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NORMALIZATION AMONG HETEROGENEOUS

POPULATION CONFERS STIMULUS DISCRIMINABILITY

ON THE MACAQUE FACE PATCH NEURONS

Akinori F. Ebihara, Ph.D.

The Rockefeller University 2015

Primates are capable of recognizing faces even in highly cluttered natural

scenes. In order to understand how the primate brain achieves face recogni-

tion despite this clutter, it is crucial to study the representation of multiple

faces in face selective cortex. However, contrary to the essence of natural

scenes, most experiments on face recognition literatures use only few faces at

a time on a homogeneous background to study neural response properties. It

thus remains unclear how face selective neurons respond to multiple stimuli,

some of which might be encompassed by their receptive fields (RFs), others

not. How is the neural representation of a face affected by the concurrent

presence of other stimuli? Two lines of evidence lead to opposite predictions:

first, given the importance of MAX-like operations for achieving selectivity and

invariance, as suggested by feedforward circuitry for object recognition, face

representations may not be compromised in the presence of clutter. On the

other hand, the psychophysical crowding effect - the reduced discriminability

(but not detectability) of an object in clutter - suggests that an object repre-

sentation may be impaired by additional stimuli. To address this question, we

conducted electrophysiological recordings in the macaque temporal lobe, where

bilateral face selective areas are tightly interconnected to form a hierarchical

face processing stream. Assisted by functional MRI, these face patches could

be targeted for single-cell recordings. For each neuron, the most preferred

face stimulus was determined, then presented at the center of the neuron’s



RF. In addition, multiple stimuli (preferred or non-preferred) were presented

in different numbers (0,1,2,4 or 8), from different categories (face or non-face

object), or at different proximity (adjacent to or separated from the center

stimulus). We found the majority of neurons reduced mean firing rates more

(1) with increasing numbers of distractors, (2) with face distractors rather

than with non-face object distractors, (3) at closer distractor proximity, and,

additionally, (4) the response to multiple preferred faces depends on RF size.

Although these findings in single neurons could indicate reduced discriminabil-

ity, we found that each stimulus condition was well separated and decodable in

a high-dimensional space spanned by the neural population. We showed that

this was because neuronal population was quite heterogeneous, yet changing

response systematically as stimulus parameter changed. Few neurons showed

MAX-like behavior. These findings were explained by divisive normalization

model, highlighting the importance of the modular structure of the primate

temporal lobe. Taken together, these data and modeling results indicate that

neurons in the face patches acquire stimulus discriminability by virtue of the

modularity of cortical organization, heterogeneity within the population, and

systematicity of the neural response.
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1
Introduction

1.1 Faces as invaluable sources of social infor-

mation

Faces are rich information sources. Not only do we recognize individuals

by their face identity, we are also able to tell the focus of the attention by

the direction of gaze. Facial expressions can also tell feeling, intention and

thoughts [1, 2]. If someone is looking around impatiently, he must be anxious,

whereas if he or she has a blank face without sweat and standing rock steady,

we feel that person is quite confident (Fig. 1.1). We utilize these information

so naturally that we often do not even think of it. Recognizing faces is cru-

cial for social behavior and survival. Deficit in face recognition performance

is known to have a link to several disorders such as schizophrenia, autism and

prosopagnosia [3, 4].

According to the importance of face recognition, we primates have an ex-

cellent ability to recognize faces. We can appreciate this capability in a simple

facial identity recognition task. In Fig. 1.2, four pictures taken from two in-
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A B

Figure 1.1: Faces are rich information sources. The person shown in panel (A)
shows anxiety, fear and stress indicated by his wandering gaze, facial sweat and
wide-opened eyelid. On the other hand, the person in (B) shows calm, blank
facial expression from which one can feel his confidence and calm.

dividuals are presented. For most of human subjects, it is an easy task to

recognize facial identities to group the top two pictures (A,C) and the bottom

two pictures (B,D) together. Classification performance of human subjects

marks stunning >90% [5] (but see [6]).

However, this is not a trivial recognition task at all. For computers, the

top and bottom pictures in Fig. 1.2 (A,B and C,D) look more similar, because

they have similar head orientation, lighting and facial features. In the field

of machine learning and computer vision, this face recognition task had been

daunting problem for decades, until recently few groups including Facebook

team reported comparable machine learning performance as human, using deep

learning algorithm [7]. However, their task involves only few aspects of face

recognition1, and many other human recognition skills still surpass that of

1Taigmann et al. [7] showed that their model based on deep learning algorithm could solve
a face identity recognition task involving faces with different head-orientation (i.e. head-
orientation invariant recognition). However it remains to be tested whether their model
can be applied to other aspects of face recognition such as luminance invariant recognition,
facial expression invariant recognition [8], age invariant recognition [9] or context dependent
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Figure 1.2: Human excels at translation invariant recognition of faces. Pictures
in panels (A),(C) and (B), (D) are taken from the same individual, respectively.
Even though a human subject can easily recognize individual difference to cor-
rectly group (A), (C) and (B), (D) as the same person, classification based on
machine learning tended to classify (A), (B) and (C), (D) as the same group,
because they have common lightening and head-orientations. Adapted from [5].
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computer performance.

Similar to humans, monkeys rely on faces as information sources, and ac-

cordingly have an excellent face recognition ability. Monkeys are highly social

animals and known to recognize each other’s face, and communicate with facial

expressions [11, 12, 13]. They utilize and recognize several facial expression

patterns (e.g. fear grin, lip smacking, open mouth, cooing) to convey meanings

such as fear, kinship and threat [14, 13] to other monkeys in the troop. Eye

gaze also tells the focus of attention (shared attention between more than one

indivisual by gaze following is known as joint attention [15, 16]), and failure

to follow the eye can lead to impaired fear recognition [17]. The fact that

face recognition ability is common across primates led scientists to explore the

primate brain to study where in the brain face recognition was mediated.

1.2 Hierarchical organization of the visual cor-

tex

Sensory neurons are thought to be hierarchically organized. Each brain region

such as LGN (lateral geniculate nucleus), V1 (primary visual cortex) or MT

(middle temporal visual area) is thought to process different stimulus features

and the selective features develop along the cortical hierarchy from low-level

features such as line segment (orientation) or contrast to high-level features

such as faces [18, 19, 20, 21]. In addition to the development of selectivity, a

region of a field of view which can stimulate a neuron, or a receptive field (RF),

is known to increase its size along the cortical hierarchy. The term receptive

field was originally defined by Sherrington [22, 23, 24] and started being used

for visual neurons after Hartline [25] who defined neuronal receptive field as

recognition (depending on the surrounding scene, or context, the same individual may look
different to a human subject. See Sinha and Poggio [10]).
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a visual field in which a stimulus can evoke activity to the neuron. Later

the definition was extended to sensory neurons other than visual stimulus.

However, even stimulus outside Hartline’s definition of RF (classical RF) was

found to influence a single neuron response. Stimuli in these non-classical

RF can modulate neural response [26, 27, 28, 29, 30], depending on stimulus

context (e.g. [31, 32, 33, 34]). Models based on lateral interaction or feedback

inhibition were proposed to explain the mechanism of non-classical RF [35, 36,

37], and recently it was shown in experiments that specific type of interneuron

provides lateral inhibition to mediate surround suppression [38, 39]. In this

thesis, we use the term RF according to Hartline’s original definition: visual

field in which a single stimulus can drive an activity to the currently recorded

face selective neuron.

Hubel and Wiesel proposed a model of V1 neurons to explain the mecha-

nism of development of neural response property along the hierarchy [40]. For

example, they suggested that the elongated excitatory oval shape (flanked by

inhibitory region(s)) of V1 neuron’s RF and its orientation selectivity was de-

veloped by converging afferents from LGN neurons in the thalamus, whose RF

have concentric, antagonistic center-surround structure (either excitatory cen-

ter (on-center) or inhibitory center (off-center). Namely, they thought superim-

posing LGN RFs in one particular direction could create elongated excitatory

RF of V1 to have selectivity to a stimulus with particular orientation (“simple

cell”). Similarly, “complex cells” in V1 which do not have clear excitatory

and inhibitory regions in RF but still selective to orientation, were thought

to be developed via converging afferents of V1 simple cells. Based on Hubel

and Wiesel’s model of hierarchical development of neural response [40, 41, 42],

Riesenhuber and Poggio developed a hierarchical model of visual object recog-

5



nition, where stimulus selectivity and invariance2 [43, 44, 45] increased along

the hierarchy. The hierarchical model contains interleaving simple cell layers

and complex cell layers, which take weighted sum and max3 of incoming af-

ferents, respectively. As a result of repeating weighted summation and max

operation, both selectivity and (translation and scale) tolerance increase along

the hierarchy.

1.3 Neurophysiological evidence of face selec-

tive neurons in the temporal lobe

The first evidence of the neural representation of face was provided by Charles

Gross and his colleagues in 1972 [46, 47]. They conducted electrophysiological

recordings in the macaque brain, in the superior temporal sulcus (STS) where

object selective neurons reside in [48, 19, 49, 50, 51, 52, 53]. They found

that neurons in the temporal lobe responded preferentially to a facial image,

compared to other non-face images. After the discovery, face neurons were also

found in several other regions in STS [54, 55, 56] and also in different cortical

and subcortical regions including amygdala [57, 58, 59, 60], hippocampus [61],

pulvinar [62], entorhinal cortex [63, 64] and orbitofrontal cortex [65].

In those days - from the 60s to the early 90s - finding a face selective neuron4

was difficult and less reliable experiment. Researchers started knowing that

temporal lobe contained visual neurons selective to complex images [19, 20, 21],

2Neural response is called as invariant if the response is unchanged to translation of stim-
ulus, such as stimulus scaling, rotation (2D or 3D) or contrast change. The term invariant is
also applied to visual recognition if the recognition is not altered by translation of stimulus
(e.g. head-rotation invariant individual recognition).

3Thus, a “max neuron” responds as if it ignores all presented stimuli except its preferred
stimulus.

4In this thesis, unless otherwise noted the term “face selective neuron” is used to mean
either implicit indication or explicit quantification of the following: the neuron respond at
least twice as strongly to the face as to other non-face objects [67, 68, 69].
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Figure 1.3: Face selective neurons found in the macaque temporal lobe. Sum-
mary of discovered face selective neurons in 80’s - 00’s is shown. Without having
a prior knowledge of the location of face neuron clusters, finding face selective
neurons were risky, difficult experiment. Recently, Tsao and Livingstone [66]
compared the distributions of reported face selective neurons (shown above)
and functional imaging data to find that the physiological data had high con-
centration in two regions, potentially corresponding to middle and anterior face
patches (see the text for details) reported by Tsao et al. [67]. Adapted from [66].
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but whether these object selective neurons formed cluster or not was unclear,

and had been a controversial topic [70, 71, 72]. Thus, to find face selective

neurons they had to penetrate electrodes according to the previous literatures

and had to test every neuron they encountered whether it was a face selective

or not. This procedure took excessive amount of time. Different researchers

reported face selective neuron in various part of temporal lobe (Fig. 1.3, [73,

74, 75, 76, 57, 77, 78, 79]), making it difficult to decide which brain region

should be recorded.

However in the 90s, thanks to the advent of functional magnetic reso-

nance imaging (fMRI), researchers were allowed to image the entire brain to

localize face selective cortices. Although fMRI measures brain activity by

detecting blood flow5 which has low spatiotemporal resolution, it helped re-

searchers to localize a functionally distinct brain region activated by particu-

lar stimulus or cognitive state [80, 81]. Aided with fMRI, Nancy Kanwisher

and colleagues found what they called fusiform face area (FFA) in the hu-

man temporal lobe6 [83, 84, 85]. When a human subject viewed an image

of a face, the FFA increased its activity, measured by the blood-oxygen-level

(BOLD) contrast (Fig. 1.4). Later they also found that brain regions selec-

tively engaged when a human subject perceives body, place or words were

also segregated [70, 86]. These results supported the view that visual objects

of different category are processed by functionally distinct modular structure.

Finally Doris Tsao, Winrich Freiwald and colleagues found six and three seg-

regated face selective cortices, or “face patches” in the macaque temporal and

frontal lobe7, respectively [67].

5Blood provides energy and nutrition to highly activated brain region, which can be used
as a surrogate of brain activity.

6But see also [82] for the earlier positron emission tomography (PET) study indicating
the existence of the functional organization of face and object processing cortex.

7They also compared macaque and human brain using fMRI to find homologous face
patches along the temporal lobe [87].
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Figure 1.4: Face selective region in human temporal lobe revealed by fMRI. (A)
The regions activated when a subject perceives a certain category of stimulus
are highlighted. Fusiform face areas are depicted the purple circles, located
bilaterally in the midfusiform gyrus. The activated regions were determined by
the level of BOLD signal indicating high energy consumption. Adapted from
[70]. (B) Fusiform face area was selectively activated by facial image (F) but
less by non-face image (O), in the human temporal lobe. Adapted from [83].

1.4 Face selective neurons are segregated into

modular structures

Of the six temporal lobe face patches, the most posterior one is located at the

area TEO (posterior part of inferior temporal (IT) cortex), named PL (poste-

rior lateral). The other five patches are located at the area TE (anterior part of

IT). The two posterior “middle face patches” were named ML (middle lateral)

and MF (middle fundus), after the location of the STS. Two other patches, also

located in lip and fundus were named AL (anterior lateral) and AF (anterior

fundus), respectively. The anteriormost face patch located in anterior middle

temporal sulcus (AMTS) was named AM (anterior medial) [88] (see Fig. 2.7).

Face patches were not an exception of the hierarchical organization of sensory

cortices: with fMRI-guided microstimulation and histology, these face patches

were shown to be interconnected reciprocally [88], and each face patch con-

tained face selective neurons with different response characteristics. Thus, the
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macaque brain has a dedicated neural circuit for processing and transfering

information8 of a face along a cortical hierarchy. For example, middle face

patch (MF, ML) neurons are selective to head-orientation, a large fraction of

anterior patch (AF, AL) neurons respond to either left or right profile view (i.e.

mirror-symmetric tuning), and anterior-most patch (AM) neurons respond to

particular facial identities [89] (a recent study also indicated that the posterior

face patch (PL) neurons were selective to eye region [90]). Thus, face selective

neurons were found to create a mutually connected modular structure thought

to mediate primate face recognition ability.

The fMRI-guided electrophysiology facilitated studying cortical informa-

tion processing and circuit structure: we acquired precision to target our re-

gion of interest, with a prior knowledge that more than 90 % of the neurons in

the region are face selective [67]. This reduced our need to explore neural se-

lectivity extensively, allowing us to start testing experimental hypothesis right

after we reached to the target face patch9.

1.5 Early evidence of multiple stimulus repre-

sentations and proposed models

In a typical, classic vision study researchers used only one visual stimulus

on a gray screen, on which a subject monkey needs to fixate [49, 19, 91,

92, 93]. In the real world, however, we encounter numerous visual stimuli

at a time: an image of face might be surrounded by other faces or non-face

8In this thesis, I use the term “information” as a quantity conveyed by neural activity,
from which an observer can infer stimulus of outside world or decode an internal variable
such as memory or attention. Thus, it does not necessary mean Shannon information or
Fisher information per se.

9Without prior knowledge of neural selectivity, a researcher of face neurons needed to
verify that the neuron being recorded was face selective. Although we still conduct an
experiment to test neural selectivity, we could narrow down our exploration space to focus
on our main interest.
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objects. Still, however, primates are capable of recognizing faces even in highly

cluttered natural scenes [94]. Thus, in order to understand how the primate

brain processes faces in natural scenes, using multiple stimuli to characterize

response property of face selective neurons is crucial. Throughout this thesis,

I use the term ”stimulus representation” to refer neural activities from which

an observer can infer the presented stimuli. Neural activities might be a single

neuron response, or representation space spanned by neural population.

Several studies gave hints to the question of how visual neurons respond

to multiple visual inputs, by presenting two stimuli in neuronal RFs of either

the visual area V4 or MT [95, 96, 97, 98]. Reynolds et al. found that without

visual attention the response to neuron’s preferred stimulus and non-preferred

stimulus (both inside the RF) was approximately an average of the two stimuli.

Moreover, the response could be biased by instructing a subject to attend to

one of the stimulus, leading to larger response (attended to preferred stimulus)

or smaller response (attended to non-preferred stimulus). Based on this obser-

vation, Desimone and Duncan proposed the Biased Competition model, which

states that top-down (and/or bottom-up) attention can bias the competition

between two stimulus representations over neural resource [99]. These visual

attention studies indicated that neural response to multiple stimuli were an

average of the responses to isolated stimulus presentations if no visual atten-

tion was exerted, which tempted researchers to study whether this regime of

integrating multiple inputs was universal across visual cortex. Additionally,

since temporal lobe neurons have much larger RFs which can encompass more

than two stimuli at a time, it was important to know if the average operation

applies to three, four or even more stimuli.

In order to explain cortical normalization effect including averaging opera-

tion, David Heeger and colleagues [100, 101, 102, 103], developed the Divisive
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normalization model that is now widely used in the neuroscience field, espe-

cially sensory integration researches [104, 105, 106, 107, 108, 109, 110, 111,

109, 112, 113]. Divisive normalization states that a neuron computes a ratio

between the direct inputs and population activity. The concept is illustrated in

Fig. 5.1: a neuron receives inputs from visual stimuli, and neighboring popu-

lation of neurons are also receiving inputs from the same visual stimuli. Then,

through lateral interactions or converging afferents, the neuron’s activity will

be normalized in proportion to the population activity of neighboring neurons.

Response normalization by lateral interaction in vivo was recently shown ex-

perimentally by Matteo Carandini in mice V1 [114], and by John Reynolds in

macaque brain [115], both using optogenetics.

Divisive Normalization can be integrated into the Biased competition model

proposed by Desimone and Duncan ([99], see Chapter 1). Biased competition

states that attention induces top-down modulation from cortices in upper hier-

archy (e.g. frontal eye field [116]), which biases the allocation of neural resource

to competing multiple inputs. Similarly, bottom-up attention (e.g. pop-out ef-

fect, see Chapter 1) can bias the allocation of resource. Divisive Normalization

can also bias which input dominates the final output by population activity of

neighboring neurons10. Or, alternatively, all inputs could have equal privilege,

resulting in averaging all the inputs. In fact, Divisive Normalization can be

applied to Biased competitive model with a common mathematical formula11,

as reviewed by Carandini and Heeger [103], and Reynolds and Heeger [111].

The common formula is shown in Equation 1.1:

10For example, high contrast stimulus takes more neural resource than low contrast stim-
ulus. Similar to this idea of Biased completion model, Divisive Normalization states that
high contrast elicits large activity to the neighboring population to have larger weight (i.e.
bias) to the high contrast stimulus. See [112, 103].

11Note that Equation 1.1 is a general form, and details can be different in some studies,
such as free parameter in different forms [109, 112] or omitting negligibly small terms [103,
111].

12



R1,2 =
c1 · I1 + c2 · I2

c2 + c1 + σ
(1.1)

where R1,2 is a neural response to stimuli 1 and 2, c1 and c2 are coefficients,

I1 and I2 are inputs (thus, Equation 1.1 is modeling a response to two stim-

uli. It can be easily expanded to more than two stimuli by having as many

terms as stimulus number) σ is a spontaneous activity of a neuron12. The

two coefficients c1 and c2 can be functions of population activity (in Divisive

Normalization), of top-down attention (in Biased competition) or both (see

[109]).

1.6 Evidence of multiple stimulus representa-

tions in IT cortex

Zoccolan et al. (2005) [107] conducted recordings with up to 3 stimuli simul-

taneously presented. They recorded from central to anterior temporal cortices

while subject monkeys were passively fixating on the center of a stimulus pre-

sentation screen. They concluded that the neural response to multiple stimuli

were predicted well by the average of the responses to individually presented

stimuli, regardless of RF location (did not depend on effective position inside

RF), and regardless of stimulus identity (i.e. the response depended on the

response magnitude, not on stimulus identity). However, they relaxed and

extended the argument two years later. Zoccolan et al. (2007) [117] trained

subject monkeys for an object detection task and presented neuron’s preferred

stimulus with various transformations such as position, size, contrast changes

12In the following modeling works we did not use the σ term because we subtracted
spontaneous activity from the data used in simulations.

13



and clutter addition (they used up to two stimuli this time: one clutter out

of pre-selected 6 non-preferred stimuli was used). During the object detection

task, the subject was required to maintain fixation on a center dot, until they

found the target (a red triangle) to make a saccade to a fixed location to re-

ceive rewards. They reported a trade-off between translation invariance and

stimulus selectivity: namely, if a neuron had a sharp tuning curve selective to

only one or few stimuli, the neuron was sensitive to stimulus translation or ad-

dition of clutter (i.e. decreased the mean firing rate). However, if a neuron had

a broad tuning curve, the neuron was robust against stimulus translation and

addition of clutter didn’t reduce firing rate either. Thus, neurons with broad

tuning curves responded to multiple stimuli with higher magnitude than aver-

age operation predicted. They ascribed this apparent discrepancy to difference

in selection criteria of neurons: in Zoccolan et al. (2007) , more inclusive cri-

teria was used, resulting in collecting neurons with broad tuning curves too.

They explained the tradeoff between stimulus selectivity and invariance by

presenting two descriptive, qualitative models. In a model what they called

“toy model”, neurons were assumed to have multidimensional Gaussian tun-

ing curves in a input stimulus space. Sparse responding neurons had Gaussian

tuning curves with smaller standard deviation, thus the (multidimensional)

area providing an effective input is smaller than broad responding neurons.

Because of small effective input space, the sparse responding neurons had less

tolerance to the transformations. This model captured a qualitative reduc-

tion of tolerance as stimulus selectivity increased. In their second model, they

applied the hierarchical model of object recognition, originally proposed by

Riesenhuber and Poggio (see above, [43, 44, 45]). The hierarchical model re-

produced Zoccolan et al’s result qualitatively: however, quantitative prediction

of a response of a particular neuron remained to be studied. Also, they did
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not necessary record from a cortex with specific object selectivity, which could

potentially affect their results13.

Rolls et al. [118] recorded from IT cortex neurons using one or two stimuli

on a complex natural background. Since the natural background could contain

multiple objects (e.g. leaves, trees), within the RF of IT neurons multiple

objects would be encompassed. During the recordings, they imposed a visual

search task: the subject needs to search for one of the two stimuli presented

to touch to receive rewards. As a result they found the response of a neuron

was enhanced when a preferred stimulus was inside the RF and the stimulus

was a search target. In addition, they reported that when the effective stimuli

were presented on the complex natural background, RFs of the IT neurons

became smaller than presented on a plain background, regardless of attention

(i.e. regardless of whether the preferred stimulus inside RF was a search target

or not). They claimed that by reducing the size of RF, IT neurons could reduce

confounds introduced by multiple objects inside the receptive field. The RF

shrinkage could be due to an iceberg effect due to overall reduction of the firing

rate across visual field with cutoff at firing threshold, but detailed mechanism

remained unclear. Rolls et al. defined RF as the visual field elicited firing

rates above the baseline when it contained the preferred stimulus. The RF

was measured in distance (visual degrees) between the eye position and the

stimulus, (not degrees from the fovea), and they reported almost monotonic

decrease of activity as the stimulus was drawn away from fovea (i.e. when the

stimulus occupy the center vision, the neuron was always activated), regardless

of background and attentional condition. This either implicitly assumed all the

13At first sight, our experimental results looked contradictory to Zoccolan et al.’s studies
(see Chapter 3). However, we built a quantitative and mechanistic model to explain the
different results by difference in cortical structure: because we recorded from face selective
cortices, and because we compared face and non-face stimuli, the result was seemingly
different. However, our computer model could give a unified framework explaining both our
result and Zoccolan et al.’s result. See Chapter 7.
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recorded neurons have foveal RF, or they happened to record from a cortical

region, all of whose neurons have foveal RFs. In our recording, most of the

RFs had positional bias toward a visual field contralateral to the recording

hemisphere. Thus, direct comparison of our results and that of Rolls’ et al.

might be difficult. There are few more differences between our experiment and

Rolls et al.’s. Firstly, in all conditions Rolls et al. used visual search tasks

that involve attention. Secondly, their stimulus presentation time varied: they

selected time period when the eyes were still (within 1 degrees of visual angle)

for ≥ 100 ms during a free view, and calculated firing rate for each 100 ms

period. Thirdly, Rolls et al. (and Zoccolan et al. too) considered stimulus (or

stimuli) inside the RFs, and it was not clear how a neural response was affected

by stimuli outside of RF (Does a neuron completely ignores the stimuli outside

of its RF, or do the stimuli still affect neural responses, probably through non-

classical RF?). Thus, although we know some of properties by which a neuron

integrates and represents multiple stimuli, small differences across experiments

make it difficult to have direct comparison or to have a unified understanding

of computational principle of temporal lobe neurons.

1.7 Multiple stimuli representations in the macaque

temporal lobe face patch

As I reviewed above, we have limited knowledge about visually selective neu-

rons in primate brain. Then, how do neurons with a specific selectivity - face

selective neurons - integrate and represent multiple inputs from visual stimuli?

Do they compute an average of all inputs, take max of them, summate them or

could it be nonlinear summation? If the neuronal firing rates are an average of

responses to individually presented stimuli, is a representation of a preferred
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face degraded with presentation of non-preferred stimuli because of a response

reduction? Or, alternatively, if neurons respond to the most preferred face

while ignoring all other non-preferred stimuli, i.e. do not reduce response with

non-preferred stimuli, do they discard all the information about the presented

non-preferred stimuli? Is the neural response dependent on distractor param-

eters such as distractor number, distractor category or distractor proximity?

And, if so, can an observer read out information of outside world (i.e. what is

presented on the screen) from single neuronal firing rates and/or from popula-

tion activity patterns? In the following chapters, I will address these questions

with experimental results and a computer model to suggest potential circuit

mechanism underlying multiple stimulus representation.

1.8 Organization of the thesis

This thesis is organized as follows. Chapter 2 explains the details of the ex-

periments including targeting the face patch, electrophysiological recording

technique, stimulus design and flow of the experiment. In Chapter 3, I de-

scribe the basic response property of the middle face patch, MF, mostly by

analyzing mean firing rates of single cell and population. Then I raise the

question to analyzing data just based on the mean firing rate, leading into

Chapter 4 where I investigate stimulus representation in an entire population

of neurons, using machine learning, dimension reduction technique and the

independent component analysis. I explain how the heterogeneous yet system-

atic response of the neurons carry detailed information that is not seen just

from mean firing rates. In Chapter 5 I introduce a computer model based

on Divisive Normalization framework to address how a modular structure and

functional connectivity of the face selective temporal lobe neurons can confer

discriminability to neurons. I also describe the way neuronal responses become

17



more robust against distractor stimuli over time, using robustness indices de-

rived from the model. Chapter 6 compares the MF data with that of anterior

face patch (AL), which is located at one step up in the hierarchy of the face

patch network and has slightly different response property from MF neurons.

Finally in Chapter 7, I summarize the findings of the project and highlight

the importance of modularity, heterogeneity and response systematicity for

representing multiple stimuli in the population of face selective neurons in the

macaque temporal lobe. I also compare the current study with previous litera-

tures to argue that our computer model can give an unified account to previous

reports which are seemingly contradict each other.
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2
Experimental design

2.1 Varying distractor numbers to study neural

computation of multiple visual inputs

In order to test either a face selective neuron responds as an average of multiple

inputs or as a max of them (or some other responses such as a summation or

a nonlinear function of the stimuli), we had to select and combine a stimulus

elicits a large response from a neuron, and a stimulus that elicits a minimal

response from the neuron. This is because, for example, if two images elicit

exactly same magnitude of responses to the neuron, one cannot discriminate

whether neurons are taking an average or max of them (imagine an input vec-

tor (1, 1) - the average of it is 1, and max of it is also 1). Natural scenes

containing tens or hundreds of objects were also not suitable stimului to in-

vestigate computation, because (a) we did not know how strong a drive each

object gives to a single neuron, and (b) we did not know how objects interact

together to affect a neural response. Therefore, we decided to use a preferred
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face, a non-preferred face (distractor1) and combination of them to study neu-

ral representation of multiple stimuli. If a neuron is taking an average of all

the visual inputs, adding non-preferred stimuli would result in reducing firing

rates. On the other hand, if a neuron takes maximum input while ignoreing

all other ineffective inputs, the firing rate may not be reduced by increasing

number of distractors. Thus, the first stimulus parameter we decided to use

was the “distractor number” (Fig. 2.1). We placed the preferred face at the

RF center, while presenting up to eight non-preferred face in the surrounding

position2 in order to study whether the computational rule is consistent across

different number of stimuli.

2.2 Varying distractor categories in light of fea-

ture / conjunction search

Adding more than two distractors was a natural extension of Zoccolan et al.’s

research to study how a face selective neurons compute afferents driven by

visual stimulus. This “computation” - average, max, summation or nonlinear

response to multiple inputs - could depend on the context of surrounding

distractors, similar to surround suppression or contextual modulation by non-

classical RF [34, 36, 119, 120]. Additionally, in light of pop-out effect in visual

search, whether the preferred face and distractor have common feature or not

may influence neural response. Pop-out effect is used to describe the fact

that the reaction time and number of items on the search screen (set size) are

independent (set size v.s. reaction time plot becomes flat), and the fact that

1In this thesis, I use the term a “distractor” same as a “non-preferred stimulus for a given
neuron”.

2We also had a control stimulus condition which had the preferred face at one of the
surrounding positions while the center position is occupied by a distractor. for details, see
Chapter 2.
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Figure 2.1: Distractor number variation. Distractor stimuli, which by them-
selves elicit minimal activation to the neuron are placed at up to 8 positions
around the neuron’s most preferred stimulus. Distractor stimuli were placed in
point-symmetric position. See text for details.
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the compelling phenomenological impression that the target is immediately

visible [121, 122]. Treisman and Gelade described this effect in their Feature

integration theory [123, 124]. According to the Feature integration theory,

searching for a target among distractors which do not have common feature

is conducted with a fast, parallel process (thus, the target “pop-out” among

distractors). The feature can be low-level features such as line segment or

color, or alternatively a high-level feature such as a face [122]. For example,

an upright face can pops-out among inverted faces even if all the faces share

similar colors [125]. Treisman and Souther proposed that the requirement

for being distinct features is to be represented in non-overlapping neuronal

groups [126]. This parallel process was defined as “Feature search” and it

was shown that reaction time to find a target among distractors was almost

independent of distractor numbers: no matter how the number of distractors

was increased, the time required for finding a target was almost constant. In

contrast, if distractors have similar features in common (e.g. color or shape),

the search becomes serial search, whose reaction time becomes proportional to

the distractor numbers. Thus it was defined as “Conjunction search”.

Fig. 2.2 demonstrate feature search. In this figure, a person - Peter Higgs

- is standing in front of the Large Hadron Collider, or LHC, which verified the

existence of Higgs boson originally proposed by him. This picture is quite busy,

or crowded, in sense that Dr. Higgs is surrounded by miscellaneous mechanical

parts like cables, metal plates and beams. Nonetheless, we can perceive Dr.

Higgs’ face almost immediately and automatically - this is the pop-out effect.

According to the Feature integration theory, Dr. Higgs’ face pops-out from

the picture because surrounding objects do not have common feature with the

face3. In contrast, Fig. 2.3 demonstrates Conjunction search. In this case an

3Hereafter I call the objects which do not have common feature as objects in “different
category”. For example, face, fruit, letter are different object categories.
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Figure 2.2: Example of Feature search. Peter Higgs is standing in front of the
Large Hadron Collider. Despite the intricate surrounding objects, we can easily
recognize his face in the picture.
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observer experiences a totally different perception - to recognize one particular

face out of the crowd, an observer needs a long time to scan faces one by one

until he or she finally finds the face in the crowd.

Figure 2.3: Example of Conjunction search. Perception is depending on the
surrounding context: in this picture, the same face of Peter Higgs as in Fig. 2.2
is embedded but it is extremely difficult to recognize his face.

What is the neurophysiological basis of feature / conjunction search? Dur-

ing feature search, where the target stimulus pops out independent on the

number of objects in the display, a subject can find a target in almost con-

stant reaction time. Thus, one prediction is as follows: there are neurons

which do not reduce their mean firing rate4 by presenting distractor objects in

addition to their preferred face. Such neurons look as if they take maximum

input (from the preferred face) while ignore all other small inputs provided by

distractor object5. On the other hand, in conjunction search, where the target

stimulus share feature with distractors, the mean firing rate of neurons might

4For simplicity, mean firing rate of single neurons are mentioned here but the stimulus
information can also be coded within an entire population (population code), which we
actually found. In this case, a stimulus could be decoded from the response pattern of the
neural population, even though mean firing rate of each neuron can change.

5Such “max neurons” are also requirements of the aforementioned hierarchical model of
object recognition proposed by Riesenhuber and Poggio.
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Figure 2.4: Distractor category variation. Either face or object distractors
were presented in surrounding positions. Note that distractors themselves (i.e.
without the preferred face) elicit minimal response from a neuron.

strongly depend on the number of distractors on the screen.

The neurophysiolosical correlates of pop-out effect starts from striate cor-

tex or V1 [127, 128]. The response to an oriented bar was reduced when

flanking oriented bars were presented together, and the neural response was

larger when flanking bars had different orientation from the center bar (pop-

out condition) than when the flanking bars’ orientations were the same as the

center bar. This neurophysiological pop-out effect seems to continue in higher

visual areas too. Beck and Kastner conducted human fMRI study involving a

searching task among multiple stimuli where a target pops out (distractors do

not have common feature as the target), or does not pop out (distractors have

common feature to the target [129], see also [130, 131]). They found BOLD

response to a non-pop out stimulus showed a decrease, indicating competitive

interaction among stimuli (also in the framework of Desimone and Duncan’s

biased competition model), whereas the pop-out stimulus did not show com-

petition. Even though our experiment did not involve a searching task, neural

activity might be affected by common feature among distractors and preferred
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stimulus. In light of this perceptual difference affected by distractor context,

we decided to use distractors with different features, namely face distractors

or object distractors (Fig. 2.4). We selected face and object distractors which

evoked almost no response to the cell and used one of them to study the effect

of distractor category to neural representations.

2.3 Varying distractor proximity / eccentricity

in light of the crowding effect

The arguments in the previous section are closely related to the “crowding

effect” found in human psychophysics studies [132, 133, 134]. When a human

subject is instructed to identify a target stimulus with flanking distractors, the

subject can detect the target yet finds it difficult to identify (Fig. 2.5) when

the distractors and targets share common features. This feature does not have

to be a low-level feature such as a line segment, color or Gabor but can also be

a high-level feature such as object category. For example, face distractors can

induce crowding effect, but inverted face distractors reduce the effect [135].

The crowding effect is absence at the fovea but becomes stronger at larger

eccentricity (i.e. more peripheral vision) and at closer distractor proximity, a

property known as Bouma’s law [136]: the minimal distance allowing subjects

to identify the target scales with stimulus eccentricity, although a few excep-

tions are reported [137, 138, 135]. There is an apparent relationship between

the crowding effect and the aforementioned Feature integration theory: if dis-

tractors and a target have a common feature, the crowding effect is induced

and an observer needs to move the eyes to place one object to the fovea at

a time. That’s why the reaction time to find the target is proportional to

display size, as the conjunction search in Feature integration theory explains.
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Alternatively, if there is no shared feature between distractors and a target,

the crowding effect is not induced and an observer can identify the target even

in the peripheral vision. This quick, parallel search is stated as a feature search

in Feature integration theory and demonstrates that the reaction time to find

the target is almost constant (i.e. pop-out) across large variation of display

size.

Figure 2.5: Psychophysical crowding effect. Human subjects were asked to
fixate on the black cross, while being asked to identify direction of the center
flanker. As the top and bottom flanking bars move close to the center bar, the
identification performance drops. This effect is known to be even stronger at the
peripheral vision. Bauma’s law states that the distractor distance which allow a
human subject identify the center target, or “critical distance”, is approximately
equal to the stimulus eccentricity. Adapted from [135]
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Several mechanisms subserving the crowding effect were proposed. One of

them is a pooling model, in which local features are averaged to reach percep-

tion rather than a target feature being masked by distractors [139, 140, 141,

142, 143]. An observation that supports this model is that human subjects

are capable of reporting average Gabor angle, even under the crowding con-

dition. Physiological observations also support the pooling model. RF size

increases throughout the visual cortical hierarchy, which suggests large inte-

gration over visual field resulting in some information loss [144]. Additionally,

the existence of lateral interactions and mutual inhibition also indicates local

interaction among neurons with overlapping RFs [145, 146, 147]. Thus, the

pooling model states that the local features were pooled or averaged within a

certain visual field in the peripheral vision. Freeman and Simoncelli demon-

strated this hypothesis by presenting “metamers”, which are different images

sharing common statistics [148]. They showed that when the pooling region

size of the model was set correctly, human subjects could not distinguish two

metamers in peripheral vision, although subjects could appreciate the differ-

ence of metamers when they fixate onto the metamers to bring the images to

center vision. Rosenholtz et al. also created images patches (they call them

“mongrels”) with same summary statistics (e.g. correlation of responses of V1-

like orientation tuned neurons across locations / luminance autocorrelation /

marginal statistics of luminance / phase correlation, etc.) to show the human

subjects could not distinguish the image patches with losing local information

such as position of line segment [149]. Substitution was also suggested as a

mechanism of crowding model [150, 151, 152]. The model states that a target

object is often substituted or confused with one of flanking objects, resulting in

failure in reporting correct identity of a target object. Another model proposed

by Dayan and Solomon utilizes Bayesian inference [153]. Bayesian inference is
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a method to give an estimation based on minimization of a loss function which

expresses the cost of estimation errors [154]. In their model, the crowding effect

occurs by a target selection among flankers emerging through Bayesian infer-

ence within large RF with spatial uncertainty. The spatial uncertainty induces

interference between stimuli in neighboring space that affect inference. Even

with ample of suggested mechanisms, however, none of the existing models can

explain the crowding effect perfectly and it remains a matter of debate [135].

Some of models require fine-tuning of parameter to reproduce psychophysics

result, or others explain a part of the crowding effect without clear explanation

to other parts such as tangential anisotropy (radially positioned flankers are

more effective than tangentially positioned ones [137]).

In light of the psychophysical crowding effect, we introduced the third and

forth stimulus parameters: distractor distance and distractor proximity. In

this stimulus distractor numbers were fixed to eight (to reduce the number of

combinations), while distractor distances were changed from 0, 2 to 4 degrees

of visual angle (Fig. 2.6). These stimuli were presented either at the center

of the measured RF, or 5 degrees away from the RF center toward peripheral

visual field. For details of stimuli, see Chapter 2.

2.4 Stimulus selection and composition of mul-

tiple stimuli

All the experimental results presented in this thesis were recorded from the

middle face patches MF (medial fundus, Fig. 2.7) and anterior patches AL (an-

terior lateral). Neurons in the face patches are face selective (>90%, see [67]),

and MF/AL neurons are tuned to a head-orientation of face image [89]. This

known response property allowed us to select highly effective preferred face
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Figure 2.6: Distractor proximity variation. distractor proximity was changed
such that vertical and horizontal separation between the preferred face and the
distractors were from 0, 2 (not shown) to 4 degrees. We also changed the
stimulus position, either the center of the measured RF or 5 degrees away from
RF center (in the peripheral visual field)

(face with preferred head orientation) and ineffective, non-preferred face (face

with non-preferred head orientation). AL neurons are also tuned to head-

orientation, but many of them are tuned in mirror-symmetric (i.e. respond

both to left and right side view) manner. In both patches, very few of them

are tuned to particular individuals, unlike in AM (anterior medial). Instead,

MF/AL neurons are in general tuned to one or two head-orientations and

respond to several different face identities. Few of neurons responded to a

particular individual among our stimulus set. These highly selective neurons

are often sparse responding with low spontaneous firing rate.

On each neuron we encountered, multiple experiments were run. The initial

experiment was to find a preferred face, non-preferred face (face distractor) and

non-preferred, non-face object (object distractor), in order to have sufficient

dynamic range to test either a face selective neuron takes average, max or

summation of inputs. To select the three images, we presented 147 different
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Figure 2.7: The target face selective cortex, MF. The panel (A) is a coronal
section showing the middle face patch, MF. Shown is functional MRI image
overlaid with structural MRI (T1 weighted), taken from one of the two monkeys
recorded (monkey J). The middle face patch MF locates bilaterally in the fundus
of the superior temporal sulcus (STS). The panel (B) is an inflated map of
macaque brain, showing 6 temporal and 3 frontal patches. Both temporal and
frontal patches are bilateral and known to have reciprocal connections to form
face processing network [88]. The vertical separator indicates that the data of
temporal and frontal patches are taken from two distinct studies [67, 155].
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images containing face, object and body (FOB stimulus) while recording from

a single unit. 80 of stimuli were face images, consisted of 40 human faces

and 40 monkey faces (because most neurons were selective to either human or

monkey faces, we included both macaque faces and human faces). For each

species, 8 individuals with 5 head-orientations were used: −90/90 degrees (full

profile view), −45/45 degrees (half profile view) and front view. 66 non-face

object stimuli consisted of technological objects, place views, fruits, monkey

bodies, human bodies and human hands, each of them containing 11 different

identities. Gray square with identical color as background (R128/G128/B128)

was also included as a control stimulus. Each stimulus was presented for 200

ms per image without inter-stimulus interval, and the image size was fixed at

4 degrees of visual angle. The image order was randomized and presented for

2.5 minutes to record approximately 5 repeats per image (calculation shown

in Equation 2.1).

200[ms/image] · 147 · x[image]

103[ms/sec] · 60[sec/min]
= 2.5[min]

x ≈ 5.10[repeats]

(2.1)

Stimuli were presented at a putative RF center, which was determined by

moving stimulus position manually. Subject monkey was required to keep fix-

ation on a center dot of the presentation screen 57 cm away from the eyes6 for

3-5 seconds in order to receive liquid reward (either water or juice). Eye posi-

tion was measured by using infrared pupil tracking system (ETL-200, ISCAN

Inc.,Burlington, MA), and as soon as the eye position deflected more than 3∼5

degrees away from the fixation dot, reward stopped immediately. Mean firing

657 cm separation between eyes and a presentation screen equalizes 1 cm on the screen
to 1 degree of visual angle. For details, see E.
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rates to each stimulus were calculated online using custom MATLAB script,

and the preferred face, non-preferred face and non-preferred object were chosen

based on the firing rate (Fig. 2.8A) in order to use for following experiments.

Next, using the selected three stimuli we mapped the neuronal RFs. One

of the three selected stimuli were presented at one location of hexagonal grid

pattern (the grid was invisible, in Fig. 2.8B the grid is shown for explanation

purpose) on the stimulus presentation screen for 200 ms without inter stimu-

lus interval. The grid was spanning 18 (vertical)× 24 (horizontal) degrees of

visual angle (presentation locations separated by 3 degrees), covering almost

the entire screen (68 presentation positions in total). RF mapping stimulus

was presented for 6.5 minutes, resulting approximately 10 repeats per stim-

ulus presentation position, as shown in Equation 2.2. Fig. 2.8B shows the

three mapped RFs of an example neuron. All of the subsequent stimuli were

presented at the center of the RF of preferred face, unless otherwise noted.

200[ms/image] · 3x · 68[image]

103[ms/sec] · 60[sec/min]
= 6.5[min]

x ≈ 9.56[repeats]

(2.2)

The remaining experiments were conducted to test multi-stimulus integra-

tion with variables introduced in Chapter 1: distractor number, category and

proximity. Fig. 2.9 shows the detail of the multiple stimuli we used for distrac-

tor category / numbers variation experiment (Cat/Num) and the distractor

variation experiment (Prox/Ecc). In both experiments, the preferred face was

placed at the center (except the control stimuli, see below). For the distractor

numbers / category variation experiment, 1, 2, 4 or 8 face distractors or 1,

2, 4 or 8 object distractors were placed around the preferred face. distractors
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Figure 2.8: Selection of stimuli and stimulus design. (A) Mean response
to 147 different visual stimuli of an example neuron. The most effective face
stimulus, the least effective face stimulus and the least effective non-face object
distractor are defined as preferred face, non-preferred face and non-preferred
object. (B) The defined preferred face, non-preferred face and non-preferred
object are presented at random location on the screen, in random order to map
RFs.
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were presented in point symmetric manner except in 1 distractor condition: 1

distractor could take any of the 8 presentation position surrounding the center

preferred face. Overall, 1, 2, 4 and 8 distractors had 8, 4, 2 and 1 position

variations, respectively. These stimuli were presented at the center of the

measured RF. For the Prox/Ecc experiment, distractor number is fixed to 8,

but distractor distrance (horizontal / vertical separation between images) was

varied from 0, 2 to 4 degrees of visual angle. Also, the stimulus position was

changed either the RF center or 5 degrees away from the RF center. Note that

we used heterogeneous, conspecific face distractors for the Prox/Ecc experi-

ment. All of these combinatorial stimuli were presented for 400 ms with 200 ms

inter-stimulus interval to ensure enough late response phase (see Chapter 3).

In the Cat/Num experiment, we also included stimulus condition where

multiple preferred faces were presented instead of distractors (multiple pre-

ferred face condition). Other stimulus conditions we used were a large preferred

face, a large non-preferred face and, large non-preferred object, 9 non-preferred

faces and 9 non-preferred objects. These stimuli conditions are intended to

test whether neurons are coding area or number of stimulus but the result

from these stimuli will not be presented in this thesis. For control stimulus

conditions, we used same distractor configuration without the preferred face

(distractor only stimuli). These controls were needed to ensure that the impact

by face distractors and object distractors were equally small, independent on

the distractor numbers and / or distractor proximity. In total, the Cat/Num

experiment contained 27 stimulus conditions. We presented the Cat/Num ex-

periment for 8.5 minutes, resulting in approximately 30 repeats per stimulus, as

shown in Equation 2.3. The Prox/Ecc experiment was presented for 5 minutes,

resulting in approximately 30 repeats / stimulus, as shown in Equation 2.47.

7The actual recorded trials could be less than these because we excluded trials when the
subject was not fixating on the screen, and frame loss occurred during the presentation.
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Short (adjacent) Medium (2 degrees separation) Long (4 degrees separation)

12 degrees of visual angle
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Figure 2.9: Design of multiple stimuli. (A) distractor number / category
variation stimuli. Preferred face was presented at the center, and 1,2,4 or 8
distractors were presented in surround positions. 1,2 and 4 distractors were
presented in point symmetry. (B) Prox/Ecc stimuli. Conspecific 8 different face
distractors (i.e. the 8 least effective conspecific distractors) were presented with
0, 2 or 4 degrees separation. The stimuli were presented at either the center of
measured RF or 5 degrees away from the center, toward peripheral visual field.
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Fig. 2.10 shows the overall workflow of the experiments for a given single neu-

ron. It took approximately 22.5 minutes per neuron to complete these stimuli

(however when control experiments were presented also, the experiment took

longer).

600[ms/image] · 27 · x[image]

103[ms/sec] · 60[sec/min]
= 8.5[min]

x ≈ 31.5[repeats]

(2.3)

600[ms/image] · 8 · x · 2[image]

103[ms/sec] · 60[sec/min]
= 6.5[min]

x ≈ 31.2[repeats]

(2.4)

All of the stimuli shown in the Fig. 2.9 have the preferred face at the

center position, and placed at the center of RF. This stimulus design can

potentially make a confound effect of stimulus position: does a center stimulus

acquire privilege to have more representational resource, more than response

magnitude explained by the RF shape? Or, do face selective neurons have

a single principle to allocate representational resource to each visual image

only based on RF response magnitude at the position where the image was

presented? To discriminate these two possibilities, we ran position control

experiments on subtraction of the neurons: the preferred face is placed at the

surrounding location and a distractor was placed at the center position. Using

these stimuli, we studied if multiple visual stimuli could be represented, and

if so, how the representation differed across neurons and time.
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1) Extended FOB: 147 images including 
    8 humans and 8 monkeys with 5 head-orientation

select best/worst faces and worst obj.

2) RFmap, 3 images (best/worst faces, object)

3) Distractor category/number variation (Cat/Num)
     27 images total

5 min 
400 ms on / 200 ms off
30 rep/stim

8.5 min
400 ms on \ 200 ms off
~30 rep/stim

6.5 min 
200 ms on / 0 ms off
~10 rep/stim/position

2.5 min 
200 ms on / 0 ms off
~5 rep/stim

total:  22.5 min per neuron

4) Distractor proximity / eccentricity variation (Prox/Ecc)
     8 images x 2 positions

Find an approximate position of RF
by moving the stimulus manually

select RF center to present subsequent stimuli

Figure 2.10: Experiment flow chart. Upon encountering a neuron, FOB stim-
ulus was moved across the stimulus presentation screen to locate approximate
position of the RF. Then, (1) FOB stimulus was presented at the putative cen-
ter of the RF to characterize stimulus selectivity. Next, using 3 selected stimuli
(preferred/non-preferred face and a non-preferred object), (2) RF was mapped.
RF center was manually selected based on RF calculated online to present sub-
sequent stimuli. (3) Cat/Num experiment was presented at the RF center, and
(4) Prox/Ecc experiment was presented at the RF center and 5 degrees away
from the RF center.
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2.5 Targeting the face patch MF and AL

Three monkeys, two of Macaca mulatta (monkey Q, M) and one Macaca fas-

cicularis (monkey J), were used for the recordings. MF recordings were con-

ducted from monkey Q and J, whereas AL recordings were from monkey J and

M. Prior to recording sessions, we needed to localize the target face patches.

The monkeys were trained to keep fixation on a stimulus presentation screen

inside a fMRI scanner, and face patches were defined based on BOLD activ-

ity to face and non-face object images. During the fMRI acquisition, MION

(monocrystalline iron oxide nanoparticle) contrast agent was used to enhance

signal-to-noise ratio. Acquired fMRI data was overlaid with anatomical MRI

to be used in planning recording chamber placement.

To position the recording chamber, we used either Caret [156], OsiriX [157]

or Planner [158] software to calculate the position and angle of the chamber.

All three software packages display horizontal, vertical and sagittal section

(anatomical sections) of the brain image to visualize 3D image of the brain.

Therefore, we defined the angle of recording chamber within each section (e.g.

rotate 15 degrees to lateral side within coronal plane, and rotate 5 degrees

side). However, the common stereotaxic arm does not allow the user to make

a specific angle within each anatomical section. Rather, it has only two degrees

of freedom: tilt the stereotaxic arm and rotate the base of the stereotaxic arm.

Thus, in order to implant the planned recording chamber angle using the

stereotaxic arm, coordinates in the anatomical sections had to be converted

into stereotaxic arm coordinate. For detailed calculations, see Appendix C.

Within the implanted recording chamber a craniotomy was made and a

tungsten electrode (0.4 - 3 MΩ measured at 1000 Hz, FHC) was lowered

through the dura guided by a custom-made metal guide tube and Crist grid
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system [159]. The electrode was advanced by Narishige drive (MO-97A) for

pre-calculated traveling distance until few millimeters before the target face

patch. Then FOB stimulus was used to test neural selectivity to see if neu-

rons were selective to faces. Once a recorded neuron was defined to be face

selective, we started experiment summarized in Fig. 2.10. For other details of

experimental procedures, see Appendix A.
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3
Single neuron response

properties and population

average

3.1 Single neuron response and population av-

erage to Category/Number variation ex-

periment

45 and 69 neurons were recorded from the middle face patch MF of two male

adult rhesus macaques, Macaca mulatta (monkey Q) and Macaca fascicularis

(monkey J), respectively. Of 114 recorded neurons, 111 and 108 neurons were

analyzed for Cat/Num and Prox/Ecc experiment, respectively. Most of the

analyses presented in this chapter are based on mean firing rates either across

trials or neurons. For the population readout analyses (taking response pattern

of the population into account) and computer modeling, see Chapter 4 and 5.

Fig. 3.1 shows an example neuronal response to the Cat/Num stimuli. The

41



neuron showed an initial peaked response and later plateau phase, which we

defined as the early and the late phase, respectively. The borders of each

phase were defined as follows. The early phase was the first 100 ms of the

high amplitude response after the response onset, and the late phase was de-

fined such that it contains approximately equal number of spikes as the early

phase. Specifically, spikes across all the recorded neurons were accumulated

for calculation, and we found 250 ms time window from 150 ms to 399 ms

after the response onset contains approximately equal number of spikes as the

early phase. Thereby we can (a) equalize the noise level (i.e. standard error

of the mean is proportional to inverse square root of entry numbers) , and (b)

calculate discriminability per spike in these regions, as shown in Chapter 4.

The response onset was defined as the time when the mean firing rate crossed

the threshold, which was 3 standard deviations of the spontaneous activity.

As face distractor number increased from 1, 2, 4, to 8, the neuron showed

systematic response reduction both in the early and the late phase (Fig. 3.1,

left). Two-way ANOVA (factor 1: distractor number, factor 2: distractor

category) indicated that mean firing rate of the example neuron was reduced

significantly both at the early phase (F (4, 226) = 35.72, p = 4.04·10−23<0.001)

and at the late phase (F (4, 226) = 10.39, p = 9.63 · 10−8<0.001). Normalized

mean firing rate (arbitrary unit) and standard error of the mean (SEM) with

statistics are shown in Table 3.1.

For the detailed statistics of Tukey’s post-hoc pairwise significance test,

see Appendix J. When non-face object distractors were used, however, the

increasing number of object distractors also gave response reduction, but to a

lesser degree (Fig. 3.1, right and Table 3.1). Two-way ANOVA confirmed that

the mean firing rates with object distractors were significantly larger than
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Figure 3.1: Example neuronal response to the Cat/Num stimuli. (A) The
raster plot shows the occurrences of the spike in each trial for face (left) and
object (right) distractors, and the average of the raster plots is shown above.
Abscissa is time in millisecond (ms), and raster plots show each trial response.
Gray shadow is indicating the stimulus presentation duration, 400 ms. Dotted
lines indicate early and late phase, defined based on response latency. (B)
Normalized mean firing rates calculated within the time windows of the early
(left) or the late (right) phase.
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Table 3.1: Cat/Num experiment, MF single cell average response

Early Late

Face Obj Face, Obj

0 dist. 1± 0.0315 1± 0.0315 1± 0.0641 1± 0.0641
1 dist. 0.793± 0.0498 0.890± 0.0347 0.698± 0.0473 0.857± 0.0590
2 dist. 0.598± 0.0673 0.792± 0.0289 0.665± 0.0746 0.804± 0.0552
4 dist. 0.460± 0.0555 0.691± 0.0456 0.458± 0.0776 0.751± 0.0741
8 dist. 0.228± 0.0362 0.611± 0.0388 0.202± 0.0465 0.749± 0.0913

the firing rates with face distractors, both at the early phase (F (1, 226) =

47.69, p = 5.00 · 10−11<0.001) and at the late phase (F (1, 226) = 29.37, p =

1.53 · 10−7<0.001). Especially at the late phase, responses were robust against

the object distractor number increase. When one-way ANOVA was used to

test effect of object distractor number on mean firing rate (without considering

face distractor group), p-value did not reach significance (F (3, 102) = 0.49, p =

0.692>0.05). Tukey’s post-hoc test also showed no significance between any

pairs in the object distractor conditions at the late phase (see Appendix J).

Neurons recorded from MF showed large cell-to-cell difference in response

latencies (mean, µ = 90.3, standard deviation,σ = 49.2 ms after the stimu-

lus onset). Thus, averaging across neurons involved a risk of mixing different

phases of responses resulting in obscureing the result. Thus, we subtracted re-

sponse latency from each neuron to align the response onset before averaging

across neurons. Note that we preserved the latency difference, if any, across

different stimulus conditions. In other words, we defined one response latency

per neuron, and subtracted from all the responses recorded from that neuron.

The response latencies were calculated based on an average response to the

preferred face. The resulting latency-subtracted average firing rate showed a

qualitatively similar response pattern as population average without latency

subtraction (See Appendix F), but with a sharper initial rise (Fig. 3.2). Here-
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after I use the term “population average” to mean the latency-subtracted aver-

age firing rate unless otherwise noted, but the result of all other analyses were

qualitatively similar for population average without latency subtraction. The

population average may or may not be normalized such that the maximum

firing rate equals 1. Spontaneous activity was subtracted before averaging,

thus the baseline equals 0. Overall, the average firing rate across 111 neu-

rons showed a qualitatively similar response pattern as the single cell example

shown in Fig. 3.1. Increasing the number of distractors systematically reduced

the response, and face distractors reduced responses more than object distrac-

tors did (see Table 3.2 for mean firing rates and SEM).

Table 3.2: Cat/Num experiment, MF population average response

Early Late

Face Obj Face, Obj

0 dist. 1± 0.0453 1± 0.0453 1± 0.0603 1± 0.0603
1 dist. 0.722± 0.0425 0.826± 0.0444 0.738± 0.0508 0.795± 0.0471
2 dist. 0.504± 0.0387 0.692± 0.0406 0.633± 0.0565 0.783± 0.0546
4 dist. 0.389± 0.0359 0.575± 0.0397 0.571± 0.0584 0.738± 0.0565
8 dist. 0.306± 0.0340 0.496± 0.0397 0.443± 0.0603 0.766± 0.0640

We quantified this effect by two-way ANOVA (factor 1: distractor cat-

egory, factor 2: distractor number). In both the early and the late phase,

face distractors significantly suppressed the firing rate compared to object dis-

tractors (early phase: F (1, 880) = 40.06, p = 3.92 · 10−10 <0.001, late phase:

F (1, 880) = 26.87, p = 2.70·10−7 <0.001). Reduction by the number of distrac-

tors was also significant (early phase: F (3, 880) = 41.06, p<10−25 <0.001, late

phase: F (3, 880) = 6.44, p = 2.60 · 10−4 <0.001)1. In order to find which pair-

1For the completeness: synergetic interaction between category and numbers did not
reach significance in neither phase (early: F (3, 880)) = 0.58, p = 0.631, late: F (3, 880) =
2.17, p = 0.0898).
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Figure 3.2: Population average response to the Cat/Num stimuli. (A) La-
tency subtracted population average (N=111). PSTHs show the time course of
responses to the preferred face with/without distractors (top) and distractors
without preferred face (bottom). (B) Mean firing rates of the population aver-
age at the early and the late phase. PF: preferred face, F1f, F2f, F4f, F8f: 1,2,4
or 8 face distractors with preferred face, F1o, F2o, F4o, F8o: 1,2,4 or 8 object
distractors with preferred face, 1f, 2f, 4f, 8f: 1,2,4 or 8 face distractors without
preferred face, 1o,2o,4o,8o: 1,2,4 or 8 object distractors without preferred face.
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wise significance, we conducted Tukey’s post-hoc test (Fig. 3.3). In the early

phase, most of the pairs showed significance, indicating systematic response

reduction by increasing number of distractors. In the late phase, however,

the object distractors and preferred face condition (Fig. 3.3B, right panel)

showed significance between zero distractors (preferred face only) and 2, 4,

8 distractors conditions but pairs across 1,2,4 or 8 distractors did not reach

significance, confirming our observation in Fig. 3.2: different numbers of the

object distractors do not affect firing rates as much as face distractors.. For

the detailed statistics of Tukey’s post-hoc test, see Appendix J. Thus, in the

Cat/Num experiment, the mean firing rate of single neurons was reduced with

increasing number of distractors, and/or with object distractors rather than

face distractors.

We found a categorical difference of the distractor in suppressing the re-

sponse to the preferred face. Namely, face distractors suppress the response of

face selective neurons more than object distractors. One trivial, uninteresting

explanation would be that object distractors themselves are driving the neu-

rons more strongly than face distractors: that’s why the preferred face with

the object distractors gave larger responses. However, this possibility was ex-

cluded. As shown in Fig. 3.2A (bottom), the response to the face distractors

and object distractors alone (i.e. no preferred face) elicited quite comparable

and weak response at the early phase. At the late phase, responses were almost

at the baseline2 (i.e. spontaneous activity) and difference was not significant

2At the early phase, the responses to face distractors themselves were significantly
different from the responses to object distractors (with Two-way ANOVA, early phase:
F (1, 883) = 10.3, p = 0.0014<0.05, late phase: F (1, 883) = 0.41, p = 0.521>0.05). Al-
though the statistics reached the significance, however, it cannot hamper our argument: if
the observed larger response reduction due to the face distractor is because of smaller drive
provided by face distractor themselves, the face distractor need to elicit larger response
than object distractors. However, the opposite result was shown in here: object distrac-
tors elicited smaller response. In any case, the difference between responses to distractors
without preferred face was too small to explain the suppression by intra-category (i.e. face)
distractor and by increasing distractor numbers.
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either (F (1, 883) = 0.41, p = 0.521>0.05). Therefore, the distractor category-

dependent suppression cannot be ascribed to the difference in the magnitude

of the response distractors elicited to neurons. See Table 3.3 for mean firing

rates and SEM.

Table 3.3: Cat/Num distractor-only control, MF population average response

Early Late

Face Obj Face, Obj

1 dist. 0.101± 0.0169 0.0524± 0.0125 0.00369± 0.0198 −0.0133± 0.0176
2 dist. 0.0927± 0.0182 0.0497± 0.0150 −0.0146± 0.0215 −0.0208± 0.0201
4 dist. 0.0862± 0.0200 0.0470± 0.0176 −0.0372± 0.0204 −0.0519± 0.0195
8 dist. 0.0846± 0.0205 0.0333± 0.0186 −0.0601± 0.0221 −0.0548± 0.0205

As shown in Fig. 3.2A, difference between responses elicited by face and

object distractors were very small at the early phase , and almost no difference

at the late phase. No significance was found across different distractor numbers

at the early phase (ANOVA, F (3, 883) = 0.37, p = 0.7753>0.05) but weak

significance was found at the late phase (F (3, 883) = 2.83, p = 0.0376<0.05).

Assuming that response to distractors themselves (i.e. without the pre-

ferred face) were sufficiently weak compared to the response to stimulus condi-

tion containing the preferred face3, we compared the impact of face and object

distractor by normalizing the mean firing rates and fitting a rational function

to them:

R =
1

1 + αx
(3.1)

3This assumption was verified with ANOVA: the responses to 1,2,4 or 8 distractors (either
faces or objects) with or without the preferred face were significantly different indicated
by 1-way ANOVA F (1, 1774) = 855.37, p = 8.59 · 10−154<0.001 at the early phase and
F (1, 1774) = 1156.91, p = 1.17 · 10−195<0.001 at the late phase. Especially at the late
phase, the response to distractors was almost flat (or slightly suppressive for some neuron).
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In Equation 3.1, α is a free parameter to fit and x is distractor number

(0, 1, 2, 4, 8). Recorded neural responses were averaged at the early or at

the late phase, and normalized such that the response to the preferred face

was equal to one. Within this configuration, if α is equal to zero, dependency

on distractor number disappears and a neuron become a max neuron. If α is

equal to one instead, the neuron is taking an average of the inputs provided

by the preferred face and distractor(s), given that the response to distractor

themselves are sufficiently smaller than 1. Fig. 3.4 shows that at the early

phase (panel A) most of the neuron had the α value in between 0 and 1, and

α values were smaller for face distractor conditions (i.e. most of the values are

under the diagonal line of unity), confirming that face distractors had larger

impact on reducing the mean firing rate. At the late phase, α values shifted

toward zero, indicating that at the late phase more neurons behaved similar

to the max neuron. Few neurons showed max-like response in both the early

and the late phase (Fig. 3.4, black points near the origin). We investigate this

finding and the underlying mechanism further in Chapter 5.

3.2 Single neuron response and population av-

erage to Proximity/Eccentricity variation

experiment

Fig. 3.5 shows the raster plot and average firing rate of an example neuron

responding to Prox/Ecc stimulus. As distractor distance became shorter, the

firing rate of the example neuron was reduced. One-way ANOVA testing dif-

ferences in mean firing rates in the 4 stimulus conditions showed decrease in

both the early phase (F (3, 162) = 40.26, p = 1.70 · 10−19<0.001) and the late
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phase, although the latter did not reach significance in this particular example

neuron (F (3, 162) = 1.08, p = 0.3596>0.05). See Table 3.4 for mean firing

rates and SEM.

Table 3.4: Prox/Ecc experiment, MF single cell average response

Early Late

Center Periphery Center, Periphery

0 dist. 1± 0.100 1± 0.161 1± 0.138 1± 0.122
L dist. 0.378± 0.0381 0.415± 0.0881 0.899± 0.0737 0.451± 0.0570
M dist. 0.331± 0.0429 0.435± 0.0661 0.776± 0.0713 0.332± 0.0357
S dist. 0.163± 0.0234 0.170± 0.0474 0.805± 0.0736 0.419± 0.0528

When the stimuli were presented at the periphery of RF, the distrac-

tors also suppressed neural responses, shown by one-way ANOVA (The early

phase: F (3, 153) = 11.53, p = 7.37 · 10−7<0.001, The late phase: F (3, 153) =

14.84, p = 1.57 ·10−8<0.05). The mean firing rate between stimulus groups in-

cluding distractors with a preferred face (the preferred face with large, medium

or short distance distractors) and without a preferred face (large, medium or

short distractors without the preferred face) was also significant at RF cen-

ter (The early phase: F (1, 287) = 64.45, p = 2.56 · 10−14<0.001, the late

phase: F (1, 287) = 152.66, p = 2.08 · 10−28<0.05). However, at RF periph-

ery, the presence of a preferred face did not show significantly different firing

rates (The early phase: F (1, 281) = 1.88, p = 0.172>0.05, the late phase:

F (1, 281) = 1.82, p = 0.179>0.05). This was because at RF periphery, addi-

tion of distractors suppressed neural response enough so that the responses

were indistinguishable from the responses to distractors themselves. Addi-

tionally, distractors with decreasing distance did not elicit systematic response

reduction as seen in RF center presentation. For Tukey’s post-hoc test showing
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pairwise significance, see Appendix J. See Table 3.4 for mean firing rates and

SEM.

Population average firing rate (Fig. 3.6) of the 106 recorded neurons4

showed qualitatively same pattern in the early and the late phase. Similar

to the Cat/Num experiment, we subtracted the response onset latency to av-

erage responses across recorded neurons. As shown in Fig. 3.6, distractors

with decreasing distances reduced the mean firing rate significantly at the

early phase (F (3, 428) = 37.6, p = 1.38 · 10−21<0.001) and at the late phase

(F (3, 428) = 27.97, p = 1.55 · 10−16<0.001). Distractors also reduced mean

firing rates when stimuli were presented at the RF periphery. Both at the

early phase (F (3, 428) = 20.3, p = 2.57 · 10−12<0.001) and at the late phase

(F (3, 428) = 24.08, p = 2.04 · 10−14<0.001) ANOVA showed significance re-

sponse reduction. See Table 3.5 for mean firing rates and SEM.

Table 3.5: Prox/Ecc experiment, MF population average response

Early Late

Center Periphery Center, Periphery

0 dist. 1± 0.0500 1± 0.0924 1± 0.100 1± 0.103
L dist. 0.596± 0.0502 0.386± 0.0579 0.601± 0.0529 0.282± 0.0654
M dist. 0.497± 0.0481 0.346± 0.0556 0.476± 0.0504 0.199± 0.0640
S dist. 0.323± 0.0368 0.381± 0.0664 0.319± 0.0492 0.227± 0.0730

Consistent with the observation in the single neuron, one difference we

found between RF center and RF periphery condition was the significance be-

tween different distractor proximity. For example, the preferred face and short

distance distractor condition (PF+SD) gave significantly smaller mean firing

rate compared to the preferred face and large distance distractor condition

4The reason why we have fewer recorded neuron in the Prox/Ecc experiment is simply
because this experiment was conducted at the end of the entire recording stream for one
neuron: longer recording time entails higher risk of losing a neuron (see Chapter 2).
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(PF+LD) when stimuli were presented at RF center. In the RF periphery pre-

sentations, however, this condition did not show significance. In other words,

at the RF periphery, neurons reduce their response in presence of distractors,

but did not change response magnitude with distractor proximity. For details

of Tukey’s post-hoc test result, see Appendix J.

3.3 Response dependency on receptive field size

One might expect that the suppressive effect caused by distractors depends on

RF size. For example, a neuron with a smaller RF excludes distractors out

of RF to have robust response to the preferred face regardless of the presence

of distractors. However, the results so far looked independent of neuronal RF

size: both large RF neurons and small RF neurons showed similar response re-

ductions in both Cat/Num and Prox/Ecc experiment (Fig. 3.7A,B). We quan-

tified RF size by calculating RF index (see Appendix A) and calculated cor-

relation coefficient between the index and response reduction magnitude by

face distractor numbers (r = −0.120 (early phase) / 0.0685 (late phase)), by

object distractor numbers (r = −0.119 (early phase) / 0.0685 (late phase)),

or by face/object category difference (r = 0.112 (early phase) / 0.094 (late

phase)) but correlation did not reach significance (p-values are 0.237(early) /

0.546(late), 0.244(early) / 0.546(late), 0.253(early) / 0.409(late), respectively).

Thus, response reduction by distractors are consistent across recorded neurons

independent of RF size.

However, when multiple preferred faces were presented, the response was

highly predicted by the RF size (Fig. 3.7C). The correlation between RF

size index and the response to multiple preferred faces were highly significant

(r = 0.421, p = 1.58 · 105<0.001). When a RF can encompass all the preferred

face presented, neural response stayed high or even increased with increasing
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number of preferred face (though the magnitude of increase was much smaller

than a sum of all inputs). In contrast, however, if a RF is too small to en-

compass all of the preferred faces, the neural response was reduced, as if the

preferred faces were acting like a non-preferred, distractor face. Thus, RF field

size affects a neuronal integration of preferred faces, but not an integration of

distracters.

3.4 Response reduction was not dependent on

preferred face position

Finally, we compared the results from Cat/Num experiment to position control

experiment. Fig. 3.8 shows the average firing rate of the 15 neurons from which

the control experiments were recorded. The average firing rate in the position

control experiment showed smaller firing rate magnitude, as expected from the

fact that the preferred face was presented at the periphery of the RF, which is

by definition less effective than the center. Similarly, responses to distractors

without the preferred face showed larger firing rates than the Cat/Num experi-

ment, also expected from the fact that a distractor occupied the RF center, the

most effective visual field driving the neuron. See Table 3.6, 3.7, 3.8 and 3.9

for mean firing rates and SEM (note that firing rates are not normalized).

Nonetheless, average of the position control experiment showed response

reduction similar as the Cat/Num experiment at the early phase (Two-way

ANOVA, factor1: distractor number, factor2: Cat/Num vs. position control

experiment, Cat/Num: F (4, 129) = 7.6, p = 1.58 · 10−5<0.001 position con-

trol experiment: F (4, 129) = 2.54, p = 0.043<0.05), although late phase did

not reached the significance (Cat/Num experiment: F (4, 129) = 1.92, p =
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Table 3.6: Cat/Num experiment, average of 15 representative neurons

Early Late

Face Obj Face, Obj

0 dist. 46.5± 1.73 46.5± 1.73 22.9± 0.325 22.9± 0.325
1 dist. 32.3± 1.10 39.3± 1.32 14.4± 0.182 14.9± 0.178
2 dist. 23.7± 0.709 29.6± 1.36 12.4± 0.232 15.4± 0.167
4 dist. 16.4± 0.501 23.1± 0.697 12.4± 0.280 15.0± 0.234
8 dist. 9.44± 0.440 19.1± 0.517 10.7± 0.153 14.1± 0.154

Table 3.7: Position control, average of 15 representative neurons

Early Late

Face Obj Face, Obj

0 dist. 27.4± 1.20 27.4± 1.20 13.6± 0.175 13.6± 0.175
1 dist. 18.0± 1.00 20.0± 1.08 9.09± 0.169 8.08± 0.183
2 dist. 15.1± 0.807 16.9± 0.951 6.51± 0.148 8.21± 0.180
4 dist. 11.0± 0.807 13.4± 0.900 6.70± 0.0965 6.32± 0.167
8 dist. 7.06± 0.710 12.8± 0.821 4.31± 0.182 8.73± 0.211

Table 3.8: Cat/Num distractor-only control, average of 15 representative neu-
rons

Early Late

Face Obj Face, Obj

1 dist. 2.45± 0.368 0.794± 0.262 0.154± 0.0763 −0.974± 0.0879
2 dist. 2.31± 0.569 1.09± 0.317 −0.564± 0.0636 −0.581± 0.0623
4 dist. 1.93± 0.616 0.273± 0.350 −1.20± 0.0741 −0.258± 0.0879
8 dist. 1.85± 0.162 −0.217± 0.106 −0.735± 0.0618 0.549± 0.105
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Table 3.9: Position control distractor-only, average of 15 representative neu-
rons

Early Late

Face Obj Face, Obj

1 dist. 5.26± 0.910 3.47± 0.796 5.26± 0.910 3.48± 0.796
2 dist. 3.59± 0.834 2.69± 0.738 3.59± 0.834 3.47± 0.796
4 dist. 2.98± 0.693 1.50± 0.639 2.98± 0.693 2.69± 0.738
8 dist. 3.99± 0.707 −0.0594± 0.418 43.99± 0.707 1.50± 0.639

0.111>0.05, position control experiment: F (4, 129) = 1.31, p = 0.271>0.05).

No difference in mean values was found5 in the Cat/Num experiment and po-

sition control experiment, both in the early (F (1, 264) ∼ 0, p = 0.975>0.05)

and the late (F (1, 264) = 0.57, p = 0.451>0.05) phase.

3.5 Summary

To summarize, we found neurons reduced their firing rates to its preferred face,

with increasing number of distractors and with face distractors, more than ob-

ject distractors. These effects are independent on neural RF size. The only

response we observed that dependded on RF size was the response to multi-

ple preferred faces, where faces outside of the RF cause response suppression

similar to face distractors. The neuronal firing rates were also reduced with

closer distractor proximity at RF center, but at RF periphery, distractors did

not cause systematic response reduction with shortening distractor distance.

5In order to equalize the difference in the peak magnitude, both data in Cat/Num and
position control experiment were normalized such that population average response to the
preferred face is equal to 1.
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Figure 3.8: Position control experiment. Each panel shows latency subtracted
population average (N=15) of position control experiment (above) with the pre-
ferred face presented at the peripheral RF, and main experiment (below) with
the preferred face presented at the center RF. Note that above and below ab-
scissa have different scale, but the scales are fixed across panels. (A) The pre-
ferred face and face distractor conditions. (B) The preferred face and object
distractor conditions. (C) Face distractor without preferred face.(D) Object
distractor without preferred face.
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4
Population readout

4.1 Representation in the pattern of neural re-

sponses

We observed that with increasing number of distractors, with face distractors

rather than object distractors, and with closer distractors the mean neuronal

firing rate was reduced. This result might indicate that the neural repre-

sentation of the preferred face was degraded by these distractors. However,

while average firing rate is a simple and easy way to visualize the data, it can

potentially obscure the representation within the response pattern across the

recorded neurons. In other words, small fluctuation could create a pattern

of activity in the neural population to encode the stimulus from the outside

world, even if such a pattern could be averaged out. For example, Stokes et al.

showed that the response pattern of neural population could encode informa-

tion, even under a very small magnitude change in average firing rate [160].

The reason why the averaging operation can compromise the actual stimu-

lus representation can be seen in Fig. 3.2. In the top two panels, “preferred face
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with 2 face distractors” and “preferred face with 4 object distractors” show

approximately same average response. However, these two stimulus conditions

could be represented very differently in the representation space spanned by

neural population. Fig. 4.1 provides an explanation. The Top panel shows a

representation space spanned by two hypothetical face selective neurons, re-

sponding to face distractor and/or object distractor, in addition to a preferred

face. Each dot is showing two neurons’ responses to a stimulus combination.

Two entries in the parenthesis indicate whether the face distractor and object

distractor is present (“1”) or absent (“0”), respectively. For example, B(1, 0)

means face distractor is present, and object distractor is absent. Averaging

corresponds to the following operation: project each dot to the diagonal line

of unity (x = y. See Appendix H for explanation of why diagonal projection

corresponds to averaging). The result is shown in the bottom left panel of

Fig. 4.1. The average correctly captures the large activity difference between

no distractor presence (D(0, 0), preferred face without any distractor) and both

distractor presence (A(1, 1)) condition. However, the condition B(1, 0) and

C(0, 1), where one of the distractors is presented, are positioned very closely

even though they are well separated in the original representation space. This

is because the neuron #1 and neuron #2 are particularly responsive to one

of the stimuli, but not to the other. Thus, the averaging cancels out these

responses to give similarly moderate values. This indicates that a pair of close

population averages shown in the last chapter might in fact be very distinctly

represented in the original representation space.

63



(face distractor, object distractor)
  0...absent              1...present

PCA ICA

PC1: Axis representing BOTH
face and object distractors

A (1, 1)

B (1, 0)

C (0, 1)

D (0, 0)

IC1: Axis representing face
distractor ONLY

A (1, 1)

B (1, 0)

C (0, 1)

D (0, 0)

PC
2:

 A
xi

s 
re

pr
es

en
tin

g 
BO

TH
fa

ce
 a

nd
 o

bj
ec

t d
is

tra
ct

or
s

IC
2:

 A
xi

s 
re

pr
es

en
tin

g
ob

je
ct

 d
is

tra
ct

or
 O

N
LY

N
eu

ro
n 

#2
 a

ct
iv

ity
 le

ve
l

Neuron #1 activity level

Average

A (1, 1)

B (1, 0)

C (0, 1)

D (0, 0)

N
eu

ro
n 

#2
 a

ct
iv

ity
 le

ve
l

Neuron #1 activity level

B (1, 0)C (0, 1)

D (0, 0)

A (1, 1)

Figure 4.1: Comparison of average, PCA and ICA. The top panel shows hypo-
thetical two face selective neurons responding to a combination of face distractor
and/or object distractor, in addition to a preferred face. The four data points
A, B, C and D show different stimulus condition with “0” and “1” indicating
absence and presence of the (face distractor, object distractor), respectively.
For example, B(1, 0) means face distractor is present, but object distractor is
absent. The imaginary dotted line is highlighting the shape of the data distri-
bution. Average (across neurons) operation, PCA and ICA are applied to this
distribution and presented at the bottom panels. (Left) Result of an average
operation. The average operation corresponds to projecting the four points onto
the line of unity, and read either x (abscissa) or y (ordinate) value of them (see
Appendix H). (Middle) PCA result. PCA finds a new set of axes such that
each axis captures as much variance of the distribution as possible, resulting in
rotating the original axes. (Right) ICA result. ICA “whiten” the distribution,
namely equalize the variances along both dimensions (i.e. both along x and y
axes) to find a new set of axes on which marginal distributions have minimum
Gaussianity. For simplicity, the distributions are shown with non-zero means
along both dimensions (i.e. both along x and y axes) but in the actual PCA
and ICA the means of distribution were subtracted to center the distribution
on the origin. For the details, see the main text.
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4.2 How to capture representation in the high

dimensional space spanned by population

However, one issue with treating data without averaging it is visualization. If

N cells were recorded with c different stimulus conditions, we need to seek a

representation in N × c matrix, which makes it difficult to grasp the overall

response pattern at a glance. One way to solve this problem is to apply dimen-

sional reduction technique, such as Principal Component Analysis (PCA) or

Singular Value Decomposition (SVD). For the relationship between PCA and

SVD, see Appendix I. These analyses reassign the original axes to the calcu-

lated eigenvectors, which capture the largest variance in the data distributed

in the representation space. The eigenvectors are calculated from a covariance

matrix of the original data, and sorted in descending order of eigenvalues. Each

eigenvalue indicates the captured variance in the direction of its correspond-

ing eigenvector. Therefore, eigenvectors associated with small eigenvalues can

be safely omitted without large reduction of total explained variance, which

means reducing the dimension of the original space, while capturing the prin-

cipal pattern of activity.

PCA and SVD subtract the mean of the distributed data (center the distri-

bution to the origin) to extract the standard deviation of the distribution [161].

This means that if the data distribution is a multi-dimensional Gaussian (which

is defined only by means and standard deviations), PCA can successfully sum-

marize the distribution in the low dimensional space. In this case, marginal

distributions along each axis (eigenvector) has a shape of a Gaussian. However,

Gaussian marginal distribution can be a problem in terms of decomposing in-

formation in the representation space. The reason is as follows: the Central

Limit Theorem states that a linear summation of random two samples taken
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from two arbitrary distribution will distribute close to Gaussian. In other

words, marginal Gaussian distribution indicates that the axis is representing

a mixture of information. Fig. 4.1 demonstrates this problem. The bottom

middle panel shows the result of PCA applied to the original representation

space shown at the top panel. PCA captures the diagonals of original tilted

square shaped distribution for its largest standard deviation. The horizontal

axis (PC1) has A (0, 0) on the left side close to the origin, B (1, 0) and C

(0, 1) on the middle, and D (0, 0) on the right side (which is also similar to

the average shown in bottom left panel). Thus, from left to right, both the

presence of face distractor stimulus and object distractor stimulus are chang-

ing. In other words, this axis represents the mixture of face distractor and

object distractor stimuli (the same logic can be applied to the vertical axis).

Additionally, because PCA captures the largest variance, the first eigenvector,

i.e. PC1 can potentially be very similar to the population average. This can

be appreciated by projecting both the population average (Fig. 4.1, left panel)

and the PCA result (Fig. 4.1, middle panel) to the horizontal axes. Therefore,

PCA is a convenient tool to grasp the shape of the representation, but axes

can contain mixed information which often makes data interpretation difficult.

Both averaging and PCA could compromise or mix the information in the

original representation space. In order to find axes each of which is represent-

ing only one kind of stimulus information, we looked at higher order statistics

(i.e. third or higher order) using Independent component analysis (ICA). ICA

finds axes whose marginal distribution is non-Gaussian (because a Gaussian

distribution indicates mixed information source, as described above) by using

higher order statistics such as kurtosis or skewness [162]. Because Gaussian

distribution has zero value of higher order statistics, these higher order statis-

tics can be used as a measurement of non-Gaussianity (practically, the absolute
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values are used to quantify distance from Gaussian). The bottom right panel

of Fig. 4.1 demonstrates the ICA result. In the marginal distribution of the

horizontal axis (IC1), A(1, 1), B(1, 0) are on the left, and C(0, 1) and D(0,

0) are on the right. Thus, the horizontal axis is representing the presence

of object distractor stimulus, independent of the presence of face distractor

stimulus (the same logic is applied to the vertical direction). Another way to

see independence in ICA is to determine the data point given a value on one

axis. For example, knowing the value of data C or D on the horizontal axes

cannot determine one point because data C and D have the common value

(i.e. underspecified). However, in the PCA result, knowing the value of data

D on horizontal axis defines one point in the data distribution. Thus, PCA

axes are not independent, and ICA axes are independent. There are several

algorithms for running ICA, including kurtosis-based, entropy-based and mu-

tual information-based, but the underlying principle is similar as above. In

the subsequent analyses, we applied Bell-Sejnowski infomax algorithm [163]

(MATLAB code based on DTU:toolbox [164]).

4.3 Independent representations of the multi-

ple stimuli in the population activity pat-

tern

According to the thought experiment in the last section, when PCA was ap-

plied to the Cat/Num experiment the resulting PCs had mixed information, as

shown in the Fig. 4.2. The PC1 coefficients have qualitatively similar pattern

as the population average (see Fig. 3.2), also consistent with the thought ex-

periment. PC2 and PC3 seemed to represent mixed information of distractor

category, distractor number and mean firing rate.
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Figure 4.2: PCA applied to the Cat/Num experiment. Unit is arbitrary (nor-
malized firing rate). (Top) Three PCs from the early phase. PC1, PC2 and PC3
captured 83%, 6% and 4% of total variance, respectively. (Bottom) Three PCs
from the late phase. PC1, PC2 and PC3 captured 79%, 6% and 6% of total
variance, respectively.

We confirmed that PCs have mixed information by running DPCA (Demixed

PCA [165]), which could potentially separate stimulus information1 and ascribe

as much as possible to each PC, while maintaining the orthogonality of the

axes. When it was applied to the data, DPCA resulted in almost the same

result as PCA (thus, DPCA could not completely ”demix” the components).

The result is shown in Fig. 4.3. The DPC1 is similar to the population average,

and all of the DPCs have mixed information (For details, see the caption of

Fig. 4.3). One small difference from PCA is that the DPC2 and DPC3 in the

late phase are swapped, but since the explained variance by PC2 and PC3 had

very similar explained variance in PCA (both 6%, see the caption of Fig. 4.2),

we think this result is neither robust nor consistent.

DPCA also showed that each DPC represents a mixture of information: in

the early phase for example, 77% of variance in DPC1 was given by either a

1In DPCA stimulus group was provided by user, thus DPCA is not completely unsuper-
vised algorithm as PCA.
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preferred face is either present or absence (variable which is directly related to

mean firing rate), but 11% of the variance was explained by the mixture of the

existence of a preferred face, distractor number and distractor category. Sim-

ilarly, while 55 % of DPC2 was explained by difference in distractor number,

but 40% of variances are explained by presence of a preferred face, difference

in distractor number and category. Also 63% of variance in DPC3 was ex-

plained by distractor category difference, while 20% of variance was mixture

of presence of a preferred face, difference in distracter number and category.
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Figure 4.3: DPCA applied to the Cat/Num experiment. Unit is arbitrary
(normalized firing rate). (Top) Three DPCs from the early phase. DPC1, DPC2
and DPC3 captured 84%, 6% and 3% of total variance, respectively. (Bottom)
Three DPCs from the late phase. DPC1, DPC2 and DPC3 captured 80%, 7%
and 5% of total variance, respectively.

To test whether population activity pattern gives axes with independent

stimulus information, we applied linear ICA to the population activity matrix.

Because ICA does not reduce the dimension of matrix2, SVD was used first to

reduce the original N (number of recorded neuron) dimension to k dimensions

2To be precise, PCA also does not reduce the dimension per se, but variance explained
by given PCs are in descending order such that a user can discard PCs with small explained
variance - resulting in reducing dimension - without compromising total explained variance.
ICA on the other hand does not provide ICs with decaying explained variance.
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(k is an arbitrary number, determined by user based on number of information

needed to be represented). Then, ICA was applied to find s independent

components across which minimal mutual information was contained. The

analysis streamline is illustrated in Fig. 4.4.

Figure 4.4: The concept of dimension reduction followed by ICA. The orig-
inal response matrix was N × c two-dimensional matrix, where N is number
of the recorded neurons and c is the number of stimulus conditions. Matrix
elements were time average of either early or late phase response. SVD reduced
the first dimension from N to either 5 (Cat/Num experiment) or 3 (Prox/Ecc
experiment). From this dimension-reduced space, ICA found independent com-
ponents based on Bell-Sejnowski Infomax algorithm.

We found independent components represent stimulus parameter we used

in the Cat/Num experiment (Fig. 4.5). IC1 represented the distractor number.

Note that sign and amplitude (i.e. bar graph direction and absolute height) is

irrelevant in ICs 3. Thus, only relative heights of the bars are important. The

four blue (face distractors and preferred face conditions) bars and yellow bars

(object distractors and preferred face conditions) look identical, indicating that

IC1 was counting the distractor independent of distractor category. However,

3In ICA, the original data is reproduced as a linear combination of an IC matrix and a
mixing matrix. Because both of the IC matrix and mixing matrix, multiplying an IC with a
scalar value can be cancelled out by dividing a mixing matrix by the scalar value (and vice
versa). Therefore, the magnitude and signs of the ICs are underspecified.
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IC2 and IC3 depended on distractor category. IC2 had peaks only at the

preferred face and object distractors condition (the 6 - 9th bars from the

left, yellow-brown color group). Similarly, IC3 had peaks at preferred face

and face distractors conditions (the 2 - 5th bars from the left, blue - green

bar group). Note that the ICs are ordered according to their explanatory

power, similar to the explained variance in PCA (responses to the preferred

face and face distractors were smaller than responses to the preferred face

and object distractors, therefore the latter represented IC2). IC4 and IC5

represented face and object distractors without the preferred face, respectively.

As described in the last chapter, the responses without the preferred face were

very weak at the early phase, and almost same as baseline firing rate in the

late phase. Moreover, there were almost no magnitude differences between

face and object distractors. Nevertheless, IC4 and IC5 discriminated face and

object distractors, both at the early and the late phase. This finding was

similar when we varied the distractor proximity. Regardless of the phase,

the stimulus information was represented in the ICs. IC1 represented the

preferred face (without distractors), IC2 represented the distractor distance at

the preferred face with distractor condition, and IC3 represented the distractor

distance at the distractor only control condition. However, when we varied the

eccentricity of stimulus position, we found slightly different representation at

the RF center and RF periphery. At the RF center (Fig. 4.5B), preferred face

(without distractor, the red bar), preferred face with distractors (the blue bars,

2 - 4th from the left), distractors without preferred face (the green bars, 5 -

7th from the left) were separated in IC1, IC2 and IC3, respectively. However,

at the RF periphery, preferred face with distractors and preferred face without

distractors are grouped together (Fig. 4.5C)4. This may indicate that at the

4For example, IC2 in Fig. 4.5 has similar peaks at “preferred face with medium distance
distractors”, “preferred face with small distance distractors”, “medium distance distractors
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RF periphery the stimulus information could be compromised. Thus, although

minor differences were present, ICs in the early and late phase revealed almost

the same information contents, despite the large magnitude difference in the

mean firing rate of the early and the late phase.

4.4 Quantifying discriminability assessing tem-

poral transition of representation

ICA revealed the representation of stimulus information in the pattern of pop-

ulation activity. This showed that the neural population was able to discrimi-

nate each stimulus condition, instead of its representation being compromised

by the distractors. To quantify the detectability, we ran a supervised algorithm

on the same data (using Neural Decoding Toolbox [166]) to study whether dis-

tractor category, distractor number and distractor proximity could be decoded

from the response. The algorithm used was machine learning based on a pop-

ulation vector calculated in the training phase (either the early or the late

phase response were used), and tested within the same phase (for detail, see

Appendix A). As described in Chapter 3, the early phase and the late phase

were defined such that both phase have approximately equal number of spikes.

This design allowed us to quantify information content, or discriminability per

unit spike in each phase (because each phase is defined such that they have

approximately the same number of spikes). Fig. 4.6A shows the decoder per-

formance. The discriminabilities were above chance level in both the early and

in the late phase, and the difference in performances were not significant in

the early and the late phase, although response magnitudes were significantly

without preferred face” and “small distance distractors without preferred face”, may indicate
that the IC2 is mixing stimulus conditions where distractors have certain distance, regardless
of presence of the preferred face.
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Figure 4.5: High-dimensional representation preserves stimulus discriminabil-
ity. Dimensions originally spanned by neural population are reduced to 5 or
3 using SVD followed by ICA. Color code and abbreviation follows Fig. 3.2
and 3.6. (A) Cat/Num experiment. Each bar corresponds to IC value of the 18
conditions used in Fig. 3.2. (B) Prox/Ecc experiment at RF center. Each bar
corresponds to IC value of the 7 conditions used in Fig. 3.6. (C) Same as (B),
but the stimuli were presented at the periphery of RF.
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different as we saw in Chapter 3. This led us to another speculation that the

neural coding scheme might have changed from the early to the late phase.

As a first attempt to compare the coding scheme in the early phase and

the late phase, we ran the temporal cross-training analysis (also in Neural

Decoding Toolbox, Fig. 4.6B). In this analysis, instead of training and testing

a machine in the same time frame, a machine is tested in one particular window,

while trained in all time windows. As seen in the Fig. 4.6B, we found a two-

block pattern: a small in the block upper left corner (100∼200 ms after the

stimulus presentation) corresponding to the early phase, and a larger bottom

right block (250∼400 ms after the stimulus presentation) corresponding to the

late phase. This two block pattern indicated that within the early and late

phase the coding scheme was similar (in other words, one can train and test the

machine within different time windows to obtain a high decoding performance),

but the coding scheme was different from the early to the late phase (otherwise

we should see one large block pattern). Then, how did the encoding scheme

change? We explore this question further in the next chapter using a computer

model.
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5
Modeling results

5.1 Divisive Normalization framework to ex-

plain discriminability

With unsupervised (ICA) and supervised (machine learning) learning algo-

rithm, we showed that stimulus information - distractor number, distractor

category and distractor proximity - were preserved in the population activity.

Moreover, the machine learning study indicated that the information encoding

scheme was changed from the early to the late phase. The next question is,

HOW did the encoding scheme change across time? To study the stimulus

encoding further, we developed a computer model based on Divisive Normal-

ization.

Why is Divisive Normalization suitable for our data? By fMRI data, we

know that temporal lobe contains both face selective cortices and non-face

selective cortices. This indicates that presenting face or non-face object pro-

duces large population activity in each of the selective cortices. In terms of

Divisive Normalization, large population activity induces large normalization.
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Moreover, as described above, Divisive Normalization can bias the weight in

proportion to the population activity. This indicates that, presenting a pre-

ferred face and a non-face distractor induces a biased weight toward the face

within the face patch population (because neural population is selective to

face), resulting in slight response reduction (i.e. closer to winner-take-all).

On the other hand, presenting a preferred face and a face distractor induces

a larger normalization power with almost equal weights (because both of the

two presented images are faces, which are in the selective category of the face

patch), resulting in larger response reduction. In fact, this is exactly what we

observed in our data: face distractors suppressed responses more than objects.

Face distractors themselves do not elicit a response to the neuron from which

we are recording, but they do elicit a large response in the surrounding popu-

lation which normalizes the response of the neuron that we are observing. In

contrast, object distractors do not elicit large response to the neuron, and also

do not elicit large response to the neighboring population either, resulting in

small normalization from object distractors.

5.2 Divisive normalization model explained the

early phase of Category/Number variation

experiment without any free parameter

Based on the Divisive Normalization framework, we developed several models.

Firstly, I introduce the pure prediction model. The name “pure prediction”

came from the fact that this model does not contain any free parameter. Thus,

this model is directly testing our working hypothesis without fitting the model

behavior to the observed data. The model equation is as follows:
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Figure 5.1: The concept of Divisive Normalization. Divisive Normalization
states that a neuron computes a ratio between the direct inputs and population
activity of neighboring neurons. Even though we selected a non-preferred face
for the recorded neuron, there would be a certain fraction of neurons activated
by the face in the neighboring population (a non-preferred face for one neuron
might be a preferred face for the other). This indicates a large normalization
induced by non-preferred faces. However, for non-preferred object this may not
be the case, because face patch contains more than 90 % face selective neurons,
resulting in a small normalization.
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Spref+dist
i =

l∑
p=1

Spref
i (xp)P

pref
i (xp) +

m∑
q=1

Sdist
i (yq)P

dist
i (yq)

l∑
p=1

P pref
i (xp) +

m∑
q=1

P dist
i (yq)

(5.1)

Spref
i and Sdist

i in the numerator are direct inputs S from the preferred face

and the distractor, respectively. The actual value used for these direct in-

puts were calculated based on measured RF value. x and y are specifying the

presentation location on the screen. These direct inputs were weighted and di-

vided by population activity, P . These population activities were calculated by

average RF of the stimulus used (for details of calculation, see Appendix A.).

When there are multiple preferred faces or distractors, the number of terms in

the denominator and numerator are increased. We applied this model to all of

the recorded neurons and averaged across the neurons. As shown in Fig. 5.2,

the model and data show a fairly close correspondence within the error bar

range (SEM). Two-way ANOVA did not show significance between the data

and prediction for the 18 stimulus conditions shown in Fig. 5.2 and Table 5.1

(F (1, 3960) = 0.67, p = 0.41>0.05).

This pure prediction model worked particularly well at the early phase

of the distractor numbers / category variation experiment, indicating that

Divisive Normalization could predict the neural computation scheme in this

condition (i.e. the early phase of the distractor numbers / category variation

experiment).
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Figure 5.2: Pure prediction model showed close correspondence to the inde-
pendently measured data. Mean firing rates and model outputs were calculated
at the early phase and averaged across recorded neurons (colored and open bar
graphs, respectively), using data from Cat/Num experiment. The color code
follows Fig. 3.2. Error bars show standard error of the mean.
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Table 5.1: Data and the model average response and SEM

Data Model

PF. 31.41± 2.24 31.00± 2.04
PF+1FD. 22.82± 1.99 20.41± 1.52
PF+2FD. 15.69± 1.70 15.92± 1.28
PF+4FD. 11.83± 1.53 11.68± 1.05
PF+8FD. 9.37± 1.39 8.37± 0.88
PF+1OD. 26.00± 2.05 27.00± 1.85
PF+2OD. 21.86± 1.90 24.12± 1.72
PF+4OD. 17.09± 1.67 20.17± 1.53
PF+8OD. 14.73± 1.56 15.62± 1.30

1FD. 3.63± 0.72 3.43± 0.69
2FD. 3.47± 0.79 3.43± 0.69
4FD. 3.46± 0.85 3.43± 0.69
8FD. 3.26± 0.83 3.43± 0.69
1OD. 2.15± 0.62 2.93± 0.69
2OD. 2.27± 0.74 2.93± 0.69
4OD. 2.24± 0.77 2.93± 0.69
8OD. 1.73± 0.78 2.93± 0.69
S.A. 0.14± 0.15 0± 0

5.3 Limitation of the pure prediction model and

introducing an exponent as a free parame-

ter

However, for Prox/Ecc experiment, and in the late phase, the pure predic-

tion model gave an error (Fig. 5.3). In the late phase, some neurons showed

responses different from the early phase: for example, response became ro-

bust against distractors and response reduction was decreased. In Prox/Ecc

experiment, although Divisive normalization model could capture the quali-

tative reduction of firing rate as distractor distances were decreased, but the

model overestimated the response suppression to have a much smaller firing

rate even when the distractor distance was longest (Fig. 5.3, open bars) In or-
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der to understand the computational principle in the rest of the conditions, we

introduced the post-diction model. The model equation is same as the widely

used, common Divisive normalization model:

Figure 5.3: Pure prediction model showed a larger error for the Prox/Ecc
experiment. Mean firing rates and model outputs were calculated at the early
phase and averaged across recorded neurons, using data from Prox/Ecc experi-
ment. The color code follows Fig. 3.6.

In this post-diction model (Equation (5.2)), a free parameter n is used.

This free parameter is an exponent on the population activity allows one to

change the bias of the weight either toward one direct input or another. Note

that in this configuration the sum of coefficients on the direct inputs are always

equal to 1, allows easier quantification of the computational bias.
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Spref+dist
i =

l∑
p=1

Spref
i (xp){P pref

i (xp)}n +
m∑
q=1

Sdist
i (yq){P dist

i (yq)}n

l∑
p=1

{P pref
i (xp)}n +

m∑
q=1

{P dist
i (yq)}n

(5.2)

5.4 Divisive Normalization model revealed the

change of computational principle from the

early to the late phase

With the post-diction model, all the remaining conditions were explained

(Fig. 5.4). Not only the mean firing rate, but also the results of population

readout analyses by ICA were reproduced. With the post-diction model, we

are now ready to address the question: how did the stimulus coding scheme

change across time?

For simplicity, let us describe the post-diction model in case of the two

stimuli condition, namely when only one preferred face and one distractor

(either a face or an object) is presented on the screen. The post-diction model

can be written as a linear summation of two direct inputs:

Spref+dist
i =

{P pref
i (xp)}n

{P pref
i (xp)}n + {P dist

i (yq)}n
Spref
i (xp)

+
{P dist

i (yq)}n

{P pref
i (xp)}n + {P dist

i (yq)}n
Sdist
i (yq)

(5.3)

As described above, two coefficients are normalized such that the sum of
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Figure 5.4: Post-diction model explains the observed representation. Model
outputs of single cell response, population average and high-dimensional space
representation reproduced the experimental observation. Color code and abbre-
viation follows the Fig. 5.2. (A,B) The post-diction model (white bars) com-
pared to both Cat/Num and Prox/Ecc experiment, at the early and the late
phase. (A) shows a single cell example, and (B) shows the population average
across recorded neurons. (C,D) Post-diction model of Cat/Num and Prox/Ecc
experiment, respectively, analyzed with ICA.
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them are equal to 1. This means that from the nature of one of the coefficients,

we can infer the way in which the neuron combines its inputs and performs the

computation. For example, if the coefficient of the first term (preferred face)

is equal to 1, the neuron is ignoreing the distractor because the coefficient of

the second term is 0. If both coefficients are 0.5 however, the neuron is taking

the average of the two inputs. Since the two coefficients are complementary,

we focused on the first coefficient and named it distractor robustness index.

RobustnessIndex =
{P pref

i (xp)}n

{P pref
i (xp)}n + {P dist

i (yq)}n
(5.4)

We calculated the distractor robustness index across all the recorded neu-

rons and created a distribution histogram. Fig. 5.5A shows that at the early

phase of the response to the preferred face and a face distractor, most of

the neurons had a value of 0.5, indicating average response. However, at the

late phase, a significant fraction of the neurons changed their weight toward

1, indicating they started ignoring the distractors. Moreover, this effect was

even more prominent in the preferred face and object distractors condition

(Fig. 5.5B). At the early phase, the distribution was almost flat, but at the

late phase most of the neuron had a value of 1, indicating robustness against

the distractors.

In the Prox/Ecc experiment, this tendency also held true. Fig. 5.6 shows

that more neurons shifted their index value toward the late phase, and the

effect is stronger when the distractor distance was longer. This is reminiscent

of the result in Chapter 3, where neurons were not robust against the short

distance distractors, resulting in reduced neural response.

By analyzing the distractor robustness index, we found the global shift

from averaging regime toward robust regime in both Cat/Num and Prox/Ecc
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Figure 5.5: Robustness index calculated for the Cat/Num experiment. Each
histogram shows the number of neurons in a given range of robustness index.
Red arrowheads show that the pointed value of robustness index indicates av-
erage or robust computation. (A) Preferred face and face distractor conditions.
Left: early phase, right: late phase. (B) Preferred face and object distractor
conditions. Left: early phase, right: late phase.
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experiments. However, as seen in Fig. 5.5 and 5.6, there were always a cer-

tain numbers of neurons between the averaging and robust regime. As shown

in Chapter 4, this heterogeneous neural population could create independent

representation axes in the high dimensional representation space. In fact, we

found that the heterogeneity in activity pattern was an important component

to have representation axes discriminating the stimuli, as explained below.

Fig. 5.7 shows a simulation result of two neural population of 100 neurons,

one has homogeneous and the other has heterogeneous response (Fig. 5.7A,B).

Here, simplified version of pure prediction models are used to create simulated

responses for face distractor conditions (i.e. preferred face and 1, 2, 4 or 8 face

distractors, Equation 5.5) and object distractor conditions (i.e. preferred face

and 1, 2, 4 or 8 object distractors, Equation 5.6):

Spref+dist,face
i =

Spref
i P pref

i + nSdist,face
i P dist,face

i

P pref
i + nP dist,face

i

(5.5)

Spref+dist,object
i =

Spref
i P pref

i + nSdist,object
i P dist,object

i

P pref
i + nP dist,object

i

(5.6)

where n = 0, 1, 2, 4, 8 is distractor number. The single neuron responses,

Spref
i , Sdist,face

i and Sdist,object
i and the population response to a preferred face,

P pref
i are fixed while the population responses to distractors, P dist,face

i and

P dist,object
i are also fixed for simulating homogeneous population, and randomly

drawn from Gaussian distributions for simulating heterogeneous population.

Robustness index calculated from these two population confirmed homogene-
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ity (Fig. 5.7B) and heterogeneity (Fig. 5.7F), respectively. Stimulus conditions

from Cat/Num experiment were used: preferred face only, preferred face with

1,2,4 or 8 distractors, preferred face with 1,2,4 or 8 object distractors. Pop-

ulation average across neurons showed very similar pattern as shown in the

right hand side of Fig. 5.7A and E. However, when ICA was applied to these

two simulated population, the result was quite different. The homogeneous

population gave almost identical ICs (due to the redundancy in activity pat-

tern), shown in Fig. 5.7C. Moreover, representation of distractor category and

numbers are mixed together and ICs could not provide more representation

than what average response provides. When ICA was applied to heteroge-

neous neural population, result showed similar pattern as the recorded data

(Fig. 4.5, 5.7G). IC1, IC2 and IC3 were representing distractor number, object

distractor and face distractor. PCA results also showed different results in

homogeneous and heterogeneous population (Fig. 5.7D,H). The first PC from

both population has a similar pattern as population average, But the PC2 from

heterogeneous population resembles PC3 (early phase) and PC2 (late phase)

from the data (Fig. 4.2), also highlighting the advantage of heterogeneity.

Heterogeneous response pattern in a neural population allowed discrimi-

nating stimulus groups in population readout. However, only with the hetero-

geneity, the groups cannot be discriminated in mean firing rate. Fig. 5.8 gives

an example. Fig. 5.8A and E show simulated heterogeneous neural population

of 100 neurons. The difference between Fig. 5.8A and E is that the population

response (P dist
i ) to face distractors is greater than response to object distractors

in E, while in A population response shows an equal magnitude of response

to face and object distractors. The direct inputs to single neurons are same

across neurons and across distractors (i.e. face distractor and object distractor

gives the same direct input). As Fig. 5.8B and F shows, population readout
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neous neural population. (A) Left, Population activity matrix of the homoge-
neous population. Right, average neural activity across neurons. (B) distractor
Robustness Index distribution across homogeneous population. Left, preferred
face and face distractor conditions, Right, preferred face and object distractor
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plied to the heterogeneous population activity matrix in (E). (H) PCA applied
to the heterogeneous population activity matrix in (B). Color code follows the
Fig. 5.2.
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of these two simulated population resulted in quite similar IC patterns repre-

senting distractor number (IC1), preferred face and object distractors (IC2)

and preferred face and face distractors (IC3). However, the mean firing rate

of population cannot discriminate face distractor groups (Shown in Fig. 5.8A,

right panel. 2 - 5th bar graphs from the left) and object distractor groups

(Shown in Fig. 5.8A, right panel. 6 - 9th bar graphs) in Fig. 5.8A. On the

other hand, face distractors reduced firing rates more than object distractors

in Fig. 5.8E, similarly as the recorded data. Also, the left panel of Fig. 5.8A

and E shows that neurons are discriminating the face and object distractor

conditions in single neuron level. Thus, the different population response to

the different category of distractors can allow neurons to discriminate stimulus

conditions, even when the direct inputs from face and object distractors are

the same. Face neurons are segregated into modular structure (i.e. face patch),

thus population of the face patch shows larger activity to face stimulus more

than the object stimulus. As shown in Fig. 5.8E, this difference in population

activity resulted in discriminating distractor category in mean firing rate. In

other words, modularity helps discriminating different stimulus category both

in single neuron level, and population average firing rate level.

We found that heterogeneity in the population activity could represent

stimulus information separable by ICA. Then, what type of heterogeneity can

help representation and discrimination of stimuli? We discuss relationship be-

tween the heterogeneity in MF neurons and Divisive Normalization in Chap-

ter 7.
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Namely, the population in (A) was simulated with population activity (P dist

i )
taken from the same distribution to produce responses to both face distractor
and object distractor conditions. However, because two values for face and ob-
ject conditions were taken randomly, the response to face and object distractor
conditions (2-5 and 6-9 columns, respectively) were different. The population
average across neurons is shown right. (B) Result of ICA applied to the popu-
lation activity in (A). Population shown in (C) was simulated same as (A), but
exactly the same (P dist

i ) values were used for both face and object distractor
conditions. Thus, columns 2-5 and 6-9 show the same response pattern. The
population average across neurons is shown right, and ICA result is shown in
(D). To simulate the population in (E), (P dist

i ) values for face and object distrac-
tor conditions were taken from two different Gaussian distribution with different
mean. The population average across neurons is shown right, and ICA result is
shown in (F). Population shown in (G) was simulated same as (E), but columns
2-5 and 6-9 are independently shuffled for each neuron such that the resulting
response to different number of distracters have a unimodal tuning curve. The
population average across neurons is shown right, and ICA result is shown in
(H). Color code follows the Fig. 5.2.
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6
Comparison to anterior face

patch AL

6.1 Anterior face patch AL is located one po-

sition higher than MF in the cortical hier-

archy

In addition to MF, we also recorded from one of the anterior face patch AL

(anterior lateral) to compare neuronal responses to that of MF neurons. Ac-

cording to previous microstimulation and tracer injection studies [88, 167], AL

is located at the lower lip of the STS in anterodorsal TE (TEad). AL neurons

are known to connect to MF in a reciprocal manner (Fig. 6.1).

AL neurons are also tuned to the head orientation, but approximately 3/4

of the neurons have a particular type of selectivity coined as “mirror-symmetric

tuning” [89]. As shown in Fig. 6.2, Mirror-symmetric tuned AL neuron respond

to both one head orientation and opposite direction of face image (e.g. left

and right, up and down. It does not have to be a precise mirror image: except
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Figure 6.1: Face patch connectivity diagram. Arrows show directed connec-
tion between cortical regions. Black arrows are connection defined based on
microstimulation study of Moeller et al. [88], and light blue arrows are defined
based on tracer infection experiment of Grimaldi et al (conference presentation,
unpublished [167]). Color code of brain regions are as follows: Red: early visual
area, Yellow: temporal lobe, Green: frontal lobe, Blue: subcortical structures.
Circles indicate face patches. V4: forth visual cortex, PL: posterior lateral, ML:
medial lateral, MF: medial fundus, AL: anterior lateral, AF: anterior fundus,
AM: anterior medial, PO: prefrontal orbital, B: basolateral amygdala, L: lateral
amygdala.
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few neurons tuned strongly to identity, neurons respond to broad range of

visual images with the two preferred head orientations). Another noticeable

physiological difference is its RF size, as expected from converging inputs to

upstream neurons in the hierarchy [40].

Given that MF neurons could be a potential input source to the AL patch,

AL neurons could be more robust against the distractors. Alternatively, AL

neurons could show similar response property as MF, because (a) AL neurons

may relay the response from MF, to show stronger reduction by distractors at

the early phase, followed by more robust response against the distractors at the

late phase. Or because (b) AL neurons might also receive inputs from other

object selective patches (i.e. AL may receive inferences from object selective

inputs similar to MF). Based on fMRI results, non-face object selective cortices

are found in between the face selective cortices. Thus, even in the higher

position in the hierarchy AL neurons might still receive (weaker) normalization

from object patches and (stronger normalization from) face patches (however,

the tracer study of Grimaldi et al. did not show direct evidence of inputs from

object selective cortices).

We conducted recording from two AL patches of two monkeys (Monkey J

and Monkey M, the former was also used in MF recordings). For the distractor

category/numbers experiment and Prox/Ecc experiment, we collected 109 (48

from the monkey J and 61 from the monkey M) and 108 neurons (47 from the

monkey J and 61 from the monkey M), respectively.
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Figure 6.2: Comparison of physiological property between MF and AL neu-
rons. (Top) Most of MF neurons are tuned to one head orientation showing
a unimodal tuning curve. Most of RFs are foveal and circular. (Bottom) Ap-
proximately 3/4 of the AL neurons show mirror symmetric tuning, responding
to a head orientation and mirror-symmetric direction of the head orientation.
RF can cover almost entire hemifield on the screen or bottom half shown as ex-
ample, or even larger. However, we also found AL neurons with smaller foveal
RFs.
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6.2 AL neurons’ responses were reduced by dis-

tractors similar to MF, but latency was shifted

with distractor numbers

As expected from the later position in the hierarchy, AL neurons’ response

latency (time from the stimulus onset to the response onset. Do not confuse

with onset-to-peak latency, which I introduce later in this chapter) distribution

was significantly different from that of MF neurons (Two-sample Kolmogorov-

Smirnov test, p=0,00165 <0.05). Specifically, neurons with very short latencies

found in MF were not seen in AL neurons. This made the AL latency distri-

bution less skewed than MF distribution, although the median value is only

slightly increased (84 ms for MF distribution, and 89 ms for AL distribution)

Fig. 6.3 shows the distribution of the response latency. As in the MF study,

the response latency was calculated based on neuron’s response to its preferred

face: the response onset is the time when the trial-average response crossed 3

standard deviation of spontaneous activity (for details, see Appendix A).

We calculated the AL population average firing rate in the same way as for

MF neurons. Specifically, response latencies were subtracted before averaging

in order to align the response peak (response onset latency ranged from 56 ms

to 254 ms). Note that the relative response lag across stimuli were preserved:

response latency was defined per neuron, not per stimulus condition. Fig. 6.4

shows the result. As seen in the figure, the face distractors and object distrac-

tors still suppressed (or normalized) the neural response, quite comparable

to what we found with MF neurons. Two-way ANOVA (factor 1: distractor

number, factor 2: distractor category) verified significant reduction by distrac-

tor number difference both at the early phase (F (4, 975) = 39.33, p = 1.46 ·
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Figure 6.3: Response onset latency comparison between MF and AL. (top)
Latency distribution from 111 MF neurons. The black vertical line is showing
the median value: 84 ms from the stimulus onset. (bottom) Latency distribution
form 109 AL neurons. The median value is 89 ms from the stimulus onset.
Two-sample Kormogorov-Smirnov test rejected the null hypothesis that the two
distributions were taken from the same distributions at 0.05 significance level.
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10−30<0.001) and at the late phase (F (4, 975) = 7.57, p = 5.21 · 10−6<0.001).

Also, face distractor, rather than object distractor, suppressed neural firing

rate significantly at the early phase (F (1, 975) = 33.44, p = 9.87 · 10−9<0.001)

but not at the late phase (F (1, 975) = 3.62, p = 0.0575>0.05). For the detail

of Tukey post-hoc test, see Appendix J. See Table 6.1 for mean firing rate and

SEM.

Table 6.1: Cat/Num experiment, AL population average response

Early Late

Face Obj Face, Obj

0 dist. 1± 0.0509 1± 0.0509 1± 0.0409 1± 0.0409
1 dist. 0.747± 0.0430 0.861± 0.0520 0.839± 0.0381 0.859± 0.0400
2 dist. 0.549± 0.0421 0.710± 0.0470 0.716± 0.0372 0.809± 0.0417
4 dist. 0.391± 0.0376 0.630± 0.0524 0.636± 0.0409 0.728± 0.0421
8 dist. 0.307± 0.0380 0.538± 0.0514 0.564± 0.0398 0.722± 0.0416

There were two noticeable difference between MF and AL neurons. Firstly,

AL neurons showed a systematic response peak shift with an increasing number

of distractors (Fig. 6.4, top). On average MF neurons did not show such peak

shifts (See Fig. 3.1), although few neurons did show small latency shift as

distractor number increased. Secondly, peak magnitude of the distractor only

conditions (Fig. 6.4, bottom) showed smaller response magnitude compared

to MF responses. Especially the responses to the object distractors were very

small and even showed a suppressive effect. This indicates that the face patch

AL, later in the cortical hierarchy, shows stronger face selectivity, which was

independently quantified by Meyers et al. (unpublished data, SfN Nanosym-

posium presentation [168]). However, as Fig. 6.4 shows, even with the reduced

effect of object distractors, the neural response still showed response reduction

by object distractors.
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Figure 6.4: AL population average firing rate to Cat/Num experiment. Popu-
lation average was calculated over 109 recorded neurons. Response onset latency
of each neuron was subtracted to align the response phases. (Top left) Preferred
face and face distractor conditions. (Top right) Preferred face and object distrac-
tor conditions. (Bottom left) Face distractor without preferred face condition.
(Bottom right) Object distractor without preferred face condition. Color code
follows Fig. 3.2.
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To quantify the shift of response peak, we calculated the time of the max-

imum value of the response both in the early and the late phase. Specifically,

trial average of the responses of each neuron was smoothed by a Gaussian

kernel with 20 ms width (standard deviation of the Gaussian kernel) to reduce

jitter affecting the max calculation. The result is shown in Fig. 6.5. Here-

after I call the quantified maximum time as onset-to-peak latency to prevent

confusion with onset response latency (Response onset latency was subtracted

from the response: 0 ms indicates the first instance when the response crossed

3 standard deviation of the spontaneous activity). In the early phase, 3 -

way ANOVA (factor1: ML vs. AL, factor2: distractor numbers, factor3: dis-

tractor category) showed that the AL onset-to-peak latency was significantly

longer than that of MF (F (1, 1754) = 100.92, p = 0.0000...<0.001), and in-

creasing distractor number also significantly lengthen the onset-peak latency

(F (3, 1754) = 25.96, p = 0.0000...<0.001). In the late phase, AL onset-to-

peak latency was significantly longer too (F (1, 1754) = 8.18p = 0.0043<0.05),

but latency increase due to distractor numbers did not reach the significance

(F (3, 1754) = 2.55, p = 0.0543>0.05). Neither early nor late phase showed sig-

nificant onset-to-peak latency difference between face and object distractors

(F (1, 1754) = 0.29, p = 0.591 and F (1, 1754) = 1.84, p = 0.175, respectively).

We also calculated the latency-subtracted population average of Prox/Ecc

variation experiment (Fig. 6.6). The result looked quite similar to that of MF

response. For the RF center presentation, one-way ANOVA testing mean dif-

ference showed significance both at the early phase (p = 3.67·10−17<0.001) and

at the late phase (p = 1.42 ·10−11<0.001). Also the RF periphery presentation

condition reached significance both at the early phase (p = 5.49 · 10−9<0.001)

and at the late phase (p = 1.57 · 10−11<0.001). For the details of comparison

between pairs of stimulus condition, see Appendix J. For mean firing rates and
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Figure 6.5: Response onset-to-peak time, compared between AL and MF neu-
rons. The duration between response peak time (calculated for each stimulus
condition) and the response onset time (calculated using the response to one
preferred face without distractors). Note that the time was calculated from
response onset, not stimulus onset (AL neurons are located later than MF in
the cortical hierarchy, thus AL neurons respond later than MF neurons. By
subtracting the latency we could have direct comparison only on peak shift due
to the stimuli). The red “0” indicates the preferred face stimulus without dis-
tractors. F1, F2, F4 and F8 indicate 1, 2, 4 or 8 face distractors with preferred
face. O1, O2, O4 and O8 indicate 1, 2, 4 or 8 object distractors with preferred
face. Early phase showed significant onset-to-peak time shift across regions and
across distractor numbers. The late phase showed significant onset-to-peak time
shift only. Neither phase showed time shift depending on the object category
(for details, see the main text). Error bars show standard error of the mean.
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SEM, see Table 6.2.

Table 6.2: Prox/Ecc experiment, AL population average response

Early Late

Center Periphery Center, Periphery

0 dist. 1± 0.0555 1± 0.0940 1± 0.0433 1± 0.0609
L dist. 0.695± 0.0483 0.405± 0.0722 0.627± 0.0358 0.465± 0.0411
M dist. 0.594± 0.0447 0.452± 0.0745 0.542± 0.0337 0.371± 0.0419
S dist. 0.396± 0.0445 0.423± 0.0712 0.428± 0.0352 0.319± 0.0416

Thus, so far we find response difference only in distractor numbers (which

induced latency shifts), out of stimulus parameters we used: distractor num-

bers, category and proximity. In order to test whether the pattern of pop-

ulation response encodes stimulus information in the high dimensional space

and whether the Divisive Normalization can explain the experimental find-

ings (other than latency shift), we conducted the further analyses in the next

section.

6.3 AL neural population preserved stimulus

information in the representation space, re-

vealed by ICA

As highlighted in the Chapter 4, the heterogeneous response pattern in the

population activity could represent detailed information such as distractor

number, category and proximity. We studied if AL neural population also

contained information in response patterns by using dimension reduction fol-

lowed by ICA. Fig. 6.7 showed quite similar pattern to the MF result shown in

Fig. 4.5, representing distractor number, category and proximity as different
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Figure 6.6: AL population average firing rate to Prox/Ecc variation exper-
iment. Population average was calculated over 108 neurons. Response onset
latency of each neuron was subtracted to align the response phases. (Top left)
Preferred face with or without distractors of different proximities, RF center
presentation. (Top right) Preferred face with or without distractors of different
proximities, RF periphery presentation. (Bottom left) distractors of different
proximities without the preferred face, RF center presentation. (Bottom right)
distractors of different proximities without the preferred face, RF periphery
presentation. Color code follows Fig. 3.5.
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ICs (for details, see the Chapter 4).

6.4 Divisive Normalization explained the re-

sponses of AL neurons

As shown in the Fig. 6.2, RF of AL neurons have different structure than

MF neurons. Since our computational model is highly relying on RF value,

we wanted to test if the Divisive Normalization model still can explain the

neurophysiological property of the AL neurons. As with MF analysis, we

started from the pure prediction model - an equation without any free pa-

rameters. Fig. 6.8 shows the result at the early phase of the distractor cat-

egory/number variation experiment. The pure prediction model followed the

global response pattern: face distractor suppressed the neural response more

than the object distractors, with increasing suppression as the number of dis-

tractor increases. However, one noticeable difference was the error at the

object distractors without preferred face condition. Here, the actual average

response shows suppression below the spontaneous activity level, whereas the

model prediction is above the spontaneous activity. As a consequence, the

pure prediction model expected larger normalization by the object distractors

resulting in slight underestimation in the object distractors and preferred face

conditions. Potential reason for this apparent discrepancy is the difference in

the stimulus presentation duration and inter-stimulus interval (ISI). In the dis-

tractor category/number variation experiment we presented stimulus for 400

ms with 200 ms ISI, whereas in the RF measurement we presented for 200

ms with no inter-stimulus interval. Dirrefence in response duration and ISI

are known to affect response shape in visual, somatosensory and auditory cor-

tex [169, 170, 171] and potentially information transfer efficiency, content and
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with minimal mutual information.
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tuning curve ( [169] and personal communication with Wilbert Zarco).
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Figure 6.8: Pure prediction model on AL distractor category/number variation
experiment. The mean firing rate calculated at the early phase, across trials
were used for data. Same as modeling on MF data, Pure prediction model were
calculated for each neuron using values from the measured RFs. Data and model
from recorded 109 neurons were averaged to be shown as the bar graphs. Error
bars show the standard error of the mean.

Next we introduced the post-diction model with an exponent n as a free

parameter, as with MF analysis, to explain the rest of the conditions. The

post-diction model could reproduced the remaining late phase and Prox/Ecc

experiment, as shown in the Fig. 6.9. Finally, we used the model output of all

recorded neurons for ICA to study the representation in the high dimensional

representation space. The model output showed qualitatively same represen-

tation patterns as experimental data shown in Fig. 6.7, except the IC3 from

the Prox/Ecc experiment at the late phase (Fig. 6.7C, bottom right). The

late phase ICs could not represent the distractors without preferred face. It

remains to be studied further whether this discrepancy was due to the model

limitation, or simply due to the small explanatory power of the IC3: In the al-
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gorithm we used, ICs were calculated in order of its explanatory power, which

was equivalent to the explained variance in PCA. If representation of particular

stimulus condition is stronger, it might appear in IC to exclude other condi-

tions. Indeed, when the numbers of ICs were increased to 5, the distractor-only

condition was represented similarly to the IC3 in Fig. 6.7.

6.5 Summary

In conclusion, AL neurons showed qualitatively similar response to that of

MF neurons both in Cat/Num and Prox/Ecc experiments. Divisive normal-

ization model also explained the response patterns across neurons, and ICA

could represent independent information such as distractor category, number

and eccentricity in different independent component as well. However, there

were differences from MF, such as the latency shift due to increasing number

of distractors and RF size (and, as a consequence, responses to multiple pre-

ferred faces). These differences are beyond this thesis’s scope, but need to be

investigated further in future experiments.
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Figure 6.9: Postdiction model on AL experiment and population readout.
Color code follows Fig. 5.4. (A) Comparison of average firing rate and average
model output across neurons. Right: early phase, left: late phase. (B) ICA
results for Cat/Num experiment. (C) ICA results for the Prox/Ecc experiment.
RF center presentation result is shown.
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7
Discussion

7.1 Heterogeneity and systematicity with Divi-

sive Normalization represent multiple stim-

uli in population activity

With fMRI-targeted electrophysiology, we systematically varied distractor num-

ber, distractor category and distractor proximity to observe overall systematic

reduction of mean firing rates in most complex stimulus conditions. However,

even under the reduced firing rate, stimulus information was well preserved and

discriminable in the high-dimensional representational space. In Chapter 4, we

described how heterogeneity of neural population enables the representation in

the population activity pattern. In Chapter 5, we showed that systematic re-

sponse according to divisive normalization can enable the representation. We

used divisive normalization to explain the neural responses. In terms of divi-

sive normalization, response reduction due to increasing number of distractors

was explained as follows: As the number of presented stimuli increases, the

stimuli evoke large population activity in the neural population, resulting in
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larger normalization power. Because the normalizing power is proportional to

the number of stimuli, a neuron responds systematically to increasing number

of stimuli. For example, as the distractor number increases from 0, 1, 2, 4 to

8, neural response decreases systematically. This systematicity is an impor-

tant factor to have separable stimulus representation in population activity.

Fig. 7.1 illustrates the importance of systematicity.
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Figure 7.1: Systematic and heterogeneous responses discriminate stimulus
groups. Hypothetical neural population consists of two neurons. Blue and
orange dots belong to different stimulus groups (e.g. face distractor and object
distractor condition). (A) Homogeneous neural response. Dots from two groups
are intermingled at the diagonal. (B) Heterogeneous and systematic neural
response. The two neurons respond differently yet systematic, grouping same
stimulus condition. Two black lines indicate hypothetical representation axes
created by ICA. (C) Heterogeneous but non-systematic responses. Stimulus
conditions are intermingled and cannot be separated linearly.

Each panel of Fig. 7.1 shows a hypothetical neural population activities

consist of two neurons. Fig. 7.1A is a homogeneous neural population. As we

saw in Chapter 4, a homogeneous neural population cannot have linearly sep-

arable representations of different stimulus groups, shown in blue and orange

dots in the figure. Fig. 7.1B and C show heterogeneous neural populations,

but neurons in B respond systematically to each stimulus group (imagine the

four blue and orange dots representing 1, 2, 4 and 8 distractor condition and
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neurons change response systematically). Because of the systematicity, the

blue and orange stimulus group are linearly separable1 and ICA can find rep-

resentation axes highlighted by black lines2. However, neurons in Fig. 7.1C

lack systematicity: in this example, the neuron #1 is responding monoton-

ically (ramping tuning curve, e.g. reducing response as distractor number

increases from 1 to 8) whereas the neuron #2 is tuned to one particular stim-

ulus condition (unimodal Gaussian tuning curve, e.g. highest response to 2

and 4 distractor conditions). In this case, the blue and orange dots cannot

be separated by a line, unless response magnitude evoked by the two stimu-

lus are sufficiently different (in which case, even homogeneous population can

discriminate the two groups). The simulation result in Fig. 5.8.G showed that

disrupting systematicity impaired the ability of ICA to represent independent

information in each axis, even though unimodality of the tuning curves were

preserved. Thus, heterogeneity and systematicity are two important factors for

MF and AL neurons to represent multiple stimuli in discriminable way. Each

neuron responds to the stimulus in slightly different way (i.e. heterogeneous),

but their responses are changing with distractor numbers as explained by di-

visive normalization (i.e. systematic), resulting in discriminable information

representation in the space spanned by population activity.

1Recently it was shown that linear separability is increased from lower to higher cortex in
the cortical hierarchy, and the linearly separable representation was shown to be important
to correctly guide animal behavior in complex tasks [172, 173]. Thus, although it remains
elusive whether a brain can operate ICA-like decoding to read information out of face patch
neurons, the brain may tend to have linearly separable representation which is beneficial for
behavior.

2In terms of ICA, marginal distributions to the two new axes are non-Gaussian, or close
to flat distribution in this example. For ICA and minimizing Gaussianity, see Chapter 4.
Note that we used linear ICA.
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7.2 Modular structure confers category discrim-

inability

In the previous section, I discussed how heterogeneous and systematically re-

sponding neurons represent multiple stimuli. The systematic increase of the

normalization power discriminated stimuli with different number of distrac-

tors, both in single neuron responses and in population readout. Moreover,

distractors in different categories were also discriminated both in single neu-

rons and in population readout. This is not trivial because as we saw in Chap-

ter 3, distractors themselves elicit small and comparable responses regardless

of whether distractors are faces or objects. Thus, initially we thought a sin-

gle neuron could not discriminate “the preferred face and the non-preferred

face”, and “the preferred face and the non-preferred object”, because the dis-

tractor, regardless of being face or object, elicit equally weak response to the

neuron. No matter how the neuron compute these inputs (e.g. average or

max), the output of the neuron to these two stimuli should be the same. How-

ever, we found that even a single neuron could discriminate these two stimuli,

with larger response to the preferred face and object distractor. In Chap-

ter 5, we showed that heterogeneity is necessary to discriminate category in

high-dimensional space spanned by population, but in order to discriminate in

single cell level or in population average response, modularity is required. The

face selective neurons are segregated in patch-like module structure in the tem-

poral lobe [67, 71, 70]. Because neurons with similar selectivity are clustered

as a modular structure, they can have a large activity to stimuli containing

their preferred category (in this case, face). In terms of divisive normalization,

presenting face distractors induces large population activity to give a larger

normalization power and a larger weight for the face distractors compared to
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object distractors. This allows single neurons to discriminate two input groups

of different categories whose magnitude are equivalent to single neurons. This

discriminability cannot be achieved if neurons are distributed and connected

randomly across the temporal lobe. It has been an open question why the

neurons have to be clustered (although few hypotheses were proposed such as

efficient wiring: see [174, 175]), but the current study gives an important hint

to the question: The face and object selective neurons in the temporal lobe

might form modular structures in order to confer category discriminability to

single neurons.

Preferred face +
Face distractor

Preferred face +
Object distractor

=Equivalent
direct inputs

Discriminate

Figure 7.2: Modular structure confers category-discriminability. Two differ-
ent stimuli, the preferred face combined with a face distractor and the preferred
face combined with an object distractor provide equivalent direct inputs to a
neuron. Therefore simple summation, average or max operation cannot discrim-
inate these two. However, due to normalization specific to stimulus category a
single visual neuron is capable of discriminating these two seemingly equivalent
inputs. That is because temporal lobe object selective neurons are segregated
into patches and connected each other to provide a category-specific normaliza-
tion power to represent and discriminate complex stimuli.
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7.3 Effect of modularity, heterogeneity and sys-

tematicity on representation space

In order to have an intuitive understanding of the effects of modularity, hetero-

geneity and systematicity, we performed PCA and ICA on simulated popula-

tion activity created with Equation 5.5 and Equation 5.6. Fig. 7.3 explains an

example visualization of PCs and ICs in two-dimensional space. Two compo-

nent’s scores are plotted as a two-dimensional scatter plot to have an intuition

how the stimulus conditions are separated from each other. As in Chapter 5,

9 stimulus conditions (preferred face only, 1, 2, 4 or 8 face distractors with

a preferred face, 1, 2, 4 or 8 object distractors with a preferred face. See

figure legend in Fig. 7.3) from Cat/Num experiment are used. The popula-

tion activity used in Fig. 7.3 has modularity, heterogeneity and systematicity.

Thus, resulting PCA and ICA results looks very similar to that of recorded

data. When PC1 and PC2 are plotted (Fig. 7.3, top right panel) together, it

is clearer that face distractor conditions and object distractor conditions are

separated in two clusters. Namely, preferred face (PF) is on top right corner,

and as face distractor number increases from 1, 2, 4 to 8, face distractor condi-

tions (F1f, F2f, F4f, F8f) move away from PF (toward top left). Instead, when

object distractor number is increased, object distractor conditions (F1o, F2o,

F4o, F8o) also move away from PF but in different direction (Fig. 7.3, toward

bottom right). As described in Fig. 7.1, these systematic distribution of stim-

ulus conditions can be captured well by ICA, as shown in bottom panels in

Fig. 7.3. With the next few simulations, I explain how each of the modularity,

heterogeneity and systematicity contributes to what aspect of this stimulus

representation in 2D space.

Firstly, a neurons that give an uniform response to all stimulus conditions
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Figure 7.3: Schematic drawing showing how ICA finds independent represen-
tations from dimension-reduced data. Top: Score of two principal components,
PC1 and PC2 are visualized in two-dimensional plot (PC space). Bottom: ICA
extracts two independent components, IC2 and IC3 from the PC space, also
visualized in two-dimensional plot (IC space). Note that the selected PCs and
ICs are arbitrary, but the same logic can be applied to any PCs and ICs.
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Figure 7.4: PCA and ICA on a complete homogeneous response matrix. Left:
simulated population activity matrix and average firing rates across neurons.
Middle: PC1 and PC2 from PCA on the population activity matrix. Right:
IC2 and IC3 on the population activity matrix.

are considered. Regardless of stimulus condition, any neuron in this popula-

tion gives response “1” when one of the stimuli is presented. Fig. 7.4 shows the

population activity matrix (left, top. column: stimulus condition, row: neu-

ron), average firing rate across neurons (left, bottom) and PCA (middle) and

ICA (right) results. Mean firing rate is always 1 across stimulus conditions,

and neither PCA nor ICA can separate stimulus conditions in two-dimensional

space.
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Figure 7.5: PCA and ICA on a systematic and homogeneous response ma-
trix. Left: simulated population activity matrix and average firing rates across
neurons. Middle: PC1 and PC2 from PCA on the population activity matrix.
Right: IC2 and IC3 on the population activity matrix.

Next, systematicity is added to modulate firing rates according to increas-
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ing distractor number. Namely, responses are generated according to divisive

normalization (Equation 5.5 and Equation 5.6) to create systematic response

reduction as distractor number increases (Fig. 7.5). In the following simula-

tions, the single neuron responses Spref
i , Sdist,face

i and Sdist,object
i and the pop-

ulation response to a preferred face P dist,face
i are fixed to be the same as the

simulation in Chapter 5. In the population of Fig. 7.5, the population re-

sponses to a face distractor, P dist,face
i and to an object distractor, P dist,object

i

have exactly the same values and fixed across all neurons. Thus, each neuron

reduces responses as distractor number increases, but distractor category does

not modulate the responses. Also P dist,face
i and P dist,object

i are the same across

neurons. As shown in Fig. 7.5, average firing rates are the same for face dis-

tractor and object distractor, if the distractor number is the same (Fig. 7.5,

left). However, because firing rates decrease with increasing number of dis-

tractors, one can tell the number of distractors by measuring the mean firing

rate. Similarly, in PC and IC space, stimulus conditions with different distrac-

tor number are separated, although face and object distractor conditions are

overlapped. Thus, systematic responses predicted by divisive normalization

can separate stimulus conditions according to distractor number.
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Figure 7.6: PCA and ICA on a systematic, modular and homogeneous response
matrix. Left: simulated population activity matrix and average firing rates
across neurons. Middle: PC1 and PC2 from PCA on the population activity
matrix. Right: IC2 and IC3 on the population activity matrix.

118



When a modularity is added in addition to systematicity, firing rates of

single neurons and population average could discriminate distractor category

by providing larger firing rate to object distractor condition than face distrac-

tor condition (Fig. 7.6,left). In order to include modularity in the simulation,

P dist,face
i is set to a larger value than P dist,object

i to have larger normalization

(i.e. smaller firing rate) when face distractors are presented. Similar to the

mean firing rate, the result of PCA (Fig. 7.6) shows separation between face

distractor conditions and object distractor conditions. Thus, modularity can

modify mean firing rate to discriminate distractor category (as explained in

Chapter 5, PC1 is closely related to the mean firing rate). However, condi-

tions are only separated in one dimension (PC1 direction) and PC2 cannot

separate conditions as in Figure 7.3. Accordingly, ICA cannot separate dif-

ferent distractor categories as independent components either: IC2 and IC3

values show very similar values, resulting in one dimensional separation same

as PCA (Fig. 7.6, right) As shown in Chapter 5, this is because of homoge-

neous responses (i.e. all neurons give the same response patterns). In order to

separate stimulus conditions in two dimensions, heterogeneity is introduced in

the next simulation.
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Figure 7.7: PCA and ICA on a systematic and heterogeneous response ma-
trix. Left: simulated population activity matrix and average firing rates across
neurons. Middle: PC1 and PC2 from PCA on the population activity matrix.
Right: IC2 and IC3 on the population activity matrix.
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To simulate heterogeneity, P dist,face
i and P dist,object

i are drawn from two

Gaussian distributions with equal mean (i.e. no modularity, Fig. 7.7 or differ-

ent mean (with modularity, Fig. 7.8). Without modularity, mean firing rate

cannot discriminate distractor category if same number of distractors are used

(Fig. 7.7, left), similar to Fig. 7.5. However, as shown in the middle panel

of Fig. 7.7, PCA can separate two stimulus groups with different distractor

category in PC2 direction (also see Fig. 5.8A, B). ICA captures these two sep-

arated stimulus groups to represent as two independent components as shown

in the right panel of Fig. 7.7. Thus, in order to separate stimulus conditions

in two dimensions, heterogeneity is required. This argument holds true for

dimensions higher than two, highlighting importance of having heterogeneous

response patterns across neurons.
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Figure 7.8: PCA and ICA on a systematic, modular heterogeneous response
matrix. Left: simulated population activity matrix and average firing rates
across neurons. Middle: PC1 and PC2 from PCA on the population activity
matrix. Right: IC2 and IC3 on the population activity matrix.

Finally, modularity is added in addition to systematicity and heterogene-

ity. As a result, mean firing rate can discriminate face and object distractor

conditions even when distractor numbers are the same (Fig. 7.8, left). Repre-

sentation in PCA space looks rotated compared to that in Fig. 7.7, but ICA

can capture the two stimulus groups to represent in two dimensional space,

as shown in the right panel. Table 7.1 summarizes the role of modularity,
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heterogeneity and systematically. Note that in all of above simulation I fixed

Spref
i , Sdist,face

i and Sdist,object
i while varied P pref

i , P dist,face
i and P dist,object

i , but

the opposite led to the same conclusion. Namely, fixed P pref
i , P dist,face

i and

P dist,object
i with varying Spref

i , Sdist,face
i and Sdist,object

i led to the same conclusion

on modularity, heterogeneity and systematicity.

Table 7.1: Role of modularity, heterogeneity and systematicity.

Description Effect in 2D

Modularity
Separate different distractor cat-
egory in mean firing rate

Heterogeneity
Separate different category of
stimuli in high dimensional space

Systematicity
Separate different number of
stimuli both in mean firing rate
and high dimensional space

7.4 Does a preferred face “pop-out”, or is it

“crowded” by distractors?

Our result does not reject the existence of either hierarchical processing based

on MAX-neuron or neurophysiological crowding effect (i.e. reduced discrim-

inability by distractors). First, we indeed found some MAX-like neurons
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(Fig. 3.4), which did not significantly reduce their responses in the presence of

non-preferred distractors. This small number of MAX-like neurons might be

contributing to invariant object recognition in primate vision. Second, larger

firing rate reduction by face distractors compared to object distractors, and

larger reduction by closer distractors are in line with human psychophysics

of crowding effect, where intra-category distractors affect target identification

more than inter-category distractors [135, 176]. However, we also found stim-

ulus representation in population activity pattern in high-dimensional space,

from which we could decode stimulus information such as distractor number,

category or proximity. Thus, unless our perception depends solely on mean

firing rate of the population activity, there is a possibility for a brain to decode

and utilize information from neural activity. For testing whether an animal

can utilize the information in the high-dimensional space, additional behav-

ioral experiments will be required to see if an animal can identify the center

stimulus in presence of distractors.

7.5 Pop-out effect and attentional confound

Perceptually, faces are known to automatically attract attention, or pop-out [123,

124]. This evidence raises a possible interpretation of our data that observed

response reductions were due to the limitation of attentional resource: for ex-

ample, multiple face distractors disperse attention over all stimuli including

distractors, leading to overall response reduction. We do not think our re-

sult is due to attentional confound for the following reasons. First, stimulus

numbers and category information was well preserved in the high-dimensional

representational space, even when distractors were non-face objects. If atten-

tion works as a stimulus filter, this information should not be found. Second,

if the animals were actively paying attention to faces to induce top-down at-
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tention, attentional effect should be more prominent at the late phase [177].

This should lead to larger response reductions by face distractors at the late

phase, but the observation was the opposite (response reduction compared to

preferred face alone: 71, 45, 32 and 27% for 1, 2, 4 and 8 face distractors at

the early phase, and 78, 64, 56, 44% for 1, 2, 4, 8 face distractors at the late

phase, respectively. F (1, 536) = 19.89, p = 1.00·10−5). Third, the responses to

distractors without the preferred face were comparable regardless of distractor

numbers. If response reduction is due to dispersed attentional resource, larger

number of distractors without the preferred face should show similar response

reduction. Fourth, the Divisive normalization framework could explain the

observation very well, indicating that the response reductions are mediated by

normalization effect by the functionally segregated object selective neurons.

From these results, we concluded that the observed response reductions are

most likely caused by normalization.

As we discussed in the introduction, Divisive normalization and Biased

competition model of attention can have a common formula. While the for-

mer describes normalization biased by stimulus contrast or category (e.g. face

or object), the latter describes competition over attentional resources. Given

that these observations can be explained by the same formula, it is possible

that the normalization and attention involve a common circuit mechanism too.

However, both of these models are phenomenological model lacking detailed

definition of underlying circuit structure (e.g. number of nodes, degree distri-

bution, direction of connection, etc.). Without a mechanistic model to analyze

the circuit detail, it is difficult to conclude whether these two phenomena can

be discussed in the same framework. Additionally, Divisive normalization is

thought to appear during feedforward and lateral interaction (i.e. local pro-

cess), while Biased competition is often (but not always) thought to be trig-
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gered by top-down attention process. Whether these different causes can share

a common circuit to shape neural responses will be a subject of future studies.

7.6 Divisive Normalization gives an unified ac-

count encompassing previous seemingly con-

tradictory results

Our model explains and encompasses the two studies of Zoccolan et al. [117,

107], in which they used up to 3 visual stimuli at a time to study clutter

tolerance. In the 2005 paper, they reported that responses of IT cells to

multiple stimuli are the average of the responses to individually presented

stimuli. In the 2007 paper however, they found some neurons showed stronger

clutter tolerance (i.e. response larger than average), which correlated with

neuron’s spatial tolerance (i.e. RF size) and anti-correlated with sparseness of

selectivity. In our model, larger RF can encompass all presented stimuli to give

larger direct drives, in order to compete with normalization power given by

neighboring neurons. Indeed, the multiple preferred face condition showed that

larger RF neurons had stronger clutter tolerance (i.e. less response reduction).

This held true for broad selectivity of neurons. If a neuron can respond strongly

to the distractors as well, both preferred face and distractors elicit large direct

drives, again allow neurons to counteract against normalization.

Their earlier findings that neurons take average of the input may look

contradictory with our results because, even though a face distractor and an

object distractor elicit equally small response by themselves, a response to a

preferred face and face distractors were closer to an average of responses to

stimuli presented individually, while a response to a preferred face and object

distractors elicited larger response than that predicted by an average. However,
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Zoccolan et al. did not conduct recordings in a cortex with particular object

selectivity, thus their neural population might not have strong preference to

one of stimulus categories they used. Our experiment was conducted in a face-

selective cortex, with face and non-face object being used. Because of this

modular structure and properly selected stimulus database, we found category-

dependent normalization. If we used a stimulus category such that the neural

population does not have specific preference, our model gives an averaging

response.

7.7 Divisive Normalization to prevent satura-

tion and to have economical representation

We showed that Divisive Normalization model could explain the recorded data.

One possible reason why neurons adopt this normalization is that it can prevent

saturation. Although one of the easiest way to preserve all stimulus informa-

tion might be summing up all of the multiple inputs a neuron receives, this

strategy is hampered by the fact that neuron’s physiologically feasible firing

rate range is limited. Unless a neuron can produce an infinite firing rate, neural

activity will saturate quickly if all of the afferents are summed up. Instead, by

normalizing inputs at each cortical region, neurons can maintain information

by compressing representation within the physiologically feasible range.

Having low firing rates is also beneficial for economical representation,

which was suggested by both experimental and theoretical studies. For ex-

ample, Stokes et al. found very low population activity in the delay period of

a working memory task, but with MDS (multidimensional scaling) they could

find working memory representation in high dimensional space [160]. Also,

Mongillo et al. proposed a model of working memory based on calcium buffer
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(which can maintain short-term memory even with low firing rate), which is

also beneficial for economical representation of information [178].

7.8 Representation at the late phase: robust

against distractors yet maintaining repre-

sentation

Related to economical representation discussed in the previous chapter, the

recorded face selective neurons showed lower firing rate magnitude at the late

phase3. We calculated the distractor robustness indices to find the neurons

changed their robustness indices from averaging regime to robust regime to-

ward the late phase. However, although neurons tend to “ignore” distractors

at the late phase, multiple stimuli (including distractor stimuli without the

preferred face) were represented and could be decoded from the population

activity, as ICA and machine learning showed. In the previous chapter we

discussed that this is due to the heterogeneity of population activity. Indeed,

there were always a certain number of neurons in between the average and ro-

bust regime in the robustness indices distribution of the late phase (Fig. 5.5).

At the late phase neurons are in general robust against their non-preferred

stimuli, some of neurons even ignore the distractors almost completely, but

there are always a certain number of neurons still responding to distractor,

keeping all the information represented at the early phase. It was reported

that IT neurons change response over time [49, 179]. Similarly, we found that

the coding scheme changed from the early to the late phase, while keeping the

representation almost intact. It would be interesting to know if this transition

3Note that the low firing rates at the late phase is not necessary due to Divisive Normal-
ization per se, but could be an other mechanism such as adaptation.
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changes under a particular behavioral demand (e.g. working memory task, ob-

ject identification task) or during an information transfer to another cortical

area (for example, see [173, 180])

7.9 Transition from MF to AL

Given that the neurons become robust against distractors at the late phase,

and given that AL neurons are receiving afferents from MF neurons, one might

expect that AL neurons are more robust against distractors than MF neurons.

However, we found very similar response pattern among AL neurons: distrac-

tor still reduced mean firing rates. Why did AL neurons show similar response

patterns and stimulus representation? One possible reason is because of other

afferents from different cortices. AL neurons may receive inputs not only from

MF neurons, but also from other non-face object selective cortices to have in-

terference from distractor information. However, this is less likely in light of

Grimaldi et al.’s result reporting no strong inputs to AL from object selective

cortices [167]. Another possible reason is phasic relay: the late phase starts

250 ms after the response onset in our definition, which is much longer than

the time required to synaptic transmission from MF to AL (Freiwald et al.

reported 7 ms delay from MF (126 ms) to AL (133 ms), measured by local

field potential [89].). Thus, the early phase of MF might be transmitted to

AL to have similar early phase response, and similarly the late phase of MF

might be transmitted to AL late phase. However, we observed increasing la-

tency shift by increasing number of distractors in AL neurons (see Chapter 6),

which cannot be explained by simple relay. An alternative possibility is com-

mon subcortical inputs. AL neurons receive inputs from basolateral amygdala,

which is known to give feedback to broad regions of temporal lobe [167, 181].

Although it is not known if MF receives input from basolateral amygdala,
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there is a certain possibility that the amygdala is providing common input.

However, the amygdala response to face image is slow (around 300 ms from

stimulus onset [58, 182]) and cannot explain responses in the early phase. In

any case, the transition from MF to AL might be dedicated to have mirror-

symmetric tuning [89], not to have robust representation against distractors.

In fact, having completely robust representation means discarding information

other than that of neuron’s preferred face. As a sensory cortex, temporal lobe

may keep much information as possible and allow higher association cortex

to select behaviorally relevant information as needed. Alternatively, the fact

that we did not see a change in representation might be because the subject

animals did not engage in any behavioral task. It would be interesting to study

whether the representation and transition from MF to AL change under be-

havioral need to particular information. Also, the origin, mechanism and role

of the latency shift observed in AL neurons remain to be studied. The latency

shift could be due to the lag to reach the response threshold, but currently

we do not have a suitable model to explain, nor do not have a good way to

incorporate into the Divisive Normalization model. We speculate the Drift

Diffusion model or Ornstein-Uhlenbeck process with drift strength depending

on distractor number might work [183, 184, 185], but it should be pursued in

future studies.

7.10 Concluding remark

Combining electrophysiology, fMRI and computer model, we studied how face

selective neurons in the macaque temporal lobe represent multiple objects

including faces and non-face objects. Although firing magnitude changes

throughout the response phase, we found robust stimulus discriminability in

the population level representation space in both the early and the late phase.
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These results suggest that, aided by modularity, heterogeneity and system-

atic normalization, neural population can preserve robust representation even

under a limited firing rate range.
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A
Experimental Procedures

All animal procedures complied with US National Institutes of Health Guide

for Care and Use of Laboratory Animals, and were approved by the Rockefeller

University Institutional Animal Care and Use Committee (IACUC).

Animal Preparation.

Experiments were conducted on three male adult rhesus macaques, two of

which were Macaca mulatta (monkey Q and M) and one of which wasMacaca

fascicularis (monkey J). All of them weighed 8-10 kg. Under general anesthe-

sia and aseptic surgical conditions, the monkeys were implanted with Ultem

headposts and recording chambers that were attached to the skull with dental

acrylic and ceramic screws(Thomas Recording or Rogue Research). Following

recovery, the monkeys were trained to maintain a fixation on a white spot

(0.1-0.3 degrees) on a CRT (cathode ray tube, Iiyama, 36.6 × 27.4 cm; 1920

× 1440 pixels; 100 Hz refresh rate) screen for juice rewards. As the fixation

deviated from tolerance window (3×3 degrees), the reward delivery stopped.
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Monkey MRI.

Scanning was performed on a 3T MR scanner (TIM Trio with AC88 gradi-

ent insert; Siemens). Multi-echo sequence (EPI, TR 2 or 3 s, TE 30 ms, 64

× 64 matrix, 1.5 or 1.0 mm3 voxels isotropic resolution) were acquired with

field map to unwarp the image based on the B0-field inhomogeneities. Custom-

made 8-channel surface coil was used, and MION contrast agent [186] was used

to improve SNR. Face patches were defined by identifying regions responding

significantly more to faces than non-face objects. Anatomical volumes at high

spatial resolution (0.5 mm isotropic) with a T1-weighted inversion recovery

sequence (MPRAGE) [187] were acquired using custom-made 1-channel coil

to be overlayed with the functional data.

Face patch targeting-procedures.

We used either Caret [156] or Planner [158] software to overlay anatomical MRI

and functional MRI in order to determine skull position and orientation of a

recording chamber (Crist, [159]). A delrin-made recording grid (Crist, [159],

1 mm holes, 1 mm center-to-center distance) is placed inside the chamber to

fix electrode insertion position. To compute which grid angle and grid hole to

use within the recording chamber, we overlaid anatomical MRIacquired with

a recording grid inside the recording chamber, filled with MR-visible silicone

or gadolinium solution. The target face patch, MF, was accessible from only

1 or 2 holes (adjacent holes have 1 mm separation), because of blood vessels

hampering trajectories.

Single-unit electrophysiological recordings and visual stimuli.

Extracellular recordings were conducted with 1-3 MΩ (measured at 1000 Hz)

tungsten electrodes (FHC).The dura was penetrated using a metal guide tube
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(23 gauge) through a grid hole [159].The electrode was advanced using Nar-

ishige MO-97A drive until it reached the desired location. The electrophysi-

ological signal was amplified and sorted online into single units using multi-

ple discrimination windows (Blackrock Microsystems).These manually sorted

clusters were compared with the clusters generated by offline clustering based

on wavelet decomposition and superparamagnetic clustering (Wave clus al-

gorithm [188].) for quality check. During the recordings, eye position ofthe

animals was monitored by an infrared pupil tracking system (ETL-200, ISCAN

Inc.,Burlington, MA). The monkey was required to maintain fixation at the

fixation spot throughout the experiments.

Identifying face cells.

As an electrode was advanced into MF, Face–Object-Body(FOB, 147 different

stimuli containing 80 faces, 66 non-face objects and a gray square same color as

the background. Average luminance was ∼ 18cd/m2). Stimuli were presented

(for 200 ms without inter-stimulus intervals) to activate face neurons. The

FOB stimuli were moved across the screen to estimate the position of the RF.

Once a single neuron was isolated with its putative receptive field, the stimu-

lus location was fixed to record neural responses to define the preferred face,

the non-preferred face and the non-preferred object out of 147 FOB stimuli.

The mean firing rate was calculated by custom made MATLAB script and the

preferred face, non-preferred face and the non-preferred object were selected

based on the mean firing rate. The stimulus size was4×4 degrees of visual an-

gles.The 147 FOB stimuli are not contrast-normalized: however, we compared

neural responses to contrast-normalized FOB and un-normalized FOB, to see

no noticeable difference in response patterns and magnitudes.
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Receptive field mapping.

One of the defined preferred face, the non-preferred face or the non-preferred

object was randomly presented at one location of hexagonal grid (18×24 de-

grees, 3 degreesof grid separation, see Fig. 2.8.) for 200 ms without inter-

stimulus intervals. Stimulus size was magnified in proportion to the eccentric-

ity (10 percent/degree) to compensate the cortical magnification factor1 [189].

After the calculation, the center of the receptive field wasselectedmanually to

be used as the presentation location of the following experiments. The size

of RF was estimated by calculating RF size index as follows: we calculated

average firing rate across space within each of 3 × 3 square presentation grid

placed at the center of the RF (each square took 4 × 4 degrees of visual angle).

The calculated 9 average firing rate was sorted in descending order, then the

first two (peak value) and the other seven (surround value) were averaged,

respectively. RF size index was defined as the difference over sum of the two

values:

IRF =
RFpeak −RFsur

RFpeak +RFsur

(A.1)

Acquiring neural responses to the multiple stimuli.

Upon the definition of the preferred/non-preferred stimuli, composite stimuli

were created of 0, 1, 2, 4 or 8 non-preferred face(s), non-preferred-object(s)

or preferred face(s) with or without the preferred face at the center (stimuli

were generated by a custom MATLAB program after defining the RF cen-

ter). When the preferred face was not presented at the center, a gray square

(R128/G128/B128) was presented at the center which has the same color as

1It was shown that the overall receptive field pattern was same regardless of the magni-
fication [89].
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the background screen. In the 8 non-preferred faces condition, we also used

heterogeneous, conspecific face distractors. Namely, 8 least preferred faces

were chosen from same species (monkey or human) as the selected preferred

face. These heterogeneous, conspecific distractors were presented with 0, 2 or 4

degrees of separation from the center image. We also included a gray square in

the stimulus set in order to calculate baseline responses. In total, 28 stimulus

conditions were used.The stimuli were presented at 3×3 array, whose center

was located at the defined receptive field center.In most of the experiments

the preferred face was presented at the location defined as the receptive field

center, but as a control we also presented the preferred face at surrounding

locations (positional control). Each stimulus was 4×4 degrees (thus, the 3×3

stimulus array spans from 12×12 degrees to 20×20 degrees) and presented for

400 ms with 200 ms inter-stimulus gap. In 1 distractor conditions, the distrac-

tor was placed randomly at one of 8 possible presentation locations. In 2 and 4

distractors conditions, the distractors were placed randomly at symmetric po-

sitions of 8 possible presentation locations. Note that because of the variable

sizes ofMF neurons’receptive fields, some of the stimuli could be presented out-

side of the receptive field. All stimuli were presented on a CRT screen placed

57 cm in front of the monkey (such that 1 cm on the screen approximately

equal to 1 degree of visual angle. see Appendix E).All stimuli were controlled

by custom software written in C (Visiko) running on a windows PC. Stimulus

presentation timestamps recorded by Visiko refers to the start of the display

frame during which the image was presented. Thus, given the 100 Hz refresh

rate of the CRT screen, the actual stimulus presentation could have up to 10

ms (=1 second / 100 Hz) delay depending on the stimulus position.
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Data analysis.

Recording data were analyzed with custom programs written in MATLAB.

Out of 114 recorded neurons, neurons with average responses to their pre-

ferred faces did not exceed 3 standard deviations above baseline response were

omitted from the rest of analyses. The baseline responses were calculated as

the mean firing rate within 100-499 ms after the onset of gray background

presentation.

FOB stimuli.

The time window in which mean firing rate was calculated was defined man-

ually according to the neuron’s response latency. In Fig. 1, the mean firing

rate was calculated in the window of 100-299ms after the stimulus onset.

Response latency calculation.

Response onset was defined as the time when the response to the neuron’s

preferred face exceeded 3 standard deviations above baseline response. The

baseline firing rate was calculated during presentation of a gray square that

has the same color as screen background.

Definitionof the early and the late phase. The early/late phase encompasses

the first peak and the late plateau of typical MF neuron’s response, respec-

tively. To equalize noises within the time window as much as possible, we

defined the early/late phase such that the number of spikes within each phase

became approximately equal. We used the population average response to the

preferred face to calculate a response latency, and with the latency the Early

and the Late phase were defined as 0-99 ms and 150-399 ms after the response

onset, respectively.

135



Receptive fieldmapping.

The receptive field was drawn by interpolating the mean firing rate (calculated

using the same time window as FOB) at each presentation point, by custom

MATLAB code.

Regression analysis.

To fit data from Cat/Num experiment, we used the equation,

R =
1

1 + αx
(3.1)

Where x is the number of distractors, and α is a free parameter. The mean

responses were divided by the response to the preferred face, such that all

the response could be compared relative to the response to the preferred face.

In this equation, the integration of multiple stimuli were approximately av-

erage when α=1, and wereapproximatelymaximum whenα=0, assuming that

the responses to the non-preferred images were close to zero. Regression was

conducted by MATLAB function nlinfit.

Divisive normalization model.

See Appendix B.
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B
Divisive normalization model

We designed the model equation such that the output from a single neuron is

the sum of direct drives elicited by each visual stimulus, where each drive is

weighted by the population average of the drives. The weights are normalized

such that the sum of them equals 1, thus the equation works as a weighted

average based on population activity. The response of neuron i is therefore

spref+dist
i =

l∑
p=1

sprefi (xp)p
dist
i (xp) +

m∑
q=1

sdisti (yq)p
dist
i (yq)

l∑
p=1

pdisti (xp) +
m∑
q=1

pdisti (yq)

(B.1)

where

pprefi (xp) =
1

N

N∑
i=1

sprefi (xp)

pdisti (yq) =
1

N

N∑
i=1

sdisti (yq)

(B.2)
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Here sprefi (xp) and sdisti (yq) describe the direct drives to neuron i, evoked by

the preferred face and the distractor, respectively, as a function of presentation

location. Variables xp and yq stand for the presentation location of preferred

face and distractor, respectively, and l and m are the total number of preferred

faces and distractors presented. N is the total number of recorded neurons.

Since experimentally observed variables are in principle the result of this

normalization, we do not have direct access to internal variables sprefi (xp) and

sdisti (yq). To find these values, we consider the RF mapping experiment where

non-combined stimuli were used. In RF experiment only one preferred face,

one non-preferred face or one non-preferred object is presented. For the case

of only one preferred face being used, the second term of both denominator

and numerator of Equation B.1 are zero, therefore we get

Spref
i (xp) =

sprefi (xp)p
pref
i (xp)

pprefi (xp)

= sprefi (xp)

(B.3)

where Spref
i (xp) is the value of RF of neuron i for its preferred face at loca-

tion xp. The same logic can be applied to the case when a single distractor

is presented. Thus, the internal variables sprefi (xp) and sdisti (yq) can be substi-

tuted by the measured RF values, Spref
i (xp) and Sdist

i (yq), respectively. Using

Equation B.2, pprefi (xp) and pdisti (yq) are similarly substituted by the calcu-

lated population activities, P pref
i (xp) and P dist

i (yq)The resulting equation of

the pure-prediction model is therefore
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Spref+dist
i =

l∑
p=1

Spref
i (xp)P

dist
i (xp) +

m∑
q=1

Sdist
i (yq)P

dist
i (yq)

l∑
p=1

P dist
i (xp) +

m∑
q=1

P dist
i (yq)

(5.1)

However to calculate for example P pref
i , we need to know the RFs of all the

recorded neurons for the preferred face of the i-th neuron. But stimulus prefer-

ences are different from neuron to neuron, and we mapped only 3 RFs per each

neuron (RF for the neuron’s preferred face, RF for its non-preferred face and

RF for non-preferred object). Many RFs needed to calculate the population

average are thus missing. We go about this problem by assuming that RF size

and shape does not change with stimulus identity. This means we can obtain

the RF of a given neuron for any of the FOB stimuli by using the preferred

face RF of each neuron and scaling the magnitude by the neuron’s normalized

mean response to FOB stimuli.

To further improve the predictive power of Equation 5.1, we introduce a

free parameter, exponent n. The exponent can change neuronal computation

smoothly from weighted average of all stimuli to winner-take-all of one of the

stimuli. The following Equation 5.2 is used as the post-diction model.

Spref+dist
i =

l∑
p=1

Spref
i (xp){P dist

i (xp)}n +
m∑
q=1

Sdist
i (yq){P dist

i (yq)}n

l∑
p=1

{P pref
i (xp)}n +

m∑
q=1

{P dist
i (yq)}n

(5.2)

139



C
Converting anatomical plane

coordinate to stereotaxic arm

coordinate

We calculate the angle of recording chamber with planning software such as

Caret [156], OsiriX [157] or Planner [158] to define desired angles within two

of coronal, horizontal or sagittal planes (Fig. C.1A. Angle in the third plane is

complement and automatically specified) . However, common stereotaxic arm

does not allow users to make a defined angle within each anatomical plane.

Rather, it has only two degrees of freedom: tilting the stereotaxic arm and

rotating the base of the stereotaxic arm (Fig. C.1B). Thus, in order to implant

the planned recording chamber angle using a stereotaxic arm, coordinates in

the anatomical sections have to be converted into stereotaxic arm coordinate

such that tilting and rotation of a stereotaxic arm ends up making desired

angles within anatomical planes as planned.

In Fig. C.1C, the line AB and AC indicate the direction of stereotaxic

arm base and stereotaxic arm, respectively. Within the planning software, the
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Figure C.1: Converting anatomical planes coordinate into stereotaxic coor-
dinates. (A) Definition of the three anatomical sections: coronal, horizontal
and sagittal section. Note that shown is a human brain, not a macaque brain.
Adapted from [190]. (B) Kopf Stereotaxic arm (David Kopf Instruments) with
a recording chamber loaded onto a pointer. The arm has two degree of free-
doms, (1) rotation of the base, and (2) tilting the arm. (C) Schematic diagram
to calculate rotation and tilting angle in order to achieve desired angle within
anatomical planes. The line AB and AC indicates the direction of the stereo-
taxic arm base and stereotaxic arm, respectively. θ and φ are tilting and rotation
angle on the stereotaxic arm (φ is defined from anteroposterior axis as shown).
x and y are desired angle within a coronal and sagittal plane, respectively. (D)
Relevant triangles required for calculating θ and φ, excerpted from (C). Vertical
bars | and || indicates pairs of sides with equal length.
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chamber angles x and y are defined within coronal and sagittal plane, and θ

and φ are tilting and rotation angle on the stereotaxic arm and base needed in

order to achieve the desired angle within anatomical planes. Fig. C.1D shows

three excerpted triangles needed for calculating θ and φ. Our goal is to express

θ and φ in terms of x and y. Fig. C.1D provides the following relationships:

tan y =
AB

DB

tan θ =
AB

CB

=
AB

EB

tanx =
AB

FB

=
AB

ED

tanφ =
ED

BD

sinφ =
ED

EB

(C.1)

From the relationships in Equations C.1, θ and φ are expressed in terms of

x and y as follows:
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tanx tanφ =
AB

ED

ED

BD

=
AB

BD

= tan y

tanφ =
tan y

tanx

φ = arctan

(
tan y

tanx

)
(C.2)

tan θ

tanx
=
AB

EB

ED

AB

=
ED

EB

= sin θ

tanθ = tanx sinφ

θ = arctan (tanx sinφ)

= arctan

(
tanx sin

(
arctan

(
tan y

tanx

)))
(C.3)
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D
Converting pixels to degrees of

visual angle

To plot RF in unit of degrees, pixel size on the stimulus presentation screen

must be converted into unit of degrees.

In the Fig. D.1, the screen-to-eye distance s, image viewing angle y and

image pixel size x is defined, in addition to these parameters, the diagonal

length of the screen is defined in pixels (d) and in cm (c). d and c can be

written as:

d =
√
w2 + h2

c =
√
a2 + b2

where w/h and a/b are screen width/height in pixels and in cm, respec-

tively. Using d and c, image size on the screen can be converted from pixels

to cm. Assuming the subject is looking at the presentation screen perpendicu-

larly (this assumption is valid because the subject is required to fixate on the
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Screen size: 36.6 x 27.4 cm
Resolution: 1280 x 1024 pixels

Figure D.1: Converting pixels to degrees. Screen-to-eye distance (s) is fixed
to 57 cm. Image size on the screen is x pixels, and subject’s viewing angle of
the image is y degrees. Screen width is 36.6 cm (w) corresponds to 1280 pixels
(a), and height is 27.4 cm (h) corresponds to 1024 pixels (b), See the text how
to describe the x in terms of y.
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center dot of the screen throughout the experiment), tangent function is used

to relate the viewing angle y and the image pixel size x:

tan y =
x
c

d
s

(D.1)
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E
Finding the screen distance

equalizing visual angle and

image size

The viewing distance (screen-to-eye distance) was fixed to 57 cm such that 1

cm on the stimulus presentation screen approximately equals to 1 degree of

animal’s viewing angle at small viewing angle. Fig. E.1 shows the schematic

illustration of the problem. We need to find a screen distance s, which ensures

x = y, where x and y are image size on the screen (cm) and image viewing

angle, y (degrees), respectively.

Equation E.1 shows the calculation of s. Note that approximations sin θ ≈

θ and cos θ ≈ 1 were used given that the image viewing angle is sufficiently

small.
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screen distance, s [cm]

image size, x [cm]
image viewing angle,
y [degrees]

stimulus
presentation screen

Figure E.1: Relating viewing distance to image size on the screen. The dis-
tance from the subject’s eye to stimulus presentation monitor (screen distance
s cm) affects the relation between the image viewing angle (y degree) and the
image size (x cm) on the screen. See Equation E.1 to find the screen distance
approximately equate x and y.

tan
(
y
π

180

)
=
x

s

s =
x

tan
(
y
π

180

)
≈ x

x
π

180

= 57.30

(E.1)
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F
Population average without

latency subtraction

111recorded MF neurons were averaged across trials and neurons to plot pop-

ulation average firing rate (Fig. F.1). For details and statistics, see Chapter 3

and Appendix J.
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Figure F.1: Population average without latency subtraction. Mean firing rates
of 111 MF neurons were averaged across neurons without correcting latency
difference. Gray shadow indicates the stimulus presentation duration.
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G
Population average firing rate to

multiple preferred faces.

Responses to increasing number of preferred faces were significantly decreased

in MF neurons, but not significantly reduced in AL neurons. Interpretation

in terms of divisive normalization is that MF neurons have smaller RF than

AL neurons, entailing higher chance of having preferred faces outside of the

RF resulting in (surround) suppression. Fig. G.1 shows the response latency-

subtracted population averages. One-way ANOVA was used to test whether

increasing number of preferred faces change the mean firing rate. For statistics,

see the Fig. G.1 legend.
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Figure G.1: Population average firing rate to multiple (1, 2, 3, 5 and 9) pre-
ferred faces. Response latencies were subtracted and averaged across neurons.
(A) MF neurons (1,9 preferred faces: N=111, 2,3,5 preferred faces: N=68).
Responses were significantly reduced in the early phase (one-way ANOVA,
p = 0.0173<0.05) by increasing number of preferred face. No significant dif-
ference in the late phase (p = 0.664>0.05). (B) AL neurons (N=109 from two
monkeys). Responses were not significantly reduced by increasing number of
preferred faces either in the early (one-way ANOVA, p = 0.712>0.05) and the
late (p = 0.594>0.05) phase.
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H
Visualizing the population

average in 2D space

One way to visualize the population average activity in two-dimensional space

is to project each data point to the line of unity.

b

a

A

f(x) = -x + c

x

y

B

y = x

Figure H.1: Projection to diagonal. The hypothetical data point A represents
the response of a neuron x (x = a) and a neuron y (y = b). B is the data point
A projected to the diagonal line of unity. The red line f(x) can be written as
f(x) = −x + c where c is a constant. The red line crosses both A and B, and
meets perpendicular to the line of unity.
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In Fig. H.1, an example data point A has values (x, y) = (a, b), represent-

ing activities of two hypothetical neurons. Thus, the average response of the

two neurons is a+b
2

. To project the point A to the line of unity, we solve simul-

taneous equation consists of the line of unity and perpendicular line crossing

the point A (f(x) in Fig. H.1). The unknown intercept c can be find given

that f(x) crosses the point A:

f(x) = −x+ c

b = −a+ c

c = a+ b

(H.1)

Then we solve the simultaneous equation to find the point B. Both x and

y values of B is a+b
2

, representing a population average.


y = x

y = −x+ (a+ b)

(H.2)

x =
a+ b

2

y =
a+ b

2
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I
Relationship between PCA and

SVD

PCA and SVD are two closely related methods. In fact, PCA is often computed

directly from SVD [191, 192, 193, 194] as follows.

We first start with applying PCA to a centered (mean set to zero) n × c

data matrix X. PCA calculates covariance matrix of the data matrix X and

diagonalize the covariance matrix with eigenvectors. The covariance matrix is

calculated as follows:

Cov = E(XXT )− E(X)E(X)T

=
1

n
XXT

=∝ XXT

Where n is number of data points and E(X) = 0 because X is centered.

Similarly, covariance matrix of transpose of X1is proportional to XTX. Since

1By taking the transposition of X, the dimension to be reduced can be changed. XXT

and XTX yields matrices of n× n and c× c, respectively, resulting in reducing 1st and 2nd
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the covariance matrix is symmetric, the matrix is diagonalizable by matrices

C,D which consists of eigenvectors of X. PCA decomposes the covariance

matrix into the product of three matrices:

XXT = ACAT

XTX = BDBT

(I.1)

Where C,D is a diagonal matrix whose diagonal elements are eigenvalues.

SVD on the other hand, decompose the original data matrix X instead of

covariance matrix:

X = USV T

Where U and V are n × n and c × c orthonormal matrices, respectively.

Diagonal matrix S has the same size n×c as the data matrix X. The diagonal

element of S is singular values, whose square are equal to the eigenvalues:

XXT = USV T (USV T )T

= USV TV STUT

= US2UT

XTX = (USV T )TUSV T

= (V SUTUSV T

= V S2V T

(I.2)

dimension of original data matrix, respectively.
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Thus, Equation I.1 and I.2 shows that depending on calculating covariance

matrix of either X or XT (in other words, depending on reducing whether

1st or 2nd dimension), either the matrix U or V is equal to eigenvectors, and

square of the singular values are equal to eigenvalues.
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J
Tukey’s Post-hoc test results

Table J.1: MF single cell example of Cat/Num experiment, face distractor
conditions at the early phase

PF+1FD *
0.0326

PF+2FD ***
2.25 · 10−7 0.0512

PF+4FD *** ***
9.92 · 10−9 1.79 · 10−5 0.278

PF+8FD *** *** *** **
9.92 · 10−9 9.92 · 10−9 1.22 · 10−6 5.70 · 10−3

PF only PF+1FD PF+2FD PF+4FD
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Table J.2: MF single cell example of Cat/Num experiment, face distractor
conditions at the late phase

PF+1FD **
9.09 · 10−3

PF+2FD **
2.52 · 10−3 0.997

PF+4FD ***
2, 34 · 10−8 0.0570 0.141

PF+8FD *** *** ***
9.92 · 10−9 3.20 · 10−7 2.38 · 10−6 0.0270

PF only PF+1FD PF+2FD PF+4FD

Table J.3: MF single cell example of Cat/Num experiment, object distractor
conditions at the early phase

PF+1OD
0.243

PF+2OD ***
8.82 · 10−4 0.339

PF+4OD *** **
5.61 · 10−8 1.29 · 10−3 0.289

PF+8OD *** *** **
9.92 · 10−9 6.55 · 10−7 3.59 · 10−3 0.504

PF only PF+1OD PF+2OD PF+4OD
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Table J.4: MF single cell example of Cat/Num experiment, object distractor
conditions at the late phase

PF+1OD
0.639

PF+2OD
0.315 0.986

PF+4OD
0.103 0.831 0.983

PF+8OD
0.0951 0.821 0.981 0.999

PF only PF+1OD PF+2OD PF+4OD

Table J.5: MF population average of Cat/Num experiment, face distractor
conditions at the early phase

PF+1FD ***
2.89 · 10−7

PF+2FD *** ***
9.92 · 10−9 1.90 · 10−5

PF+4FD *** ***
9.92 · 10−9 1.03 · 10−8 0.132

PF+8FD *** *** **
9.92 · 10−9 9.92 · 10−9 2.26 · 10−3 0.673

PF only PF+1FD PF+2FD PF+4FD
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Table J.6: MF population average of Cat/Num experiment, face distractor
conditions at the late phase

PF+1FD *
0.0120

PF+2FD ***
7.89 · 10−7 0.190

PF+4FD *** *
1.11 · 10−8 0.0107 0.825

PF+8FD *** ***
9.92 · 10−9 3.95 · 10−5 0.105 0.643

PF only PF+1FD PF+2FD PF+4FD

Table J.7: MF population average of Cat/Num experiment, object distractor
conditions at the early phase

PF+1OD **
9.56 · 10−3

PF+2OD ***
1.35 · 10−7 0.109

PF+4OD *** ***
9.92 · 10−9 9.43 · 10−6 0.0956

PF+8OD *** *** **
9.92 · 10−9 1.37 · 10−8 1.19 · 10−3 0.656

PF only PF+1OD PF+2OD PF+4OD
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Table J.8: MF population average of Cat/Num experiment, object distractor
conditions at the late phase

PF+1OD
0.185

PF+2OD *
0.0161 0.887

PF+4OD **
1.37 · 10−3 0.488 0.959

PF+8OD **
9.49 · 10−3 0.813 0.999 0.985

PF only PF+1OD PF+2OD PF+4OD

Table J.9: MF single cell example of Prox/Ecc experiment, RF center at the
early phase

PF+LD ***
3.77 · 10−9

PF+MD ***
3.77 · 10−9 0.823

PF+SD *** ***
3.77 · 10−9 4.92 · 10−4 0.0111

PF only PF+LD PF+MD

162



Table J.10: MF single cell example of Prox/Ecc experiment, RF center at the
late phase

PF+LD
0.901

PF+MD
0.415 0.639

PF+SD
0.537 0.802 0.993

PF only PF+LD PF+MD

Table J.11: MF single cell example of Prox/Ecc experiment, RF periphery at
the early phase

PF+LD ***
2.37 · 10−4

PF+MD ***
3.64 · 10−4 0.997

PF+SD *** *
3.26 · 10−8 0.0782 0.0401

PF only PF+LD PF+MD

Table J.12: MF single cell example of Prox/Ecc experiment, RF periphery at
the late phase

PF+LD ***
5.37 · 10−7

PF+MD ***
4.06 · 10−9 0.364

PF+SD ***
8.22 · 10−8 0.974 0.621

PF only PF+LD PF+MD
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Table J.13: MF population average of Prox/Ecc experiment, RF center at the
early phase

PF+LD ***
9.78 · 10−9

PF+MD ***
3.77 · 10−9 0.441

PF+SD *** *** *
3.77 · 10−9 2, 26 · 10−4 0.0435

PF only PF+LD PF+MD

Table J.14: MF population average of Prox/Ecc experiment, RF center at the
late phase

PF+LD ***
1.79 · 10−6

PF+MD ***
3.87 · 10−9 0.376

PF+SD *** **
3.77 · 10−9 1.65 · 10−3 0.180

PF only PF+LD PF+MD
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Table J.15: MF population average of Prox/Ecc experiment, RF periphery at
the early phase

PF+LD ***
6.86 · 10−9

PF+MD ***
3.99 · 10−9 0.978

PF+SD ***
6.01 · 10−9 0.999 0.985

PF only PF+LD PF+MD

Table J.16: MF population average of Prox/Ecc experiment, RF periphery at
the late phase

PF+LD ***
4.25 · 10−9

PF+MD ***
3.77 · 10−9 0.876

PF+SD ***
3.78 · 10−9 0.960 0.994

PF only PF+LD PF+MD
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Table J.17: MF population average of Prox/Ecc experiment, distractor only
control, RF center at the early phase

MD only
0.989

SD only *
0.0414 0.0590

LD only MD only

Table J.18: MF population average of Prox/Ecc experiment, distractor only
control, RF center at the early phase

MD only
0.981

SD only
0.441 0.555

LD only MD only
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Table J.19: MF population average of Prox/Ecc experiment, distractor only
control, RF periphery at the early phase

MD only
0.354

SD only **
3.69 · 10−3 0.156

LD only MD only

Table J.20: MF population average of Prox/Ecc experiment, distractor only
control, RF periphery at the early phase

MD only
0.442

SD only
0.0704 0.5860

LD only MD only
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Table J.21: AL population average of Cat/Num experiment, face distractor
conditions at the early phase

PF+1FD ***
1.14 · 10−4

PF+2FD *** **
9.92 · 10−9 5.35 · 10−3

PF+4FD *** *** *
9.92 · 10−9 1.61 · 10−8 0.0476

PF+8FD *** *** ***
9.92 · 10−9 9.92 · 10−9 2.60 · 10−4 0.593

PF only PF+1FD PF+2FD PF+4FD
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Table J.22: AL population average of Cat/Num experiment, face distractor
conditions at the late phase

PF+1FD
0.312

PF+2FD **
6.98 · 10−3 0.594

PF+4FD ***
1.57 · 10−4 0.114 0.876

PF+8FD *** *
2.49 · 10−6 0.0102 0.375 0.916

PF only PF+1FD PF+2FD PF+4FD

Table J.23: AL population average of Cat/Num experiment, object distractor
conditions at the early phase

PF+1OD
0.254

PF+2OD ***
2.53 · 10−4 0.187

PF+4OD *** **
7.43 · 10−7 7.07 · 10−3 0.765

PF+8OD *** ***
1.01 · 10−8 2.73 · 10−5 0.0889 0.672

PF only PF+1OD PF+2OD PF+4OD
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Table J.24: AL population average of Cat/Num experiment, object distractor
conditions at the late phase

PF+1OD
0.506

PF+2OD
0.194 0.9786

PF+4OD *
0.0179 0.569 0.891

PF+8OD *
0.0144 0.524 0.863 0.999

PF only PF+1OD PF+2OD PF+4OD

Table J.25: AL population average of Prox/Ecc experiment, RF center at the
early phase

PF+LD ***
2.29 · 10−5

PF+MD ***
8.40 · 10−9 0.420

PF+SD *** *** *
3.77 · 10−9 3.42 · 10−5 0.0141

PF only PF+LD PF+MD
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Table J.26: AL population average of Prox/Ecc experiment, RF center at the
late phase

PF+LD ***
2.10 · 10−5

PF+MD ***
7.62 · 10−8 0.713

PF+SD ***
3.77 · 10−9 0.063 0.488

PF only PF+LD PF+MD

Table J.27: AL population average of Prox/Ecc experiment, RF periphery at
the early phase

PF+LD ***
1.56 · 10−7

PF+MD ***
1.78 · 10−6 0.971

PF+SD ***
4.03 · 10−7 0.998 0.993

PF only PF+LD PF+MD

Table J.28: AL population average of Prox/Ecc experiment, RF periphery at
the late phase

PF+LD ***
9.06 · 10−7

PF+MD ***
7.86 · 10−9 0.796

PF+SD ***
3.90 · 10−9 0.479 0.955

PF only PF+LD PF+MD

171



Table J.29: AL population average of Prox/Ecc experiment, distractor only
control, RF center at the early phase

MD only
0.468

SD only *
0.0153 0.246

LD only MD only

Table J.30: AL population average of Prox/Ecc experiment, distractor only
control, RF center at the early phase

MD only
0.924

SD only
0.139 0.281

LD only MD only
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Table J.31: AL population average of Prox/Ecc experiment, distractor only
control, RF periphery at the early phase

MD only
0.583

SD only
0.846 0.899

LD only MD only

Table J.32: AL population average of Prox/Ecc experiment, distractor only
control, RF periphery at the early phase

MD only
0.797

SD only
0.863 0.992

LD only MD only
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Table J.33: MF population average without latency subtraction, Cat/Num
experiment, face distractor conditions at the early phase

PF+1FD ***
3.15 · 10−4

PF+2FD *** **
9.92 · 10−9 2.02 · 10−3

PF+4FD *** ***
9.92 · 10−9 6.95 · 10−8 0.213

PF+8FD *** *** **
9.92 · 10−9 9.92 · 10−9 2.85 · 10−3 0.568

PF only PF+1FD PF+2FD PF+4FD
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Table J.34: MF population average without latency subtraction, Cat/Num
experiment, face distractor conditions at the late phase

PF+1FD **
1.77 · 10−3

PF+2FD ***
1.67 · 10−8 0.106

PF+4FD *** **
9.92 · 10−9 1.29 · 10−3 0.641

PF+8FD *** ***
9.92 · 10−9 5.10 · 10−6 0.073 0.747

PF only PF+1FD PF+2FD PF+4FD

Table J.35: MF population average without latency subtraction, Cat/Num
experiment, object distractor conditions at the early phase

PF+1OD
0.207

PF+2OD ***
1.74 · 10−4 0.196

PF+4OD *** ***
1.88 · 10−8 6.24 · 10−4 0.354

PF+8OD *** *** *
9.92 · 10−9 1.74 · 10−6 0.0183 0.733

PF only PF+1OD PF+2OD PF+4OD
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Table J.36: MF population average without latency subtraction, Cat/Num
experiment, object distractor conditions at the late phase

PF+1OD
0.157

PF+2OD
02.94 · 10−3 0.667

PF+4OD ***
6.95 · 10−5 0.169 0.900

PF+8OD ***
6.61 · 1049 0.423 0.996 0.986

PF only PF+1OD PF+2OD PF+4OD
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[114] T. K. Sato, M. Häusser, and M. Carandini, “Distal connectivity causes

summation and division across mouse visual cortex.,” Nat Neurosci 17

no. 1, (1, 2014) 30–2.

[115] J. Reynolds, “Modeling optogenetic manipulation of neural circuits in

macaque visual cortex.” Cold Spring Harbor Symposium on

Quantitative Biology: Cognition, Cold Spring Harbor, NY., 2014.

190

http://dx.doi.org/10.1523/JNEUROSCI.2058-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.2058-05.2005
http://dx.doi.org/10.1016/j.neuron.2012.01.006
http://dx.doi.org/10.1371/journal.pone.0004651
http://dx.doi.org/10.1038/nn.2815
http://dx.doi.org/10.1038/nn.2815
http://dx.doi.org/10.1038/nn.2310
http://www.nature.com/neuro/journal/v12/n5/full/nn.2310.html
http://www.nature.com/neuro/journal/v12/n5/full/nn.2310.html
http://dx.doi.org/10.1038/nn.3585
http://dx.doi.org/10.1038/nn.3585


[116] G. G. Gregoriou, S. J. Gotts, and R. Desimone, “Cell-type-specific

synchronization of neural activity in FEF with V4 during attention,”

Neuron 73 no. 3, (Feb, 2012) 581–594.

[117] D. Zoccolan, M. Kouh, T. Poggio, and J. J. DiCarlo, “Trade-off

between object selectivity and tolerance in monkey inferotemporal

cortex,” J. Neurosci. 27 no. 45, (Nov, 2007) 12292–12307.

[118] E. T. Rolls, N. C. Aggelopoulos, and F. Zheng, “The receptive fields of

inferior temporal cortex neurons in natural scenes,” J. Neurosci. 23

no. 1, (Jan, 2003) 339–348.

[119] H. Ozeki, I. M. Finn, E. S. Schaffer, K. D. Miller, and D. Ferster,

“Inhibitory stabilization of the cortical network underlies visual

surround suppression,” Neuron 62 no. 4, (May, 2009) 578–592.

[120] D. B. Rubin, S. D. Van Hooser, and K. D. Miller, “The stabilized

supralinear network: a unifying circuit motif underlying multi-input

integration in sensory cortex,” Neuron 85 no. 2, (Jan., 2015) 402–417.

[121] M. Turatto, M. Valsecchi, A. E. Seiffert, and A. Caramazza, “On the

speed of pop-out in feature search,” J Exp Psychol Hum Percept

Perform 36 no. 5, (Oct, 2010) 1145–1152.

[122] O. Hershler and S. Hochstein, “At first sight: a high-level pop out

effect for faces,” Vision Res. 45 no. 13, (Jun, 2005) 1707–1724.

[123] A. M. Treisman and G. Gelade, “A feature-integration theory of

attention,” Cogn Psychol 12 no. 1, (Jan, 1980) 97–136.

[124] A. Treisman, “Perceptual grouping and attention in visual search for

features and for objects,” J Exp Psychol Hum Percept Perform 8 no. 2,

(Apr, 1982) 194–214.

191

http://dx.doi.org/10.1016/j.neuron.2009.03.028
http://dx.doi.org/10.1016/j.neuron.2014.12.026


[125] H. C. Nothdurft, “Faces and facial expressions do not pop out,”

Perception 22 no. 11, (1993) 1287–1298.

[126] A. Treisman and J. Souther, “Search asymmetry: A diagnostic for

preattentive processing of separable features,” Journal of Experimental

Psychology: General 114 no. 3, (1985) 285–310.

[127] H. C. Nothdurft, J. L. Gallant, and D. C. Van Essen, “Response

modulation by texture surround in primate area V1: correlates of

”popout” under anesthesia,” Vis. Neurosci. 16 no. 1, (1999) 15–34.

[128] S. Kastner, H. C. Nothdurft, and I. N. Pigarev, “Neuronal responses to

orientation and motion contrast in cat striate cortex,” Vis. Neurosci.

16 no. 3, (1999) 587–600.

[129] D. M. Beck and S. Kastner, “Stimulus context modulates competition

in human extrastriate cortex,” Nat. Neurosci. 8 no. 8, (Aug, 2005)

1110–1116.

[130] F. Gentile and B. Jansma, “Neural competition through visual

similarity in face selection,” Brain Research 1351 (Sept., 2010)

172–184. http:

//linkinghub.elsevier.com/retrieve/pii/S0006899310014423.

[131] K. Nagy, M. W. Greenlee, and G. Kovcs, “Sensory competition in the

face processing areas of the human brain,” PloS one 6 no. 9, (2011)

e24450. http://dx.plos.org/10.1371/journal.pone.0024450.

[132] D. M. Levi, S. Hariharan, and S. A. Klein, “Suppressive and

facilitatory spatial interactions in peripheral vision: peripheral

crowding is neither size invariant nor simple contrast masking,” J Vis 2

no. 2, (2002) 167–177.

192

http://dx.doi.org/10.1037/0096-3445.114.3.285
http://dx.doi.org/10.1037/0096-3445.114.3.285
http://dx.doi.org/10.1016/j.brainres.2010.06.050
http://dx.doi.org/10.1016/j.brainres.2010.06.050
http://linkinghub.elsevier.com/retrieve/pii/S0006899310014423
http://linkinghub.elsevier.com/retrieve/pii/S0006899310014423
http://dx.plos.org/10.1371/journal.pone.0024450


[133] D. M. Levi, S. Hariharan, and S. A. Klein, “Suppressive and

facilitatory spatial interactions in amblyopic vision,” Vision Res. 42

no. 11, (May, 2002) 1379–1394.

[134] D. M. Levi, “Crowding–an essential bottleneck for object recognition: a

mini-review,” Vision Res. 48 no. 5, (Feb, 2008) 635–654.

[135] D. Whitney and D. M. Levi, “Visual crowding: a fundamental limit on

conscious perception and object recognition.,” Trends Cogn Sci 15

no. 4, (2011) 160–168.

[136] H. Bouma, “Interaction effects in parafoveal letter recognition,” Nature

(1970) .

[137] A. Toet and D. M. Levi, “The two-dimensional shape of spatial

interaction zones in the parafovea,” Vision Res. 32 no. 7, (Jul, 1992)

1349–1357.

[138] C. Feng, Y. Jiang, and S. He, “Horizontal and vertical asymmetry in

visual spatial crowding effects,” J Vis 7 no. 2, (2007) 1–10.

[139] L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan,

“Compulsory averaging of crowded orientation signals in human

vision,” Nat. Neurosci. 4 no. 7, (Jul, 2001) 739–744.

[140] D. G. Pelli, M. Palomares, and N. J. Majaj, “Crowding is unlike

ordinary masking: distinguishing feature integration from detection,” J

Vis 4 no. 12, (Dec, 2004) 1136–1169.

[141] J. A. Greenwood, P. J. Bex, and S. C. Dakin, “Positional averaging

explains crowding with letter-like stimuli,” Proc. Natl. Acad. Sci.

U.S.A. 106 no. 31, (Aug, 2009) 13130–13135.

193

http://dx.doi.org/10.1016/j.tics.2011.02.005
http://dx.doi.org/10.1016/j.tics.2011.02.005


[142] B. Balas, L. Nakano, and R. Rosenholtz, “A summary-statistic

representation in peripheral vision explains visual crowding,” J Vis 9

no. 12, (2009) 1–18.

[143] J. Portilla and E. P. Simoncelli, “A parametric texture model based on

joint statistics of complex wavelet coefficients,” Int’l Journal of

Computer Vision 40 no. 1, (December, 2000) 49–71.

[144] G. Wallis and E. T. Rolls, “Invariant face and object recognition in the

visual system,” Prog. Neurobiol. 51 no. 2, (Feb, 1997) 167–194.

[145] F. Wilkinson, H. R. Wilson, and D. Ellemberg, “Lateral interactions in

peripherally viewed texture arrays,” J Opt Soc Am A Opt Image Sci

Vis 14 no. 9, (Sep, 1997) 2057–2068.

[146] R. van den Berg, J. B. Roerdink, and F. W. Cornelissen, “A

neurophysiologically plausible population code model for feature

integration explains visual crowding,” PLoS Comput. Biol. 6 no. 1,

(Jan, 2010) e1000646.

[147] E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Essentials of neural

science and behavior. McGraw-Hill, Appleton & Lange, 1996.

[148] J. Freeman and E. P. Simoncelli, “Metamers of the ventral stream,”

Nat. Neurosci. 14 no. 9, (Sep, 2011) 1195–1201.

[149] R. Rosenholtz, J. Huang, A. Raj, B. J. Balas, and L. Ilie, “A summary

statistic representation in peripheral vision explains visual search.,” J

Vis 12 no. 4, (2012) .

[150] G. Wolford, “Perturbation model for letter identification,” Psychol Rev

82 no. 3, (May, 1975) 184–199.

194

http://dx.doi.org/10.1023/A:1026553619983
http://dx.doi.org/10.1023/A:1026553619983
http://dx.doi.org/10.1167/12.4.14
http://dx.doi.org/10.1167/12.4.14


[151] H. Strasburger and M. Malania, “Source confusion is a major cause of

crowding.,” J Vis 13 no. 1, (2013) .

[152] E. F. Ester, D. Klee, and E. Awh, “Visual crowding cannot be wholly

explained by feature pooling,” J Exp Psychol Hum Percept Perform 40

no. 3, (Jun, 2014) 1022–1033.

[153] P. Dayan and J. A. Solomon, “Selective Bayes: attentional load and

crowding,” Vision Res. 50 no. 22, (Oct, 2010) 2248–2260.

[154] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational

and Mathematical Modeling of Neural Systems. The MIT Press, 2005.

[155] D. Y. Tsao, N. Schweers, S. Moeller, and W. A. Freiwald, “Patches of

face-selective cortex in the macaque frontal lobe,” Nat. Neurosci. 11

no. 8, (Aug, 2008) 877–879.

[156] D. C. Van Essen, H. A. Drury, J. Dickson, J. Harwell, D. Hanlon, and

C. H. Anderson, “An integrated software suite for surface-based

analyses of cerebral cortex,” J Am Med Inform Assoc (2001) .

[157] A. Rosset, L. Spadola, and O. Ratib, “OsiriX: an open-source software

for navigating in multidimensional DICOM images,” J Digit Imaging

17 no. 3, (Sep, 2004) 205–216.

[158] S. Ohayon and D. Y. Tsao, “Mr-guided stereotactic navigation.,” J

Neurosci Methods 204 no. 2, (3, 2012) 389–97.

[159] C. F. Crist, D. S. Yamasaki, H. Komatsu, and R. H. Wurtz, “A grid

system and a microsyringe for single cell recording,” J Neurosci

Methods (1988) .

195

http://dx.doi.org/10.1167/13.1.24
http://dx.doi.org/10.1016/j.jneumeth.2011.11.031
http://dx.doi.org/10.1016/j.jneumeth.2011.11.031


[160] M. G. Stokes, M. Kusunoki, N. Sigala, H. Nili, D. Gaffan, and

J. Duncan, “Dynamic coding for cognitive control in prefrontal cortex,”

Neuron 78 no. 2, (Apr, 2013) 364–375.

[161] K. Hasegawa, Honto ni wakaru tahenryou kaiseki. [Introduction to

multivariate data analysis.]. Kyoritsu Syuppan, 1998.

[162] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component

Analysis. Wiley-Interscience, 2001.

[163] A. J. Bell and T. J. Sejnowski, “An information-maximization

approach to blind separation and blind deconvolution,” Neural Comput

7 no. 6, (Nov, 1995) 1129–1159.

[164] T. Kolenda, S. Sigurdsson, O. Winther, L. K. Hansen, and J. Larsen,

“DTU:toolbox. ISP Group, Informatics and Mathematical Modeling,

Technical University of Denmark.,” [Computer program] (2002) .

[165] C. K. Machens, “Demixing population activity in higher cortical

areas,” Front Comput Neurosci 4 (2010) 126.

[166] E. M. Meyers, “The neural decoding toolbox.,” Front Neuroinform 7

(2013) 8.

[167] P. Grimaldi, K. S. Saleem, and D. Y. Tsao, “Aanatomical connections

of functionally defined anterior face patches in the macaque monkey.”

Society of Neuroscience annual meeting. Poster session on Neural

processing of faces and bodies. New Orleans, LA., 2012.

[168] E. M. Meyers, M. Borzello, W. A. Freiwald, and D. Y. Tsao, “Decoding

what types of information are in the macaque face patch system.”

Society of Neuroscience annual meeting. Nanosymposium on

Representation of faces and bodies. Washington, DC., 2014.

196

http://dx.doi.org/10.3389/fninf.2013.00008
http://dx.doi.org/10.3389/fninf.2013.00008


[169] K. Mirpour and H. Esteky, “State-dependent effects of stimulus

presentation duration on the temporal dynamics of neural responses in

the inferotemporal cortex of macaque monkeys,” J. Neurophysiol. 102

no. 3, (Sep, 2009) 1790–1800.

[170] R. N. Sachdev and K. C. Catania, “Effects of stimulus duration on

neuronal response properties in the somatosensory cortex of the

star-nosed mole,” Somatosens Mot Res 19 no. 4, (2002) 272–278.

[171] B. C. Motter, “Modulation of transient and sustained response

components of V4 neurons by temporal crowding in flashed stimulus

sequences,” J. Neurosci. 26 no. 38, (Sep, 2006) 9683–9694.

[172] M. Rigotti, O. Barak, M. R. Warden, X. J. Wang, N. D. Daw, E. K.

Miller, and S. Fusi, “The importance of mixed selectivity in complex

cognitive tasks,” Nature 497 no. 7451, (May, 2013) 585–590.

[173] M. Pagan, L. S. Urban, M. P. Wohl, and N. C. Rust, “Signals in

inferotemporal and perirhinal cortex suggest an untangling of visual

target information,” Nat. Neurosci. 16 no. 8, (Aug, 2013) 1132–1139.

[174] G. Mitchison, “Neuronal branching patterns and the economy of

cortical wiring,” Proc. Biol. Sci. 245 no. 1313, (Aug, 1991) 151–158.

[175] O. Sporns, “The non-random brain: efficiency, economy, and complex

dynamics,” Front Comput Neurosci 5 (2011) 5.

[176] J. M. Wallace and B. S. Tjan, “Object crowding.,” J Vis 11 no. 6,

(2011) .

[177] M. R. Cohen and J. H. Maunsell, “Attention improves performance

primarily by reducing interneuronal correlations,” Nat. Neurosci. 12

no. 12, (Dec, 2009) 1594–1600.

197

http://dx.doi.org/10.1167/11.6.19
http://dx.doi.org/10.1167/11.6.19


[178] G. Mongillo, O. Barak, and M. Tsodyks, “Synaptic theory of working

memory,” Science 319 no. 5869, (Mar, 2008) 1543–1546.

[179] S. L. Brincat and C. E. Connor, “Dynamic shape synthesis in posterior

inferotemporal cortex,” Neuron 49 no. 1, (Jan, 2006) 17–24.

[180] M. Pagan and N. C. Rust, “Dynamic Target Match Signals in

Perirhinal Cortex Can Be Explained by Instantaneous Computations

That Act on Dynamic Input from Inferotemporal Cortex,” The Journal

of Neuroscience 34 no. 33, (Aug, 2014) 11067–11084.

[181] J. Schmahmann and D. Pandya, Fiber Pathways of the Brain. Oxford

University Press, 2009.

[182] M. H. Johnson, “Subcortical face processing,” Nat. Rev. Neurosci. 6

no. 10, (Oct, 2005) 766–774.

[183] J. I. Gold and M. N. Shadlen, “The neural basis of decision making,”

Annu. Rev. Neurosci. 30 (2007) 535–574.

[184] J. R. Busemeyer and J. T. Townsend, “Decision field theory: a

dynamic-cognitive approach to decision making in an uncertain

environment,” Psychol Rev 100 no. 3, (Jul, 1993) 432–459.

[185] P. L. Smith, “Stochastic Dynamic Models of Response Time and

Accuracy: A Foundational Primer,” J Math Psychol 44 no. 3, (Sep,

2000) 408–463.

[186] W. Vanduffel, D. Fize, J. B. Mandeville, K. Nelissen, P. Van Hecke,

B. R. Rosen, R. B. H. Tootell, and G. A. Orban, “Visual motion

processing investigated using contrast agent-enhanced fMRI in awake

behaving monkeys,” Neuron 32 no. 4, (Nov., 2001) 565–577.

http://www.cell.com/article/S0896627301005025/abstract.

198

http://dx.doi.org/10.1016/S0896-6273(01)00502-5
http://www.cell.com/article/S0896627301005025/abstract


[187] P. Polosecki, S. Moeller, N. Schweers, L. M. Romanski, D. Y. Tsao, and

W. A. Freiwald, “Faces in motion: Selectivity of macaque and human

face processing areas for dynamic stimuli,” The Journal of

Neuroscience 33 no. 29, (July, 2013) 11768–11773.

http://www.jneurosci.org/content/33/29/11768.

[188] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike

detection and sorting with wavelets and superparamagnetic clustering,”

Neural Comput 16 no. 8, (Aug, 2004) 1661–1687.

[189] P. M. Daniel and D. Whitteridge, “The representation of the visual

field on the cerebral cortex in monkeys,” The Journal of physiology 159

no. 2, (1961) 203–221. http://onlinelibrary.wiley.com/doi/10.

1113/jphysiol.1961.sp006803/abstract.

[190] “Neuroanatomy and neuroembryology.” http:

//www.rci.rutgers.edu/~uzwiak/AnatPhys/APFallLect19.html.

Accessed: 2014-12-25.

[191] MATLAB 8.4.0. 2014. The MathWorks, Inc., Natick, Massachusetts,

United States.

[192] “Mathematics stack exchange.”

http://math.stackexchange.com/questions/3869/

what-is-the-intuitive-relationship-between-svd-and-pca.

Accessed: 2015-1-6.

[193] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular Value

Decomposition and Principal Component Analysis,” ArXiv Physics

e-prints (Aug., 2002) , physics/0208101.

199

http://dx.doi.org/10.1523/JNEUROSCI.5402-11.2013
http://dx.doi.org/10.1523/JNEUROSCI.5402-11.2013
http://www.jneurosci.org/content/33/29/11768
http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1961.sp006803/abstract
http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1961.sp006803/abstract
http://www.rci.rutgers.edu/~uzwiak/AnatPhys/APFallLect19.html
http://www.rci.rutgers.edu/~uzwiak/AnatPhys/APFallLect19.html
http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca
http://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca
http://arxiv.org/abs/physics/0208101


[194] J. Shlens, “A tutorial on principal component analysis,” CoRR

abs/1404.1100 (2014) . http://arxiv.org/abs/1404.1100.

200

http://arxiv.org/abs/1404.1100

	Rockefeller University
	Digital Commons @ RU
	2015

	Normalization Among Heterogeneous Population Confers Stimulus Discriminability on the Macaque Face Patch Neurons
	Akinori F. Ebihara
	Recommended Citation


	List of Figures
	List of Tables
	List of Equations
	1 Introduction
	1.1 Faces as invaluable sources of social information
	1.2 Hierarchical organization of the visual cortex
	1.3 Neurophysiological evidence of face selective neurons in the temporal lobe
	1.4 Face selective neurons are segregated into modular structures
	1.5 Early evidence of multiple stimulus representations and proposed models
	1.6 Evidence of multiple stimulus representations in IT cortex
	1.7 Multiple stimuli representations in the macaque temporal lobe face patch
	1.8 Organization of the thesis

	2 Experimental design
	2.1 Varying distractor numbers to study neural computation of multiple visual inputs
	2.2 Varying distractor categories in light of feature / conjunction search
	2.3 Varying distractor proximity / eccentricity in light of the crowding effect
	2.4 Stimulus selection and composition of multiple stimuli
	2.5 Targeting the face patch MF and AL

	3 Single neuron response properties and population average
	3.1 Single neuron response and population average to Category/Number variation experiment
	3.2 Single neuron response and population average to Proximity/Eccentricity variation experiment
	3.3 Response dependency on receptive field size
	3.4 Response reduction was not dependent on preferred face position
	3.5 Summary

	4 Population readout
	4.1 Representation in the pattern of neural responses
	4.2 How to capture representation in the high dimensional space spanned by population
	4.3 Independent representations of the multiple stimuli in the population activity pattern
	4.4 Quantifying discriminability assessing temporal transition of representation

	5 Modeling results
	5.1 Divisive Normalization framework to explain discriminability
	5.2 Divisive normalization model explained the early phase of Category/Number variation experiment without any free parameter
	5.3 Limitation of the pure prediction model and introducing an exponent as a free parameter
	5.4 Divisive Normalization model revealed the change of computational principle from the early to the late phase

	6 Comparison to anterior face patch AL
	6.1 Anterior face patch AL is located one position higher than MF in the cortical hierarchy
	6.2 AL neurons' responses were reduced by distractors similar to MF, but latency was shifted with distractor numbers
	6.3 AL neural population preserved stimulus information in the representation space, revealed by ICA
	6.4 Divisive Normalization explained the responses of AL neurons
	6.5 Summary

	7 Discussion
	7.1 Heterogeneity and systematicity with Divisive Normalization represent multiple stimuli in population activity
	7.2 Modular structure confers category discriminability
	7.3 Effect of modularity, heterogeneity and systematicity on representation space
	7.4 Does a preferred face ``pop-out'', or is it ``crowded'' by distractors?
	7.5 Pop-out effect and attentional confound
	7.6 Divisive Normalization gives an unified account encompassing previous seemingly contradictory results
	7.7 Divisive Normalization to prevent saturation and to have economical representation
	7.8 Representation at the late phase: robust against distractors yet maintaining representation
	7.9 Transition from MF to AL
	7.10 Concluding remark

	A Experimental Procedures
	B Divisive normalization model
	C Converting anatomical plane coordinate to stereotaxic arm coordinate
	D Converting pixels to degrees of visual angle
	E Finding the screen distance equalizing visual angle and image size
	F Population average without latency subtraction
	G Population average firing rate to multiple preferred faces.
	H Visualizing the population average in 2D space
	I Relationship between PCA and SVD
	J Tukey's Post-hoc test results
	Bibliography

