
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

1998

Identification and Characterization of Mlp1p and
Mlp2p : Molecular Components of Filaments
Localized at the Interface between the Nuclear Pore
Complex and Nuclear Interior
Caterina Strambio-De-Castillia

Follow this and additional works at: http://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact mcsweej@mail.rockefeller.edu.

Recommended Citation
Strambio-De-Castillia, Caterina, "Identification and Characterization of Mlp1p and Mlp2p : Molecular Components of Filaments
Localized at the Interface between the Nuclear Pore Complex and Nuclear Interior" (1998). Student Theses and Dissertations. 377.
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/377

http://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.rockefeller.edu/student_theses_and_dissertations/377?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F377&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mcsweej@mail.rockefeller.edu


Identification and Characterization of Mlplp and Mlp2p: 

Molecular Components of Filaments Localized at the Interface 

Between the Nuclear Pore Complex and the Nuclear Interior

A thesis presented to the faculty of 

The Rockefeller University 

in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy

by

Caterina Strambio de Castillia

Reproduced with permission of the copyright oner. Further reprodction prohibited without permsion.



© Copyright by Caterina Strambio de Castillia, 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

My deepest gratitude goes to Gunter Blobel and Mike Rout for help advice 

and support throughout the course of this work. I am also very grateful to J. 

Aitchison, C. Akey, R. Beckmann, P. Bernstein, N. Bonifaci, Y. Chook, E. 

Coutavas, U. 0 ‘Doherty, C. Enenkel, R. Erdmann, B. Fontoura, J. Helmers, M. 

Hurwitz, E. Johnson, J. Kilmartin, M. Matunis, C. Nicchitta, L. Pemberton, M. 

Rexach, N. Schulke, S. Smith, H. Takashima and J. Waters for many helpful 

suggestions and discussions throughout the course of this study. I am deeply 

indebted to J. Aris, D. Goldfarb, E. Johnson, J. Kilmartin, M. Lewis, J. Loper, L. 

Pemberton, R. Schekman, M. Sogaard, J. Warner and R. Wozniak, for providing 

me with antibodies and other reagents without which this work would not have 

been possible. I thank J. Aitchison, C. Akey, R. Beckmann, Y. Chook, M. 

Hurwitz, E. Johnson, J. Kilmartin, J. Luban, M. Matunis, L. Pemberton, M. Rout 

and S. Smith for critical reading of this dissertation in whole or in part.

Thanks go to E. Sphicas and H. Shio for excellent technical assistance in 

the electron microscopic studies. I am very grateful to K. Levine for helpful 

advice in using the Coulter counter and in the analysis of the data. In addition I 

would like to thank F. Isdell and L. Oehlen for help in performing the FACS 

analyses. My sincerest thanks go to E. Ellison, H. Ijikata and Y. Oh for 

invaluable and skillful technical support that was essential for the completion of 

various parts of the work presented in this dissertation.

On a more personal level, many many thanks go to my parents Adriana 

Redaelli and Giovanni Strambio de Castillia for allowing me to be here in the 

first place, for helping me and supporting me throughout my life and for helping

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



me be who I am. I am also grateful to my brother Vincenzo Strambio de 

Castillia and to my many friends for much needed moral support, patience and 

friendship throughout my professional career and otherwise. In particular I 

would like to thank the following: Anna Redaelli, Alessandra Della Porta, Mauro 

Traversa, Fabio Re, Sidarta Ribeiro, Lucia and Claudio Mello, Silvia and 

Guillermo Cecchi, Amy and Roy Crist, Evette and Basil Ellison and Perla and 

Pepe Reyes.

Many thanks go to my parents, my mother in law, Shirley Luban, Lucia 

Mello and the skillful and caring staff of the Yellow room at The Rockefeller 

University Child and Family Center, Daril Browning, Alice Cruz, Dawn Foster 

and Carol Zeavin, for helping me taking care of my daughter and thereby 

allowing me to be a productive working-mother. In particular millions of thanks 

to Ursula and Perla Gonzales for giving Maria so much love and attention in the 

past few months and therefore allowing me the pace of mind necessary for the 

final efforts towards the completion of this dissertation.

All my gratitude of course to my husband, Jeremy Luban for all his love 

and support in bad as well as in good times. Finally, I am also very grateful to 

my daughter, Maria Luban for allowing to keep my feet on the ground and 

always remember what is ‘‘really important” and for giving me much 

unconditional love and a lot of happy moments.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table Of Contents

Abstract 1

Chapter I: Introduction 3

The Structure and Function of the NE 3

The NE in Budding Yeast 6

NPC: Structure, Molecular Composition and Dynamics 8

Nucleocytoplasmic Transport 17

The Structural and Functional Organization of the Nuclear Interior and its Connections with 
Nucleocytoplasmic Transport 24

A Combined Biochemical and Immunological Approach to identify Yeast Proteins that May 
Provide a Link Between the NPC and the NM 29

Chapter II: Materials And Methods 3 2

Yeast Subcellular Fractionation; Preparation of Enriched Nuclei and Highly Enriched NPCs 32 

Yeast NE Preparation 33

Extraction of Yeast NEs 34

Post-Translational Translocation Assay 35

Fractionation of NE Proteins by Ion-exchange Chromatography 37

Immunization of Mice and Production of mAbs 38

Molecular Cloning of the MLP1 Gene 39

Gene Disruption and Protein A tagging of MLPl and MLP2 40

Growth Competition Assay 44

Ultrastructural Studies 44

Cell Volume Analysis 47

Chromosome Segregation Assay 47

Flow Cytometry of Yeast Cells 48

In vivo Import and Diffusion Assays 49

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Overexpression of MLP1 50

Miscellaneous 52

Chapter III: Isolation And Characterization Of Nuclear Envelopes
From The Yeast Saccharomyces 5 5

Comments on the Procedure 55

Electron Microscopy of the NE Fractions 60

SDS-PAGE Analysis and Immunoblots 65

Protein Translocation Activity 85

Detergent extraction of H-NEs 89

Chapter IV: Preparation Of Monoclonal Antibodies Against Yeast 
Enriched Nuclear Envelope Fractions 9 2

Outline of the Procedure 92

Large Scale Preparation of Highly Enriched NE Fractions 93

Mice Immunization 95

Generation of Hybridoma Cell Lines and Primary IF microscopy Screens 95

Secondary screening of the NE specific mAbs by immunoblot analysis 96

Chapter V: The Identification And Characterization Of Components 
Of Nuclear Filaments That Connect The Nuclear Pore Complex To 
The Nuclear Matrix 105

A Screen for non-NPC Proteins Associated with the NE 105

Isolation of the Gene Encoding p220 110

Double Deletions of MLP1 and MLP2 Cause a Marked Decrease in the Yeast Comparative 
Fitness 117

Mlp1 p is Associated with Intranuclear Filaments that Connect the NPC with the NM 122

Mlp2p Resembles Mlp1 p in its Fractionation Behavior and Ultralocalization 131

Effects of MLP1 and MLP2 Deletion on Cellular and Colony Morphology and on the Distribution 
of Nuclear Markers 134

Deletion of MLP1 and MLP2 Affects the Efficiency of Nuclear Import 149

Overexpression of MLP1 in Saccharomyces 153

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter VI: Discussion 161

A Method for the Preparation of Highly Enriched NE Fractions from the Yeast Saccharomyces 161 

A Successful Strategy to Generate mAbs Against NE-Associated Antigens 165

The Identification of Novel Components of Nuclear Filaments Connecting the NPC with the NM 167

References 180

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List Of Figures

Rgure 1.

Figure 2. 

Rgure 3.

Rgure 4.

Rgure 5.

Rgure 6.

Figure 7.

Rgure 8. 

Rgure 9.

Rgure 10.

Figure 11. 

Figure 12.

Schematic diagram of the yeast NE enrichment and NE heparin extraction 
procedures! 58

Morphological analysis of the NE and H-NE fractions. 63

SDS-PAGE profile of proteins in subcellular fractions obtained during the 
preparation of NEs and H-NEs showing the loss of a large amount of 
contaminating proteins and concomitant coenrichment of representative NE  
proteins. 72

Immunoblot analysis of the enrichment procedure showing that the fractionation 
behavior of various cellular markers is consistent with high yields and low 
levels of contamination in the NE and H-NE fractions. 74

The mAb, MAb118C3, specifically recognizes the pore membrane protein, 
Pom15$p. 77

The pore membrane protein. Pom152p, coenriches with both a highly-enriched 
NPC fraction and with nuclear membranes 79

Double IF staining of wild type veast cells showing in vivo Pom152p 
localization at the NE and at the Ert. 81

Quantitative analysis of the NE enrichment procedure. 83

Both the isolated NEs and H-NE fraction are active in a cell-free protein 
translocation assay' 87

Detergent extraction of H-NEs suggests that ring structures associated with the 
NE may be involved in stabilizing tne grommets of the NPCs. 90

Secondary screening of mAbs obtained against yeast NE fractions. 103

Double IF staining of wild type and ANUP133 yeast cells showing the in vivo 
localization of p220 at NE-associated patches that colocalizes only partially 
with NPCs. 108

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rgure 13. Schematic diagram representing some of the primary and secondary structural
features of M lplp. 113

Rgure 14. M lplp shares similarities with Mlp2p and Tpr. 115

Rgure 15. Yeast cells carrying a double disruption of MLP1 and MLP2 exhibit a marked
fitness deficit with respect with their wild type counterpart. 120

Rgure 16. M lp lp  is peripherally associated with the NE and with NPCs. 125

Rgure 17. Mlp1 p is predominantly associated with nuclear filaments that appear to
connect the NPCs with the NMT 127

Rgure 18. M lp lp  is peripherally localized relatively to the NPC. 129

Rgure 19. Mlp2p is a M lplp homologue. 132

Rgure 20. Yeast strains carrying a double disruption of MLP1 and MLP2, display
significant cellular and colony morphology alterations associated with defects in 
chromosome segregation. 139

Rgure 21. Distribution of morphological classes in wild type and mlp1A, mlp2A mutant
cells. 141

Rgure 22. Distribution of nuclear markers in mlplA, mlp2A cells. 143

Rgure 23. Nucleoli fragment in mlplA, mlp2A cells. 145

Rgure 24. Altered spindle morphology in mlplA, mlp2A cells. 147

Rgure 25. M lplp and Mlp2p are involved in facilitating nuclear import of a NLS-GFP
reporter. 151

Rgure 26. M lplp can be overexpressed at least 100-fold in yeast. 155

Rgure 27. Upon overexpression, M lplp forms multiple peripheral nuclear dots that
subsequently coalesce and take over the majority of the nuclear volume. 157

Rgure 28. When overexpressed in yeast, M lplp forms dense fibrillogranular patches
underneath the NE that are easily distinguishable from the nucleolus. 159

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tables

Table I. Yeast Strains 43

Table II. Highly enriched yeast NE fractions used for the production of mAbs 94

Table III. Summary of mAbs results 98

Table IV. mAbs obtained against yeast NE components 99

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abbreviations

CM Crude Microsome

CSR Central Spoke Ring

ECL Enhanced Chemiluminescence

EM Electron Microscopy

ER Endoplasmic Reticulum

GFF Green Fluorescent Protein

gpccF glycosylated pro-a-Factor

H-NE Heparin-extracted NE

HAT Hypoxanthine, Aminopterin, Thymidine

HRP Horse Radish Peroxydase

IEM Immuno Electron Microscopy

IF Immunofluorescence

INM Inner Nuclear Membrane

ISR inner Spoke Ring

LSR Lumenal Spoke Ring

m Ab Monoclonal Antibody

MLP Myosin Like Protein

MPF Matrix Protein Filament

MT Microtubules

NE Nuclear Envelope

NES Nuclear Export Sequence

NL Nuclear Lamina

NLS Nuclear Localization Signal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NM Nuclear Matrix

NPC Nuclear Pore Complex

NUP Nucleoporin

ONM Outer Nuclear Membrane

ORF ' Open Reading Frame

PAGE Polyacrylamide gel electrophoresis

PEG Polyethylene glycol

POM Pore Membrane Protein

ppaF prepro-a-Factor

PVP Polyvinylpyrrolidone

SPB Spindle Pole Body

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

In eukaryotic cells the segregation of the genome in a closed organelle 

requires an efficient mechanism to ensure the constant exchange of material 

between the nucleus and the cytoplasm. Nuclear pore complexes (NPCs) 

provide the only known sites for exchange of material across the nuclear 

envelope (NE). A wealth of evidence has accumulated throughout the years 

that strongly suggest that the NPCs are structurally linked to the nuclear interior. 

It has long been proposed that this structural continuity is essential for the 

efficient exchange of material between the nuclear interior and the cytoplasm. 

Unfortunately, the understanding of the molecular basis of such functional and 

structural connections has lagged behind. This dissertation describes a 

combined biochemical and immunological approach aimed at the identification 

of novel yeast proteins that could be involved in providing such link. The first 

step of this approach was the development of a large scale enrichment 

procedure to prepare yeast nuclear envelopes (NEs). These NEs can be 

stripped of peripheral proteins to produce a heparin-extracted NE (H-NE) 

fraction highly enriched in integral membrane proteins. Extraction of H-NEs with 

detergents revealed previously uncharacterized ring structures associated with 

the NE that apparently stabilize the grommets of the nuclear pore complexes 

(NPCs). The high yields obtained throughout the fractionation procedure 

allowed balance-sheet tabulation of the subcellular distribution of various NE 

and non-NE associated proteins. As the second step of the approach described 

here, three different highly enriched NE-derived fractions were used to generate 

a panel of 114 monoclonal antibodies (mAbs) against NE-associated antigens. 

Finally, this panel of anti-NE mAbs were subjected to a novel NPC-clustering
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screen aimed at the identification of NE-associated antigens that were only 

peripherally associated with the NPC. Two mAbs were isolated using this 

screen (MAb148G11 and MAb215B9). Both of these mAbs were found to 

recognize the same -220 kD protein (p220) on immunoblots of highly enriched 

NE fractions. The gene encoding p220 was cloned and was found to be the 

previously identified gene of unknown function, MLP1. Disruptions of MLP1 

and its homologue MLP2 (the uncharacterized yeast ORF, YIL149C), were 

found to be non lethal either separately or in combination. Though both M lplp 

and Mlp2p largely cofractionated with isolated NEs, neither cofractionated with 

isolated NPCs. Ultrastructural localization demonstrated that both Mlplp and 

Mlp2p are localized to filaments that appear to connect the NPC to the nuclear 

interior. Functional studies performed using yeast strains harboring a double 

deletion of MLP1 and MLP2 suggested that these proteins could be involved in 

facilitating nuclear import and led to the proposal of a model for the possible 

role of these proteins in nuclear transport.

2
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Chapter I: Introduction

The Structure and Function of the NE

The presence of a cell nucleus is a characteristic of eukaryotic cells and its 

development may represent one of the essential steps that allowed the 

progression from unicellular organisms to more complex life forms.

The nuclear envelope (NE; see list of Abbreviations) is a complex 

membrane system that defines the boundary between the nucleus and the 

cytoplasm. The NE is involved in several important functions. They include 

transport of both small molecules and macromolecules between the cytoplasm 

and the nucleus, nuclear division, maintenance of the nuclear architecture, 

higher level chromosome organization both during interphase and at mitosis, 

regulation of gene expression, and RNA processing.

The NE is composed of two distinct but continuous membranes enclosing 

a lumenal (perinuclear) space. Towards the cytoplasm is the outer nuclear 

membrane (ONM) which is continuous with the endoplasmic reticulum (ER) 

membranes and is thought to perform rough ER functions (Fawcett, 1966; Baba 

and Osumi, 1987; Preuss, et al., 1991). Facing the nucleoplasm is the inner 

nuclear membrane (INM), which contains distinct protein components that are 

not present in the ER.

In higher eukaryotes, the INM is often lined by a filamentous network 

called the nuclear lamina (NL) (Gerace, et al., 1978; for a review see, Moir, et 

al., 1995). The NL is thought to provide structural stability to the NE and it may 

also be essential for the maintenance of the internal nuclear architecture and as 

an anchoring site for the interphase chromosomes. The NL has also been

3
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implicated in the regulation of various nuclear processes such as DNA 

replication (Goldberg, et al., 1995; Spann, et al., 1997). In vertebrates the NL 

consists primarily of intermediate filaments-type proteins called the lamins. The 

lamins can be classified into A and B subgroups based on their primary 

sequence and their biochemical properties, and four lamins (A, B1, B2 and C) 

are commonly found in mammalian somatic cells. Lamins A and B are attached 

to the INM with the help of an isoprenyl anchor (Beck, et al., 1988) and via the 

interaction with various integral membrane proteins that include p58 \ lamin-B 

receptor (LBR; Worman, et al., 1988; Worman, et al., 1990), the lamina 

associated polypeptides (LAPs) 1 and 2 (Senior and Gerace, 1988; Foisner and 

Gerace, 1993), and a recently identified protein of 18 kD that is part of the LBR 

complex (Simos, et al., 1996).

The INM and the ONM join to form specialized circular apertures of -100 

nm diameter containing the nuclear pore complexes (NPCs). The latter are 

macromolecular structures with a mass of -125 x106 D in vertebrates (Reichelt, 

et al., 1990) and -66 x106D in yeast (Rout and Blobel, 1993; Yang, et al., 1998) 

that regulate the exchange of material between the nucleus and cytoplasm. 

Metabolites, ions and small macromolecules (relative molecular mass less than 

40 kD) can passively diffuse through aqueous channels of 9 nm in the NPC. In 

contrast, large macromolecular particles with a diameter of up to 25-28 nm are 

selectively transported to and from the nucleus across the NPC via a highly 

regulated energy-dependent process (see below).

An important property of the NE of higher eukaryotes that is not shared by 

the budding yeast is that it disassembles early in mitosis to allow the 

chromosomes to interact with the cytoplasmic spindle and it reassembles to 

form a new cell nucleus in each of the two daughter cells at the end of cell 

division (see Marshall and Wilson, 1997, and references therein). The initial

4
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event that takes place during late prophase is the fragmentation of the NE into 

small vesicles. The NL depolymerizes yielding soluble lamin A/C monomers or 

dimers and NE vesicle-associated B-type lamins (Gerace and Blobel, 1980). 

The NPCs are also dismantled at this time and many of its components sever 

their association with the pore membrane. The sequence of events that 

accompanies NE re-assembly is more controversial. It is clear that vesicles 

need to associate with the surface of late anaphase chromosomes and to fuse 

laterally to give rise to a continuous NE. In addition, NPCs need to reassemble 

and the NL has to reform underneath the INM. The controversy lies in the order 

in which these events occur, and the two main models that have been proposed 

differ in the role that each ascribes to the lamins in the interaction of chromatin 

and the vesicles that will give rise to the reformed NE.

There is now a general consensus that protein phosphorylation constitutes 

the major regulatory element of nuclear breakdown in mitosis. The cyclin B 

dependent mitotic kinase p34cdc2 is directly responsible for many of the 

phosphorylation events, but other kinases may also contribute (Nigg, 1993; 

Pfaller and Newport, 1995). Hyperphosphorylation at mitosis-specific sites 

causes the lamin to depolymerize (for a review see, Moir, et al., 1995). 

Moreover, it appears that the interaction of the lamina with the INM is also 

regulated by phosphorylation of the proteins that have been implicated in 

anchoring it to the nuclear membrane (see above). The NPCs are also believed 

to disassemble in response to mitosis-specific phosphorylation of individual 

nucleoporins by p34cdc2. The cell-cycle dependent phosphorylation of several 

nucleoporins including Nup98, gp210, Nup153, Nup214/CAN and Nup358 has 

recently been established experimentally (Macaulay, et al., 1995; Favreau, et 

al., 1996). The mechanism of disassembly of the nuclear membrane may be 

more complex. It is certain that the phosphorylation of NE components by

5
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p34cdc2 may not be sufficient to achieve complete breakdown and that 

additional kinases and cytoplasmic factors might be required (Newport and 

Spann, 1987; Peter, et al., 1990).

The NE in Budding Yeast

Generally, the yeast Saccharomyces represents a particularly 

advantageous experimental system for the study of complex cellular events 

because of the powerful genetics techniques that are available to study the in 

vivo properties of gene products of interest. It is widely accepted that many of 

the NE functions are conserved between higher and lower eukaryotes 

suggesting that the key components of these processes are also evolutionary 

conserved. Nevertheless, the budding yeast Saccharomyces presents some 

unique features that are not shared by higher eukaryotic cells.

Arguably, the most striking difference concerning NE biology is that the 

members of the yeast genus Saccharomyces divide by budding and undergo 

what is called a "closed mitotic division". As demonstrated by electron 

microscopic (EM) analysis and subsequently confirmed by indirect 

immunofluorescence (Robinow and Marak, 1966; Davis and Fink, 1990), the 

yeast NE does not break down during mitosis. At the beginning of the cell cycle, 

a bud starts forming on the parental cell and as it grows the NE invades it as a 

long narrow structure. The intrusion of the NE into the bud is closely followed 

by chromatin migration, and soon after that the nucleus divides in two daughter 

nuclei. After karyokinesis, cytokinesis quickly ensues.

In budding yeast, the microtubules (MTs) that constitute the mitotic spindle 

emanate from two dense plaques, the spindle pole bodies (SPBs), which are

6
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embedded in the NE and are analogous to the centrosomes of animal cells (for 

reviews see, Masuda, 1994; Snyder, 1994; Marschall and Steams, 1997). The 

SPB duplicates at the beginning of the cell cycle and initially the two SPBs 

remain juxtaposed in the plane of the NE and connected by a bridge structure. 

Later, the spindle MTs start to assemble at each of the two SPBs. When the two 

half spindles interdigitate, the bundle of polar MTs starts elongating and pushes 

the two SPBs further apart from each other. Two other types of MTs are also 

formed at the SPB giving the spindle its final organization. They are: 1) 

chromosomal MTs that interact with each of the chromosomes at the 

centromeres; and 2) astral MTs that arise from the outer surface of the SPB and 

project into the cytoplasm. While the chromosomal MTs are responsible for the 

accurate segregation of the pairs of sister chromatids to the opposite poles of 

the nucleus, the astral MTs appear to have a role in the migration of the dividing 

nucleus to the neck of the nascent bud and in its appropriate positioning relative 

to the plane of cytokinesis. SPB duplication is believed to be an important 

"check-point" in the process of cell division and some mutants blocked in SPB 

replication are unable to form a bud. It is worth noting that the SPB also has an 

essential role in the process of karyogamy that takes place during mating.

Several SPB molecular components have been recently identified using a 

variety of methods including genetic screenings that looked for cell division or 

karyogamy mutants, and biochemical approaches that entailed the partial 

purification of yeast SPBs and the generation of monoclonal antibodies (mAbs) 

to the protein constituents of the enriched fraction (reviewed in, Kilmartin, 1994). 

Particularly interesting is the identification of a mutant blocked in SPB 

duplication called ndcl (Goh and Kilmartin, 1993; Winey, et al., 1993). 

Isolation and analysis of the NDC1 gene has revealed a gene product of 74 kD. 

Antibody staining locate the Ndclp protein at the nuclear periphery in

7
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association with both SBPs and NPCs (M. Winey and M. P. Rout, personal 

communication). It is possible that Ndclp is a novel constituent of the NE that is 

involved in the insertion of both nascent SPBs and NPCs in the NE.

A second important peculiarity of the yeast system is that no NL has been 

found in this system. The presence of a NL in yeast was suggested by a variety 

of morphological, biochemical (Allen and Douglas, 1989) and immunological 

studies (Georgatos, et al., 1989), but so far none of the proteins that were 

initially identified as putative yeast lamins homologues have been further 

characterized. With the completion of the Saccharomyces cerevisiae 

sequencing project (Clayton, et al., 1997 and references therein), the existence 

of a lamin in yeast has been brought into further question since no putative 

homologues of the lamin proteins have been found in this organism.

NPC: Structure, Molecular Composition and Dynamics

NPCs provide the only known port for the exchange of material across the 

NE. The three-dimensional structure of the vertebrate NPC has been 

elucidated using a variety of EM techniques (Unwin and Milligan, 1982; 

Hinshaw, et al., 1992; Akey and Radermacher, 1993). The favored source of 

NPCs for these analyses has been amphibian oocytes but many aspects of the 

structure appear to be conserved in other vertebrates. These studies have 

provided a low resolution model (6-10 nm) for the architecture of the transport 

machinery. The membrane spanning portion of the NPC consists primarily of a 

cylindrical assembly of eight identical spoke structures symmetrically arranged 

around an 8-fold axis. The spokes form three concentric rings called the inner 

spoke ring (ISR), the central spoke ring (CSR) and the lumenal spoke ring

8
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(LSR). The ISR encircles a central channel complex called “transporter” or 

“plug” that is believed to be the primary site for active transport (Akey and 

Radermacher, 1993). The LSR penetrates into the lumen of the NE and is 

therefore presumed to have transmembrane components that help anchor the 

NPC to the pore membrane. On both cytoplasmic and nuclear sides of the 

spoke ring assembly are two peripheral annular structures that are similar but 

not identical to each other and are called the cytoplasmic and nuclear rings. 

The cytoplasmic ring serves as the attachment site for eight cytoplasmic 

particles each of which is connected to a cytoplasmic filament that extends at 

least 30-50 nm into the cytosol. The nuclear ring is connected to eight fibers 

-75-100 nm long that are joined at the terminal end by a smaller ring to form a 

structure called the nuclear “basket”, “cage” or “fishtrap” (Ris, 1989; Jarnik and 

Aebi, 1991; Ris, 1991; Goldberg and Allen, 1992).

Both nuclear import and export utilize the central NPC transporter 

(Feldherr, et al., 1984; Dworetzky and Feldherr, 1988; Akey and Goldfarb, 

1989). The currently available images of the transporter suggest that it is a hour

glass shaped gated structure (Akey, 1990; Akey and Radermacher, 1993; 

Goldberg and Allen, 1996). Ultrastructural studies of Balbiani ring mRNPs 

caught traversing the NPC suggest that the transporter provides a channel that 

can stretch to a 26 nm diameter and is 50-60 nm long (Stevens and Swift, 1966; 

Feldherr, et al., 1984; Kiseleva, et al., 1983). Recently, Feldherr and Akin 

(Feldherr and Akin, 1997) followed the passive diffusion of PEG-coated gold 

particles that lacked a specific targeting signal after microinjection into the 

nucleus or the cytoplasm of Xenopus oocytes. This study concluded that the 

transporter contains a single barrier that blocks the free diffusion of 

macromolecules in and out of the nucleus (i.e. a single gate) and that this

9
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diffusion barrier is located in the middle of the NPC parallel to the mid-plane of 

the NE.

The NPCs of Saccharomyces share many common features with their 

vertebrates counterparts. However they are significantly smaller both in mass 

and in volume than the NPCs found in vertebrates (see above). The recent 

elucidation of the low-resolution three-dimensional structure of isolated NPCs 

from yeast has helped clarify the level of evolutionary conservation of this multi- 

molecular complex between distantly related species with important functional 

implications (Yang, et al., 1998). The most important conclusion of this study is 

that the difference in size and mass of the NPC between yeast and vertebrates 

can be accounted for by a concomitant simplification of the structure. In 

substance the yeast NPC appears to comprise only the central core of the 

vertebrate NPC and lacks many of the peripheral attachments including the 

LSR, the nuclear ring and the cytoplasmic ring with its attached cytoplasmic 

particles. Interestingly, the cytoplasmic fibers and nuclear basket appear to be 

conserved but are anchored to more central domains of the spoke-ring 

assembly. Consistent with a general reduction in size, the central transporter is 

also smaller and appears to be missing a central cylinder that gave the 

vertebrate transporter its hour-glass shape. The results of this study suggest 

that the yeast NPC are likely to have retained or recapitulated the features that 

characterize what a “minimal” functioning NPC should look like. Accordingly, 

the yeast NPC is able to ensure efficient exchange of material between the 

nucleus and the cytoplasm but lacks higher order structures necessary in multi- 

cellular organisms.

Approximately 30 proteins are estimated to constitute the NPC as inferred 

from studies of highly enriched yeast and mammalian pore preparations (Rout 

and Blobel, 1993; M. J. Matunis and G. Blobel, personal communication). A
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variety of immunological, biochemical and genetic techniques have been 

successfully employed in the past few years to identify NPC-specific proteins 

(nucleoporins). The criteria commonly used to demonstrate that a novel protein 

is a bona fide nucleoporin are the following: 1) the protein must immunolocalize 

to the NPC by IF microscopy or better by immunoelectron microscopy (IEM); 2) 

the protein has to cofractionate with the NPC in subcellular fractionation 

procedures; 3) the proteins should interact genetically and or biochemically with 

other known nucleoporins; and 4) the polypeptide sequence of the protein 

might be similar to the sequence of other NPC constituents. To date -30 yeast 

proteins and 15 vertebrate proteins have been identified that meet at least two 

of the above mentioned criteria for a nucleoporin (reviewed in, Rout and Wente, 

1994; Bastos, et al., 1995; Doye and Hurt, 1997; Fabre and Hurt, 1997). Most 

nucleoporins are unrelated to non-NPC polypeptides in the databases. 

Nevertheless, a large number of yeast and vertebrate nucleoporins contains at 

least one region with characteristic repeat motifs that end in the dipeptide FG 

(reviewed in, Rout and Wente, 1994). There are at least three general types of 

repeat motifs regions that are generally referred to by the consensus sequence 

of the core of the repeat. These are the tetrapeptides GLFG (single letter AA 

code for gly-leu-phe-gly) and FXFG (single letter AA code for phe-any AA-phe- 

gly) and a third class containing a variety of different tetrapeptides such as 

PAFG (single letter AA code for pro-ala-phe-gly), SAFG (single letter AA code 

for ser-ala-phe-gly) or PASG (single letter AA code for pro-ala-ser-gly) 

commonly referred to as FG repeats. The spacer sequences between the FXFG 

and the FG repeats are generally highly charged and rich in serine and 

threonine residues. The GLFG spacers are generally devoid of acidic residues 

and have a prevalence of asparagine and glutamine residues. Most of the 

repeat containing nucleporins are believed to play a direct role in the nuclear
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transport mechanism and indeed sequences containing these motifs have been 

found to directly interact with soluble transport factors (see below; Belanger, et 

al., 1994; Kraemer, et al., 1995; Moroianu, et alM 1995; Radu, et al., 1995; 

Aitchison, et al., 1996; Pemberton, et al., 1997; Rosenblum, et al., 1997; Rout, et 

al., 1997). In vertebrates, many of the repeat containing nucleoporins also 

contain numerous sites for the post-translational cytosolic addition of O-linked 

N-acetylglucosamine (GlcNAc) residues but the functional significance of this 

modification is presently not known (Holt, et al., 1987). Similarly unknown is 

whether yeast has similar modifications. Another common feature of 

nucleoporins is the presence of coiled-coil domains which may be involved in 

the homo- or hetero-polymerization of the protein (Buss and Stewart, 1995; 

Grandi, et al., 1995; Grandi, et al., 1995; Hu, et al., 1996). Some nucleoporins 

also exhibit other conserved structural elements such as cysteine-rich zinc- 

fingers thought to promote protein-nucleic acid or protein-protein interactions 

[for example vertebrate Nup153 and Nup 358 (Sukegawa and Blobel, 1993; 

Wu, et al., 1995; Yokoyama, et al., 1995)]; Ran binding sites thought to have a 

role in nuclear transport [for example Nup358 and yeast Nup36p and Nup2p 

(Loeb, et al., 1993; Dingwall, et al., 1995; Wu, et al., 1995; Yokoyama, et al., 

1995; Nehrbass and Blobel, 1996); see below]; octapeptide motifs also found in 

RNA-binding proteins [for example yeast NuplOOp, Nup116p and Nup145p 

(Fabre, et al., 1994)]; and leucine-rich regions thought to be responsible for 

protein-protein interactions [for example, vertebrate Nup358, Nup107 and 

Nup214/CAN (Kraemer, et al., 1994; Radu, et al., 1994; Wu, et al., 1995; 

Yokoyama, et al., 1995)]. In addition, Nup358 also contains a domain 

homologous to the prolyl-isomerase Cyclophilin A whose functional 

significance is not clear (Wu, et al., 1995; Yokoyama, et al., 1995).
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The presence of distinct structural elements within the NPC architecture 

suggest the existence of defined NPC subcomplexes. Some of these 

subcomplexes have been identified and have shed considerable light on the 

functional organization of the NPC. The first of such subcomplexes to be 

identified was the vertebrate p62-complex (Guan, et al., 1995; Hu, et al., 1996; 

and references therein). This complex is composed of the repeat containing 

nucleoporins p62, p58 and p54 (in rat this complex contains also p45 which is 

absent in Xenopus ) that interact with each other via their carboxy-terminal 

coiled-coil domains (Buss and Stewart, 1995; Hu, et al., 1996). The p62- 

complex is localized on both faces of the NPC at or near the center of the 

central transporter. Recently the biochemical interaction of p62 with a variety of 

soluble transport factors via its repeat-containing domain has been established 

experimentally (Paschal and Gerace, 1995; Percipalle, et al., 1997; Yaseen and 

Blobel, 1997). These observations, together with the results of in vitro functional 

studies (Finlay and Forbes, 1990; Finlay, et al., 1991), suggest a role in the 

recognition or the translocation of the transport substrates (see below). 

Interestingly, an analogous complex may exist in yeast. This complex includes 

Nsplp (Hurt, 1988; Nehrbass, et al., 1990) which shares AA sequence similarity 

with p62 and is generally thought to be its homologue and two additional 

repeats-containing nucleoporins Nup57p (similar to p58; Grandi, et al., 1995) 

and Nup49p (similar to p54/p45; Wente, et al., 1992; Wimmer, et al., 1992). As 

with their vertebrate counterparts, these proteins also have a bipartite structure 

with a repeats-containing region at or near the amino-terminus that interacts 

with various known transport factors and a coiled-coil domain at the carboxy- 

terminus that is responsible for the formation of the complex (Grandi, et al., 

1993; Grandi, et al., 1995; Schlaich, et al., 1997). Similarly to p62, Nsplp has 

also been localized to both sides of the NPC (Nehrbass, et al., 1990). In
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addition, in vivo functional data obtained with mutant forms of these proteins 

confirm the possibility of a direct involvement of Nup49p and Nsp1 p in transport 

across the NPC (Mutvei, et al., 1992; Nehrbass, et al., 1993; Doye, et al., 1994). 

Taken together these results argue that the p62(Nsp1p)-complex represent a 

highly conserved subcomplex of the NPC that is most likely involved in the 

essential function of regulating or directly facilitating active nucleocytoplasmic 

transport.

Among the nucleoporins that do not contain obvious repeat sequences, 

Nic96p, Nup157p, Nup170p, Nup188p, Nup192p and the pore membrane 

protein Pom152p, are the most abundant constituents of biochemically isolated 

NPCs and are estimated to comprise -25% of the total mass of the NPC 

(Aitchison, et al., 1995). Three of these proteins, Nic96p, Nup188p and 

Pom152p interact both biochemically and genetically (Aitchison, et al., 1995; 

Nehrbass, et al., 1996; Zabel, et al., 1996). Of these proteins, Nup188p and 

Pom152p have been localized in close proximity to the middle plane of the NPC 

(Wozniak, etal., 1994; Nehrbass, et al., 1996). Furthermore, Pom152p interacts 

genetically with both Nup170p and Nup157p (Aitchison, et al., 1995). These 

findings taken together with the NE and NPCs structural abnormalities observed 

in mutant strains of NIC96 and NUP188 , have led to the suggestion that these 

nucleoporins may be part of the structural core of the NPC (Nehrbass, et al., 

1996; Zabel, et al., 1996). The observation that Nic96p is found in association 

with components of the Nsplp-complex (see above) and that Nup170p binds 

the repeat-containing nucleoporin Nuplp (Grandi, et al., 1993; Grandi, et al., 

1995; Kenna, et al., 1996), further implies that the NPC-core structure may 

provide a framework on which to anchor and correctly position more 

peripherally located nucleoporins involved in transport processes. Extending 

the analogy between yeast and vertebrates, the Xenopus homologue of Nic96p
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has been recently isolated and it has been found to interact with p62 (Grandi, et 

al., 1997).

Yeast strains harboring mutant versions of many nucleoporins exhibit 

various NE alterations such as clustered NPCs and NE seals over the NPCs in 

addition' to other pleiotropic defects connected to nuclear and nucleolar 

organization (for reviews see, Doye and Hurt, 1995; Wente, et al., 1998). 

Strikingly, all of the nucleoporin mutant strains that are characterized by NPC- 

clustering also accumulate mRNA in the nucleus in vivo suggesting a possible 

role of these nucleoporins in nuclear export of mRNA (Doye, et al., 1994; Fabre, 

et al., 1994; Wente and Blobel, 1994; Aitchison, et al., 1995; Gorsch, et al., 

1995; Li, etal., 1995; Pemberton, etal., 1995; Del Priore, etal., 1996; Goldstein, 

et al., 1996; Murphy, et al., 1996). Interestingly, several of these nucleoporins 

(Nup84p, Nup85p, Nup120p and the carboxy-terminal domain of Nup145p) 

have been recently found to form a stable biochemical complex that also 

contains Sec13p and its homologue Sehlp (Siniossoglou, et al., 1996; E. 

Fabre and E. Hurt, personal communication). Furthermore, other nucleoporins 

exhibiting the dual mRNA export / NPC clustering phenotype are known to 

interact either functionally or directly with one or more of the Nup84p-complex 

(Heath, et al., 1995; L. Pemberton, personal communication). The functional 

significance of this dual phenotype is not known. However the interaction of 

factors involved in membrane biogenesis and vesicular transport such as 

Sec13p and Sehlp, with nucleoporins that appear to be responsible for NE 

organization is extremely provocative. Furthermore, it is worth noting that all of 

the only two yeast nucleoporins functionally involved in mRNA export that have 

been ultralocalized to date are associated with the cytoplasmic fibers projecting 

from the NPC (Kraemer, et al., 1995; Hurwitz, 1997). This has led to the 

proposal that the cytoplasmic fibers may be involved in clearing the export
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substrates en route to the cytoplasm from the vicinity of the pore (Hurwitz, 

1997).

Another stable NPC-subcomplex has been found only in vertebrates and 

has no counterpart in yeast. This complex comprises a component of the NPC 

cytoplasmic filaments Nup214/CAN and Nup88 but does not contain the other 

known cytoplasmically exposed vertebrate nucleoporin Nup358 (Fomerod, et 

al., 1997). Interestingly, the complete yeast genome does not appear to contain 

any sequences that resemble Nup88 suggesting that this protein could be a 

component of structures of the vertebrate NPC that are not conserved in yeast, 

such as the vertical domains of the spoke-ring assembly or the cytoplasmic ring 

and particles (Yang, et al., 1998; see also above).

Heterogeneity in NPC spatial distribution on the surface of the NE has 

been observed both in wild type yeast and higher eukaryotes cells and appears 

to depend upon the cell cycle, a variety of growth conditions and the state of 

transcriptional activation of specific domains of the genome (Franke and 

Scheer, 1974, and references therein; Winey, et al., 1997). In addition, recent in 

vivo studies that employed green fluorescent protein (GFP)-labeled 

nucleoporins in combination with mating assays, have confirmed that NPCs are 

highly dynamic structures capable of freely moving around in the plane of the 

NE to form NPC-clusters or to disrupt them upon induction of wild type 

nucleoporins (Belgareh and Doye, 1997; Bucci and Wente, 1997). NPCs in all 

cell types have to be inserted in the plane of the NE upon their de novo 

biogenesis. Furthermore in cells with open mitosis (see above), NPCs have 

also to undergo multiple rounds of disassembly, reassembly and insertion in the 

NE. Recent advances in the elucidation of the mechanisms of NPC reassembly 

and insertion after mitosis have been obtained by use of in vitro nuclear 

reconstitution systems derived from amphibian oocytes cell-free extracts.
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Multiple steps in the assembly process could be distinguished and ordered on 

the basis of their differential sensitivity to a variety of known assembly inhibitors 

opening the road to the biochemical dissection of these intermediates 

(Macaulay and Forbes, 1996). Furthermore, some intermediates could be 

imaged using scanning EM suggesting that NPCs assembly occurs at the NE in 

a step-by-step fashion (Goldberg, et al., 1997). The first intermediates to be 

visualized were depressions in the ONM called ‘'dimples''. "Dimples" became 

holes that perforated the NE called "empty" pores that in turn could serve as 

seeds for the subsequent formation of pre-NPC structures called "star rings" and 

"thin rings". Finally, completely assembled NPCs were observed.

In addition to these NPC reassembly steps after mitosis, more subtle 

alteration in the structure of the NPC have been observed in association with 

the transit of transport substrates through the NPC. An example is represented 

by the extensive rearrangements undergone by the nuclear basket during 

export of Balbiani ring mRNP particles through the NPC (Kiseleva, et al., 1996).

Nucleocytoplasmic Transport

The primary function of the NPC is to provide a gated channel for the 

exchange of material between the cytoplasm and the nucleus. In actively 

growing cells it is estimated that every minute hundreds of proteins and 

ribonucleoprotein particles (RNPs) traverse each NPC in both directions. The 

most prominent nuclear import cargo consists of proteins, but also small nuclear 

RNPs (snRNPs) are constantly reimported into the nucleus after the cytoplasmic 

assembly of uridine-rich small nuclear RNAs (U snRNAs) with their protein 

counterparts. On the other hand, nuclear export involves chiefly messenger
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RNPs (mRNPs), transfer RNAs (tRNA), ribosomal RNAs (rRNAs) assembled in 

ribosomal subunits and U snRNAs. In addition, some proteins constantly shuttle 

between the cytoplasm and the nucleus as part of their function. Some, such as 

the nucleolar protein nucleolin, do so slowly (Borer, et al., 1989; Schmidt- 

Zachmann, et al., 1993) while others, such as heterogeneous nuclear RNP 

(hnRNP) proteins A1, E and K, shuttle very rapidly (Pinol-Roma and Dreyfuss, 

1992).

Both biochemical and genetic studies confirm that the basic mechanisms 

of nuclear transport appear to be highly conserved across distantly related 

species. Current models to explain these mechanisms are based on premises 

that have been firmly established for nuclear import and appear to apply also to 

nuclear export. The first of these premises is that different classes of transport 

substrates contain molecular signals that allow their recognition by specific 

transport factors. The best understood of these signals are the nuclear 

localization signals (NLSs) responsible for targeting a variety of proteins to the 

nucleus. NLSs were defined by systematic deletions and transfer experiments 

using primarily the large T antigen of SV40 (reviewed in, Dingwall and Laskey, 

1991). NLSs are characterized in general by the presence of basic residues in 

one or two clusters. Other known transport signals include the nuclear export 

sequence (NES) and M9. NESs have been found on proteins whose presence 

in the nucleus is subject to regulation (for example, the polypeptide inhibitor 

(PKI) of the c-AMP dependents protein kinase (PKA) involved in signal 

transduction; Wen, et al., 1995) and on proteins that have a role in the export of 

specific classes of RNA molecules (TFIIIA for example, thought to be 

responsible for 5SRNA export; Guddat, et al., 1990; Fridell, et al., 1996). The 

typical NESs are short and hydrophobic with a high content of leucine residues 

(Fischer, et al., 1995; Wen, et al., 1995). M9 is a 38 AA sequence present on
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the hnRNP shuttling protein A1 (Siomi and Dreyfuss, 1995; Weighardt, et al., 

1995). M9 is required for the transport of A1 in both directions and functions as 

an NLS when transferred to reporter proteins. M9 does not bear any obvious 

similarity to either classical NLSs or NESs. RNA export signals have proven 

more difficult to define probably due in part to the close coupling of RNA post- 

translational modification and processing with transport. In addition, multiple 

signals may be required for the export of a single RNA molecule, making 

matters even more complicated. One of the RNA export signals that has been 

characterized is the monomethylated guanosine (m7G) cap structure. The m7G 

cap is recognized by a protein complex termed the cap binding complex (CBC) 

and it is one of the signals important for export of U snRNAs (izaurralde, et al., 

1992; Terns, et al., 1993; Jarmolowski, et al., 1994; Izaurralde, et al., 1995). 

Although this cap is definitely involved in pre-mRNA processing and mRNA 

translation it is not essential for mRNA export. Nevertheless, the m7G cap could 

be important for ensuring that the 5’ end of the transcript takes the lead at the 

NPC and it is exported first (see also below; Visa, et al., 1996). The other two 

tenets of nuclear transport are that signal-dependent transport of cargo is 

mediated by soluble carriers; and that transport processes depend upon the 

small GTPase Ran (Melchior, etal., 1993; Moore and Blobel, 1993; there are 

two Ran homologues in yeast, Gsp1p/Cnr1p and Gsp2p/Cnr2p; Belhumeur, et 

al., 1993).

The general mechanism for nuclear import has been established using in 

vitro import systems that take advantage of digitonin to permeabilize cells while 

leaving the NE intact (Newmeyer and Forbes, 1988; Adam, et al., 1990). These 

systems have been employed to biochemically isolate several essential 

transport factors, the importance of which has been confirmed by in vivo studies 

in yeast. In addition, results obtained using semi-permeabilized cells are in
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accordance with resuits that had been previously obtained by following the 

ultrastructural localization of various import-competent substrates after 

microinjection in the cytoplasm of vertebrate cells (Richardson, et al., 1988; 

Akey and Goldfarb, 1989). In summary, the nuclear import of NLS-containing 

proteins can be divided in three major steps (Newmeyer and Forbes, 1988; 

Newmeyer and Forbes, 1990; Moore and Blobel, 1992): 1) Targeting or docking 

of the cargo to the NPC that requires a heterodimeric carrier and can happen in 

the absence of energy. 2) Translocation through the NPC that requires energy 

and is dependent upon Ran and various Ran cofactors (see below). 3) Release 

of the NLS-substrate into the nucleoplasm that most likely requires the GTP- 

bound form of Ran found prevalently in the nucleus (see below).

Protein carrying an NLS are recognized by the a subunit of a soluble 

heterodimeric factor called karyopherin a-(31 [Moroianu, et al., 1995; Radu, et 

al., 1995; also called importin a-(3 (Gorlich, et al., 1994; Gorlich, et al., 1995); 

NLS receptor and p97 (Adam and Adam, 1994); pore targeting complex (PTAC) 

58-97 (Imamoto, et al., 1995; Imamoto, et al., 1995); or Kap60p/Srp1p- 

Kap95p/Rsl1p in yeast (Enenkel, et al., 1995)]. This complex docks at the NPC 

via interactions of the (31 subunit with the repeats domains of cytoplasmically 

exposed nucleoporins (Radu, et al., 1995; Rexach and Blobel, 1995). As 

mentioned above, this step is energy-independent but is thought to require both 

the GDP-bound form of Ran and the Ran cofactor, NTF2/p10 (in yeast, Ntf2p; 

Melchior, et al., 1993; Moore and Blobel, 1993; Moore and Blobel, 1994; 

Paschal and Gerace, 1995; Nehrbass and Blobel, 1996). Various models have 

been proposed to explain how this docked complex is actively translocated 

across the 50-60 nm long NPC transporter and is subsequently released into 

the nucleoplasm and the matter is still highly controversial (Melchior, et al., 

1995; Radu, et al., 1995). All models agree in attributing a crucial importance to
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Ran in maintaining vectorial cargo transport and regulating the binding and 

release steps that take place during translocation (Melchior, et al., 1993; Moore 

and Blobel, 1993; Richards, et al., 1997; reviewed in, Goldfarb, 1997). As for all 

small GTPases, Ran exists within the cell in a GDP-bound and in a GTP-bound 

form. The intrinsic GTPase activity of Ran is extremely low (Bischoff, et al., 

1994) and is drastically stimulated by a GTPase activating protein termed 

RanGAP1/Fug1 (Rnalp in yeast; Bischoff, et al., 1994; Becker, et al., 1995; 

Bischoff, et al., 1995; Corbett, et al., 1995). Conversely, the replacement of the 

Ran-bound GDP with GTP is promoted by a guanine nucleotide exchange 

factor (GEF) termed RCC1 (in yeast Prp20p/Mtr1p/Srm1p; Ohtsubo, et al., 1987; 

Bischoff and Ponstingl, 1991; Bischoff and Ponstingl, 1991; Lee, et al., 1993; 

Tachibana, etal., 1994). Other Ran cofactors also have been described and 

are equally essential for nuclear import. These include a RanGAP stimulator 

called Ran binding protein (RanBPI) (in yeast, Yrblp; Coutavas, et al., 1993; 

Schlenstedt, et al., 1995; Chi, et al., 1996; Floer and Blobel, 1996) and the 

above mentioned NTF2/p10. These cofactors of Ran are asymmetrically 

distributed within the cell and as a consequence cytoplasmic Ran is thought to 

exist prevalently in the GDP-bound form, while Ran-GTP is thought to 

predominate in the nucleus (Ohtsubo, et al., 1989; Schlenstedt, et al., 1995). 

This differential distribution of Ran-GTP versus Ran-GDP is thought to establish 

directional transport by ensuring that transport complexes are formed in one 

compartment and disassembled in the other. Consistent with this idea the 

complex of karyopherin a-(31 with the NLS-substrate is stable in the presence of 

Ran-GDP (i.e. in the cytoplasm) while the presence of Ran-GTP (i.e. in the 

nucleus) promotes its disassembly . In addition it has also been proposed that 

Ran could also act more locally to promote the repeated rounds of assembly 

and disassembly (i.e. docking and undocking) of the transport complex that
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would be necessary for the stepwise movement of the substrate across the NPC 

(Radu, et al., 1995; Rexach and Blobel, 1995). A prediction of this docking- 

undocking model would be that Ran cofactors capable of modifying the 

nucleotide-bound state of Ran should be localized at the NPC. Consistent with 

this model, it was recently established that RanGAP can be recruited to the 

cytoplasmic side of the NPC as a consequence of a novel ubiquitin-like 

modification (Matunis, et al., 1996; Mahajan, et al., 1997; Mahajan, et al., 1998; 

Matunis, et al., 1998). Similarly, the cytoplasmically exposed Nup358 has a 

RanBPI-like domain that could act in concert with the NPC-associated RanGAP 

to promote GTP hydrolysis at this site (Wu, et al., 1995; Yokoyama, et al., 1995).

As recently demonstrated, several karyopherin (31-related proteins exist 

both in yeast and in higher eukaryotes (reviewed in, Wozniak, et al., 1998). A 

direct role for some of these karyopherin [31-homologues in the nuclear 

transport of specific classes of macromolecules has been firmly established 

(see below), while others have been involved only indirectly in nuclear 

transport.

Nuclear export has been studied using primarily four lines of investigation. 

The first had been the morphological study of the Chironomus tentans Balbiani 

ring transcripts during their nuclear processing and transport across the NPC 

(reviewed in, Daneholt, 1997). The main conclusion of these studies has been 

that these large mRNP particles have to unravel substantially during 

translocation and that they must make multiple contacts with the NPC during 

such process. Furthermore it has been established that in most cases the 5 ’ 

ends of these mRNA transcripts reach the cytoplasm first and that they are 

engaged by the translation machinery as soon as they do. The second 

experimental approach has been successfully employed to gain insight into the 

signals and factors involved in export has been the microinjection of RNAs and
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proteins into the nucleus of Xenopus oocytes. This system has been used to 

demonstrate that nuclear export requires energy and is saturable and that the 

export of different classes of RNAs requires at least partially distinct carriers 

(Zasloff, 1983; Bataille, et al., 1990; Jarmolowski, et al., 1994; Pokrywka and 

Goldfarbr, 1995). Third, the development of an in vitro export assay (Moroianu, 

et al., 1997) has allowed the demonstration that re-export of karyopherin a from 

the nucleus is dependent upon Ran-GTP (Moroianu, et al., 1997) and that the 

karyopherin 31 homologue CAS (Cse1 p, in yeast; see below) appears to be the 

export factor involved in mediating this process (Kutay, et al., 1997). Finally, 

valuable information has also been gained by the isolation and characterization 

of yeast mutant impaired in RNA export (Amberg, et al., 1992; Kadowaki, et al., 

1994).

Genetic and biochemical data concur in attributing to shuttling hnRNP 

proteins such as A1 (and their yeast homologues Nab2p, Hrp1p/Nab4p and 

Npl3p; Anderson, etal., 1993; Singleton, et al., 1995; Henry, et al., 1996) an 

important role in mRNA export (Michael, et al., 1995; Lee, et al., 1996; Visa, et 

al., 1996; Izaurralde, et al., 1997). Interestingly, the Kap95p homologue, 

Kap104p has been recently found to be directly responsible for the import of the 

yeast mRNA-binding proteins Nab2p and Hrp1p/Nab4p (Aitchison, et al., 1996). 

Similarly, another yeast karyopherin (31 homologue Mtr10p/Kap111p was 

implicated in Npl3p import (Pemberton, et al., 1997). This function appears to 

be conserved in vertebrates where two proteins closely related to Kap104p, 

karyopherin [32/transportin1 and transportin2 were found to be required for 

import of hnRNP proteins (Pollard, et al., 1996; Bonifaci, et al., 1997; Fridell, et 

al., 1997; Siomi, et al., 1997).

Important information regarding the export of proteins from the nucleus has 

emerged from studies of the HIV protein Rev. Rev is a rapidly shuttling protein
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that is responsible for ensuring that unspliced viral mRNAs encoding the 

structural proteins Gag and Pol are exported to the cytoplasm (Fischer, et al., 

1994; Kalland, et al., 1994; Meyer and Malim, 1994). Rev export is NES- 

dependent (Fischer, et al., 1995; Szilvay, et al., 1995). Accordingly, Rev is 

thought to function as an adapter for linking viral RNAs to a cellular export 

pathway that appear to be required for export of several NES-containing 

proteins as well as for 5SRNA and several U snRNPs (Fischer, et al., 1995; 

Fridell, et al., 1996; Fritz and Green, 1996). Recently, CRM1 (and its yeast 

homologue, Crmlp), a member of the extended karyopherin family of nuclear 

transport factors, has been directly implicated in the export of Rev (Fornerod, et 

al.. 1997; Fukuda, etal., 1997; Kudo, etal., 1997; Neville, et al., 1997; Ossareh- 

Nazari, et al., 1997; Stade, et al., 1997). Another important element of the Rev- 

export pathway could be the putative nucleoporin Rip/RAP1 (with its yeast 

homologue, Rip1p/Nup42p; Bogerd, et al., 1995; Fritz, etal., 1995; Stutz, et al., 

1995; Stutz, et al., 1996).

The Structural and Functional Organization of the Nuclear Interior 

and its Connections with Nucleocytoplasmic Transport

Several essential processes are known to occur in the nucleus including 

DNA packaging, DNA replication, RNA transcription, RNA post-transcriptional 

processing and modification and RNA export. While much is known about the 

molecular bases of these nuclear processes, our knowledge of how the 

genome is structurally and functionally organized as a whole is still extremely 

limited. A big step in this direction was represented by the isolation and 

characterization of the nuclear matrix (NM; reviewed in, Berezney, et al., 1995;
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Nickerson, et al., 1995). The NM, also called nuclear scaffold, is an extensive 

non-chromatin fibrillogranular network that occupies the interchromatinic 

regions of the nucleus (Fawcett, 1966; Monneron and Bernhard, 1969) The 

ultrastructure of the NM can be preferentially visualized in situ using EDTA 

regressive staining procedures that are thought to selectively stain non

chromatin and especially RNA-containing structures (Bernhard, 1969; 

Monneron and Bernhard, 1969). On the basis of the structural organization the 

NM it has been proposed that it could be divided in two domains. The first of 

these functional domains is called the chromatin domain and is thought to be 

involved in the structural organization of active DNA replication and 

transcription complexes. The second domain or RNP domain appears to be 

involved in providing the architectural milieu for post-translational RNA 

processing, modification and transport towards the NPCs. Interestingly, using 

the EDTA regressive staining method the NPCs are particularly densely stained 

and appear to be connected to the nuclear interior via NM channels (Monneron 

and Bernhard, 1969; Franke and Falk, 1971). Furthermore, the results of in situ 

pulse-chase experiments support the idea that newly transcribed RNA 

molecules migrates through interchromatinic regions in their trip towards the 

nuclear periphery (Fakan and Bernhard, 1971; Fakan and Bernhard, 1973; 

Nash, et al., 1975; Fakan, et al., 1976). These and other observations have led 

to the speculation that the NPCs could be closely connected with active 

chromatin regions and that the NM channels that are observed radiating from 

the NPCs could represent “tracks” for the regulated transport of material to and 

from the nucleus (Blobel, 1985). Recently, this model has received support from 

a study in which the rate of movement of a specific pre-mRNA molecule from its 

site of synthesis to the nuclear surface was measured using fluorescent in situ 

hybridization (Zachar, et al., 1993). Strikingly, this transport rate was found to
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be consistent with a model that advocates the “channeled diffusion” of pre- 

mRNA molecules within restricted nuclear interchromatinic subcompartments 

also referred to as “extrachromosomal channel network” that could correspond 

to the “tracks” mentioned above.

The NM can be isolated using a variety of techniques that are all derived 

from the original protocol of Berenzey and Coffey (Berezney and Coffey, 1974). 

What all of these methods have in common is a series of sequential nuclease, 

salt and detergent extraction procedures aimed at preferentially removing the 

nuclear membrane and the bulk of the chromatin while leaving behind a 

residual scaffold composed prevalently of proteins and RNA. When in vitro NM 

preparations are observed by whole mount resinless thick-section EM they 

appear to be structurally tripartite with NPC, NL and internal fibrillogranular 

domains clearly distinguishable (Staufenbiel and Deppert, 1984; Fey, et al., 

1986; Nickerson, et al., 1990). The fibrillogranular structure of the isolated NM 

is similar to the one observed in situ. This include the appearance of discrete 

interchromatinic granules (ICGs) as well as filaments that depending upon the 

exact nature of the extraction procedure being used appear to be either 3-5 nm 

(called matrix protein filaments or MPFs; Berezney and Coffey, 1977); or 10 nm 

thick (called core filaments; Jackson and Cook, 1988; He, et al., 1990). The 

precise relationship between MPFs and core filaments has not been 

established and they could represent two forms of the same structure. 

Interestingly though, regardless of the technique employed and consistent with 

the in situ observations, these NM filaments are seen interconnecting ICGs, in 

association with the chromatin and radiating from the NPCs (Monneron and 

Bernhard, 1969). Intriguingly, these NM filaments could correspond to the 5-6 

nm filaments that have been found in association with the inner ring of the 

nuclear basket using a variety of EM techniques by different groups in
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amphibian oocytes (Franke, 1970; Franke and Scheer, 1970; Franke and 

Scheer, 1970; Kartenbeck, et al., 1971; Richardson, et al., 1988; Ris and 

Malecki, 1993). In one recent study, -50 nm hollow cables composed of eight 

-6  nm-thick filaments were seen projecting from the small ring of the nuclear 

basket towards the nucleoplasm and appeared to form “tunnels" continuous 

with the inside of the baskets (Ris, 1997). Strikingly, such cables appeared to 

have a characteristic 50 nm periodicity and were seen as forming extensive 

networks connecting multiple NPCs to the nuclear interior. In the absence of 

molecular or biochemical information conclusions drawn from these various 

reported morphologies remain uncertain.

As mentioned above, both in vivo and in vitro methods of investigation 

concur in strongly suggesting that the NPC and the NM are structurally 

continuous. From the functional point of view, it has been speculated such 

structural connections could facilitate various nucleocytoplasmic transport 

processes. Recently, the investigation of the molecular basis of such 

connections has received great impetus from the study of vertebrate Tpr 

(“Translocated Promoter Region”) and of the Tpr-related Drosophila protein 

Bx34. The amino-ierminal -200 AA of human Tpr have been detected in 

various human tumors fused with the kinase domains of the three 

protooncogenes met, trk and raf (Park, et al., 1986; Soman, et al., 1991; Greco, 

et al., 1992; Mitchell and Cooper, 1992). The sequence of Tpr predicts a large 

protein (-265 kD) with a bipartite secondary structure (Byrd, et al., 1994; Bangs, 

etal., 1996). The amino-terminal 70% of the polypeptide sequence (-184 kD) 

has a high a-helical content and is predicted to give rise to a coiled-coil domain. 

In contrast, the remaining 30% of the protein (-81 kD) is predicted to be 

unstructured and acidic. While initially Tpr had been localized exclusively to the 

cytoplasmic filaments associated with the NPC (Byrd, et al., 1994), more recent
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work has conclusively demonstrated that Tpr is a constitutive component of long 

nuclear filaments (up to -300 nm in Xenopus) that appear to connect the distal 

ring of the nuclear basket with the nuclear interior and could correspond to the 

5-6 nm filaments described by Ris and others (see above; Cordes, et al., 1997). 

The predicted filamentous structure of Tpr together with its localization led to the 

natural speculation that this protein could have a role in providing a structural 

framework for the transport of material from the nuclear periphery towards the 

interior and vice versa. This conclusion has received further support from 

results obtained with a Tpr-related protein in Drosophila, called Bx34. This 

protein was initially described as one of two novel classes of Drosophila NE 

antigens that had been identified using mAbs obtained against chromosomal 

protein fractions (Frasch, et al., 1988). Strikingly, Bx34 was recently found both 

at the nuclear periphery in association or near NPCs and in the nuclear interior 

in extrachromosomal and extranucleolar regions reminiscent of the 

“extrachromosomal channel network” described in relation to mRNA processing 

and transport (Zimowska, et al., 1997). Consistent with its localization pattern, 

Bx34 was found to cofractionate exclusively with biochemical preparations of 

the NM suggesting that it could represent a component of the NM filamentous 

network. Interestingly, Bx34 retains its association with the chromosomes until 

very late in mitosis leading to the suggestion that it could have a structural role 

in aiding chromosomal segregation in anaphase.

Three general non-mutually exclusive models of how a filamentous protein 

could facilitate nucleocytoplasmic transport processes have been proposed 

(Zachar, et al., 1993). In the first model, filamentous proteins could help 

maintain channels between chromosomes to allow diffusion of nuclear 

metabolites and macromolecular particles. In the second, filamentous proteins 

could give rise to a nucleoplasmic gel that would be susceptible to conditional
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alterations and could thus regulate the diffusion of molecules within the 

channels. Finally, filamentous proteins could participate in facilitated diffusion 

by providing docking sites for various nuclear metabolites that would restrict 

their movements to one dimension. In conclusion, whereas the precise function 

of Tpr /Bx34 is not presently known, it is easy to speculate that it could 

participate in one of the above mentioned ways in keeping a constant 

connection between the NPC and the nuclear interior where the various 

essential nuclear processes must take place.

A Combined Biochemical and immunological Approach to identify 

Yeast Proteins that May Provide a Link Between the NPC and the 

Nuclear Interior

While it is clear that the NPC is a major regulator of nucleocytoplasmic 

transport, the knowledge of how this essential superstructure is connected both 

structurally and functionally to the nuclear interior is still extremely limited. The 

yeast Saccharomyces present numerous advantages over higher eukaryotes 

as a system to study these problems. They have neither the complications of 

developmental regulation of nuclear processes, nor of nuclear disassembly, 

having a closed mitosis; in addition, the genetics and molecular biology of yeast 

are better understood than in any other eukaryote, and the DNA sequence of 

the entire yeast genome is now known (Clayton, et al., 1997). The main caveat 

of the use of yeast to study complex cellular systems is that the cell biological 

and biochemical characterization of cellular membranes and compartments in 

budding yeast is less complete than in vertebrates, and would benefit from the
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development of rigorous cellular fractionation techniques comparable to the 

ones available for higher eukaryotes.

This dissertation describes work aimed at isolating and characterizing two 

possible kinds of novel yeast NE-associated components: 1) those that could 

constitute a link between the NPC translocation machinery and the nuclear 

interior and 2) proteins specifically associated with the nuclear membrane. A 

genetic approach was considered unlikely to yield the desired results because 

of the difficulty of predicting a specific phenotype associated either with the loss 

of a structural component connecting the NPC with the nuclear interior or with 

the loss of nuclear membrane proteins. A second possible way that can be 

used to identify novel components of a complex cellular system is the 

production of large quantities of a highly enriched subcellular fractions 

containing the desired proteins followed by the immunization of mice to produce 

mAbs against components of such fractions. This approach was considered 

preferable for the following reasons: 1) an antibody can be used to determine 

the localization of the antigen inside the ceil and at the same time to clone the 

gene encoding the antigen from an expression library; 2) any protein can be 

potentially identified using this approach as long as it can be produced in large 

enough quantities and it is immunogenic. In this respect, yeast presented a 

particular advantage as compared to higher eukaryotes because large 

amounts of material can be produced with relative ease using this system; and 

because yeast proteins can be expected to be particularly immunogenic due to 

the large degree of interspecific divergence between the source and the 

recipient of the antigen; and 3) mAbs can be produced in unlimited quantities 

and have the advantage of being targeted against individual antigens. 

Furthermore, this approach had proven invaluable in similar circumstances to 

isolate novel components of complex macromolecular assemblies that had
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escaped identification via genetic means (Rout and Kilmartin, 1990; Rout and 

Kilmartin, 1991).

This dissertation therefore describes a combined biochemical and 

immunological approach. The first step of such approach was the production of 

a highly enriched NE fraction from the yeast Saccharomyces. NEs were 

prepared from yeast nuclei on a large scale and in high yield. The fractionation 

pattern of representative markers throughout the procedure was used to asses 

the degree of enrichment of individual NE-associated proteins in the isolated 

NE fraction and at the same time to demonstrate the preferential depletion of 

''contaminating" proteins.

Three distinct NE-derived fractions were used to produce a panel of mAbs 

against NE associated components. A novel NPC-clustering assay was 

devised to specifically isolate anti-NE mAbs that recognized either antigens 

found at an interface between the NPCs and the nuclear interior or integral 

membrane proteins of the INM. This screen did not yield any putative nuclear 

membrane proteins. Nevertheless, two mAbs were isolated that recognized a 

-220 kD NE antigen only partially associated to the NPCs. The gene encoding 

this antigen was molecularly cloned and was found to correspond to the 

previously isolated MLP1 (Kolling, et al., 1993). This gene encodes a nuclear 

protein of unknown function that is the closest yeast relative of Tpr. 

Ultrastructural localization and functional studies strongly argue that Mlplp and 

its yeast homologue Mlp2p could be involved in providing a structural link 

between the NPCs and the nuclear interior that is responsible for facilitating 

nucleocytoplasmic transport. In conclusion, evidence presented in this 

dissertation could open the road for much needed molecular investigation into 

an area of cell biology that is still in its infancy.
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Chapter II: Materials And Methods

Yeast Subcellular Fractionation; Preparation of Enriched Nuclei 

and Highly Enriched NPCs

The yeast strains Saccharomyces uvarum (NCYC 74, ATCC 9080), 

considered a strain of Saccharomyces cerevisiae (Mortimer and Johnson, 

1986), or S. Cerevisiae (W303; Thomas and Rothstein, 1989) were used 

throughout the procedure. Enriched nuclei were prepared as previously 

described (Rout and Kilmartin, 1990; Rout and Kilmartin, 1994). Briefly, 70-90 g 

of mid-logarithmic phase cells (~1 x 107 cells/ml for diploid cells and -2  x 107 

cells/ml for haploids) were obtained from a 36 liter yeast culture. Cells were 

harvested and converted to spheroplasts in 1.1 M sorbitol (Rout and Kilmartin, 

1994). Spheroplasts were harvested by centrifugation and then lysed in 300 ml 

of PVP solution [8% polyvinylpyrrolidone (PVP); 20 mM potassium phosphate, 

pH 6.5; 0.75 mM MgCl2]. The cell lysate (fraction 1) was separated by

centrifugation (15 min at 10,000 g) into crude cytosol (fraction 2) and a crude 

nuclei pellet (fraction 3). The nuclei were resuspended in 144 ml of 1.7 M 

sucrose in PVP solution and this suspension was divided into 12 equal aliquots. 

Each aliquot was overlayered over a three step sucrose/PVP gradient (8 ml 

each of 2.01 M sucrose, 2.10 M sucrose and 2.30 M sucrose in PVP solution) in 

a SW28 tube (Beckman Instruments, Palo Alto, CA). The gradients were 

centrifuged in a Beckman SW28 rotor at 28,000 RPM (103,000 g) for 4 h at 4°C. 

After centrifugation fractions were collected from the top. The load zone, 

including a thick layer at the top of the tube (fraction 4), and a thick yellowish 

band at the load/2.01 M interface (fraction 5), both contained intact
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mitochondria, vesicles and microsomes (as judged by EM). Very little material 

was present in the third gradient fraction at the 2.01/2.10 M interface (fraction 6). 

A dense white band at the 2.10 M/2.30 M interface contained the bulk of the 

nuclei (fraction 7). The bottom of the gradient (fraction 8) included a pellet 

composed mainly of cells remnants.

Highly enriched NPCs were prepared from nuclei (fraction 7) exactly as 

described in Rout and Blobel (Rout and Blobel, 1993).

Yeast NE Preparation

NEs were prepared from the enriched nuclear fraction (fraction 7). The OD 

at 260 nm of the nuclear fraction was measured after 1 in 100 dilution in 1.0% 

SDS; approximately 1000-2000 OD26O nm were obtained from a 36 liter prep.

The nuclear fraction was adjusted to a refractive index of 1.4340 with PVP 

solution and centrifuged at 145,000 g 1 h at 4°C. The supernatant was carefully 

but thoroughly removed by aspiration, and the tubes placed on ice. Typically, 

20 ml of freshly prepared, ice cold bt-DMSO [bt buffer (10 mM bisTris-CI, pH 6.5; 

0.1 mM MgCl2) containing 20% (v/v) DMSO] in the presence of 20 (ig/ml DNase

l-EP (Sigma, St. Louis, MO) and 1% (v/v) solution P (90 mg/ml PMSF, 0.3 mg/ml 

pepstatin A in absolute ethanol), were added to 2000 OD26O nm of nuclei. This

was followed immediately by vigorous vortexing at 4°C until the pellet was 

completely resuspended. The suspension was then incubated at room 

temperature (~25°C) for 5-10 min. After incubation, the lysed nuclei were 

placed back on ice and 60 ml of 2.1 M sucrose, 20% Nycodenz (Accudenz; 

Accurate Chemical and Scientific, Westbury, NY) in bt buffer in the presence of 

0.1% (v/v) solution P, were added and thoroughly mixed. The suspension was
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divided into 6 Beckman SW28 tubes and overlayered with 12 ml of 2.0 M 

sucrose (R.l. = 1.4295) and 12 ml of 1.5 M sucrose (R.l. = 1.4055) in bt buffer 

containing 0.1% (v/v) solution P. The tubes were centrifuged in a Beckman 

SW28 rotor at 28,000 rpm (103,000 g) for 24 h at 4°C. The tubes were 

unloaded from the top using a hand-held pipette. A faint white band at the top 

of the tube was completely removed (-6.0 ml collected per tube; fraction 9). The 

NEs were found at the 1.5 M/2.0 M interface, appearing as a broad, white, 

slightly flocculent band (-12.0 ml collected per tube; fraction 10). Next was a 

dense, sharp yellowish/white band containing a few NEs, chromatin and cell 

remnants (-12.0 ml collected per tube; fraction 11). The final -7.0 ml collected 

(fraction 12), including a dense brownish/white pellet, contained soluble and 

particulate matter mainly derived from chromatin.

For the preparation of isolated nuclei and highly enriched NEs from S. 

cerevisiae , the procedures described above were modified exactly as 

described (Rout and Strambio-de-Castillia, 1998).

Extraction of Yeast NEs

For heparin extraction, 0.6 ml (-0.4 mg of protein) of the yeast NE fraction 

were mixed with 2.4 ml of a solution containing 10 mg/ml heparin (Sigma, St. 

Louis, MO), 0.1 mM DTT and 0.5% (v/v) solution P in bt buffer. After 1 h on ice, 

50 jig/ml RNase A was added and the incubation was continued for 15 min at 

10°C. The sample was over layered onto two 1-ml layers of 1.0 and 2.0 M 

sucrose in bt buffer containing 0.1% (v/v) solution P, and centrifuged in a 

Beckman SW55 rotor at 45,000 RPM (-192,000 g) for 30 min at 4°C. The tube 

was unloaded from the top using a hand-held pipette. The first fraction (-2 ml;
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fraction 13) contained the bulk of the solubilized proteins. The next fraction 

(~1.8 ml; fraction 14) contained some of the soluble proteins together with a few 

of the NE membranes. The bulk of H-NE membranes was recovered at the 1.0 

M/2.0 M sucrose interface and appeared as a tight white band (-0.4 ml; fraction 

15). The last fraction (-0.8 ml; fraction 16) sometimes contained small amounts 

of H-NEs.

The yeast NE fraction was extracted with sodium carbonate using a 

previously described method (Wozniak, et al., 1994).

Post-Translational Translocation Assay

The procedures for the preparation of yeast nuclei and NEs described 

above were modified to maintain the ER-translocation activity throughout the 

fractionation procedure. Firstly, yeast spheroplasts were allowed to recover in 

YPD medium (1% yeast extract, 2% peptone, 2% dextrose) containing 1.0 M 

sorbitol for 30 min at room temperature before lysis. Secondly, all the solutions 

starting from the lysis buffer and including all the gradient solutions were 

supplemented with 2 mM DTT. Finally, the MgCl2 concentration in the nuclear

lysis buffer and in the solutions used for the NE flotation gradient (fractions 9- 

12) was raised from 0.1 to 0.5 mM. The degree of enrichment of "active" NEs 

was shown to be similar to that obtained with the original method (data not 

shown). Just before the in vitro protein translocation reaction the "active" NE 

fraction was concentrated 20-fold by pelleting at 70,000 g for 30 min, and 

gently resuspending in solution A (20 mM Hepes-KOH, pH 7.4; 100 mM KOAc, 

2 mM Mg(OAc)2I 2 mM DTT) containing 0.25 M sucrose. The heparin extraction

of the "active" NE fraction was carried out as described above except that 2 mM
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DTT was added to all solutions and gradients, the RNase A digestion step was 

omitted and the H-NEs were pelleted through a 1.0 M sucrose cushion [1.0 M 

sucrose, 2 mM DTT, 0.5 mM MgCl2, 0.5% (v/v) solution P in bt buffer] instead of

being recovered over 2.0 M sucrose. Heparin traces were removed by 

resusperiding the "active" H-NEs pellet obtained from 2.4 ml of NEs, in 2.4 ml of 

0.5 M KCI, 2 mM DTT, 0.25 M sucrose, 0.5% (v/v) solution P and incubating the 

suspension for 1 h on ice. The membranes were recovered by centrifugation 

through a 0.5 ml, 0.6 M sucrose cushion [0.6 M sucrose; 10 mM bisTris-CI, pH 

6.5; 0.5 mM MgCl2; 0.1% (v/v) solution P], at 39,000 RPM (-100,000 g) in a

TLS-55 Beckman rotor for 1 h. The supernatant from the 0.5 M KCI wash was 

shown not to contain significant amounts of extracted proteins (data not shown). 

Finally, the sample was resuspended in a volume of 0.25 M sucrose in solution 

A equal to roughly 2.5% of the initial NEs volume.

Yeast crude microsomes (CMs), used as a positive control for the ER 

translocation reaction, and yeast crude cytosol were prepared as described 

(Waters and Blobel, 1986; Waters, et al., 1986). [3SS]-methionine labeled 

prepro-a-Factor (ppaF) was synthesized using a wheat germ in vitro translation 

kit (Promega, Madison, Wl) following the specifications of the manufacturer. 

Immediately before use, the translation mixture containing ppaF was diluted 

with 3 volumes of 8 M urea and incubated for 10 min at 20°C. The translocation 

reaction and the protease protection assays were performed as described 

(Waters and Blobel, 1986; Chirico, et al., 1988). Typically, the translocation mix 

(total volume 150 jil) consisted of the following: 43.6 (il of "master mix" [14.4 mM 

Hepes-KOH, pH 7.4; 276 mM KOAc; 1.0 mM Mg(OAc)2I 1.0 mM DTT; 1.7 mM

ATP; 86 mM creatine phosphate; 0.7 mg/ml creatine kinase; 0.07 mM GDP- 

mannose; 0.07 mM UDP-glucose; 0.07 mM UDP-N-acetylglucosamine; 1.4% 

(v/v) glycerol], 90 p.l of yeast crude cytosol in solution A containing 1.0 mM Mg-
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ATP, and 14 jj.1 of CM, NE or H-NE membranes in solution A containing 0.25 M 

sucrose. This mixture was pre-incubated at 20°C for 5 min and the import 

reaction was then started by the addition of 2.4 jil of urea-denatured translation 

product. At the end of the reaction the sample was divided in 3 equal aliquots. 

30 jil of water were added to the first aliquot. 10 jil of 8 mM CaCl2, 10 pi of

water and 10 pi of 800 pg/ml trypsin were added to the second aliquot. The 

third aliquot was treated as the second except that 10 pi of water were 

substituted with 10 pi of 8% (v/v) Triton X-100. All aliquots were incubated on 

ice for 30 min and the reactions were stopped by the addition of 10 pi of 50 mM 

PMSF. After an additional 10 min on ice, the samples were TCA precipitated 

and analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) and 

fluorography.

Fractionation of NE Proteins by ion-exchange Chromatography

Proteins contained in 30 ml of the highly enriched NE fraction described 

above (Fraction 10), were harvested by methanol precipitation as described 

below (see “Miscellaneous” section). The methanol pellet was solubilized in 4 

ml of 10 mM MES, pH 6.5, 100 mM DTT, 1% SDS at 90° C for 10 min. The 

resuspended proteins were mixed with 36 ml of 20 mM MES, pH 6.5, 7 M Urea, 

1% (v/v) Triton X-100, 0.1% SDS, 1 mM DTT (buffer 7). In the meantime, 16 ml 

of a 1:1 suspension of the cation-exchange S-Sepharose resin (8 ml of resin 

bed) were loaded on a broad base, 50 ml column and washed three times with 

20 ml of buffer 7. The NE sample was loaded onto the column and was allowed 

to absorb onto the resin by incubating 1 hr at 25° C with gentle rocking. After 

the binding step, the flow-through from the column was harvested and pooled
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with a 20 ml wash in buffer 7 (this pooled material was termed “unbound 

fraction”). The column was eluted 2 times with 30 ml each of 1 M NaCI in buffer 

7. Proteins from both bound and unbound fractions were harvested by 

methanol precipitation. Aliquots were separated on SDS-PAGE. After 

electrophoresis, the fractionation pattern of known NPC-components was 

analyzed by immunoblotting using MAb414 (Davis and Blobel, 1986). The 

unbound fraction (termed S-NE), was found to be selectively depleted of most 

nucleoporins recognized by MAb414. Proteins from this fraction were 

harvested by methanol precipitation, resuspended in PBS and used to 

immunize mice.

Immunization of Mice and Production of mAbs

Native NEs and H-NEs were harvested by uitracentrifugation and 

resuspended in PBS. S-Sepharose fractionated NEs (S-NEs) were prepared 

as described above. For the initial immunization, BALB/c mice were immunized 

sub-cutaneously with 0.5-0.74 mg of antigen per mouse per injection emulsified 

with Freund’s complete adjuvant. Each mouse received up to 4 booster sub

cutaneous injections in incomplete Freund’s adjuvant at 4-6 weeks intervals. 3- 

5 days prior to fusion, the mouse received a final intra-peritoneal injection of 

antigen without adjuvant. The production of hybridomas from B-lymphocytes 

derived from mice spleens was as previously described (Galfre and Milstein, 

1981; Rout and Kilmartin, 1990). Supernatants were screened by indirect IF 

microscopy of whole yeast cells. S. uvarum cells were fixed in 4% (v/v) 

formaldehyde and 10% (v/v) methanol in phosphate buffer pH 6.5, for 3, 6 and 

12 min (Kilmartin and Adams, 1984; Wente, et al., 1992). An equal proportion of

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cells from each fixation time was mixed together and applied to 15-wells slides, 

followed by fixation in methanol for 5 min at -20° C and acetone for 30 sec at 

25° C. Slides were stained with the hybridoma supernatants essentially as 

described (Rout and Kilmartin, 1990; Wente, et al., 1992; Kilmartin, et al., 1993). 

Positive supernatants were also screened by immunoblotting of enriched NEs. 

Proteins from this fraction were separated by SDS-PAGE after loading on a 

large preparative well spanning the entire width of the gel. After electrophoresis 

the proteins were transferred on nitrocellulose and the blot was sandwiched 

between the two plates of a multi-lane apparatus (Miniblotter 27, Immunetics, 

Cambridge, MA). This allowed the incubation of up to 26 hybridoma 

supernatants at the same time without cross-contamination. Bound antibodies 

were visualized using a secondary HRP-conjugated rabbit anti-mouse antibody 

followed by ECL. Cells from positive lines were cloned up to four times by 

limiting dilution using a standard protocol. The IgG subclass of the monoclonal 

was established using a mouse mAb isotyping kit from Amersham (Amersham 

Life Science inc., Arlington Heights, IL). All the mAb immunostaining 

experiments described in this thesis were performed using tissue culture 

supernatants.

Molecular Cloning of the MLP1 Gene

A S. cerevisiae genomic expression library was screened using 

MAb148G11. The library was acquired from Clonetech (Clonetech 

Laboratories Inc., Palo Alto, CA) and contained an estimated 1.5 x 106 

independent clones. The library consisted of yeast genomic DNA fragments 

ranging between 0.8 - 5.0 kb (average size 1.8 kb) inserted in the EcoRI site of
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Xgt11. The library was screened by immunoblotting following the specifications 

of the manufacturer. 3 positive k clones were obtained and purified to 

homogeneity by four consecutive rounds of screening. The DNA from these k 

clones was purified using standard protocols and subjected to restriction 

analysis: This demonstrated that the three clones contained an identical insert 

of -1.8 kb. The insert from one of the positive k clones was subcloned in 

pBluescript SK(+/-) and sequenced from both ends using the T3 and the T7 

standard primers. DNA sequences comparisons were performed using the 

BLAST algorithm (Altschul, et al., 1990). Deducted AA sequences were 

compared to sequences in the SGD (Saccharomyces Genome Database), 

GenBank and EMBL databases using the FASTA algorithm (Parson and 

Lipman, 1988). AA sequence alignments were performed using FASTA and 

CLUSTALW v 1.6 (Higgins D., et al., 1994). AA sequences were analyzed 

using Protean v. 1.08 (DNAStar Inc., Madison, WI) and MacStripe 1.3.1 (Lupas, 

et al., 1991).

Gene Disruption and Protein A tagging of MLP1 and MLP2

All yeast strains were derived from W303 (Thomas and Rothstein, 1989; 

Table I). Procedures for yeast manipulation were as previously described 

(Sherman, et al., 1986). Gene replacement and protein A tagging of MLP1 and 

MLP2 were accomplished using published methods (Rothstein, 1990; 

Aitchison, et al., 1995; Aitchison, et al., 1995). MLP1 was replaced with URA3 

by generating a PCR product containing the entire URA3 gene flanked by 75 

nucleotides directly upstream and 75 directly downstream of the MLP1 coding 

region. This PCR product was transformed into diploid yeast cells by

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



electroporation and lira -" transformants were selected on SM Ura' plates. A 

similar procedure was followed to disrupt MLP2 except in this case the coding 

region of the gene was replaced with HIS3 and transformants were selected on 

SM His' plates. In both cases correct integration was verified by PCR analysis 

of the genomic DNA. Heterozygous diploid cell carrying individual deletions of 

MLP1 and MLP2 respectively (mipl ::URA3/MLP1, CSDC01a/a; 

mlp2::HIS3/MLP2, CSDC04a/a), were sporulated and tetrads were dissected to 

generate mlp1::URA3 (CSDC03a) and mlp2::HIS3 (CSDC05a) haploid strains. 

A heterozygous diploid carrying disrupted copies of both MLP1 and MLP2 

(mlp1 ::URA3/MLP1, mlp2::HIS3/MLP2, CSDC07a/a) was constructed by mating 

CSDC03a and CSDC05a. CSDC07a/a was sporulated and tetrads were 

dissected to generate haploids carrying both deletions (mlp1::URA3, 

mlp2::HIS3; CSDC09a, mlplA, mlp2A). PCR was used to verify the 2:2 

segregation of the copy of each disrupted gene (m ipl and mlp2) with the 

appropriate selectable marker (URA3 and HIS3, respectively). Haploid strains 

of opposite mating types carrying the double deletion of MLP1 and MLP2 were 

mated to generate a homozygous diploid strain (mipl::URA3/ mlp1::URA3, 

mlp2::HIS3/ mlp2::HIS3; CSDC13a/a, mlplA, mlp2Ahd). In all cases the 

expression of M lplp in wild type and mutant strains was analyzed by 

immunoblotting of whole yeast cell lysates and by indirect IF microscopy using 

MAb148G11 and MAb215B9.

For protein A tagging of Mlplp and Mlp2p, PCR products were generated 

that contained the coding region for four and a half IgG-binding repeats of 

protein A followed by a HIS3, URA3 cassette flanked by 75 nucleotides 

immediately upstream and 75 nucleotides immediately downstream of the stop 

codon (i.e. excluding the stop codon itself) of each gene. These PCR products 

were transformed into diploid yeast cells as above. The heterozygous diploids
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harboring tagged versions of MLP1 and MLP2 respectively were sporulated 

and tetrads were dissected to generate tagged haploid strains. In both cases, 

2:2 segregation of the HIS*-, URA* phenotype with the expression of Mlp1p-pA 

or of Mlp2p-pA was verified by immunoblot of whole yeast cell lysates.
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Table I. Yeast Strains (continued)

Strain Name Genotype Derivation

CDSC14a/a W303 Mata/Mata, mlp1-proteinA::HIS3, URA3/MLP1 This Study

CSCD15a,
m lp1-pA

W303 Mata, m ipl- proteinA::HIS3, URA3 This Study

CSDC17a/a W303 Mata/Mata, mlp2- proteinA::HIS3, URA3/MLP2 This Study

CSDC18a,
mlp2-pA

W303 Mata, mlp2- proteinA::HIS3, URA3 This Study

W303/pG ALMLP1 W303 Mata/Mata, pGALMLP1::URA3 This Study

Footnotes:

a All strains are isogenic to W303. The most important strains for the experiments described in this thesis dissertation 

were given a second, more descriptive name that is used in the text and in the figure legends. This designation is 

indicated in bold characters.
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Growth Competition Assay

The growth competition experiment was performed following published 

procedures (Smith, et al., 1996; Rout, et al., 1997; Thatcher, et al., 1998). 

Briefly, wild type and mutant cells were grown to mid-logarithmic phase before 

diluting them into fresh YPD. Initially, wild type and mutant cells were mixed at 

a 2:1 ratio to a total concentration of 3 x 105 cells/ml. Cells were grown at 30° C 

and maintained in logarithmic phase at all times. At each time point 10 pi 

aliquots of neat and 10-fold dilutions were spotted on YPD and the appropriate 

selective plates. Cells were diluted back to the original concentration and the 

incubation was continued until the next time point. Data are presented as the 

percentage of mutant cells present in the population as a function of time. The 

natural logarithm of the genotype ratio (% mutant/% wild type) at each time point 

was plotted to produce a line extrapolated using the least squares fit 

(KaleidaGraph v 3.02; Synergy Software, Reading, PA). The slope of each line 

used to estimate the selection coefficient of each mutant relative to wild type 

(Thatcher, et al., 1998).

Ultrastructural Studies

EM of whole yeast cells was performed as follows. Logarithmically 

growing yeast cells were harvested by centrifugation and fixed in 2% (v/v) 

formaldehyde, 2% (v/v) glutaraldehyde in pc buffer (170 mM KH2PO4 , 0.1 mM 

MgCl2, 30 mM sodium citrate, pH 5.8), for 60 min at 25° C. After fixation cells

were washed twice in pc buffer. Cells were resuspended in a minimal volume 

of 100 mM Tris-CI, pH 9.4, 10 mM DTT and incubated at 30° C for 10 min. Cells
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were washed once in pc buffer and then resuspended in a minimal volume of 

pc buffer containing 100 pi of glusulase (NEE-154; NEN, Boston, MA), 20 pi of 

1% mutanase (NovoZym 234; BiosPacific inc., Emeryville, CA) and 20 pi of 1% 

zymolyase 20-T per ml of final solution. The digestion of the cell wall was 

carried out for 2 hr at 30° C and the cells were washed two times in 100 mM 

sodium acetate, pH 6.1, and incubated in 0.6 M sorbitol, 100 mM sodium 

cacodylate, pH 7.0, overnight at 4° C Cells were then harvested by 

centrifugation, post-fixed with 1% (v/v) osmium in 100 mM sodium cacodylate, 

pH 7.0, for 30 min at 25° C, dehydrated with ethanol and embedded in Epon 

resin. Samples were thin-sectioned for visualization by transmission EM.

Transmission EM of highly enriched NE fractions was performed 

essentially as described (Rout and Blobel, 1993). Briefly, NEs and H-NEs 

(fractions 10 and 15 respectively) were diluted to 1.0 M sucrose with bt buffer 

and were centrifuged at 67,000 g for 15 min at 4° C. The pelleted samples 

were fixed in 1.0 M sucrose, bt buffer containing 2% (v/v) glutaraldehyde for 1 hr 

at 25° C. The fixative solution was gently removed and substituted with 2% (v/v) 

glutaraldehyde in 50 mM potassium phosphate, pH 7.0, and the incubation was 

continued overnight at 4° C. Samples were post-fixed with 1% (v/v) osmium in 

the same buffer, dehydrated and prepared for EM visualization as described 

above.

Transmission EM of isolated yeast nuclei was as follows. Nuclei (fraction 

7) were diluted with 1 volume of 1.25 M sucrose in bt buffer and spun at

290,000 g for 10 min at 4° C. The nuclei pellet was fixed and prepared for 

transmission EM analysis as described above, with the exception that the first 

fixation was performed in 1.25 M sucrose-bt buffer.

Samples of isolated NEs and H-NEs were sedimented on EM grids and 

negatively stained as described (Rout and Blobel, 1993).
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IEM analysis of isolated NEs was performed using a modification of a 

published procedure (Rout and Kilmartin, 1990; Kraemer, et al., 1995). Four 

wells were cut out from a 96-wells microtiter plate and were incubated with 

2.5% (v/v) glutaraldehyde in water for 30 min at 25° C. The fixative was 

removed and the wells were washed briefly under flowing water. 100 pi of 1 % 

poly-L-lysine in water were added to each well and the incubation was 

continued for 30 min at 25° C before washing the wells with water again. 

Isolated yeast NEs (fraction 10) were diluted with 1 volume of bt-DMSO, 

transferred to the pre-treated microtiter wells (100 |j.I of diluted sample per well) 

and centrifuged at 23,500 g for 2 hr at 4° C. The pellets were washed once with 

bt-DMSO. NE pellets were fixed with 4% (v/v) formaldehyde in bt-DMSO for 5 

or 10 min at 25° C and then they were washed twice with bt-DMSO and once 

with IEM buffer [0.5% BSA, 0.5 x PBS-K (5 mM KH2PO4 , 20 mM K2HPO4 , 75 

mM NaCI, pH 7.0), 1 mM MgCI2, 10 pM CaCI2, 10 pM ZnCI2, 0.02% sodium 

azide, 0.2% (v/v) solution P]. The primary antibody was incubated overnight in 

IEM buffer at 4°C. Samples were washed three times for 30 min each with IEM 

buffer at 25° C, and incubated with 10 nm gold-labeled affinity purified goat anti

mouse antibody in IEM buffer overnight at 4° C. Samples were washed as 

above and then twice with 0.5 x PBS-K, 1 mM MgCI2. Gold-labeled NEs were 

fixed in 1.25% (v/v) glutaraldehyde in 0.5 x PBS-K, 1 mM MgCI2 , at 25° C for 2 

hr. Fixed samples were post-fixed with 1% osmium in the same buffer and 

prepared for transmission EM as described above.

IEM of isolated whole nuclei was as follows. Isolated yeast nuclei were 

subjected to mild osmotic shock by diluting them with 9 volumes of PVP 

solution. These “broken” nuclei were then transferred (100 pi of diluted sample 

per well) to microtiter wells that had been pre-treated as described above and 

centrifuged at 23,500 g for 30 min at 4° C. Nuclei pellets were washed twice
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with PVP solution at 25° C followed by one wash each for 5 min with the 

following three solutions: 1) 25% (v/v) M buffer (5% dried milk in bt-DMSO), 

75% (v/v) PVP solution; 2) 50% (v/v) M buffer, 50% (v/v) PVP solution; 3) 75% 

(v/v) M buffer, 25% (v/v) PVP solution. Finally, the nuclei pellets were washed 

once in M buffer for 5 min at 25° C. Incubations with the primary and the gold- 

labeled secondary antibodies were as described above with the exception that 

5 nm instead of 10 nm gold was used and that IEM buffer was substituted with M 

buffer. Subsequent steps were also as described above with the following 

exceptions: 1) 0.5 x PBS-K, 1 mM MgCI2 was substituted with bt-DMSO; and 2)

after treatment with osmic acid, samples were post fixed with 1% tannic acid in 

50 mM potassium phosphate, pH 7.0 for 30 min at 25° C.

Cell Volume Analysis

Logarithmically growing haploid yeast cells were sonicated for 10 sec to 

disperse the cell clumps using a Kontes Micro Ultrasonic sonicator (Baxter 

Healthcare Corporation, McGraw Park, IL) set at 55 output level, harvested by 

centrifugation and fixed with 4% formaldehyde in 0.1 mM potassium phosphate, 

pH 6.5, 0.1 mM MgCl2 , for 2 hr at 25° C. After fixation cells were washed once

in the same buffer and sonicated again as above. Cells were subjected to cell 

volume analysis using a Coulter channelizer 256 (Coulter Electronics Inc., 

Hialeah, FL) following the specifications of the manufacturer.

Chromosome Segregation Assay
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Determination of the rate of mitotic chromosome III loss was carried out as 

previously described (Chi and Shore, 1996; Wotton and Shore, 1997). Briefly, 

average sized single colonies of diploid wild type and mutant cells were 

resuspended in YPD and sonicated as described above to disperse cell 

clumps. • Dilutions were spread on YPD plates to determine the viable cell 

count. Half of each colony was mated with a 100-fold excess of cells from MATa 

and MATa haploid tester strains (KMY38a and KMY39a, respectively; 

generous gift of Erica Johnson) to select for colonies that arose from individual 

mating events. The chromosome loss rate (number of events per cell per 

generation) was calculated according to the following formula: rate = (0.4343 x 

F)/(logN - logN0) where F = the median mating frequency, N = the number of 

cells in the colony and N0 = the number of cells from which the colony arose 

(Drake, 1970).

Flow Cytometry of Yeast Cells

Logarithmically growing yeast cells (typically 5 ml) were sonicated to 

disperse cell clumps (as described above), harvested by centrifugation and 

dehydrated in 2 ml of 70% (v/v) ethanol at 25° C for 12 hr. Cells were washed 

twice with 1 ml of 50 mM Tris-CI, pH 7.8 and then resuspended in 1 ml of the 

same buffer containing 2 mg/ml of DNase free-RNase A. RNA was digested at 

37° C for 12 hr. At the end of the incubation, cells were pelleted and digested 

with 0.5 ml of 5 mg/ml pepsin in 55 mM HCI at 37° C for 30 min to remove the 

majority of the cellular proteins. Cells were washed once with 1 ml of 200 mM 

Tris-CI, pH 7.5, 211 mM NaCI, 78 mM MgCl2 , and finally resuspended in 180
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mM Tris-CI, pH 7.5, 190 mM NaCI, 70 mM MgCl2 containing 50 jig/ml of 

propidium iodide. Shortly after staining the DNA with propidium iodide, 

samples were analyzed by flow cytometry. 50 jil of each sample were 

transferred to a 3.5 ml Falcon tube (Falcon 2052; Beckton and Dickison, 

Franklyn-Lakes, NJ), diluted with 2 ml of 50 mM Tris-CI, pH 7.8 and immediately 

analyzed using a FacSort flow cytometer (Beckton and Dickinson, Franklyn 

Lakes, NJ). Data analysis was performed using the CellQuest v 3.1 f software 

provided by the manufacturer of the instrument. Typically, 10,000 individual 

events were read per sample.

In vivo Import and Diffusion Assays

The in vivo import assay was performed essentially as described (Shulga, 

et al., 1996). Wild type W303 and mlplA, mlp2Ahd cells were transformed with 

pGFP-LEU (generous gift from D. Goldfarb), which constitutively expresses GFP 

(Cody, et al., 1993) fused to the SV40 large T antigen NLS. Only freshly 

transformed cells were used for each experiment. Cells were grown in selective 

medium containing 2% dextrose to mid-logarithmic phase, harvested by 

centrifugation and washed once with sterile water. Washed cells were 

resuspended in dextrose-free selective medium containing 10 mM each of 

sodium azide and 2-deoxy-D-glucose (referred to from now on as 

deoxyglucose) and incubated at 30° C for 45 min to allow the diffusion of GFP 

out of the nucleus. At the end of this incubation, cells were harvested by 

centrifugation, washed once with sterile water and pellets were incubated at 4° 

C until use. The import assay was started by resuspending the pelleted cells in 

-5 volumes of pre-warmed selective medium containing 2% dextrose and
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placing them at 30° C. At each time point a small aliquot of the cell suspension 

was placed on a glass slide, mounted with a coverslip and observed at a Zeiss 

Axiophot fluorescent microscope using the FITC channel. The number of 

normal cells that showed a clear accumulation of GFP-NLS in the nucleus 

(nuclear cells) and the number of cells in which the reporter was cytoplasmic 

were counted at each time point. At least 40 independent cells were scored per 

time point. At least 4 independent sets of cells were counted to construct the 

graph presented in Fig. 24. The results are presented as the percentage of 

cells presenting nuclear signal as a function of time. Linear regression lines 

were drawn through the linear portion of each curve using KaleidaGraph and 

the slope of these straight lines were used to estimate the relative import rates.

Passive diffusion assays were performed as follows. pGFP-LEU 

transformed wild type and mutant cells were grown as described in the previous 

paragraph. Cells were harvested by centrifugation and resuspended in 1/5 of 

the initial volume of selective medium. Resuspended cells were held at 4° C 

until use. The diffusion assay was started by centrifuging the cells, washing 

them once in sterile water, resuspending them in 1 volume of 10 mM sodium 

azide and 10 mM deoxyglucose in dextrose-free selective medium and finally 

placing them at 30° C. Aliquots were taken at each time point and scored as 

described above. At least 3 independent sets of 40 cells were scored at each 

time point. The relative passive equilibration rates were estimated as described 

for the import rates.

Overexpression of MLP1
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In order to achieve the overexpression of Mlplp in yeast cells, the MLP1 

gene was inserted into the pYES2 yeast expression plasmid (Invitrogen 

Corporation, Carlsbad, CA) downstream of the GAL1/10 inducible promoter. 

Briefly, the unique BspHI site located at nucleotide position 4958 of pYES2 was 

disrupted using the Klenow fragment of DNA polymerase I to generate pYES2- 

no BspHI. DNA from the k clone A.PM-5620 (Olson, et al., 1986; ATCC catalog 

number 70598; America Type Culture Collection, Rockville, MA) containing a 

yeast genomic fragment of -16800 bp from chromosome XI (chromosome bp 

coordinates: 611843-628638), was used as the template to generate a -650 bp 

PCR product containing the 5’ region of MLP1 from nucleotide position -12 

(relative to the first bp of the coding region) to nucleotide position +634 flanked 

by a BamHI site at the 5' end. This PCR product was cut with BamHI and EcoRI 

(site located at nucleotide position +572 of the MLP1 coding region) and 

inserted into the BamHI and EcoRI sites of pYES2-no BspHI, to generate 

pYES2-570MLP1. Finally, a -5900 bp BspHI fragment of A.PM-5620 that 

contains the entire MLP1 coding region except the first 8 bp, was inserted into 

pYES2-570MLP1 that had been linearized with BspHI (site located at 

nucleotide position +8 of the MLP1 coding region) to generate pGALMLPI.

pGALML.P1 was transformed into W303 cells by electroporation and 

transformants were selected taking advantage of the URA3 selectable marker 

present on the plasmid. Only freshly transformed cells were used for each 

experiment. In order to induce the expression of MLP1, W303/pGALMLP1 cells 

were grown to mid-logarithmic phase in selective medium containing 2% D(+)- 

raffinose (referred to as raffinose throughout the text), transferred to selective 

medium containing 1% raffinose and 2% galactose and incubated at 30° C for 

up to 4 hr. For repression of MLP1 expression, W303/pGALMLP1 cells were
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grown in raffinose as above, transferred to selective medium containing 1% 

raffinose and 2% dextrose and incubated for 4 hr at 30° C.

Miscellaneous

Protein concentrations were measured by either the modified Bradford 

assay of Pierce (Coomassie Plus; Pierce, Rockford, IL), or the amido-black 

assay (Rexach, et al., 1994), using BSA as a standard. SDS-PAGE and 

immunoblotting were performed essentially as described (Rout and Blobel,

1993). Proteins were precipitated with methanol as follows. Briefly, 9 volumes 

of methanol were added to the protein sample and the mixture was incubated at 

-20° C for 1 hr. At the end of the incubation, the sample was centrifuged at

15,000 g for 1-2 hr at 4° C. The supernatant was discarded by inversion and 

the remaining traces of methanol were removed by aspiration without disturbing 

the pellet. The pellet was air-dried very briefly and the protein sample was 

resuspended in an opportune amount of protein loading buffer for 

electrophoretic analysis.

Detergent extracted H-NEs were produced by a pretreatment of the 

sample on the EM grid in 1.5% (v/v) Triton X-100, 2.0% digitonin in bt buffer for 

15 min at 25°C immediately prior to fixation. Highly enriched NPCs (Rout and 

Blobel, 1993) were extracted with heparin by mixing 5 ml of the sample with 20 

ml of 10 mg/ml heparin in bt-DMSO and incubating on ice for 30 min. After the 

extraction, the heparin-resistant material was sedimented over a EM grid and 

negatively stained as previously described (Rout and Blobel, 1993).

The intensity of bands on immunoblots was quantified either using the 

ImageQuant v 1.1 software in the Phosphorlmager system (Molecular
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Dynamics, Sunnyvale, CA; Figs 8 and 16, Nuclei Prep, NE Prep). Occasionally, 

computer images of ECL signals on photographic films were quantified using 

the Gel plotting macro of NIHImage v 1.60 (Research Services Branch, National 

Institute of Health, Bethesda, MD).

Cells were prepared for indirect IF microscopy using the procedure of 

Kilmartin and Adams (Kilmartin and Adams, 1984) with the modifications of 

Wente et al. (Wente, et al., 1992) and Kilmartin et al. (Kilmartin, et al., 1993). 

Double labeling with the mouse MAb118C3 and a polyclonal rabbit anti- 

Sec61p antibody (Stirling, et al., 1992) was visualized using Cy3-labeled 

polyclonal donkey anti-mouse IgG (cross absorbed against rabbit IgG) and 

FITC-labeled polyclonal donkey anti-rabbit IgG (cross absorbed against mouse 

IgG) (Jackson ImmunoResearch Laboratories, West Grove, PA). Double 

labeling with MAb215B9 and a polyclonal rabbit anti-Nsp1p antibody 

(Nehrbass, et al., 1990) was visualized using the same procedure. In all single 

labeling experiments, the bound antibody was visualized using Cy3-labeled 

polyclonal donkey anti-mouse or anti-rabbit IgG (Jackson ImmunoResearch 

Laboratories, West Grove, PA). The staining and photomicrographic recording 

conditions were as described (Wente, et al., 1992).

Yeast genomic DNA preparations were as previously described (Hoffman 

and Winston, 1987). Yeast whole cell lysates were prepared as follows. Cells 

were grown to mid-logarithmic phase and harvested by centrifugation. Pellets 

were solubilized in 1.85 M NaOH, 7.4% (v/v) p-mercaptoethanol (BME) for 10 

min at 4° C. An equal volume of 50% TCA was added to the samples and the 

incubation was continued for 10 min at the same temperature. Samples were 

spun at 15,000 g for 10 min at 4° C and the pellets were washed once with pre 

chilled acetone. Pelleted samples were solubilized in 5% SDS, 0.5 M Tris-base 

by sonication and were heated to 95° C for 10 min. An equal volume of 40%
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glycerol, 200 mM DTT, 0.002% bromophenol blue was added and samples 

were heated again as above before SDS-PAGE analysis.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter III: Isolation And Characterization Of Nuclear Envelopes

From The Yeast Saccharomyces

Comments on the Procedure

An excellent starting point for the preparation of NE fractions was provided 

by the yeast nuclear isolation method described by Kilmartin. Thus fractions 1 

to 8 of the procedure described here (Fig. 1), which included the nuclei (fraction 

7), were prepared as reported (Kilmartin and Fogg, 1982; Rout and Kilmartin, 

1990). To be useful as a more general assay for subfractionation, as well as a 

preparative method for NEs, the NE enrichment procedure needed to have a 

considerably higher yield and degree of enrichment than previous techniques 

(Kilmartin and Fogg, 1982; Mann and Mecke, 1982; Mann and Mecke, 1982). It 

was also of primary importance to retain, when possible, the morphological 

(and potentially functional) characteristics of intact NEs.

The mild buffer conditions previously determined to be favorable for 

nuclear fractionation were retained for the preparation of NEs (Kilmartin and 

Fogg, 1982; Rout and Kilmartin, 1990; Rout and Blobel, 1993). Nuclei were 

lysed in bt-DMSO in the presence of DNase. The presence of DMSO appeared 

to lessen the osmotic shock to the NEs during nuclear lysis in addition to its 

stabilizing effect on spindles and NPCs (Rout and Kilmartin, 1990; Rout and 

Blobel, 1993). By increasing the density of the nuclear lysate with sucrose and 

Nycodenz, the NEs could be made to float to their buoyant density on an 

equilibrium sedimentation gradient, away from denser protein and 

nucleoprotein contaminants. The presence of Nycodenz in the adjusting 

solution reduced the viscosity of the resulting adjusted lysate, increasing the
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yield by ensuring the rapid egress of even the smaller NE fragments from the 

lysate. It also allowed a lower osmolarity, which reduced the osmotic shock to 

the NEs, especially when floating from the lysate into the lighter layer above. 

An appropriate step gradient was chosen to concentrate the NEs at a single 

step interface. The relatively narrow range of NE densities is evidenced by the 

high yield of NEs recovered in this layer (see below).

For the removal of the peripheral NE proteins and nucleoproteins, a 

heparin treatment was chosen instead of the more usually employed high pH 

treatments (Fujiki, et al., 1982) for two main reasons. First, the heparin 

treatment was performed in mild buffer conditions similar to those of the NE 

isolation procedure, lessening the chances of compromising membrane 

integrity or damaging membrane-bound complexes. Second, it proved 

especially efficient at removing the most significant peripheral NE 

"contaminants": chromatin (Courvalin, et al., 1982; Rout and Blobel, 1993) and 

ribosomes. Indeed, purified yeast ribosomes were reduced from their normal 

sedimentation coefficient of 80 S to < 6 S by this treatment (data not shown). It 

was also known that high heparin concentrations would disassemble NPCs 

(Rout and Blobel, 1993; see below). The heparin-extracted material was run on 

a 10-40% (w/v) sucrose gradient and the sedimentation profile of the 

nucleoporins recognized by MAb414 and MAb350 was analyzed (Davis and 

Fink, 1990; Rout and Blobel, 1993). As expected, all of the detectable extracted 

nucleoporins displayed a behavior consistent with a sedimentation coefficient of 

< 6 S (data not shown). A treatment with RNase was performed because 

although it did not have a significant effect on the protein composition of H-NEs, 

it was shown to effectively remove contaminating ribosomal RNA from this 

fraction (data not shown). This indicates that RNase digestion can be 

eliminated without significantly altering the efficiency of the heparin extraction
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procedure. The great disparity in size between the extracted material and the 

remaining H-NE membranes allowed the latter to be sedimented away from the 

former by a rapid centrifugation step.
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Figure 1. Schematic diagram of the veast NE enrichment and NE heparin 

extraction procedures.

Numbers enclosed in circles represent the fraction numbers as described in 

Materials and Methods and in the text. The NE-containing fractions are 

indicated in bold type.
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Electron Microscopy of the NE Fractions

The NE and H-NE fractions were examined in detail by transmission EM of 

both negatively stained spreads and thin sections of pelleted material (Fig. 2). 

The NE fraction (Fig. 2 A and C) consisted mainly of large sheets of double 

membranes. Significant regions of these had blebbed and ballooned (which is 

not generally seen in the NEs of thin sectioned whole cell preparations), 

probably as a result of osmotic shock during nuclear lysis. The sheets were 

interrupted by numerous grommets, and the holes formed by these contained 

thin disks of relatively dense material. These structures were morphologically 

recognizable as NPCs in both transverse and tangential sections and 

negatively stained preparations. No clear examples of ordered filamentous 

structures could be found on either side of the transversely sectioned NPCs. 

The NPCs were present at ~30/mm2 in the negatively stained NEs (Fig. 2C), two 

to three times the figure estimated for intact nuclei (Mutvei, et al., 1992; Rout and 

Blobel, 1993). This considerable increase in density could be due to 

contraction of NEs no longer kept under elastic tension by underlying chromatin 

and associated structures, which might be exacerbated by osmotically induced 

swelling of the cisternal spaces between the NPCs. SPBs could also be found, 

still inserted in the NE and retaining many of their nuclear MTs, attesting to the 

mild isolation conditions used (Fig. 2 A and C). The presence of these MTs 

indicates that the NE fraction would be active in a MT nucleation assay 

(Kilmartin and Fogg, 1982; Rout and Kilmartin, 1990). The alignment of the 

asymmetric SPBs within the envelope unequivocally established the cellular 

orientation of the two membranes (reviewed in, Kilmartin, 1994). Many of the 

NEs retained their normal nuclear direction of curvature; concave on the 

nuclear (inner) side, convex on the cytoplasmic (outer) side. The exposed

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



surfaces of the inner membranes were largely devoid of any material, including 

chromatin and any recognizable lamina (Fig. 2 A). In sharp contrast, the outer 

membranes often had exposed surfaces densely studded with ribosomes (Fig. 

2 A). These were present at -800/mm2 in the negatively stained NEs (Fig. 2 C), 

giving roughly 25 ribosomes per NPC (this latter figure should be independent 

of shrinkage or swelling of the NE and thus represent the in vivo figure more 

closely). The perinuclear cisternae generally contained low amounts of 

electron dense material, though some contained considerably more than 

others. The fraction contained no other recognizable organelles, except for 

occasional small remnants of undigested cell walls.

Many of the H-NEs were also recovered as large double-membraned 

sheets (Fig. 2 B and D). They appeared more ballooned and fragmented than 

the NE but their cisternae still contained electron dense material in thin sections 

(Fig. 2 B). However, they lacked any trace of ribosomes, by either thin section 

or negative stain (Fig. 2, B and D). The SPBs had apparently been removed 

from the envelopes, although by thin section occasional examples of heparin- 

extracted SPBs could be found free of membranes (Rout and Kilmartin, 1990). 

Thus, although many of the H-NEs were curved, there was no morphological 

marker left to tell whether they retained the native direction of curvature, like the 

NEs. Strikingly, the NPC grommets still remained, with the resulting holes 

being of approximately the same size and frequency as those found in the NEs, 

although the dense material comprising the morphologically recognizable NPC 

structure had been removed (Fig. 2 B and D). This indicates that despite the 

removal of the peripheral NPC components (see also below), integral and 

probably lumenal components of the NE that maintained the original circular 

architecture of the NPCs had been retained. The only recognizable
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contaminants were occasional cell wall remnants, carried through from the NE 

fraction.
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Figure 2. Morphological analysis of the NE and H-NE fractions.

(A and B) Transmission electron micrographs of pelleted, thin sectioned NEs (A) 

and H-NEs (B). (C and D) Transmission electron micrographs of negatively- 

stained NE (C) and H-NE (D) fractions. (A) The following structures are 

indicated: outer nuclear membrane (open arrowhead); inner nuclear membrane 

(closed arrowhead)-, longitudinal (large open arrow) and tangential (large 

closed arroW) sections of NPCs; SPBs and attached MTs (small arrows). (B, C 

and D) Circular apertures left by the extraction of NPCs are indicated (large 

closed arrows) as well as MTs (small arroW). Bar, 1 pm.
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SDS-PAGE Analysis and lmmunoblots_

To determine the protein composition and purity of the NE and H-NE 

fractions, the enrichment procedure was subjected to biochemical and 

immunological analyses. Protein samples obtained from each of the fractions 

collected during the preparation of isolated NEs and H-NEs (Fig. 1) were 

resolved by SDS-PAGE. To compare the novel heparin stripping procedure 

with the standard carbonate extraction method (Fujiki, et al., 1982), yeast 

isolated NEs (fraction 10) were treated with sodium carbonate and the 

carbonate-resistant material (Carbonate Extracted NEs) was run side by side 

with H-NEs on a protein gel (Fig. 3).

Inspection of Fig. 3 reveals that the overall complexity and abundance of 

the proteins present in each of the enrichment steps decreased during 

fractionation. Furthermore, the fractionation behavior of specific supermolecular 

structures was followed by virtue of the characteristic banding pattern of certain 

of their components on SDS gels. Chromatin is represented by the four yeast 

histones (Fig. 3, dots) which were mainly lost after nuclear lysis and totally 

removed by heparin extraction. Characteristic ribosomal bands (Fig. 3, 

asterisks) were lost throughout the enrichment procedure and their complex 

behavior will be discussed below. Three bands are known to contain known 

NPC and pore membrane proteins (Fig. 3, arrows)’, all coenriched with the NEs 

but only one, containing Pom152p (a pore membrane specific integral 

membrane protein) was found in the H-NEs (Wozniak, et al., 1994; J. D. 

Aitchison, U. Nehrbass, M. P. Rout and R. W. Wozniak, unpublished 

observations). The comparison of carbonate-extracted NEs with H-NEs (Fig. 3) 

revealed that the protein composition of these two fractions was similar, 

suggesting that heparin is at least as efficient as carbonate in the removal of
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peripheral proteins from the nuclear membranes. On the other hand, certain 

specific proteins that were quantitatively removed by carbonate were retained 

after heparin extraction and vice versa. For example, the ribosomal markers 

appeared to be stripped by heparin with greater efficacy than by carbonate.

In order to assess the degree of enrichment of isolated NEs and H-NEs, 

the percentage yields of cytoplasmic, nucleoplasmic, NE specific (peripheral 

and membrane-bound), ER-specific and ribosomal proteins were estimated by 

quantitative immunoblotting. The yields of the NE components were used 

together with measurements of the total amount of protein in each fractions to 

generate fold-enrichments for NE-containing fractions. These data allowed the 

construction of a balance-sheet of the distributions of various cellular proteins 

and their associated organelles in the different steps of the fractionation 

procedure (Figs. 4, 6 and 8).

Analysis of three non-NE proteins from the mitochondria, the Golgi 

apparatus and nucleolus demonstrated that potential cytoplasmic and 

nucleoplasmic contaminants were efficiently removed from the NE fractions. 

Mitochondria were followed by use of the integral membrane protein p32 (Pain, 

et al., 1990). As expected virtually all of the signal fractionates away from NE 

specific markers early in the procedure; most of this protein remains in the top 

two fractions of the nuclear gradient (Fig. 4A, fractions 4 and 5). Quantitative 

immunoblotting showed that less of 0.04% of the total cellular amount of p32 

remained associated with isolated NEs and that less than 0.01% of this signal 

was associated with the H-NE fraction (data not shown). The integral 

membrane protein of the Golgi, Sed5p (Hardwick and Pelham, 1992), was 

mainly found in the crude cytosol fraction (Figs. 4B and 80, fraction 2, 79% of 

the total cellular signal). Approximately 90% of the crude nuclei pool of Sed5p 

(19% of the total), remained at the top of the nuclear gradient (Figs. 4B and 80,
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fractions 4 and 5). The small remaining amount fractionated with the nuclei, 

NEs and H-NEs (Figs. 4B and 8D, fractions 7, 10 and 15, respectively), 

consistent with this being an integral membrane protein that is involved in ER to 

Golgi transport and therefore can be expected to be present, at least in small 

quantities, also in the ER (Hardwick and Pelham, 1992; C. Hopkins, personal 

communication). The nucleolar protein Nopip coenriches with the nuclei but 

was rapidly removed from the NE after nuclear lysis (Fig. 4C, Aris and Blobel, 

1988). Quantification of the immunoblot presented in Fig. 4C demonstrated that 

only approximately 1.4% of Nopip fractionated with the NEs and that Nopip 

was undetectable in the H-NE fraction (data not shown).

Peripheral NE proteins, represented here by two SPB proteins p90 and 

Spc110p/Nuf1p, and various known NPC proteins (nucleoporins) detected by 

MAb350 and MAb414, cofractionate with the NE until they were lost after 

treatment with heparin (Figs. 4D, B, F and 8A; Rout and Kilmartin, 1990; 

Kilmartin, et al., 1993). An exception was represented by Nup2p (Fig. 4F, 

indicated by white dots), which falls off after DNase digestion of the nuclear 

fraction as it does in the NPC isolation procedure (Loeb, et al., 1993; Rout and 

Blobel, 1993). Spc110p/Nuf1p was partially retained (-10%) in the heparin 

stripped NE fraction. This could be a consequence of its localization within a 

heparin-resistant substructure of the SPB, that may be removed from the NE but 

not solubilized during the extraction procedure (Rout and Kilmartin, 1990; Rout 

and Kilmartin, 1991), a hypothesis supported by the EM data (above). The 

intensities of the signals generated by p90(SPB) (Fig. 4D), Spc110p/Nuf1p (Fig. 

4E) and the 65 kD fragment of Nup145p (p65(NPC), Fig. 4F; Wente and Blobel,

1994) were measured and averaged to estimate the overall percentage yield of 

peripheral membrane proteins of the NE (Fig. 8A). Approximately 80% of the 

total peripheral NE components was recovered in fraction 10 (isolated NEs),
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representing a more than 90% yield as compared to the nuclear fraction 

(fraction 7). The great majority of this signal was removed after heparin 

treatment (94% of the NE signal, totaling 95% of the original cellular signal). 

This may in fact underestimate the efficiency of the extraction of many proteins 

due to the somewhat unrepresentative behavior of Spc110p/Nuf1p (discussed 

above); for example, p65(NPC) was extracted with an efficiency greater than 

98% (data not shown).

Since a NE specific membrane marker was not available, one was made 

by raising mAbs against the H-NE fraction (see Chapter IV). One of these was 

found to recognize a single band of -150 kD in isolated NEs, H-NEs and highly 

enriched NPCs (Rout and Blobel, 1993). We used two approaches to 

demonstrate that this antibody, MAb118C3, specifically recognizes Pom152p 

(Fig. 5). First, MAb118C3 recognizes a single band of the expected mobility in 

both isolated nuclei and NEs prepared from wild type yeast cells and it fails to 

do so in NEs similarly prepared from a P0M152 knock-out strain (PM7AB; a 

diploid S. cerevisiae strain homozygous for pom152-2::HIS3', generous gift from 

R. W. Wozniak). Second, this same antibody reacts with a single band of 150 

kD present in chromatographic fractions highly enriched for Pom152p (SDS- 

hydroxylapatite fraction 36 and HPLC fraction 69; Wozniak, et al., 1994). 

MAb118C3 was used to monitor the fractionation pattern of the wild type 

Pom152p protein throughout the various steps of the NE, H-NE and NPC 

preparations (Figs. 6 and 8B). As expected, Pom152p was shown to coenrich 

with both the NE and H-NE as well as the highly enriched NPC fraction. 

Surprisingly, a significant amount (29%) of the signal fractionates together with 

rough ER markers (fractions 4 and 5). The majority (82%) of the nuclear 

associated Pom152p (42% of the total cellular amount) was recovered in the 

NE fraction similar to the behavior of the peripheral markers. Furthermore,
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nearly 90% of this signal was resistant to heparin extraction in contrast with the 

peripheral NE components. To confirm that this result reflects the in vivo 

subcellular localization of Pom152p, logarithmically growing cells were stained 

with both MAb118C3 and a rabbit anti-Sec61p polyclonal antibody and viewed 

by indirect IF microscopy (Fig. 7). Indeed, this shows that whilst the majority of 

Pom152p was localized at the NE, a certain amount of this protein was found at 

the peripheral ER. A POM152 knock-out strain (PM152-75; a haploid S. 

cerevisiae strain carrying pom152-2::H!S3\ J. Aitchison, M. P. Rout, G. Blobel 

and R. W. Wozniak, unpublished results) was examined by indirect IF under 

conditions similar to the ones used for the experiment presented in Fig. 7. As 

predicted no signal was detected, either at the nuclear rim or at the cellular 

periphery where ER staining would have been expected (data not shown).

The behavior of ER proteins during the enrichment procedure was 

monitored using the ER markers Sec61p, Cytochrome P450 reductase and 

Kar2p/Bip (Figs. 4 H, I, J and 8C; Yabusaki, et al., 1988; Normington, et al., 

1989; Rose, et al., 1989; Rothblatt, et al., 1989). As expected the majority of 

each ER marker was found in fractions 4 and 5. However, approximately 20% 

of each ER marker was found associated with the nuclei (fraction 7). 

Subfractionation of the nuclei showed that all three proteins coenriched 

absolutely with the NEs. The extent to which each of the ER markers 

cofractionated with the H-NE fraction correlated with their degree of association 

with the ER membrane. Hence, the integral membrane protein Sec61p 

coenriched absolutely with H-NEs (Fig. 4J). Cytochrome P-450 reductase was 

more easily extracted by heparin, consistent with previous observations (Black 

and Coon, 1982; Yabusaki, et al., 1988; Fig. 41). Roughly half of the rough ER 

lumenal protein Kar2p/Bip (55%; data not shown) was resistant to heparin 

extraction (Fig. 4H). This could indicate that a substantial proportion of this
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protein is protected from heparin because it is enclosed in intact membranous 

compartments (i.e. perinuclear cisternae). This explanation is unlikely since 

approximately 80% of Kar2p/Bip present in both NE fractions is sensitive to 

trypsin (data not shown), suggesting that the majority of the perinuclear 

cisternae is accessible to heparin but not efficiently extracted by it.

Ribosomes were followed using a mAb against the large subunit protein, 

L3 (Fried and Warner, 1981; Figs. 4G and 8E ). The fractionation pattern was 

complex but as expected this ribosome marker was observed to associate with 

cytosolic ribosomes (fraction 2) and ER-bound ribosomes (fractions 4 and 5). 

The L3 cofractionating with the nucleus (fraction 7) appeared to be associated 

with two different nuclear compartments, which were separated during the 

preparation of isolated NEs. 27% of the nuclear L3 was found in the ribosomes 

bound to the outer surface of the NE (fraction 10). The remaining 73% (fractions 

11 and 12, 7% of the total) was found in fractions containing the nuclear and 

nucleolar remnants. As this antibody stains the cytoplasm and the nucleolus 

but not the rest of the nucleus by indirect IF microscopy (data not shown), the 

remaining signal is believed to represent the ribosomal proteins associated with 

nucleolar pre-ribosomal structures. Greater than 93% of the NE-bound protein 

was removed upon heparin extraction of the NE fraction, leaving only 0.2% of 

the total cellular ribosomal protein bound to the nuclear membrane after 

heparin treatment.

The removal of contaminating proteins was dramatically demonstrated in 

Fig. 8F, where less than 1% of the total cellular protein was present in the NE 

fraction (fraction 10) while less than 0.2% was associated with the H-NE 

(fraction 15). These data were used in combination with the numbers 

representing the percentage yield of nuclear membranes in fractions 1, 3, 7, 10 

and 15 [generated from the yields of peripheral NE proteins (fractions 1-12) and
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Pom152p (fractions 13-16)] to calculate the approximate degree of enrichment 

of NEs throughout the fractionation procedure (Fig. 8G). As can be seen the 

enrichment of the NE and H-NE fractions was roughly 100-fold and 340-fold 

respectively, which represent a 68% overall recovery of nuclear membranes. 

The degree of enrichment of the NE and H-NE fractions described here was 

highly reproducible between preparations (data not shown). Similar 

preparations have been successfully made, with minor technical modifications, 

from numerous other S. cerevisiae strains (see for example Fig. 5)
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Figure 3. SDS-PAGE profile of proteins in subcellular fractions obtained

during the preparation of NEs and H-NEs showing the loss of a large amount of 

contaminating proteins and concomitant coenrichment of representative NE 

proteins.

(Left and Middle panels) Yeast cells were subjected to subcellular fractionation 

as described in Fig. 1 and in the text. (Right panel) NEs were treated with 

carbonate to remove peripheral membrane proteins and the carbonate-resistant 

material (Carbonate Extracted NEs) was directly compared with similar amounts 

H-NEs (Heparin-extracted NEs). Proteins present in each of these fractions 

were resolved on a 5-20% polyacrylamide SDS gel. The gel was first stained 

with Coomassie brilliant blue (Coomassie stain) and then stained with silver 

(Coomassie-Silver stain). The lane number at the top of the gels reflects the 

fraction number (Fig. 1). Total cell lysate (Spheroplasts) and subsequent 

fractions containing NEs are indicated. Fractions that belong to each of the four 

enrichment steps are grouped as indicated by brackets at the top and bottom of 

the gels. The figures below the bottom brackets (Loading equivalents) 

represent the number of cell equivalents (n) that were used as a starting 

material to prepare each of the fractions. This number had to be increased from 

left to right to allow the detection of single proteins in the final lanes. Histones 

(dots), three characteristic bands containing known nuclear pore proteins 

(arrows: the lowest band is Pom152p, a pore membrane protein) and three 

representative ribosomal markers (asterisks, right panel) are indicated. 

Arrowheads point to a band that is believed to be the RNase A introduced in 

the course of heparin extraction. Numbers at the side of the left panel indicated 

the position of the molecular weight standards.
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Figure 4. Immunoblot analysis of the enrichment procedure showing that the 

fractionation behavior of various cellular markers is consistent with high yields 

and low levels of contamination in the NE and H-NE fractions.

Fractions were prepared as described in Fig. 1 and in the text. Gels were 

exactly as described in Fig. 3. Blots were incubated in the presence of the 

various antibodies which were detected by incubation with a secondary rabbit 

anti-mouse antibody (in the case of the mAbs) and subsequently with [12SI]- 

conjugated protein A. (A ) The integral membrane mitochondrial protein, p32, 

detected with a polyclonal rabbit serum (Pain, et al., 1990). (B ) The integral 

membrane protein of the Golgi, Sed5p, detected with an affinity purified 

polyclonal rabbit serum (Sogaard, et al., 1994). (C) The nucleolar protein

Nopip, detected with the mAb D77 (Aris and Blobel, 1988; Henriquez, et al., 

1990). (D) The SPB peripheral membrane protein, p90, detected by the use of 

the mAbs, 35B5 and 48B6 (Rout and Kilmartin, 1990). (E ) The SPB component 

Spc110p/Nuf1p detected with a mix of the mAbs, 3D2, 45D10 and 35A11 (Rout 

and Kilmartin, 1990). (F) Various peripheral nuclear pore proteins revealed by 

utilizing MAb414 and MAb350. NUP1X, indicates the overlapping signal of 

Nuplp (Davis and Fink, 1990) and Nup116p (Wente, et al., 1992). Similarly, 

NSP1X, indicates Nsplp (Nehrbass, et al., 1990) and Nup100p (Wente, et al.,

1992). These mAbs also recognize Nup2p (white dots), p65 (a 65 kD 

breakdown product of Nup145p), Nup57p (Grandi, et al., 1995) and Nup49p 

(Wente, et al., 1992). Other non-specifically cross-reacting proteins are 

detected by this antibody and they were described elsewhere (Davis and Fink, 

1990; Rout and Blobel, 1993). (G ) The mAb, TCM1, was used to follow the 

ribosomal marker, L3 (generous gift of S. P. Johnson and J. R. Warner). (H ) 

The lumenal heath-shock protein of the ER, Kar2p/Bip was detected using the 

mAb, 2E7 (Napier, et al., 1992). (/ ) A rabbit antiserum was used to recognize 

the ER membrane-associated protein, Cytochrome P450 reductase (Sutter and 

Loper, 1989). (J ) The integral membrane protein of the ER, Sec61p, was 

detected with a rabbit anti-peptide serum (Stirling, et al., 1992). The lanes are
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numbered as in Fig. 3. The NE containing fractions are indicated above the 

blots. Loading Equivalents, see legend of Fig. 3.
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Figure 5. The mAb. MAb118C3. specifically recognizes the pore membrane 

protein. Pom152p.

Yeast nuclei (lane 1) and NEs (lane 2) were prepared following the procedure 

presented in Fig. 1 and in the text. NEs were also prepared from wild-type S. 

cerevisiae yeast cells (W303; lane 3) and from a POM152 knock-out strain 

(PM7AB; lane 4), using the same method. S. uvarum cells were fractionated as 

described (Wozniak, et al., 1994), to produce chromatographic fractions highly 

enriched for Pom152p [SDS-hydroxylapatite fraction number 36 (lane 5) and 

HPLC fraction number 69 (lane 6)]. Equal protein amounts from the above 

mentioned fractions were resolved on SDS-PAGE and transferred to a 

nitrocellulose filter. The blot was incubated with MAb118C3 and bound 

immunoglobulin was detected by ECL (Amersham Life Science, Arlington 

Heights, IL), following the instructions of the manufacturer. The position of 

Pom152p (POM152 ) is indicated. Numbers on the right of the gel denote the 

position of molecular weight standards.
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Figure 6. The pore membrane protein. Pom152p. coenriches with both a 

highly-enriched NPC fraction and with nuclear membranes.

Yeast nuclei (Nuclear Prep, Rout and Kilmartin, 1990) were used as the starting 

point for the preparation of either the NE and H-NE fractions (NE Prep) or of a 

highly enriched NPC fraction (NPC Prep, Rout and Blobel, 1993). Blots similar 

to the ones used in Fig. 4 and the ones described by Rout and Blobel (Rout and 

Blobel, 1993) were probed with MAb118C3 that reacts against Pom152p.
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Figure 7. Double IF staining of wild type yeast cells showing in vivo Pom152p 

localization at the NE and at the ER.

Logarithmically growing wild type yeast cells were harvested, fixed and 

incubated with MAb118C3 (anti-Pom152p) followed by a rabbit anti-Sec61p 

antibody (A, B, C and D) or with the rabbit serum against Sec61p alone (E). All 

slides were incubated with a mixture of FITC-conjugated donkey anti-rabbit and 

Cy3-conjugated donkey anti-mouse IgGs and they were subsequently 

photographed on a fluorescent microscope. Cells at various stages of the cell- 

cycle starting from interphase (A) all the way to cytokinesis (D) can be observed. 

ER peripheral cisternae are indicated by arrows. The absence of any signal in 

Pom152p, panel E demonstrates that there was no bleed-through from the 

FITC-channel. Bar, 2 îm.
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Figure 8. Quantitative analysis of the NE enrichment procedure.

(A, B, C, D and E) The immunoblots presented in Figs. 4 and 6 or similar ones 

were subjected to quantitative analysis. Fractions are numbered as in Fig. 1 

and grouped with brackets as in Figs. 3 and 4. An estimate of the amount of a 

given marker present in each fraction is expressed here as a percentage of the 

total cellular amount calculated from the sum of the quantity found in fractions 2 

(Crude Cytosol) and 3 (Crude Nuclei). The figures in parentheses represent the 

percentage yield of each of the markers relative to the NE containing fraction 

from the preceding fractionation step. The SPB proteins p90 and 

Spc110p/Nuf1p, and the NPC protein p65 were used to construct the histogram 

of panel A. Similarly, the data presented in panel C, reflect the results of the 

quantification of Cytochrome P450 reductase and Sec61p. (F) Total amount of 

protein present in each fraction. (G) The percentage yields of the peripheral NE 

markers (panel A, fractions 1-12) and of Pom152p (panel B, fractions 13-16) 

were used together with the numbers expressing the total amount of protein of 

each NE containing fraction to determine the fold-enrichment of nuclear 

membranes throughout the enrichment procedure.
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Protein Translocation Activity

Having determined the protein composition of the NE and the H-NE 

fractions it was necessary to evaluate their functional integrity. Cell-free 

systems have been developed to study various NE functions including nuclear 

transport, MTs nucleation, nuclear fusion, budding of ER to Golgi transport 

vesicles, and translocation of proteins across the rough ER membrane (i.e. 

outer nuclear membrane) The latter assay was chosen as it is comparatively 

straightforward, and since both the NE and the H-NE fractions would be 

expected to have ER protein translocation activity. "Active" NE and H-NEs 

fractions (see Materials and Methods for details) were mixed with radiolabeled, 

urea-denatured ppaF in the presence of yeast cytosol and an energy source 

(Chirico, et al., 1988). The presence of translocated pro-a-Factor was 

demonstrated using two standard criteria: 1) the acquisition of protease- 

resistance; and 2) the appearance of core-glycosylated forms of pro-a-Factor 

(glycosylated pro-a-Factor; gpaF). Moreover, both the absolute and the specific 

translocation activity were determined for each sample studied (Fig. 9).

When ppaF was incubated with either NEs or H-NEs (Fig. 9, NEs and 

heparin-extracted NEs, respectively a significant fraction of it was translocated 

into the ER lumen (i.e. perinuclear space) similar to that observed with for the 

CM fraction (Fig. 9, crude microsomes). Interestingly, the specific translocation 

activity of the NE and H-NE fractions appeared to be significantly higher (3- and 

5-fold, respectively) as compared with the CM fraction (Fig. 9). All of the gpaF 

(Fig. 9) was protease resistant, unlike much of Kar2p/Bip (see previous section). 

Thus, either only sealed membranes are translocation-competent or 

translocated gpaF is associated with lumenal proteins such that is resistant to 

trypsin even in unsealed membranes. Detergent would disrupt this association
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and make gpaF sensitive to proteolysis These results demonstrate that both the 

translocation apparatus and the glycosylating enzymes are active in our highly 

enriched NE and H-NE fractions. This provides evidence that the outer nuclear 

membrane and the perinuclear space not only share ER components but also 

its functions. That both of the NE fractions are functionally well-preserved 

suggests that they could be used to develop cell-free systems to investigate 

other NE and ER functions.
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Figure 9. Both the isolated NEs and H-NE fraction are active in a cell-free 

protein translocation assay.

“Active" NEs and H-NEs and CMs were prepared as described in Materials and 

Methods. (Top panel) [35S]-Methionine labeled, in vitro synthesized ppaF was

denatured with urea immediately before adding it to a reaction mixture 

containing either buffer (no additions), NEs, H-NEs (heparin-extracted NEs) or 

CMs (crude microsomes) in the presence of ATP and crude cytosol. After 1 h at 

20°C the reaction was stopped and each sample was divided in three equal 

aliquots. The first set of aliquots was incubated on ice without further treatments 

(lanes a). The second set was digested with trypsin (lanes b). The third set was 

treated with Triton X-100 before trypsin digestion (lanes c). All samples were 

analyzed by SDS-PAGE and fluorography. The position of ppaF and of the tri

glycosylated form of the protein (gpaF) is indicated. An a-Factor specific band 

migrating slower than the fully glycosylated product is indicated by an asterisk. 

This previously reported product presumably corresponds to gpaF prior to

mannose and glucose trimming (Waters, et al., 1988). The position of the 

molecular weight standards is indicated at the right of the gel. (Middle panel) 

The intensity of the bands present in lanes a (no treatment), was measured with 

the Phosphorlmager system and the translocation activity was determined in 

each case by calculating the percentage of the total radioactivity that 

corresponded to translocated material. (Bottom panel) The percentage 

translocation activity in successive 2-fold dilutions of each fraction was 

determined and a graph of activity versus volume of sample was constructed. 

The slope of the graph in the linear range (% activity/pl) was divided by the total 

amount of protein present in each fraction to yield the specific activity [Specific 

activity (% activity/pg)].
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Detergent extraction of H-NEs

The retention of the NPC grommets after heparin extraction of the 

isolated NEs suggested that they were stabilized by a heparin-resistant NPC 

substructure associated with the membrane, most likely in the perinuclear 

space. H-NEs were therefore extracted with detergents after attachment to an 

EM grid in order to reveal any substructures underlying the grommets (Fig. 10). 

Negative staining of these samples revealed the presence of numerous rings of 

approximately the same internal diameter (-100 nm) and distribution as the 

grommets (Fig. 10A, arrows), with an extensive filamentous network lying 

between them. To investigate this finding further, a highly enriched fraction of 

NPCs (Rout and Blobel, 1993) was treated with heparin under conditions 

similar to the ones used to extract isolated NEs. Heparin-resistant material was 

then sedimented onto an EM grid and negatively stained, as for the extracted H- 

NEs (above). This also produced ring-like structures, strongly resembling those 

seen in the extracted H-NEs but without any other associated material (Fig. 

10B). Preliminary experiments indicated that, when the highly enriched NPCs 

were similarly extracted in solution and sedimented over a velocity gradient, the 

rings thus isolated contained the pore membrane protein Pom152p as a major 

constituent; likewise, the detergent extracted H-NEs were also found to retain 

Pom152p (data not shown). The rings must therefore be derived from integral 

pore membrane proteins possibly associated with peripheral proteins present in 

the perinuclear space. Attempts to separate the rings directly from the H-NEs in 

solution have so far failed.
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Figure 10. Detergent extraction of H-NEs suggests that ring structures 

associated with the NE may be involved in stabilizing the grommets of the 

NPCs.

(A) Isolated H-NEs were immobilized on EM grids, extracted with detergents 

and negatively stained as described in Materials and Methods. Arrows point to 

heparin-resistant ring structures that have the same internal diameter as the 

NPC grommets seen in Fig. 2D. (B) Highly enriched NPCs (Rout and Blobel,

1993) were extracted with heparin as described in Materials and Methods; 

following extraction, the heparin-resistant material was sedimented onto EM 

grids and negatively stained as above. Bar, 0.2 g.m.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter IV: Preparation Of Monoclonal Antibodies Against Yeast

Enriched Nuclear Envelope Fractions

Outline of the Procedure

The generation of mAbs as a means to identify novel protein components 

of a complex sub-cellular fraction has been previously described and has 

proven successful in a variety of circumstances (Rout and Kilmartin, 1990; Rout 

and Kilmartin, 1991). In particular, yeast is a highly suitable source of antigens 

because of the relative ease with which large amounts of material can be 

prepared and because of the high level of AA sequence divergence between 

homologous proteins in yeast versus higher eukaryotes. The high degree of 

enrichment of the yeast NE fractions described in Chapter III makes them 

potentially excellent material for the production of mAbs against NE-associated 

antigens. Consequently, this strategy could prove invaluable for the 

identification of previously unidentified NE components that are not part of the 

core structure of the NPC.

The approach entailed the following steps: 1) large scale preparation of 

highly enriched NE fractions. 2) Immunization of mice with these fractions. 3) 

Generation of hybridoma cell lines from the spleen of the immunized mice. 4) 

Screening of the hybridomas by indirect IF microscopy to isolate the clones 

secreting antibodies that recognize components of the NE. 5) Secondary 

screening of the mAbs by immunoblot on enriched NEs. 6) Generation of stable 

lines of the hybridomas of interest by sub-cloning the initial positive clones.
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Large Scale Preparation of Highly Enriched NE Fractions

Three different highly enriched NE fractions were used to immunize mice 

(Table II). In order to maximize the chances to obtain antibodies that 

recognized NE-associated integral membrane proteins, NEs were stripped of 

peripheral components using both heparin (H-NEs) and carbonate (C-NEs) as 

described in the Chapter III. In addition, proteins present in the highly-enriched 

NE fraction described in Chapter III were fractionated on a S-Sepharose 

column. The fractionation pattern of various known nucleoporins was followed 

by immunoblot using a mixture of MAb414 and MAb350 (see the legend to Fig. 

4; Davis and Blobel, 1986). Using this method it was determined that the S- 

Sepharose unbound material was selectively depleted of numerous known 

highly antigenic nucleoporins (data not shown). This depleted, NE fraction was 

called the S-NE fraction and was used as the third antigen in the immunization 

procedure. Each of the three antigen preparations was produced in quantities 

sufficient for the entire immunization protocol following a large-scale version of 

the procedures described above and in Chapter III.
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Table II. Antigens description

Group
Number

Number 
of Mice

Antigen Antigen Description Total Antigen 
Amount (mg/ 
mouse)

Total
number of 
Injections

1 12 H-NE Heparin-extracted 
NEs (see Chapter III)

3.70 5

2 6 H-NE Heparin-extracted 
NEs (see Chapter III)

2.25 5

3 6 C-NE Carbonate-extracted 
NEs (See Chapter II)

2.25 6

4 3 S-NE S-Sepharose 
fractionated NEs 
(see this Chapter)

2.25 5
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Mice Immunization

A total of 27 mice were divided into four test groups and each mouse of the 

group was immunized with either H-NE, C-NE or S-NE as detailed in Table II. 

Regardless of the antigen, each mouse received 1 initial sub-cutaneous 

immunization in the presence of complete Freund's adjuvant followed by either 

4 or 5 sub-cutaneous booster injections with the same amount of antigen in the 

presence of incomplete Freund's adjuvant. The sera from mice were tested 

periodically by indirect IF microscopy and immunoblotting for reactivity against 

NE-associated proteins. Animals that appeared to be making antibodies 

against large numbers of NE specific antigens Q'udged by nuclear rim staining 

in IF microscopy and the presence of immunoreactive bands coenriching with 

NE fractions on immunoblots) were selected from each group for the production 

of hybridomas. 3-5 days before a fusion the selected mouse was given a full 

dose of antigen intra-peritoneally to obtain an optimal immune response.

Generation of Hybridoma Cell Lines and Primary IF microscopy 

Screens

The method for producing hybridomas was essentially as described 

(Galfre and Milstein, 1981; Rout and Kilmartin, 1990). Samples from the tissue 

culture supernatant of the hybridoma colonies were initially screened by indirect 

IF microscopy on whole fixed yeast cells (Kilmartin and Adams, 1984). This 

type of screening has the advantage of allowing the immediate classification of 

the individual mAbs on the basis of the intra-cellular localization of the antigen 

they recognize. Hybridoma colonies that secreted antibodies recognizing
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antigens associated with the NE or at the ER were harvested for subsequent 

analysis. The small number of antibodies that were obtained that gave typical 

intranuclear, nucleolar, ribosomal or mitochondrial staining pattern were also 

harvested.

A total of 4 fusions were performed using 1 mouse from each test group. A 

total of 173 positive hybridoma lines were obtained. Of these, 48 gave a typical 

ER pattern which is distinguishable by the appearance of a continuous rim 

staining at the NE connected by long tubular structures within the cytoplasm to 

patchy staining beneath the plasma membrane; 114 gave a typical NE staining 

pattern recognizable by a punctate or patchy signal at the nuclear periphery; 

while the remaining 11 mAbs recognized either mitochondria, ribosomes, 

nucleoli or nuclei.

Secondary screening of the NE specific mAbs by immunoblot 

analysis

All of the mAbs obtained from the primary screening were then tested for 

their ability to recognize proteins on immunoblots of highly enriched yeast NE. 

Proteins from the highly enriched NE fraction described in Chapter III (fraction 

10) were run on SDS-PAGE in a single large well spanning the whole gel and 

transferred to nitrocellulose. The nitrocellulose membrane was mounted on a 

multi-lane apparatus that allowed the screening of 26 individual mAbs per gel 

(see Chapter II). Fig. 11 shows the results obtained with a typical gel.

A summary of the results obtained from the primary and secondary 

screening is presented in Table III. Table IV presents the list of all mAbs that 

were obtained against NE localized antigens.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Four of the 114 anti-NE mAbs have been extensively characterized. The 

characterization of the anti-Pom152p MAb118C3 is described in details in 

Chapter III of this dissertation. MAb165C10 was found to recognize the 

previously uncharacterized Nup159p and was essential for its isolation and its 

ultrastructural localization (Kraemer, et al., 1995). Both MAb148G11 and 

MAb215B9 recognize a single band of -200 kD on immunoblots of isolated NEs 

and they were used to localize this protein within the cell and to isolate the gene 

encoding for it as described in detail in Chapter IV of this dissertation.
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Table III. Summary of mAbs results

Total Positive by 
immunoblot b

Hybridoma colonies 
screened

4900 n/ac

mAbs obtained 173 76

NE specific mAbs 114 44

ER specific mAbs 48 27

Other mAbs a 11 5

Footnotes:
a mAbs that were obtained against the following yeast structures and 
organelles: mitochondria (1); ribosomes (3); nucleolus (3); nucleus (4). 
b A mAb was considered to be positive by immunoblot when it specifically 
stained one or more bands on an immunoblot of highly enriched NEs. 
c not applicable.
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Table IV. mAbs obtained against yeast NE components (continued)

196F7 3 C-NE NE yes 2-(11) 100 (116), (85). (75). (72). 66. (62), (60), (58). (55), (50)

I f o T C a  ■ ; n , : o i ^ ■;

198811 3 C-NE NE (patchy) yes 5-(10) 116 (150), 100, (85), (80), (75), (72), 66,58,49

199D8 3 C-NE NE yes 5-(9) 116 (130), 100, (85), (80), (72), 66,58,49

202C9 3 C-NE NE (rim) no

204F11 3 C-NE NE (rim) no

•. a?'!-.: &  tit >*• ..v«\  ̂»*&??$&.: *;• • atf l< <•
204Q1 3 C-NE NE yes 6(13) 100 (170), 150,120, (116), 90,75, (72), 68, (65), (62), (60), (55)

•, -j‘: - ' . : j't?:! / V* ..wri..
205G4 3 C-NE NE no

205Q9 :V:p-;-v; <• > •:,' •?"•!• r ;& .
206B8 3 C-NE NE yes 2-(8) 100 (90), (80), 68, (65), (62), (60), (58)

aoedio>.k‘̂ i f i i i ^  . ^ ^ - v ^ n o -  • ' .- ' :>:j^M;kk'Mk\iki<> -:>H-:.
206C8 3 C-NE NE no

a » c i i^ 3  c \ - v ■; .. ■
210D12 3 C-NE NE yes 7-(11) 100 (130), 85,75, (72), 66,62,60. (58), 55, (50)

210E5 !v 3,;UiON6!- ' *#{$»: ;v:'.. : -.' ' t i A x x
211B11 3 C-NE NE yes 1-(3) 100 (200), (130), (70)

24104'''c3>:‘̂ Ĉ Eii,KE:'i>.: .;%&;¥••>!.> £s! . .. ,116 ’ Ui 100.68.58, so
211E1 3 C-NE NE no
212E4 . 3 ..C-NE.;';',NE(petchy)'.‘ ';:V-;,no  ̂ . $&.*•■' • •• '‘- ' i  ■■.. <■•', X<i' '■■ 'v

213F7 3 C-NE NE yes 1-(4) 170 (200), (116), (100), (66)
214El6 .\3 ;L 'i|^C ^Evi;'iN E ,6 S i4 ^ ) : '^ < ^ y * * ^  v(116), (52)..- '.!•->;£■ i  r  ;'-,».t:k- *- ,- id

214H3 3 C-NE NE yes 6-(10) 100 85,75, (72). 66, (62), 60, (58), 55, (50)

a i i w i i i 3 ; ' ^N^lpiftQfarJlifi4^i>yo»i-iuitii. - : vt-^2204 , u v , ^ ^ - v ..• -4.» •- ir>ltLMlpiplviiJi6iirQ'«i«ita<6a!
215G4 3 C-NE NE (patchy) no
216E6. ‘;i < W 1  Wli‘4-'^».00 ^ 8 S . - 7 6 , . ^ ( 6 0 ) ; ( 6 0 )  1 •.Wi ^.'V : ^ ■■ -1-- 
216H6 3 C-NE NE no

W . ; j * V r ’) ‘T v i ^ S ’f i L k S f e ^ t - J ' f e i f .  ■ • i n i i Z i  : , .  ' . « .« '> . ! •

• . -•■, ' >: ■• • i .,*4 t jf-V- i .- |V::%».. •
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■X' i . . .  . ‘ v* .
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217C6XI32'
218F9 3 C-NE NE (rim) no

141E11 4 S-NE NE no
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Table IV. mAbs obtained against yeast NE components (continued)

:i(iicaof45^§^M^
168C8 4 S-NE NE . no

V d ^ S v *  . „ > . Z 4  U t Z i l - - .  '■’ ^ / ■ y ^ . ^ i - . ' - ^ u  1.4 ■ ' •  ■ i • ' . ■ i ^ : V : ^ f i  . . . • ; '  - a . ' ; v .  : - ; . \

171E3 4 S-NE NE no

Ll74iW54*'4i:f■,A ;• ^5^-• vUi;il,.:.?■-::c"vft- . ;̂'.KT,V!ife4t?■■- - f \  •■•.-,<. ■..'" .^s-,.,...*>■:; , .,„■
179F3 4 S-NE NE no ____  ____

Footnotes:
-Name: All the mAbs that gave a NE specific staining by IF are listed in this table.
Listed in bold are the mAbs for which the antigen has been identified.
-Group Nr.: Antibodies are listed according to the test group number of the mice from which they were derived (refer to Table III for details).
-Antigen: The names of the antigen refers to the nomenclature used in Table III.
-IF Signal: The following categories are used: NE indicates punctate staining of the nuclear periphery: rim indicates a possible continuous rim staining at the 
nuclear periphery; patchy indicates the presence of larger patches of signal at the nuclear periphery that are distinguishable from the finer punctate staining 
typical of nucleoporins; NE/Nucleolus indicates the presence of a nucleolar staining pattern in association with a typical rim staining.
-WB signal: yes indicates the ability of the mAb to specifically recognize one or more bands on an immunoblot of NE specific proteins, dq indicates the 
absence of bands or the presence of bands that were considered to be too faint to be specific.
-Number of Distinct Bands: The number of individual bands of equal intensity recognized by the antibody on immunoblot is listed. The numbers in brackets 
indicate the number of bands whose intensity was less intense than the major bands but that were considered to be above background.
-Size of Major Band: The apparent Mw (kD) of the major bands is listed. In the case of multiple bands of equal intensity the size of the band with highest 
apparent MW Is listed.
-Size of Additional Bands: The apparent MW of additional bands is listed. The number in brackets indicate the size of the less intense bands.
-Name of Antigen: The standard yeast protein nomenclature is followed.
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Figure 11. Secondary screening of mAbs obtained against yeast NE fractions.

Proteins present in the highly enriched NE fraction, prepared as described in 

the text, were subjected to SDS-PAGE and immobilized on nitrocellulose. The 

nitrocellulose filter was inserted in a multi-lane apparatus and incubated with 

aliquots from 26 different hybridoma supernatants. The mAbs were detected 

using a secondary rabbit anti-mouse antibody conjugated with HRP. The 

bound HRP was revealed by the ECL reaction (see Chapter II for details on the 

procedure). The numbers at the top of the gel represent the position of the 

individual lanes of the multi-screen apparatus. The names of each mAb that 

gave a significant positive signal are indicated on top of the gel in bold 

character together with the subcellular localization of the antigen as determined 

by the primary screen (indirect IF microscopy). The names of mAbs that were 

considered negative by immunoblot are indicated in a smaller font and are not 

bold. The group number to which each mAb isolate belongs is indicated at the 

bottom of the gel (see Table II and IV). Numbers at the side of the gel reflect the 

position of the MW standards.
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Chapter V: The Identification And Characterization Of Components 

Of Nuclear Filaments That Connect The Nuclear Pore Complex To 

The Nuclear Matrix 

A Screen for non-NPC Proteins Associated with the NE

Mutations or deletions of the genes that encode for various nucleoporin 

(for example, Nup133p, Nup120p, Nup145p and Nup159p) cause the NPC to 

accumulate at one side of the NE, giving rise to tight clusters that can be easily 

identified as spots or patches when cells from such strains are stained with a 

nucleoporin specific antibody (Doye, et al., 1994; Fabre, et al., 1994; Wente and 

Blobel, 1994; Aitchison, et al., 1995; Heath, et al., 1995; Kraemer, et al., 1995; 

Li, et al., 1995; Pemberton, et al., 1995). It was reasoned that proteins only 

partially associated with the NPC or localized to areas of the NE that are not in 

close contact with the NPC, would either fail to cluster or would only partially 

cluster with the NPCs in these strains. In order to identify such NE components, 

the 114 mAbs produced against the yeast NE as described in the previous 

Chapter were screened by a NPC clustering assay. The indirect IF pattern 

generated by each of the individual mAbs on fixed whole wild type yeast cells 

was compared to the staining pattern obtained on a yeast strain carrying a gene 

disruption in the NUP133 gene (Pemberton, et al., 1995). MAb215B9 and 

MAb148G11, were identified by this screen as recognizing antigens that 

appeared to only partially cluster in the NUP133 disrupted strain. Both of these 

mAbs gave similar pattern by indirect IF microscopy on wild type yeast cells; 

furthermore they both recognized a single band of -220 kD (apparent MW) on 

immunoblots of enriched NEs (see below and Table IV). The subcellular
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fractionation behavior of the antigens recognized by these two mAbs during the 

NE and H-NE fractionation procedure (see Chapter ill), was also found to be 

similar (data not shown). Based on these results it was tentatively concluded 

that MAb148G11 and MAb215B9 recognized the same protein, that was thus 

termed p220. This result was indeed confirmed when the gene encoding p220 

was isolated and genetically disrupted (see below).

In order to better understand the relationship of p220 with the NPC, both 

wild type yeast cells and NUP133 deleted cells were double stained with 

MAb215B9 and a rabbit polyclonal antibody against the nucleoporin Nsplp. 

The results of this experiment are presented in Fig. 12. It is evident from this 

figure that Nsplp and p220 only partially colocalize in wild type cells. The 

difference in the localization of these two proteins is even more striking in the 

clustering strain (Fig. 12, ANUP133). In these cells, while the Nsplp signal 

clearly forms tight clusters localized at the NE consistent with its localization at 

the NPC, p220 appears to be localized in large patches or even in continuous 

rims at the nuclear periphery that only partially overlap with the NPC clusters 

(see discussion in Chapter VI). The localization of Nsp1 p and p220 was also 

analyzed at various stages of the yeast cell cycle (Fig 12, panel S  l-IV). 

Although areas of coincident staining (yellow ) are present, regions apparently 

devoid of one or the other protein are also evident. This is true regardless of the 

division cycle stage. Another conclusion that can be drawn from the results 

presented in Fig. 12B is that there does not appear to be any association 

between p220 and the yeast spindle at any stage throughout the cell division 

cycle (see also below). Identical results were obtained with MAb148G11 (data 

not shown).

For technical reasons, the cell line producing MAb215B9 proved difficult to 

culture and large amounts of this mAb could not be generated. Therefore, the
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rest of the experiments presented in this study were conducted using 

MAb148G11 that could be produced in sufficient quantities.
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Figure 12. Double IF staining of wild type and ANUP133 yeast cells showing 

the in vivo localization of p220 at NE-associated patches that colocalizes only 

partially with NPCs.

(A ) Logarithmically growing wild type (diploid strain) and ANUP133 (haploid 

strain), yeast cells were harvested, fixed and incubated with MAb215B9 (anti- 

p220), followed by a rabbit anti-Nsp1p polyclonal antibody. The bound 

immunoglobulin was revealed as described in Chapter II. Slides were 

photographed on a fluorescent microscope. (B ) The images presented here 

are computer generated composites of individual cells double-labeled as in 

panel A . Cells at various stages of the cell-cycle starting at interphase ( /)  all 

the way to cytokinesis (IV) can be observed. Bar, 2 jim.
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Isolation of the Gene Encoding p220

In order to investigate the structure and functions of p220, MAb148G11 

was used to screen a yeast expression library. Three X clones that expressed 

antigens recognized by MAb148G11 were isolated and purified by 4 

subsequent screening rounds. These three clones contained an insert of 1.8 kb 

that appeared to be identical by restriction enzymes analysis. The insert of one 

of these identical clones was sequenced by standard methods and its DNA 

sequence was compared to DNA sequences present in the whole yeast 

genome database. A sequence present in the a. insert was identical to AA 

1105-1700 of the coding region of MLP1 (Myosin Like Protein 1; Kolling, et al., 

1993). This demonstrates that the epitope of MAb148G11 lies within this region 

of Mlplp. MLP1 encodes for a protein of 1875 AA with a predicted MW of 218 

kD that was originally cloned on the basis of its cross-reactivity with a mAb 

directed against human platelet myosin (Kolling, et al., 1993). This protein was 

found to be non essential and was hypothesized to have a nuclear function on 

the basis of its subcellular localization (see discussion in Chapter VI). The 

major structural features of M lplp together with the position of the cloned 

fragment of the gene and of the epitope of MAb148G11 are shown in Fig. 13. 

The predicted secondary structure of Mlplp presents a very clear bipartite 

organization. The first -80% of the protein has an extremely high a-helical 

content and contains the heptad-repeats pattern predictive of coiled-coil 

proteins. The final -400 AA of the protein are predicted to form a globular tail 

that is rich in phenylalanine and proline residues (8% frequency over residues 

1468-1832; 20% frequency over residues 1678-1765; 3% overall frequency; 

see discussion in Chapter VI). Interestingly, using a FASTA sequence analysis, 

two sequences were found that had a very high degree of sequence similarity to
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the MLP1 sequence (Fig. 14). The sequence with the highest degree of 

similarity (probability score 2.0 x 10'22; 28% identical and 66% similar) was 

found to be the uncharacterized yeast ORF, YIL149C. YIL149C is expected to 

encode for a protein of 1680 AA with a predicted MW of 195 kD. Interestingly, 

both MLP1 and YIL149C belong to the same duplicated chromosome region of 

the yeast genome (Block 38; Wolfe and Shields, 1997) present both on 

Chromosome XI and on Chromosome IX. The sequence similarity between 

Mlplp and the deduced AA sequence of YIL149C (referred to as MLP2 in Fig. 

14, see below) extends over the whole AA sequence and is underscored by the 

similarity of the overall predicted secondary structure of the proteins. Based on 

the degree of primary and secondary structure similarity to Mlp1 p and the fact 

that MLP1 and YIL149C appear to have arisen from a genome duplication 

event, we propose the name MLP2 (Myosin Like Protein 2) for YIL149C (see 

discussion in Chapter VI). Interestingly, the complete yeast genomic database 

(Clayton, et al., 1997) contains no other putative homologues of MLP1. The 

disruption of the genes encoding for M lplp and Mlp2p would therefore present 

a good opportunity to investigate the functions of these proteins in the living cell 

because no other protein is expected to be able to complement their functions 

(see next section).

The second most similar sequence in the database was that of the human 

gene Tpr (probability score 3.8 x 10'16; 22% identical and 58% similar; Mitchell 

and Cooper, 1992; Byrd, et al., 1994). This gene encodes a protein of 2348 AA 

and 265 kD that has recently been localized to nuclear filaments that appear to 

connect the NPC with the nucleolus (Cordes, et al., 1997). Also in the case of 

Tpr, the similarity to Mlplp spans the whole length of the protein and is 

associated to an overall similarity in the predicted secondary structure. The 

main difference between Tpr and M lplp is that the non coiled-coil tail of Tpr is
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relatively much longer, spanning the final 30% of the protein, and has a much 

more marked acidic character (Byrd, et al., 1994). Interestingly, a Drosophila 

protein called Bx34 was recently identified that presents moderate levels of 

primary and secondary structure similarity to Tpr (Frasch, et al., 1988; 

Zimowska, etal., 1997). As with Tpr, this protein is found both in the vicinity of 

the NPCs and at extrachromosomal channels in the nuclear interior. As 

expected, Mlplp is also similar to Bx34 (probability score 5.2 x 10'7; 20% 

identical; 56% similar).
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Figure 13. Schematic diagram representing some of the primary and 

secondary structural features of Mlplp.

Shown as a function of the position in the sequence are the probability of 

forming coiled-coil displayed as the probability value; the position of the region 

of the protein that is encoded by the X clone isolated from the expression library 

using MAb148G11 and therefore contains the epitope of this mAb; and the 

position of the proline/phenylalanine rich blocks together with the frequency of 

these residues within each block (the overall frequency of these two residues 

along the entire AA sequence is 3%). Coiled-coil predictions were performed 

as described in Chapter II of this dissertation.
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Figure 14. M lplp shares similarities with MId2d and Tpr.

Comparison of AA sequences of Mlplp, Mlp2p (the yeast ORF YIL149C) and 

the human protein Tpr. The proteins were aligned using CLUSTALW. Identical 

AA are shaded in white on black; similar AA are shaded in gray.
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Double Deletions of MLP1 and MLP2 Cause a Marked Decrease in 

the Yeast Comparative Fitness

The entire coding regions of both MLP1 and MLP2 were individually 

disrupted in the diploid yeast strain W303 by integrative transformation of the 

URA3 and HIS3 genes respectively. Each heterozygous diploid strain 

(mlp1 ::URA3/+ and mlp2::H!S3/+ ) was sporulated and tetrads were dissected. 

In both cases four viable spores from most tetrads were observed, 

demonstrating that neither of these genes is essential and confirming and 

extending published results (data not shown; Kolling, et al., 1993). 

Immunoblots with MAb148G11 and MAb215B9 revealed that the band 

recognized by both antibodies was absent in mlp1::URA3 cells but was 

present in mlp2::HIS3 cells (data not shown; see below). This confirmed that 

both MAb148G11 and MAb215B9 bind specifically to Mlplp (see above). This 

result also demonstrated that neither MAb148G11 nor MAb215B9 crossreacts 

with Mlp2p.

Segregants of opposite mating types carrying the individual disruptions as 

confirmed by both phenotypic and genotypic analyses (see below; MATa, 

mlp1::URA3 and MATa, mlp2::HIS3) were mated. After sporulation and tetrad 

dissection, again four viable spores were visible in most cases (Fig. 15). 

Individual spores from 10 tetrads showing 4:0 segregation were subjected to 

standard phenotypic analysis to confirm the viability of the segregants carrying 

the double disruption and to ascertain the proper segregation of mating type 

genes. Based on this phenotypic analysis, two tetrads were selected that 

presented a 1:1:1:1 segregation pattern (HIS7URA7 HIS/URA7 HIS7URA': HIS' 

/URA). The genomic DNA of each individual segregant from these two tetrads 

was analyzed by PCR to reveal the presence of copies of the MLP1, MLP2,

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



HIS3 and URA3 genes; furthermore, total cell lysates isolated from each 

individual haploid strain were analyzed by immunoblotting to follow the 

expression of Mlplp using MAb148G11. The results obtained with one of these 

tetrads are shown in Fig. 15 A . In all cases the ability of each individual 

segregant to grow on the His* or Ura* selective plates cosegregated with the 

presence of a copy of the HIS3 or URA3 genes respectively, while it 

segregated away from the presence of a copy of MLP1 and MLP2 . As 

expected the presence of a MAb148G11 reactive band correlated with the 

presence of a copy of MLP1 but not of MLP2 (see above). This result was also 

confirmed by Indirect IF analysis of each of the four segregants from the same 

tetrad using MAb148G11 (data not shown). As expected, this antibody 

detected no signal in either of the haploid strains that carried the deletion of 

MLP1 (mlp1A, mlp1A, mlp2A) while it specifically stained the NE in the other 

two segregants.

To assess the degree of selective disadvantage conferred by individual 

and double disruptions in the MLP1 and MLP2 genes, haploid strains 1) mlp1A , 

2) mlp2A and 3) mlp1A, mlp2A and their wild type counterpart were grown 

together competitively in rich medium (Smith, et al., 1996; Rout, et al., 1997; 

Thatcher, et al., 1998). While mlp1A and mlp2A competed nicely with wild type, 

the strain harboring the double deletion lost ground rapidly even though it was 

initially added in two-fold excess (Fig. 15 B ), and appeared to be eliminated 

from the population after 30 generations (data not shown). These results 

demonstrated that mlp1A, mlp2A had a fitness defect relative to the parental 

stock equal to 24% (selection coefficient 0.235 ± 0.021; Thatcher, et al., 1998) 

and was effectively “non-viable" outside the "protected" laboratory environment. 

These results also showed that MLP1 and MLP2 exhibited a synthetically
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“lethal” phenotype and strongly suggested that they are functionally related and 

are indeed homologues.
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Figure 15. Yeast cells carrying a double disruption of MLP1 and MLP2 exhibit 

a marked fitness deficit with respect with their wild type counterpart.

(A ) Haploid yeast cells carrying individual deletions in MLP1 (mlp1::URA3 ) or 

MLP2 (mlp2:HIS3 ) were mated, sporulated and tetrads were dissected. The 

results of the phenotypic and genotypic analysis of one typical tetrad are 

presented. Phenotype: Cells derived from individual spores were restreaked 

on Ura- and His" plates to determine their growth requirements and were mated 

to tester strains to determine their mating type. Genotype: Genomic DNA was 

purified from each individual haploid strain and the presence of copies of the 

MLP1, MLP2 , URA3 and HIS3 genes were assessed by PCR analysis using 

appropriate oligonucleotides pairs. MAb148G11. Proteins isolated from each 

individual haploid strain were tested by immunoblot using MAb148G11 to 

reveal the expression of Mlplp. (B ) Top: Cultures in which the parental strain 

{wt ) was grown with cells harboring either a single deletion of MLP1 (mlp1A ) 

or MLP2 (mlp2A ) or a double disruption of the two genes (mlp1A, mlp2A), were 

sampled at the indicated time points (0, 6, 12 and 24 h r ). Aliquots containing 

-100 logarithmically growing cells were plated on either YPD (representing the 

total number of cells present in the aliquot) or on the appropriate selective 

medium (Ura' plates for mlp1A\ His' plates for m!p2A\ and Ura'/His' plates for 

mlp1A, mlp2A; representing the number of cells harboring the mutation in the 

aliquot). The initial ratio of wild type to mutant cells in each culture was 1:2 and 

the initial total cell concentration was 3 x 105/ml. Cells were diluted at each time 

point back to the original concentration to ensure constant logarithmic growth. 

Bottom: Graphical representation of the percentage of the mutant cells in the 

culture at each individual time point.
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Mlplp is Associated with Intranuclear Filaments that Connect the 

NPC with the Nuclear Interior

Results from the indirect IF analysis shown in Fig. 12 demonstrated that 

Mlplp is localized at the NE in areas that are only partly occupied by NPCs. To 

better understand its association with the NE and the NPC, the fractionation 

pattern of Mlplp on NE and NPC preparations (Chapter III; Rout and Blobel, 

1993; Strambio-de-Castillia, et al., 1995), was followed using MAb148G11 (Fig. 

16). As expected the great majority of the Mlplp specific signal fractionated 

with the nuclei (88% of the total cellular amount). 86% of the nuclear pool of 

M lplp (76% of the total) fractionated with the highly enriched NE fraction thus 

confirming the indirect IF data (Fig. 12). After heparin-extraction of NEs, 89% of 

the NE-associated pool of Mlplp (68% of the total) was found in the heparin 

supernatant (Fig. 16, NE Prep, Fractions 13-14), demonstrating it is not strongly 

associated with the membrane and in accordance with the secondary structure 

of the protein. While 83% of the total cellular amount of Mlplp (94% of the 

nuclear pool) appeared to co-fractionate with the crude NPC fraction (Fig. 16, C- 

NPCs), only 22% (18% of the total) of this was found in enriched NPCs (Fig. 16, 

E-NPCs), suggesting only a partial or weak association of M lplp with this 

cellular structure, and again confirming the indirect IF results (Fig. 12). It is 

important to note at this point that M lplp represents the first NE-associated 

protein to display such a subcellular fractionation pattern (see discussion in 

Chapter VI).

The ultrastructural localization of Mlplp was investigated by pre

embedding labeling IEM using MAb148G11 (Figs. 17 and 18). Both isolated 

NEs (Fig. 17 A , B and B) and isolated whole nuclei that had been subjected to 

mild osmotic shock to expose the nuclear interior (Fig. 17 C and D), were
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labeled with this antibody. Fourteen images of individual NPCs that were 

sectioned perpendicular to their mid-plane were collected from isolated NEs 

immunolabeled either with MAb165C10 to reveal the localization of Nup159p 

(Fig. 18A ; see Table IV; Kraemer, et al., 1995) or with MAb148G11 to localize 

Mlplp (Fig. 186). A radius of -150 nm around the center of each NPC was 

used as the cut-off point for each individual image, and the images were 

computationally superimposed to show the distribution of the gold particles 

relative to the NPC. Fig. 18C shows a plot of the distribution for 50 gold 

particles from each of the immunolabeled samples, relative to the mid-plane of 

the NE (y) and to the cylindrical axis of the NPC (x).

On isolated NEs labeled with MAb148G11, 86% of the gold particles 

(n=251) were found within a 150 nm distance from the mid-plane of the NE. In 

the best examples these gold particles where found in association with fibrils 

that appeared to stretch from the nuclear side of the NE towards the 

nucleoplasm (Fig 17 6 ',  arrow). Interestingly however, while the majority of the 

NE-associated gold particles (70%) were observed within a 150 nm radius from 

the center of at least one recognizable NPC, the remaining 30% was outside 

this radius. The average of the distance between gold particles and the NPC 

on the y axis was 66 ± 19 nm; while the average distance on the x axis was 

found to be 41 ± 34  nm (n=50; Fig. 18 C ). This was in marked contrast to the 

labeling of Nup159p, a nucleoporin known to be associated with the 

cytoplasmic fibrils attached to the outer ring of the NPC. In this case, and 

consistent with published results (Kraemer, et al., 1995), the gold particles were 

found significantly closer to the NPC (y= 33 ± 13; x= 8 ± 8; n=50; Fig. 18C; see 

discussion in Chapter VI).

On whole nuclei immunolabeled to reveal the localization of Mlplp, 85.9% 

of all gold particles (n=291) were found in the nucleoplasm. While the majority
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of these gold particles (62%) were observed in immediate vicinity of the NE, a 

considerable fraction of them (38%) were found more than 110 nm from the 

mid-plane of the NE. No obvious structure was observed in association with 

gold localized in the interior of the nucleus, although filaments could again be 

seen associated with gold particles found near the NE. The results of the IEM 

localization studies are consistent with the indirect IF and immunoblot results 

presented above (Figs. 12 and 16); and suggest that Mlplp is localized on 

filaments localized at an interface between the nuclear interior and the NPC.
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Figure 16. Mlplp is peripherally associated with the NE and with NPCs.

Yeast nuclei were used as the starting point for the preparation of either highly 

enriched NEs fractions (A/E Prep ; Chapter III; Strambio-de-Castillia, et al., 

1995) or enriched NPCs (A/PC Prep ; Rout and Blobel, 1993). Blots similar to 

the ones used in Figs. 4 and 6 were probed with MAb148G11 that reacts 

against M lplp and subjected to quantitative analysis similar to the one 

described in Fig. 8. The figures on top of the gels refers to the fraction numbers 

exactly as described in Fig. 1 and by Rout and Blobel (Rout and Blobel, 1993). 

Fractions that belong to each individual enrichment steps of the NE and NPC 

enrichment procedures are grouped as indicated by brackets on top of the gel. 

The total spheroplasts lysate (Cells ) and subsequent NE and NPC containing 

fractions are indicated. In all cases C- stands for Crude and E- stands for 

Enriched. H-NEs denotes heparin-extracted NEs. A small arrow points to a 

band that disappears together with M lplp in strains harboring a deletion of the 

gene (data not shown) and therefore it is believed to be a major Mlplp 

breakdown product. Numbers at the bottom of the gels {% Total Cellular 

Amount) represent an estimate of the amount of M lplp specific signal present 

in each fraction based on quantitative immunoblotting, expressed as a 

percentage of the total cellular amount. The figures below the bottom brackets 

(Loading Equivalents ) indicate the number of cell equivalents (n ) that were 

used as the starting material to prepare each fraction.
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Figure 17. Mlplp is predominantly associated with nuclear filaments that 

appear to connect the NPCs with the nuclear interior.

Isolated NEs {A, B and B) and osmotically shocked isolated nuclei (C and D ) 

were incubated with MAb148G11 and the labeling was visualized with either 10 

nm (A B and B ) or 5 nm (C and D ) gold conjugated secondary antibodies. 

Labeled NEs were subsequently prepared for transmission EM analysis. The 

inset presented in panel B' represent a 3-fold magnification of an area 

presented in panel B. The arrow points to nucleoplasmic fibrils immunostained 

with MAb148G11. c, cytoplasm; n , nucleoplasm. Bars, 500 nm {A, B, Cand D, 

50 nm {B).
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Figure 18. M lplp is peripherally localized relatively to the NPC.

(A and B )  Isolated NEs were incubated either with MAb165C10 that binds 

specifically to Nup159p (A ) or with the anti-Mlp1p antibody, MAb148G11 (8 ) as 

in Fig. 17. Fourteen images of individual NPCs that had been clearly sectioned 

orthogonally to the mid-plane of the NE were selected from each sample. A 

radius of -150 nm around the center of each NPC was selected as the cut-off 

point for each image. The 14 images derived from each sample were 

superimposed using Adobe Photoshop v 3.05 (Adobe Systems, Inc., Mountain 

View, CA) to produce the composites presented here. (C ) The distances to the 

mid-plane of the NE (y) and to the cylindrical axis of the NPC (x) were measured 

for each of 50 gold particles for isolated NEs labeled either with MAb165C10 

(Nup159p) or MAb148G11 (Mlplp). These distances were found to have the 

following averages: y , Nup159p 33 ±13; Mlplp 66 + 19. x , Nup159p 8 ± 8; 

Mlplp 41 ±34.
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Mlp2p Resembles Mlplp in its Fractionation Behavior and

Ultralocalization

To determine the subcellular localization of Mlp2p, the gene was 

genomically tagged with an in-frame carboxy-terminal fusion of the IgG binding 

domains of protein A (pA) (Aitchison, et al., 1995). As a control, MLP1 was also 

similarly tagged in parallel. Highly enriched NEs fractions were prepared from 

the Mlplp and Mlp2p tagged strains (Strambio-de-Castillia, et al., 1995) and the 

fractionation pattern of the proteins was assessed on immunoblots (Fig. 19A 

and data not shown). As expected, the fractionation pattern of Mlp1p-pA was 

indistinguishable from the one observed in Fig. 16 (data not shown). Similarly, 

Mlp2p-pA co-fractionated with the highly enriched NE fraction (Fig. 19A , 

fraction 10) but was almost entirely stripped off by the heparin treatment. The 

tagged strains were used to determine the subcellular localization of the 

proteins by indirect IF microscopy (Fig. 19B ). Both proteins were found 

localized predominantly at patches found at the nuclear periphery when 

compared with DAPI-stained DNA, consistent with what was previously 

observed for Mlplp (Fig. 12). The localization of Mlplp and Mlp2p in tagged 

strains was also determined by pre-embedding IEM on isolated NEs (data not 

shown). Again these two proteins displayed a very similar localization pattern 

to that observed for Mlplp (Figs. 17 and 18). These observations are consistent 

with the hypothesis that Mlplp and Mlp2p are functional homologues in 

accordance with their structural similarities and their synthetic “lethality” (Figs. 

14 and 15).
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Figure 19. Mlp2p is a Mb1p homologue.

(A ) Highly enriched NE fractions (Fig. 1; Strambio-de-Castillia, et al., 1995; 

Rout and Strambio-de-Castillia, 1998) were prepared from a yeast haploid 

strain expressing a pA tagged version of Mlp2p. A blot similar to the ones 

described in Figs. 4, 6 and 16 was incubated with rabbit anti-mouse IgG that 

specifically binds to the pA tag. Bound IgG was visualized using a HRP 

conjugated anti-rabbit secondary antibody and the presence of bound HRP was 

revealed by ECL. Fraction numbers and names are as in Figs. 1 and 16. (B ) 

The localization of Mlp1p-pA or Mlp2p-pA (as indicated on the top of the 

images) was examined by indirect IF detection of the pA tag. The staining of 

DNA with DAPI is also shown. The left most panels (no TAG) show a negative 

control in which a wild type haploid strain was similarly stained. Bar, 2 pm.
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Effects of MLP1 and MLP2 Deletion on Cellular and Colony

Morphology and on the Distribution of Nuclear Markers

To further investigate the function of Mlplp and Mlp2p, a strain harboring a 

deletion of both genes (mlp1A, mlp2A ) was subjected to a thorough phenotypic 

analysis (Figs. 20, 21, 22, 23 and 24). mlp1A, mlp2A cells displayed an 

aberrant morphology by both light microscopy (data not shown) and by 

transmission EM (Fig. 20A, left). Mutant cells appeared larger in size than their 

wild type counterpart. This phenotype was further analyzed by measuring the 

cell volume of the mutant and wild type cells using a Coulter counter (Fig. 204, 

right). This instrument confirmed that the mlp1A, mlp2A population had a 

significantly higher proportion of cells with a larger than average fluid volume 

relative to the control. Exponentially growing cultures of mlp1A, mlp2A mutants 

presented a marked alteration in the distribution of cell-cycle morphological 

classes relative to the wild type control (Fig. 21). The most striking observation 

was the reduction in the frequency of unbudded cells (A/S) representing cells in 

the G1 phase of the cell cycle and the concurrent elevation in the frequency of 

large-budded (LB ) cells representing cells in the late stages of M in the mutant 

population. In addition, a significant proportion of the mutant cells were double

budded (DS ), an occurrence found only very rarely in the control. mlp1At 

mlp2A grew as indented or “nibbled” colonies that appeared markedly different 

from the smooth colonies produced by wild type cells (Fig. 20S, left). This 

phenotype has been observed in association with clonal lethality (Holm, 1982) 

and may be due to chromosome segregation defects. To investigate the 

possibility that Mlplp and Mlp2p could be required for accurate mitotic 

chromosome segregation, a homozygous diploid mlp1::URA3, mlp2:HIS3/ 

mlp1::URA3, mlp2:HIS3 (mlp1A, mlp2A hd ) was constructed by mating two
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double mutant haploid strains of opposite mating types. The ability of mlplA, 

mlp2A hd to correctly segregate chromosomes during mitosis was investigated 

using the chromosome III segregation assay described by Shore and coworkers 

(Chi and Shore, 1996; Wotton and Shore, 1997; Fig. 20B , right). In this assay, 

wild type and mutant diploid cells of interest are mated with cells from haploid 

tester strains of both mating types and the frequency of mating events is 

measured. An increase of the mating rate of the mutant over the wild type 

background reflects the frequency of events in the original population in which 

individual mutant cells had failed to inherit chromosome III (see Chapter II for 

details). The rate of chromosome loss observed with mlplA, mlp2A hd 

(homozygous diploid) cells was 15.05 ±6.71 x 10'6 events/cell/generation with 

the MATa tester strain and 2.08 ± 0.48 x KT6 events/cell/generation with the 

MATa tester strain. This represented a 22 and 34 fold increase respectively 

relative to wild type (MATa, 0.70 ± 0.32 x 10-6 events/cell/generation; MATa, 

0.06 ±0.02 x 1CT6 events/cell/generation). This result shows that mlplA, mlp2A 

hd cells cannot accurately segregate chromosomes in mitosis. Taken together 

with the other results presented in this section, the chromosome segregation 

defect suggests that M lplp and Mlp2p are together required for efficient cell 

division. To investigate this further, the DNA content of wild type and mlplA, 

mlp2A cells was analyzed by flow cytometry (Fig. 20C  ). No significant 

alteration in the ploidy of the double mutant cells with respect to wild type was 

observed using this assay. This observation indicated that Mlplp and Mlp2p 

are probably not involved in the direct regulation of the yeast cell cycle.

To show that the defects described above were linked to the MLP1 and 

MLP2 disruptions, two 1:1:1:1 tetrads (see above) derived from diploid strains 

heterozygous for the double disruption were examined in some detail (data not 

shown). This analysis demonstrated that both the cellular morphology defects

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the “nibbled” colony phenotype segregated 1:3 with the double disruption. 

These results indicate that the phenotypes displayed by mlplA, mlp2A cells are 

indeed caused by the deletion of both MLP1 and MLP2.

In order to determine whether the deletion of MLP1 and MLP2 affected 

nuclear structure, we compared the localization of different nuclear markers by 

indirect IF microscopy in mlplA, mlp2A and wild type cells (Fig. 22). The shape 

of the nucleus and structure of the NE were studied by staining wild type and 

mutant cells with the mAb MAb165C10, that specifically recognizes the 

nucleoporin Nup159p (Table IV; Kraemer, et al., 1995). The characteristic 

punctate pattern of NPCs throughout the NE was observed in both wild type and 

mutant cells, indicating that deletion of MLP1 and MLP2 had no direct effect on 

NPC structure. Nevertheless, in mutant cells, staining with MAb165C10 

revealed an alteration of the overall nuclear morphology. Nuclei appeared 

larger and irregularly shaped and again multinucleated cells were often 

observed.

The most striking observation was that of an altered nucleolar morphology 

in m!p1A, mlp2A cells as visualized using a mAb against the nucleolar protein 

Nopip (Aris and Blobel, 1988; Henriquez, et al., 1990). In wild type cells, 

nucleoli stained with this mAb appeared as typical crescent-shaped structures 

closely juxtaposed to the NE. In mutant cells, the nucleoli often appeared as 

larger irregularly shaped structures that showed signs of fragmentation. The 

morphology of the nucleolus was further studied by transmission EM of thin- 

sectioned mutant and wild type cells (Fig. 23). In wild type cells the nucleolus 

appeared a single denser region of chromatin closely associated to the NE. In 

mlplA, mlp2A , it was possible to observe multiple small dense patches of 

chromatin in a single nucleus; these fragmented structures were often not in
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direct contact with the NE but they appeared to be connected to one another to

form a continuous network.

The structure of the mitotic spindle in mlplA, mlp2A was investigated 

using a rabbit polyclonal antibody against yeast tubulin (Fig. 24). 

Measurements of the spindle lengths in normal haploid yeast cells revealed that 

while a large proportion of the spindles ranged between 0.5 and 1.5 pm long 

(37%) representing cells in G1, S or G2 phases of the cell cycle, a minority 

(27%) were longer than 3 pm displaying cells between G2 and the end of M 

(Byers and Goetsch, 1975; Winey, et al., 1995). In contrast, mlp1 A, mlp2A cells 

appeared to be partially impaired in their ability to form extended spindles with 

only 14% of the spindles exceeding 3 pm.

The involvement of Mlplp and Mlp2p in DNA repair was investigated 

using a UV-sensitivity assay (data not shown). Mutant strains did not show any 

increase in their sensitivity to UV irradiation with respect to wild type, 

contradicting the results published by Botstein and coworkers (Kolling, et al., 

1993; see discussion in Chapter VI).

Alterations in various components of the nuclear transport pathways have 

been associated with phenotypes similar to the ones described above, such as: 

mitotic defects [Srp1p/Kap60p (Loeb, et al., 1995; Cselp, Xiao, et al., 1993; 

Brinkmann, et al., 1995; Irniger, et al., 1995)]; aberrant nuclear structure 

[Nup170p (Aitchison, et al., 1995; Kenna, et al., 1996); Crmlp (Adachi and 

Yanagida, 1989)]; defective nucleolar morphology [Nup120p (Aitchison, et al., 

1995; Heath, etal., 1995); Srp1p/Kap60p (Yano, et al., 1994); Nup145p (Fabre, 

et al., 1994)]; and altered spindle morphology [Nup120p, (Aitchison, et al., 

1995); Srp1 p/Kap60p, (Yano, et al., 1994)]. This suggested that M lplp and 

Mlp2p may similarly have a role in nucleocytoplasmic transport. Furthermore, 

the localization of Mlplp and Mlp2p on intra-nuclear filaments connecting the
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NPC with the nuclear interior (Figs. 17 and 18), and their homology with the 

human protein Tpr, also pointed to a possible role in facilitating nuclear 

movement of molecules.
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Figure 20. Yeast strains carrying a double disruption of MLP1 and MLP2. 

display significant cellular and colony morphology alterations associated with 

defects in chromosome segregation.

(A ) Left: Low-magnification electron micrographs of thin-sectioned fixed whole 

yeast cells showing the marked difference in size of the mutant cells with 

respect to wild type. Bar, 2 pm. Right: Logarithmically growing wild type and 

mlplA, mlp2A cells were sonicated and were subjected to cell volume analysis 

using a Coulter counter. (B ) Left: Photographs of single colonies of wild type 

and mlplA, mlp2A cells revealing the “nibbled” morphology of the mutant 

colonies. Right: Graphical representation of the results of a chromosome III 

stability assay performed on wild type and mlplA, mlp2A hd (homozygous 

diploid) cells, showing a significant increase in chromosome loss rate in mutant 

cells relative to wild type. The results presented represent the averages of at 

least three independent experiments. The experiments were performed as 

described in Chapter II. (C ) Logarithmically growing wild type and mlplA, 

mlp2A cells were harvested and prepared for flow cytometry as detailed in 

Chapter II. No significant change was observed in the DNA content distribution 

of the mlplA, mlp2A population relative to wild type.
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Figure 21. Distribution of morphological classes in wild type and mlplA. mlp2A

mutant cells.

Exponentially growing wild type and mutant cells were harvested by 

centrifugation, fixed and observed by light microscopy. Cells belonging to four 

different morphological subtypes (A/S, unbounded cells; SB, small-budded 

cells; LB, large budded cells; DB, double-budded cells) were counted and the 

percentage of each group is presented.
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Figure 22. Distribution of nuclear markers in mlplA. mlp2A cells.

Examination of wild type and mlplA, mlp2A cells by IF directed against the 

nucleoporin Nup159p and the nucleolar marker Nopip, showing altered 

nuclear and nucleolar morphology. NPCs were visualized using MAb165C10 

that recognizes Nup159p (Table IV; Kraemer, et al., 1995) and nucleoli were 

visualized using the mAb to Nopip D77 (Aris and Blobel, 1988; Henriquez, et 

al., 1990). In both cases bound immunoglobulin was revealed using a Cy3 

conjugated donkey anti-mouse antibody. The nuclear DNA was coincidentally 

stained with DAPI. Bar, 3 |im.
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Figure 23. Nucleoli fragment in mlplA. mlp2A cells.

Thin sectioned, fixed wild type (A ) and mlplA, mlp2A (B ) cells were examined 

by transmission EM. Mutant cells show signs of nucleolar fragmentation. The 

position of dense chromatin regions corresponding to the nucleolus are 

indicated (arrows). Bar, 0.25 (im.
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Figure 24. Altered spindle morphology in mlplA. mlp2A cells.

Logarithmically growing wild type and mutant haploid cells were harvested, 

fixed and immunolabeled with a rabbit polyclonal antibody to reveal the position 

of tubulin. The length of mitotic spindles was measured for both wild type 

(n=136) and mutant cells (=186) and the results of the analysis are presented 

as percentages of the total number of spindles.
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Deletion of MLP1 and MLP2 Affects the Efficiency of Nuclear

Import

To investigate the possibility that Mlplp and Mlp2p may be involved in 

transport of molecules in and out of the nucleus, an in vivo import assay was 

performed as described by Goldfarb and coworkers (Shulga, et al., 1996). This 

assay allows the detection of kinetic defects in the import rates of a NLS-GFP 

reporter (Fig. 24). In this assay logarithmically growing yeast cells constitutively 

expressing NLS-GFP are harvested and poisoned with deoxyglucose and 

sodium azide in order to block the production of energy. Under these 

conditions the active import of the NLS-GFP reporter into the nucleus is blocked 

resulting in the equilibration of the GFP signal between the nucleus and the 

cytoplasm, most likely by passive diffusion across the NPC. When the 

metabolic inhibitors are removed and the cells are allowed to recover in 

medium containing dextrose, NLS-GFP is once again actively imported in the 

nucleus. The relative rates of accumulation of the mutant strain are compared 

with the ones found with wild type, revealing any defect in the mutant’s 

efficiency of nuclear import. The steady state distribution of NLS-GFP was 

indistinguishable in homozygous diploid cells carrying a double deletion of 

MLP1 and MLP2 as compared to wild type (data not shown). Nevertheless, 

mlplA, mlp2Ahd (homozygous diploid) cells displayed a markedly slower 

relative accumulation rate of NLS-GFP into the nucleus with respect to their wild 

type counterpart, 13.5 ± 0.2% / min (wild type) versus 8.9 ± 0.1% / min (mlplA, 

mlp2Ahd). Significantly, when double mutant cells were allowed to recover for 

extended periods of time (up to double the time required for wild type), the initial 

equilibrium distribution of reporter protein was regained, again indicating that 

the efficiency of import and not its steady state balance was affected by the

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



absence of Mlplp and Mlp2p. The rates of passive equilibration of the NLS- 

GFP reporter during the incubation with deoxyglucose and sodium azide were 

also measured in both wild type and mutant cells (Fig 24; see Chapter II for 

details on the method). In this case, mlplA, mlp2Ahd displayed a significant 

increase in the relative passive nuclear egress rates of the NLS-GFP reporter 

as compared to wild type, -8.75 ± 1.0% / min (wild type) versus -13.1 ±  0.6% / 

min (mlplA, mlp2Ahd ). This result is entirely consistent with a reduced 

efficiency of nuclear import in mutant cells (see discussion in Chapter VI).

The involvement of Mlplp and Mlp2p in active nuclear export was 

investigated using two steady state assays (data not shown). In the first assay, 

the subcellular distribution of poly(A)+ RNA was analyzed by in situ 

hybridization using digoxigenin-labeled oligo(dT)30 as a probe (Wente and

Blobel, 1993). In this assay, a block in mRNA nuclear export is reflected in the 

accumulation of the poly(A)+ RNA-specific signal in the nucleus at steady state. 

In the second assay, the steady state distribution of a GFP reporter carrying both 

an NLS and an NES was studied by direct fluorescent microscopy as described 

by Weis and coworkers (Stade, et al., 1997). In this scenario, the NES usually 

wins out over the NLS resulting in a cytoplasmic distribution of the reporter at 

equilibrium. Therefore, a defect in the NES-dependent nuclear export pathway 

is revealed by the appearance of GFP-specific nuclear signal. In both cases no 

effect on export was detected at steady state and the double mutant cells 

appeared indistinguishable from wild type (see discussion in Chapter VI).
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Figure 25. Mlplp and Mlp2p are involved in facilitating nuclear import of a

NLS-GFP reporter.

Top: Graphical representation of the results of an in vivo nuclear import assay 

performed as described in Chapter II. During recovery from an incubation in the 

presence of the metabolic inhibitors deoxyglucose and sodium azide, wild type 

cells reimported a NLS-GFP reporter very rapidly and the reaction was 

complete in 15 min. The mutant (miplA, mlp2Ahd ) on the other hand, 

displayed a much slower rate of reimport and took up to twice as much as the 

wild type to reach steady state levels of nuclear signal. At least 40 cells were 

scored per time point. The results presented reflect the averages of at least 4 

independent measurement per time point. Bottom: Graphical representation of 

the results of an in vivo nuclear diffusion assay analogous to the import assay 

described above (see Chapter II for details). During incubation in the presence 

of the metabolic inhibitors deoxyglucose and sodium azide, aliquots were 

collected from both wild type and mlplA, mlp2Ahd and the percentage of normal 

cells displaying clear nuclear localization of the reporter protein NLS-GFP was 

scored as a function of time. The kinetic of passive diffusion is significantly 

faster in mutant cells relative to wild type, consistent with the reduced import 

rate of the mutant observed in the top panel. At least 40 cells were scored per 

time point. The results presented in the graph reflect the averages of at least 3 

independent measurement per time point.
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Overexpression of MLP1 in Saccharomyces

The potential coiled-coil region of Mlplp suggest that this protein may be 

capable of self-assembly. Mlp1 p was overexpressed in yeast cells to determine 

whether extended polymers could be formed that could clarify the role of this 

protein in providing a connection between the NPCs and the nuclear interior. 

The entire coding region of MLP1 was subcloned in a 2 pm-based yeast 

expression vector under the control of the GAL inducible promoter (see Chapter 

II for details). Using this plasmid (pGALMLPI), it was possible to overexpress 

Mlplp at least ~100-fold over wild type levels as demonstrated by quantitative 

immunoblotting performed with MAb148G11 (Fig. 26). Strikingly, 

overexpression of Mlplp at these levels was not toxic as demonstrated by the 

ability of cells carrying pGALMLPI to grow on galactose plates (data not 

shown). Cells containing this construct were induced with galactose for various 

periods of time and analyzed by Indirect IF microscopy using MAb148G11 to 

reveal the localization of Mlplp (Fig. 27). As expected, uninduced cells (0 hr 

time point) showed a staining pattern very similar to the one observed in wild 

type cells. In contrast, induced cells showed an increase of the Mlplp-specific 

signal as a function of the induction time. Initially, small dots (1-4 per cell) could 

be seen at the nuclear periphery at or adjacent to the NE. Subsequently, these 

dots appeared to coalesce and generally gave rise to one prominent circular 

patch per cell. Finally, this large patch grew to occupy most of the nuclear 

interior. The morphology of the NE, the NPCs, the nucleolus and of the spindle 

were studied in cells overexpressing Mlplp by double-staining indirect IF 

microscopy (data not shown). The morphology of all of these nuclear structures 

appeared normal after extended induction periods and none appeared to be in 

association with the large Mlplp dots or patches. Nuclei isolated from cell
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overexpressing Mlplp were observed by EM to reveal whether any novel 

structure could be detected (Fig. 28B ). As a comparison, isolated nuclei from 

cells that had been grown in dextrose to repress the expression of the non- 

chromosomal copy Mlplp were also analyzed using the same technique (Fig. 

28A). Extensive electron-dense patches that extended from different areas of 

the NE towards the nuclear interior were observed in cells grown in galactose 

but were absent in cells grown in dextrose. These electron-dense patches did 

not appear to have any obvious ordered structure but appeared to be 

fibrillogranular in nature. In addition they appeared to be distinct from the 

nucleoli both in number and in morphological appearance. No other structure 

or filaments were observed in induced cells that were not present in repressed 

cells. To determine if these structures were indeed formed of large 

accumulations of Mlplp, isolated nuclei from cells grown in both galactose (Fig. 

28C, D) and dextrose (data not shown) were immunostained with MAb148G11 

and prepared for IEM . As expected, the dense fibrillogranular patches present 

in induced cells specifically stained with MAb148G11 demonstrating that they 

contain large quantities of Mlplp (see discussion in Chapter VI). In cells grown 

in dextrose, Mlplp appeared to have a localization that was indistinguishable 

from wild type (see Fig. 17C, D).
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Figure 26. M lplp can be overexpressed at least 100-fold in yeast.

Wild type W303 cells were transformed with pGALMLPI, expressing the entire 

MLP1 gene under the control of the inducible GAL promoter (see Chapter II for 

details of the cloning procedure). Transformants were exponentially grown in 

selective medium containing raffinose before induction with galactose. 

Samples of the culture were taken at the indicated time points (0, 0.5, 1, 2, 4 hi) 

and total cell lysates were prepared as described in Chapter II. Lysates were 

loaded on SDS-PAGE and transferred to nitrocellulose before immunoblotting 

with the anti-Mlp1p MAb148G11. Numbers below the gel indicated the relative 

expression level of Mlplp at each time point. Quantitation of the Mlplp-specific 

signal was performed as described in Chapter II.
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Figure27. Upon overexpression. M lplp forms multiple peripheral nuclear dots

that subsequently coalesce and take over the majority of the nuclear volume.

W303 cells containing pGALMLPI were grown to mid-logarithmic phase in 

selective medium containing raffinose before induction with galactose. Cells 

were sampled at the indicated time points after induction {0, 0.5, 1, 2, 4 hi), fixed 

and immunostained with MAb148G11 to reveal the position of Mlplp. As a 

comparison, the position of the DNA was revealed using DAPI. Bar, 2 jim
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Figure 28. When overexpressed in veast. Mlplp forms dense fibrilloaranular 

patches underneath the NE that are easily distinguishable from the nucleolus.

Exponentially growing cells containing pGALMLPI were transferred to selective 

medium containing either dextrose (A) or galactose (B-D) and the incubation 

was continued for 4 hr. At the end of the induction/repression period, cells were 

harvested and nuclei were isolated using the method described in Chapter II. 

Isolated nuclei were either subjected to thin-section EM analysis (A-B) or to IEM 

analysis using MAb148G11(C, D) as described in Chapter II. Arrows point to 

large fibrillogranular electron-dense patches that were observed in induced 

cells and contained Mlplp. Bar, 250 nm.
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Chapter VI: Discussion

A Method for the Preparation of Highly Enriched NE Fractions from 

the Yeast Saccharomyces

Presented in the first part of this thesis dissertation is a method for the 

large scale isolation of yeast NEs and the for the extraction of isolated NEs with 

heparin. EM analysis showed that both of these preparations are virtually 

devoid of gross contaminants and are morphologically well-preserved. 

Moreover, negative staining of H-NEs showed that heparin extraction removes 

the main structure of the NPCs leaving open pores in the membrane. Using 

biochemical criteria it was demonstrated that key cytoplasmic and 

nucleoplasmic contaminants are absent from both NE fractions and that NE- 

associated proteins were recovered with yields ranging between 80 and 90%. 

The NE and H-NE fractions are respectively 100- and 340-fold enriched based 

on the yields of NE specific markers. Both the NEs and H-NEs were shown to 

be active in a cell-free ER translocation assay, each having a higher specific 

activity than that of previously published crude microsomes (Hansen, et al., 

1986; Rothblatt and Meyer, 1986; Waters and Blobel, 1986). Finally, extraction 

of H-NEs with detergents showed that the grommets left in the NE after heparin 

treatment are apparently stabilized by previously uncharacterized ring 

structures of approximately the same internal diameter as the grommets 

themselves. It is hoped that the compositional analysis of these rings may shed 

light on the mechanism by which the NPCs are retained in the NE (see below).

The high yields of the NE fractions allowed the construction of a balance- 

sheet that tallies the distribution of representative markers in various nuclear
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and non-nuclear compartments. For example, this strategy was used to 

determine the quantitative localization of ribosomal proteins within the cell. It 

was also possible to show that the NE represents approximately 20% of the ER, 

similar to what was previously reported (Preuss, et al., 1991). Using the same 

approach it was established that while the majority of the Golgi integral 

membrane protein Sed5p (98% of the total cellular amount) is indeed found in 

low-density membranes that characterize this organelle, a small pool of this 

protein is associated with the ER, consistent with its role in ER to Golgi transport 

and with previous observations (C. Hopkins, personal communication). A 

possible caveat of the results presented here is that cells are subjected to 

exhaustive cell-wall digestion (3 h at 30°C) before lysis. This treatment stops 

cell division and could alter the amount and composition of various organelles. 

However, the qualitative subcellular localization of each of the markers used 

here has been previously ascertained. In all cases (with the possible exception 

of Nup2p, see below), this localization corresponds with the quantitative 

distribution of the marker, and the organelle(s) with which it is associated, in the 

enrichment procedure presented here. This indicates that the quantitative data 

obtained from the subcellular fractionation of a given marker accurately reflect 

the subcellular distribution of that marker in vivo. Hence, quantitative analysis 

of the fractionation behavior predicted that a proportion of Pom152p would be 

associated with the ER, which was confirmed by IF staining of cells. This 

suggests that the balance-sheet approach could be used to predict the 

subcellular localization and proportional distribution of other cellular 

components.

As mentioned above, NEs and H-NEs are competent in the translocation of 

ppaF to the perinuclear space. These fractions therefore provide a viable 

source of yeast rough ER membranes that could be used to develop cell-free
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systems for the study of various rough ER functions and to further purify the 

molecular components involved in these functions. For example, systems for 

the reconstitution of protein translocation into proteoliposomes have been 

developed and used successfully in yeast (Brodsky, et al., 1993; Brodsky and 

Schekman, 1993). The utilization of the highly-enriched NE fractions described 

here instead of crude microsomal membrane fractions may enhance the 

potentiality of these systems. In addition, the NE and H-NE fractions could be 

used to develop cell-free systems that will allow the molecular dissection of 

other important NE related functions. These include: nuclear transport, at least 

in the aspect of specific docking and undocking of the substrate to the NPC 

(Kraemer, et al., 1995; Aitchison, et al., 1996; Rout, et al., 1997); chromatin-NE 

interactions, such as the binding of telomeric structures to the inner nuclear 

membrane (Dresser and Giroux, 1988; Klein, et al., 1992; Palladino, et al., 

1993); assembly of the mitotic spindle (Kilmartin and Fogg, 1982; Rout and 

Kilmartin, 1990; Masuda, et al., 1992); regulation of events involving the 

nucleus such as karyokinesis and karyogamy (Latterich and Schekman, 1994); 

and regulation of gene expression (Cox, et al., 1993; Mori, et al., 1993).

The ring structures underlying the grommets in H-NEs, as revealed by 

detergent extraction, appear to be the same as those produced by heparin 

treatment of highly enriched NPCs (which were extracted with detergents in the 

course of their isolation). These rings are derived from the periphery of the NPC 

disks, contain the pore membrane protein Pom152p as a major component, and 

apparently serve to support the membrane grommets in the H-NEs. These rings 

may correspond to the rings of central/2 radial spoke domains found in isolated 

yeast NPCs that are thought to be the functional and structural analogue of the 

CSR of vertebrate NPCs (Akey and Radermacher, 1993; Yang, et al., 1998). In 

addition, recent findings obtained using an in vitro nuclear reconstitution

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system from Xenopus oocytes are consistent with “empty” pores being one of 

the steps of NPC reassembly after mitosis (Goldberg, et al., 1997). These 

findings support the hypothesis that the rings observed after heparin-extraction 

of isolated NEs could both anchor the NPC within the nuclear membrane and 

stabilize the reflexed membrane of the pore grommet; they may also resemble 

an intermediate of de novo NPCs biogenesis.

The only data suggesting that some NE-associated structures have not 

been preserved during the enrichment procedure is the loss of Nup2p. This 

protein may be part of a fragile, peripheral structure that is sheared off during 

NPC and NE preparations (Rout and Blobel, 1993). On the other hand it should 

be remembered that the status of Nup2p as a bona fide nucleoporin has been 

recently brought into question by the discovery that its closest homologue 

Yrb2p/Nup36p, might not be a component of the core structure of the NPC 

(Noguchi, et al., 1997; Taura, et al., 1997). If this were to be the case the loss of 

Nup2p form the NE and from the NPCs may be entirely expected.

No structures resembling the NL or major components that could be 

lamins were found in the NE preparations. Consistent with this observation, 

database searches have failed to reveal any yeast proteins with significant 

sequence similarities to vertebrate lamins. In addition, antibodies that were 

previously reported to cross-react with lamins A and B analogues in yeast 

(Georgatos, et al., 1989), did not detect any co-enriching bands of the expected 

molecular weight either in the NE or in the H-NE fractions (data not shown). 

The most natural conclusion from these findings is that budding yeast do not 

contain a NL.

In conclusion, the isolated NE fractions described here can provide the 

source material to generate the reagents necessary to study the activities
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associated with the NE (see below), and at the same time be the substrates with 

which these activities can be studied.

A Successful Strategy to Generate mAbs Against NE-Associated 

Antigens

The high degree of enrichment of the NE fractions described in this 

dissertation makes them excellent material for raising mAbs against NE and ER 

specific components. Three different NE-derived fractions (NEs, H-NEs and S- 

NEs; Chapter IV, Table II) were used to immunize mice and a panel of 173 

mAbs were obtained. Of these mAbs 114 recognized NE-associated antigens 

as judged by indirect IF microscopy. The remaining 59 were either against ER 

components (48) or against other cellular structures and organelles (Chapter IV, 

Table III). Four of the NE-specific mAbs have been extensively characterized. 

Of these, the anti-Pom152p MAb118C3 has been used to gain new insights into 

the in vivo behavior of Pom152p (Strambio-de-Castillia, et al., 1995). Pom152p 

is a type II integral membrane protein found at the pore membrane (Wozniak, et 

al., 1994). This protein is one of the most abundant NPC-associated proteins 

found in isolated NPCs and it is thought to help anchor the structural core of the 

yeast NPC to the NE (Aitchison, et al., 1995; Nehrbass, et al., 1996). The 

unexpected partial localization of Pom152p to the ER could have important 

implications for the understanding of the mechanisms that lead to the assembly 

of new NPCs in actively growing yeast cultures. This result could only have 

been obtained by use of a mAb that allows the detection of the unaltered protein 

at normal levels of expression. The second of the mAbs to be characterized 

was MAb165C10. This mAb specifically recognizes the previously unidentified 

essential nucleoporin Nup159p and was crucial in the study of this protein
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(Kraemer, et al., 1995). Nup159p was the first yeast nucleoporin to be localized 

at the ultrastructural level and this was achieved because of the availability of 

MAb165C10. The sublocalization of Nup159p together with its homology with 

Nup214/CAN makes it a strong candidate for one of the components of the short 

cytoplasmic fibers that project from the NPC. Nup159p contains a region with 

repeated motifs including FXFG repeats shared by several other nucleoporins 

as well as other related repeat motifs. This repeat-containing domain of the 

protein interacts directly with Kap95p in an overlay assay pointing to a possible 

role of Nup159p in docking transport substrates on their way across the NPC. 

Accordingly, Nup159p is one of the class of nucleoporins whose mutants exhibit 

the double mRNA export / NPC-clustering phenotype and is thought to be 

directly involved in the export of RNA from the nucleus (Gorsch, et al., 1995). 

Interestingly, the epitope of MAb165C10 has been mapped to a region of 

Nup159p that contains none of the repeats and is not recognized by the poly

specific anti-nucleoporin MAb414 (Davis and Blobel, 1986; Aris and Blobel, 

1989). This finding is consistent with the high degree of specificity of 

MAb165C10 and underscores the importance of such a reagent in the 

characterization of individual NPC components. The other two mAbs that have 

been characterized (MAb215B9 and MAb148G11) were essential in the 

identification of Mlplp as a component of nuclear filaments linking the NPCs to 

the nuclear interior and will be discussed in length in the next section

The remaining 110 as yet uncharacterized anti-NE mAbs gave at least 10 

distinct staining patterns on immunoblots of highly enriched NEs (Chapter IV, 

Table V). Of these, at least 6 recognize what appear to be unique bands and 

will represent an invaluable and largely untapped resource in the functional 

analysis of both known and unknown NE-specific proteins. In addition, the 48
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anti-ER mAbs generated during the course of this study may be equally 

important in the study of ER-related functions.

The Identification of Novel Components of Nuclear Filaments 

Connecting the NPC with the Nuclear Interior

The final part of this dissertation describes the identification of two yeast 

proteins, Mlplp and Mlp2p, as strong candidates for components of nuclear 

filaments connecting the NPC to the nuclear interior. Mlplp was identified 

using a novel NPC-clustering assay devised to isolate mAbs recognizing non- 

nucleoporin, NE-associated proteins (Chapter V, Fig. 12). Using this indirect IF 

microscopy screen, it was observed that the antigen of the anti-NE MAb215B9 

and MAb148G11 only partially colocalizes with the NPCs in a NPC-clustering 

strain. This antigen was isolated from a yeast expression library using 

MAb148G11 and was found to be the previously identified nuclear protein of 

unknown function, M lplp (Kolling, et al., 1993; see below). Interestingly, while 

the IF-staining pattern of Mlplp in wild type cells was reminiscent of the 

punctate rim pattern typical of nucleporins, this protein failed to completely 

colocalizes with NPCs in these cells. The localization pattern of M lplp both in 

wild type and in NPC-clustering cells strongly suggest that M lplp is not a 

constituent component of the NPC and cannot be considered a nucleoporin 

based on current criteria (reviewed in, Rout and Wente, 1994). Furthermore, 

these observations have a second important implication. In NPC-clustering 

cells, Mlplp is often found around the rim of the NE even when the majority of 

the NPCs are clearly assembled in a tight cluster to one side of the NE (Chapter 

V, Fig. 12). This strongly suggests that Mlplp differ from nucleoporins in
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another crucial way in that it does not exclusively require NPCs to be anchored 

to the nuclear periphery. This observation is consistent with the results of the 

ultrastructural localization studies that showed a significant although limited 

proportion of the Mlplp-specific signal near the NE but at a distance from 

recognizable NPCs (see below). It is possible that a proportion of the M lplp 

molecules are anchored to the NE via as yet uncharacterized factors. Such 

putative anchoring-factors will be the subject of intense future investigations.

The second protein of this novel family, Mlp2p (the uncharacterized yeast 

ORF, YIL149C), was found in searches of the complete yeast genomic database 

as the only putative homologue of Mlplp (Chapter V, Fig. 14). Importantly, both 

MLP1 and MLP2 belong to genomic Block 38 present on both chromosome IX 

and XI, suggesting that these two genes arose from a genome duplication event 

(Wolfe and Shields, 1997). Both of these proteins have a large predicted MW 

(Mlplp, 218 kD; Mlp2p, 195 kD) and are expected to have two major structural 

domains: a coiled-coil amino terminus occupying -80% of the primary 

sequence and a carboxy-terminus of unknown structure (Chapter IV, Fig. 13). 

An obvious speculation based on this predicted structure is that the large 

coiled-coil domain forms a filamentous structure that may in turn be involved in 

organizing higher order polymers (for example, filaments). In contrast, the 

carboxy-terminus might participates in interactions with heterologous factors 

and in anchoring these polymeric structures to the NPCs or to the nuclear 

interior (see also below). It should be noted that while other structural proteins 

localized in the nucleus have large coiled-coil domains, the domain 

organization of these proteins is different from the one found in Mlplp and 

Mlp2p. NuMA, the nuclear lamins and Spc110p/Nuf1p all have central coiled- 

coil regions flanked by globular “heads" and “tails” (McKeon, 1991; Mirzayan, et 

al., 1992; Cleveland, 1995; Kilmartin and Goh, 1996). Myosins on the other
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hand, have a globular “head” followed by a large coiled-coil domain at the 

carboxy-terminus (for examples of “nuclear” myosins see, (Berrios and Fisher, 

1986; Berrios, et al., 1991). This indicates that Mlplp and Mlp2p may belong to 

a novel and as yet uncharacterized type of structural proteins of the nucleus. 

Insight into the possible roles of Mlplp and Mlp2p came form the observation 

that their closest relatives in the database are Tpr and the Drosophila Tpr- 

homologue, Bx34 (Frasch, et al., 1988; Byrd, et al., 1994). These proteins share 

a double localization at the nuclear periphery in the vicinity of the NPCs and at 

the nuclear interior in regions of the nucleoplasm that are excluded from the 

chromatin and the nucleoli (Cordes, et al., 1997; Zimowska, et al., 1997). In 

addition, new evidence indicates that Tpr is localized at nuclear filaments 

connecting the NPCs to the nucleolus.

The genes encoding Mlplp and Mlp2p were disrupted by integrative 

transformation revealing that neither of the gene products is essential (Chapter 

V, Fig. 15). A strain harboring the double deletion of MLP1 and MLP2 was 

obtained by crossing the individual haploid knockout strains and was found to 

have a significant fitness deficit when grown in competition with its wild type 

counterpart (Chapter V, Fig. 15). This demonstrated that Mlplp and Mlp2p are 

essential for the ability of yeast to survive under conditions that mimic the wild 

type environment and that M lplp and Mlp2p have a synthetic growth defect and 

therefore most likely functionally interact with each other.

The localization of Mlplp within the cell was studied both by 

immunoblotting and by IEM using MAb148G11 (Chapter V, Figs. 16,17 and 18). 

While Mlplp was found to cofractionate almost exclusively with isolated NEs it 

was lost when NEs were extracted with heparin. These results are in accord 

with indirect IF results. In addition, secondary structure predictions together with 

the fractionation behavior of Mlplp demonstrate that this protein is peripherally
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associated with the NE. Interestingly, Mlplp was found to fractionate away from 

an enriched NPC fraction prepared as described by Rout and Blobel (Rout and 

Blobel, 1993). The fractionation pattern of Mlplp is consistent with the non

clustering behavior of Mlplp in the nup133A strain and reinforces the notion 

that this protein is only partially associated with the NPCs and is not a bona fide 

nucleoporin. Interestingly, M lplp and Mlp2p represent the only known 

examples of proteins that display a similar fractionation pattern.

Ultrastructural localization studies also point in the same direction. M lplp 

specific staining on both isolated NEs and isolated “broken” nuclei was found 

exclusively in the nucleoplasm and in the majority of the cases within a 150 nm 

distance from the mid-plane of the NE. In the best preserved cases, such signal 

was found in association with nucleoplasmic fibers that for the most part (though 

not exclusively) emanated from the vicinity of visible NPCs. Some internal 

nuclear signal was also observed on immunostained whole-nuclei although this 

signal was not seen in association with obvious structures. Strikingly, the 

average distances of gold particles both from the mid-plane of the NPC and 

from the cylindrical axis of the NPC in isolated NEs immunostained for M lplp 

was significantly increased with respect to the same distances measured for the 

peripheral nucleoporin Nup159p. It should be remembered that only the 

position of the epitope of the antibody is being localized rather then the position 

of the protein as a whole. On the scale of the immunostained structures here 

this may not actually reflect the extent of the localization of the entire protein. A 

second important caveat of many immunolocalization techniques is that the 

dimensions of the antibody-gold conjugate have to be taken into account in 

determining the precise localization of the epitope. Nevertheless, knowing the 

approximate position of the epitope along the primary structure of the protein 

and knowing the predicted filamentous nature of the protein estimates of the
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position of Mlplp relative to the NE and NPCs can be made. Based on these 

estimates, Mlplp could extend towards the nucleoplasm as much as -210 nm 

from the mid-plane of the NE on the x axis and as much as -180 nm from the 

cylindrical axis of the NPC on the y axis. This is in sharp contrast with similar 

estimates concerning Nup159p whose epitope is found -30 nm from the middle 

of the NPC on the y axis and -  10 nm on the x axis (Chapter V, Fig. 18; 

Kraemer, et al., 1995). In this case an estimate of the position of the whole 

protein with respect to the NPC is more difficult because the secondary structure 

of the protein is less predictable. Under the assumption that this protein has an 

extended filamentous structure (see also predictions of the structure of the 

Nup159p vertebrate homologue Nup214/CAN; Wootton, 1994), estimates 

similar to the ones employed for Mlplp would predict that Nup159p could 

extend a maximum of -60 nm from the center of the NPC on the y axis and a 

maximum of -  40 nm on the x axis. Incidentally, such predictions are consistent 

with the localization of Nup159p on the short cytoplasmic filaments of 30-50 nm 

that project from the cytoplasmic side of the NPCs. It is worth stressing again 

that the localization of Mlplp at such a significant distance from NPCs is not 

consistent with the expected behavior of a nucleoporin, especially when 

compared with the localization of the peripheral nucleoporin Nup159p. Indeed, 

such a localization underscores once more that Mlplp belongs to a novel type 

of nuclear proteins that molecularly define a novel structural domain of the 

nucleus that provides a link between NPCs and the nuclear interior.

The fractionation behavior and ultrastructural localization of Mlp2p was 

studied utilizing a yeast strain expressing an epitope-tagged version of the 

protein. The results obtained in this case were very similar to the ones obtained 

with Mlplp, again supporting the view that Mlp2p and Mlplp are structurally 

and functionally closely related.
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A thorough phenotypic analysis of a yeast mutant strains carrying 

deletions of both MLP1 and MLP2 was performed to investigate the in vivo 

functional roles of these proteins (Chapter V, Figs. 20-24). Double knockout 

cells (mlp1A, mlp2A) were considerably larger than their wild type counterpart. 

Furthermore, mutant populations presented a significant increase in the 

percentages of large-budded cells consistent with a general inhibition of the 

cell-cycle. In addition double mutant cells grew as “nibbled” colonies typical of 

strains undergoing clonal lethality. Consistent with these results, mlp1A, mlp2A 

cells correctly segregated chromosomes at mitosis with a markedly reduced 

efficiency. On the other hand, mlp1A, mlp2A cells did not show a clear cell- 

cycle arrest phenotype as judged by the analysis of the DNA-content 

distribution in the population. The morphological distribution of various nuclear 

marker in mutant cells as compared to wild type was studied to reveal possible 

alterations. This study revealed alterations in the overall shape of the nucleus 

although the distribution of NPCs around the NE appeared unaffected. In 

addition, the nucleoli appeared larger and less compact than normal. They had 

lost their crescent shape and instead appeared fragmented. Finally, marked 

spindle aberrations were observed with mutants appearing to be unable to 

build the extended spindles necessary for the final stages of karyokinesis and 

cytokinesis.

This phenotypic picture is consistent with a general inefficiency in the 

ability of cells to undergo the cell division cycle but are not consistent with a 

direct role of Mlplp and Mlp2p in the regulation of this process. In addition, 

there appear to be a general malfunction in the ability of cells to maintain the 

proper internal nuclear architecture. These phenotypes could be expected for 

proteins whose primary role is to maintain the structural organization of the 

nucleus. However, similar phenotypes to the ones described here have been
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repeatedly observed in association with mutations of proteins that are directly 

involved in nucleocytoplasmic transport, such as several nucleoporins and 

transport factors (Adachi and Yanagida, 1989; Xiao, et al., 1993; Fabre, et al., 

1994; Yano, etal., 1994; Aitchison, et al., 1995; Brinkmann, et al., 1995; Heath, 

et al., 1995; Imiger, et al., 1995; Loeb, et al., 1995; Kenna, et al., 1996). This led 

to the hypothesis that Mlplp and Mlp2p could also be involved in nuclear 

transport. Of course, the predicted ability of both of these proteins to form 

extended coiled-coil filaments, and their ultrastructural localization at an 

interface between the NPCs and the nuclear interior, strongly encouraged such 

an hypothesis. To investigate this further, the ability of mlplA, mlp2A cells to 

import a NLS-reporter protein was compared to wild type by way of an in vivo 

nuclear import assay (Shulga, et al., 1996). The results of this assay suggest 

that Mlplp and Mlp2p may be involved in facilitating import of transport 

substrates to the nucleus. Interestingly, the results of a similar nuclear passive 

export assay appear to mirror the results of the import assay in that the kinetics 

of egress of the reporter out of the nucleus during conditions of metabolic 

inhibition are faster in the mutant than in the wild type. This could be explained 

by assuming that the rates of egress that are observed in this assay are in fact 

the results of the combined rates of active import and the rates of passive 

diffusion from the nucleus. In this case, if one assumes that the rates of diffusion 

are constant even in the presence of the metabolic inhibitors that block the 

production of energy (i.e. they do not require energy), then a reduced efficiency 

of import (i.e. as it is known to occur in double mutant cells) will be reflected in a 

faster net egress rate of the reporter towards the cytoplasm. The involvement of 

Mlplp and Mlp2p in active nuclear export of mRNA was investigated using a 

poly(A)" RNA nuclear accumulation assay (Wente and Blobel, 1993). Similarly, 

the steady state subcellular distribution of a GFP reporter carrying both an NES
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and NLS was studied to assess the ability of the double mutant to actively 

export NES-containing proteins (Stade, et al., 1997). Both of these assays 

showed no change in the steady state distributions of the reporters in the mutant 

as compared to wild type. However, this cannot be taken as a prove that M lp lp 

and Mlp2p are not involved in nuclear export especially because the 

subcellular distribution of the import substrate (i.e. NLS-GFP) at equilibrium was 

also unaffected in the double knockout and only the kinetics of import were 

altered. The export assays available to date do not allow the assessment of 

possible changes in rates of export. Therefore, further studies and the 

development of new kinetic assays will be required to establish the role of 

Mlplp and Mlp2p in export.

To investigate the ability of Mlplp to self-assemble and give rise to large 

polymeric structures within the nucleus, this protein was overexpressed in 

yeast. Overexpression lead to the formation of large nuclear dots that appear to 

nucleate at the or near the NE and progressively invade the nucleoplasm. The 

ultrastructural analysis of these dots revealed a fibrillogranular structure with no 

obvious high order regularity. In addition, IEM proved that this fibrillogranular 

network contained large amounts of Mlplp and suggested that Mlplp is its 

major constituent. Strikingly, cells expressing vast excesses of Mlplp were 

viable and did not show any obvious growth defect. Taken together these data 

suggests that Mlplp may be capable of forming an extensive fibrillar network 

that emanates from the NE and penetrates the nucleoplasm interweaving 

between the chromatin without disrupting the architecture or the functions of the 

nucleus. The ability to form such network is consistent with a structural function 

of Mlplp in aiding the connection of the NPC with the nuclear interior. On the 

other hand, the ability of Mlplp to self-assemble and form regular polymers that
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could account for such structural functions remains to be demonstrated and will 

be the subject of future studies.

The results obtained with Mlp1 p are in large part consistent with the data 

published by Kolling et al. (Kolling, et al., 1993) but they extend their 

observations. These authors isolated Mlplp (Myosin like protein 1) in 

screening for myosin cross-reacting clones in a yeast expression library. 

Indeed, Mlplp was found to contain a large coiled-coil domain at the amino- 

terminus that most likely accounts for this cross-reactivity. However, Kolling and 

coworkers agreed that Mlplp does not belong to the myosin family due to the 

different organization of the structural domains along the primary sequence of 

the protein (see above). The gene encoding Mlplp was disrupted and found to 

be non-essential consistent with results presented here. In an attempt to 

investigate possible functions of Mlplp, Botstein and coworkers localized it by 

indirect IF microscopy using an affinity-purified rabbit polyclonal antibody raised 

against the recombinant protein. It should be noted though that their anti-Mlpl p 

antibody did not give any signal in wild type cells containing only normal levels 

of Mlplp. For this reason a strain was constructed that contained MLP1 on a 2 

nm plasmid. In this strain, the anti-Mlp1p antibody recognized “intensely 

staining dots and sometimes rings” that appeared to be localized “adjacent to 

the nucleus”. Although this staining pattern does not correspond with the native 

localization of Mlplp described in this dissertation (determined by both indirect 

IF microscopy and by IEM), it does correlate with the results obtained here upon 

Mlplp overexpression (Chapter V, Fig. 26) fully accounting for the discrepancy. 

When the anti-Mlp1p antibody was used to immunolabel mouse epithelial cells, 

Kolling et al. observed an intense internal nuclear staining that appeared to be 

excluded from nucleolar and chromosomal areas. Although, this pattern could 

be at first glance considered similar to the pattern observed with Tpr and Bx34,
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it differs from it in a crucial way — namely the lack of a clear peripheral rim 

staining. This, and the appearance of numerous cross-reacting bands on 

immunoblot of mouse cells extracts, argues against the specificity of this result. 

When, Kolling et al. examined the phenotype of MLP1 knockout cells, no 

defects in chromosome stability were observed. This is not surprising due to the 

existence of the Mlplp yeast homologue, Mlp2p. This protein complements the 

growth defect associated with loss of Mlplp and is expected to similarly 

suppress chromosome segregation defects. Indeed, these defects were 

observed only in mlp1A, mlp2A cells and not in either mlp1A or mlp2A cells 

(Chapter V, Fig. 20; data not shown). The only real discrepancy between 

Kolling et al. and data presented in this dissertation is the failure to detect an 

increased UV-sensitivity in either mlp1A, mlp2A , mlp1A or mlp2A cells (data not 

shown). Although the defect observed in Kolling et al. is admittedly “slight", it 

cannot be dismissed particularly because it cosegregated with the absence of 

MLP1. However, the significance of this phenotype remains unclear especially 

due to its apparent strain- or experimental condition-dependency.

It has been long observed that the NPCs are in fact structurally continuous 

with the nuclear interior (Monneron and Bernhard, 1969; Franke and Falk, 

1971). These observations have led to the speculations that efficient exchange 

of material between the nuclear periphery and the nuclear interior could occur 

along “tracks” connecting the two (Blobel, 1985; Meier and Blobel, 1992; Meier 

and Blobel, 1994). Unfortunately, the molecular definition of these long 

hypothesized and controversial “tracks” has proven hard to achieve. Several 

criteria could be thought of that could help define constituents of this domain. In 

one model, such components could be expected to be filamentous in nature 

and to give rise to extended polymers of variable sizes that emanate from 

peripheral structures of the NPCs and possibly from other sites on the NE and
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extend into the nucleoplasm. This model has a number of natural 

consequences. The first corollary would be that components of such structures 

would be localized further away from the center of the NPCs than the most 

peripheral structures of the NPCs (for example a reasonable cut-off distance 

could be a distance equal to 1 NPC radius). Second, they would be easily 

extracted from NPCs and therefore they would fractionate only partially with 

isolated NPCs fractions. Furthermore, such components would be present in 

isolated NPCs fractions only in non-stoichiometric amounts. Another important 

consequence of the model would be that components of these extended 

polymeric structures would be expected to trail behind the NPCs in NPC- 

clustering strains and therefore only partially cluster with them. Needless to 

say, Mlplp and Mlp2p satisfy all of the criteria mentioned above. As a 

consequence it is natural to suggest that Mlplp and Mlp2p, together with their 

vertebrate counterparts Tpr and Bx34, represent the strongest candidates to 

date for the molecular components of the long hypothesized nuclear “tracks” 

connecting the NPCs with the nuclear interior. This idea receives further 

strength from the functional data available exclusively for Mlplp and Mlp2p and 

pointing to a possible involvement in nuclear transport.

Various model of how such “tracks” could function in facilitating transport 

can be proposed based on the available data for the potential components. In 

one model Mlp1p/Mlp2p (and Tpr) could form extended and hollow cables 

similar to the ones visualized by Ris and others (Franke, 1970; Franke and 

Scheer, 1970; Franke and Scheer, 1970; Kartenbeck, et al., 1971; Richardson, 

et al., 1988; Ris and Malecki, 1993; Ris, 1997), that could help clear the 

substrate away from the immediate vicinity of the pore and move it towards the 

interior. In a similar way, these cables could facilitate export of RNA and 

proteins by facilitating their movement towards the nuclear periphery. This
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could be achieved either by facilitated diffusion of substrates inside an open 

tunnel or by active transport of substrate between binding sites positioned 

opportunely along the filaments. In this light, one can speculate that the FP-rich 

region present at the carboxy-terminus of Mlplp and Mlp2p could represent a 

highly degenerated FG repeats region. If one imagines that Mlplp and Mlp2p 

form long filaments and that the globular tails of each monomer are exposed at 

the surface of such filaments, the degenerated repeats domains present on 

each of the globular tails could function as low affinity docking sites for the 

active transport substrates along the filaments. Indeed, a recent study has 

pointed to the possibility that the NES may be required not only for translocation 

across the NPC but also for accumulation of substrates to the nucleoplasmic 

face of the NPC (Feldherr and Akin, 1997). In this study, PEG-coated gold 

particles of two different sizes were injected either in the nucleoplasm or in the 

cytoplasm of amphibian oocytes and their movements towards the NPCs were 

followed at the ultrastructural level. Gold particles injected in the cytoplasm 

were able to freely diffuse and were seen to accumulate at the cytoplasmic side 

of the NPCs regardless of their size. In contrast, while small (4-7 nm) particles 

injected in the nucleoplasm were also able to diffuse towards the NPCs, large 

particles (11-27 nm) did not appear to move from their site of injection unless 

they contained an NES.

While Mlplp and Mlp2p appear to have a role in nucleocytoplasmic 

transport, a concomitant structural role in helping maintaining the architectural 

organization and integrity of the nucleus cannot be excluded. Indeed, mutants 

lacking Mlplp and Mlp2p show alterations in various nuclear structures and 

these effects may equally be due to a direct structural role as well as be a 

pleiotropic consequence of inefficient nucleocytoplasmic transport. Further
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studies will have to be performed to distinguish between these two equally 

intriguing possibilities.

An important drawback of this dissertation is the lack of any data regarding 

the interaction of Mlplp and Mlp2p with other molecules. Preliminary 

experiments aimed to this goal have not so far yield the desired results. Two 

main strategies were employed (data not shown). In the first, nuclei were 

prepared from cells expressing Mlp1p-pA and they were lysed under mild 

conditions before immunoaffinity purification of the tagged protein on an IgG- 

column. Although Mlplp was reliably isolated in this way no specifically 

interacting band was purified under the conditions used. The isolation of M lplp 

interacting components was also attempted by employing overlay assays. Also 

in this case no specific interactions were detected. Needless to say, the efforts 

to isolate Mlplp and Mlp2p interacting components will be redoubled in the 

future. A number of different strategies in addition to the ones that have been 

started can be envisioned to this aim. These include genetic methods such as 

synthetic lethal and two-hybrid screens and biochemical methods such as the 

use of cross-linking agents that could help stabilize labile interactions.

In conclusion, the proteins described in this dissertation molecularly define 

a novel structural and functional domain of the nucleus and open with their 

characterization a new and unprecedented area of studies that will 

considerably extend our current understanding of nuclear and cellular 

physiology.
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