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Abstract 

One of the current challenges in human genetics is to map genes for common, 

complex diseases. For powerful mapping of such phenotypes, the suggestions are to 

analyze the underlying quantitative traits with covariate corrections in large extended 

pedigrees with multipoint analysis. This is virtually impossible to do with the current 

linkage programs, due to the computation difficulties of exactly calculating every 

possibility. Instead, sampling methods that sample the most likely data configuration 

from all the possibilities need to be used. This has been implemented in the reversible 

jump Markov chain Monte Carlo method Loki, which can carry out segregation and 

linkage analysis on quantitative traits in large pedigrees with multipoint analysis. Loki 

can model the trait with covariates, identify the number of quantitative trait loci, position 

linked loci, and estimate allele frequencies and gene effects. This method has a lot of 

promise but has not been vigorously tested for complete genome scans. 

The first part of this study was to develop a strategy for carrying out genome 

scans using Loki and to evaluate the output. This was first done using the Genetic 

Analysis Workshop 12 simulated dataset with known answers. This resulted in a number 

of suggestions, such as initial single chromosome analysis, correction for polygenic 

effect, joint analysis of positive signals, and convergence analysis. Next these 

suggestions were applied to a real dataset from the population of Kosrae, the Federated 

States of Micronesia. This is a study of the population on the island of Kosrae, which has 

one large extended pedigree and high prevalence of the common complex disorders that 

are known as Syndrome X: obesity, type II diabetes, hypertension, and dyslipidemia. 



This resulted in a number of additional suggestions, such as phenotypic and genotypic 

corrections, dealing with mixing issues, and inspection of L-graphs for signal reliability. 

Once this strategy was developed, the second part of this study was to use Loki to 

identify quantitative trait loci for the continuous traits associated with Syndrome X and 

stature. This resulted in quantitative trait loci for body mass index, hip circumference, 

weight, fasting blood sugar, systolic blood pressure, arterial blood pressure, 

apolipoprotein B, total cholesterol, and height. This also identified interesting 

chromosomal regions with slight signals for correlated traits on chromosomes 1, 2, 7, 9, 

13, and 16. This study shows that Loki is a program that can powerfully and reliably 

carry out linkage analysis on quantitative traits that was previously impossible to do and 

finds loci for many of the quantitative traits related to common metabolic disorders as 

well as height. 



Chapter 1: Introduction 

Complex disease gene mapping 

A current challenge in human genetics is to map genes that increase susceptibility to 

common complex diseases. Complex diseases are caused by multiple factors, such as a 

number of genes, age, sex, lifestyle, other environmental covariates, and interactions 

between them. Examples include obesity, type II diabetes, hypertension, and 

dyslipidemia, which are major causes of morbidity and mortality in the United States and 

throughout the world. Despite countless studies on each of these diseases, little progress 

has been made in elucidating their molecular bases, and it is unknown why these diseases 

often aggregate in the same individuals—a syndrome known as Syndrome X (Reaven 

1988). 

There have been many suggestions, yet there is still no clear way to define Syndrome 

X, primarily because the underlying mechanisms are so poorly understood. Indeed, the 

precise molecular genetic defects responsible for each of these individual disorders, or of 

Syndrome X, have not been elucidated except in a small number of instances. The 

identification of genes that are involved in the causation of Syndrome X and/or its 

constituent disorders is expected to enhance the understanding of their pathogenesis and 

lead to improved management of susceptible individuals in the population with more 

rational therapies. In addition, the use of genetics to stratify these diseases into 

genetically defined subgroups may reveal subtle phenotypic differences between them 

and differences in individual response to therapy. Finally, the identification of causal 



genes will likely reveal new physiological pathways and thus allow us to better analyze 

gene-gene and gene-environment interactions. 

Syndrome X diseases: prevalence, phenotypes, and genetic epidemiology 

Obesity 

Obesity (OB) is a major worldwide health problem and has been suggested as the 

most pressing problem in the United States. Obesity is mainly described in terms of 

ponderosity which is body weight (WT) relative to height (HT) measured by body mass 

index (BMI, in kg/m ). In the United States, individuals are classified as overweight 

when BMI is 25-29, as obese with BMI 30-34, and as extremely obese with BMI > 35. 

According to these criteria, 33% of the adult US population is overweight, 14% is obese, 

and 8% is extremely obese. From 1985 to 1995 there was a 33% increase in the number 

of obese individuals (Flegal et al. 1998). Threshold values for obesity traits are 

population specific, such as BMI > 30 kg/m " as obese in Caucasian populations, but > 27 

in Asians (Neel et al. 1998). Other measurements include those of fat distribution, such as 

waist (WST) and hip (HIP) circumference and waist/hip ratio (WHR), which measure a 

more central fat distribution, and those calculated from skin fold measures, such as 

visceral adipose tissue and trunk to extremity ratio (Durain and Womersley 1974; Van 

der Kooy and Seidell 1993). Intermediate phenotypes include total fat mass, measures of 

energy expenditure, and levels of leptin (LEP), an adipose tissue hormone (Comuzzie and 

Allison 1998). Leptin may be a very good physiologic marker, as it has been suggested 

that a significant portion of obese humans appear to be leptin resistant, with very high 

endogenous levels of the hormone. 



Numerous studies have confirmed that genetic factors play an important role in the 

development of obesity. Familial aggregation and twin studies for obesity have shown 

increased risk for relatives of obese individuals and resemblance of adopted children to 

their biological parents, as well as heritability for BMI ranging from 0.4-0.8 (Biron et al. 

1977; Stunkard et al. 1986; Sorensen et al. 1992; Allison et al. 1996; Bouchard 1997; 

Comuzzie and Allison 1998). Other measures of this phenotype are highly heritable, such 

as estimates of 0.39-0.55 for LEP, 0.72-0.82 for WST and 0.19-0.61 for WHR (Rotimi et 

al. 1997; Rose et al. 1998; Narkiewicz et al. 1999). Close to 40% of the variation in BMI 

has been shown to be due to a major gene, with another 40% due to polygenic effects 

(Moll et al. 1991; Comuzzie and Allison 1998). Other phenotypes, such as visceral fat 

and fat mass, show large percentage of the variance due to major gene as well as 

multifactorial effects (polygenes and environmental interactions) (Mitchell et al. 1996b; 

Lecomte et al. 1997). Though genes for monogenic forms of obesity and related 

syndromes have been found and linkage to general obesity and / or its related traits has 

been reported in some studies, there has been little replication and virtually no causal 

genes have been identified (Comuzzie and Allison 1998). Some of these studies will be 

discussed later. 

Diabetes 

Type II diabetes, or Non-Insulin Dependent Diabetes Mellitus (NIDDM), called here 

diabetes (DB), is a leading cause of death and morbidity, affecting more than 135 million 

people worldwide, and has a huge economic impact (McCarthy and Zimmet 1994; Harris 

1995). Diabetes is usually defined based on fasting blood sugar (FBS or glucose) levels 

(> 126 mg/dl), as well as a two-hour oral glucose tolerance test (OGTT2, > 200 mg/dl) to 



confirm the diagnosis, and it occurs in close to 8 % of adult Americans (Harris et al. 

1998). A less severe form, impaired glucose tolerance (IGT), based on intermediate 

glucose levels (FBS 100 - 125), is sometimes used to define an in-between phenotype, 

which may either be a disease state on its own or pre-diabetes. More specific measures 

of glucose, like post-prandial or post-challenge, are used to further define possible 

subsets. Diabetes is usually associated with insulin resistance and concomitant 

hyperinsulinemia, so various insulin related phenotypes can also be used. These include 

fasting insulin (INS), post challenge insulin, insulin secretion (pancreatic (3-cell function), 

and insulin sensitivity. These various measures may prove to be important in defining 

Syndrome X, which may be due to insulin resistance. 

Familial and population studies of diabetes point to a major genetic component by 

showing high concordance rates in twins, lifetime risk of greater than 40% for first 

degree relatives of patients and significant heritability of the underlying continuous 

variables (Hamann 1992). These include insulin secretion (0.4-0.7), abnormal glucose 

tolerance (0.61), insulin resistance (0.26), INS (0.53), and FBS (0-0.32) (Rice et al. 1990; 

Mayer et al. 1996; Elbein et al. 1999; Poulsen et al. 1999). There is also clear familial 

clustering of IGT and diabetes. There is evidence of a major gene component and 

polygenic effects for FBS, as well as for two-hour insulin and fasting insulin 

(Schumacher et al. 1992; Hanson et al. 1995; Mitchell et al. 1996b). To date, the only 

specific diabetes-susceptibility genes that have been identified are responsible for 

relatively rare, early-onset forms with monogenic or mitochondrial inheritance (Ballinger 

et al. 1992; Vionnet et al. 1992; Kadowaki et al. 1994; Yamagata et al. 1996a; Yamagata 

et al. 1996b; Horikawa et al. 1997; Stoffers et al. 1997). While several reports of linkage 



have been shown for various susceptibility loci, including some replicated regions such 

as on ch 1, the genes for the most common forms of late-onset type 2 diabetes have not 

yet been identified. These and other linkage studies will be discussed later. 

Hypertension 

Hypertension, defined as systolic blood pressure (SBP) >140mm or diastolic blood 

pressure (DBP) >90mm, is the strongest risk factor for heart disease and one of the most 

prevalent disorders in the US, occurring in 24% of adults (Anonymous 1993; Burt et al. 

1995). Though systolic and diastolic blood pressure levels are often used for diagnosis, 

alternate measures that combine both, such as pulse pressure (PP, SBP-DBP) or mean 

arterial pressure (MAP, DBP+[SBP-DBP]/3), have also been used. Hypertension has 

many subsets, such as high/low renin and salt sensitivity or insensitivity, which may be 

used to reduce complexity. Other intermediate phenotypes can include urinary kallikrein 

secretion and various measures of erythrocyte ion exchange, such as Na"7C17K+ 

cotransport and Na+/Li+ countertransport (Lifton 1995). 

Many studies confirm a genetic basis for blood pressure (BP) control. Heritability 

estimates range from 0.10 to 0.64 and 0.13 to 0.82 for DBP and SBP, respectively (Hong 

et al. 1994). Major gene effects have been shown for blood pressure, as well as for many 

of the intermediate phenotypes based on erythrocyte ion transport (Cusi et al. 1991; 

Williams et al. 1993; Williams et al. 1994; Cheng et al. 1995; Gu et al. 1998). To date, 

the identification of hypertension genes has also been limited to rare Mendelian forms. 

These include glucocorticoid-remediable aldosteronism, caused by the fusion of the 

aldosterone synthase and 11-Phydroxylase genes, and Liddle Syndrome, caused by 

various mutations in the (3 and y amiloride-sensitive epithelial sodium channel genes 

7 



(Lifton et al. 1992; Shimkets et al. 1994; Hansson et al. 1995). Linkage analyses have 

suggested some possible regions with little consensus which will be discussed later. 

Dyslipidemia 

Risk for heart disease, the most frequent cause of death in the US, is also incurred 

with derangement in the levels of triglycerides (TG), total cholesterol (TC), high density 

and low density cholesterol fractions (HDL-C, LDL-C) and their constituent 

apolipoproteins, apolipoprotein A-I (APOA-I) and apolipoprotein B (APOB), which are 

all included in the term dyslipidemia (DYSL) (Castelli et al. 1986; Higgins et al. 1996). 

TC levels greater than 240 mg/dl occur in 20%, and TG levels greater than 200 mg/dl 

occur in 18% of adult men (40-59 years old) and 8% of adult women (40-59) 

(Anonymous 1980; 1989). Other indicators of dyslipidemia are cholesterol particle size 

and turnover rate, as well as enzyme activity in various synthetic or degradative pathways 

for these factors (Perusse et al. 1997). Each parameter may be used separately or 

combined in some way, thus complicating diagnosis. Furthermore, it is not clear whether 

derangement in these factors is a disease state in itself or is merely a risk factor for heart 

disease. Either way, these phenotypes may be useful in studying the genes that underlie 

the general physiology of these factors and their interactions. 

Heart disease (particularly myocardial infarction) has been shown to cluster in 

families, and family history is one of the predominant risk factors, suggesting that genetic 

factors play an important role in the development of heart disease (Barrett-Conner and 

Khaw 1984; Hopkins et al. 1988; Colditz et al. 1991). Twin and family studies have 

shown genetic contribution for many of the other risk factors (dyslipidemia), such as TC 

(0.46-0.62), HDL-C (0.42-0.83), LDL-C (0.42-0.50), and TG (0.21-0.55) (Brenn 1994; 

8 



Mitchell et al. 1996a; Perusse et al. 1997). Strong single gene effects were shown for the 

factors involved in dyslipidemia, HDL-C, LDL-C, TC, APOA-I, APOB, and TG, a well 

as various measures of interactions between these factors (Amos et al. 1987; Williams et 

al. 1993). Only a small fraction of those with elevated LDL-C levels have mutations in 

the LDL receptor or other genes (Soutar 1998). A number of linkage studies for many 

dyslipidemia measures have been done, again with little consensus, and these will be 

discussed later. 

Syndrome X: Clustering 

Epidemiological and clinical studies have shown that obesity, diabetes, hypertension, 

and dyslipidemia often cluster in individuals and in families, and are often collectively 

known as Syndrome X (Reaven 1988; Defronzo and Ferrannini 1991; Ferrannini et al. 

1991; Muller et al. 1993; Reaven 1993; Wannamethee et al. 1998). A wider definition 

actually includes elevated levels of the variables that do not necessarily reach the 

threshold assigned for disease state. Therefore, one way to define Syndrome X may be to 

choose six or seven characteristics, assign high but not extreme cutoffs, and individuals 

with levels above the cutoffs for four or five of the variables are defined as affected 

(Suzuki et al. 1996). This is problematic, as there may be many differences in diagnosis 

based on the variables selected or the thresholds used. 

Another idea is to use factor analysis, through principal component analysis, on the 

continuous variables to cluster them into a few independent factors that describe the 

phenotype (Edwards et al. 1994; Meigs et al. 1997; Edwards et al. 1998; Gray et al. 1998; 

Leyva et al. 1998). This approach makes analysis much easier (few factors instead of 



many), includes all variables, and maintains the informativeness of quantitative traits by 

eliminating false dichotomization. These factors have been shown to be genetically 

determined, with heritability values for the body mass/ fat distribution factor ranging 

from 0.61-0.71, for the insulin/glucose factor 0.57-0.92, and for the lipid factor 0.25-0.32 

(Edwards et al. 1997). 

Genetic effects contribute significantly to the qualitative and quantitative traits that 

underlie these disorders and their clustering in Syndrome X, suggesting that the causal 

genes can be found. This syndrome is also referred to as insulin resistance syndrome 

(IRS) since insulin resistance has been suggested as the underlying cause for this 

clustering (Haffner et al. 1992). As this name suggests a cause that has not been 

conclusively proven, we use the more general term, Syndrome X. It is not clear whether 

Syndrome X is due to a single underlying cause, common independent causes, or 

partially overlapping causes that explain one or more of the features of Syndrome X 

without accounting for the whole syndrome. 

Syndrome X: Environmental Effects 

The available evidence suggests that all of the Syndrome X component diseases are 

oligogenic and heterogeneous. Moreover, environmental factors have been shown to 

influence the onset and severity of these disorders. Interestingly, it has been observed 

that in traditionally non-Western populations the incidence of these disorders increases 

when a high fat "Western" diet is introduced (Neel 1962). Similar findings were also 

noted when certain strains of mice (Akr, C57BL/6J) were switched to a high fat 

"Western" diet (West et al. 1992). One idea as to why modernity, particularly the shift to 

a "Western" diet, would cause Syndrome X disorders is the thrifty gene hypothesis (Neel 
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1962). The evidence suggests that descendants of populations who have endured 

periodic shortages of food and water exhibit a predisposition for these metabolic 

disorders when exposed to a high fat diet. This thrifty gene hypothesis suggests that the 

same genetic variants that confer a selective advantage in times of famine and drought, 

by superior ability to conserve nutrients and water, can lead to obesity, diabetes, 

hypertension, and dyslipidemia in times of surfeit. 

Other lifestyle shifts, such as increases in high salt and fat diets, alcohol, smoking, 

less exercise, changes in socioeconomic status, and urbanization, could also affect the 

prevalence of these disorders. These and additional environmental factors may be 

involved in various ways. Others include physiologic "environment", such as the 

differences seen in disease risk for males or females or in different age groups. 

Identification of loci so affected could lead to a fuller understanding of the relationship 

between genes and environment in the pathogenesis of Syndrome X and might also shed 

light on the increasing incidences of obesity in this century. 

Genetic epidemiology analyses show gene-gene and gene-environment interaction 

among the traits encompassed by Syndrome X. For example, studies have shown 

different genetic effects in different ethnic and racial backgrounds, with higher 

heritabilities for blood pressure measurements in African-Americans than for the 

Caucasians in the same study (Gu et al. 1998). There is a major gene effect found in Pima 

Indians that influences risk for diabetes by affecting age of onset and, in another study, 

genes found to affect age-related changes in DBP were found (Cheng et al. 1995; Hanson 

et al. 1995). Pleiotropic loci were shown for APOA-I and HDL-C, TG and BMI, and 

SBP and BMI (Blangero et al. 1993; Gauderman and Faucett 1997; Cheng et al. 1998). 
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Gene mapping in Kosrae 

To identify the genes underlying Syndrome X and its components, a comprehensive 

epidemiological and genetic study was undertaken on the Pacific Island of Kosrae, one of 

four states in the Federated States of Micronesia (FSM). Kosrae has a high prevalence of 

obesity, diabetes, hypertension, and dyslipidemia, and is ideal for gene mapping studies. 

Kosrae history 

This section is from the following references: (Hezel 1983), (Segal 1989), (Cordy 

1993), and (Irwin 1994). Kosrae, located 2500 miles northeast of Australia, was 

originally settled by a small number of founders (estimated to be 50) from Polynesia 

around 50 CE. Over the ensuing centuries, the islanders interacted with the inhabitants of 

several neighboring islands, including Nauru, Pingelap and Pohnpei. Kosrae was first 

sighted by Westerners in 1804 and first visited in 1824. During the 19th century, the 

combined effects of a typhoon (in 1835) and exposure of the native population to 

Western communicable diseases reduced the indigenous population from greater than 

3000 to around 300 individuals by 1888. Historical and genealogical records indicate 

that these 300 survivors were the result of extensive admixture between native Kosraean 

females and male Caucasian whalers from New England and Europe who visited the 

island in the mid to late 19th century. (This admixture may prove useful for localizing the 

genes underlying the disorders that are being studied (Chakraborty and Weiss 1988; 

McKeigue 1997; 1998).) 

Spain originally claimed Kosrae, but the island was purchased by Germany in 1899 

following the Spanish-American War. In the beginning of World War I, the Japanese 

gained control of Kosrae, and there is evidence of some Japanese intermarriage with the 
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Kosraean population. After World War II, the FSM, including the islands of Kosrae, 

Truk, Yap, and Pohnpei, became a protectorate of the US government. At that time, the 

island population was estimated to be 1,550. 

A number of visitors to the island in the 19th and early 20th century noted the natives 

to be thin, and available records do not show that obesity or other Syndrome X diseases 

were a major health problem on the island prior to World War II. As late as 1945, the 

Kosraean consumed a diet consisting mostly of fish and fruits and vegetables. The 

designation of Kosrae as a US protectorate led to a drastic life style change on the island. 

Kosraeans no longer had to fish for sustenance and assumed a more sedentary lifestyle. In 

addition, the diet on the island changed to a more Western diet with large quantities of 

high fat foods supplied through US aid (such as Spam, turkey tails, hamburgers, and ice 

cream). These changes resulted in a dramatically increased prevalence of obesity, an 

outcome similar to that seen in other indigenous populations, such as the Pima Indians of 

Arizona and the Nauruans (Zimmet et al. 1977; Zimmet et al. 1978; Ravussin et al. 

1994). Correspondingly, other Syndrome X diseases became significant health problems. 

However, the Kosraean population is different from other indigenous populations in that 

there is greater phenotypic variability on Kosrae compared to the other populations. This 

may be a result of the extensive Caucasian and Micronesian admixture on Kosrae. 

Methods of linkage analysis of complex traits 

There are hundreds of candidate genes for the Syndrome X disorders. These 

include genes identified as causing the rare Mendelian forms, as well as many genes or 

syntenic regions from animal (particularly rodent) models. Examples are leptin and 
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leptin receptor which are involved in genetically obese mice (ob and db respectively), the 

MODY loci for diabetes, ion-exchange genes and the SA locus (identified from rat 

models) in hypertension, and the familial combined hyperlipidemia loci for dyslipidemia 

(Zhang et al. 1994; Nabika et al. 1995; Chen et al. 1996; Dallinga-Thie et al. 1997). Yet 

there are many more, as virtually any gene related to the many aspects of metabolism and 

hemodynamics could play a role. Therefore complete genome scans for the quantitative 

traits underlying these four disorders: obesity (BMI, WT, WST, HIP, and LEP), diabetes 

(FBS and INS), hypertension (SBP, DBP, and MAP), and dyslipidemia (TC, TG, APOA-

I, and APOB), as well as height (HT), were carried out. 

Though many linkage studies in different populations have been done for these 

disorders, results have been inconsistent with replication in a limited number of instances 

(Guo 2000; Altmuller et al. 2001). This could be due to lack of consensus on exactly the 

best way to conduct many aspects of these studies, to both maximize power and reduce 

false positives. To that end, the Genetic Analysis Workshop (GAW) 10 was designed to 

assess relative power, accuracy of parameter estimates, and error rates for methods of 

complex disease gene mapping (Wijsman and Amos 1997). As each gene has a smaller, 

perhaps non-independent effect, there may not be a clear, direct connection between 

phenotype and genotype, so methods need to elicit the most information possible from 

the complete dataset. 

The first suggestion was to analyze continuous (quantitative) traits related to the 

disease. Often, a lot of information is lost when quantitative traits are dichotomized to 

determine affection status, so it is preferable to use the continuous measure itself. For 

diseases that are not directly determined by an underlying distribution, there may be a 
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simpler endophenotype (often quantitative) correlated to the disease. Further suggestions 

pertain to both qualitative and quantitative trait analysis. Correcting for covariates either 

before or during the analysis has a sizable effect, as it explains much of the non-genetic 

effects, making it easier to model the effects of the major genes. The use of large 

extended pedigrees increases power both because of the increased sample size and more 

phase known meioses, as well as the ability to trace genes through many generations. 

Additionally, there is a huge benefit to using many linked markers in multipoint analysis, 

as extra information is obtained from neighboring loci, leading to better localization and 

accuracy. To a lesser extent, modeling epistasis, pleiotropy, multivariate traits, and other 

interactions further increases power and accuracy and decreases error rates. The 

problems are the many challenges (mostly computational) to multipoint analysis of 

quantitative data while correcting for covariates in large extended pedigrees. Linkage 

analysis (LA) methods to do this are needed. 

Linkage analysis: history and methods 

Linkage analysis is a powerful method used to map disease genes, as it looks for 

correlated segregation of marker alleles and disease genes within families. The principal 

is that the linked markers (haplotype) surrounding the mutation will be transmitted along 

with the mutant gene within a pedigree; therefore, the identification of markers linked to 

a disease suggests a gene there as well. This method of finding genes based on their 

chromosomal location began with Morgan's 1911 discovery of linkage, and Sturtevant's 

1913 use of it to map trait-causing genes to drosophila chromosomes (Morgan 1911; 

Sturtevant 1913). Linkage tests for major genes were developed starting in 1931, with 

the first one applied in 1935 (Penrose 1935; Ott 1999). Traditional parametric analysis 
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(model-based) formally proposes a model, that a marker locus is linked (recombination 

fraction, 0, <0.5) to a disease locus, based on recombination events. These parametric 

tests require pedigree information, one-locus inheritance models, allele frequencies, 

penetrance functions, and allowance for heterogeneity. Linkage is measured in terms of 

the LOD score, the base 10 logarithm of the likelihood ratio between likelihood of 

linkage to the null of no linkage (0 = 0.5), with a genome-wide p-value of 0.05 indicated 

by a score of 3. 

These model-based methods have been very successful in localizing many 

monogenic Mendelian disorders, but less so for complex disorders or the associated 

quantitative traits. One reason is the inability to define the correct inheritance models for 

these traits, which has been shown to reduce mapping power (Elston 1998). Therefore, 

model-free (non- or quasi- parametric) methods that do not require complete parameter 

definition have been developed. These are mainly allele-sharing methods, which look for 

pairs of relatives that share disease or trait status and alleles at a locus identity-by-descent 

(IBD, same alleles are of same grandparental origin). Linkage is suggested by 

phenotypically similar pairs sharing alleles in excess to that expected by chance, 

inconsistent with random segregation, as opposed to by evidence of actual cosegregation 

between the alleles and trait. The allele-sharing methods best able to analyze quantitative 

traits with covariate corrections and multipoint markers in large pedigrees are based on 

variance components, such as those implemented in SOLAR (Sequential Oligogenic 

Linkage Analysis Routines) (Blangero and Almasy 1997; Almasy and Blangero 1998; 

Blangero et al. 2001). Variance components methods model the variance of a trait 

attributable to a locus by modeling covariance between relative pairs as a function of 
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IBD. These methods are excellent for complex disorders, as they can model multiple 

loci, epistasis, pleiotropy, and gene-environment interactions. Pedigree size is still a 

problem as it is necessary to be able to write out the multipoint pairwise IBD-sharing 

matrix. 

Another main problem with parametric methods is the inability to perform 

multipoint analysis in extended pedigrees. (This section is mainly summarized from 

Heath 2002). This is mainly a missing data problem, as for each unknown every 

possibility has to be specified exactly. Solutions for each aspect (pedigree size and 

multipoint analysis) have been developed separately, both of which are actually special 

cases of Lauritzen and Spiegelhalter's method of calculating probabilities on graphical 

structures, utilizing local dependencies (Lauritzen and Spiegelhalter 1988). 

For pedigree size, pedigrees can be drawn first as undirected acyclic graphs, then 

as undirected graphs, where the nodes are the ordered (phase-known) genotypes for each 

individual. Each node is connected to others only locally, with spouses to each other and 

children to parents (Figure 1.1). Elston and Stewart used this to enable fast summation 

over genotypes in a pedigree, called pedigree "peeling" (Elston and Stewart 1971). This 

is done by sequentially removing nodes, including their linkage information in their 

neighbors' probability functions, until the information for the whole pedigree is 
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Figure 1.1: Pedigree drawn as a directed acyclic graph, showing the direction of allele 

transmission, and then with the edges connected to give a undirected cyclic graph. 

combined into one individual. This method was extended for general pedigrees in 1978 

(Cannings et al. 1978). Efficiency of peeling is based on complexity of the pedigree 

structure and order of combining nodes, but mainly on the number of possible 

combinations at each node. Pedigree complexity depends on size and the number of 

loops and the peeling should be done to remove and not add edges. The number of 

combinations increases exponentially with the number of loci, as it is based on the 

number of alleles at each locus. So though the Elston-Stewart algorithm works well for 

large pedigrees, as implemented in programs such as LINKAGE and FASTLINK, it 

cannot be used for multipoint peeling for more than 3-6 loci. 

As a way to perform multipoint analysis, the chromosome is drawn as a linear 

graph, with each node (locus) sequentially connected only to those immediately adjacent. 

Lander and Green developed an algorithm to use this to sum over segregation indicators 

(SI) for each non-founder (Lander and Green 1987). Segregation indicators specify the 
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grandparental origin of the alleles at a locus, as a binary digit, 0 for grandmaternal and 1 

for grandpaternal (Figure 1.2). 

b O O a 

O 

O O 

Figure 1.2: Pedigree drawn with Sis for non-founders, showing the transmission of 

alleles as well. 

If the Sis for a meiosis at 2 loci are different, a recombination event has occurred. For 

each locus, the Sis can be written out as string of size 2n (n=number of non-founders). 

These strings can be compared for two loci, with the differences indicating recombination 

events. Here, the number of possible node states increases exponentially with the number 

of non-founders. So even though the Lander-Green algorithm (as implemented in 

Genehunter) is excellent for multipoint analysis, it only works for small pedigrees of less 

than 16 non-founders. 

Both Elston-Stewart peeling and Lander-Green SI recoding are actually special 

cases of Lauritzen-Spiegelhalter with different latent variables and directions of 

movement through the graph. For Elston-Stewart, the genotypes are the latent variables 

and the calculation moves through the pedigree, ignoring the loci dependencies on the 
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chromosome. On the other hand, for Lander-Green, the latent variables are the Sis and 

the calculations move along the chromosome, ignoring the dependencies on relatives. 

The main limitation for both of these summation methods is the number of possible 

combinations at each node. If all the data are known, one does not need to sum over all 

possibilities, making these methods much more efficient. Even with missing data, the 

observed data can often reduce the number of possible configurations to make the 

summation more tractable (Lange and Goradia 1987; Lange and Weeks 1989). Another 

suggestion is to modify the dependency graphs by drawing the pedigree graph and then 

splitting each node into separate ones for alleles and Sis (Figure 1.3). 

Parental alleles 

Offspring alleles 

Q Allele node O SI node 

Figure 1.3: Trio drawn for two loci, separating allele and SI nodes. Allele nodes have 

pedigree dependencies (solid lines) while SI nodes have chromosome dependencies 

(dotted lines). 

This adds total nodes but as more are known, the total of unknowns is reduced. Now the 

local dependencies can be separated out as well, as allele nodes are only dependent on 

pedigree members and SI nodes are only dependent on chromosomal location. By using 

both graphical structures separately but simultaneously, it may be possible to use large 
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pedigrees and multipoint analysis. Yet, in real life situations with missing data, at some 

point there will be too many possible states to exactly sum over all combinations. 

Instead, sampling methods should be used. 

Markov Chain Monte Carlo sampling 

Exact methods calculate the probability of every possible configuration to 

determine the most probable data state. Sampling methods instead sample from all the 

possible data configurations, and the amount of times each configuration comes up is 

proportionate to its probability. Therefore the most likely configuration will be sampled 

most often, with the assumption that if the sampler is run infinitely long, the answer 

would be infinitely close to that extracted from the exact calculations (Gilks et al. 1996; 

Roberts 1996). 

One such method is Markov chain Monte Carlo (MCMC), which provides a 

framework to analyze such complex problems without having to force simpler models 

(Gilks et al. 1996). This includes the ability to do both multipoint analysis and use large 

pedigrees, but also permits the use of complicated inheritance models, another limitation 

in traditional linkage analyses. So instead of doing exact integration over high dimension 

probability distributions to make inferences about model parameters and predictions, 

Monte Carlo integration is used to draw samples from the required joint distribution and 

the sample averages approximate the parameter estimates. In a genetic context, the 

probability distributions for the underlying parameters include phase-known genotypes 

for markers and quantitative trait loci (QTLs), allele frequencies, covariate effects, 

number of QTLs, position of linked QTLs, variance attributable to linked QTL, and 
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residual variance. All these are sampled together to model a trait, and suggest the most 

likely regions to contain a QTL with particular parameters, such as allele frequencies and 

percent variance explained. 

Many of the sampled configurations, though, may be impossible due to the 

restrictions on the sample space imposed by the data. Therefore, a Markov chain is used 

to move from one state (configuration) to the next, thereby directing the sampling and 

increasing efficiency. Using a Markov chain method, one state is dependent only the one 

before it (local dependency), and therefore it does not move from a possible state to an 

impossible one (Metropolis et al. 1953; Hastings 1970; Gilks et al. 1996; Roberts 1996). 

Markov Chain updating 

The Markov chain has to be constructed appropriately to have several important 

characteristics. First, it should converge, to settle down without major fluctuations, which 

suggests that the proportions of the underlying distribution has been reached (Gilks et al. 

1996; Roberts 1996). Second, the chain has to mix, to be able to move over all of the 

possible sample space. This is necessary so that the sampler can find all the areas of high 

probability and not get stuck at a local maximum. This is even harder to ensure when 

there are correlations among the samples, so it is hard to move from that space. One 

improvement, which will be discussed further in the genetic context, is to perform block 

updates to change all the correlated samples together (Gilks et al. 1996). Then, the chain 

has to be run long enough for the sampled distribution to reach the underlying 

distribution (Gilks et al. 1996; Roberts 1996). Often the easiest way to diagnose these 

issues is by visual inspection. By looking at the iterations, convergence can be seen, as 

well as how often the sampler leaves and returns to the distribution to which it converged 
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(mixing). Based on this it can be decided if the sampler was run long enough. This will 

be shown on real data later. 

Construction of the chain means choosing how to move from one configuration to 

the next, by update steps. This consists of suggesting a change in state, and either 

accepting or rejecting the move to the new configuration, based on the acceptance ratio. 

There are a number of methods implemented in various samplers to do this, many of 

which are generalization of the Metropolis algorithm, and hybrids of different algorithms. 

The main samplers used in the genetic application discussed below, Loki, are the 

Metropolis-Hastings samplers and the Gibbs sampler (Hastings 1970; Kong 1991; Gilks 

et al. 1996; Roberts 1996; Heath 1997). 

The Metropolis-Hastings acceptance ratio is based on the state and proposal 

probabilities, which of the states (present or proposed) is more likely, and which move, 

from the present to the proposed or vice versa, is more likely. Using this step, a change 

can be to a single element of the joint distribution or to groups of elements. For example, 

a change suggested could be in the position of a linked QTL, or in linkage status, percent 

variance attributable to a previously unlinked QTL, and allele frequencies all at once. A 

special case is the Gibbs sampler, which is mainly used to make a particular update, as it 

is always accepted. This typically changes one element at a time, with the new value 

sampled from the joint distribution, conditional on the rest. Additionally, in Loki, the 

number of QTL in the model can also be changed. This changes the dimensions of the 

sample space, and requires an extension to Metropolis-Hastings called reversible jump, 

with an acceptance ratio that takes the change of dimension into account (Green 1995; 

Richardson and Green 1997). 
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Applications to genetics 

As MCMC utilizes local dependency to move from one state to the next, it makes 

sense to apply these methods to genetic data that is characterized by local dependencies, 

between pedigree members and loci as discussed above. The use of MCMC for genetic 

analysis was first suggested in 1989 (Sheehan et al. 1989) and has been discussed since in 

the literature, such as in the following: (Lange and Sobel 1991), (Thompson 1991), 

(Kong 1991), (Sheehan and Thomas 1993), (Geyer and Thompson 1995), (Lin 1995), 

(Thompson 1996), (Thomas and Gauderman 1996), (Heath 1997; Heath et al. 1997), and 

(Thompson and Heath 1999). The earliest human genetic application was a single locus 

Gibbs sampler, where one individual is updated conditional on the other pedigree 

members (Geman and Geman 1984; Sheehan et al. 1989). This does not mix very well, 

both due to the presence of states impossible to move through and because of the 

correlation between relatives. This can be improved by block sampling, by updating the 

whole pedigree at once using Elston-Stewart peeling (Ploughman and Boehnke 1989). 

With extension to multiple loci, mixing is again a problem due to the correlation between 

adjacent loci. Here, the block sampler is used with single-locus peeling to sample 

genotypes at a locus for the whole pedigree at once, conditional on the Lander-Green Sis 

of the other loci, or on the ordered genotypes at adjacent loci (Kong 1991). Another 

suggestion is to sample Sis for a meiosis instead of genotypes, conditional on the data 

and Sis for other meioses (Thompson 1994a; 1994b; Thompson and Heath 1999). 

Two genotype samplers used in Loki are the locus and meiosis samplers (Heath 

1997; Szydlowski and Heath 2000)). The locus sampler updates one locus at a time, 

conditional on the pedigree and adjacent loci. Efficiency of mixing is dependent on how 
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close the markers are, as there is still correlation between the segregation patterns at 

adjacent loci. The meiosis sampler updates Sis at all loci for a particular meiosis, 

conditional on the data and Sis for other meioses. As this is dependent on the number of 

meioses, it mixes poorly with a lot of data. So depending on the type of data available, 

which sampler or combination of the two can be selected (Szydlowski and Heath 2000). 

These samplers are not yet optimized, and there is a need for good sampling schemes that 

condition on the minimum number of variables to allow efficient updating of the rest. 

Loki 

The LA method used in this study, called Loki, uses MCMC simulation to 

generate multilocus inheritance patterns, conditional on the marker data, to test for the 

best model, including the most likely locus for a trait (Heath 1997). Through the 

sampling of the underlying distributions, Loki generates estimates for the number of trait 

loci, allele frequencies, number and positions of linked QTLs, and the percent variance 

explained by each QTL. As this is a sampling method, Loki can realistically model 

quantitative traits by correcting for covariates and allowing for multiple QTLs and do 

multipoint analysis in extended pedigrees. (The limit on the pedigree structure is that the 

pedigree has to be single-locus peelable, which limits it to less then about eight 

interlocking loops.) Therefore, this method can fulfill the main suggestions from 

GAW10, to be able to powerfully and accurately map genes for complex diseases. 

In the Loki analysis, the trait is modeled as y = tU+X(3+Si=i t0 kQ.cCj+e, where (X is 

the grand mean, |3 are the covariate effects, X is the incidence matrix for the covariates, k 

is the number of QTL for the trait, Q is the linked QTL, a is the QTL effect (dominance 

or additive effect), and e is the residual variance. Loki samples from the joint posterior 
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probability distribution for all unknown parameters and inferences for the individual 

parameters can be drawn from the marginal distributions. The joint probability is written 

as p (k,G,M,P,X,8,r|,a,a2e,(i,Y), where G and M are the ordered (phase-known) 

genotypes at the QTL and markers respectively, X is the position of a linked QTL, 5 is 

linkage status for the QTL, r\ are the allele frequencies, o2e is the residual variance, and 

Y is the observed data, which includes the trait, covariate, and genotype data. 

All these parameters go into the Metropolis-Hastings acceptance ratio, into the 

ratio of the state probabilities, as the probability of the observed data (Y) given the rest of 

the parameters with the new parameter state, divided by the probability of the data given 

the rest in the current state. For example, if that update step proposes a change to the 

QTL position, to X*, the numerator will be p (Y | k,G,M,(3,A.*,8,r|,a,a2e,u/), while the 

denominator will be p (Y | k,G,M,(3,>i,5,r|,a,o2e,|a.). How well the configuration models 

the trait will affect the acceptance. At some steps, it is more efficient to sample 

conditional on a portion of the joint distribution, and then there is a Gibbs step to update 

the elements that were not conditioned on. The trait model parameter approximates can 

be estimated from the distributions generated in the sampling scheme. 

At the start of an analysis, there is the observed data, which includes phenotypes, 

genotypes at the markers, and covariate values, and a model (which covariates to use and 

a general genetic effect, such as trait = age + QTL). The sampler is initialized with 

marker allele frequencies as they are, covariate effects at 0, and residual variance as 

phenotypic variance minus the grand mean. Then genotypes are sampled at each locus 

alone, generating genotypes for those that were missing, and new allele frequencies are 

calculated. Next, working across the chromosome, the genotypes at each marker are 
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updated (whole pedigree at once) conditional on neighboring loci and allele frequencies, 

using the locus sampler. Then a random position is picked, a random mode of 

inheritance (additive or dominance) that explains a proportion of the residual variance is 

selected, allele frequencies for a gene with this size effect are generated, and all that is 

put into the sampler. 

Then the sampler (Markov chain) runs for tens to hundreds of thousands of 

iterations, with the update steps as follows. At each iteration, the ordered genotypes are 

updated at the marker loci. Then for each QTL the following parameters are updated: 

gene effect, position, linkage state (linked or not) and then ordered genotypes at the QTL 

are generated by reverse peeling. The first three QTL updates are done independent of the 

QTL genotypes, as they are integrated out of the acceptance ratio, as if the conditioning is 

on the sum of all genotypes in the pedigree. Then these are updated: allele frequencies, 

covariate effects and grand mean, and residual variance. The last step is adding or 

removing a QTL, which is a reversible jump step, as it changes the dimensions of the 

joint distribution. Many parameters are added or removed along with a QTL, such as 

percent of variance attributable to it, position, linkage status, and allele frequencies, and 

how well they explain the data will affect the acceptance ratio. 

To identify chromosome regions likely to contain QTLs, the chromosomes are 

divided into equal sized bins of lcM. At each sampling iteration, the prior probability of 

linkage of at least 1 QTL to a particular bin is calculated. For a single QTL, the 

probability of linkage to any bin is s/t, where s is the bin size and t is the total map length 

of the genome. If there are n QTLs in the model at a particular iteration, the prior 

probability of at least 1 QTL being located in the bin is p = l-(l-s/t)n. The posterior 
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probability q is simply 1 or 0 depending on whether at least 1 Q T L is located in the bin, 

and the Bayes factor (ratio of posterior probability to prior probability) for a bin is then 

estimated by averaging q/p for that bin over all iterations. This estimate is termed an L-

score, and the plot of L-scores across a chromosome is called an L-graph. L-scores can 

be understood as how much excess evidence there is for real linkage to that region (bin) 

compared to being unlinked (random). 

It is tempting to compare Logio (L-score) with a conventional LOD score, but this 

is not valid, as an L-score of 1000 does not have the same meaning as a LOD score of 3. 

Firstly, test statistics only have real meaning for the tests for which they were developed, 

as the cut-offs are chosen to give a particular p-value based on the underlying distribution 

of the test statstic. So it is difficult to directly compare disparate test statistics from very 

different methods. Secondly, there is not a clear definition of LOD scores when there are 

multiple trait loci, while the L-score concept extends naturally to multiple (and even 

variable numbers of) QTLs. Thirdly, in contrast to LOD scores, the L-score takes into 

account the uncertainty in the estimation of the covariate effects, marker allele 

frequencies and the number of QTLs. As L-scores are genome-wide (because the prior 

probability of linkage is dependent on genome size), a score of 20 would have a p-value 

of 0.05, theoretically comparable to a LOD of 3. But the distribution of the L-score (to 

give empirical p-values) has not yet been evaluated. Therefore, exactly how L-scores and 

L-graphs are used to identify regions of interest will be discussed in detail later. 

In general, what is really being asked is if a QTL explains some of the variance in 

the trait, and localization is based on summing over QTL genotypes. QTL alleles are 

symmetrical, meaning that in one iteration one allele is the "disease" allele and then it 
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switches to the "normal" and vice versa. As the dominant and additive effects are based 

on the particular combination of disease / non-disease alleles at that iteration and they are 

reassigned each iteration, there are often four possible models. This is even more evident 

when allele frequencies are extreme, and therefore one allele combination (homozygote 

rare allele) is virtually non-existent. Therefore, these estimates are not useful on their 

own. Rather a combination of these effects is calculated to give the QTL effect size. This 

is the square root of the weighted average of the variance explained by the dominance 

and additive models, weighted by the respective allele frequencies. As this is the root of 

a variance, it has no sign, which means that no statement can be made as to the direction 

of the QTL effect, but it is in the same units as the trait being measured. Once there is 

evidence of a QTL, there are experiments that can be done to investigate the mode of 

inheritance, which is beyond the scope of this work. 

As discussed before, one of the most important characteristics for a sampling 

scheme is to make sure the sampler is mixing. This is done by visually inspecting the 

graphs of iteration by centimorgans (by chromosome) to see if the same locus is found 

and that the sampler moves off that spot but comes back. This is even worse with markers 

closer than 5 cM, which cannot be used in the current implementation. Improvements for 

mixing include using the meiosis sampler to update genotypes, but this is under constant 

investigation. Additional improvements to Loki include allowing greater than two alleles 

at a QTL and modeling epistasis, gene-environment interactions, undetected errors, and 

heterogeneity. 

Loki is a tremendously promising sampling LA method that can model 

quantitative traits with multiple QTL and correction for covariates and carry out 



multipoint analysis in large complex pedigrees. As it has not yet been widely used for 

genome scans on real data, it is still unclear exactly how to carry out such a study, and 

how to understand the output. This study aims to evaluate how Loki works and develop a 

strategy for a genome scan, first in simulated data (GAW12) with known answers, and 

then in real data using the Kosrae dataset (Almasy et al. 2001). Included in developing 

this strategy is to learn how to judge which linkage signals are real, and decide how to 

prioritize linkage regions that are reliable. Once this strategy is elucidated, we will use it 

to identify real signals for the metabolic traits under study in the Kosrae population. 

To map genes in the Kosrae population, first all the necessary data had to be 

collected. This included data from the population screen for familial information, 

phenotypes, and covariates. This information was used to draw the pedigree, define the 

traits being studied, and calculate covariate effects for trait models. Then individuals 

were genotyped for the genome scan markers and the data (both pedigree and marker) 

was cleaned-up prior to analysis. Once the dataset was complete, it was analyzed using 

Loki, as described below. 
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Chapter 2: Materials and Methods 

Epidemiology and phenotype definition 

The data collection and phenotype definitions on the island of Kosrae is explained 

in detail in Shmulewitz et al (Shmulewitz et al. 2001). The screen was carried out by 

Steven Auerbach of the US Health Department, Maude Blundell of the Starr Center for 

Human Genetics at the Rockefeller University, and Vita Skilling of the Kosrae hospital, 

as well as the medical staff on the island of Kosrae. To summarize the salient features, 

2188 Kosraeans (over 90% of adult population) were screened for Syndrome X traits. All 

participants signed the informed consent prior to filling out questionnaires about medical 

and family history, physical examinations and blood drawings. Each person was assigned 

a unique identification number and filled out a questionnaire which noted the 

participant's sex, family data including listing of biological parents, siblings, and 

children, smoking status, village of residence, age, and health status. The family data was 

used to derive the parity status of the women (0 to 5 and >6 children). Though there are 

five villages on Kosrae, because of similarities in life style four were considered as one 

group (Lelu, Malem, Tafunsek, and Utwe), with Welung as the other group. Three 

intervals were set up for age: I (20-34), II (35-49), and III (>50). 

HT, WT, WST, and HIP were measured. BMI was calculated as WT (kg) divided 

by HT squared (m2). Although in the US recently the obese phenotype has been defined 

as a BMI >30, due to the distribution of BMI in Kosraeans obesity was defined as a BMI 

> 35 kg/m2 (Flegal et al. 1998) for the purposes of this study. WST and HIP were used to 

detect more central patterns of obesity. The average of three SBP and DBP measures, 
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taken manually with a stethoscope and sphygmomanometer, was used in the analysis. 

MAP was calculated as DBP+[SBP-DBP]/3) and the hypertensive phenotype was defined 

as SBP >140 mmHg or DBP >90 mmHg (Anonymous 1993). Diabetes was defined 

according to the American Diabetes Association (ADA) recommendations as FBS > 126 

mg/dl, as measured by fingerstick with a glucometer or OGTT2 > 200 mg/dl 

(Anonymous 1997). 

A venipuncture was done for determination of serum LEP, INS, TC, TG, APOA-

I, and APOB, as well as for the isolation of DNA. LEP levels were determined using a 

commercial radioimmunoassay (Linco, St. Louis, MO) by Jeffrey Winick in Jeffrey 

Friedman's lab at the Rockefeller University. INS concentrations were measured on 740 

randomly selected samples using a sensitive enzyme-linked immunosorbent assay 

(ELISA), at Graeme Bell's lab at the University of Chicago (Hartling et al. 1985). TC and 

TG were measured with commercially available enzymatic kits (Boehringer Manheim, 

Indianapolis, IN, Sigma Diagnostics, St. Louis, MO) in Jan Breslow's lab at the 

Rockefeller University. The cutoff for hypercholesterolemia was defined as TC > 240 

mg/dl and for hypertriglyceridemia as TG > 200 mg/dl, as discussed in the National 

Cholesterol Education Program (Anonymous 1994). LDL-C and HDL-C quantification 

was not possible due to the lack of an adequate centrifuge on the island and the inability 

to ship serum overnight at 4° C. As substitutes, the major apolipoproteins of LDL-C and 

HDL-C (APOB, and APOA-I, respectively) were measured using a standard double 

antibody immunoassay technique at Linda Youngman's lab at the Oxford University. 

Both APOB and APOA-I are highly correlated with their respective cholesterol fractions, 

making them excellent surrogates (Bachorik et al. 1997). High risk for cardiovascular 

32 



disease was considered to be A P O B > 120 mg/dl, as suggested by the Framingham 

Offspring Study, and APOA-I < 88 mg/dl, the lower tenth percentile of the Kosraean 

distribution, as Framingham suggestions for cutoffs for APOA-I were not appropriate due 

to the distribution in Kosraeans (Contois et al. 1996a; Contois et al. 1996b). 

Statistical analysis was carried out using the JMP package (SAS Institute Inc., 

Cary, NC). Means for all quantitative traits were calculated for the total population, as 

well as for subgroups determined by the covariates: sex, parity (0-5 children vs. >6 

children), smoking (male smokers vs. male non-smokers), village (other four or Welung), 

and age (20-34, 35-49, and >50). Disease frequency was determined by previously 

mentioned cutoffs in the quantitative traits, and the effect of covariates on disease risk 

was evaluated through univariate logistic regression analysis. Multivariate logistic 

regression analysis was also done to evaluate the effects of all 5 covariates together on 

disease risk. Univariate logistic regression analysis was used to calculate the risk of one 

disease phenotype given another. In all further analyses, the 4 quantitative variables that 

were not normally distributed, LEP, FBS, INS and TG, were log transformed. 

Quantitative variables were corrected for covariates before Pearson correlations were 

calculated. 

Factor analysis 

Multivariate factor analysis was performed to determine which quantitative traits 

changed together in this population (Stevens 1986). Factor analysis was carried out on 

628 individuals, 255 males and 373 females. This sample set was obtained after 

excluding subjects missing information on INS levels or other variables. This subset had 

similar features to the entire dataset (data not shown). Diabetics were excluded from the 
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factor analysis because their F B S levels did not conform to the normal distribution of the 

log transformed FBSs of the rest of the population. Factor analysis was performed using 

principal components analysis (PCA) followed by orthogonal rotation of the following 

continuously distributed variables: WT, WST, LEP, FBS, INS, DBP, SBP, TC, TG, 

APOB, and APOA-I. This analysis results in uncorrelated factors, which are interpreted 

based on factor loadings, the correlation between the factor and the original variable. 

Loadings of 0.4 (absolute value) or greater are considered definitive of the factor 

(pO.001), as they share at least 15% of variance with the factor, while loadings of 0.2 

(absolute value) or greater show variables that are significantly correlated to the factor (p 

<0.01) (Stevens 1986). Additional factor analyses were carried out, changing both 

samples used (excluding INS to allow for more) and including HIP and HT, with very 

similar results (data not shown). Lastly, factor analysis was carried out on the residuals, 

after correcting for sex, smoking, age, parity, and village. This mainly affected the fourth 

factor, which is reported. 

Genetic Epidemiology 

Prior to undertaking a complete genome scan, to ensure that there were genetic 

factors involved in the quantitative traits under study, heritability (tr) was calculated and 

segregation analysis (SA) was carryied out. h" is a measure of the percentage of the 

variance in the trait that is attributable to the additive effects of genes, and is calculated in 

families, based on the relationship between the known genetic correlations of relative 

pairs and their phenotypic similarity. Heritabilities were estimated using the MORGAN 

computer package using all available pedigree information, with corrections for sex, age, 

parity, and smoking simultaneous to the estimation of heritability (Thompson and Shaw 
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1992). SA aims to show the amount of genes involved, their mode of inheritance, and 

magnitude of effect. SA involves fitting various inheritance models based on the 

distribution of a variable (phenotypic information) within a pedigree. S A was carried out 

for each trait, with corrections as suggested in the regression analysis described above 

(models for each trait are listed in Table 5.1) using the linkage package Loki (Heath 

1997). Loki was used for SA in the same way as linkage analysis (discussed below) but 

without any genotype data, resulting in the number of QTL and the amount of variance 

explained by each. 

Microsatellite marker genotyping 

Genomic DNA from each of the Kosraean participants was extracted from a 20 

ml peripheral blood sample using standard 'salting-out' procedures by Stefano Signorini, 

in Markus Stoffel's lab at the Rockefeller University. Approximately 300-500 

micrograms of genomic DNA were extracted from each sample. DNA concentrations 

were determined by the modified fluorometric assay (Hopcroft, D.W. et al, 1985) using 

bisbenzimidazol (compound Hoechst 33258, Aldrich Chimica, Milano, Italy) as 

fluorochrome and human placental DNA (Sigma) as a standard. Each DNA sample was 

diluted to 10 ng/ul and aliquoted into a 96-well Micro Amp plate prior to amplification. 

1564 of these samples (those part of the large pedigree) were put into five 384-well plates 

and genotyped in two stages. (An additional 120 individuals were typed for a number of 

the initial markers.) The first stage included 1102 individuals with about 450 

microsatellite markers typed and the second stage included 462 individuals typed for 

about 390 markers. This was because the first set was a training set, used to develop a 

working set for all future projects in the lab. 
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A high-throughput center for genotyping using microsatellite markers has been 

established at the Rockefeller University under Markus Stoffel. The director of the 

Genotyping Core Facility (GCF) is Lynn Petukhova, with technical help from Sandra 

Oplanich and Merav Yifrach. The protocol for genotyping is available on their website 

(www.rockefeUer.edu/genotype.htmn and summarized below. For the genome scan, the 

markers started with were from the Marshfield set 9 (www.marshfieldclinic.org 

/research/genetics/). This set was modified as about 100 of the markers were replaced or 

removed for a number reasons discussed later. Panels (markers loaded together) were set 

up after allowing for four alleles to each side of the CEPH ranges, as in many cases novel 

alleles of those sizes were found in this population. Panels used in the second stage are 

available on the GCF website as well. 

The protocol for genotyping is as follows. First, the 384 well DNA plates were 

replicated to a number of plates equal to the number of markers in the panel, using a 

Hydra 384 well micropipetter (Robbins Scientific, Sunnyvale, CA). Second, per marker, 

a PCR master mix (described below) was set up and added to a plate, using a Genosys 

100 automated sample processor (Tecan, Research Triangle Park, NC). Then 

amplification was performed on Applied Biosystems 9700 thermocyclers (Foster City, 

CA). After PCR, the products were pooled, aliquoted, and combined with loading buffer 

using the Hydra 384. Next, products were heat denatured. Last, products were run first 

on Applied Biosystems 373 excel slab gel electrophoresis machines, and then on the 

Applied Biosystems 3700, which uses capillary gel electrophoresis to separate 

fluorescently labeled PCR products. 
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All PCR reactions were carried out using 20 ng of template D N A (lOng/ul) in a 

10 ul total reaction volume, with a final MgC12 concentration of 2.0 mM in the PCR 

buffer (10 mM Tris-HCl (pH 9.2) and 50 mM KCI). Each reaction contained 250 nM 

each of forward and reverse primer, 250 |iM of each dNTP (dATP, dCTP, dGTP, dTTP), 

and 1 unit of Taq DNA polymerase. The standard PCR protocol was: three step PCR + 10 

min extension at 72°C, 94°C for 5 min, followed by 3 cycles of 94°C for 30 sec, 60°C for 

30 sec, and 72°C for 1 min, followed by an additional 29 cycles of 89°C for 30 sec, 55°C 

for 30 sec and 72°C for 1 min, plus a final extension step at 72°C for 10 min. The 

forward strand of each primer pair was labeled with one of three phosphoramidites: 6-

FAM (blue), HEX (green), or NED (yellow). For the second set, VIC replaced HEX and 

PET (red) was added. 

Markers were pooled (typically, total volume lOul) adjusting individual marker 

volumes (range 1-5 ul) to give electropherogram peak intensities of 1000-2000 

fluorescence units. 1.5 ul of the PCR pools was added to 2.5 ul of loading dye cocktail, 

comprised of formamide, blue dextran loading buffer, and DNA size-standard at a ratio 

of 5:1:1, respectively. The GS-400 size standard, with size range from 35-400 bp, was 

ROX-labeled (red) for the first set, and orange in the second set. 

The resulting sample files from the electrophorsis were extracted using the Applied 

Biosystems Genescan program, and each panel was scored using templates defined with 

the Applied Biosystems Genotyper program. The template was set to define the 

individual marker's alleles, and the fluorescent dye used; alleles were called automatically 

on the basis of those parameters. Then the alleles were checked by two people 

independently for the first set. Other scorers for this included Jeffrey Winick, Elizabeth 
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Stephenson, Chavie Wolfish (Friedman Lab), Rebecca Breslow, Stephanie Boger (Stoffel 

lab), Zhihua Han (Breslow lab), Brandie Galke, Zoltan Takacs (Maria Karayiorgou lab at 

the Rockefeller University) and Merav Yifrach. After allele peaks were called, each 

genotype data set was imported into a Filemaker database, written by Peter C. Verlander 

of Arlene Auerbach's lab at the Rockefeller University, and the two sets of scored alleles 

were compared to resolve discrepancies. Then the consensus data was screened for 

nuclear family Mendelian inconsistencies, and errors were checked manually. Next, 

whole pedigree Mendelian errors were detected and removed by Loki, as described later. 

For the second set, the genotyping was very clean, therefore there was only one scorer for 

these data, all inheritance checks were done using Loki, and errors were checked and 

corrected manually. 

Linkage analysis 

Preliminary marker analysis was carried out using the SOLAR package, as 

described in the manual (www.sfbr.org/sfbr/public/software/solar). This analysis was 

carried out on a subset of the typed markers. As SOLAR cannot handle pedigrees as 

complex as the Kosrae one, first the pedigree was broken up into nuclear families (Dale 

Nyholt in the Ott Lab at the Rockefeller University) and then into 2-3 generation families 

(Mark Levenstien and Derek Gordon in the Ott Lab). The larger pedigrees were 

generated mainly by removing the individuals with no information, those which had been 

added in as connectors. This resulted in close to 630 individuals with information (out of 

the 1102 available). Next the genotype data was checked for Mendelian inconsistencies 

using the PedCheck program and errors were zeroed out manually (O'Connell and Weeks 

1998). All traits were Box-Cox transformed (for normality) using the Unicorn program 
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prior to analysis (Allison et al. 1995). The trait models were set up by using S O L A R to 

test which covariates explained a significant proportion of the trait variance. Complete 

genome scans with a subset of the scan markers (about 250) were carried out on the 

quantitative traits associated with Syndrome X by Mark Levenstien. 

Complete linkage analysis for the genome scans on the same quantitative traits 

was carried out with the MCMC program Loki. This performs linkage analysis on 

quantitative traits using oligogenic trait models, where the number of QTLs as well as the 

QTL frequencies, positions, and effects, are parameters to be estimated. The method is 

described in detail in Heath (Heath 1997). Detail on exactly how the analyses were 

carried out for this project is described in Chapters 4 and 5. 
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Chapter 3: Population characteristics 

Introduction 

The first phase of this study was to analyze the clinical data from the population 

screen. First the covariates such as sex, parity, smoking, village of residence, and age, 

were looked at. Next the prevalence of each of the Syndrome X disorders (obesity, 

diabetes, hypertension, and dyslipidemia) and the quantitative traits associated with each 

were investigated. After that the covariate effects on disease risk and the quantitative 

traits were calculated. Clustering of the qualitative and quantitative traits using regression 

and factor analyses was also studied. 

General covariates 

The general characteristics of the population are shown in Table 3.1. 

Table 3.1: Characteristics of the population sample 

Covariates 

2188 (908, 42%/1259, 58%) 

809 (64%) 

450 (36%) 

368 (42%) 

509 (58%) 

768 (35%) 

497 (23%) 

485 (23%) 

334(16%) 

70 (3%) 

42 ±14 

758 (35%) 

n (M/Jr) 

Parity* 

Smoking** 

Village 

Age (years) 

Intervals: 

0-5 children 

>6 children 

yes 

no 

Lelu 

Malem 

Tafimsek 

Utwe 

W e lung 

I (20-34) 
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II (35-49) 

III (>50) 

810(37%) 

599 (28%) 

Quantitative traits 

B M I (kg/m2) 

W T (lbs) 

W S T (in) 

HIP (in) 

LEP (ng/ml) 

FBS (mg/dl) 

O G T T 2 (mg/dl, n = 943) 

INS (mU/ml, n = 740) 

SBP (mmHg) 

DBP (mmHg) 

M A P (mmHg) 

TC (mg/dl) 

T G (mg/dl) 

A P O B (mg/dl) 

APOA-I (mg/dl) 

H T (in) 

31.0±5.7 

168.6±34.1 

35.9±5.0 

40.7±4.9 

25.0±24.0 

94.7±36.2 

163.4±92.7 

17.3±19.9 

119.9±17.2 

77.6±10.3 

91.7+11.2 

174.9±36.7 

96.8153.2 

87.4+21.6 

117.2+24.6 

61.9+3.3 

Phenotypes 

Obesity (BMI > 35) 518 (24%) 

Diabetes (FBS > 126 or O G T T 2 > 200) 260(12%) 

Hypertension (SBP > 140 or D B P > 90) 366 (17%) 

Dyslipidemia (TC > 240 or T G > 200 or A P O B > 120 432 (20%) 

or APOA-I < 88) 

Hypercholesterolemia (TC > 240) 82 (4%) 

Hypertriglyceridemia (TG > 200) 98 (5%) 

Hyperapobetalipoproteinemia (APOB > 120) 153 (7%) 

HypoapoA-I (APOA-I < 88) 208(10%) 

Data for means are ± SD. *In females only ** In males only 
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More females (1259, 58%) than males (908, 42%) participated in the study, 

presumably because middle-aged men are more likely to leave the island for 

employment. The majority of women were married (1038/1259, 82%) and multiparous. 

In general, nulliparous women were younger and more likely to be unmarried or newly 

married. Two parity categories were assigned: 0-5 children (809, 64%) or 6 or more 

(450, 36%), as these groupings revealed significant difference in the frequency of the 

features of Syndrome X (see below). 

Forty-two percent (368) of the men and 0.6% (7) of the women reported that they 

were smokers. On Kosrae, smoking is socially unacceptable for women, so it is possible 

that there was underreporting of smoking by women. Thus the effects of smoking were 

analyzed only in the male respondents. 

The vast majority of the population considered themselves to be ethnically 

Kosraean (2094 individuals, 96%). There are five municipalities on the island. The most 

populous municipality was Lelu (768, 35%), followed by Malem (497, 23%) and 

Tafunsek (485, 23%), then Utwe (334, 16%), with Welung having the smallest percent of 

the population (70, 3%). Welung is only accessible by boat and the residents of this 

village generally eat a native (i.e. less Western) diet as compared to the other 

municipalities. As residents of Lelu, Malem, Tafunsek, and Utwe had similar lifestyles, 

they were considered as one group in the analyses. 

The average age at ascertainment was 42 ± 14 years. Three age intervals that 

correspond to young adulthood, middle, and old age were used to examine age as a 
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covariate: 20-34 (758 individuals, 3 5 % of the population), 35-49 (810, 37%), and 50 or 

over (599, 27%). 

Indices of Obesity 

Several markers of adiposity were measured including BMI, WT, WST and HIP 

circumferences, and plasma LEP concentration. The average BMI was 31.0+5.7 kg/m2 

(Table 3.1) with 29% having a BMI 25-29, 35% BMI 30-34 and 24% BMI > 35. For this 

population obesity was defined as a BMI > 35. 

A number of covariates strongly influenced the risk of obesity, including sex, 

parity, smoking, village of residence, and age (Table 3.2). Women had a higher average 

BMI (31.7+5.9) than men (30.1+5.2), corresponding to a 1.78 fold increased risk for 

obesity in females (p<0.0001). Females with >6 children had a higher average BMI 

(33.1+5.9) compared to those with 0-5 children (30.9+5.8) and thus had a 1.83 fold 

increased risk of obesity (p<0.0001). Among males, nonsmokers had a higher average 

BMI (31.0+4.7) than smokers (28.7+5.5), corresponding to 1.79 fold increased risk for 

obesity (p=0.002). Residents of the other 4 villages had a higher BMI (31.3+5.7) 

compared to Welung (28.0+5.4), corresponding to a 2.86 fold increased risk of obesity 

(p=0.009). This difference emphasizes that environmental factors contribute to the 

development of obesity. BMI was highest in middle age (32.4+4.9), and lower in both 

young adulthood (29.2+5.2) and old age (31.3+5.4). Thus in Kosraeans the highest risk 

for obesity is in middle age. The effects of covariates on the risk of obesity were also 

analyzed in multivariate regression analysis and a similar pattern was seen. In this case, 

the only significant difference was that parity was no longer significant (Table 3.3). 
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The means for the other obesity measures were 168.6+34.1 lbs for W T , 35.9+5.0 

in for WST, 40.7+4.9 in for HIP, and 25.0±24.0 ng/ml for LEP (Table 3.1). The 

covariates all had effects on these as well, as seen in Table 3.2. The mean LEP and HIP 

was significantly increased in females (33.3+26.4 and 41.9+5.0) compared to males 

(13.4+13.3 and 39.1+4.1), while males had slightly higher mean WT (178.8+34.4) and 

WST (36.3+4.7) than females (161.2±31.8 and 35.7+5.2, respectively). Parity had no 

significant effect on LEP levels, but multiparous (>6) women had higher mean WT 

(165.7+32.2 vs. 158.7+31.4), WST (37.5+4.9 vs. 34.7+5.1), and HIP (43.3+5.1 vs. 

41.1+4.8) than women with 0-5 children. Smokers had significantly lower mean WT 

(172.8+37.5 vs. 182.8+31.8), WST (34.7+4.9 vs. 37.4+4.3), HIP (37.9+4.3 vs. 39.9+3.8), 

and LEP levels (10.6+12.7 vs. 15.3+13.5) than nonsmokers. Residents of the 4 villages 

had higher mean LEP (25.4+24.3) as compared to residents of Welung (12.4+9.8), while 

means for WT (169.0+34.1 vs. 155.9+30.4), WST (36.0+5.0 vs. 34.3+4.8), and HIP 

(40.8+4.8 vs. 38.9+4.8) were slightly elevated as well. Mean WT was highest in the 

middle age group (179.4+35.3) with no difference between the youngest (160.2+30.4) 

and the oldest (163.2+32.0). WST was lowest in the youngest group (33.6+4.5) with no 

difference between middle (37.0+4.8) and oldest (37.2+4.7). HIP followed the same 

pattern, lower in the youngest (39.4+4.8) and the same in the middle (41.4+5.0) and 

oldest (41.3+4.7) age groups. LEP levels increased with age (22.6+20.2, 25.0+25.0) and 

were significantly higher in the oldest age group (28.1+26.1). 
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Indices of Diabetes 

The mean FBS was 94.7+36.2 mg/dl (Table 3.1), but the distribution was skewed 

to the right with increased numbers of individuals with elevated FBS. According to the 

standard ADA criteria, 12% of the Kosraean population was diabetic, with a fasting FBS 

> 126 or a FBS > 200 after an OGTT2 (Table 3.1). 

Risk for diabetes (based on FBS levels) was influenced by parity, smoking, and 

age, while sex and village of residence had no significant effect (Table 3.2). Among 

women, parity had a large effect, as the group with >6 children had a higher plasma FBS 

(104.2±43.0) than the group with 0-5 children (85.0+30.0). This corresponds to a 3.27 

fold increase in risk of diabetes (p<0.0001). Nonsmokers had significantly higher FBS 

levels (103.4+42.6) than smokers (86.3+23.2), with a 4.55 fold increased risk for diabetes 

(p<0.0001). There was a significant step-wise increase in FBS levels and risk of diabetes 

with increasing age (80.8+15.6, 95.8+36.6, 110.8+46.1, in each group respectively). 

Individuals >50 years of age had a 35 fold increased risk of diabetes compared to those 

20 to 34 years of age and a 3.1 fold increased risk compared to 35 to 49 year olds 

(p<0.0001). Multivariate regression analysis indicated similar effects of covariates on risk 

of diabetes, except that risk was significantly increased in males (OR 1.66, p<0.05) while, 

as was also seen with obesity, parity was no longer significant (Table 3.3). 

Plasma INS was measured on 740 samples. The mean INS was 17.3+19.9 u.U/ml 

(Table 3.1). INS was positively correlated with FBS (r=0.23, p<0.001). Covariates did 

not significantly affect INS levels (Table 3.2). 
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Indices of Hypertension 

In Kosraeans the average SBP was 119.9+17.2 mmHg, DBP was 77.6+10.3 

mmHg, and MAP was 91.7+11.2 mmHg (Table 3.1). As defined by SBP > 140 or DBP > 

90, 17% of Kosraeans were hypertensive. All of the covariates significantly influenced 

blood pressure (Table 3.2). Men had higher mean SBP, DBP, and MAP than women 

(123.1 + 15.7 vs. 117.6+17.9, 80.2+10.2 vs. 75.6+9.9, and 94.5+11.3 vs. 89.6+11.9, 

respectively) corresponding to a 1.52 fold increased risk for hypertension in males 

(p=0.0003). Women with >6 children had higher mean SBP, DBP, and MAP than those 

with 0-5 children (126.0+20.0 vs. 112.9+14.6, 79.2+10.3 vs. 73.7+9.2, and 94.8+12.6 vs. 

86.8+10.4, respectively) with a 3.86 fold increased risk of hypertension (pO.OOOl). 

Nonsmokers had higher average SBP, DBP, and MAP than smokers (125.1 + 16.9 vs. 

120.5+13.9, 81.6+10.5 vs. 78.5+9.8, and 96.1 + 11.8 vs. 92.5+10.5, respectively) with a 

1.89 fold increased risk of hypertension (p=0.0004). Residents of the 4 villages had 

higher mean SBP, DBP, and MAP than residents of Welung (120.1+17.3 vs. 114.6+14.9, 

77.7+10.3 vs. 73.3+8.6, and 91.8+11.9 vs. 87.1+9.9, respectively) leading to a 3.45 

increase in risk of hypertension (p=0.01). SBP (110.6+10.8, 118.8+13.6, 133.1+19.7), 

DBP (72.9+8.6, 79.2+9.9, 81.4+10.6), MAP (85.4+8.8, 92.3+10.6, 98.5+12.7), and the 

risk of hypertension increased in a step-wise fashion with age in Kosraeans. In 

individuals over the age of 50 there was a 23 fold increased risk of hypertension 

compared to 20 to 34 years of age with a 3.63 fold increased risk compared to 35 to 49 

year olds (p<0.0001). The effects of covariates on the risk of hypertension were 
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confirmed for sex, village and age, but the effects of parity and smoking became 

insignificant (Table 3.3). 

Indices of Dyslipidemia 

In this population dyslipidemia was defined as TC > 240, TG > 200, APOB > 120 

or APOA-I < 88. Each of these indices will be considered in turn. 

Total Cholesterol 

The mean TC was 174.9+36.7 mg/dl on Kosrae and hypercholesterolemia was 

evident in 4% of Kosraeans (Table 3.1). Several covariates including parity, smoking, 

and age affected cholesterol levels (Table 3.2). Women with >6 children had higher mean 

TC (180.8+35.8 vs. 169.3+31.8) with a 2.52 fold increase in risk of hypercholesterolemia 

(p=0.002). Non-smoking males had higher cholesterol levels than smokers (181.1+41.8 

vs. 171.1+38.6) although there was no difference in the risk of hypercholesterolemia. 

There was a significant step-wise increase in TC levels (160.7+29.3, 178.2+38.3, 

188.2+37.0) and the risk of hypercholesterolemia with advancing age. In individuals 

over the age of 50, there was a 9.4 fold increased risk of hypercholesterolemia compared 

to 20 to 34 year olds and a 2.5 fold increased risk compared to 35 to 49 year olds 

(p<0.0001). Multivariate regression analysis indicated that only age was a significant 

predictor of hypercholesterolemia (data not shown). 

Triglycerides 

The mean TG was 96.8+53.2 mg/dl and 5% of individuals on Kosrae were 

hypertriglyceridemic (Table 3.1). Sex, parity, village, and age all influenced TG levels 

(Table 3.2). Men had higher mean TG levels than women (110.4+61.2 vs. 87.1+44.0) 
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with a 3.43 fold increased risk of hypertriglyceridemia (pO.OOOl). W o men with >6 

children had higher mean TG levels than women with 0-5 (95.2+45.5 vs. 82.5+42.5), but 

with no significant increased risk of hypertriglyceridemia. Residents of the 4 villages had 

greater mean triglyceride levels than residents of Welung (97.6+53.5 vs. 74.3+31.9), but 

the odds ratio for risk of hypertriglyceridemia could not be calculated because no one in 

Welung had triglycerides greater than 200. TG levels increased with age (81.6+44.0, 

105.3+57.5, 104.5+53.2), but did not differ between 35 to 49 and >50 year olds. The 

highest risk of hypertriglyceridemia was in middle age with an odds ratio of 2 compared 

to the oldest age group and a 3.2 fold over the youngest adult group. Multivariate 

regression analysis showed that only sex and age were significant predictors of the risk of 

hypertriglyceridemia (data not shown). 

Apolipoprotein B 

The mean level of APOB was 87.4+21.6 mg/dl and 7% of Kosraeans had 

hyperapobetalipoproteinemia (Table 3.1). Sex, parity, smoking, village and age all had 

effects on APOB levels (Table 3.2). APOB was higher in males than females (90.2+21.6 

vs. 85.3+21.3) and males were at increased risk for hyperapobetalipoproteinemia (1.44, 

p=0.03). Women with >6 children had higher APOB levels than those with 0-5 children 

(90.1 + 22.8 vs. 82.6+19.9) and had a 3.54 fold increased risk of 

hyperapobetalipoproteinemia (p<0.0001). Nonsmokers had higher APOB levels than 

smokers (92.5±21.5 vs. 87.0+21.6) and residents of the 4 villages had lower levels than 

residents of Welung (87.0+21.6 vs. 98.3+18.8). Neither smoking nor village of residence 

were associated with a higher risk of hyperapobetalipoproteinemia. APOB levels and the 

risk of hyperapobetalipoproteinemia increased in a step-wise fashion with age in 
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Kosraeans. In individuals over the age of 50 (94.3+22.7), there was a 4.6 fold increased 

risk of hyperapobetalipoproteinemia compared to 20 to 34 year olds (79.7±19.4) and a 2 

fold increased risk compared to 35 to 49 year olds (89.4±20.4). In multivariate 

regression analysis the covariates of sex, parity, and age still had significant effects on the 

incidence of hyperapobetalipoproteinemia (data not shown). 

Apolipoprotein A-I 

In Kosraeans, the mean level of APOA-I was 117.2+24.6 mg/dl and hypoAPOA-I 

was defined as the lower 10% of the population (Table 3.1). Sex and village of residence 

were significant covariates for APOA-I levels (Table 3.2). Males had lower APOA-I 

levels than females (108.4+22.0 vs. 123.3+24.5) with a 3.61 fold increased risk of 

hypoAPOA-I among females (pO.0001). Residents of the 4 villages had lower APOA-I 

levels than residents of Welung (116.7+24.5 vs. 132.1+22.7). The risk ratio for 

hypoAPOA-I could not be calculated as no one in Welung had APOA-I levels below 88. 

After multivariate regression analysis, sex remained the only significant predictor of risk 

of hypo APOA-I (data not shown). 

Combined Dyslipidemia 

The dyslipidemic phenotype, as defined above, was present in 20% of Kosraeans 

(Table 3.1). Significant covariate effects were found with sex, village, and age. Males 

had a higher prevalence of dyslipidemia than females (29% vs. 13%) with a 2.64 fold 

increased risk ratio (p<0.0001). Residents of the 4 villages had a higher risk of 

dyslipidemia than residents of Welung (20% vs. 9%) with a risk ratio of 2.70 (p=0.02). 

The risk of dyslipidemia did not differ significantly between the middle and old age 

groups, with relatives risk among the oldest and middle age groups of 2.00 fold and 1.75 
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fold, respectively (both pO.0001) vs. the youngest group. The effects of sex, village and 

age remained significant after multivariate regression analysis with borderline 

significance seen for an effect of parity. However, the age effect was diminished as it 

was only significant for increased risk in the old age group compared to the young adult 

group (Table 3.3). 

Height 

The mean HT was 61.9+3.3 in or about 5 foot 2 inches (Table 3.1). Mean HT 

was higher in males (64.7+2.5) than females (59.9+2.2) and in the young and middle age 

groups (62.2+3.2 and 62.5+3.3) than the oldest (60.7+3.4). Mean HT was slightly higher 

in smokers (65.1+2.3) than non-smokers (64.4+2.6) and in women with 0-5 children 

(60.2+2.2) than those with >6 (59.4+2.2), probably because both those groups (smokers, 

0-5 children) were younger (Table 3.2). 

Clustering of Syndrome X component disorders 

On Kosrae, 0.6% of the population had all 4 diseases associated with Syndrome 

X, 5.7% had 3, 22.7% had 2, 20.3% had one, and 50.7% had none. In subjects with 2 or 

more disorders a univariate logistic regression analysis was done to determine the odds 

ratio of a Kosraean having 2 of the disorders together rather than either one alone (Table 

3.4). The odds ratio for having obesity and diabetes was 1.57 fold (p=0.002) and obesity 

and hypertension 2.62 fold (pO.0001). However, obesity did not increase the odds ratio 

for dyslipidemia or any of the individual lipid related phenotypes. The odds ratio for 

having diabetes and hypertension was 3.16 fold (pO.0001), diabetes and dyslipidemia 
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2.3 fold (p<0.0001) (hypercholesterolemia 3.71 fold, pO.0001, hypertriglyceridemia 

2.50 fold, pO.0001, and hyperapobetalipoproteinemia 2.72 fold, pO.0001), and 

hypertension and dyslipidemia 1.90 fold (p<0.0001) (hypercholesterolemia 3.07 fold, 

p<0.0001, hypertriglyceridemia 2.70 fold, pO.0001, and hyperapobetalipoproteinemia 

2.35 fold, pO.0001). 

Table 3.4:Univariate logistic regression 

Compares the frequency of being affected with two disorders as compared to one but not 

the other. 

Diabetes 

Obesity 1.57* 

Diabetes 

Hypertension 

*p<0.01 **p<0.001 

Hypertension 

2.62** 

3.16** 

Dyslipidemia 

1.11 

2.30** 

1.90** 

Clustering of Syndrome X quantitative traits: Factor analysis 

Factor analysis was used to delineate the clustering of the quantitative traits 

associated with Syndrome X. A total of 11 quantitative traits were analyzed. Each of the 

quantitative traits was significantly correlated with between four and nine of the others, 

showing that they were all interrelated. After principal component analysis and 

orthogonal rotation the factor patterns were extracted from a correlation matrix (Table 

3.5). Four uncorrelated factors that explained 73.1% of the total variance in the dataset 

were found. Factor 1 (OB/DB) had strong contributions from W T (loading = 0.78), W S T 

(0.81), LEP (0.66), and INS (0.76) with additional significant correlations with FBS 

(0.34) and T G (0.38). This factor explained 23.6% of the total variance. Factor 2 

(DYSL) had strong contributions from TC (0.92), T G (0.49), and A P O B (0.90) with 
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additional significant correlation with INS (0.21) and APOA-I (0.28). This factor 

explained 18.9% of the total variance. Factor 3 (BP) had strong contributions from SBP 

(-0.93), DBP (-0.88), and FBS (-0.44) with additional significant correlation with WT (-

0.22) and WST (-0.34). This factor accounted for 18.5% of the total variance. Factor 4 

had strong contributions from APOA-I (0.82), plasma LEP (0.56), and TG (-0.47), as 

well as significant correlation with WT (-0.27). This factor explained 12.1% of the total 

variance. These data were not altered when factor analysis was performed for males and 

females separately (data not shown). Further clustering analyses were done, with the 

addition of HT, removal of INS (to allow for use of the whole dataset), and on the 

residuals corrected for the significant covariates. For the first three factors, the only 

change seen was a significant correlation between the OB/DB factor and HT (0.45). But 

the fourth factor was very different, suggesting the correlations seen were due to the 

covariates only. This factor (HT/DYSL) correlated strongly to HT (-0.45) as well (not 

shown) and was characterized by decreased TG (-0.65) and elevated APOA-1 (0.65). 

The HT/DYSL factor was used in further analyses, as Factor 4 itself showed no evidence 

for any major gene effect. 

Table 3.5: Rotated Factor Pattern 

W T 

W S T 

LEP* 

FBS* 

INS* 

SBP 

D B P 

T C 

OB/DB 

0.78** 

0.81** 

0.66** 

0.34* 

0.76** 

0.03 

0.16 

0.10 

D Y S L 

0.11 

0.12 

-0.07 

-0.01 

0.21* 

0.08 

0.16 

0.92** 

BP 

-0.22* 

-0.34* 

-0.03 

-0.44** 

0.00 

-0.93** 

-0.88** 

-0.08 

Factor 4 

-0.27* 

-0.11 

0.56** 

-0.04 

0.05 

-0.02 

-0.08 

0.13 

HT/DYSL 

0.04 

-0.08 

-0.12 

-0.13 

N/A 

-0.05 

-0.04 

-0.12 
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TG* 

A P O B 

APOA-I 

% variance 

0.38* 

0.11 

-0.10 

23.6 

0.49** 

0.90** 

0.28* 

18.9 

-0.13 

-0.10 

0.08 

18.5 

-0.47** 

0.09 

0.82** 

12.1 

-0.65** 

-0.05 

0.65** 

Loadings > |0.4| shown in bold 

Jlog transformed 

*p<0.01,**p<0.001 

Discussion 

To gain insight into the molecular basis of these disorders, an epidemiologic 

analysis of obesity, diabetes, hypertension, and dyslipidemia on the Pacific Island of 

Kosrae was undertaken. Toward this end, a clinical database of the quantitative 

phenotypes associated with these disorders as well as important covariate has been 

established. These data were used to define disease phenotypes in this population, 

determine disease frequency, examine the effects of covariates, and assess the clustering 

of disease phenotypes as well as their underlying quantitative traits. Factor analysis 

strongly suggested that Syndrome X in this population is not due to a single underlying 

cause but is the result of interactions among several common ones. 

The frequency of obesity and diabetes is higher among the Kosraeans than in the 

U S population. The mean B M I in Kosrae was 31.0, a level that is considerably higher 

than the value among Caucasians of 24 (Deurenberg et al. 1998). In the US, 2 2 % of the 

population is classified as obese with a B M I > 30. On Kosrae, since 5 9 % of the 

population has a B M I > 30, a B M I > 35 was used as the threshold for obesity, 

corresponding to 2 4 % of Kosraeans. Population specific BMI cutoffs for obesity (BMI > 

40) have also been used in other populations with mean B M I higher than in the US, such 
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as in the Pima Indians (mean B M I 34) and Nauruans (mean BMI 35) (Price et al. 1992; 

Hodge et al. 1993). 

The prevalence of diabetes on Kosrae was 12% as compared to 8% in the US 

using the ADA criteria for diabetes (Harris et al. 1998). In contrast, the prevalence of 

hypertension and dyslipidemia is lower on Kosrae than in the US. 17% of Kosraeans 

were hypertensive (standard cutoffs for hypertension of SBP>140 and/or DBP>90 were 

used), a prevalence lower than that in the US (24%) (Burt et al. 1995). 4% of Kosraeans 

were hypercholesterolemic (cutoff of TC > 240) compared to 20% of US and 5% of 

Kosraeans were hypertriglyceridemic (TG > 200) compared to greater than 10% of US 

(Anonymous 1980; 1989). In summary, some, but not others, of the conditions that 

comprise Syndrome X have a higher prevalence among Kosraeans vs. the US population. 

In spite of increased BMI and diabetes, the prevalence of hypertension and 

dyslipidemia are actually decreased. A similar phenomenon has been seen in Nauruans 

and Pima Indians (Nelson et al. 1990; Hodge et al. 1993). In the US population, BMI 

correlates with diabetes, hypertension, and the high triglyceride, low HDL phenotype. 

Thus Kosraeans appear to be more similar to the Nauruans and Pima Indians than to the 

US populations. This latter observation is not surprising in light of the geographic 

proximity and ethnic similarity of Kosrae and Nauru. 

A number of covariates influence the prevalence of obesity, diabetes, 

hypertension, and dyslipidemia. The effect of these covariates on disease phenotypes 

was examined using univariate and multivariate regression analyses. Univariate 

regressions were used to generate models for the linkage analysis (see models in Table 

5.1). Multivariate results are discussed below. Males were more likely to be diabetic, 
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hypertensive, hypertriglyceridemic, hyperapobetalipoproteinemic, and hypoAPOA-I, 

while females were at greater risk for obesity. Multiparity >6 was associated with 

increased risk of hyperapobetalipoproteinemia only as the effects of parity on obesity, 

diabetes, hypertension, and hypercholesterolemia evident in univariate analysis became 

nonsignificant when corrected for age. Smoking was associated with a decreased risk of 

obesity and diabetes, consistent with previous studies showing that the effect of smoking 

on obesity is the basis of the decreased risk of diabetes and hypertension in smokers (Liu 

et al. 1999; Stroup-Benham et al. 1999). The village of residence was associated with 

decreased risk of obesity, hypertension, and dyslipidemia. The reduced risk of these 

disorders among the residents of the village of Welung is likely caused by the 

maintenance of a more traditional lifestyle there (due to the inaccessibility of this 

village). The frequency of Syndrome X components has been shown to increase in other 

populations when lifestyle becomes westernized and to decrease with the resumption of 

the native lifestyle (Shintani et al. 1991; Price et al. 1993; Ravussin et al. 1994; Shintani 

et al. 1994). In general there was increased disease risk with increasing age, as seen in 

previous studies (Wilson 1994; Muller et al. 1996). However, obesity was more frequent 

in middle age than in the elderly, and there was no effect of age on APOA-I levels. The 

effects of covariates on disease prevalence in Kosrae generally confirm what has been 

seen in other populations, suggesting that the epidemiological tools that were used were 

robust and that conclusions derived from Kosrae are more generally valid. 

It was also notable that very few individuals on Kosrae had all four of the 

component disorders of Syndrome X. Thus only 0.6% of middle aged or older 

individuals (64% of the population) had all 4 disorders indicating that the presence of all 
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of the features of Syndrome X are rarely evident in this high risk population. However, 

the finding that 28.4% of adult Kosraeans had 2 or 3 disorders compared to 20% with just 

one disorder confirmed that there is some clustering of the Syndrome X components on 

Kosrae. These data suggest that Syndrome X is not one disorder but is rather the 

coincidence of several common ones. Univariate logistic regression analysis was also 

done which showed that obesity was associated with increased risk of diabetes and 

hypertension, but not dyslipidemia, while diabetes was associated with increased risk of 

hypertension and dyslipidemia, and hypertension was associated with increased risk of 

dyslipidemia. In general these results agree with other population based epidemiological 

studies other than the fact that obesity usually clusters with dyslipidemia, particularly 

high TG and low APOA-I (Reaven 1988; Defronzo and Ferrannini 1991; Ferrannini et al. 

1991). In general, despite their extreme obesity, Kosraeans tend to have much lower TG 

than Caucasians, suggesting that local environmental or genetic factors may protect 

Kosraeans from the usual effect of obesity on TG (Anonymous 1980). 

To assess clustering of Syndrome X component disorders, relationships among 

quantitative traits related to Syndrome X diseases were studied using multivariate factor 

analysis. Four independent factors were identified that in aggregate explained 73% of the 

total variance. The OB/DB factor was characterized by elevated WT, WST, LEP, and 

INS with some contribution from FBS and TG. This factor is principally related to 

obesity with a component of diabetes and hypertriglyceridemia. The DYSL factor was 

characterized by elevated TC, TG, and APOB with some contribution from INS and 

APOA-I. This factor principally related to hyperlipidemia and to a lesser extent, 

diabetes. The BP factor was characterized by elevated blood pressure and FBS with 
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some contribution from W T and W S T circumference. This factor is primarily related to 

hypertension with a lesser relationship to diabetes and obesity. The HT/DYSL factor was 

characterized by elevated APOA-I and decreased TG with a correlation to tallness. This 

could be another form of dyslipidemia. 

This analysis suggests that several components (rather than one) underlie 

Syndrome X, and that these components cannot simply be described as obesity, diabetes, 

hypertension and dyslipidemia. Rather the components of Syndrome X are apparently 

caused by the four factors referred to above. Clustering of obesity, diabetes, 

hypertension, and dyslipidemia is due to both the underlying factors sharing some of the 

same quantitative traits and the coincidence of more than one of these common factors. 

Data from several other population-based studies have been analyzed using factor 

analysis with similar results. In the Kaiser Permanente Women Twins Study, four factors 

were identified: i) body mass/fat distribution, ii) FBS/INS, iii) BP, and iv) HDL-C/TG 

(Edwards et al. 1994). In the Framingham Offspring Study three factors were isolated: i) 

BMI/WHR/INS /HDL-C/TG, ii) FBS/INS, and iii) BMI/SBP/DBP (Meigs et al. 1997). 

In the Strong Heart Study of American Indians, three factors were identified: i) 

BMI/FBS/INS, ii) BP, and iii) INS/HDL-C/TG (Gray et al. 1998). Lastly, the Honolulu 

Heart Program of Japanese Americans identified four factors: i) WT/WST/INS, ii) 

FBS/INS, iii) DBP/SBP, and iv) HDL-C/TG (Edwards et al. 1998). Both the Kaiser 

Permanente Women Twins Study and the Honolulu Heart Program of Japanese 

Americans identified a HDL-C/TG factor similar to the APOA-I/TG factor identified 

here, and this could even be the same as the INS/HDL-C/TG factor from the Strong Heart 

Study of American Indians, except insulin was not included. However, the blood 
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pressure factor on Kosrae also included components of diabetes and obesity, whereas the 

Kaiser, Strong Heart, and the Honolulu Studies revealed only a pure hypertension factor. 

In addition, the factor analysis reported here did not reveal a distinct diabetes (FBS and 

INS) related factor, whereas this was found in the Kaiser Permanente Women Twins 

Study, Framingham Offspring Study, Strong Heart Study, and the Honolulu Heart 

Program Study. This may be due to the use of slightly different quantitative traits in the 

Kosrae factor analysis compared to the others. Alternatively, these differences may be 

due to genetic and environmental differences in these disparate populations. 

In summary, this population based study on the Island of Kosrae suggests that 

Syndrome X is a composite of 4 independent factors: obesity with diabetes and 

hypertriglyceridemia, combined hyperlipidemia with diabetes, hypertension with obesity 

and diabetes, and increased HDL-low triglycerides with thinness associated with stature. 

If this is merely a measure of phenotypic correlation or if there are genes underlying 

these factors will be seen after the genome scan. With an understanding of the 

phenotypes and covariate effects in this population, the next step is the genetic analysis. 
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Chapter 4: Initial genetic analyses 

Introduction 

Preliminary genetic analyses were carried out prior to the complete genome scan 

analyses. First two types of genetic epidemiology studies were preformed to ensure that 

there are genetic factors involved that affect the quantitative traits of interest in this 

population. These included measuring heritability, the amount of variance due to genetic 

effects, and carrying out SA, which suggests how many QTLs control each trait, and the 

percent of trait variance attributable to each QTL. Next a screening set of markers, for a 

genome scan with average 10 cM density and no gaps greater than 12 cM, was 

developed. The complete pedigree was genotyped for this minimal set of markers. Then 

the Kosrae data, both the pedigree and the genotypes, were cleaned up as a preparation 

for marker analysis. Last, initial genome scans were carried out using the SOLAR 

package. 

Heritability 

Significant heritability (percent variance of trait attributable to genetic effects) 

was seen for all the traits (Table 4.1) with corrections for the five covariates (sex, parity, 

smoking, village, and age) done simultaneous to the calculations. The highest h"was 

seen for HT (0.64), then WT (0.53), BMI (0.45), HIP (0.45), TC (0.41), and WST (0.40). 

The others were slightly lower, with APOA-I (0.36), APOB (0.31), DBP (0.29), SBP 

(0.25), and FBS (0.24), and the lowest for TG (0.21) and LEP (0.20). As h2 measures all 

the genetic effects, when it appears to be low, it could be due to the effect of one major 

gene, and then it would actually be pretty high for linkage analysis, or it could be due to 
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the effect of many small genes, then even a high h2 would not mean there is a greater 

chance to find genes. How many genes seem to be coding for each trait, and how much 

variance is explained by these, is seen in the next analysis, SA. 

Table 4.1: Heritabilities 

B M I 

W T 

W S T 

HIP 

LEP* 

FBS* 

SBP 

0.45 

0.53 

0.40 

0.45 

0.20 

0.24 

0.25 

D B P 

T C 

T G * 

A P O B 

APOA-I 

H T 

0.29 

0.41 

0.21 

0.31 

0.36 

0.64 

*log transformed 

Segregation Analysis 

Segregation analyses for each trait model (correcting for significant covariates for 

each trait) were carried out using Loki, and results are shown in Table 4.2. This gives a 

very general idea of the major genes affecting the traits, and suggests which would be 

able to be mapped (explaining a significant portion of the total variance). The highest 

number of QTL was seen for HT (5.5), which explain 0.81 of the total variance, with the 

largest gene explaining 0.28. The other traits showed a significant percent of the variance 

due to major genes: WT (0.78), WST (0.74), BMI (0.63), FBS (0.54), HIP (0.52), APOA-

I (0.51), MAP (0.49), INS (0.43), TG (0.40), APOB (0.38), TC (0.36), LEP (0.23), and 

SBP (0.16). These traits had between 2 to 3.5 QTLs, except for SBP (1), with about 0.20 

to 0.30 of the total variance explained by the largest QTL (WT 0.32, BMI 0.27, WST 

0.31, HIP 0.26, LEP 0.20, FBS 0.31, INS 0.29, DBP 0.20, MAP 0.24, TC 0.26, TG 0.24, 
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A P O B 0.18, and APOA-I 0.29), again with the exception of SBP (0.14). In general, 

similar results were seen for the polygenic effect, with the number of QTLs reduced by 

about 1 (not shown). 

Table 4.2: Segregation Analyses 

Trait 

H T 

W T 

B M I 

W S T 

HIP 

LEP* 

FBS* 

INS* 

D B P 

SBP* 

M A P 

T C 

T G * 

A P O B 

APOA-I 

mean % variance 

attributable to 

environmental 

effects 

19 

22 

37 

26 

48 

77 

46 

57 

61 

84 

51 

64 

60 

62 

49 

mean % variance 

attributable to 

genetic effects 

81 

78 

63 

74 

52 

23 

54 

43 

39 

16 

49 

36 

40 

38 

51 

mean 

number 

of Q T L 

5.5 

3 

3 

3.5 

3.5 

1.5 

2.5 

2 

3 

1 

3 

2 

2 

3 

2.5 

mean % 

variance 

attributable to 

largest Q T L 

28 

32 

27 

31 

26 

20 

31 

29 

20 

14 

24 

26 

24 

18 

29 

* log transformed 

Genome scan marker set 

The genome scan marker set was developed and optimized at the GCF at the 

Rockefeller University. The Marshfield 9 screening set was modified for use in the GCF 

lab for the Kosrae population. First, any marker with product greater than 400 bp was 

removed, as at the onset the 3700 capillary machine was not able to handle these markers. 
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A number of markers close to candidate genes for the traits discussed were genotyped, so 

Marshfield markers close to these were removed. There were a few chromosomal areas 

with larger gaps (greater than 12 cM), so markers in those regions (if available) were 

added. Then the markers were tested on CEPH DNA (Corriel Cell Repository, New 

Jersey) to make sure they worked under the standard conditions in the lab. For any 

marker that failed or had low intensity fluorescence (low product yield), the PCR was 

redone with additional Taq polymerase. For those that had unamplified second alleles the 

PCR was redone with glycerol-based reaction buffer. The last optimization done was for 

markers with an excess of non-specific amplification, which lead to artifact peaks, where 

the PCR was redone with betaine containing buffer. If these problems were not resolved, 

the markers were replaced. Additionally, some primers were redesigned to generate 

different size products to allow for more efficient multiplex gel or capillary loading. 

Once the markers were all working, they were organized into tentative panels, with the 

size ranges greatly expanded to allow for the possibility of non-CEPH alleles in the 

Kosrae population. Then, after amplification in a portion of the Kosrae samples, a 

number of markers either failed completely, were unscoreable, or had high error rates 

(described later). These were replaced as well. Finally, the forty panels were set to allow 

for the allele ranges observed in the Kosrae population. Panels used in this final stage are 

available on the GCF website as mentioned above. Scoring was described in Chapter 2, 

and the data cleanup is described below. 

Kosrae Pedigree 

The pedigree was constructed by Maude Blundell from the questionnaires, family 

visits, and genealogical records. This pedigree goes back five generations and includes a 
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total of 2286 individuals with D N A available for 1564 of these. The average sibship size 

on Kosrae was four with some families having as many as twelve children. The 

inbreeding coefficient for individuals who have been genotyped was zero with the 

exception of one individual who had an inbreeding coefficient of 0.00781. 

At the beginning of the project, the complete pedigree was not known, so 1102 

individuals were genotyped (the first set). For some of the early markers, an additional 

120 individuals were genotyped. 462 more individuals were subsequently placed on the 

pedigree and genotyped (the second set). About a quarter of these were siblings in 

nuclear families already on the pedigree, the remaining were new families that connected. 

A majority of those were women whose parents had not been known previously. Most of 

the analyses discussed were carried out on the first subset, and the final results were 

confirmed on the complete pedigree available (see below). Prior to analysis, the pedigree 

was prepared by Simon Heath, by removing relationships that appeared to be improbable 

and breaking the loops. 

After checking the markers for Mendelian inconsistencies (see below), a set of 

nuclear families was identified that had errors for many markers, suggesting that these 

were pedigree problems and not genotyping errors. There was usually one person who 

was problematic, so that individual was removed and kept as a singleton, with a 

"dummy" inserted in its place in the family if it was needed (such as a parent). Though 

singletons give no linkage information, these were kept in the analysis for the population-

wide estimates, such as allele frequencies and phenotype variances. On the first set, 

about 30 families were modified, and this pedigree was further modified (about 25 
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families) after addition of the second set, to maintain consistency for signal comparison. 

Ideally, the pedigree would be modified only once, using all available information. 

Though Loki can handle large complex pedigrees, it needs to be single locus 

peelable and is therefore limited to a small number of interlocking pedigree loops. Loops 

also slow down the analysis significantly, and do not add that much information to justify 

inclusion. This pedigree contained greater than 110 loops, mostly marriage loops, which 

were all broken by duplicating selected individuals. When possible, these were 

individuals for whom no data was available. 

Microsatellite Marker Genotypes 

Next, the genotype data for each marker were cleaned up to remove all detected 

Mendelian inheritance problems. This was done automatically in Loki, which goes 

through the pedigree, removing the nuclear family for each identified individual in error. 

It then goes back to each family and puts back non-problematic individuals one at a time. 

Though there is an element of randomness, as it removes families based on the first error 

it sees and then adds individuals back randomly, it is an acceptable trade-off to checking 

thousands of genotypes manually. This information was first used to detect families that 

appeared to be problems with the pedigree as described above, then the errors were 

reidentified on the modified pedigree. 

Markers with observed error rates of greater than 1.9% were rescored, as this 

suggests a systematic allele-calling error, rather than random errors. A majority of the 

time this was the case, the alleles were rescored correctly and a reduction in the observed 

error rate was seen. A few markers were regenotyped completely, as there was a 

systematic error that could not be corrected on the available data, but was able to be 
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scored correctly using the new data. Finally, most markers with unresolved errors were 

not used in the analysis as there was probably a non-obvious systematic error that could 

not be corrected. The same steps were carried out with the second set, which resulted in 

the removal of three more markers from the analysis, that gave high error rates (close to 

5%) for no obvious reason. Genotypes that were still detected as errors were zeroed out 

prior to analysis, so that individual was considered to be unknown for that marker. There 

may still be many undetected errors, those that are Mendelianly consistent. 

After data cleanup, the marker statistics for the two sets are as follows: for the 

first set, the average number of genotypes per marker was 1043, with a range of 835 to 

1179, average error rate 0.43%, range 0-3.9%, and average heterozygosity 0.67, range 

0.12 to 0.9; with the addition of the second set, the average number of genotypes was 

1453, range 951 to 1604 (12 markers were only typed on the first set), average error 
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0.49%, range 0 to 2.2%, and heterozygosity was the same. 

SOLAR analysis 

The SOLAR analysis on the nuclear pedigrees yielded no significant results. The 

analyses on the larger pedigrees yielded one highly significant LOD score, -2.9, for BMI 

on chromosome 1 (Figure 4.1). There were a few suggestive scores (LOD ~1 to ~2) as 

well: BMI and DBP on ch 17, TC on ch 7, and TG on ch 1. 

Discussion 

Before mapping genes, it is important to make sure that there are genetic factors 

influencing these traits in this pedigree. The quantitative traits associated in Syndrome X 

have significant heritability, ranging from 0.20-0.64 in Kosrae, suggesting that important 

alleles are likely to be segregating in this population. Significant evidence for multiple 

quantitative trait loci (QTLs) was found for all traits, with the variance attributable to the 

gene with the largest effect size at least 20% (except SBP) or more of the total variance, 

the theoretical limit for localization using LA. This indicates that there is a high 

probability that genes strongly associated with the traits being investigated are 

segregating in the population. As the actual mapping is done on the residual variance, 

after correcting for the covariates, these QTL actually explain a larger percentage of the 

"total" (residual) variance during the analysis, so there is strong evidence for are major 

genes for these traits that LA should be able to identify. Furthermore, different models 

with a larger number of QTLs or increased variance explained by the QTL were 

analyzed, as described later. These genetic epidemiology measures are similar to other 

studies, as discussed in the introduction. Power studies indicated that the Kosrae dataset 
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has high power to detect linkage to genes with this magnitude of effect using Loki (data 

not shown). Thus there was confidence that it would be possible to localize using LA 

several genes that predispose individuals to the diseases associated with Syndrome X by 

affecting the underlying quantitative traits. 

For the marker analysis, a genome scan set of markers, which included about 380 

markers that fit into 40 panels and were easy to score, was developed. Up to 1684 of the 

individuals on the Kosrae pedigree were typed for markers from this set, and the pedigree 

and genotyping errors were removed, yielding a powerful dataset for further analysis. 

The errors detected were similar in type and magnitude to those found in other similar 

studies. The presence of errors has been shown to affect the power to map and accuracy 

to localize QTL though the effect of errors in Loki analysis is not known (Sobel et al. 

2002). One suggestion to detect more errors is to identify at obligate recombinants, both 

single on a small scale, and double on a larger scale, and recheck those genotypes. This 

is currently under investigation, how to identify and report all types of recombinants 

using Loki. Another idea is to model errors into the analysis, but this is quite 

complicated to do in the current implementation of Loki and still get efficient mixing 

(Heath 2002). 

The initial analysis with SOLAR with the nuclear families had no signal, and the 

larger pedigrees gave one highly significant signal, which suggests that there are genes 

that could be found, but power is reduced by breaking up the pedigree. Therefore, the 

genome scans on the entire dataset were carried out using Loki, as described in the next 

chapter. 
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Chapter 5: Strategy for G e n o m e Scan Using Loki 

Introduction 

The purpose of this study was to learn how to carry out a complete genome scan 

and understand the results using Loki. The questions asked were how many markers to 

analyze at once, for how many iterations, what models to use (polygenic or not), effects 

of adding whole pedigree, and then how to be sure which positive signals are real, by 

multi-chromosome analysis and repeat runs. These were answered partially in a 

simulated dataset, and then that information was applied to the Kosrae dataset to see if 

the same strategy works well in real data. Further tests with the real data were done, such 

as more stringent model testing with many different corrections (polygenic effect, major 

gene, and quantitative traits), mixing, and a number of other analysis parameters. This 

resulted in a working strategy for a genome scan, as well as reliable signals for many of 

the traits associated in Syndrome X (discussed in the next chapter). 

Genetic Analysis Workshop 12 

The simulated dataset is from the GAW12, which was arranged by the Southwest 

Foundation for Biomedical Research to develop and test methods of genetic data analysis 

(Almasy et al. 2001). This set models a complex disease, with information on five 

quantitative risk factors, two environmental covariates, age, sex, and affection status. 

Each of fifty replicates includes 1497 people contained in 23 pedigrees, of whom 1000 

have phenotype information, and 497 are "founders" (unsampled). This study is 

described in detail in Shmulewitz and Heath and discussed below (Shmulewitz and 

Heath 2001). 
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The initial analysis was performed on replicate 1 without access to the answers. 

To simulate a 'real' genome scan, markers were selected to give an inter-marker spacing 

of at least lOcM and marker data from unsampled individuals were deleted, leaving 1000 

typed individuals. The MCMC LA package Loki was used to perform genome scans for 

two models: Quantitative trait (Q)l = sex + age and Q2 = ln (environmental factor 1) + 

sex + age, these models being selected based on the regression analysis. Marker allele 

frequencies and covariate effects were estimated jointly with the QTL parameters. The 

linkage analyses were performed on one or two chromosomes, using all selected markers 

on each chromosome jointly. For each analysis, 101,000 sampling iterations were run, 

with the first 1000 iterations being discarded. An L-score > 20 (genome-wide p < 0.05) 

was the natural choice for the cutoff for linkage, as the vast majority of the scores were 

around 0-5, with a few above 20. 

These initial lOcM genome scans on replicate 1, which were done on only 

sampled individuals and without the polygenic effect, resulted in four scores above 20. 

The focus of the secondary analysis was to use the answers to assess the effects of using 

all the marker data, fitting a polygenic effect, and analyzing multiple chromosomes 

simultaneously, on the power and specificity of the analysis. A series of analyses with 

200,000 iterations were performed on replicate 1 and on the 'best replicate', replicate 42. 

The initial complete genome scans for both models were performed using a polygenic 

effect and the complete pedigrees. This resulted in four signals for QI and four for Q2. 

The signals were essentially the same with the polygenic effect, but addition of the 

polygenic effect consistently shifted the distribution of the number of putative QTL down 

by one (data not shown). Genotype information for the complete pedigree increased the 
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scores, though it did not find any different QTL. Then the effect of analyzing 

chromosomes jointly was looked at. For QI, analyzing the chromosomes with real loci 

together raised the score for one but lowered it for the other, and the polygenic models 

had higher signals for both. When all the positive chromosomes were run together, with 

the polygenic effect, one false positive disappeared, another false positive was greatly 

reduced, one real locus was slightly lower, and the second real locus was increased. For 

Q2, analyzing the real chromosomes together, with the polygenic effect, resulted in 

higher scores for two of the loci, but no signal for the third locus was found. Analyzing 

the positive chromosomes together removed the two false positives, and raised the scores 

at the two real loci (discussed below). 

In general, QTL allele frequencies and variance due to each locus were correctly 

estimated for QI. Estimates were more similar to the generating models as more 

information was included in the analysis, such as the whole pedigree and polygenic effect 

(data not shown). This could not be estimated for Q2, as the correct (interactive) model 

could not be specified. 

The simple single-chromosome scans which were initially performed, without 

knowledge of the answers, detected and correctly localized 2 of the 3 trait loci affecting 

QI and Q2. There are 3 major genes affecting QI and Q2, Major Gene (MG) 1 affects 

QI, MG3 affects Q2 and MG2 affects both. All the analyses performed on replicate 1 

detected MGI and MG3, but failed to detect MG2 for either trait. Conversely, all 

analyses on replicate 42 found MGI and MG2 (for both traits), but not MG3. It therefore 

appears that there are differences between replicates that affect which trait loci can be 

found. However, adding more information, such as marker data on the unsampled 
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individuals, fitting a polygenic effect, or analyzing multiple chromosomes simultaneously 

tended to clean up the signals, increase L-scores, and remove false positives, but did not 

detect any signals missed using the initial analysis. The failure to detect new loci may be 

due to the model used in Loki, which does not allow for interactions between trait loci. 

In this context, the trait loci that appeared to be harder to find, MG2 and MG3, did 

interact. Further suggestive evidence that the interactions cause problems for the analysis 

is evident with MG2, where the L-score peak is clearly bi-modal. The 'dip' between the 2 

peaks is on top of the marker in the scan that is closest to the true location of MG2, 

indicating that a deficiency in the model is preventing accurate mapping (data not 

shown). 

Results indicate that, at least with this dataset, a strategy of performing single 

chromosome scans, under realistic conditions (lOcM marker map, no marker data on 

unsampled individuals and no knowledge of the answers), followed by a joint analysis of 

all chromosomes showing indications of linkage, works well at detecting the true signals. 

Adding additional information, with genotypes for the unsampled founders and polygenic 

effect, tends to increase L-scores at previously identified real loci, and therefore may be 

helpful in prioritizing scores. 

To test whether the differences in L-scores between runs were real, an effect of 

Monte Carlo sampling error, or because the sampler was not run for long enough, one 

analysis was run six times with different random number seeds as starting points. For 

this test QI on replicate 42 was analyzed with marker data on all individuals and the 

polygenic effect, fitting all four chromosomes that showed evidence of linkage from the 
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single c h r o m o s o m e runs. E a c h run produced 500,000 iterations, as opposed to the 

200,000 iterations used for the other joint analyses. 
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Figure 5.1: convergence of 6 runs for QI = sex + age. Signals for ch 2/MG2 are in the 

region of the graph between L-scores of 140 and 180, for ch 19/MG1 between 80 and 

130, and for ch 4 between 20 and 60. 

Results from the convergence analyses are shown in Figure 5.1. Most of the 

signals stabilized by 200,000 iterations, though some did so around 150,000, and others 

continued fluctuating. One of the false positives disappeared, and is not shown in the 

figure. The second false positive shows consistently lower scores then the two real loci. 

This convergence testing indicates that the differences in L-scores between the 

chromosomes are reproducible and therefore appear to be real. It appears that 200,000 

75 



iterations are sufficient to distinguish the four different chromosomes. However, close 

examination of Figure 5.1 shows that there are differences between runs that are still 

present after 500,000 iterations. More precise estimates of L-Scores could be obtained by 

running the sampler for longer, though the estimates obtained after 200,000 iterations are 

likely to be sufficient to determine which chromosomes merit further investigation. As 

this is a sampling method, and there are differences between analysis runs, repeating the 

same analysis a few times to ensure that the results are real is always necessary. 

Kosrae analysis 

This is the general strategy applied to the real data in the Kosrae study: to do 

quick single chromosome scans, then to refine the results with the polygenic effect, joint 

analyses of all positive chromosomes, and repeat runs. Therefore, the linkage analyses 

were done in a hierarchical manner, first with complete genome scans (with the original 

models, polygenic effects, and other model changes) and then with selected traits and 

multiple chromosome analyses, multiple times. Furthermore, the L-graphs and L-peak 

localizations were looked at carefully as another way to judge signal reliability. The 

purpose of these multiple tests is to see what is most likely to be real, to be able to 

prioritize the signals for further investigation. 

The Kosrae dataset includes phenotype and covariate information on greater than 

2200 individuals, around 1700 of whom are part of one extended pedigree. Up to 1684 of 

these individuals were genotyped for markers to give at most a 10 cM map, as described 

in Chapters 2 and 4. Prior to linkage analysis, both the pedigree and genotypes were 

"cleaned-up" to be as error-free as possible. The phenotype models, including corrections 
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for significant covariates, were obtained from the epidemiology study discussed in 

chapter 3. Real data is harder to analyze, as there can be a lot of missing information and 

undetected errors in all aspects of the study, such as genotypes, phenotypes, and familial 

relationships. 

For the autosomal genome scan, a set of markers to give a 10 cM map based on 

the Marshfield sex-averaged map was chosen (Broman et al. 1998). As discussed above, 

due to the characteristics of the locus sampler implemented in Loki, markers that are too 

close together may have trouble mixing properly. In areas where more than one marker 

was available, the one with the highest heterozygosity and/or number of samples typed 

was selected. For the first set, 360 of the typed markers were used, with an average 

density of 10.3 and a range of 5 to 15 cM. For the second set, mainly the markers used 

in the analyses were typed, with a few replacements and additions, so there were 365 

markers in total. 353 of these were typed on all the pedigree, and 12 only on the first set. 

This yields an average density of 10.1, but as three markers were removed due to error 

rates, the largest gap was 19 cM. This minimal screening set should allow most of the 

QTLs to be found in a relatively quick and efficient manner though simulation studies 

have suggested that at times alO cM map is too sparse to localize all genes (Almasy and 

Blangero 1998). 

Initial Loki analysis 

The following quantitative traits were analyzed, with models correcting for the 

significant covariates as calculated by regression analysis described above: BMI, WT, 

WST, HIP, LEP, FBS, INS, SBP, DBP, MAP, TC, TG, APOA-I, APOB, and HT. Some 

traits were modeled with corrections for other quantitative traits that were correlated 
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physiologically, but not due to shared genes. The purpose of doing any correction is to 

restrict the variance of the trait to be solely due to the major genes as much as possible. 

Further corrections are discussed below, and all models are listed in Table 5.1. 

Table 5.1: Trait models for genome scans 

Trait 

L E P 

B M I 

HIP 

W S T 

W T 

FBS 

INS 

SBP 

M A P 

D B P 

APOA-I 

A P O B 

T G 

T C 

Covariates 

1,3,4,5 

1,2,3,4,5 

1,2,3,4,5 

1,3,4 

1,2,3,4,5 

1,2,3,5 

3 

1,2,3,4,5 

1,2,3,4,5 

2,4,5 

1,4,5 

1,2,5 

1,2,4 

1,2,4,5 

models 

p, wt, ht, map, map_wt, ht_map, ht_wt, ht_map_wt, all 

cov, p, all 

cov, p, all 

cov, p, all 

cov, p, all, ht 

cov, wt, all 

cov, redo 

cov, p, all 

wst, p, lep, wst_lep, all 

wst, p, lep, wst_lep, all 

cov, p, all 

cov, redo, all 

cov, p ,all 

cov, p, all 

"cov" is covariate corrections only; "redo" is the cov scan repeated; "p" is also the 

polygenic correction; "all" is also all the other quantitative traits, except those that are 

components of each other; other corrections abbreviated as usual. Covariate codes: 1 = 

sex; 2 = parity; 3 = smoking; 4 = village of residence; 5 = age. For example, for leptin, 

the first model listed is the sex + smoking + village + age + polygenic 

Additionally, to look for genes that may be involved in the association of these 

traits (Syndrome X ) , the factors described above were analyzed, both with corrections 
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simultaneous to the analysis, or on the factors derived from the residuals. As these 

factors were obtained by maximizing the variance due to phenotypic correlation, they 

may only map to genes that effect the traits that correlate the most to the factor, as 

opposed to coding for some combinatorial syndrome. To investigate if there are genes 

underlying these factors, it is probably best to cluster based on some genotypic 

association, such as those that use genetic covariances or condition phenotypes on shared 

genotype effects before doing the factor analysis (Comuzzie et al. 1997). Therefore, only 

LA results where the factors overlapped with component traits were reported. 

The initial exploratory genome scans were done in a manner shown from the 

GAW12 analyses to be relatively quick and efficient, that is to analyze one or two 

chromosomes, grouped together to include about 30 markers, per analysis run. Each was 

run for 110,000 iterations, the first 10,000 discarded as "burn-in". This way, a complete 

scan for a trait on one Pentium III machine was done in about a week. 

L-scores show how much more likely a region is to contain a QTL than by 

chance, as described above. In the GAW12 analysis, a cutoff of 20 was used to indicate a 

positive linkage signal. Here, a score of around 10 was considered to be suggestive for 

linkage. These data are much less complete than GAW12, and therefore the scores are 

expected to be both lower and less stable (so that a score of around 10, when the same 

run is redone, could come up as 20, and vice versa). As these signals were analyzed more 

stringently than those for GAW12, the assumption was that the false positives would 

eventually disappear, leaving more leeway to include borderline scores. The cutoff was 

not as strict as for GAW12 so if there were other reasons to "believe" a signal, for 

example if a few correlated traits mapped to the same region, a slightly lower score was 
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accepted. A few traits had elevated background, scores for many chromosomes above 3 

or 4, even close to 10, and for those a higher score was demanded. 

Model corrections: polygenic, quantitative traits, major gene 

After the initial scan for each trait, additional scans for each trait with model 

changes were performed. Complete scans were done to see if the same signals would 

come up (if the model changes affect the L-score, peak shape, or size), and if there were 

new ones, that these changes had a real effect on the ability to detect trait loci. These 

included including the polygenic effect, correcting each trait for other quantitative traits, 

and modeling a major gene effect. 

As shown in a simulation study, it is often difficult to differentiate between a 

major gene with an additive gene effect and a polygenic effect (Snow and Wijsman 

1998). Therefore, it is hard to model the polygenic effect well in Loki, as there is a strong 

negative correlation between variance due to a QTL and residual additive variance 

(possibly due to polygenes). This can be especially bad when the QTL gene frequency is 

not extreme, and, therefore, the inheritance model for the QTL looks more additive than 

dominant. For many of these traits, there is an effect due to polygenes expected, so while 

it is important to do these analyses, the results have to be interpreted appropriately. If the 

polygenic effect suggests no QTL or causes a signal to disappear, this could be true (that 

there are no QTL or that one is not real) or it could be due to the negative correlation 

between the variances. But as correcting for polygenes removes variance not explained 

by the major genes, making it easier to model the major genes, real signals analyzed 

under this model may be stronger and more reliable. Before doing the polygenic scans, 
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S A was run for each trait to ensure that no genome scans were done for a trait with no 

evidence of a major gene. For those that showed no QTL 30% of the iterations or more of 

the genome scan without the polygenic effect were redone (see Table 5.1). 

The next set of genome scans were models with different phenotype corrections. 

Correcting traits for correlated quantitative phenotypes has been shown to increase 

linkage scores and localization power, presumably as it removes background noise due to 

phenotypic (rather than genotypic) associations, leaving the residual variance more likely 

to be due to major genes (Arya et al. 2001). A genome scan of each trait corrected for 

almost all the others, leaving out ones that were part of the trait, was done. This way 

only that trait, with no interactions with other traits, was analyzed. To ensure that the 

signals obtained this way were not due to the correlation in the covariates, for a selection 

of trait / chromosome scores the trait was corrected prior to the analysis, and the residuals 

were analyzed. These results also have to be looked at carefully, as if a signal disappears, 

it could be that it is real; but there are gene-covariate and covariate-covariate interactions 

that are lost with pre-correction. 

Additionally, it is possible that the signal obtained for one trait is really due to its 

correlation to another trait that maps to the same locus. For these traits, corrections were 

done both ways and a complete scan was carried out. Again, correcting for these 

correlated traits cleans up the data and can increase the scores for real loci. If both traits 

map to the same locus again, that suggests that both are real, but if one or the other 

disappears, that can be because it was due to the correlation only. As mentioned before, 

Syndrome X may have one gene controlling multiple traits, so all possible combinations 

need to be investigated. For most traits, one or two additional models based on this were 
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done, with the exception of LEP, where eight different models were analyzed to 

investigate this fully. 

The last correction tested was for a known major gene effect. The apolipoprotein 

E gene (APOE) on ch 19 is known to effect TC levels, so when a linkage for TC on ch 19 

was obtained, it had to be shown that the signal was not due to APOE. Even if it is not 

due to APOE, by correcting out the variance attributable to that locus, again a larger 

portion of the remaining variance should be due to QTLs, leading to easier localization 

and increased scores. Loki models the major gene effect as any other covariate, that is by 

taking the average TC in each genotype class and standardizing TC levels based on the 

differences between the classes. 

Joint analysis of positive signals 

As suggested from the GAW12 analysis, with a sense of what could be real, all 

the positive chromosomes for each trait model were jointly analyzed with or without the 

polygenic effect. As the sample space is greatly increased with more markers, these 

analyses were run for longer, usually 100,000 iterations per chromosome, plus 10,000 for 

burn-in. There are a few possible results for this type of analysis. Loki, as a sampling 

method, chooses the best (most likely) configuration. Often, if there is a bit of linkage 

information on a chromosome, the signal is put there, as opposed to on the unlinked 

section. But when there are multiple chromosomes, and a limited number of QTL, it 

actually chooses the best chromosome(s), which results in some scores increasing and 

others decreasing or disappearing. This makes it easier to say that the scores that remain 

are more likely to be real, but if the signals are decreased, it could be because they are not 

real, or that in comparison to the others, they are less likely. This could be for various 
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reasons, such as explaining less of the variance or because the model used is less close to 

the real one for that QTL. This choosing one QTL or the other could be more of a 

problem with the polygenic effect which often reduces the number of QTL in the 

inheritance model, which is one reason the number of QTL (k) was set to 5, as described 

below. 

In an analysis that has more than one QTL in the model, there is no reason two 

signals can not be found at the same time; so it is troublesome if at each iteration only 

one comes up as opposed to both together. One concern is that the sampler is not mixing 

properly and is getting stuck on a local maximum. Mixing issues will be further 

discussed below, as this was seen in one of the multiple chromosome analysis for LEP. 

Another possibility is that there is heterogeneity, with subsets of the pedigree segregating 

different QTL, but when they are analyzed together, one overpowers the other or it 

switches between one or the other, resulting in a reduction of both real signals. 

Another possibility with multi-chromosome runs is that running them together is 

akin to correcting for the major gene effect of each QTL, therefore reducing the variance 

that needs to be explained by the others, which makes it easier for the separate QTL to be 

found. Even if one of the chromosomes has a slight effect and the QTL disappears, 

including it in the model could clean up the variance enough to help the others to be 

localized. This could result in increased scores for all the real signals. 

For each trait, one or two multiple chromosome runs were done, depending on 

how different the results obtained from the different models were. The exception again 

was LEP, where multiple chromosome runs for all models were carried out, with or 

without polygenic effect, and with or without ch 3. As mentioned above, sometimes 
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chromosomes serve to correct the data, so though in the multiple runs ch 3 had no signal, 

its inclusion seemed to effect other scores. 

As Loki is a sampling method, there is always the possibility that the sampler was 

not run long enough, or that it got stuck at a local maximum and did not mix properly. 

Therefore, a number of runs were replicated multiple times. There were two types of 

signals this was done for: one, those that were not consistent to see if this would clarify 

the signals (MAPlepwst on 9 and 12; LEP_map_wt on 9), and two, high signals 

(TC_all on 19, with and without APOE; HTall on 10), to check the stability of the L-

score and of the parameter estimates. Stability of the parameter estimates across different 

models for the same trait was also checked. To further check the mixing graphs of the 

runs were visually inspected to make sure that the signal was moving on and off the 

chromosome, which suggests adequate mixing. With the runs that did not mix well, a 

hybrid sampler that used the meiosis sampler 25% of the time, which runs much slower 

but mixes better was used. After that instance, for all runs, the meiosis sampler was used 

5% of the iterations. 

Complete pedigree analysis 

The final test for acceptability was the addition of the second set of data. 

Knowing more of the genotypes instead of sampling from the possible configurations 

should give more reliable L-scores and better localization. All positive signals from the 

genome scans described above were reanalyzed, the same way they were done the first 

time. Then for each trait model, all signals that remained positive were analyzed jointly. 

Signals that disappeared could be because they were based on possible configurations 

that were impossible with the new data. It is possible that additional signals not seen at 
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all in the original scans would appear with complete scans for the whole dataset, but as 

the first set had very high power to at least detect QTL and even borderline loci were 

reanalyzed, it would probably be a very small number of QTL. 

L-graphs and parameter estimates 

With a set of signals that are consistent and, therefore, seem to be real, the next 

thing to do is to inspect the L-score peaks, for height and shape, and to calculate the 

parameter estimates. L-scores are hard to use as a test of significance for a few reasons. 

Nominally, an L-score means that it is that many times more likely that there is a linked 

gene at that location than not, corrected for the whole genome and number of QTL in the 

model. Therefore, a conservative estimate of the genome-wide p-value is just 1 divided 

by the L-score, though it is unclear how to correct for multiple models and multiple 

genome scans. Additionally, the empirical distribution for this test statistic under the null 

hypothesis of no linkage has not yet been determined, therefore, there is no way of really 

knowing how often a score of 10, 20, or 100 is expected. Another problem is that the L-

score is not stable across repeat runs, so it seems wrong to say that the same locus has a 

different significance depending on the run. The L-score height is also affected by 

covariate and genetic corrections, so a real locus could have a score ranging from 10 to 

100 depending on the model or run. This is one reason it is important to do many tests 

and then to evaluate what seems to be happening. 

Next it is necessary to look at peak localizations. Peaks that localize off the end 

of a chromosome are suspect, as often that is due to inability to localize the peak to the 

correct region of the chromosome. This could be due to many reasons, such as missing 

information, genotyping error, or model misspecification. Peaks that are split on a 
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marker also suggest a problem either with the model or with the genotyping. In the 

GAW12 analysis, a split peak for a trait was seen where the gene-gene interaction could 

not be modeled, and with GAW9, a split peak was seen when there were three alleles at 

the QTL instead of two as modeled in Loki (Heath et al. 1997; Shmulewitz and Heath 

2001). In general problems of localization can be due to mispecifying the model, but this 

may not be correctable, depending on how much information is available. If there are 

genotyping errors that lead to excess single or double recombinants, this could lead to 

mapping problems. Reporting recombinants (to check the genotypes) from Loki runs is 

currently under investigation. Last, with reliable peaks, sometimes one model gives a 

tighter (better localized) peak, and that would be the best model to use in further analysis. 

After these analyses and inspections were carried out, a reliable set of QTL that 

explain a percentage of the variance in a majority of the traits of interest was obtained. 

Loki provides estimates of QTL parameters, such as allele frequencies at the QTL, 

dominant and additive effects, QTL effect size, % genetic variance, and % total variance 

attributable to the QTL. As these estimates were seen to be robust to analysis 

fluctuations (same over runs even when L-score changed and basically the same with 

minor model changes), they appear reliable; effect size and % variance for each QTL 

found are reported. As the alleles (normal or disease) are assigned after QTL 

localization, they can switch at each iteration, as well as the dominance / additive effect, 

so those estimates are not particularly informative. Therefore, a general gene effect, the 

square root of the weighted average of the dominance and additive variances weighted by 

the allele frequencies, is calculated. 
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Kosambi map function, sex-specific maps, and setting k to 5 

Additionally, there were particular questions we wanted to ask, about the effect of 

other analysis parameters, that were tested on selected trait / chromosome combinations. 

These included using the Kosambi map setting (LEP_ht_map_wt on ch 5, LEP_ht on ch 

6, LEP_all on ch 7, HTJep on ch 15, APOA-I on ch 16, and HTall on ch 10), using sex-

specific maps (same as Kosambi except HT_all on 10), and changing k to 5 (four 

multiple runs for LEP, see Table 6.1). Loki actually expects to have map positions in 

Haldane cM, but all analyses were done using Kosambi cM. This was primarily because 

at the onset, there was no way in Loki to specify which map was being used. This should 

not really affect the analysis, as the relative distances between two markers should be 

close to the same, but the correct map function might affect localization. Therefore a 

number of analyses using the Kosambi map as the input map and Haldane as the output 

were done. As expected, this made little or no difference, so all the analyses that were 

done with the Kosambi map function are reliable. 

The second map-related change tested was the use of sex-specific maps. As LA is 

dependent on the number of recombinants observed as compared to the number expected 

based on genetic distance, map misspecification, such as the unrealistic distances used in 

the sex-averaged map, may affect ability to localize QTL. It was shown in a simulation 

study that this loss of power is quite small, except when there is a big difference in map 

distance over a large distance, at least for correctly specified single-gene traits (Daw et al. 

2000). But this could be worse with complex traits; therefore, it may be important to 

reanalyze positive scores using sex-specific maps. The problem is that the sex-specific 

maps publicly available were built from only 94 meioses and therefore have large 
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confidence intervals, which reduces their power to localize genes. Ideally, population 

specific maps could be built from the dataset, but as long as there are undetected 

genotype errors this is very difficult. Additionally, there are regions on the male map that 

have very little recombination, which may cause a mixing problem. Loki calculates 

recombination fractions separately in the paternally and maternally segregating 

chromosomes when sex-specific maps are used. The same runs analyzed with the 

Kosambi map were done in this way. 

One of the preset parameters is the mean number of QTL in the model, called k. 

Previously, Heath showed that setting k for values 1 to 10 had no effect on the analysis, 

so initially all the analyses were done with k set to 1 (Heath 1997). But this may have an 

effect when there are multiple chromosomes and therefore multiple QTL in one analysis 

run, as described above. To test this, some analyses were run with k set to 5, and this was 

continued from that point on. 

The hierarchical analysis described above provides a list of proscribed steps to 

refine the results at each stage, to obtain a prioritized list of QTLs that affect variance of 

the traits encompassed by Syndrome X. In the next chapter, the results will be reported, 

as what QTL were found for each trait, and how each is reliable based on the stages it 

passed. In Chapter 7 the suggestions for doing a genome scan using Loki based on this 

will be discussed as well as reliability of the results, and how they compare to other 

similar studies. 
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Chapter 6: Results from g e n o m e scans using Loki 

Introduction 

The Loki analysis on the 14 quantitative traits associated with Syndrome X and 

stature was carried out as described, first by doing a series of complete genome scans to 

get an idea as to what might be happening for each trait and to identify the most 

informative model for each trait. Then these results were tested more rigorously by doing 

multiple chromosome runs and adding the second set of genotype data. Inspection of the 

L-graphs was used to further evaluate reliability. All this information is used together to 

decide what signals are real and to prioritize the list for further investigation. How this 

serves to crystallize what appears to be the most reliable score through the results of the 

various LEP runs is shown, and then the significant scores for each of the other traits is 

reported with some detail about model changes as well. Last, chromosome regions that 

are interesting because they show a number of correlated traits suggestively linked were 

reported as well. 

Leptin analysis 

To get a complete picture of how model changes affect analysis, nine complete 

scans for LEP were done. Results for each model are summarized in Table 6.1. 

Table 6.1: Leptin genome scans and multiple chromosome analyses 

Models Ch 3 Ch 5 Ch6 Ch7 Ch 9 

p NS 6.5 NS NS NS 

wt 

wt_p_m 

N S 

NS 

25.7 

60.1 

NS 

NS 

9.1 

NS 

24 

96.3 
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ht 

ht_m 

ht_p_m 

map 

m a p _ m 

map_p_m 

map_p_m 

ht_map 

ht_map_m 

ht_map_p_m 

ht_map_p_m 

ht_wt 

ht_wt_m 

ht_wt_p_m 

18.9 

NS 

NS 

N S 

NS 

N S 

N D 

NS 

N S 

NS 

N D 

NS 

15.1 

N S 

map_wt N S 

map_wt_m NS 

map_wt_m_k=5 N S 

map_wt_p_m N S 

map_wt_p_m_k=5 N S 

map_wt_p_m N D 

map_wt_p_m_k=5 N D 

ht_map_wt 

ht_map_wt_m 

ht_map_wt_p_m 

ht_map_wt_p_m 

all 

NS 

N S 

NS 

N D 

12.2 

7.9 

7.1 

6.2 

14.7 

10.8 

17.3 

6.8 

28.8 

54.8 

49.0 

11.0 

90.0 

NS 

61.9 

73.5 

57.6 

31.6 

NS 

72.7 

67.9 

40.3 

90.3 

66.7 

48.4 

49.9 

28.4 

37.4 

20.1 

NS 

41.1 

28.2 

52.6 

10.0 

58.6 

25.7 

29.3 

NS 

38.6 

NS 

NS 

6.3 

NS 

NS 

123.0 

NS 

44.6 

48.6 

31.1 

13.4 

NS 

NS 

20.3 

21.2 

NS 

72.1 

92.3 

36.5 

6.7 

40.7 

61.0 

NS 

9.5 

8.9 

NS 

NS 

30.8 

39.6 

11.1 

NS 

NS 

NS 

NS 

28.2 

44.0 

NS 

NS 

5.8 60.3 

4.7 

4.7 

NS 

NS 

4.5 

NS 

NS 

7.4 

6.7 

11.2 

NS 

NS 

30.3 

30.6 

39.0 

13.6 

NS 

20.3 

18.8 

81.9 

8.9 

29.1 

26.6 

13.6 

NS 

NS 
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all_m 

all_m_k=5 

all_p_m 

all_p_m 

all_p_m_k=5 

4.5 

N D 

NS 

N D 

N D 

26.6 

9.0 

33.1 

45.6 

56.2 

4.0 

NS 

NS 

NS 

NS 

40.6 

14.9 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

models as listed in table 4.1; "p" = polygenic effect; "m"= multiple chromosome 

analysis; "k=5" is setting mean number of loci to 5. "NS" = no signal, "ND" = not done. 

Scores in bold are 20 or above, p < 0.05 

It is possible that individual models give unique scores that are real for that particular 

configuration, but first loci that come up more or less for all models are more interesting. 

Here, the polygenic model had no corrections for other traits and no real scores. Of the 

other 8 models, 2 gave suggestive scores (L between 10 and 20) on ch 3, 6 for ch 5 with 

the seventh having a suggestive signal, 5 gave signal on ch 6, 6 gave signal on ch 7, and 3 

gave signal on ch 9, but there were 2 or 3 loci on 9, and the signal was not well localized. 

Next one model (map_wt) for ch 9 was done ten times to see if that would lead to some 

consistency, but it did not. Two runs gave no signal, five gave signal at one locus, and 

three gave signal at the other (data not shown). Already ch 3 and ch 9 appear to be less 

likely and ch 5, ch 6, and ch 7 are stronger possibilities. 

Then multiple chromosome runs for each model were done, with and without 

polygenic effect, and a selection of these with or without ch 3. One run had mixing 

problems (map_wt) and will be discussed separately. None of the multiple runs 

confirmed the signal on ch 3, but for some of the models not corrected for W T (map_p, 

ht_map_p), inclusion of ch 3 strongly affected L-scores at other loci. As there was a 
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signal for W T on ch 3, this suggests that perhaps including 3 serves to correct for the W T 

effect as efficiently as actually modeling the WT correction. 

For ch 9, there was still a lot of inconsistency, both in some models giving signal, 

others not, and switching between two loci. Most of the models included a WT 

correction, suggesting that there may be something there that is related to LEP 

independent of WT, but the model is not specific enough to allow for localization. Ch 6 

came up for 3 of the models, but 2 of the signals disappeared with the polygenic 

correction, leaving only one model with a signal. On ch 7, 5 of the signals came up 

again, but only 1 remained after correcting for the polygenic effect. 

In contrast, ch 5 came up in 5 models with a suggestive signal for the sixth. This 

suggests that especially in the polygenic model, which often removes loci of small effect 

(correctly or not as described above), when there was a choice between loci, ch 5 was 

selected. To see if this happened because there was often only 1 QTL in the model, k 

was set to 5. This did increase the number of QTL in the model but did not effect which 

signals came up. So from this, the score on ch 5 looks reliably real, while ch 6 and ch 7 

are slight possibilities, ch 9 may be real as well but is very hard to localize, and ch 3 has 

no signal for LEP. 

Next the second set of typed individuals was added, and all nine models were 

analyzed for chromosomes 3, 5, 6, and 7 and 9 only for the models that gave positive 

signals (Table 6.2). 
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Table 6.2: Leptin analysis on complete pedigree 

model 

P 

wt 

ht 

ht_p_m 

map 

map_p_m 

ht_map 

ht_map_p_m 

ht_wt 

map_wt 

map_wt_p_m 

ht_map_wt 

all 

all_p_m 

C h 3 

NS 

N S 

83.7 

8.8 

15.2 

7.1 

37.4 

NS 

NS 

N S 

NS 

NS 

14.7 

NS 

C h 5 

6.7 

33.4 

28.9 

29.4 

50.7 

32.5 

37.1 

100.0 

37.1 

17.4 

104.2 

42.7 

11.5 

75.5 

Ch6 

NS 

NS 

NS 

N D 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

8.6 

Ch7 

NS 

10.0 

NS 

N D 

NS 

NS 

25.5 

NS 

NS 

11.2 

NS 

8.3 

11.8 

NS 

C h 9 

N D 

NS 

N D 

N D 

N D 

N D 

N D 

N D 

N D 

NS 

N D 

NS 

N D 

N D 

models as listed in Table 5.1; "p" = polygenic effect; "m"= multiple chromosome 

analysis; "k=5" = setting mean number of loci to 5. "NS" = no signal, "ND" = not done. 

Scores in bold are 20 or above, p < 0.05 

For the single chromosome analysis, results were as follows: ch 3, the two models 

without WT (ht, ht_map) came up positive with 2 additional suggestive scores; ch 9, no 

signal, ch 7, 1 signal (ht_map) and 4 suggestive; ch 6, no signal, ch 5, 6 high and 2 

suggestive, essentially all models except the polygenic alone. This clearly suggests that 
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ch 5 contains a real locus for LEP, while ch 3 perhaps has something related to W T . Five 

multiple runs with the polygenic corrections (ht_p_m, map_p_m, ht_map_p_m, 

map_wt_p_m, all_p_m) were done, and ch 5 always came up nice and high, the rest not 

at all, again suggesting that ch 3 served merely to correct for a correlated trait. 

As seen in Table 6.3, this locus peaks at 183.5 c M closest to D5S211, has a gene 

Figure 6.1: L E P on 5 

comparison across models 

Figure 6.2: LEP on 5 

comparison between single and multiple 

chromosome analvses 

effect size of up to 0.4 on the residual distribution (depending on model), and explains 20 

to 100% (mode of 40%) of the genetic variance (depending on how many QTL in the 

model) and 10 to 25 % of the total variance. Figures 6.1 and 6.2 show how different 

models / runs affect the L-peak size, shape, and localization. Figure 6.1 compares the 

scores for all 9 models while Figure 6.2 compares the original run to the multiple 

polygenic run for each model. As seen in the G A W 1 2 analysis, this suggests that model 

changes usually do not identify unique loci; rather, the closer the analyzed model is to the 
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real model, the cleaner and nicer the L-score graph is. This could help to chose the best 

model to narrow down the region in fine mapping studies. 

Lastly, the map_wt multiple runs point out one problem with M C M C simulation 

200 

150 

100 

50 

•S':;.'.'j'i i'-'HT 

0 "—j-

• ?*!'•* . ,'l-
.-.p.,* „;... 

; |l?f iifiT^j^! $ $ fe|.^%'.p ••',?:* 

TiiSf1 
.'jvivii^iiHi^ 

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 

Figure 6.3: L E P for 5 and 6 

X axis is iteration, Y axis is c M on ch. Signal at 100 c m is for ch 6, at 180 is for ch 5. 

Signal is first found on ch 6, and then only on ch 5, which suggests poor mixing. 

methods, that of mixing. One way to check mixing is to visually inspect the graph of cM 

vs. iterations, to see if the signal goes on and off the chromosome location. In one run 

(polygenic without ch 3) which gave L-scores of 40 for ch 5 and of 49 for ch 6, the signal 

was seen only for ch 6 for the first 100,000 iterations, and then only ch 5 was found for 

the next 100,000 iterations (Figure 6.3). For a similar run done twice (polygenic with ch 
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3), the first time ch 6 and 9 were found, but not ch 5, though ch 5 had been found 

consistently in the individual runs. The second time, ch 5 and ch 9 were found, but not 

ch 6 at all (Figure 6.4). This suggests a mixing problem, which is something to be careful 

for, one of the reasons runs are done multiple times (discussed above). The other 

analyses looked fine by visual inspection so this could be somehow specific to this 

model, but it could also indicate a systematic problem. This model was reanalyzed using 

200 

150 

100 

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 

Figure 6.4: L E P on 5 and 6 

X axis is iteration, Y axis is cM on ch. Signal at 180 is for ch 5, with no signal for ch 6. 

The signal can be seen to move off 180 cM, suggesting better mixing 

the hybrid sampler 2 5 % of the time, which runs much slower but all those showed signal 

for ch 5 only, and appeared to mix very well, further suggesting that the problematic 

results observed was due to poor mixing. All runs subsequent to this were run with the 

hybrid sampler 5 % of the time, and they all appeared to mix well. Which sampler to use 

when and at what payoff for speed is under constant investigation. 

96 



For the other traits, a similar strategy was carried out, but on a lesser scale. For 

each trait, any analytical change that makes a point relevant to general analysis strategy is 

discussed and the final significant results are reported. Results are listed in Tables 6.3 and 

6.4, with figures as mentioned. In this case, an L-score of 20 was used as a cut-off, 

nominally a genome-wide p-value of 0.05, though even a score of that size is of 

borderline reliability so those runs should be repeated many more times to ensure 

stability. A low score that is stable could be real, and low merely because the model is 

not precise enough or only a subset of the pedigree is segregating that QTL and would, 

therefore, merit further study but of lower priority. 
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Obesity 

BMI: For BMI, the addition of new individuals made a big difference, as 

significant scores were found on ch 20 and ch 18. The ch 20 score was borderline (20.1) 

and when repeated twice decreased to 10 (Figure 6.5); but HIP also mapped suggestively 

to that locus (not shown) and it mapped directly onto a marker, which adds reliability. 

This locus peaks at 96.5, at D20S171, and has an effect size of around 1, which explains 

40 to 70 % of genetic and 15 to 25 % total variance. The more robust score was found on 

ch 18 (67.5, Figure 6.6) but the peak is split directly on the marker, GATA88A12. This 

has been seen before when the QTL inheritance model was mispecified, either because it 

actually had 3 alleles, or there are interactions that could not be modeled using Loki. 

Another possibility is that there are genotyping errors that prevent proper localization due 

to observed recombinants. As mentioned before, reporting and checking recombinants is 

currently under investigation. Nevertheless, this locus at 16.5 cM / D18S967 appears 

real, and it has an effect size of close to 1.2, which explains 30 to 70 % of genetic andl5 

Figure 6.5: B M I on 20 Figure 6.6: B M I on 18 
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to 30 % total variance. Additionally, for one model LEP mapped close by, as did the 

HT/DYSL factor (not shown). 

HIP: For HIP, the additional data had an obvious effect as well, as it resulted in 

two loci. One is a borderline score (20.1) for ch 4 (Figure 6.7), at 105.5 / D4S1647, with 

an effect of 0.5 to 0.8, which explains 30 to 50 % genetic and 5 to 15 % total variance. 

Figure 6.7: Hip on 4 Fi§ure 68: HIP on 10 

The second is a relatively high score on ch 10 (Figure 6.8, highest 176.8, other runs 

around 40), at 135.5 / D10S1817, which 

overlapped with a slight WT signal (not 

shown). This has an effect size of 0.75 to 1, 

which explains 50 to 70 % genetic and 10 to 

20 % total variance. Both scores localized on 

a marker. 

W T : The only result for W T is a 

Figure 6.9: W T on 18 
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borderline peak (20.0) on ch 18 (Figure 6.9), but this signal may be retroactively more 

reliable as it peaks at 83.5, closest to D18S64, which is close to a candidate gene, MC4R. 

This has an effect size of 3 to 4, which explains 20 to 40 % of genetic and 5 to 15 % of 

total variance. It is possible that signal can only be picked up when the % variance 

reaches a threshold and here that may be the reason the score is consistent and on a 

marker, but low. 

Diabetes 

FBS: The only score for FBS is 

borderline (20) and not well localized 

(Figure 6.10) on ch 1. This has an effect 

size of 0.05 (ln FBS), which explains all 

the genetic and 15 — 25 % total variance. 4 

In general, FBS is the quantitative trait 

least likely to identify genes for its s 

associated disease, as diabetics have severe Figure 5.6: FBS on 1 

derangement in their FBS levels, and therefore were excluded from the analysis, yet they 

are the ones that potentially have the most information. This analysis is really looking for 

genes that affect the normal distribution of FBS, and a qualitative analysis should be done 

for diabetes. If this is a real locus, as is suggested by many other similar studies (see 

Table 6.3 and discussion), the localization problems may be due to this issue. 
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Hypertension 

SBP: SBP analysis resulted in two loci. One signal on ch 1 is quite difficult to 

localize, though it overlaps with slight scores for other blood pressure measures (Figure 

6.11) and many other traits (Figure 6.23), which will be discussed later. The highest peak 

(63.6) is at 146.5 / D1S534, with an effect size of 4 to 6, that explains 20 to 40 % genetic 
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Figure 6.11: SBP on 1 Figure 6.12: SBP on 20 

and 10 to 25 % total variance. The signal on ch 20 is much higher (142.5) and nicer, 

localized to the marker at 32.5 / GATA81E09 

(Figure 6.12), and this has an effect size of 6.5, 

which explains 30 to 50 % genetic and 15 to 20 

% total variance. Seen here is the increase in 

power with the addition of markers in large gaps, 

as this was a new marker (GATA81E09) typed 

on the whole pedigree with the addition of the 

second set. This allowed for the localization of a 

QTL previously put off the end of the 
Figure 6.13: M A P on 9 
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chromosome, though M A P is still off the end. 

MAP: The signal off the end of ch 20 for MAP (Figure 6.12) is probably due to 

the correlation to SBP and is not considered a signal for this trait. The other borderline 

signal (20.1) on ch 9 is hard to localize (Figure 6.13) at the end of the chromosome. It is 

interesting as it only comes up for the 

LEP model in the multiple chromosome * 

scan, suggesting some sort of interactions 

that cannot be modeled using Loki. This 

QTL peaks at 6.5 / GATA62F03, has an 

effect size of 3 to 5.5, which explains 30 

to 70 % genetic and 15 to 30 % total 

variance. DBP also maps to both ends of 

ch 9 (Figure 6.13), which further suggests 

that there may be some signal on 9 that cannot be localized using our dataset and 

analytical methods. 

Dyslipidemia 

APOB: APOB results in one signal 

(37.0) on ch 2, which peaks between two 10 

markers, at 32.5 / D2S1400 (Figure 6.14). 

The gene effect is 8 to 10, which explains 40 

to 60 % of genetic and 20 % of total 

Figure 6.14: A P O B on 2 

Figure 6.15: T C on 12 

variance. 
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TC: TC was quite an interesting trait for a number of reasons. One is that two 

models gave different loci, all of which appear to be reliable. Secondly, for one model 

(all) there were two signals that came up together. Thirdly, correcting prior to the analysis 

for all the quantitative traits and analyzing 

the residuals increases the L-score. Fourthly, 

overlap between this trait and the DYSL 

factor is seen. Lastly, correcting for a major 

gene effect is seen as well. For the model 

without correction for other quantitative * 

traits, there is a locus on ch 12 (L-score 

32.0). This peaks between two markers, at 

152.5 / D12S2078 (Figure 6.15), and has an Figure 6.16: TC on 16 

effect size of about 15, which explains 40 to 80 % genetic and 20 to 25 % total variance. 

This directly overlaps with the DYSL factor. 

For the model with all corrections, two loci came up, on ch 16 (24.4) and ch 19 

(68.2). The one on 16 is less reliable, as it *> 

is off the end of the chromosome, peaking 

at 139.5 / D16S2621 (Figure 6.16). This 

has an effect size of 12 to 16 that explains 

40 to 60 % genetic and 25 % total variance. 

Often signals are put off the end of a 

chromosome because they cannot be 

mapped to the real region on the Figure 6.17: TC on 19 
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chromosome, such as with SBP and ch 20. There is a very slight signal at D16S772 (not 

shown), which suggests that perhaps that is really the locus. The DYSL factor also 

mapped directly under this peak. 

The second locus seen is on ch 19, between two markers, at 46.5 / D19S714 

(Figure 6.17), with an effect size of about 14, which explains 40 to 50 % genetic and 20 

to 30 % total variance. APOB has a slight signal at this locus as well (not shown). As 

both signals are seen together, though they have the same estimates, it is not likely that it 

is the same QTL being localized to two different regions. To make sure the signals for 

models with all corrections were not due to correlation among covariates causing 

sticking, the residuals (TCres in the figures) were analyzed on ch 16 and ch 19, and the 

scores either remained or increased, so actually the opposite is true. In this case, cleaning 

the data in advance simplifies the localization. To investigate correcting for APOE, a 

major gene on ch 19, a number of runs with or without this correction were done. The L-

scores were more consistently found and more stable with this correction (not shown). 

Height 

HT is also an interesting trait as 

three different models give different loci 

most of which appear real. The model 

with no correction for other traits had one 

signal on ch 15 (L 30.0), which is not 

well localized and off the end of the L? 

chromosome, though it does peak Figure 6.18: HT on 15 
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between the last two markers at 118.5 / D15S642 (Figure 6.18). This has an effect size of 

0.8, which is 15 to 30 % genetic and 15 to 20 % total variance. 

The model with correction for LEP resulted in 3 scores, all of which came up 

together a significant portion of the time. On ch 5, the peak (23.6) is split on the marker 

Figure 6.19: H T on 5 Figure 6.20: H T on 19 

D5S211, but it peaks at 172.5 / D5S1471 (Figure 6.19). This one has an effect size of 0.6 

to 0.8, which explains 10 to 20 % genetic 

and 10 to 15 % total variance. Possible * 

causes of split peaks are discussed above 

though here it is probably not due to « 

genotyping error, as no split peaks were 

seen for any of the leptin models. On ch .o 

19 (28.5), the peak is between two 

markers at 46.5 / D19S714 (the TC 

locus), with effect size 0.6 to 1, which 

Figure 6.21: H T on 1 
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explains 10 to 40 % genetic and 20 % total variance (Figure 6.20). Though both these 

loci are consistent, neither are particularly high or well localized. 

The locus on ch 1 is found with both this model and the one with all corrections. 

The signals are robust (79.4) but the localization is slightly different with the two models, 

so the best one should be used for further analyses (Figure 6.21). This peaks at 106.5 / 

DIS 1728, has an effect size of 0.5 to 0.8, and explains 10 to 20 % genetic and 5 to 20 % 

total variance. The final signal, 
350 

found only for the all model, is on 
J ' 300 

ch 10, and it is the nicest score from a» 

the whole dataset, as it has the 

ISO 

highest L-score (314.3), is 
100 

consistently found, and maps tightly 

directly on top of a marker, ° 

GATA121A08/88.5 (Figure 6.22). 5 5 | s a 

This has an effect size of 0.5 to 0.7, Figure 6.22: HT on 10 

which explains 10 to 30 % genetic and 5 to 20 % of total variance. This signal was found 

together with ch 1, again suggesting that though the estimates are quite similar, these are 

two distinct loci. As HT has traditionally been known as a polygenic trait, all the runs 

were analyzed with the polygenic effect, and they all remained, though some of the 

scores were slightly decreased. 

No compelling signals were found for WST, INS, DBP, APOA-I, and TG. 

Chromosome regions with mainly borderline signals from multiple correlated 

traits are listed in Table 6.5 and can been seen on the figures as mentioned. 
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The overlap region on ch 

1 includes the following 

regions: 90-125 cM, 

with signal for MAP, 

DBP, SBP, and residual 

BP factor; 125—163, for 

LEP then SBP; 170 — 

182, for OB/DB and 

BP; 170 —212, for BMI; 
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Figure 6.23: Chromosome 1 

-i—i 1—r 

DBP lap 
SBP.all 

212 — 275, for FBS 

(Figure 6.23). The region on ch 2 includes: 20 — 50, - 75, with signal for APOB, MAP, 

DBP, SBP, BP, and residual 

BP; and 90 — 130, for MAP 

(Figure 6.24). The region on 

ch 7 includes: 50 —90, with 

signal for LEP and FBS; 110 

— 140, for LEP, and residual 

HT/DYSL; 150 — end, for 
1 Eg 

Figure 6.24: Chromosome 2 D Y S L and residual OB/DB 

(Figure 6.25). The region on ch 9 includes 105 — 135, for OB/DB and hip (Figure 6.26). 

The region on ch 13 includes 20 — 60 for WST and WT (Figure 6.27). The overlap 

region on ch 16 includes 100 — 130 for FBS and OB/DB (Figure 6.28). These are 
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interesting in that there is some sort of signal there, but no further mapping studies can be 

done until a better model or trait can be used. 

Figure 6.25: Chromosome 7 Figure 6.26: Chromosome 9 
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Figure 6.27: Chromosome 13 Figure 6.28: Chromosome 16 

Finally, there were a few analysis parameters tested as well. Using the setting for 

the Kosambi map, all LEP scores replicated, as well as the HT score, while the APOA-I 

score was much lower, and the WT score was really low as well. As seen, this helped to 

reduce false positives, and therefore this setting should be used in future Loki analyses. 

As of now, there is no way to calculate L-scores for the sex-specific map analyses, but 

again the LEP scores and HT were found in these analyses. As it is not the best idea to 
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do a scan with the current sex-specific maps, it may be an idea to recheck positive scores 

more this way. Lastly, as mentioned, setting k to 5 did not increase the ability to detect 

loci, but it did allow for more QTL in the model, without any penalty, and, therefore, 

there is no reason not to use that setting. 

These results fulfill the dual purposes of clarifying how to carry out a genome 

scan and identifying QTL for the traits encompassed by Syndrome X. These will be 

further discussed in the next section. 
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Chapter 7: Discussion 

Introduction 

One current challenge in human genetics is to find genes that increase 

susceptibility to common complex disorders. One way to do this is to map genes that 

contribute to the variance in the underlying quantitative traits for these diseases. To do 

this powerfully, it is often necessary to study large complex pedigrees with multipoint 

analysis. This is quite problematic analytically, as the widely used linkage programs are 

either limited to a few markers (Elston-Stewart algorithm, such as in LINKAGE, 

FASTLINK) or to small pedigrees (Lander-Green algorithm, such as in Genehunter) due 

to computational limits. Therefore, it is suggested to use sampling methods, such as 

MCMC, to generate samples of possible configurations to identify the most likely 

configuration, instead of specifying every possibility exactly. This has been implemented 

in a LA program, Loki, developed by Simon Heath (Heath 1997), and it has been used in 

a small number of genome scans, on both simulated and real datasets (Daw et al. 1997; 

Heath et al. 1997; Yuan et al. 2000; Shmulewitz and Heath 2001). This method is very 

promising, but it not yet clear what the exact properties of Loki are and how to best use it 

for a genome scan. 

The purpose of this study is to investigate Loki, to develop a strategy to use for 

stringent LA, and then to do a genome scan to identify QTL for traits encompassed by 

Syndrome X as well as height in the population of Kosrae. The testing was done first on 

simulated data from GAW12 with known answers so its performance could evaluated, 

and then the method was further adapted for real data from the Kosrae population. Once 

a working strategy has been developed, the results from this study were evaluated, to 
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identify regions linked to obesity (BMI, HIP, W T , LEP), diabetes (FBS), hypertension 

(SBP, MAP), dyslipidemia (TC, APOB), and HT. First, how to do a scan will be 

discussed, focusing on what affects the analysis and how to interpret the output. Second, 

the loci that have been elucidated will be discussed in the context of similar studies. 

General Strategy 

The basic strategy as suggested from the GAW12 analysis is to do an initial scan, 

1 to 2 chromosomes at a time, each for 100,000 iterations, with simple models, and then 

to test some model changes and multiple chromosome analyses. As this is a sampling 

scheme, to test the final results, the analyses should be repeated a few times, with more 

iterations, to make sure the sampler is mixing and the estimates are stable. For the real 

data, it appears necessary to do many more levels of testing to reduce false positives and 

to be sure about the real positives. Again, first initial runs with simple models were done 

to get a general idea as to what is going on. Next, the genome scans are redone with 

model changes. With a good idea as to what models seem to be most informative for 

each trait and some initial positive results, multiple chromosome runs should be 

performed multiple times. Lastly, the mixing should be inspected, as should the size and 

shape of the L-score peaks, to have confidence in the localization and to prioritize which 

QTLs seem most real. 

Phenotypic and genotypic model corrections 

Loki attempts to map genes that explain a percentage of the variance in a trait. 

The more variance that can be explained by environmental covariates or other genetic 

effects, the better the major gene being mapped explains the residual variance, and 

therefore it will be easier to detect and localize. As it may not always be obvious what to 
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correct for, a number of models should be tested to see if there is any overlap of loci 

between models. Obvious corrections are for traits that are phenotypically correlated in 

the population under study or those that mapped to the same locus in the initial scan (such 

as HT / LEP on ch 5 and LEP / BP on ch 9). Also, correcting for all the quantitative traits 

worked well for some traits, perhaps for those that the other traits are not expected to 

directly influence, such as HT. But this may not work so well for traits that influence 

each other (perhaps like LEP and FBS) or are genetically related to the others. As the 

correlation could be genetic, it would also be interesting to find that a combination of 

traits maps to the same locus, which is why all the possible models and some sort of 

combinatorial phenotypes were analyzed. Of course, it is highly possible that there are 

important corrections that cannot be made due to lack of information and that could be 

why it was hard to either detect or precisely map QTL for some traits. 

Results may vary across models, which aids in evaluation of the "realness" of the 

signals. If a signal is consistent across models, such as LEP for ch 5, that fact itself adds 

reliability. In this case, it is clear that the model affects the accuracy of localization more 

than the ability to detect a QTL. In other cases, there are really nice signals that only 

come up with certain models, such as HT on ch 10, suggesting in this case that those 

corrections are important for QTL detection. Another possibility is that certain 

corrections lead to a different form of the trait than others, which maps to a different 

location, so the different QTL are real. Important to remember is that a signal cannot be 

evaluated based on one run alone, rather there needs to be a complete picture obtained 

from various analyses. 
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Correcting for other genetic effects appears to be important as well. One way is to 

account for the effects of polygenes, which cleans up some of the genetic variance not 

attributable to the QTL being mapped, leading to increased scores, such as HT on ch 10. 

As discussed, at times the polygenic effect is hard to model using Loki, so if the signal is 

reduced with this effect, this does not automatically mean the signal is not real. But if the 

score remains or goes up, it is probably real. Another correction to do is a known major 

gene effect, such as APOE for TC, which gave more stable results. Another way to do 

this (if the major gene itself is not known) could be by jointly analyzing chromosomes 

with positive signals, where the slight signal on one makes the others easier to find, such 

as seen with ch 3 and ch 5 for LEP. This moves on to the next stage of analysis, which is 

multiple chromosome runs. 

Multi-chromosome analyses 

When all positive chromosomes for a trait model are jointly analyzed, this often 

results in some scores increasing, with others decreasing or disappearing. As discussed 

before, this could be for a variety of reasons, such as that the sampler is choosing the best 

locus, there is locus heterogeneity, or that the sampler is not mixing well. As most 

models are not constrained to only one QTL, it is not really a concern that one signal is 

being chosen at the expense of another. For both TC and HT, the multiple runs clearly 

chose more than one signal per iteration. When two signals are found but never together, 

it could be there are two distinct configurations in the data that lead to these different 

scores. This could mean that only one is real, but there is not enough information to 

completely determine which one. Another possibility is that there is heterogeneity, with 
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a subset of the pedigree segregating one or the other Q T L . Testing this is quite difficult 

in one large pedigree and is currently under investigation. 

Multi-chromosome runs require careful inspection of the iterations to make sure 

the sampler is mixing, as discussed in the LEP results section. This highlights the mixing 

problem inherent in the sampling scheme and which is under constant investigation. 

Another effect of this problem is the inability to use markers closer than 5 cM in the same 

analysis, as the correlated segregation of alleles at linked loci may cause sticking. This 

method is not yet able to do finer mapping, so the resolution can be quite low. One way 

to really ensure that the answer is real is to repeat the analysis a few times from different 

starting points to see that the scores and estimates are stable. 

L-graphs and parameter estimates 

With a set of signals that are consistent and therefore seem to be real, the next 

thing to do is to inspect the L-score peaks for height and shape. L-scores are not 

necessarily used as a test of significance, but rather as a starting point for identifying 

potentially interesting linkage regions. As discussed above, this is mainly because the L-

score height is affected by covariate and genetic corrections, so a locus could have a 

score ranging from 10 to 100 depending on model or run. This is one of the reasons it is 

so important to do many tests and then to evaluate the signals. When necessary, a cutoff 

of 10 was used to decide which signals to follow-up for multi runs or reanalysis with the 

complete pedigree, but in the final results signals of 20 and above were reported. Scores 

around 20 are borderline, and have to be looked at more carefully to decide if they could 

be real. Of course, higher scores mean that there is more evidence for linkage, and that 

does add reliability, but not on its own, as discussed. 
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The next thing to look at is peak localization. Peaks that localize off the ends of a 

chromosome are certainly suspect, such as TC on ch 16 and MAP on ch 9 and ch 20. On 

ch 20 the signal for SBP was able to move itself onto the chromosome with the addition 

of more information (both individuals and another marker), suggesting that the end of the 

chromosome is a default place for QTL that cannot be mapped well. Peaks that are split 

on a marker, such as BMI on ch 18 and HT on ch 5, suggest a problem either with the 

model (in general many problems of localization can be due to mispecifying the model) 

or with genotyping. This may be going on with BMI on ch 18, but it is less likely for ch 5 

where LEP mapped there with no problem. Next, the width of the peak should be looked 

at, mainly to see how wide a region needs to be investigated for fine mapping. 

Sometimes one model gives a tighter (better localized) peak that would be the best model 

to use in further analysis, such as LEP on ch 5 and HT on ch 1. The nicest, most reliable, 

and easiest to follow-up peaks are those that map narrowly to a marker, such as HT on ch 

10. 

The parameter estimates are much more stable across runs than L-graphs. As this 

is a sampling method, the parameter values are hard to determine exactly, as they change 

by iteration, depending on the data configuration. As the trait is mapped based on 

summing over the genotypes at the QTL, which allele is disease and which is normal is 

not fixed. Actually, the alleles switch at each iteration, so which allele is which cannot 

be determined and the allele frequencies are symmetrical. Also, one allele / model 

(dominant or additive) combination is chosen by iteration, and this changes as well. 

Therefore, these estimates of effect are not informative; rather the combination of both, 

the gene effect size, is used, as discussed before. From this, the amount of variance of 
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the trait explained by this Q T L can also be calculated. Here, genes that explain as low as 

5 or 10 % of the total variance were found, possibly because the gene explains a greater 

amount of the residual variance, which is actually what is being modeled, or because the 

Loki analyses have more power. 

Miscellaneous changes 

A number of other changes were evaluated, with the following suggestions. First, 

setting the input map to Kosambi centimorgans should be done. Second, it is not a bad 

idea to reanalyze positive scores using sex-specific map, as it may help with localization 

or to decrease false positives. But the caveat here is that these maps themselves are not 

so precise, so it would be better to build maps from the data if possible. Third, the hybrid 

sampler should be used for a small percent of iterations. Fourth, k should be set to some 

value higher than 1. Two other points to note is that the dataset is much more powerful 

when the entire pedigree is analyzed at once, and adding markers in gaps aids in 

localization. 

Comparison to other linkage studies 

Taking all these steps together, one should be able to make a prioritized list of 

QTLs worthy of further investigation, which is the real purpose of a genome scan, as 

QTLs on their own provide very little information. One way to further prioritize is to see 

if any of these loci have been found in similar studies and / or if they are close to obvious 

candidate genes. If any QTL is a replicate, that adds reliability, but again the opposite is 

not necessarily true. This study is different from others in many ways, and therefore one 

would not expect to get the same answers. In general, there are few genome scans that 

have the power of the Kosrae study. This could be due to computational difficulties, that 
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multipoint analysis on pedigrees of this size and complexity cannot be done. Also, many 

studies do not have all the quantitative and covariate data that is available here. 

Therefore a lot of studies of these diseases have been done in less powerful ways (such as 

qualitative, no corrections, and two-point analysis), so the results are not directly 

comparable. Also, these metabolic traits have been shown to have different pathology in 

different racial or ethnic groups. As this study was done in the population on the South 

Pacific island of Kosrae, it could be some of the loci found are specific to that ethnic 

group, and therefore would not be replicated in most other studies. Another possibility is 

that the mutations came in with the Caucasian admixture, and then perhaps these could be 

found in other studies of Caucasians. It is also possible that there are loci common to all 

ethnic or racial groups. 

Table 6.4 shows which other studies found linkage in the same region for the 

same or a correlated trait. Below each trait locus is discussed in turn, with comments on 

reliability based on everything discussed above. 

Obesity 

The LEP signal on ch 5, from 170-200 cM, is very reliable, as it came up with all 

models, and in the multiple chromosome runs, especially the polygenic analyses. The 

peaks were high and nice, though the localization was a bit different by model. This 

region has signal for other obesity traits in the following studies: Quebec Family Study, 

with 156 families and 521 individuals, had a suggestive LOD score for abdominal 

subcutaneous fat (~ 1.5) at the end of the chromosome (Perusse et al. 2001); National 

Heart, Lung, and Blood Institute (NHLBI) Family Heart Study, with 401 families and 
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3027 individuals, for B M I in this region (Feitosa et al. 2002); French study, with 42 

families and 88 pairs, for BMI (p=0.09) in this region (Clement et al. 1996); French 

study, with 158 families and 514 individuals, high score (~ 3) for LEP and a lower score 

for BMI close to this region (Hager et al. 1998). 

The BMI score on ch 18, from pter-40, was high and consistent, but split on the 

peak, which should be resolved before further analyses. For one model, LEP mapped 

here as well. This locus was found for similar traits in the following studies: Quebec 

Family Study, for abdominal subcutaneous fat (~ 1.2) in this region (Perusse et al. 2001); 

Quebec Family Study, 124 families with 289 pairs, for BMI, skinfolds, fat mass, and % 

body fat (p=0.02-0.001) in this region (Chagnon et al. 1997); and for the overlap with the 

HT/DYSL factor, the Rochester Family Heart Study, with 232 families and 1484 

individuals, for APOA-II (~ 1.5) and APOC-II (~ 1.6) in this region (Klos et al. 2001). 

One candidate gene near this region is the MC5 receptor. The ch 20 signal, from 85-qter, 

was low but consistent, mapped directly on the marker, and overlapped with a low score 

for HIP, so it is a possibility. This locus was found for similar traits in the following 

studies: University of Pennsylvania Family Study, with 92 plus an additional 32 families, 

for % body fat (~ 2.5) in this region (Lee et al. 1999); Quebec Family Study with 152 

pedigrees and 650 individuals, for % body fat, BMI, INS, skinfolds, and fat mass 

(p=0.02-0.0005) close to this region (Lembertas et al. 1997); French study with 428 

sibpairs, for BMI and skinfolds (p=0.02-0.001) close to this region (Comuzzie and 

Allison 1998). 

The HIP signal on ch 10, from 125-140, was tight on the marker, with consistent 

midsize (-40) scores with the hybrid sampler, and therefore appears to be quite reliable. 
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This locus was found in the French study for LEP (~ 2.5) in this region (Hager et al. 

1998). The ch 4 signal, from 90-114, was on the marker but low, and there were no other 

linkage studies in the literature that found a similar locus, so this is a possibility. 

The WT signal on ch 18, from 75-105, was low, but consistent and on a marker. 

This was found in the following other studies: Quebec Family Study, for abdominal 

subcutaneous fat (~ 1.2), close to this region (Perusse et al. 2001); Finnish study, with 

100 plus an additional 93 sibpairs, for obesity in this region (Ohman et al. 2000); 

Icelandic study, with 116 families and 884 individuals, for Peripheral Arterial Occlusive 

Disease (PAOD) (~ 1.8) in this region (Gudmendsson et al. 2002). This is close to an 

obvious candidate gene, the MC4 receptor, and therefore is a possibility. 

Diabetes 

The FBS score on ch 1, from 200-270, is low, but it is a region that has been 

found in many other studies, including the following: Pima Indians in the Gila River 

Indian Community, with 109 families and 363 individuals, for OGTT (~ 1.4) in this 

region (Pratley et al. 1998); Finnish Study in Botnia, with 58 families and 223 

individuals, for NIDDM (~ 1.0) in this region (Lindgren et al. 2002); Finland - United 

States Investigation of NIDDM Genetics (FUSION), with 580 families, for INS (~ 1.4) 

and 2 hour INS (~ 2.6) in this region (Watanabe et al. 2000); French Caucasians, with 

143 families and 677 pairs, for NIDDM (~ 1.6-3.6) in this region (Vionnet et al. 2000). 

As this is not localizing well in these analyses, further studies should be done to model 

this trait (or diabetes) differently to get better localization before fine mapping. 
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Hypertension 

The SBP signal on ch 20, from 25-40, was tight, consistent, and on the marker, so 

is robust. This was found in these studies as well: GENOA Network of the Family Blood 

Pressure Program in Rochester, MN, with 69 discordant sibpairs, for SBP (p=0.024) 

close to this region (Krushkal et al. 1999); San Antonio Family Heart Study, with 10 

families and 440 indviduals, for pulse pressure (~ 1.6) close to this region (Atwood et al. 

2001b); Framingham Heart Study, with 332 families and 1702 individuals, for TG and 

TG/HDL-C ratio (~ 1.6) at the beginning of the region (Shearman et al. 2000). The ch 1 

signal, from 100-160, was poorly localized, and therefore needs to be modeled better 

prior to further analyses. Comparison to other studies is discussed in overlap section 

below. 

The MAP signal for ch 9, from pter-45, is similarly difficult to localize, so should 

not be followed up as is, though DBP also slightly mapped to this region. This region 

was identified as influencing blood pressure in an Old Order Amish Study, with 28 

families and 694 individuals, for DBP (~ 1.5) and SBP (~ 0.8) (Hsueh et al. 2000). 

Dyslipidemia 

The APOB signal on ch 2, from 18-45 is tight, but it mapped between two 

markers, and decreased in the multi-chromosome analyses. But this is a possibility, 

particularly as it is close to the APOB gene. This locus was found in the following 

studies: Dutch Family Study, with 35 families and 253 individuals, for Familial 

Combined Hyperlipidemia (FCHL) (~ 2.6) at beginning of the region (Aouizerat et al. 
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1999); Pima Indians, with 188 families and 544 individuals, for T G (-1.7) in this region 

(Imperatore et al. 2000). 

The TC signal on ch 12, from 140-170, is tight, consistent, and close to a marker, 

and quite reliable. As it only came up with the less-corrected model, and it overlapped 

with the DYSL factor, perhaps this is a locus that influences more than one of these 

correlated traits or some sort of combinatorial trait. This locus was found in the 

Rochester Family Heart Study, for APOA-I (~ 2.0), close to this region (Klos et al. 2001). 

The ch 16 signal, from 125-qter, overlapped with signals for DYSL factor as well, but 

mapped off end of the chromosome. As previously suggested, the locus may actually be 

somewhere else on the chromosome, but there is some problem preventing correct 

localization, and, therefore, this is less reliable. No other studies found this locus. The 

third signal for TC, on ch 19, from 37-51, is tight and consistent, so though it maps 

between two markers, it appears to be quite reliable. This was also found in the 

following studies: Rochester Family Heart Study, for TC (~ 1.1) close to this region 

(Klos et al. 2001); Pima Indians in the Gila River Indian Community, with 550 families 

and around 1500 sibpairs, for TC (~ 4.0), which peaks at the pter but extends to whole 

chromosome (Imperatore et al. 2000); San Antonio Family Heart Study, with 10 families 

and 470 individuals, for LDL (~ 2.3) in this region, and LDL2 (~ 3.0) close to this region 

(Rainwater et al. 1999); Washington University Medical Center Study of Familial 

Hypobetalipoproteinemia, with 1 family and 38 individuals, for TC (~ 1.7) close to this 

region (Yuan et al. 2000). 
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Height 

The best signal in the whole dataset is for HT on ch 10, from 81-94, as it is high, 

consistent, and tight, mapping directly on the marker. There are only three other genome 

scans published for HT, so much replication is not expected. Two of the scans actually 

use data collected for disease studies, which have data for HT, but were previously not 

analyzed (Hirschhorn et al. 2001; Wiltshire et al. 2002). One of these, which used data 

from the Diabetes UK Warren 2 Consortium, with 573 families and 1377 sibpairs. had a 

HT score (~ 1.9) which peaks close to this region (Wiltshire et al. 2002). The next nice 

score was on ch 1, from 100-120, which has a wider range because the two models 

peaked slightly apart. The second study that combined data from four other genome 

scans, including 483 families and 2327 individuals, had a score in this region from the 

Sweden population (LOD - 1) (Hirschhorn et al. 2001). The ch 5 signal, from 160-qter, 

is consistent but is split on the peak, and this should be resolved, if possible, before 

further studies. None of the other scans found this locus. The ch 19 signal, from 33-55, is 

less reliable as the multi-chromosome scores were reduced and it is also a split peak, 

though this was also found in the Diabetes UK Warren 2 Consortium, with a suggestive 

score (~ 1.6) in this region (Wiltshire et al. 2002). The final signal for HT, on ch 15, from 

113-qter, was only found with one model, and poorly mapped to the end of the 

chromosome, and is less reliable. It was found in the Finland population (~ 1.3) 

(Hirschhorn etal. 2001). 
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Overlap regions 

Table 6.5 shows which other studies found linkage in the same regions as there 

was overlap between a number of small scores for correlated traits. This is interesting, 

but there is not much that can be done without a good trait to map further. One idea is to 

try to work out some sort of combinatorial phenotype for the traits that map to this 

region. Another possibility is that perhaps a signal due to an unmeasured correlated trait, 

such as the ones found in the similar studies listed. 

On ch 1 there are a series of adjacent areas that are interesting. First, from 90-160 

there are signals for hypertension, which was also found in the following studies: Quebec 

Family Study, with about 180 families and 679 individuals, for SBP (~ 1.1-1.8) in this 

region (Rice et al. 2000); Icelandic study, for PAOD (~ 2.8) in this region (Gudmendsson 

et al. 2002); Hypertension Genetic Epidemiology Network (HyperGEN) of NHLBI in 

Caucasians, with 480 sibpairs, for renal function in hypertensives (~ 1.5-1.9) in this 

region (DeWan et al. 2001). Then there are signals for diabetes, obesity, and BP again in 

the 170-212 range. Here a LOD score of close to 2.9 for BMI was seen from the SOLAR 

analysis. This region was seen in these studies: Diabetes United Kingdom Warren 2 

Repository, with 573 families, for NIDDM (~ 1.5) in this region (Wiltshire et al. 2001); 

FUSION study, for insulin resistance (~ 1.5) and FBS (~ 1.7) close to this region 

(Watanabe et al. 2000); Caucasians, large pedigree study, for BMI (p=4.7 x IO"5) in this 

region (Comuzzie and Allison 1998);University of Pennsylvania Family Study, for % 

body fat in this region (Lee et al. 1999); Finnish study, for obesity (~ 1.4) in this region 

(Ohman et al. 2000); Pima Indians, with 127 families, for waist-to-thigh ratio (~ 1.2), 24 

hour ratio of carbohydrate oxidation to fat oxidation (~ 2.0), 24 hour energy expenditure 
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(~ 1.0), sleeping metabolic rate (~ 1.6), all over this region (Norman et al. 1998); Utah 

Caucasians, with 19 families and 468 individuals, for NIDDM (-2.3) close to this region 

(Elbein et al. 1999); Pima Indians, with 332 families and about 1700 pairs, for NIDDM 

(~ 2.4) in this region (Hanson et al. 1998); Quebec Family Study, for abdominal 

subcutaneous fat (~ 2.0), all over the chromosome (Perusse et al. 2001); NHLBI Family 

Heart Study, for BMI in this region (Feitosa et al. 2002); studies from FBS region in 

Table 6.4 with signal in this region as well: French Caucasians, ~ 2.5 (Vionnet et al. 

2000) and Botnia Study (Lindgren et al. 2002). 

On ch 2 there were two regions where hypertension traits mapped to, 20-50 and 

then to 75, which also had signal for dyslipidemia, as well as 90-130. The following 

studies had signals in the first region: Finnish study, with 181 families and 345 

individuals, for coronary heart disease (CHD, ~1), in this region (Pajukanta et al. 2000); 

GENOA Network of the Family Blood Pressure Program, for SBP (p=0.0089) close to 

this region (Krushkal et al. 1999); Old Order Amish Study, for SBP (~ 1.0) close to this 

region (Hsueh et al. 2000); Dutch Family Study, for FCHL (~ 1.3) close to this region 

(Aouizerat et al. 1999); Quebec Family Study, for DBP (~ 1.1) in this region (Rice et al. 

2000); Framingham Heart Study, with 332 families and 1702 individuals, for DBP in this 

region (Levy et al. 2000). These studies gave signal in the second region (some, as seen, 

gave signals in both): San Antonio Family Heart Study, with 10 families and 495 

individuals, for DBP (~ 3.9) and SBP (~ 1.3) in this region (Atwood et al. 2001a); San 

Antonio Family Heart Study, for PP (~ 1.3) in this region (Atwood et al. 2001b); Old 

Order Amish Study, for DBP (~ 1.0) close to this region (Hsueh et al. 2000); HyperGEN 

of NHLBI, with 285 families and 636 individuals, for change in SBP (~ 1.5) close to this 
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region (Pankow et al. 2000); Quebec Family Study, for D B P (~ 1.0-2.2) and SBP (~ 1.3) 

in this region, (Rice et al. 2000). 

On ch 7 there were 3 semi-continuous regions with overlapping scores. The first, 

from 50-90, had signals for obesity and diabetes, and this was found in the following 

studies: Quebec Family Study, for abdominal subcutaneous fat (~ 1.6) in this region 

(Perusse et al. 2001); Genetics of NIDDM (GENNID) Study of 4 American populations 

(Mexican American, Caucasian, African American, and Japanese American) for NIDDM 

or impaired insulin homeostasis (~1.0) in this region for the Mexican American group 

with 53 families and 365 individuals (Ehm et al. 2000); NHLBI Family Heart Study, for 

BMI (-1.0) in this region (Feitosa et al. 2002); Old Order Amish Study, with 28 families 

and 672 individuals, for LEP (~ 1.3) in this region (Hsueh et al. 2001). The next region, 

froml 10-140 (end of this range maps close to the LEP gene), had signal for dyslipidemia 

and obesity, which was also found in these studies: NHLBI Family Heart Study, for BMI 

past the end of this region (Feitosa et al. 2002); Quebec Family Study, abdominal 

subcutaneous fat after end of this region (Perusse et al. 2001); San Antonio Family 

Diabetes Study, with 32 families and 579 individuals, for HDL-C (~ 1.8) at end of 

chromosome (Duggirala et al. 2000). The last region is from 150-qter, with scores for 

dyslipidemia, obesity, and diabetes, as found in these studies: San Antonio Family 

Diabetes Study, for TG (~ 1.9) at end of chromosome (Duggirala et al. 2000); 

Framingham Heart Study, for TG (~ 1.8) and TG/HDL-C ratio (~ 2.5) in this region 

(Shearman et al. 2000); Pima Indians for FBS (~ 1.2) and various insulin measures (~ 

1.5-1.8) in this region (Pratley et al. 1998). 
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On ch 9, the region from 105 to 135 had signals for obesity and diabetes, as seen 

in these studies: Quebec Family Study, for abdominal subcutaneous fat (~ 2.3) at 

beginning of this region (Perusse et al. 2001); GENNID Study of 4 American 

populations, for NIDDM (~ 1.5) in this region, in the Caucasian American group, with 77 

families and 497 individuals (Ehm et al. 2000); FUSION study, for insulin resistance (~ 

2.3) in this region (Watanabe et al. 2000). 

Ch 13 showed a region from 20-60 with signals for obesity, as seen in these 

studies: Quebec Family Study, for abdominal subcutaneous fat (~ 1.6) in this region 

(Perusse et al. 2001); NHLBI Family Heart Study, for BMI in this region (Feitosa et al. 

2002); French study with 428 sibpairs, for % body fat and skinfolds (p<0.04), in this 

region (Comuzzie and Allison 1998); FUSION study, for BMI (-3.0), C-Peptide (~ 1.2), 

and INS measures (~ 1.2-3.0) close to this region (Watanabe et al. 2000). 

Ch 16 had signal for diabetes and obesity from 100 to 130, which was seen in 

these following studies: Pima Indians, for INS and FBS (~ 1.3) in this region (Pratley et 

al. 1998); GENNID Study of 4 American populations, for NIDDM (~ 1.9) in this region, 

in the African American group, with 65families and 229 individuals (Ehm et al. 2000); 

Finnish Study in Botnia, for NIDDM (~ 2.0) in this region (Lindgren et al. 2002). 

Future plans 

Future directions for the study are dual as well, with suggestions to improve Loki, 

and to refine the linkage signals found. The main improvement to Loki would be more 

efficient mixing, both for general analysis and to be able to use markers closer together. 

This is a major issue and there is no simple answer. Additionally, a series of simulations 
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to determine the empirical distribution of L-score under the null of no linkage for 

significance levels needs to be done. These simulation studies will also show how Loki 

behaves with different analysis variables. With the hybrid sampler, the L-scores appear 

more stable, so the L-scores and associated p-values will have more meaning. Often there 

are genotype errors that are unobserved and therefore left in. This is suggested to 

negatively affect all methods of LA (Sobel et al. 2002). As there are definitely 

unobserved errors, it would be interesting to see how this would affect Loki analysis. 

This could be done by introducing errors into the GAW12 dataset and reanalyzing. As a 

way to try to identify errors, it would be useful for Loki to report obligate recombinants. 

Another idea is to see how Loki handles locus heterogeneity and how one could check for 

it. Lastly, it has been shown that there are important gene-gene and gene-environment 

interactions that affect the traits under study, and it would be informative to be able to 

model these using Loki. 

To further the Kosrae study, the first thing to do is complete the genome scans for 

all the pedigree data. It is possible that new QTL will be found, but as even the most 

borderline scores were reanalyzed with the new data, it is not likely. Next a scan for 

diabetes as a qualitative trait should be done. Furthermore, Loki is unable to analyze the 

X chromosome so other methods with smaller pedigrees or fewer markers will be tried. 

As this has less power, if no signal is found that does not necessarily mean nothing is 

there, but a stronger signal might be picked up. Lastly some of the data will be re

analyzed with other programs to see how Loki scores compare to others and to do some 

modeling not possible in Loki (such as interactions). 
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Then, the main focus would be to go from wide linkage regions to narrower 

regions, to eventually identify the genes involved. For this fine mapping, the first step 

would be to type denser markers (one every 1 cM) to see if that helps to narrow the 

region. The denser map, the more important it is to make sure the genotype data is error 

free, as the more significant each recombinant is. LA though may not be able to achieve 

high resolution with quantitative traits, as there is no way to define absolute recombinants 

between a locus and affection status as could be done for qualitative traits. Therefore 

linkage disequilibrium analysis could be performed, as it uses ancestral recombinants (as 

opposed to familial only) for finer resolution. In this case, markers as dense as possible, 

perhaps SNPs, should be typed. The challenges here include how to generate haplotypes 

for the large complex pedigree and then the best way to analyze these. 

In summary, this study developed a strategy of how to use Loki to find genes that 

affect the levels of quantitative traits. This includes initial single chromosome scans, 

using the Kosambi map setting, setting the number of QTL to 5, and using the hybrid 

mixer 5% of the iterations. Then more stringent analyses should be carried out with 

model corrections, joint analysis of positive chromosomes, repeat runs with significant 

scores, and inspection of L-graphs. Additionally, this method is more powerful with 

genotype information on more of the individuals in the pedigree and with denser marker 

coverage. There have been a few other MCMC methods suggested and the main 

differences between these and Loki are the acceptance of new QTL, and generating 

genotypes for these QTL (Thomas et al. 1997; Stephens and Fisch 1998; Lee and Thomas 

2000; Uimari and Sillanpaa 2001). As these are mostly for nuclear families, they still 

cannot perform multipoint analysis in large extended families as Loki can. 
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Through this, we identified possible QTLs for many of the traits involved in 

Syndrome X pathogenesis. As a prioritized list, these regions should be followed up: HT 

on ch 10 and ch 1, LEP on ch 5, TC on ch 19, SBP on ch 20, HIP on ch 10, and BMI on 

ch 18 (if split peak can be resolved). Then, APOB on ch 2, TC on ch 12, and HT on ch 

19 and ch 5 (again, if both split peaks can be resolved) could be investigated. Slight 

possibilities are WT on ch 18, HIP on ch 4, BMI on ch 20, and maybe HT on ch 15. The 

signals for FBS on ch 1, SBP on ch 1, MAP on ch 9, and TC on ch 16 cannot be mapped 

further until there is better localization. 
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Conclusion 

The linkage analysis program Loki uses reversible jump Markov chain Monte 

Carlo sampling to analyze genetic data. As this is a sampling method, Loki can perform 

multipoint analysis on large extended pedigrees. This is crucial to have power to map 

genes that affect susceptibility to multifactorial diseases, by analyzing the underlying 

quantitative traits. Loki does this well by modeling quantitative traits with covariate 

corrections and identifying quantitative trait loci that explain a proportion of the residual 

variance. When Loki is used in the manner described above, it is an excellent method of 

preliminary linkage analysis to elucidate regions deserving further investigation. This 

hierarchal strategy includes initial single chromosome scans, additional scans with model 

changes, multi-chromosome analysis, repeat runs, and inspection of L-score graphs. 

Loki was used to map genes that affect susceptibility to obesity, diabetes, 

hypertension, and dyslipidemia, by analyzing the quantitative traits associated with these 

traits (LEP, BMI, HIP, WT, WST, FBS, INS, SBP, MAP, DBP, TC, TG, APOA-1, and 

APOB), as well as HT, in the population on the island of Kosrae, the Federated States of 

Micronesia. This is an extremely powerful dataset as it includes phenotype and covariate 

information on greater than 2200 individuals, with one large pedigree including 1564 

individuals that were genotyped for a 10 cm genome scan and analyzed using Loki. This 

resulted in seven very good scores: HT on ch 10 (80 cM - 95 cM) and ch 1 (100-120), 

LEP on ch 5 (170-200), TC on ch 19 (35-50), SBP on ch 20 (25-40), HIP on ch 10 (125-

140), and BMI on ch 18 (pter-40); four good signals: APOB on ch 2 (20-45), TC on ch 12 

(140-170), and HT on ch 19 (30-55) and ch 5 (160-qter); and four possibilities: WT on ch 
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18 (75-105), HIP on ch 4 (90-115), B M I on ch 20 (85-qter), and H T on ch 15 (110-qter). 

These are promising regions that merit further study to try to identify the causal genes for 

these traits and their effect on disease pathogenesis. 
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