertaken in this thesis might set an example for how to 

transparently and productively discuss caveats and experimental limitations of the 

scientific practice more broadly.  
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CHAPTER 2. Developing a high-throughput approach for Ψ detection 

To gain a better understanding of Ψ and its potential role in modulating cellular function, 

we must first know what subset of transcripts are targeted for pseudouridylation and 

where in those transcripts Ψ occurs.  

 Since its introduction in 1993, CMC derivatization and subsequent alkaline 

hydrolysis coupled to primer extension has become the primary means of Ψ detection [7]. 

Despite its popularity, the technique comes with two primary limitations:  

1. Primer design requires prior knowledge of the Ψ-containing sequence of interest, 

precluding unbiased discovery of pseudouridine residues. 

2. CMC-dependent pseudouridine mapping was developed to detect Ψ residues in 

relatively abundant RNA species (i.e. rRNAs, tRNAs, snRNAs), where uridine is 

highly isomerized to pseudouridine. For instance, the majority of Ψ residues in 

Schizosaccharomyces pombe are isomerized from U to Ψ at an efficiency of 85% 

or higher [114]. Therefore, low efficiency pseudouridylation events and Ψs in 

lowly abundant transcripts, like mRNAs, are unlikely to be detected using the 

traditional, low throughput CMC-based approach. 

Both limitations can be circumvented with the advent of next-generation sequencing 

technologies, which can interrogate the entire transcriptome at high depth for sites of Ψ-

CMC-mediated reverse transcriptional arrest. Coupling CMC conjugation with stranded 

RNA sequencing (RNA-seq) therefore allows for mapping of novel Ψ targets, and is the 

basis of the high-throughput sequencing approach laid out in this chapter. 

2.1 CMC derivatization and alkaline hydrolysis optimization 

CMC conjugation is not without its challenges. Specifically:  
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1. CMC does not conjugate to all G- and U-like residues with uniform efficiency. 

Thus, the presence of underivatized Ψ residues will lead to false negatives [33]. 

2. Likewise, alkaline cleavage of CMC adducts to non-Ψ residues occurs at 

incomplete efficiency, so failure to cleave CMC from G-like and U-like residues 

will result in false positives [33]. 

Conditions for CMC treatment and alkaline hydrolysis vary within the literature, 

specifically with respect to three variables: (1) alkaline solution pH, (2) incubation time, 

and (3) incubation temperature [7,33]. Before proceeding to a pilot study coupling CMC 

derivatization with RNA-seq, it was therefore essential to establish a standardized 

derivatization protocol to maximize CMC conjugation efficiency to pseudouridine, while 

minimizing RNA degradation resulting from alkaline hydrolysis. 

 To ensure optimal reaction conditions, a method of monitoring CMC 

derivatization and subsequent cleavage from non-Ψ residues was required. As a result, I 

collaborated with Dr. Mark Helm’s group at Johannes Gutenberg-Universität Mainz, 

where they had synthesized a CMC derivative called N-cyclohexyl-Nʹ-β-(4-

propargylmorpholinum) ethylcarbodiimide or CMCyne. The compound importantly 

contained an alkyne group for Copper(I)-Catalyzed Azide-Alkyne Cycloaddition, the 

classic “click” chemistry reaction (Figure 2.1A). To track CMC adducts, I could then take 

advantage of a fluorescent azide, atto488, which could be conjugated to CMCyne 

following derivatization to its target U- and G-like residues (Figure 2.1B). While atto488 

does not provide an absolute measurement of CMCyne conjugation, diminishment of a 

fluorescence signal following hydrolysis provided a relative gauge of cleavage efficiency. 
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Figure 2.1. Structures of CMCyne derivatives. 

(A) Structure of CMCyne with alkyne group in red. (B) Structure of CMCyne conjugated 

to pseudouridine (grey) and atto488-azide (yellow) following azide-alkyne cycloaddition. 

 
 

I first established that CMCyne could conjugate to U- and G-like residues like the 

commercially available CMC. In vitro-transcribed tRNA tyrosine (IVT tRNATyr) 

containing only unmodified ribonucleotides was therefore derivatized with CMCyne 

followed by atto488 conjugation. The product of the reaction was visualized on a 15% 

SDS-PAGE gel, which confirmed CMCyne had conjugated to U and G residues in IVT 

tRNATyr. Next, I tested a number of conditions for alkaline hydrolysis with 50 mM 

(NH4)2CO3 by varying the pH, temperature, and time of the reaction, which are detailed 

in Table 2.1. 

 

Table 2.1. Detailed conditions for alkaline hydrolysis optimization. 

pH 10.5 11.0 11.5 10.5 11.0 11.5 10.5 11.0 11.5 10.5 11.0 11.5 

Temperature 37˚C 42˚C 

Time 2.5 hours 3.0 hours 
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The schematic for alkaline hydrolysis optimization is detailed in Figure 2.2A. 

Following CMCyne conjugation to IVT tRNATyr, samples were subjected to alkaline 

hydrolysis under all of the above conditions. Treatment with H2O in place of alkaline 

solution was used as a control. Because IVT tRNATyr contains no pseudouridine residues, 

all CMCyne should be cleaved from U and G residues under efficient alkaline hydrolysis. 

As a result, atto488-azide would have no available substrate for conjugation. I could 

therefore monitor CMCyne cleavage efficiency as a loss of fluorescence signal. I also 

monitored RNA degradation under alkaline conditions by subjecting my samples to a 

GelRed stain following fluorescence imaging on a 15% SDS-PAGE gel (Figure 2.2B).  

 

    
Figure 2.2. Optimizing conditions for efficient alkaline hydrolysis. 

(A) Schematic of perfectly efficient alkaline hydrolysis reaction in which all CMCyne is 

cleaved from non-Ψ residues leaving atto488 without a substrate. (B) Following CMCyne 

derivatization, samples were subjected to alkaline hydrolysis under a range of conditions. 

RNA was visualized on a 15% SDS-PAGE gel, scanned for fluorescence (left), and then 

stained with GelRed (right). Samples treated at pH 10.5 are not shown. 
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Based on the results detailed in Figure 2.2B, I settled on treatment with 50 mM 

(NH4)2CO3 at pH 11.0 at 37˚C for 2.5 hours as sufficiently efficient. Under these 

conditions, fluorescence from conjugated atto488 substantially diminished with respect to 

the H2O control, while RNA degradation remained minimal. 

Finally, I confirmed that under these conditions, I could distinguish a uridine from 

a pseudouridine. To do so, I took advantage of two short oligoribonucleotides (~30 nt 

long) synthesized by the Helm group; both were identical except one contained a single U 

residue, while the other contained a Ψ in its place (Figure 2.3A). Each 

oligoribonucleotide was subjected to optimized CMCyne treatment. Following 

fluorescent labeling with atto488-azide, the reaction conditions were found to be sufficient 

for distinguishing a Ψ from a U within the oligonucleotide (Figure 2.3B). 

 
 

 
Figure 2.3. Optimized CMCyne-alkali treatment can distinguish Ψ from U. 

(A) Schematic of CMCyne-alkali treatment with atto488 conjugation. (B) Derivatization 

of the Ψ-containing oligonucleotide results in a fluorescent signal (indicated by arrow), 

which is absent in its U-containing counterpart. 
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2.2 Pilot high-through Ψ-detection experiment with S. cerevisiae rRNA 

Having established an optimized protocol for CMCyne conjugation and subsequent 

cleavage, I began a pilot experiment to map sites of pseudouridylation using RNA 

sequencing. CMCyne would have been the ideal compound for derivatization because its 

alkyne group allowed for conjugation with a biotin-azide, which would in turn allow for 

enrichment of Ψ-CMCyne-containing transcripts prior to sequencing. However, the 

compound was available only in limited quantity. As a result, I chose to move forward 

with commercially available CMC by Sigma for this experiment. 

S. cerevisiae (budding yeast) was initially used as a model organism, given the 

relative low complexity of the yeast genome, which has the additional benefit of being 

very well annotated. I chose to pilot a high-throughput Ψ-detection method on yeast 

ribosomal RNAs. In addition to the high abundance of rRNA species (~95% of the 

transcriptome), sites of pseudouridylation within yeast rRNAs, as well as snRNAs and 

tRNAs, have been well-characterized and corroborated by a number of independent 

studies conducted during log phase and stationary phase growth [6,8,103]. Several of 

these studies have also attributed specific PUS or H/ACA snoRNA activity to a particular 

Ψ [30,41]. A successful high-throughput Ψ-mapping method, which I will call CMC-seq, 

would robustly detect these known sites of pseudouridylation with a low false positive 

rate, validating the success of my approach. 

2.2.1 Library preparation method for pilot CMC-seq experiment 

To prepare libraries for CMC-seq, total RNA was extracted from yeast cells grown to log 

phase, and treated in duplicate with CMC followed by alkaline hydrolysis; mock-treated 

(i.e. without CMC) samples were processed in parallel. Mock-treated libraries ensured 
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that premature RT termination sites were due specifically to Ψ-CMC and not, for 

instance, natural stops due to RNA secondary structure. Standard library preparation 

protocols next call for fragmentation of RNA to a uniform length prior to first strand 

synthesis to ensure uniform coverage across the transcriptome (Figure 2.4). However, 

because alkaline hydrolysis leads to fragmentation, this step was skipped to avoid 

generating sequencing reads that were too small to be reliably mapped back to the 

genome. To confirm that hydrolysis resulted in uniform fragment length, I ran samples 

before and after treatment on the Agilent 2100 Bioanalyzer system (Figure 2.5). 

 

 
Figure 2.4. Schematic of CMC-seq library preparation for total RNA. 
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Figure 2.5. Alkaline hydrolysis is sufficient for uniform RNA fragmentation. 

 
 

Stranded CMC-seq libraries were then prepared by reverse transcription with 

random hexameric primers, followed by second strand synthesis to generate double-

stranded complementary DNA (dscDNA). Illumina adapters were then ligated onto 

dscDNA after end repair and A-tailing, followed by PCR amplification. The resulting 

libraries were finally sequenced with the Illumina HiSeq 2000 in 100bp single-end mode. 

2.2.2 Initial strategy for data analysis: comparing read coverage in treated 

versus mock-treated CMC-seq libraries 

The initial strategy for bioinformatic analysis was to first map RNA-seq reads back to a 

single rDNA repeat within the rDNA locus of the yeast genome (SacCer3) and calculate 

read coverage at each position. Per base coverage was normalized with DESeq to account 

for differences in library size [3]. Because Ψ-CMC adducts mediate premature RT arrest, 

CMC-treated libraries will exhibit an increase in truncated reads around sites of 

pseudouridylation, which translates into valleys in read coverage around the bases 
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number of reads in pseudouridylated regions of transcripts. I therefore calculated what I 

called the ‘CMC-stat’ for each position along rRNA (Equation 2.1). I defined CMC-stat 

as the log2-transformed ratio of the median number of reads covering a given position in 

mock-treated versus treated libraries. 

Equation 2.1.    

 
 

 The CMC-stat was then plotted for each position along the length of a given 

rRNA transcript (Figure 2.6). As predicted, known sites of rRNA pseudouridylation 

correspond well with peaks in CMC-stat values for 18S and 25S rRNA as a result of 

more reads covering mock-treated transcripts compared to their treated counterparts. 

However, peaks were not observed for the shorter 5.8S and 5S rRNAs, which is likely 

attributed to a size selection step following dscDNA synthesis that removed fragments of 

less than 100 nucleotides in length. In fact, DESeq-normalized read coverage (corrected 

for transcript length) of both 5.8S and 5S rRNA is significantly lower than that of 18S 

and 25S rRNA (Figure 2.7). Because both transcripts are less than 150 nucleotides long, 

reads that spanned the length of the transcripts were enriched following dscDNA clean-

up. In other words, short dscDNA fragments resulting from Ψ-CMC-mediated reverse 

transcriptional arrest were removed prior to sequencing, particularly given that Ψ is 

located roughly in the middle of both 5.8S and 5S rRNA. 

 

CMC-stat = log2
reads at position-CMC

reads at position+CMC
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Figure 2.6. CMC-stat plots show broad peaks around clusters of rRNA Ψ sites. 

CMC-stat values were plotted for each position along (A) 18S rRNA, (B) 25S rRNA, (C) 

5.8S rRNA, and (D) 5S rRNA transcripts. Known Ψs are indicated with red vertical lines. 

 

 

 
Figure 2.7. DESeq normalized reads corrected for length of rRNA transcripts. 
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 While CMC-stat plots were able to qualitatively identify Ψs as peaks in the CMC-

stat metric, this approach could not computationally pinpoint putative Ψs at single 

nucleotide resolution, which is essential to detecting novel targets of pseudouridylation 

across the entire transcriptome. If the peaks were of a uniform shape, I could interrogate 

the transcriptome for CMC-stat peaks of that same shape to narrow down a set of putative 

Ψ sites, which could then be validated using low-throughput methods. However, peak 

shape was quite variable, so clear Ψ-calling cutoffs could not be concretely defined, even 

based on known sites of pseudouridylation. rRNA represents the best case scenario for Ψ 

detection, with its high levels of expression guaranteeing high coverage and its highly 

isomerized Ψ residues facilitating a strong Ψ-CMC RT stop signal. Because CMC-stat 

analysis was difficult to interpret for rRNA, I concluded that it would be poorly suited for 

a transcriptome-wide analysis. As a result, I tested an alternative approach to Ψ mapping, 

detailed in the next section. 

2.2.3 Alternative data analysis strategy: Analyzing nucleotide misincorporation 

during cDNA synthesis to identify Ψs 

Post-transcriptionally modified nucleotides have been known to alter reverse 

transcriptase processivity [123]. Alterations to the Watson-Crick face of a nucleotide can 

impose a roadblock to complementary nucleotide incorporation by the reverse 

transcriptional machinery. As a result, the polymerase stalls at the modified site, which in 

turn can lead to nucleotide misincorporation. By analyzing RNA-seq data, several groups 

have identified characteristic nucleotide misincorporation signatures that distinguish a 

particular RNA modification from random sequencing errors [49,50,104]. 
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 Because CMC derivatizes to the Watson-Crick edge of Ψ, and because Ψ-CMC 

adducts have been found to cause a “stuttered” stop in RT at the modification site (as 

opposed to one base 3ʹ of Ψ), I decided to take a closer look at alternative nucleotide 

incorporation frequencies [6]. Given yeast contain over 100 rDNA repeats, intra-genomic 

DNA polymorphisms naturally exist among the many gene copies, which must be 

distinguished from modification-driven mismatched nucleotide incorporation [58,122]. I 

therefore filtered out known polymorphisms from my analysis. In addition, mispriming 

events introduced by random hexamers during first strand synthesis and a drop in base 

calling quality result in higher sequencing error rates at the ends of reads. As a result, I 

trimmed two bases off the ends of each read. Importantly, rRNA positions exhibit 

excellent read coverage; however, if this method were applied to the entire transcriptome, 

only positions with sufficient coverage should be analyzed to ensure a modification-

mediated mismatch can be distinguished from sequencing errors or mis-mapping events. 

 Following these filtering steps, I calculated the ratio of non-reference nucleotide 

incorporation, or the ‘mismatch rate’ (MR), for each position (Figure 2.8A). I then 

calculated the log2-transformed ratio of treated versus mock-treated mismatch rates to 

compare whether mismatch frequencies at modified nucleobases were indeed higher 

(Figure 2.8B). Analysis was next narrowed to a subset of rRNA positions with a median 

mismatch rate of greater than 1.5% in treated samples (Figure 2.8A, purple points) and 

with over four times the median MR in treated versus mock-treated samples (Figure 

2.8B, maroon and green points). The MR cutoff was based on an assumed base-calling 

error rate of ~1% using the Illumina sequencing platform [77].  
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Figure 2.8. Non-reference nucleotide incorporation rates for rRNA. 

(A) The median mismatch rate was plotted for each position. MRs of greater than 1.5% 

are indicated as points. (B) The log2-transformed ratio of treated versus mock-treated 

median MRs was plotted for each position. Sites with a greater than four-fold higher 

treated mismatch rate of at least 1.5% are indicated as points. Green points indicate a true 

Ψ site. Known RNA modification sites are indicated by vertical lines. 
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positives. If I included an additional filter to require a ‘U’ as the reference position, the 

number of false positives would decrease to three. Clearly, however, employing 

mismatch rate as a Ψ-detecting metric is not sufficiently adequate for identifying the bulk 

of known Ψ sites. Still, I chose to take a closer look at the alternate nucleotide 

incorporation profiles by base of the three true Ψ hits from this mismatch analysis (Figure 

2.9, yellow highlight). All three Ψ positions show a clear bias towards sequencing of C 

with varying levels of A, which is in line with observations made by other groups, and 

with closer inspection of all Ψ residues in my CMC-seq data set [104]. 

 

 

Figure 2.9. Nonreference nucleotide incorporation profiles at U positions of interest. 

Nonreference nucleotide incorporation frequencies for each treated (triangle) and mock-

treated (circle) replicate were plotted for true Ψ sites identified during mismatch analysis 

(highlighted in yellow). Three additional points of interest were identified and plotted. 
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carboxypropyl) pseudouridine (m1acp3Ψ) at position 1191 in 18S rRNA and 2ʹ-O-

methyluridines (Um) at positions 2634 and 2843 in 25S rRNA. Interestingly, CMC 

cannot derivatize to m1acp3Ψ because both derivatization points on the Ψ base are 

otherwise occupied by chemical groups. In fact, this hypermodified nucleotide has been 

found to block reverse transcription on its own, likely owing to the acp3 group at the N3 

position of Ψ [81]. m1acp3Ψ shows a similar bias towards C(/A) as its non-hypermodified 

counterpart. Um, on the other hand, shows a bias towards incorporation of A with 

varying levels of G. To date, available methods for Um mapping either take advantage of 

2ʹ-O-methylated residues resistance to (1) alkaline hydrolysis, (2) RNase digestion, or (3) 

2ʹ-OMe-specific reverse transcriptional stalling under limiting dNTP concentrations 

[63,80,129]. Recently, the latter strategy was adapted to a high-throughput format in a 

method called 2OMe-seq [55]. However, none of these methods has identified nucleotide 

misincorporation at Um as an additional validation strategy for putative Um sites. 

 Although mismatch analysis is insufficient for robust de novo Ψ identification, I 

concluded that adding a filter for a mismatch incorporation profile of C(/A) at a putative 

Ψ can serve as an additional bioinformatic layer to increase confidence in that site.  

 While analysis of my preliminary CMC-seq experiments showed promise for de 

novo mapping of Ψ sites, my efforts were interrupted with the concurrent publication of 

three similar CMC-based methods for high throughput Ψ-detection. These methods, as 

well as a critical analysis of their results, are detailed in the next chapter.  
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CHAPTER 3. A comparative analysis of high-throughput Ψ-detection methods2 

With interest surrounding pseudouridylation growing — particularly around its potential 

role in stabilizing or recoding mRNAs — several groups had independently begun work 

developing a high-throughput Ψ-mapping approach similar to CMC-seq. As a result, 

within the month of October 2014 alone, three methods were published — called Pseudo-

seq, Ψ-seq, and PSI-seq, in order of publication — that coupled CMC derivatization with 

RNA-seq to map the pseudouridine landscape in yeast and human RNAs [19,76,107]. 

Shortly thereafter, a fourth group published a similar technique called CeU-seq that 

employed a CMC derivative with an azide group for click chemistry, similar to the 

principal behind CMCyne [69]. Collectively, these papers revealed hundreds of novel Ψs 

that were found throughout the transcriptome. Intriguingly, pseudouridines were found in 

mRNA and ncRNA transcripts for the first time. What follows in this section is an outline 

of these methods, comparing and contrasting their approaches, and a comparative 

analysis of their results, which revealed areas of improvement for high-throughput Ψ 

detection. 

3.1 Strategies underlying four published high-throughput Ψ-detection methods 

Given all four techniques rely on CMC derivatization and subsequent deep sequencing, 

little technical difference exists between the library preparation protocols for each (Figure 

3.1). All began by treating poly(A)-selected RNA with CMC, followed by alkaline 

hydrolysis to selectively label Ψ residues. Following treatment, an adapter was ligated to 

the 3ʹ end of RNAs and transcripts were reverse transcribed, with truncated cDNA 

                                                
2 Portions of this chapter were published in [131]. 
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products resulting from Ψ-CMC-induced RT arrest. Depending on the method used, 

either a 3ʹ adapter was ligated to the resulting cDNAs or RT products were circularized 

for subsequent PCR amplification and deep sequencing. As a control, libraries were also 

prepared from mock-treated samples processed in parallel. 

 

 

 

Figure 3.1. Four methods of transcriptome-wide identification of Ψ residues are 

based on the same CMC-derivatization principles.  

Generalized library preparation procedure for Ψ-detection methods. Method-specific 

details are highlighted in green boxes. 

 

CMC

Ψ

AAAAAAAAAA5´ 
cap

3´ 

AAAAAAAAAA5´ 
cap

3´ Ψ

CMC

Ψ

5´ 

5´ 

3´ 

3´ 
5´ 

5´ 
RNA

RNA

cDNA

cDNA

PolyA selection
DNase treatment

CMC
treatment

alkaline
hydrolysis

+

3’ adaptor ligation
Reverse transcription

RNA fragmentation
(Pseudo-seq, PSI-seq, and CeU-seq)

RNA fragmentation (Ψ-seq)
Pull-down of Ψ-CMC-biotin-containing transcripts (CeU-seq)

3’ adaptor ligation to (or 
circularization of) cDNA
PCR amplification
sequencing

selection of truncated cDNAs due to RT arrest
(Pseudo-seq and PSI-seq)

5´ 
5´ 

3´ 
3´ 

cDNA



 

 31 

While all the aforementioned methods follow the general outline detailed above, a 

few notable exceptions exist, particularly in how each method enriches for Ψ-containing 

transcripts (Figure 3.1, green boxes). Most notably, CeU-seq chemically enriches for Ψ-

CMC-containing transcripts, as its full name, N3-CMC-enriched pseudouridine 

sequencing implies. A CMC-azide derivative was utilized for CMC-treatment, which 

allows for biotin conjugation with click chemistry following derivatization and 

subsequent hydrolysis. Ψ-CMC-biotin-containing transcripts were then pulled down with 

streptavidin beads, increasing the method’s sensitivity with the benefit of approximately 

15-20-fold enrichment of pseudouridylated RNAs [69].  

The production of truncated reverse transcriptional products due to Ψ-CMC is 

central to all four methods and poses unique challenges for bioinformatic detection. 

Whereas my initial CMC-seq analyses centered on analysis of read coverage, each of 

these methods has developed similarly derived bioinformatic approaches to identify Ψ-

CMC-mediated reverse transcriptional stops to chart the pseudouridine landscape. 

Importantly, reverse transcriptional stops correspond to sequencing read starts. Instead 

of focusing on overall read coverage for a given RNA position, as I had in my initial data 

analysis strategy, each method computationally identified an increase in CMC-treated 

reads beginning one position 3ʹ to a putative Ψ with respect to the mock-treated control 

(Figure 3.2A). Sites not immediately preceded by a U were removed from analysis. 
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Figure 3.2. Ψ-CMC adducts correspond to peaks in read starts.  

(A) Sample output of Pseudo-seq, Ψ-seq, and CeU-seq Ψ-detection metrics. (B) Ψ-fc plot 

for 18S rRNA generated with data from Schwartz, et al. analyzed using my own custom 

scripts. Grey lines indicate known rRNA Ψs. Similarities and differences between Ψs 

called by my analysis (MZ) and that of Schwartz et al. (SS) are marked by colored points. 
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adapted from related work profiling RNA secondary structure using DMS-mediated RT 

stops — as an additional measure of the difference in stop reads at a particular site [31]. 

 

Equation 3.1.    

 

 Pseudo-seq utilized a metric similar to the Ψ-ratio/stop rate, calculated with 150-

nucleotide windows (Equation 3.2, WS) centered on a U site. The number of reads 

beginning 1 base 3ʹ of the central U (Equation 3.2, URS) and the total number of reads 

initiating at any other position within the window (Equation 3.2, WRS) were determined 

for treated and mock-treated libraries to calculate the ‘peak+’ (Equation 3.2) [19]. Peak+ 

values above a specified cutoff and exceeding a minimal number of supporting reads 

were used to call putative Ψs, requiring reproducibility over a given number of replicates.  

 

Equation 3.2.    

 

 With the four published methods now outlined above, two notable differences can 

be drawn between their approaches and the one I employed during CMC-seq library 

preparation. First, I used random hexamers for priming during first strand synthesis, 

which has been found to bias read coverage towards certain 13-mer sequences [48]. In 

contrast, the methods outlined in this section prime from 3ʹ ligated adapters for more 

uniform coverage of the transcriptome. Second, each method prepared libraries so the 3ʹ 

ends of cDNA made during first strand synthesis would correspond to a read start site. Ψ-

Ψ-ratio = stop rate = reads beginning at position
total reads at position

peak+ = WS × URS+CMC – URS-CMC

WRS+CMC – WRS-CMC
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seq did so using paired-end sequencing to sequence both ends of a particular dscDNA. 

The remaining three methods employed intramolecular ligation in lieu of 5ʹ adapter 

ligation to circularize cDNA following first strand synthesis; the site of RT termination 

was thus exactly 3ʹ of the sequencing primer. Because I did not circularize cDNA and 

employed 100bp single-end sequencing, I would only sequence the RT stop site if the 

dscDNA fragment were less than 100 nucleotides long. Thus, my CMC-seq libraries are 

insufficient for detecting an enrichment in read starts at a putative Ψ-CMC site. Indeed, I 

attempted a similar approach on my CMC-seq samples — computationally detecting an 

enrichment in read stops in place of starts — and could only identify one Ψ in 18S rRNA 

(Figure 3.3). 

 
 

 

Figure 3.3. Ψ-seq analysis on CMC-seq libraries detects only one Ψ 18S rRNA. 
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3.2 Key results from Pseudo-seq, Ψ-seq, PSI-seq, and CeU-seq 

Pseudo-seq, Ψ-seq, PSI-seq, and CeU-seq were all performed on a number of cell types 

and growth conditions, revealing a tremendous amount of diversity and complexity in the 

pseudouridylation landscape. But before the methods were applied to a transcriptome-

wide analysis, known sites of rRNA pseudouridylation were first used to calibrate each 

method’s respective Ψ-detecting metrics to balance the sensitivity and specificity of each 

approach. This analysis also confirmed CMC’s specificity for Ψ derivatization, which 

was a concern of mine during CMC treatment optimization. Each method filters for hits 

that correspond to a ‘U’ in the transcriptome, which excludes analysis of G residues that 

may still be conjugated to CMC due to incomplete hydrolysis.  Nevertheless, according 

to the Ψ-seq study conducted with log phase yeast, all predicted Ψ sites were either 

preceded by a U residue or adjacent to a called Ψ as a result of ‘stuttered’ RT arrest 

[6,107]. Additionally, the CeU-seq study demonstrated high specificity of N3-CMC to Ψ, 

with no cross-reactivity to U or the G-like inosine [69].  

 Having established the appropriate computational cutoffs for Ψ-detecting metrics, 

Ψ maps were detailed for budding yeast, human cells (HEK293, HEK293T, HeLa, and 

fibroblasts), and mouse brain and liver cells. In addition to detecting known sites of 

pseudouridylation in tRNAs, snRNAs, and rRNAs, Ψs were found for the first time in a 

range of functionally relevant noncoding RNAs and mRNAs [19,69,76,107]. A subset of 

these newly identified Ψs were attributed to a specific PUS or Ψ-guiding snoRNA 

through a series of systematic knockdown/knockout experiments. Combined, genetic 

perturbation experiments and computational analyses linked approximately 20-50% of 
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putative Ψs to guide RNA or PUS activity, depending on which Ψ-detection method was 

used and which PUSs and snoRNAs were further investigated.  

While matching predicted sites of pseudouridylation to PUS or guide RNA 

activity indirectly validated a subset of Ψ candidates, Li et al. went one step further, 

directly validating four of their hits from CeU-seq. A quantitative, CMC-independent Ψ-

detection method called SCARLET (detailed in Chapter 1.5) was utilized to verify that 

the aforementioned three previously unknown Ψ sites detected in human rRNA were 

modified to greater than 90% [69]. Even more intriguingly, SCARLET was applied to 

demonstrate U519 in EEF1A1 mRNA was indeed pseudouridylated to approximately 

56%, providing the first documented experimental evidence of mRNA pseudouridylation.  

 Each method also identified a conditionally dependent set of mRNA 

pseudouridylation sites. In particular, hundreds of stress-dependent pseudouridylation 

events were identified in yeast by Ψ-seq (265 Ψs) and PSI-seq (314 Ψs) analysis of cells 

following heat shock [19,107]. 60% of Ψ-seq hits perfectly corresponded to the 

conserved Pus7 recognition motif and became undetectable in the pus7 strain, suggesting 

Pus7 plays a major role in orchestrating heat-shock-specific pseudouridylation. Notably, 

Pus7 had previously been implicated in the inducible modification of U2 snRNA at Ψ56 

following heat shock and nutrient deprivation [125]. Stress-induced Ψs were also found 

in human cells; CeU-seq profiled sites following heat-shock (464 Ψs) and H2O2 treatment 

(477 Ψs), while Pseudo-seq profiled sites in serum-starved versus serum-fed HeLa cells 

[19,69]. CeU-seq profiling was additionally performed on mouse cells derived from liver 

and brain tissue. 1,741 and 1,543 Ψ sites were identified in brain and liver mRNAs, 

respectively; however, only 54 of those sites were shared between the two cell types. 
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Remarkably, pseudouridylated transcripts were strongly enriched for tissue-specific 

function. For example, Ψ-containing mRNAs from the brain encoded proteins involved in 

nervous system development and signal transduction. 

3.3 Comparative analyses of approaches reveal opportunities for improvement 

The existence of four independent CMC-based deep sequencing approaches for Ψ 

detection afforded a unique opportunity for critical comparison of their respective results 

to determine the robustness of each approach. Because each was applied to a diverse set 

of cell types and growth conditions, I was careful to compare Ψ maps provided only for 

transcripts isolated from the same cell line grown under similar conditions. Consequently, 

an in-depth analysis was restricted only to yeast cells grown in log phase, though I did 

also compare human-derived Ψ maps. The resulting comparative analysis revealed a 

subset of high-confidence Ψ sites, independently detected by multiple methods, and 

underscored opportunities to improve the available Ψ-detection approaches.  

3.3.1 Comparing pseudouridylation candidates in budding yeast 

Pseudo-seq, Ψ-seq, and PSI-seq all profiled pseudouridylation events in yeast undergoing 

log phase growth (OD600 ≈ 1.0, Pseudo-seq; midlog phase hits were used for Ψ-seq, with 

log phase defined as OD600 = 2, though midlog OD600 was undefined; OD600 = 0.6-0.8, 

PSI-seq), which became the focus of my comparisons. Analysis was further restricted to 

include only Ψ candidates in coding DNA sequences, as UTRs were not analyzed in Ψ-

seq. Because PSI-seq aligned reads to an earlier genome assembly (SacCer2 versus 

SacCer3), however, site-specific events could only be compared between Pseudo-seq and 

Ψ-seq. Nevertheless, I was able to interrogate the three methods to uncover a subset of 

genes with independently called putative Ψs (Figure 3.4, left panel). 
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Figure 3.4. Comparative analysis of candidate pseudouridylation targets in S. 

cerevisiae during log phase growth. 

(A) Putatively pseudouridylated coding DNA regions detected by Pseudo-seq, Ψ-seq, and 

two replicates of PSI-seq (left) and site-specific Ψ sites detected by Pseudo-seq and Ψ-

seq (right) were compared to identify overlapping hits. (B) The same analysis was 

performed for noncoding transcripts (left) and specific ncRNA-internal Ψ sites (right) 

identified by Pseudo-seq and Ψ-seq.  
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paralogous genes that resulted from gene duplication, it is likely that one or both 

transcripts are pseudouridylated. Importantly, each of these detection techniques is 

inherently biased towards detecting sites in more abundant transcripts. Indeed, RPL11a 

and TEF1/TEF2 are both within the top 30 most highly expressed genes in the yeast 

genome, which may account for their reproducible detection by independent methods 

[7,121]. Both Pseudo-seq and PSI-seq cite Pus1 dependency for RPL11a Ψ68, and all 

three studies cite Pus4 dependency for TEF1/TEF2. Furthermore, using the low-

throughput CMC-Ψ/RT approach, Lovejoy et al. identified RPL11a Ψ68 in the related 

yeast Saccharomyces mikitae and TEF1 Ψ239 in both S. mikitae and S. pombe [76]. The 

evident evolutionary conservation of these modifications further points to the potential 

biological relevance of these particular pseudouridylation events. 

Site-specific pseudouridine candidates identified by Pseudo-seq and Ψ-seq were 

next analyzed. Of the 21 overlapping putatively pseudouridylated CDSs, 10 predicted Ψ 

positions in 10 genes exactly overlapped (Figure 3.4, right panel, Table 3.1). The mean 

distance between the remaining Ψ sites within overlapping CDSs was approximately 740, 

ruling out the possibility that non-overlapping sites were the result of stuttered CMC-Ψ-

mediated RT termination. In both studies, five of the ten Ψ sites were also found to be 

dependent on activity from the same PUS (either Pus1 or Pus4). While it would be 

reasonable to assume that a high Ψ-ratio or peak+ value would increase relative 

confidence in a given Ψ site, the Ψs belonging to this overlapping set did not necessarily 

have the highest Ψ-detection metrics. In fact, Ψ239 in TEF1/TEF2 just barely passed the 

cutoff requirements for Ψ-seq (Table 3.1). Still, given the approximately 2.5 million U 

residues in yeast coding sequences, an overlap of 10 independently called pseudouridines 
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is highly significant (P = 1.12 × 10-8 by the hypergeometric test), increasing confidence 

that this set contains true targets of pseudouridylation. It is worth noting, however, that 

while all Ψ members of this set were also detected by Pseudo-seq under post-diauxic cell 

growth, only one (Ψ1916 in KAR2) was detected by Ψ-seq following heat shock.  

 

Table 3.1. CDS-internal Ψ candidates detected by Pseudo-seq and Ψ-seq. 

   Ψ-seq metrics Pseudo-seq 
metrics   

Coordinate Gene Position in Gene Ψ-ratio Ψ-fc peak+ 
chr10:383242 KAR2 1916 not available not available 2.82 
chr16:126070 YPL225W 65 not available not available 1.15 
chr4:331025 BDF2 2 0.66 4.25 13.90 
chr3:51028 GLK1 191 0.29 4.31 7.03 

chr10:314164 MPM1 709 0.24 4.66 2.02 
chr2:477909 TEF2 (TEF1) 239 0.11 3.17 6.25 
chr1:32596 GDH3 1030 0.23 5.41 3.52 

chr16:731681 RPL11A 68 0.23 3.5 11.97 
chr8:499441 RPN10 383 0.17 3.74 5.96 
chr7:623051 YGR067C 1736 0.14 3.78 2.68 

 

 

The minuscule percentage of overlapping pseudouridylated CDSs (~0.5%) and 

specific Ψ positions (~3.2%) does nevertheless highlight the limitations of the high-

throughput detection of pseudouridylation events. Specifically, because high coverage at 

each surveyed position is essential to robust Ψ detection, the output of each method is 

highly dependent on sequencing depth, which likely varied between each group. All the 

methods outlined above also favor specificity over sensitivity, which necessitates rather 

conservative cutoffs for Ψ detection. As a result, the reported Ψs are likely a small 

sampling of several true pseudouridylation events missed by each method. Additionally, 

the efficiency of native mRNA pseudouridylation has not been concretely established and 

may be highly variable [61]. Karijolich et al. noted low isomerization efficiency (~7-
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10%) when artificially targeting mRNA pseudouridylation, while the one experimentally 

verified native Ψ target identified by CeU-seq was pseudouridylated to a much higher 

extent (~56%) [61,69]. High variance in the efficiency of naturally occurring 

pseudouridylation events coupled with stringent Ψ-detection cutoffs therefore introduces 

yet another challenge to reproducible Ψ mapping.  

A core finding of all four Ψ-detection methods was the conditional inducibility of 

pseudouridylation, which further complicates Ψ profiling. Changes in the Ψ landscape in 

response to large environmental perturbations were investigated; however, the robustness 

of particular pseudouridylation events to smaller environmental fluctuations was not 

examined. For instance, small differences in CO2 levels in the incubators of different 

laboratory spaces may produce different Ψ landscapes. The difference in Ψs identified by 

these different methods may then be a reflection of biological fluctuations in 

pseudouridylation in even slightly different environmental contexts. Furthermore, all of 

the above methods query pseudouridylation events in populations of cells, aggregating 

cells that likely differ, for instance, in cell cycle stage or microenvironment. These 

distinct subpopulations may likewise differ with respect to pseudouridylation substrates. 

Population averaging effects may thus be an additional contributor to variance. We may 

speculate, then, that the Ψs identified by multiple methods are more frequently 

pseudouridylated under a broader spectrum of environments, suggesting they play some 

core role in mRNA structure or function, at least under logarithmic cell growth. 

With the above challenges in mind, I turned my attention to analyzing the set of 

pseudouridines detected in noncoding transcripts in log-phase yeast, excluding rRNAs. 

Because PSI-seq did not detail Ψs in this subset of transcripts, I compared only the 
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outputs from Pseudo-seq and Ψ-seq. Here, the percentage of pseudouridylated transcripts 

(~30%) and specific Ψ sites (~20%) independently detected by each method was 

markedly greater and highly statistically significant (P = 6.25 × 10-9 by the 

hypergeometric test) (Figure 3.4B). This overlap is well in line with the generally higher 

expression of ncRNA species with respect to their protein-coding counterparts. Important 

to note as well, these ncRNA transcripts include snRNAs and tRNAs — long established 

targets of site-specific pseudouridylation. Moreover, Ψ is known to be essential for 

proper structure and function of these classes of RNAs, necessitating constitutive 

modification of specific uridine residues. Combined, higher expression and functional 

importance thus facilitate reproducible Ψ detection by multiple methods. 

3.3.2 Comparing pseudouridylation candidates in human cells 

Pseudo-seq detailed the Ψ landscape for epithelia-derived HeLa cells, Ψ-seq for a 

combination of embryonic kidney-derived HEK293 cells and fibroblasts, and CeU-seq 

for HEK293T cells. While the comparative analysis undertaken above would suggest that 

these three methods are not directly comparable, I still wondered if I might determine to 

what extent pseudouridylation was conserved across all transcripts in these different 

human cell types. Importantly, CeU-seq pre-enriches for Ψ-CMC-containing transcripts 

by up to 20-fold to increase the method’s sensitivity to low-abundance transcripts, which 

accounts for the large difference in the reported number of hits with respect to Pseudo-

seq and Ψ-seq. Pseudo-seq-analyzed HeLa cells shared no putative Ψs with HEK293T 

cells or the combination of HEK293 cells and fibroblasts, aside from the previously 

mentioned Ψ5160 and Ψ5590 in the lncRNA MALAT1. The lack of commonly predicted 

Ψs between these cell lines derived from different tissues is in line with the low overlap 
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in Ψ sites detected by CeU-seq in mouse brain and liver cells [69]. On the other hand, 

HEK293/fibroblast cells and HEK293T cells shared 47 putative Ψs out of the 396 and 

2,084 called sites in Ψ-seq and CeU-seq, respectively. Rather interestingly, nearly 90% of 

those overlapping positions were detected in mRNAs, distributed primarily in the 3ʹ UTR 

and CDS regions. Once again, the magnitude of each method’s respective Ψ-detecting 

metrics (Ψ-ratio, Ψ-fc, and stop rate difference) does not necessarily correlate with their 

inclusion in this overlapping set. 

3.3.3 Conclusions from comparative analysis of cross-method putative Ψ sites  

Of the many pseudouridylation events that have been collectively identified by the 

available Ψ-detection methods, a small subset has been identified by more than one 

study, further increasing confidence in the Ψ-detecting power of these techniques with 

the necessary caveats detailed above. Nevertheless, the motivation behind developing 

such Ψ-detection methods is to elucidate the functional role of this modification. Having 

further established Ψ’s ubiquity by cataloguing a remarkable number of putatively 

modified sites, it is imperative to next narrow down the list to a set of promising, robustly 

modified and detectable candidates to interrogate experimentally through, for instance, 

site-specific Ψ knockout experiments. While comparing the outputs of each respective 

method has filtered the set of putative Ψs for yeast grown to log phase (and to a lesser 

extent for HEK293/HEK293T/fibroblast cells), to perform all four methods for every cell 

type and growth environment of interest is impractical. Consequently, each method could 

benefit from additional parameters that measure the extent to which a given uridine is 

isomerized, particularly because a high Ψ-detection metric from any one method does not 
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guarantee detection by an independent technique. I propose one such parameter in the 

following section. 

3.4 Towards quantitative Ψ profiling: a case for molecular barcoding 

Of the four methods for high-throughput Ψ detection, Ψ-seq was the only to demonstrate 

its ability to quantitatively capture the relative level of pseudouridylation by comparing 

the Ψ-ratios at a particular position across two or more samples. This quantitative power 

was demonstrated in a synthetic spike-in experiment that mixed different ratios of 

oligoribonucleotides that either contained a Ψ at a specific site or not [107]. Importantly, 

however, Ψ-seq was unable to measure absolute levels of pseudouridylation within a 

given sample, perhaps reflecting incomplete CMC derivatization to Ψ residues or Ψ-

CMC readthrough events. For instance, ribosomal pseudouridines are considered to be 

constitutively modified at near 100% efficiency. Recent work in S. pombe has 

experimentally demonstrated that the majority of pseudouridylated residues in rRNA are 

indeed highly modified (>85% isomerization) [114]. I was therefore curious to examine 

the variation in Ψ-ratios across ribosomal pseudouridines identified by Ψ-seq, given this 

method’s special focus on quantitative measurement (Figure 3.5A).  
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Figure 3.5. Ψ-detecting metrics are unable to provide absolute quantitation of 

pseudouridlyation levels.   

(A) Ψ-ratios of known sites of pseudouridylation in 18S and 25S rRNAs detected by Ψ-

seq were plotted to assess the variance at each position and across all positions. (B) The 

same analysis was applied to the peak+ Ψ-detection metric used in Pseudo-seq. 
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the peak+ Ψ-detection metric utilized by Pseudo-seq, though peak+ values exhibit a higher 

degree of variability at each position (Figure 3.5B). Variation at a given Ψ residue 

reflects the variability intrinsic to RNA-seq library preparations using the CMC/RT 

approach, which requires multiple steps that likewise introduce multiple opportunities for 

inconsistency in the hands of different operators. Variation across all known rRNA Ψ 

residues, however, may be the result of chemical limitations inherent in CMC’s ability to 

uniformly derivatize to pseudouridine, which may be due, for instance, to restrictions 

imposed by RNA secondary structure or interference from surrounding RNA 

modifications. While studies have been undertaken to optimize CMC derivatization 

efficiency, substrate preferences for CMC derivatization, if any, have not been 

characterized and published [33]. 

An alternative explanation to intrasample variability in Ψ-detection metrics lies in 

the high sequencing depth required for each method outlined in this chapter. Increasing 

sequencing coverage captures more rare cDNA fragments resulting from lowly expressed 

transcripts; however, increased depth also results in sequencing redundant PCR 

amplification products more frequently. This trade-off is particularly important given that 

each of the Ψ-detection techniques identify putative Ψs by an enrichment in identical 

reads initiating at the same position. Importantly, single-end sequencing produces Ψ-

CMC-derived reads that are indistinguishable from PCR duplicates (assuming no 

mismatches). Discarding duplicates therefore interferes with Ψ-detecting power, as 

multiple Ψ-CMC-initiating reads are collapsed into one (Figure 3.6). Requiring several 

replicates for confident Ψ detection does mitigate the possibility of false positive Ψ calls 

due to PCR duplicates. Still, it is difficult to determine the true proportion of reads 
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initiating at a position due to Ψ-CMC, which could more accurately reflect the level of 

pseudouridylation at that position. Notably, Ψ-seq performed paired-end sequencing, 

which improves read mapping resolution by sequencing both the 5ʹ and 3ʹ ends, to the 

extent that cDNA fragment length is sufficiently diverse. Redundant reads can therefore 

be collapsed with reduced loss of sequencing information (Figure 3.6). 

 

  

Figure 3.6. Molecular barcoding improves quantitation of unique reads initiating 

from Ψ-CMC adducts.   

Schematics of PCR duplicate removal of Ψ-CMC-derived reads using single-end RNA-

seq (purple box), paired-end RNA-seq (purple and green boxes), and paired end RNA-seq 

coupled with molecular barcoding (purple, green, and multi-colored boxes) are depicted. 

Depending on the sequencing mode used, more reads may be retained. 
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sample [40,109]. I therefore proposed similarly incorporating short randomized DNA 

sequences, through end ligation or reverse transcription, prior to PCR amplification to 

uniquely identify cDNA fragments. The specific length of the barcodes is dictated by the 

size and complexity of the transcriptome under investigation [20,39]. Replicate clones 

due to PCR amplification are identified as reads with matching barcodes and sequences 

that map to the same location. These reads are then collapsed into one, allowing for 

single-copy resolution. Most importantly, identical reads initiating from the same position 

due to Ψ-CMC may be distinguished by their unique barcodes, providing absolute 

quantitation of the number of reads initiating at and covering a given position (Figure 

3.6). In other words, the number of unique barcodes, rather than the number of reads, 

would be used to count and calculate the relevant Ψ-detection metrics. While molecular 

barcodes cannot completely overcome limitations due to inefficient CMC conjugation, 

barcoding provides a more quantitative approach that could facilitate a more direct 

comparison of pseudouridylation levels across putative Ψ sites by comparing absolute 

proportions of reads. Furthermore, the extent to which given positions are 

pseudouridylated provides additional information to discern which particular Ψ residues 

are most promising for further functional investigation. 

In the next chapter, I employed an approach coupling Ψ-seq with molecular 

barcoding to attempt to identify novel sites of pseudouridylation using the African 

trypanosome, Trypanosoma brucei, as a model organism. I also examined the feasibility 

of incorporating nonreference nucleotide incorporation patterns as an additional point of 

validation for putative Ψ sites.  



 

 49 

CHAPTER 4. Improving high-throughput Ψ detection in Trypanosoma brucei 

The purpose of developing an unbiased, high-throughput approach for Ψ detection was 

ultimately to expand our understanding of the biological role of pseudouridylation 

beyond a relatively small subset of cellular RNAs. Each of the published methods 

catalogued hundreds to thousands of novel pseudouridylation sites, a very small subset of 

which have been identified by more than one study. However, beyond a GO term analysis 

of putative Ψ-containing transcripts, these studies did little to experimentally ascertain a 

physiological role for pseudouridylation to a given transcript. For instance, does Ψ alter 

the half-life of a particular transcript in response to stress that is necessary to facilitate a 

biological stress response?  

My comparative analysis of the currently available Ψ-detection approaches 

detailed in the previous chapter shed insights into opportunities for improvement that I 

sought to apply while simultaneously probing the physiological function of this 

ubiquitous modification. In this chapter I discuss my work coupling a molecular 

barcoding scheme with the Ψ-seq method laid out by Schwartz et al. in order to detail the 

pseudouridylation profiles of Trypanosoma brucei at two distinct points of the parasite’s 

life cycle. 

4.1 Utilizing the T. brucei life cycle as a model system to investigate the functional 

consequences of differential pseudouridylation 

The conditional inducibility of pseudouridylation has been demonstrated under a number 

of different conditions of environmental stress and nutrient deprivation by both low-

throughput and high-throughput means of Ψ detection [19,69,76,88,107,124,125]. In 

addition, pseudouridine has been implicated in initiating a cellular differentiation 
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program in yeast, and distinct tissue-specific Ψ profiles have been detailed in mice 

[11,69]. The growing catalog of inducible Ψ sites has thus strengthened the hypothesis 

that pseudouridylation fine-tunes gene expression in response to changing environmental 

conditions, adding a post-transcriptional layer to gene regulation by, for instance, altering 

pre-mRNA splicing or recoding specific mRNA codons. In fact, Schwartz et al. more 

closely examined the possibility that Ψ may contribute to enhanced transcript stability by 

examining the abundance of mRNAs containing heat-shock-induced Ψs [107]. A large 

subset of these induced Ψs were attributed to Pus7 activity; so mRNA expression levels 

were compared in wild-type versus Δpus7 strains under normal and heat-stressed 

conditions. While Ψ-containing transcripts were expressed at comparable levels between 

wild-type and Pus7-deficient cells under normal growth conditions, these transcripts were 

expressed at ~25% higher levels following heat shock in wild-type cells [107]. 

 As a result, I chose to investigate the biological implications of pseudouridylation 

at two points during the T. brucei life cycle, which is an ideal model system for reasons 

detailed in this section. 

4.1.1 T. brucei differentiation requires adaptation to different host environments 

African trypanosomes are unicellular protozoan parasites that are the causative agents of 

African trypanosomiasis — African sleeping sickness in humans and nagana in their 

vertebrate zoonotic counterparts — affecting sub-Saharan Africa. Within the lab, the 

most commonly studied and well-characterized species of trypanosome is T. brucei 

brucei, which is the focus of the experiments detailed in this chapter. 

 T. brucei is transmitted between its mammalian hosts through the tsetse vector 

(Glossina sp.). Because the parasite lives extracellularly throughout the entirety of its life 
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cycle, it must adapt to a variety of host-specific environmental conditions differing in pH, 

nutrient availability, and temperature that cue a particular set of diverse biological 

changes (Figure 4.1). Following a bloodmeal, the parasite establishes in the tsetse midgut 

— a relatively cool environment (27˚C) with low pH and a variety of harsh proteases — 

and differentiates into its proliferative, asexual procyclic form (PF) [43,83]. From there, 

procyclic forms migrate to the fly’s salivary glands where they attach and differentiate 

into the epimastigote form, which is capable of undergoing meiosis allowing for 

diversification through genetic recombination [44]. Eventually, epimastigotes develop 

into non-proliferative metacyclic form parasites capable of infecting a mammalian host 

through the fly’s next bloodmeal [83]. On bite, metacyclic trypanosomes migrate from 

the skin into the glucose-rich bloodstream, where they differentiate to the aptly named 

bloodstream form (BSF). Early during infection, BSF parasites adopt the long ‘slender 

form,’ dividing rapidly both in the bloodstream and within the extravascular space (with 

its own distinct metabolic requirements) until they reach high density and develop into 

the non-dividing ‘stumpy form’ [100,116]. Interestingly, stumpy BSF parasites are 

primed for transfer into the tsetse midgut, as they exhibit increased resistance to acidic 

and proteolytic stress [60,93]. 
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Figure 4.1. The life cycle of T. brucei. 

 

 
 The biological feat required to rapidly adapt to and differentiate in diverse host 

environments is well-reflected in this particular passage from Gibson et al.: 

“The trypanosomes migrate anteriorly from this 

stronghold [in the midgut] on a tortuous journey to the 

paired salivary glands [43].” 

The life cycle of T. brucei therefore provides an excellent biological context for host-

dependent inducible pseudouridylation to further probe the role of Ψ in adaptation and 

differentiation. 

Epimastigote

(Salivary Gland)

Metacyclic

Long Slender

Bloodstream Form

Short Stumpy

Bloodstream Form

Procyclic

(Midgut)

Insect Vector

(Glossina)

Mammalian Host



 

 53 

4.1.2 Gene expression in T. brucei remains mysterious and occurs largely at the 

post-transcriptional level 

Highly programmed differentiation is made all the more impressive considering the 

organization — or lack thereof — of the T. brucei genome. Specifically, protein-coding 

genes are arranged in polycistronic transcription units (PTUs) encoding ten to hundreds 

of mRNAs (Figure 4.2). Genes oriented in the same direction are co-transcribed and 

rapidly processed through coordinated trans-splicing, endonucleolytic cleavage, and 

polyadenylation at a fixed distance from the splice signal, resulting in mature mRNA 

transcripts [84,117]. Notably, trans-splicing requires joining of a small, capped spliced 

leader (SL) RNA to the 5ʹ end of a pre-mRNA [72]. The SL notably contains Ψ at 

position –12 with respect to the splice acceptor site. Pseudouridylation at this residue is 

catalyzed by the RNA-dependent Ψ synthase Cbf5 guided by the spliced leader-

associated (SLA1) RNA, an H/ACA snoRNA [72]. In contrast to yeast and mammalian 

mRNAs surveyed for pseudouridylation, all mature mRNAs contain at least a single Ψ. 

 
 

 

Figure 4.2. Schematic of T. brucei and mRNA post-transcriptional processing. 
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array [18]. In addition, while pol I promoters (responsible for rRNA and life cycle-

specific surface protein transcription) and pol III promoters (responsible for tRNA and 

small nuclear U RNA transcription) have been identified, pol II promoters responsible for 

the bulk of mRNA transcription remain elusive. In fact, only one gene-specific pol II 

promoter has been identified for transcription of the small spliced-leader RNA [27,46]. A 

growing body of work has pointed to histone marks to delineate the boundaries of 

transcription, and has suggested that histone modifications may regulate polycistronic 

transcription [101,106,111]. For instance, while pursuing the Ψ-profiling efforts detailed 

in this thesis, I, in collaboration with Danae Schulz and Hee-sook Kim, found that the 

histone variant H3 (H3.V) and a kinetoplastid-specific DNA base modification known as 

base J (ß-D-glucosyl-hydroxymethyluracil), together regulate transcription termination 

[106]. In the kinetoplastid Leishmania major, depletion of base J alone has been shown to 

be sufficient to result in transcriptional readthrough at sites of transcription termination 

[101,118]. Still, transcriptional control at the individual mRNA level appears impossible 

given the lack of promoters or other cis-regulatory elements specific to a single PTU-

internal gene [25]. Control of mRNA levels therefore occurs primarily at the post-

transcriptional level. 

 Individual gene regulation is achieved by modulating mRNA stability, translation 

efficiency, and protein stability. Interestingly, a transcriptome-wide study analyzing the 

kinetics of trypanosome mRNA decay reported regulated decay of developmentally 

regulated mRNAs, switching their decay patterns during differentiation [35]. The specific 

mechanism of this life-cycle dependent “switch” is largely unknown, though the T. brucei 

genome encodes a wealth of RNA-binding proteins (RBPs) with unknown RNA targets 
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[18]. Several groups have therefore undertaken the task of identifying conserved motifs 

that regulate developmental gene expression. For instance, a specific 3ʹ UTR sequence 

motif (UAUUUUUU) has been found to be highly conserved in procyclic-enriched 

transcripts, and makes up the core of a 26mer element negatively regulating expression in 

the bloodstream form [85]. However, developmentally regulated expression of these 

motif-containing genes was unaffected by the RNA silencing machinery, leaving open 

the question of how exactly these transcripts are stage-specifically stabilized or 

destabilized. This is in line with the finding that differentiation progresses normally in 

Argonaute1-deficient cells [59]. 

 Gene regulation has also been observed through alternative trans-splicing of the 

spliced leader RNA, which can affect gene regulation by altering the open reading frame. 

Because polyadenylation occurs at a fixed distance from the splice acceptor site, 

alternative splicing can also affect polyadenylation site choice, which can impact RNA 

half-life by changing the 3ʹ UTR [84,120]. Spliced leader trapping experiments 

illuminated over 2,500 alternative splicing events, several of which appeared to be 

developmentally regulated [92].  

 The examples of gene regulation summarized above are by no means 

comprehensive. Rather, they serve to illustrate the gaps in our understanding of gene 

regulation at the post-transcriptional level, and areas in which investigation into the 

developmental Ψ landscape may bridge some of those gaps. 

4.1.3 Pseudouridylation has been documented and studied in T. brucei 

Having laid out some of the intriguing quirks surrounding trypanosome biology and 

differentiation, it merits mentioning that Ψ has been relatively well studied in T. brucei, 
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which is helpful for studying functional consequences of pseudouridylation in this model 

organism. As in other eukaryotic cells, pseudouridine formation is catalyzed by a guide 

RNA-dependent mechanism through the activity of Cbf5 guided by H/ACA snoRNAs, 

and likely through the activity of a number of putative Ψ synthases that bear homology to 

known stand-alone PUSs [10]. T. brucei H/ACA snoRNAs notably differ from those of 

other eukaryotic cells in that they are composed of only a single hairpin, in contrast to the 

more common double hairpin structure [73]. Recent small RNA-seq experiments have 

identified 83 H/ACA snoRNAs capable of guiding pseudouridylation and 79 C/D 

snoRNAs, which guide 2ʹ-O-methylation [24,89]. 

 Sites of pseudouridylation have also been documented within the T. brucei 

genome. Aside from the aforementioned Ψ-containing SL transcript, Ψs have been 

mapped within ribosomal RNAs using the traditional low-throughput CMC/RT approach 

[71]. In addition, a recent study published by Chikne et al. during the writing of this 

thesis catalogued additional sites of ribosomal pseudouridylation in BSF and PF 

trypanosomes [24]. In total, 68 of 75 known Ψs were identified across the two life cycle 

stages, with 62 of those sites mapping to a specific H/ACA snoRNA guide.  Despite 

having a similar genome size as budding yeast, trypanosomes have over 20 more 

ribosomal pseudouridylation events. A possible explanation for higher Ψ content with 

respect to yeast ribosomes is that more ribosomal Ψs may allow the trypanosome to 

rapidly adapt to fluctuating temperatures as it cycles between hosts while preserving the 

structural integrity of the ribosome, or possibly modulating ribosomal function [10]. 

Notably, Chikne et al. reported that the level of isomerization from U in 21 Ψs was 

increased 1.3- to 2.7-fold in BSF ribosomes by comparing Ψ-fc values at a given position 
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between BSF and PF parasites. A corresponding upregulation of 43 H/ACA snoRNAs 

was also observed in the bloodstream form, though they did not guide pseudouridylation 

to the “hyper” modified BSF Ψ sites.  

Life cycle-specific differential levels of pseudouridylation in the trypanosome 

ribosome requires closer investigation than what was conducted by Chikne et al. 

Comparison of Ψ-fc values to ascertain relative Ψ stoichiometries between any two 

samples depends on a qualitatively “high” sequencing depth; the exact depth, however, 

has not been experimentally confirmed in biological samples using low-throughput 

quantitative assays like SCARLET [75,107]. Modest differences in Ψ-fc values between 

BSF and PF Ψ sites therefore warrant closer investigation, particularly as the source of 

their “hyper” modification remains unknown. Furthermore, differential levels of 

pseudouridylation in the ribosomes of BSF compared to PF trypanosomes implies that at 

least some ribosomal Ψ residues are modified at low efficiency. For instance, if a Ψ 

residue is modified at a level 2.7-fold greater in BSF versus PF trypanosomes, it cannot 

be isomerized at a level greater than 37% in the procyclic form. This implication runs 

counter to the prevailing observation that ribosomal pseudouridylation occurs at a near-

uniform high efficiency of >85% in yeast and human ribosomes [69,114]. The finding 

thus warrants absolute quantification of uridine isomerization at differentially modified Ψ 

sites using SCARLET or mass spectrometry, which was notably not performed by 

Chikne et al. Still, eight of the 21 differentially pseudouridylated sites were predicted to 

impact rRNA structure, which may contribute to fine-tuning ribosome function in a given 

host environment. Perturbation of these sites in order to determine whether changing Ψ 

levels is necessary for transitioning through the life cycle remains an open question.  
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4.1.4 Statement of the problem 

Taken together, the adaptation required to differentiate in a new host environment and the 

lack of gene-specific transcriptional regulation make T. brucei an ideal model system for 

probing the functional relevance of Ψ. Certainly, developmentally regulated 

pseudouridylation events are an intriguing possibility for modulating RNA function. I 

therefore selected bloodstream form and procyclic form trypanosomes for Ψ profiling due 

to the ease with which they are cultured in the laboratory. I could then ask whether 

pseudouridylation events were developmentally regulated based on differential Ψ 

profiles. If BSF- and PF-specific Ψ profiles did indeed differ, I could ask how 

developmentally regulated Ψs contribute to differentiation. There are, of course many 

possibilities, which include, but are by no means limited to: 

1. Ψ-containing transcripts may exhibit increased stability, which could 

contribute to their upregulation in one life cycle stage compared to the other. 

2. Ψ-containing transcripts may affect translational efficiency. Specifically, 

pseudouridylation to mRNA codons, tRNA anticodons, or rRNA may mediate 

amino acid recoding resulting in altered protein products, or may enhance or 

impede translational efficiency.  

3. Differential pseudouridylation of spliceosomal U RNAs may alter pre-mRNA 

splicing, which could, for instance, alter RNA half-life by changing the site of 

polyadenylation, changing the open reading frame, or decreasing the 

efficiency of mature RNA processing. 
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4.2 Experimental design with molecular barcodes 

The additional quantitation afforded by coupling molecular barcoding to Ψ-seq could 

serve to more robustly differentiate levels of pseudouridylation between bloodstream 

form and procyclic form trypanosomes beyond comparison of Ψ-fc values. Before 

proceeding, I had to develop and test a molecular barcoding strategy experimentally 

suited for Ψ-seq library preparation with trypanosome RNA, and develop a bioinformatic 

pipeline for subsequent deduplication and analysis. The results of my pilot experiments 

and deduplication analysis are detailed in this section. 

4.2.1 Molecular barcode design 

Library preparation proceeded exactly as detailed by Ψ-seq (Figure 3.1), except the 3ʹ 

adapters ligated onto RNA fragments were specially designed to contain a molecular 

barcode (Figure 4.3A). Given T. brucei’s relatively small genome size (26 Mb), a 

randomized 6mer would be sufficient to serve as a barcode sequence to distinguish up to 

4,096 (46) unique reads initiating from a given position. Regardless of the barcode 

sequence, every adapter contained a common 5ʹ 4mer ligation linker and a 3ʹ 20mer 

sequence selected from the Cyprinus carpio (carp) genome not found in T. brucei for 

priming during first strand synthesis (FSS). As an additional consideration, nucleotide 

diversity is essential during initial rounds of sequencing for accurate cluster coordinate 

identification by the Illumina HiSeq 2000/2500 [65]. Under paired-end sequencing, 

though, the common 20mer priming sequence will act as the start of the ‘left-hand’ read, 

so the initial 20 cycles of sequencing will be identical, impeding effective cluster calling 

(schematic of paired end reads depicted in Figure 4.3C). To increase sequence diversity, I 

therefore designed FSS primers complementary to the common priming sequence that 
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either contained two, one, or no randomized nucleotides at to the 5ʹ end (Figure 4.3B). 

The three classes of primers were mixed in equal proportions during first strand synthesis 

to phase the common priming sequence during sequencing. To further increase diversity, 

I had also initially designed three adapters (A, B, and C), which differed only in the 

common priming sequence selected from carp DNA, to generate libraries for different 

replicates, which were then pooled and run on a single lane. 

 

 

Figure 4.3. 3ʹ adapter design with molecular barcodes. 

(A) Schematic of 3ʹ adapters with randomized 6N molecular barcode. (B) First strand 

synthesis with priming by one of three possible 0N/1N/2N FSS primers ensures phasing 

of the common priming sequence. (C) The resulting cDNA will have the adapter at its 5ʹ 

end, read as the ‘left-hand’ read, and the Ψ-CMC-mediated RT arrest site at its 3ʹ end, 

read as the ‘right-hand’ read start. 
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4.2.2 Pilot experiment reveals barcode diversity is essential for deduplication 

In a pilot experiment to test the feasibility of my barcoding scheme, I isolated poly(A)-

enriched RNA from BSF and PF trypanosomes, and prepared barcoded Ψ-seq libraries 

for CMC-treated and mock-treated (input) samples in duplicate. Following 50bp paired-

end sequencing, I designed a custom tool to computationally subset ‘left-hand’ reads that 

contained the common priming sequence, along with the partnered ‘right-hand’ reads, 

and extracted the downstream barcode sequence  (Figure 4.3C). Because adapter 

trimming from left-hand reads resulted in reads too short to be mapped, only right-hand 

reads were used for alignment, first to the rDNA locus using bowtie2. Reads unmapped 

to rDNA were then mapped to the whole genome. The results for BSF samples from this 

initial experiment are summarized in Table 4.1. 

 

Table 4.1. Summary of results for BSF samples prepared using Ψ-seq with 

molecular barcoding scheme. 

Sample Adapter Reads with 
Barcode 

Barcode 
Reads of 

High Quality 

Mapped to 
rDNA 

Mapped to 
Genome 

input-BSF-1 C 79.89% 99.56% 6.98% 59.04% 

input-BSF-2 A 65.86% 99.08% 3.94% 29.24% 

treated-BSF-1 A 73.45% 99.48% 4.38% 57.51% 

treated-BSF-2 B 13.31% 99.37% 4.75% 52.81% 
 

 

 
 On average, about 60% of sequenced reads contained barcoded adapter sequence, 

and of those, over 99% were determined to be of high quality by trim_galore (Babraham 

Bioinformatics). Libraries prepared with adapter B, however, contained substantially 

fewer barcoded reads, perhaps due to inefficient ligation compared to adapters A and C. 
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Nevertheless, reads resulting from libraries prepared with all three adapters mapped to 

the genome, so I next confirmed that a 6N barcode was sufficient for deduplicating 

genomic reads. To do so, I calculated the number of reads initiating at a given position in 

the genome (Figure 4.4). Indeed, all but six positions were covered by less than 4,096 

reads initiating at a particular position, indicating that the barcode length was sufficient, 

assuming that each unique read was in turn marked by a unique barcode sequence. 

 

 
Figure 4.4. Barcode length is sufficient for deduplication of reads mapping to the T. 

brucei genome. 

log10-transformed reads mapping to every position within the T. brucei genome were 

plotted for each BSF Ψ-seq library. log10(4,096) is indicated by the red horizontal line. 
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proportion of discarded reads because it implied that library complexity varied widely 

across samples. However, because the variability in reads discarded following 

deduplication was largely due to the 3ʹ adapter used during library preparation, I chose to 

investigate the diversity of specific 6mer barcode sequences (Figure 4.6). To do so, I 

plotted the number of reads with a given barcode against all 4,096 barcodes. While all 

possible barcodes were represented within the total population of reads, adapters A and B 

contained a marked overrepresentation of a specific 6mer sequence. Adapter C also 

contained bias towards certain 6mers, but to a far less pronounced degree, which 

accounts for the higher proportion of reads retained following deduplication.  

 

 

Figure 4.5. A wide range of reads is discarded following deduplication.  

The fold change in reads before and after deduplication was plotted and normalized with 

respect to reads before deduplication for each BSF Ψ-seq library. 
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Figure 4.6. Adapters display bias towards certain 6mer barcode sequences. 

The distribution of barcode 6mers was graphed for adapters (A) A, (B) B, and (C) C. The 

most highly overrepresented 6mer is indicated with an arrow. 
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sequenced and reads were mapped to the T. brucei genome as before. The results of this 

experiment are summarized in Table 4.2. Notably, a far greater percentage of reads were 

barcoded (~88%), and of these reads, a high percentage mapped to the genome. In 

addition, the distribution of 6mers was far more uniform than in the previous experiment 

(Figure 4.7A), which allowed for the conservation of a higher percentage of reads 

following deduplication (Figure 4.7B). Satisfied that IDT adapter optimization accounted 

for the biases observed in my initial pilot experiment, I moved on to a deeper Ψ-seq-like 

analysis of the resulting data, detailed in the next section. 

 
 
Table 4.2. Summary of results for BSF samples prepared using IDT-optimized 

barcoded adapters with Ψ-seq. 

Sample Reads with 
Barcode 

Barcode Reads 
of High Quality 

Mapped to 
rDNA 

Mapped to 
Genome 

input-BSF-1 91.98% 99.83% 6.13% 83.521% 

input-BSF-2 87.37% 99.82% 5.83% 84.208% 

input-BSF-3 89.76% 99.75% 5.50% 82.693% 

treated-BSF-1 88.23% 99.73% 4.18% 72.916% 

treated-BSF-2 89.68% 99.78% 4.84% 80.369% 

treated-BSF-3 84.33% 99.76% 4.93% 78.077% 
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Figure 4.7. IDT-optimized barcode adapter diversity better suited for deduplication. 

(A) A higher proportion of reads are retained following deduplication of reads mapped to 

the whole genome for BSF (left) and PF (right) Ψ-seq libraries. (B) The 6mer barcode 

distribution for a representative BSF (left) and PF (right) library was plotted. 
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4.3.1 Detection of known sites of rRNA pseudouridylation 
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to replicate Schwartz et al.’s Ψ-seq results (Chapter 3.1, Figure 3.2). In order to get a 
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deduplication to avoid collapsing reads that were not truly PCR duplicates. 

Unfortunately, I failed to detect any putative Ψ sites — false positives or true positives — 

in either BSF or PF trypanosomes. In addition, relative Ψ-fc peaks did not correspond to 

known Ψs based on Ψ-fc plots for each rRNA, a representative example of which is 

plotted in Figure 4.8. 

 

 

Figure 4.8. Known rRNA Ψs were not detected in poly(A)-enriched Ψ-seq libraries. 

Ψ-fc values were plotted for the small ribosomal subunit (SSU) RNA in BSF (top) and 

PF (bottom) trypanosomes. Known Ψ sites are marked by vertical red lines. 
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 Furthermore, each of the Ψ-detecting metrics utilized by Ψ-seq showed no 

discriminatory power between true Ψ sites and false positives when applied to my data 

set (Figure 4.9). The area under the Receiver Operating Characteristic (ROC) curves 

(AUCs) for both the treated Ψ-ratio and the Ψ-fc were far lower than those calculated 

using the published yeast Ψ-seq data set (AUC=0.544 versus AUC=0.951 and 

AUC=0.442 versus AUC=0.985, respectively). I could therefore conclude that even if I 

had used different cutoff values for each Ψ-detection metric, I still would not have been 

able to accurately detect Ψ sites. 

 

 

 

Figure 4.9. ROC curves demonstrate no discriminatory power in Ψ-detection 

metrics in Ψ-seq libraries prepared with T. brucei poly(A)-enriched RNA. 

Receiver Operating Characteristic (ROC) curves for different Ψ-calling metrics were 

calculated for my trypanosome rRNA and for Schwartz et al.’s yeast rRNA. The line of 

no discrimination is plotted as a dashed grey line. 

 
 

 While parsing through the data compiled by Schwartz et al. during my 

comparative analysis, I did notice that analysis of poly(A)-enriched Ψ-seq libraries failed 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Ψ-detection metric 
Mock-treated Ψ-ratio
Treated Ψ-ratio
Ψ-fc

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

T. brucei rRNA S. cerevisiae rRNA

AUC=0.951

AUC=0.985

AUC=0.562

AUC=0.559

AUC=0.544

AUC=0.442



 

 69 

to detect several known sites of rRNA pseudouridylation. I therefore prepared libraries 

from total RNA isolated only from PF parasites to again test whether I could detect 

known Ψs. Ψ-seq analysis of this data, which is not shared here, once again returned 

neither false nor true positive rRNA hits and produced ROC curves that indicated 

virtually no discriminatory power in Ψ-detection metrics. 

 Because I was unable to identify Ψs by Ψ-seq analysis, I next sought to determine 

whether CMC treatment was successful during library preparation. While I could not 

directly assess whether CMC had successfully conjugated to Ψ targets and hydrolyzed 

from non-Ψ residues, I could calculate the CMC-stat for each rRNA position (described 

in Chapter 2.2.2, Equation 2.1) to see if coverage decreased around Ψs in treated versus 

untreated libraries. If CMC treatment were successful, I would have observed strong 

peaks in CMC-stat values around known Ψ sites, similar to those observed in Figure 2.6. 

Peaks that lined up with trypanosome rRNA Ψ sites, however, were not readily 

distinguishable from peaks occurring at non-Ψ positions (Figure 4.10). I also entertained 

the possibility that the documented Ψ sites were not accurate, so I compared rRNA CMC-

stat profiles for PF libraries prepared from total RNA and from poly(A)-enriched RNA. If 

I could see a consistent CMC-stat pattern, with peaks lining up across the rDNA locus, 

then perhaps the reported Ψs were incorrect. However, no such pattern was observed, 

leading me to conclude that CMC treatment was likely unsuccessful. 
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Figure 4.10. CMC-stat analysis of trypanosome Ψ-seq libraries at the SSU locus. 

CMC-stat was calculated for PF Ψ-seq libraries prepared from total RNA (top) and 

poly(A)-enriched RNA (bottom). Known Ψs are indicated as red vertical lines. 

 
 

The lack of experimental reproducibility — in contrast to that of the readily 

reproduced Ψ-seq bioinformatic pipeline — raises concerns around the tractability of 

high-throughput Ψ-detection methods. Nevertheless, I decided to proceed and apply Ψ-

seq analysis to reads mapped to the whole genome, stopping at a number of analysis 

“checkpoints” to better characterize the experimental source of failure to detect Ψ sites in 

rRNA, and uncover any other caveats that might apply to Ψ-seq detection. Of course, 

because CMC conjugation to Ψ — or hydrolysis from non-Ψ residues — likely did not 

work, any quirks found in my Ψ-seq libraries may not apply to those prepared with 

successful, Ψ-specific CMC conjugation.  
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4.3.2 Detection of Ψs in the whole transcriptome 

In this section, I filter candidate Ψ sites through multiple checkpoints, each of which 

illuminates a caveat or flaw, either in my libraries specifically or in the published Ψ-

detection methods as a whole. 

4.3.2.1 Putative Ψ sites are not exclusively called at reference U positions 

Ψ-seq-specified cutoffs were used to call putative Ψ sites with reads aligned to the whole 

genome. Because no false positives were called with these particular thresholds applied 

to the rDNA locus, I was curious to know whether putative Ψs would be called at 

positions that did not correspond to a reference U. Without filtering, 156 and 114 sites 

were called before and after deduplication in BSF cells (73.1% hit retention), while 23 

and 10 sites were called before and after deduplication in PF cells (43.5% hit retention). I 

then analyzed the breakdown of reference nucleotides at each called position and found 

no significant enrichment for called sites at a U, as I would expect following Ψ-specific 

CMC treatment (Figure 4.11). Inefficient CMC hydrolysis from G-like residues — 

including inosine resulting from A-to-I RNA editing — would have resulted in hits at 

positions corresponding to a reference A, G, or U. However, positions corresponding to a 

reference C were also called, which notably does not contain a CMC conjugation site so 

could not be the result of inefficient CMC hydrolysis. These positions were likely not 

called due to reverse transcriptional arrest mediated by secondary structure, as the Ψ-ratio 

would be the same in both CMC-treated and mock-treated libraries. The called sites may 

thus be the result of computational noise — sites that happened to pass the defined Ψ-

detection metrics — or the consequence of technical shortcomings inherent in the Ψ-seq 

library preparation protocol. 



 

 72 

 

Figure 4.11. Reference nucleotide breakdown of called Ψ sites from whole-genome 

deduplicated reads. 

 

4.3.2.2 Deduplication results in newly called Ψ sites following filtering for U 

I next investigated the effect of deduplication on called Ψ sites. Specifically, were new 

sites called following deduplication that were otherwise obscured due to PCR duplication 

events? I therefore filtered for called sites occurring at a reference U and compared sets 

of putative Ψs in BSF and PF samples to determine whether deduplicated hits were 

contained in the set of called sites prior to deduplication (Figure 4.12). While all 

deduplicated Ψ hits fell within the set of PF hits called prior to deduplication, four new Ψ 

sites were called in the deduplicated set for BSF trypanosomes. These additional sites 
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might have been called due to elimination of background due to PCR duplication events. 

This result should still be taken with a grain of salt given my initial low confidence that 

called Ψ sites in these problematic libraries are true sites of pseudouridylation. 

 

 

Figure 4.12. Overlap in called Ψ sites before and after deduplication. 

  
 

4.3.2.3 Ψ-calling is sensitive to sequencing depth 

I also observed nine times as many putative Ψ sites in BSF versus PF trypanosomes 

following deduplication, which was intriguing given the increased levels of uridine 

isomerization reported in BSF versus PF rRNA [24]. To make any meaningful direct 

comparisons between the two life cycle stages requires equal coverage. BSF libraries, 

however, were sequenced at three times the depth. I therefore sampled one-third of BSF 

mapped reads and performed Ψ-seq analysis on this fraction, which returned four putative 

Ψ sites (filtered by reference nucleotide). The fact that different Ψ sites may be called 

following deduplication or downsampling of reads indicates just how sensitive Ψ-

detection is to sequencing depth. Regardless of depth or deduplication, however, BSF and 

PF putative Ψ sites did not overlap (Figure 4.13). 
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Figure 4.13. All called Ψ sites are life-cycle stage specific. 

 
 

4.3.4 Mismatch analysis further filters putative Ψ hits 

As a final checkpoint, I applied the mismatch filters described in Chapter 2.2.3 on the 

final set of Ψ sites curated following U-filtering, deduplication, and appropriate 

downsampling. Of the four BSF and three PF Ψ sites, three passed the appropriate 

mismatch rate filters — that is, a greater than four-fold higher CMC-treated mismatch 

rate (with respect to mock-treated samples) that is itself greater than 1.5%. Of those 

remaining three sites, only one in the BSF candidate Ψ set — U2030 in the gene 

Tb927.11.6440 — exhibited the C(/A) nonreference nucleotide incorporation profile 

characteristic of Ψ (Figure 4.14). The sequence surrounding this remaining position 

(GTGTTCA), however, did not map to any known H/ACA snoRNAs or guide-RNA 

independent Ψ-synthases, which did not increase confidence in this putative site. 
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Figure 4.14. Nonreference nucleotide incorporation profiles for putative Ψ sites 

passing mismatch rate filters. 

 
 

 I analyzed the expression difference in Tb927.11.6440, which is annotated only as 

“hypothetical protein,” between BSF and PF cells using DESeq, and found the gene is 

expressed at a two-fold higher level (padj = 6.14×10-21) in BSF. The expression difference 

is in line with data from a comparative RNA-seq analysis of BSF and PF transcript 

expression, which was conducted in parallel with comparative ribosome profiling that 

found increased ribosome occupancy on the PF transcript [119]. Counterintuitively, the 

half-life of this transcript is increased in BSF versus PF trypanosomes, as indicated in 

another transcriptome-wide analysis of life-cycle specific mRNA decay [35]. Considering 

how Ψ factors into the relationship between transcript stability and translation efficiency 

during differentiation is certainly interesting; however my low confidence in this 

particular Ψ site, combined with the translated protein’s unknown function, makes 

pseudouridylation to this transcript a poor subject for further study.  
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 Thus, from 184 candidate Ψ sites in the combined bloodstream form and 

procyclic form transcriptome, I computationally winnowed my way down to only one 

low-confidence Ψ-site in BSF cells that mapped to a protein of unknown function. The 

initial pool of hits was likely called either due to inefficiencies in CMC conjugation and 

subsequent alkaline hydrolysis, or because of computational noise that makes it 

impossible to meaningfully distinguish signal from noise.  

4.4 Barcoded Ψ-seq method revisited: a post-thesis defense addendum 

During the defense of this thesis, a committee member raised a potential flaw in the 

protocol used to generate Ψ-seq libraries with molecular barcodes. Following first strand 

synthesis, the Illumina TruSeq® Stranded mRNA kit or Total RNA kit was used for 

second strand synthesis and subsequent library preparation steps. With these kits, second 

strand dscDNA is synthesized by first digesting the original RNA template with RNase H 

to produce short fragments for priming and extension by DNA Polymerase I (Figure 

4.15). The resulting dscDNA is then subjected to end repair, which digests away 5ʹ and 3ʹ 

overhangs. As a result, the sequence immediately downstream of a Ψ-CMC may be lost, 

so read starts may not correspond to sites of reverse transcriptional termination. In the 

context of putative Ψ detection, the exact position of Ψ-CMC-mediated RT arrest may be 

obfuscated when second strand synthesis priming does not occur at the exact end of the 

cDNA (Figure 4.15, depicted by maroon shaded box). Loss of sequence information at 

the site of RT termination may therefore have been the reason I could not accurately 

detect known sites of pseudouridylation in the T. brucei ribosome.  
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Figure 4.15. Schematic of second strand synthesis with Illumina TruSeq® kit. 

Illumina’s TruSeq® library preparation kits perform second strand synthesis using RNase 

H to digest the original RNA template into short fragments to allow for priming and 

extension with DNA Polymerase I. An end repair reaction is then performed to digest 

away 5ʹ and 3ʹ overhangs. As a result, the sequence just downstream of a Ψ-CMC site 

may be removed prior to sequencing (depicted by maroon shaded box). 

 

 
Following my thesis defense, I modified the Ψ-seq library preparation protocol to 

ensure that the sequence corresponding to RT termination was included in the final 

dscDNA product (Figure 4.16). CMC treatment was performed as before. Following first 

strand synthesis, a 3ʹ adapter containing a randomized 6-nucleotide barcode was ligated 

onto the resulting cDNA. The adapter contained a universal priming sequence, which was 

used to generate the second strand using the high fidelity Phusion polymerase. Second 

strand synthesis was then followed by end repair, A-tailing, and Illumina adapter ligation. 
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Figure 4.16. Schematic of modified Ψ-seq library preparation. 

A first strand synthesis adapter (FSS adapter) without a barcode was ligated to the 3ʹ end 

of CMC-treated or mock-treated RNA. A primer (FSS primer) complementary to the 

adapter was used for first strand synthesis. A second strand synthesis adapter (SSS 

adapter) containing a randomized 6-nucleotide barcode was then ligated to the 3ʹ end of 

the resulting cDNA and second strand synthesis was performed with a primer (SSS 

primer) complementary to a universal priming sequence. 

 

 
I applied this modified Ψ-seq library preparation protocol to ribosomal RNA 

isolated in duplicate from bloodstream form trypanosomes to determine whether I could 

now accurately detect known sites of pseudouridylation. Analysis of the resulting 

sequencing reads was performed as before, except the barcode was extracted from the 

‘right-hand’ read (Figure 4.3C). Once again, however, each position in the rDNA locus 

was covered by over 4,096 initiating reads, so I did not deduplicate reads at the risk of 

collapsing reads that were not truly PCR duplicates. Utilizing this new Ψ-seq protocol, 

three Ψ sites were called, all three corresponding to known sites of pseudouridylation 

(Figure 4.17, Table 4.3). 
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Figure 4.17. Modified Ψ-seq protocol detects one known Ψ in the T. brucei SSU.  

Ψ-fc values were plotted for the small ribosomal subunit (SSU) RNA in BSF 

trypanosomes. Known Ψ sites are marked by vertical red lines. Known Ψ called by Ψ-seq 

indicated by red point. 

 
 
 
Table 4.3. Putative Ψ sites called by Ψ-seq with modified library preparation. 

Gene Position CMC-treated Ψ-ratio Ψ-fc 

LSU5ʹ 935 0.127 3.96 

LSU3ʹ 1377 0.154 3.73 

SSU 1612 0.279 3.64 

 

 
 The results of this pilot experiment are encouraging, providing an explanation for 

the high rate at which putative Ψ sites were called at positions that corresponded to a 

non-U nucleotide in the reference genome, as detailed in Figure 4.11. These sites could 

be the products of second strand synthesis priming further from the exact 3ʹ end of the 

cDNA. As a result, they may not map exactly to the site of reverse transcriptional 

termination. Nevertheless, the possibility remains that these sites were called due to 
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computational noise, rather than corresponding to sites in the near vicinity of a putative 

pseudouridylation target. 

Furthermore, only three of 75 previously detected Ψ sites were identified, which 

speaks to limitations inherent in the CMC-based Ψ detection approach. My inability to 

detect the remaining Ψ sites could be due to sequencing depth, though the average 

number of reads from each prepared library was ~ 1 x 107, three-fold more than the 

number of reads sufficient to call known sites of pseudouridylation by Schwartz et al. 

[108]. Alternatively, the failure to detect more known Ψ sites could be due to CMC 

conjugation efficiency. If CMC does not efficiently conjugate to all U- and G-like 

residues, there is a higher likelihood of a high false negative rate, as observed here. 

Because no false positive sites were called — in other words, no sites that correspond to a 

‘G’ in the reference genome — I am reasonably confident that the previous library 

preparation scheme, rather than inefficient alkaline hydrolysis, was the culprit behind the 

non-U reference Ψ calling detailed in Figure 4.11. The inefficiency of the method as 

adapted here, combined with the caveats to Ψ detection discussed throughout the body of 

this thesis, thus raises concerns that the available CMC-based Ψ-detection methods are 

not robust “plug and play” methods for de novo Ψ detection. 
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CHAPTER 5. Discussion 

Ever tried. Ever failed. No matter. Try Again. Fail again. 

Fail better. 

— Samuel Beckett 

 

5.1 Reproducibility and reusability of high-throughput Ψ-detection methods 

Since I began the work detailed in this thesis, the field of pseudouridylation has grown 

tremendously with reinvigorated interest in this intriguing modification. In that time, 

hundreds to thousands of Ψ sites have been catalogued depending on the species 

surveyed and the technique used [19,69,107]. Amidst the staggering number of novel 

putative sites, however, only three — two in human rRNA and one in mRNA — have 

been experimentally verified [69]. In addition, my comparative analysis of each method’s 

results revealed only a small subset of Ψ sites that were reproducibly detected by two or 

more approaches [131]. 

 The aim of developing these approaches was to generate testable hypotheses as to 

the functional role of pseudouridylation by identifying pseudouridylated transcripts of 

biological interest. The currently available methods as they stand are not robust enough to 

produce such informed hypotheses. While my comparative analysis did generate a 

confident set of 10 mRNA Ψ sites in yeast, groups generating Ψ maps for new species 

will not have the benefit of comparing their results to three other labs using three 

different-yet-related techniques. The bioinformatic pipeline detailed by Schwartz et al. in 

Ψ-seq, and later adapted for CeU-seq, is readily reproduced due to its intuitive derivation. 

On the contrary, the experimental pipeline for Ψ-seq library preparation and RNA 
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sequencing is not readily reused, based on my experiences in T. brucei. Following my 

attempts to combine Ψ-seq with molecular barcoding, I homed in on three major areas for 

improvement  — apart from the absolute quantitation discussed in Chapter 3.4 — that 

likely affect the low reusability I experienced. 

 First and foremost, for the field to move forward, a common Ψ-detection method 

should be agreed upon, especially if users are to compare results with one another. CeU-

seq is by far the most sensitive detection method, though the commercial availability of 

non-clickable CMC makes Ψ-seq a more practical option for wider use. 

 Second, CMC-based techniques would benefit from a quality control step to 

ensure efficient CMC derivatization and alkaline hydrolysis before proceeding to library 

preparation. For instance, a fluorescent biotin moiety could be conjugated to the CMC-

azide utilized in CeU-seq to visualize CMC conjugated to treated transcripts. This is a 

very useful control step that I was developing together with the Helm group, but fell by 

the wayside due to limited availability of CMCyne and publication of the other Ψ-

detection approaches. Of course, fluorescence could not confirm efficient hydrolysis from 

non-Ψ residues. Nevertheless, quantifying some minimum standardized level of 

fluorescence could create confidence that the conjugation step at least worked. To assess 

efficient hydrolysis following sequencing, I propose eliminating the filter removing 

putative Ψ sites at positions that do not correspond to a U in the reference genome to 

assess hits resulting from unhydrolyzed G-CMC and I-CMC. 

 Third, deeper sequencing leads to identification of more putative Ψ sites, as 

demonstrated during my attempts to profile Ψs in bloodstream form versus procyclic 

form trypanosomes. In order to accurately compare putative Ψ maps, coverage must 
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therefore be consistent. Consequently, I propose delineating a standardized range for 

sequencing depth for each method. With that said, a cutoff threshold cannot account for 

differential pseudouridylation events in response to slightly different environmental 

contexts intrinsic to different laboratories or population averaging effects. Still, the closer 

the field can move towards standardized experimental protocols, the more likely multiple 

users are to corroborate and build confidence around a given set of pseudouridylation 

events within the same biological system. 

5.2 Need CMC-independent approaches for Ψ-detection 

Limitations in CMC derivatization and hydrolysis efficiency, as demonstrated both in the 

literature and in my Ψ-seq results with trypanosome RNA, underscore the need for high 

throughput methods that circumvent CMC. Even with the modified Ψ-seq method 

utilized after the defense of this thesis, only a small sampling of known ribosomal Ψ sites 

were detected. The high false negative rate further highlights the limitations of CMC-

based detection approaches, as they are highly reliant on CMC conjugation efficiency, 

which is well-known for being temperamental. One promising method involves real-time 

monitoring of the rate of nucleotide dissociation and incorporation for biological 

polymerases along a single RNA or DNA molecule. The technology, known as Single 

Molecule, Real Time (SMRT®) sequencing by PacBio, can identify certain nucleic acid 

modifications as pauses in the polymerization machinery when the modification 

interferes with base pairing at the Watson-Crick face. In the case of RNA sequencing, the 

SMRT platform directly monitors the kinetics of the reverse transcription reaction, 

removing the need to synthesize and amplify dscDNA. Accurate detection of methylated 

deoxyribonucleotides and β-D-glucosyl-hydroxymethyluracil (base J), and of the 
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modified ribonucleotide N6-methyladenosine by SMRT sequencing have been published 

[38,42,123]. In addition, a patent has been filed citing successful detection of a number of 

other modified nucleotides including Ψ [64]. Despite the great potential of single 

molecule RNA sequencing, however, PacBio has focused on using the SMRT sequencing 

technology for DNA sequencing, particularly of long (~10,000nt long) DNA reads 

(personal communication). 

 Advances in mass spectrometry have also allowed for RNA modification mapping 

of multiple RNA species at one time [74]. However, high-throughput MS has been 

limited to profiling modifications in highly abundant, highly modified RNAs like tRNAs 

and rRNAs. Still, mass spectrometry methods may be used to validate putative 

pseudouridylation events in mRNAs as an orthogonal validation approach before 

designing experiments to investigate a given Ψ site’s potential function. Additionally, 

antibodies have also been raised against Ψ, which could facilitate an immunocapture-

based approach similar to m6A-seq; however, these antibodies are not selective (Helm, 

Motorin, and Meier, personal communication) [32]. Finally, a lesser explored approach to 

Ψ detection exploits Ψ’s (and m5U’s) increased resistance to hydrazinolysis compared to 

other pyrimidines [9]. Hydrazine treatment followed by aniline treatment cleaves the 

polynucleotide chain at non-Ψ pyrimidines, causing termination of RT one base 3ʹ to 

hydrazine-sensitive non-Ψ (i.e. U- and C-like) residues. Thus, this approach is the direct 

complement of the CMC/RT approach, though experimental caveats have been 

investigated to a far lesser degree. 
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5.3 Policy reforms to incentivize collaboration, corroboration, and revision 

Science not published is often regarded as science not done. By this standard, a large 

fraction of replication studies or research that results in negative or non-confirmatory data 

has never come to pass because it is not widely accessible by the scientific community. 

Modern day mainstream scientific publishing, however, screens for articles based on 

perceived importance and impact, which often biases publication towards studies that 

report novel and positive results [36]. There is also an implied judgment on studies that 

fail to replicate or result in negative data — namely, that they were conducted by a set of 

sloppy scientists. Interpersonal politics and etiquette within the culture of science may 

thus further disincentivize entering the results of post-publication peer review into the 

public record. This mentality can also foster an unwillingness to transparently share data, 

lest inconsistencies or overlooked caveats be uncovered.  

 Nevertheless, science proceeds by collaboration, corroboration, and revision. 

Research of the sort undertaken in this thesis is therefore crucial to correct or improve 

upon the scientific record. Technological advances of the day — particularly the 

increased capacity of servers to efficiently store and share information — have allowed 

for policy innovations that incentivize transparency, replication, and publication of data 

of all sorts. In this section, I discuss some of these policies, which collectively form the 

basis of the open science movement, and how they relate to my own experiences 

comparing published data, attempting to replicate a published technique, and seeking an 

accessible platform for publication of the results. 
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5.3.1 Incentivizing transparency 

To conduct my comparative analysis, I had to parse through data generated by four 

different groups. Raw sequencing reads were readily accessible, owing in large part to 

data-sharing requirements. Since 2008, the National Institutes of Health (NIH) has 

required that funded projects share relevant data within one year of publication [86]. U.S. 

government funding agencies like the National Science Foundation (NSF) and the 

Centers for Disease Control (CDC) have since followed suit, particularly under further 

incentive by a 2013 memo from the White House Office of Science and Technology 

Policy (OSTP) on increasing public access [51]. Similar policies have swept the field, 

implemented by governmental organizations outside the U.S. like CERN and charitable 

foundations like the Bill & Melinda Gates Foundation. The Transparency and Openness 

Promotion (TOP) Committee, organized by the Center for Open Science, Science 

Magazine, and the Berkeley Initiative for Transparency in Social Science, has also 

generated a series of guidelines for best practices in transparent publication, which is 

under review by over 500 journals [2,94].  

 Top-down mandates to submit data used in publication, however, ignore 

inconclusive data sets like the ones generated during my Ψ-seq experiments in T. brucei. 

It could well be that my data sets are just one in a sea of several failed Ψ-seq experiments 

that could collectively highlight compelling flaws in and caveats to Ψ detection. As a 

result, scientific fields as a whole have little opportunity to learn from collaborative 

analysis of negative data. Publication of this brand of data thus requires bottom-up 

cultural shifts that view negative data as an equal contribution to scientific practice [87].  
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 Even with confirmatory data flooding repositories, there is still a need to integrate 

data-processing workflows so that they are likewise open for use and inspection. For 

instance, while I was able to easily access raw reads through their Gene Expression 

Omnibus (GEO) Accession Numbers, the scripts utilized to process the data were not 

openly accessible. I was therefore left to replicate the pipelines based on each technique’s 

Methods section. In fact, I chose Ψ-seq’s pipeline in large part because I could not 

replicate Pseudo-seq’s computational approach even on the authors’ own data. 

 Independent platforms, like the Open Science Framework (OSF), now exist to 

easily and transparently link workflow to data. For instance, the OSF allows researchers 

to store and selectively share every step of their work, allowing both data and pipelines 

used for analysis to be shared even before publication. Utilizing these platforms for next-

generation sequencing studies can increase the robustness of data analysis, allowing 

research stakeholders to collaboratively, for instance, catch coding errors or debate the 

use of certain statistical tests. In so doing, data analysis pipelines may become more 

standardized so as to be reused by multiple groups, instead of existing as standalone 

computational methods associated with only one or a few publications that then need to 

be re-derived on an ad hoc basis. Adoption of frameworks like the OSF therefore has the 

potential to reduce competition and foster communal collaboration in an ongoing peer 

review process even after publication. 

5.3.2 Incentivizing replication studies 

Transparent data and analysis sharing are often posed as solutions to a broader 

conversation centered on reproducibility of results. A poll conducted by Nature and 

published in May 2016 reports that of 1,500 scientists surveyed, 90% believe there is a 



 

 88 

slight to significant crisis around reproducibility [5]. In fact, most of the scientists 

surveyed had tried and failed to replicate either their own or someone else’s experiments. 

The so-called “reproducibility crisis” originally gained mainstream attention in 2012 

following the finding that many preclinical research studies could not be reproduced [15]. 

In 2015, reproducibility hit the media radar once again, eliciting coverage from the likes 

of The Atlantic, Vox.com, and The New York Times, following the completion of The 

Reproducibility Project: Psychology in August 2015 [95]. A collaboration of 270 

researchers undertook the replication of 100 studies published in three psychology 

journals, where the data were openly accessed. The rationale was that potentially 

problematic practices — “selective reporting, selective analysis, and insufficient 

specification of the conditions necessary or sufficient to obtain the results” — might bias 

results so that they appear statistically significant, while an alternative, more objective 

third party analysis may show otherwise. 

 97% of the studies originally reported statistically significant results, while only 

about a third of the replications were able to corroborate those results. These findings 

sparked controversy as to the validity of the methodology of the replication studies in 

which each side essentially accused the other of not understanding statistics [4,45]. The 

debate itself, which took place in Science, demonstrated that research is often open to 

interpretation and that the more points of view we have addressing a given problem, the 

more opportunities for productive conversation around methodology and results. 

 While psychology is often dismissed as not a “hard science,” the Reproducibility 

Project: Cancer Biology is currently under way, which may reveal similar obstacles to 

replication in a “harder” science. Researchers are attempting to independently replicate 
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37 high-impact experimental results in preclinical cancer biology studies published 

between 2010 and 2012 [34]. The project notably scaled back from replicating 50 studies 

due to budgetary constraints, which highlights a lack of support for replication studies 

even in a field like cancer biology where false leads can translate to tremendous time and 

resources wasted on clinical trials. 

 Next-generation sequencing (NGS) analysis, however, is rather inexpensive by 

comparison, only requiring a computer, coding skills, and time.3 My comparative 

analysis of the replicability of putative Ψ sites using different NGS Ψ-detection 

techniques required only an investment in time. I was therefore curious to track 

reproducibility efforts undertaken with NGS sequencing data, apart from my own. As a 

crude first approximation, I searched for articles containing the phrase “next generation 

sequencing” with or without the term “reproducible” or “reproducibility” in the title or 

abstract on pubmed.gov. While articles containing “next generation sequencing” have 

gone up tremendously since the advent of NGS technologies, articles with “reproducible” 

or “reproducibility” have remained consistently low by comparison (Figure 5.1). As 

biology continues to generate big data, efforts to at the very least replicate analyses are 

crucial to ensuring that fields are pursuing true biological leads that result from robust 

data generation and analysis methods. 

 

                                                
3 As an aside, I could imagine undergraduate students replicating NGS analysis on openly 
accessed data as part of an advanced curriculum or thesis project, combining an 
educational opportunity with an inexpensive and valuable contribution to the scientific 
community. 

http://pubmed.gov
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Figure 5.1. Pubmed.gov search terms since the advent of NGS technologies. 

 
 

5.3.3 Incentivizing alternatives to traditional journal publication 

Even without budgetary restrictions, there is little incentive to replicate results, 

particularly for early stage scientists like myself, who must innovate in order to move up 

the career ladder. We are more susceptible to the “publish or perish” mantra — the very 

same mantra that can pressure publication of irreproducible results in the first place — 

because a long list of publications on a resume is a conspicuous indicator of merit. In 

fact, my comparative analysis of high-throughput Ψ-detection methods was incentivized, 

in part, by a publication opportunity. Specifically, I was invited to write a “critical” 

review of the currently available methods as an objective fifth party. The results of my Ψ-

seq experiments with T. brucei, however, do not readily fit into the traditional publishing 

structures, as they are neither innovative nor novel. Rather, they are inconclusive findings 

that could nevertheless benefit from peer review and open comment. 
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 Fortunately, norms around publishing are evolving to fill the need for more 

transparent reporting and replication studies. Open-access journals like the Journal of 

Negative Results in BioMedicine (BioMed Central) and F1000Research provide a peer-

reviewed platform for studies that can, for instance, prevent fellow researchers from 

pursuing false leads and generate collaborative discussions on how to improve existing 

techniques. In addition, preprint servers allow for direct uploading of complete scientific 

manuscripts not subjected to traditional peer review, which are accessible by the public.  

Paper preprints were introduced in the 1960s, while electronic preprints were first 

introduced in 1991 with arXiv, founded by Paul Ginsparg for rapid communication of 

scientific findings in physics, mathematics, computer science, quantitative biology, 

quantitative finance, and statistics. ArXiv has become embedded in the culture of these 

fields, which enjoy submissions of over 100,000 papers to the server each year. Preprints 

are currently used minimally in the life sciences — where the preprint server of choice is 

bioRxiv — perhaps owing to a cultural reluctance to share results before they have gone 

through the quality check of peer review. Results in the biomedical sciences also have the 

potential to be commercialized, creating another obstacle to sharing proprietary findings 

or techniques. The onus of establishing quality is therefore left to the reader of the 

preprint, as opposed to a review board established by the journal. Proponents of preprints 

counter with the benefits of democratizing and de-anonymizing peer review through 

bioRxiv’s comments section. Preprints have the added benefit of establishing priority in 

discoveries when publishing positive results, and many journals now accept manuscripts 

previously shared on a preprint servers [17]. 
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5.5 Concluding remarks 

The work presented in this thesis highlights not only limitations in high-throughput 

approaches to Ψ-detection, but also cultural limitations in the way that negative or non-

confirmatory results can be broadly shared with the scientific community. As science 

continues to move more towards the generation and analysis of big data, there is great 

merit in detailed attention to techniques that are not readily reused and to results that are 

not replicated. In line with the tenets of the open science movement, I plan to assemble a 

condensed but thorough version of the work detailed in Chapter 4 for preprint 

publication. I will also deposit my data into PubMed Central and experiment with 

platforms like the Open Science Framework to share my workflow for comment and 

reuse. My transcriptome-wide hunt for uncharted sites of pseudouridylation has 

demonstrated that even work that results in experimental failure can be a valuable 

contribution to the practice and products of scientific inquiry.  
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CHAPTER 6. A thesis condensed for nonscientists4 

Knowledge is a big subject. Ignorance is bigger. And it is 

more interesting. 

—Stuart Firestein, Ignorance: How it Drives Science 

 

Ever tried. Ever failed. No matter. Try again. Fail again. 

Fail better. 

—Samuel Beckett in Failure: Why Science Is So Successful 

 

My first week in the lab, my boss plopped a book with the bold title Ignorance: How it 

Drives Science. And now, as I wrap up writing my dissertation, she has given me its 

sequel, Failure: Why Science Is So Successful. Preternatural optimist that she is, she did 

not gift these books out of pessimism or wry passive aggression. Rather, she believed 

they contained important lessons. Lessons that perfectly bookend my Ph.D. career.  

 My time in the lab began with ignorance — not the wide-eyed, first-year graduate 

student variety, but the rigorous brand that embraces an open question. A great 

conundrum in modern biology is how life’s great diversity stems from four letters — A, 

C, G, and T — arranged in a near-infinite array to compose life’s blueprint molecule: 

DNA. Now, consider that every cell in your body contains the exact same complement of 

DNA. Yet a heart cell looks and acts completely different from a brain cell which looks 

and acts completely different from a skin cell. So how did a heart cell, a brain cell, and a 

                                                
4 This chapter will be submitted to Scientific American blogs for publication. Underlined 
portions correspond to hyperlinks in the text. 
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skin cell arrive at such different biological fates when given the exact same set of 

molecular blueprints?  

 To deploy the blueprint’s directions, instructions must first be transcribed to an 

intermediate molecule — the RNA — which then delivers them to the cellular machinery 

for execution. So understanding the dynamics of RNA, smack at the front lines of cellular 

activity, can help us understand how diversity emerges from the same DNA blueprint. 

 RNA is similarly composed of a four-letter alphabet: A, C, G, and U. That 

alphabet can be expanded upon with a library of over 100 chemical tweaks to fine-tune 

RNA function — a small M added to an A or a chemical S to a U. Of these alphabetical 

adornments, one stands out as the most ubiquitous: a subtle structural change in the 

genetic letter U to a pseudo-U, or pseudouridine (Ψ). Here, ignorance comes to play. 

 While Ψ was first discovered in the 1950s, we still don’t know much about its 

precise biological function today, except that without Ψ, cells die. We do, however, have 

some clues — one that particularly piqued my interest. Introducing Ψs into a set of 

instructions that dictate how a protein is made changed the way those instructions were 

interpreted by the cell. Ψ unexpectedly recoded RNA’s message beyond the mandates of 

the genetic code — a code considered fully cracked in the 1960s. 

 So in Ψ, I found a candidate for how diversity arises from DNA’s hard-coded 

instructions. But that study was undertaken in an artificial system, which left open the 

question: where does Ψ naturally lie? By understanding where Ψs are, we might begin to 

uncover what exactly they do to affect how cells behave. When I wound my way to this 

question, we still had no methods to map Ψs beyond a few varieties of RNA. So, with the 

https://www.sciencenews.org/article/loophole-found-genetic-traffic-laws
https://www.sciencenews.org/article/loophole-found-genetic-traffic-laws
http://nautil.us/issue/6/secret-codes/creating-life-as-we-dont-know-it
http://nautil.us/issue/6/secret-codes/creating-life-as-we-dont-know-it
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power of next-generation sequencing technologies that first emerged to map the human 

genome, I went Ψ-hunting. 

 Meanwhile, the allure of Ψ had entered into the zeitgeist, calling researchers from 

around the world to endeavor on the same Ψ-charting quest. I was beat to the punch when 

four methods — three of which were released back-to-back-to-back — were published 

spotting Ψs in a whole host of RNAs. I decided to make the best of being quadruply beat 

to the punch and compared each group’s Ψ maps, partly out of curiosity, but mostly 

because I was asked to review the techniques as an objective fifth party. All four methods 

were based on the same principle, so their results should overlap well with one another. 

But they did not. And here enters failure. 

 Of the hundreds to thousands of Ψs catalogued by each method, only a small 

fraction of sites were found by them all. I was genuinely surprised by the result. So I 

hunkered down and thought through a host of technical and biological caveats that were 

not detailed in the original publications. I then tried to apply one of those methods to map 

Ψs in African trypanosomes, the single-celled parasites that cause African sleeping 

sickness. But, try as I might, I could not get the method to work. And so, more failure. 

 Failure is the natural product of risk, and there’s nothing riskier than the pursuit of 

ignorance — asking those big bold questions that probe the unknown. But while the 

practice of science is riddled with failures — from the banal failures of day-to-day life at 

the bench to the heroic, paradigm shifting failures that populate the book called Failure 

— many scientists are uncomfortable with the idea. We publish our innovations, the 

stories of how our ignorance led to success. Where the “publish or perish” mantra 

prevails, these stories are essential to making a name for ourselves and securing grant 

http://blogs.scientificamerican.com/lab-rat/sleeping-sickness-and-tsetse-flies/
http://blogs.scientificamerican.com/guest-blog/failure-in-science-is-frequent-and-inevitable-and-we-should-talk-more-about-it/
http://blogs.scientificamerican.com/guest-blog/failure-in-science-is-frequent-and-inevitable-and-we-should-talk-more-about-it/
http://nautil.us/issue/30/identity/why-scientists-need-to-fail-better
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money. So there is little incentive to replicate the work of others or report experimental 

failure. In fact, there is barely a medium to publish these sorts of efforts, which are 

relegated to the bottom of the file drawer.  

 But the scientific method hinges on self-correction, which requires transparent 

reporting of positive (or negative) data and corroboration (or contradiction) of previous 

experiments. And so I wanted to share my work, to open it up to comment, to transform 

my failure into something productive. If I couldn’t get these Ψ mapping methods to work 

in my hands, that’s a problem worth sharing because chances are, I’m not alone. This is 

how we avoid chasing false leads, how we improve our practices, how we move science 

forward. These tenets lie at the heart of the “open science” movement, which I have come 

to embrace (despite its New-Agey name) as I have ventured to share the failed fruits of 

my doctoral work.  

 Of course, open science is easier said than done. The increasing competitiveness 

of certain scientific fields has disincentivized transparency and collaboration. There is 

also a value judgment that comes with sharing experimental failure — a vulnerability that 

your peers will view your efforts as sloppy, rather than earnest and honest. So distributing 

negative or non-confirmatory data comes with an extra burden of proof.  

 Still, policy reforms and open science advocates are working to incentivize 

practices that foster open collaboration. Open-source software like the Open Science 

Framework now exist for collaborative sharing of data and data-processing workflows. 

Peer-reviewed publications like F1000Research are now accepting negative or non-

confirmatory data of the sort I generated during my thesis. Preprint servers — which 

allow for direct uploading of complete manuscripts without formal peer review (but open 

http://www.openscience.org/blog/?p=269
https://osf.io/
https://osf.io/
https://f1000research.com/
http://www.scientificamerican.com/article/with-1-million-papers-preprint-site-is-changing-the-way-science-is-shared/
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for comment) and have long been embraced by the physics community — are now 

gaining steam in the life sciences thanks to the work of advocacy groups like ASAPbio.  

 While I haven’t uncovered any mysteries in the world of RNA biology, I have 

learned that science needs to fail better. I am now conducting further investigation into 

the source of my failures with the hopes of finding and publishing their root so it may be 

of use to all those Ψ chasers. Because in science, things often don’t work out the way we 

think they should, and we are left with our ignorance. But the narratives we form around 

failure — transparently, openly, and together — can be just as valuable as those we form 

around success.  

http://asapbio.org/
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CHAPTER 7. Materials and methods 

7.1 Culture methods and strains 

74-D694 (SY670) yeast cells, courtesy of the Serio laboratory at the University of 

Arizona, were used for CMC-seq pilot experiments. Yeast were grown to log phase 

(OD600 ≈ 1.0) at 30˚C in YPD media (Sigma-Aldrich).  

 T. brucei bloodstream form cells used were cultured from the strain Lister 427 

(antigenic type MITat1.2 clone 221a) in HMI-9 media at 37˚C. Procyclic form Lister 427 

cells were grown in SDM-79 media at 30˚C. 

7.2 CMCyne derivatization and “click” chemistry 

15 pmol of in vitro transcribed tRNATyr were suspended either in 47 mM CMCyne in 

BEU buffer (7 M urea, 4 mM EDTA at pH 8.5, 50 mM bicine) or in BEU buffer alone for 

a 10 µL total reaction volume. Samples were incubated for 2 hours at 37˚C and were then 

subject to ethanol precipitation. CMCyne-treated or mock-treated samples were then 

resuspended in hydrolysis buffer (50 mM (NH4)2CO3, 2 mM EDTA) at pH 10.5, 11.0, or 

11.5, and incubated at either 37˚C or 42˚C for either 2.5 or 3 hours. Following hydrolysis, 

RNA was again ethanol precipitated and subjected to “click” chemistry with the 

fluorescent azide atto488. Atto488-azide was conjugated to tRNATyr in a 20 µL reaction 

with 2.5 mM TPTA, 5 mM sodium ascorbate, 0.5 mM CuSO4•5H2O, and 0.05 mM 

atto488-azide. The light-protected reaction proceeded at 21˚C for 2 hours, shaking at 350 

rpm. RNA was precipitated a final time and resuspended in water before being run on a 

15% SDS-PAGE gel. The gel was scanned first for fluorescence, then stained with 

GelRed and scanned for RNA integrity. For the 30mer Ψ-containing oligonucleotide (or 
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its U-containing counterpart), CMC treatment and atto488 conjugation proceeded as 

detailed above, except 30 pmol of the RNA oligonucleotide were used to start. 

7.3 Generation of sequencing libraries 

7.3.1 CMC-seq library preparation 

Yeast cells were harvested by centrifugation and total RNA was extracted using the 

MasterPure™ Yeast RNA Purification Kit by Epicentre, which included a DNase 

treatment step. For each replicate, 12 µg of total RNA was either suspended in 0.17 M 

CMC (Sigma 29469, ≥99.0%, now discontinued) in BEU buffer (treated) or in BEU 

buffer alone (mock-treated), and incubated for 2 hours at 37˚C. The reaction was stopped 

by ethanol precipitating RNA. The pellet was resuspended in 50 µL of hydrolysis buffer 

at pH 11.0 and the mixture was incubated for 2.5 hours at 37˚C. RNA was again 

precipitated. Libraries were prepared with the TruSeq® Stranded Total RNA kit 

(Illumina) without the RiboZero Deplete and Fragment RNA step in the protocol. The 

resulting dscDNA libraries were then diluted to 15 nM and pooled for sequencing on the 

Illumina HiSeq 2000 for single-end 100bp reads. 

7.3.2 Ψ-seq library preparation with molecular barcodes 

Trypanosome cells were harvested by centrifugation and total RNA was extracted using 

RNA STAT-60 (Tel-Test, Inc.), according to the manufacturer’s protocol. For poly(A)-

enriched libraries, 300 µg of total RNA was used as starting material per replicate, 

followed by poly(A) enrichment using the µMACS mRNA Isolation Kit for total RNA. 

RNA was then DNase treated using RQ1 RNase-Free DNase (Promega) and cleaned with 

2x RNAClean® XP beads (Agencourt), yielding approximately 1-3 µg of starting material 
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for CMC treatment. For libraries prepared from total RNA, 12 µg of RNA (following 

DNase digestion and clean-up) was used as starting material per replicate. 

 Prior to CMC derivatization, RNA was fragmented for 15 minutes with RNA 

fragmentation reagent and stop solution (Ambion), according to the manufacturer’s 

specifications, and cleaned with 2.5x RNAClean® XP beads. CMC treatment and 

hydrolysis proceeded as in 7.3.1, except that RNA was cleaned with 3x RNAClean® XP 

beads following alkaline hydrolysis. In addition, CMC at ≥99.0% purity was 

discontinued, so I had to use CMC at ≥95% purity from Sigma. 

 RNA was then dephosphorylated with FastAP Thermosensitive Alkaline 

Phosphatase (Thermo Scientific), cleaned with 3x RNAClean® XP beads, followed by 

overnight 3ʹ adapter ligation with T4 RNA ligase (New England Biolabs) at 16˚C. After 

cleaning RNA once again with 3x RNAClean® XP beads, first strand synthesis primers 

with 5ʹ 2N, 1N, or 0N ends were mixed at equimolar concentrations and used for first 

strand synthesis with Superscript III Reverse Transcriptase (Invitrogen). I then proceeded 

to library preparation with the TruSeq® Stranded mRNA kit (Illumina), starting at the 

second strand synthesis step. The only deviation from the manufacturer’s protocol was 

that dscDNA was cleaned with 3x AMPure XP beads (Agencourt) following second 

strand synthesis. The resulting libraries were diluted to 15 nM and pooled for sequencing 

on the Illumina HiSeq 2500 for 50bp paired-end reads with 10% spike-in of PhiX 

Sequencing Control (Illumina) to ensure accurate cluster calling. 

7.3.3 Ψ-seq library preparation with molecular barcodes modified 

Total RNA was extracted from bloodstream form trypanosome cells harvested as in 7.3.2. 

For each library, 12 µg of total RNA (following DNase digestion and clean-up) was used 
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as starting material per replicate. This time, however, RNA was not fragmented prior to 

CMC treatment and hydrolysis, which proceeded as in 7.3.2. 

 RNA was dephosphorylated with FastAP Thermosensitive Alkaline Phosphatase, 

cleaned with 2.5x RNAClean® XP beads. Overnight 3ʹ adapter ligation with T4 RNA 

ligase at 16˚C followed, this time with a short adapter that lacked a barcode. The RNA 

was cleaned once again with 2.5x RNAClean® XP beads. First strand synthesis was 

performed with Superscript III and first strand synthesis primers with 5ʹ 2N, 1N, or 0N 

ends mixed at a 4:2:1 molar ratio. The resulting cDNA was cleaned with 2.5x AMPure 

XP beads, followed by dephosphorylation with FastAP Thermosensitive Alkaline 

Phosphatase, and cleaned again with 2.5x AMPure XP beads. The sample was subjected 

to overnight 3ʹ adapter ligation with T4 RNA ligase at 16˚C with a DNA oligonucleotide 

that contained a randomized six-nucleotide barcode and a universal priming sequence. 

The oligonucleotides used for this experiment are preceded by ‘mod Ψ-seq’ in Table 7.1. 

The reaction was cleaned with 2.5x AMPure XP beads and subjected to second 

strand synthesis with Phusion High-Fidelity DNA Polymerase (Thermo Fisher 

Scientific). Second strand synthesis primers with 5ʹ 2N, 1N, or 0N ends were mixed at a 

4:2:1 molar ratio. To ensure a stranded cDNA library, I utilized an oligonucleotide 

mixture at a final concentration of 200 µM dATP, dCTP, and dGTP and 400 µM dUTP. 

The resulting dscDNA product was cleaned with 2.5x AMPure XP beads, followed by 

end repair using the NEBNext® End Repair Module. I then proceeded to library 

preparation with the TruSeq® Stranded mRNA kit (Illumina), starting at the A-tailing 

step. The resulting libraries were diluted to 10 nM and pooled for sequencing on the 
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Illumina HiSeq 2500 for 100bp paired-end reads with 10% spike-in of PhiX Sequencing 

Control (Illumina) to ensure accurate cluster calling. 

7.4 Sequencing data analysis 

7.4.1 CMC-seq analysis 

Illumina sequencing adapters were trimmed and low-quality reads were removed using 

trim_galore(v0.3.7) powered by Cutadapt [82]. The remaining reads were aligned to the 

rDNA locus of the yeast genome (sacCer3; locus: chrXII:451000..459999) using 

bowtie(v1.1.1) allowing only uniquely mapping reads with no more than two mismatches 

per read (-v 2 -m 1) [67]. Per-base coverage was then calculated using bedtools(v.2.20.1) 

multicov, which was then normalized using DESeq(v1.20.0) in Bioconductor for R [99]. 

 CMC-stat was derived by first calculating the median normalized coverage at 

each position for treated and mock-treated libraries. The log2-transformed ratio of mock-

treated coverage to treated coverage was calculated, adding a pseudocount of 1 to both 

the numerator and the denominator to avoid division by 0. CMC-stat plots were generated 

using the R package ggplot2(v.2.1.0). 

 For mismatch analysis alignment files were parsed using the Python module 

pysam(v.0.8.1) to determine the frequency of nonreference nucleotide incorporation at 

each position and the total number of reads mapping to each position. A mismatch rate 

(MR) was calculated by dividing the number of mismatched reads by the total number of 

reads at each position. The median MR was then calculated for treated and mock-treated 

libraries and the log2-transformed ratio of treated to mock-treated median MRs was 

determined. Further analysis of nonreference nucleotide incorporation profiles was 

restricted to positions with a median treated MR of greater than 1.5% and a log2-
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transformed MR ratio of greater than 2. Nonreference nucleotide incorporation profiles 

were determined by dividing the number of each nonreference nucleotide incorporated at 

a given position by the total number of reads covering that position. Ternary plots were 

then drawn with the ggplot2 extension ggtern(v.2.1.4) in R. 

7.4.2 Ψ-seq analysis 

The Unix command grep was utilized to extract ‘left-hand’ reads containing the last eight 

nucleotides of the common priming sequence, followed by six random nucleotides and 

the ligation linker (i.e. GCGTTCGT……ACAG for adapter A). One mismatch was 

allowed within the adapter sequence. The SeqIO module from BioPython(v.1.63) was 

used to extract barcode sequences to create an index file with read name and barcode 

sequence used later for deduplication. The adapter sequence was then trimmed from the 

remaining left-hand reads, and corresponding paired ‘right-hand’ reads were extracted.  

 Right-hand reads were first aligned to the rDNA locus (genome Tb927v5.1; 

genes: Tb927.2.1389, Tb927.2.1398, Tb927.2.1407, Tb927.2.1416, Tb927.2.1425, 

Tb927.2.1434, Tb927.2.1443, Tb927.2.1452) using bowtie2(v.2.1.0) in end-to-end 

alignment mode [66]. Reads unaligned to the rDNA locus were then aligned to the whole 

genome. A custom R script utilizing the ‘data.table’ package was then used to 

deduplicate reads by discarding copies of those that map to the same position with the 

same sequence and barcode.  

 Following deduplication, the Python module pysam was used to calculate the 

number of reads initiating at a given position, the total number of reads covering that 

position, and the number of nonreference nucleotides incorporated for every mapped 

position. For each replicate, the Ψ-ratio was calculated for every position by dividing the 
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number of read starts by the total number of reads covering a given position, adding a 

pseudocount of 1 to both the numerator and denominator to avoid division by 0. The Ψ-fc 

was then calculated for every position by log2-transforming the ratio of the median Ψ-

ratio for treated libraries to the median Ψ-ratio for mock-treated libraries. Only positions 

covered by all replicates were considered. Putative Ψ sites were called for positions 5ʹ to 

a position with a treated Ψ-ratio greater than 0.1 and a Ψ-fc greater than 3.  

 Ψ-fc plots were generated using the R package ggplot2. Receiver operating 

characteristic (ROC) curves were generated for rDNA Ψ-ratio and Ψ-fc values using 

ggplot2 with extension plotROC(v.2.0.1). 

7.4.3 Modified Ψ-seq analysis 

Analysis was similar to that detailed in 7.4.2, except that the Unix command grep was 

utilized to extract ‘right-hand’ reads containing the last eight nucleotides of the common 

priming sequence, followed by six random nucleotides and the ligation linker. The SeqIO 

module from BioPython(v.1.63) was used to extract barcode sequences to create an index 

file and then to trim adapters from the FASTQ reads. 100bp sequencing was utilized, and 

several reads corresponded to cDNA fragments less than 100bp in size. Consequently, 

adapters were trimmed from both ends of the reads, and only the right-hand reads were 

used for alignment. Reads were aligned to the rDNA locus using bowtie1(v1.1.1) 

allowing only uniquely mapping reads with no more than two mismatches per read (-v 2 -

M 1). The resulting alignment files were analyzed as in 7.4.2. 
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7.5 Primer sequences 

Table 7.1. Primer sequences. 

Name Sequence (5ʹ → 3ʹ) 

tRNATyr oligo TGG TGG TGG GGG AAG GAT TCG AAC CTT CGA AGT CTG TGA CGG 
CAG ATT TAC AGT CTG CTC CCT TTG GCC GCT CGG GAA CCC CAC C 

Ψ-seq Adapter A /5Phos/ CUG UNN NNN NAC GAA CGC AAU CAG CUU GCC G/3ddC/ 

Ψ-seq Adapter B /5Phos/ CUG UNN NNN NGU CAG GAU CAG GAG GCC GU G/3ddC/ 

Ψ-seq Adapter C /5Phos/ CUG UNN NNN NCG ACG CCG GAU UAC GGG A G/3ddC/ 

FSS-A-2N NNG GCA AGC TGA TTG CGT TCG T 

FSS-A-1N NGG CAA GCT GAT TGC GTT CGT 

FSS-A GGC AAG CTG ATT GCG TTC GT 

FSS-B-2N NNA CGG CCT CCT GAT CCT GAC 

FSS-B-1N NAC GGC CTC CTG ATC CTG AC 

FSS-B ACG GCC TCC TGA TCC TGA C 

FSS-C-2N NNT CCC GTA ATC CGG CGT CG 

FSS-C-1N NTC CCG TAA TCC GGC GTC G 

FSS-C TCC CGT AAT CCG GCG TCG 

mod-Ψ-seq FSS /5Phos/ GUC UAU CGU CCG GAG /3ddC/ 

mod-FSS-2N NNC TNC GGA CGA TAG AC 

mod-FSS-1N NCT NCG GAC GAT AGA C 

mod-FSS-0N CTN CGG ACG ATA GAC 

mod-Ψ-seq SSS /5Phos/ CUG UNN NNN NAC GAA CGC AAT CNN GG /3ddC/ 

mod-SSS-2N NNC AGC GAT TGC GTT CGT 

mod-SSS-1N NCA GCG ATT GCG TTC GT 

mod-SSS-0N CAG CGA TTG CGT TCG T 
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