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DYNAMICS OF HIV-1 INFECTION AND THERAPY IN VIVO 

 

 

Joshua Abraham Horwitz, Ph.D. 

The Rockefeller University 2016 

 

 

Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired 

immune deficiency syndrome (AIDS), a disease responsible for extensive morbidity and 

mortality worldwide. Despite more than thirty years of research since the discovery of 

HIV-1, no cure or vaccine yet exists. HIV-1 infection, while treatable with suppressive 

antiretroviral therapy drugs (ART), establishes lifelong persistence in the infected host 

as a natural consequence of the viral life cycle and the dynamic properties of the human 

immune cells in which HIV-1 propagates. This persistence is driven by populations of 

rare, long-lived HIV-1-infected cells, termed latently infected cells (LICs), that are 

refractory to immune clearance and viral cytopathic effects. Interruption of suppressive 

therapy – even after years of continuous and effective treatment – rapidly leads to 

virological rebound, requiring infected persons to remain on ART indefinitely. As the 

need to maintain lifelong daily ART imposes a substantial compliance burden on those 

infected, two major goals of HIV-1 research, broadly, concern (1) developing new 

therapeutic modalities that may alleviate some drawbacks to ART, and (2) identifying 

means with which to target and eradicate LICs as an approach to curing HIV-1 infection. 

To these ends, in the first three chapters of my thesis, I discuss my work demonstrating 
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the utility of highly potent anti-HIV-1 antibodies in a number of therapeutic contexts. As 

antibody therapy expectedly did not result in cure, I was later motivated to study the 

nature of LIC formation and persistence. The fourth chapter of this thesis outlines my 

work to develop new molecular tools to interrogate LICs in a humanized mouse model 

of HIV-1 infection. 
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INTRODUCTION 

 

HIV-1 virus and life cycle 

HIV-1 is an enveloped, single-stranded, plus-strand RNA virus of the family retroviridae. 

HIV-1 infects human CD4+ T-lymphocytes through interaction of the viral envelope 

glycoprotein trimer, gp160, with CD4 molecules on the surface of the target cell(1-3). 

Following virus attachment, entry occurs by fusion of the viral envelope with the plasma 

membrane of the target cell. Virion-associated reverse transcriptases convert the RNA 

genome to a double-stranded DNA provirus. This process is highly error-prone, and is 

responsible for the high mutation rate of HIV-1 and the extensive genetic diversity of 

HIV-1 infection within even a single infected individual(4, 5). Following reverse-

transcription, viral DNA pre-integration complexes are imported into the nucleus (6) and 

virion-associated integrases mediate proviral integration into the host cell genome. 

Once the provirus has become integrated, the cell is permanently infected. The 

integrated provirus is then transcribed by target cell transcription machinery into new 

sense-stranded viral RNAs, which are processed and translated into viral proteins, or 

assembled as full-length RNAs into new virions. Viral structural proteins accumulate at 

the target cell membrane, where they are proteolytically processed [either by the viral 

protease, in the case of Gag and Pol, or by cellular furin, in the case of Gp160(7)] and 

assemble into nascent viral buds. These buds then separate from the target cell 

membrane, at which point the virions mature and are free to initiate new rounds of 

infection.  
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Viral genetic material in tissues and cells 

Virus released from productively infected cells can be detected in all lymphatic tissues 

in viremic and treated individuals(8), and is readily measured from human blood plasma 

by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) assays(9) 

to measure HIV-1 RNA (referred to as viral load). HIV-1 DNA may also be detected in 

cellular genomic and extra-chromosomal DNA, in the forms of integrated or 

unintegrated provirus and reverse transcripts(6). Unintegrated HIV-1 DNA arises 

naturally from dysfunctional reverse transcription and failure to integrate. These HIV-1 

DNA forms are generated during new infectious events, and are lost by dilution through 

cell division(10, 11), unlike integrated proviral DNA, which is copied along with 

chromosomal DNA during mitosis. Because HIV-1 replication is error-prone, assays that 

measure HIV-1 DNA may also detect integrated, but defective, proviruses that suffer 

deletions or mutations that render the provirus unable to initiate new rounds of 

infection(12). Depending on the nature of the aberration, these non-productively 

infected cells may also express certain viral antigens or exhibit normal levels of viral 

transcription, and may even support egress of defective virus particles harboring viral 

RNA (vRNA). Recent findings estimate that the vast majority of detectable integrated 

HIV-1 DNA is defective(13). 

 

ART drugs and treatment 

ART drugs are able to block the spread of HIV-1 infection by interfering with any of 

multiple steps in the viral life cycle. Nucleoside and nucleotide analogs, such as 

tenofovir disoproxil fumarate (Viread) and emtricitabine (Emtriva), inhibit reverse 
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transcription of viral RNA into DNA by incorporating false bases into reverse transcripts, 

resulting in premature termination. Non-nucleoside/ nucleotide reverse transcriptase 

inhibitors, such as efavirenz (Sustiva; Atripla), target the reverse transcriptase enzyme 

by blocking an allosteric site. Other classes of drugs target integration [such as 

raltegravir (Isentress)], proteolytic processing [indinavir (Crixivan)], or virus entry 

[enfuvirtide (Fuseon), maraviroc (Selzentry)]. Suppressive therapy in humans is 

achieved by combining at least three ART drugs, which guards against selection for 

drug-resistant viruses by requiring multiple resistance-conferring mutations to arise 

simultaneously. HIV-1 infection in the vast majority of treated individuals fails to escape 

this form of combination therapy, despite the high mutation rate of HIV-1. Treatment of 

infected individuals with ART leads to a rapid decline in viremia, which eventually falls 

below sensitive limits of detection (20 HIV-1 RNA copies per milliliter of blood plasma) 

within 3-12 weeks(14). This drop in viral load is caused by the death of virus-producing 

HIV-1-infected cells, which have an approximate half-life of 1.5 days(15). While several 

factors are believed to contribute to infected cell death, such as the apoptotic DNA 

damage response caused during virus integration(16), or the pyroptotic inflammatory 

response generated by interferon-stimulated genes during non-productive infection(17), 

ART drugs are not believed to contribute actively to the death of infected cells. 

 

Human immune response to HIV-1 infection 

In the absence of suppressive therapy, persistent HIV-1 viremia leads to gradual 

destruction of the host immune system, resulting in AIDS. ART drugs are necessary 

because the human immune response to HIV-1 infection is usually insufficient to 
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manage viremia. Certain HIV-1-infected persons, termed “elite controllers” or “long-term 

non-progressors”, can naturally suppress viremia without intervention, an effect which 

has been linked in some cases to human alleles known to improve effective T-cell 

responses(18). However, humoral immune responses have not been shown to impact 

viral loads or lead to elite control. Infected individuals always generate antibodies to 

gp160 during the course of infection, but such antibodies are largely ineffective at 

blocking virus infection (a property referred to as neutralization) or mediating clearance 

of infected cells (referred to as antibody-dependent cell-mediated cytotoxicity, or 

ADCC). However, a small percentage of HIV-1-infected individuals generate 

neutralizing antibodies that recognize epitopes on the gp160 trimer that are highly 

conserved among HIV-1 strains, despite the extensive intra- and inter-patient diversity 

of HIV-1(19). Termed “broadly neutralizing antibodies,” or bNAbs, these antibodies are 

unable to control viremia in the patients from which they are isolated due to the rapid 

selection of antibody-resistant virus that follows their generation in the host(20, 21). 

However, because of their ability to neutralize heterologous HIV-1 strains, bNAbs have 

long been proposed as both protective and therapeutic agents against HIV-1 infection in 

other individuals. 

 

BNAbs in HIV-1 prevention and therapy 

A number of early studies in animal models revealed that monoclonal bNAbs could be 

effective in protecting against HIV-1 infection(22, 23). These studies were initially 

conducted in macaques using a chimeric simian-tropic HIV-1 strain, termed SHIV, and 

were later corroborated with unmodified HIV-1 using humanized mouse models(24). 
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These results were highly encouraging, and suggested that vaccines capable of eliciting 

bNAb-like humoral responses could be similarly effective in protecting against new 

infections. However, studies that investigated the ability of bNAbs to treat established 

infection produced discouraging results, both in animal models and in humans(25-27). 

Administration of a cocktail of three bNAbs to humanized mice yielded only small 

transient reductions in viral load, and rapid selection for viral resistance(25). Likewise, in 

two clinical trials, a similar combination of three bNAbs failed to sustain virological 

suppression when ART-treated subjects were temporarily undergoing treatment 

interruption, yet selected for viral resistance to one of the bNAbs(26, 27). These results 

led to the conclusions that bNAbs could prevent new HIV-1 infections, and might serve 

as a model for protective vaccination, but were ineffective as therapeutic agents. 

However, these studies were done at a time when very few bNAbs had yet been 

discovered(28-31). The finding that certain bNAbs did select for viral resistance 

indicated that they were, in fact, triggering evolutionary bottlenecks in viral populations, 

and left open the possibility that more potent bNAbs could be therapeutically efficacious.  

 

Significant advances in antibody cloning techniques eventually led to the discovery of 

many new bNAbs with diverse specificities, and these exhibited neutralizing potencies 

many orders of magnitude greater than first-generation bNAbs (summarized in Fig. 0.1). 

Several of these ‘second-generation’ bNAbs were identified in the Nussenzweig 

laboratory, including 3BNC117, an antibody that recognizes the CD4-binding pocket of  
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Figure 0.1: 1st and 2nd generation bNAbs.  

Breadth and neutralizing potency of bNAbs before (left) and after advances in single-cell cloning 
techniques revolutionized bNAb discovery. Neutralizing potency refers to the IC50 (ug/ml) of a given bNAb 
against HIV-1 isolates in a luciferase-based single-round infectivity assay (TZM-bl assay, 
REF_Montefiori). Breadth refers to the percent of tested HIV-1 strains neutralized by a given bNAb 
among a panel of known HIV-1 isolates (Los Alamos National Laboratories). 
 

gp120(32), 10-1074, an antibody that interacts with a mannose glycan-rich  

patch and the stem of the gp120 variable loop 3(33), and 3BC176, an antibody now 

known to recognize a quaternary epitope present on a transient intermediate 

conformation of the gp160 trimer(34). At the time I began my graduate studies, it 

remained unclear whether these and other new, highly potent “second-generation” 

bNAbs could be more effective than first-generation bNAbs when deployed against 

established HIV-1 infection in vivo. 

 

Animal models of HIV-1 infection 

Several animal models exist for studying various aspects of HIV-1 infection, and each 

has its advantages and disadvantages. Rhesus macaques and other non-human 

primate (NHP) models are readily infected with both simian immunodeficiency virus 
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(SIV) and SHIV, and are highly useful for studying immune responses to lentiviral 

infection because they are fully immunocompetent animals at the time of infection. As 

SHIV strains carry an SIV backbone, but are outfitted with HIV-1 env genes (and, 

therefore, express HIV-1 gp160 trimers on the surface of virus and infected cells), SHIV 

infection in macaques can be a useful model with which to evaluate the effectiveness of 

bNAbs in both protective and therapeutic contexts. However, NHPs are cost-prohibitive 

and difficult to obtain. Thus, while NHP models may be excellent for preclinical 

evaluation of potential anti-HIV-1 therapeutics due to their close genetic relation to 

humans, they are not ideal models for early-stage experimentation. 

 

Humanized mouse models, in which immunocompromised mice are endowed with 

human immune cells, present an alternative and more accessible model with which to 

study HIV-1 infection. Unlike NHPs, which do not have human immune cells and cannot 

support HIV-1 infection, humanized mice (hu-mice) harbor human CD4+ T-lymphocytes 

that can readily propagate bona fide HIV-1 strains. Large colonies of hu-mice can be 

generated, permitting sufficient statistical powering of test groups for experimentation. 

However, hu-mouse models have several important shortcomings: human immune 

reconstitution levels and immune cell lineage composition are highly variable(35, 36), 

with several lymphatic tissues defective or absent (such as lymph nodes); murine and 

human immune functions are severely compromised, or are lacking altogether; and, 

because mice are three orders of magnitude smaller than humans, total body HIV-1 

viral load in mice is necessarily far smaller than that of HIV-1-infected humans. Thus, 

while hu-mice are not ideal for studying immune responses to HIV-1 infection, they are 
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highly useful for evaluating anti-HIV-1 therapeutics such as bNAbs and ART drugs, 

which are best tested against bona fide HIV-1 infection in human CD4+ T-lymphocytes.  

 

Latent HIV-1 infection 

Latent HIV-1 infection, as described in this thesis, shall refer only to the behaviors of 

individual HIV-1-infected cells (a description of which follows), and not to a clinical stage 

of suppressed infection known as “clinical latency”(37). Because HIV-1 integration 

results in permanent infection of a cell, certain subsets of long-lived cells may become 

infected and persist for years, or even decades(38). These latently HIV-1-infected cells 

(LICs) can become spontaneously reactivated, resulting in the release of infectious 

virions. In the absence of suppressive therapy, virion release from LIC reactivation can 

initiate new infections, and rapidly re-establish active viremia in infected persons. 

Although the frequency of LICs among all CD4+ T-lymphocytes in ART-treated HIV-1-

infected persons is thought to be low, on the order of 1 LIC per million resting CD4+ T-

lymphocytes, the total body load of LICs is thought to number in the millions(38). The 

spontaneous reactivation of LICs is thought to be responsible for persistent, low-level 

viral loads (< 20 HIV-1 RNA copies per ml plasma, hereafter cpm) detectable by single-

copy assays(39) in patients who are highly adherent to their suppressive ART regimens. 

In a majority of HIV-1-infected persons, withdrawal from suppressive ART results in 

virological rebound due to LIC reactivation within 2-3 weeks(40). 

 

Current understanding of LICs holds that viral transcription (and, therefore, viral gene 

expression) is absent or highly suppressed during the latent state(41, 42). Due to this 
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apparent absence of identifiable antigenic signatures, combined with the extreme rarity 

of LICs in vivo, LICs at present are impossible to study in situ: they can neither be 

distinguished from uninfected cells, nor from infected cells harboring defective 

proviruses. Their existence in vivo has been demonstrated only by assays that were 

designed to reactivate and outgrow virus from the purified resting cells of ART-

suppressed patients ex vivo(43). A number of studies have demonstrated that LICs are 

predominantly comprised of resting memory CD4+ T-lymphocytes(43, 44). LICs are 

thought to emerge by either of two possible routes: 1) rare, direct productive infection of 

resting memory cells; or 2) productive infection of activated CD4+ T-lymphocytes during 

a period of transition from an activated cell state to a resting state(42). Studies 

performed using models of LIC generation in vitro have suggested that either route is 

possible(45-48). However, the molecular determinants responsible for maintaining the 

latent state are largely unknown. Recent work has shown that only a fraction of LICs 

harboring fully intact proviruses are susceptible to reactivation in vitro using current 

methods(13). In that study, repeated reactivation of resting, non-induced cells led to 

further viral outgrowth, suggesting that viral reactivation in LICs is both rare and 

stochastic. These data indicate that latent reservoirs of HIV-1 infection are far larger 

than previously thought, although the nature and frequency of LIC reactivation in vivo 

remains very poorly understood. 

 

It has been suggested that LICs may arise as a consequence of multiple factors, 

including (but not limited to): epigenetic silencing of the viral promoter; transcriptional 

interference from genetic promoters upstream of proviral integration; proviral integration 
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into sites that are, or that become, repressive for transcription; or the lack of critical 

transcription factors (such as NFAT) needed for efficient viral transcription, such as 

occurs during the transition from activated to resting cell states [reviewed in (42)]. 

However, the inability to purify individual bona fide LICs ex vivo has limited further 

interrogation of the molecular determinants of latency. A means with which to identify 

and dissect bona fide LICs, such as those that arise during the natural spread of HIV-1 

infection in vivo, is required. 
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CHAPTER I: SUPPRESSION OF HIV-1 INFECTION IN VIVO BY COMBINATIONS OF 

BROADLY NEUTRALIZING ANTIBODIES 

  

A humanized mouse model of HIV-1 infection 

In order to investigate the dynamics of HIV-1 infection in response to therapeutic 

interventions in vivo, I opted to use NOD/Rag1-/-/IL-2Rϒ
null (NRG) mice engrafted with 

human hematopoietic stem cells (hu-mice). To generate such hu-mice, human CD34+ 

cells were magnetically isolated from fetal liver tissue and injected intra-hepatically into 

neonate mice. Engraftment was confirmed by flow cytometric profiling of mouse PBMC 

at 8-12 weeks of age (Fig. 1.1). 

 

Figure 1.1: Hematopoietic reconstitution of hu-mice.  

Each dot represents a single animal; red line indicates population geometric average. Left, percent 
human CD45+ cells among total CD45+ (mouse plus human). Middle, proportion of T- (CD3+) and B-
lymphocytes (CD19) among total human CD45+. Right, proportion of CD4+ versus CD8+ T-lymphocytes 
among total CD3+. While the relative abundance of CD3+ versus CD19+ cells was highly variable, the 
presence of CD3+ cells generally resulted in consistent proportions of CD4+ and CD8+ cells. 
 

Hu-mice harboring visible populations of human CD4+ T-lymphocytes were challenged 

with a laboratory-adapted HIV-1 strain, HIV-1NL4/3 bearing the env gene of the clade B, 

Tier 2 strain YU-2, hereafter HIV-1YU2. In order to measure viral load, I adapted a 

quantitative reverse-transcriptase PCR assay(9) to match the viral sequence of HIV-
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1YU2. Forward and reverse primers targeting the viral long terminal repeat (LTR) were 5’-

GCCTCAATAAAGCTTGCCTTGA-3’ and 5’-GGCGCCACTGCTAGAGATTTT-3’, 

respectively; an internal probe (5’-AAGTAGTGTGTGCCCGTCTGTTRTKTGACT-3’) 

contained a 5’ 6-carboxyfluorescein reporter and an internal/3’ ZEN-Iowa Black FQ 

double-quencher (Integrated DNA Technologies). Degenerate nucleotides reflect 

positions at which the published internal probe sequence differed from HIV-1YU2. HIV-1 

RNA was purified from mouse plasma using the QiaAmp MinElute Virus Spin Kit 

(Qiagen) and 20 ul purified RNA added to a one-step qRT-PCR reaction using the 

TaqMan RNA-to-Ct One Step Kit (Applied Biosystems) with 450nM forward and reverse 

primer and 125nM probe. Standard curves were generated using diluted virus stocks of 

known RNA copy number (as measured by a highly sensitive clinical assay). The 

resulting in-house HIV-1 qRT-PCR viral load assay was found to have a lower limit of 

quantitation of 800 copies per milliliter plasma (cpm) by probit analysis and was highly 

reproducible (Fig. 1.2). 
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Figure 1.2: Validation of HIV-1 qRT-PCR plasma viral load assay.  

Left, standard curve measurements averaged from fifteen consecutive qRT-PCR assays (error bars: 
standard deviation). Black, solid symbols reflect data points used for standard curve analysis. Right, test 
of inter-assay and intra-assay variation. Mice from which triplicate plasma samples could be obtained 
were analyzed in two independent experiments. In one experiment (gray bars), duplicate plasma samples 
were independently extracted and analyzed; in a second experiment (black bars), a third replicate plasma 
sample was independently extracted and analyzed. Intra-assay and inter-assay variation were always 
less than log10 (0.5) units. Peak viral loads were generally correlated with engraftment (data not shown). 
 

Plasma viral loads in hu-mice reached concentrations equivalent to HIV-1-infected 

humans and SIV-infected macaques (Fig. 1.3). After many weeks of infection, human 

CD4 counts declined, as occurs in chronically HIV-1-infected humans (Fig. 1.3). To 

determine whether HIV-1 infection of hu-mice results in the high rates of viral 

diversification observed in humans, I utilized an assay to sequence the gp120 portion of 

env from individual plasma viruses. Briefly, purified RNA extracted as previously 

described was reverse-transcribed using the primer 5’-GGTGTGTAGTTCTGCCAATCA-

GGGAAGWAGCCTTGTG-3’ by SuperScript III first-strand synthesis (Invitrogen). The 

resulting cDNA was amplified by two rounds of nested PCR: primers  
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Figure 1.3: Viral load and CD4 T-cell depletion in HIV-1YU2-infected hu-mice.  

Left, plasma viral loads from untreated hu-mice. X-axis reflects days relative to subject enrollment. Red 
arrow indicates time of infection; each gray line reflects one animal; bold red line indicates population 
average over time. Right, change in CD4/CD8 ratios (normalized to baseline) in PBMC of infected mice 
over time. X-axis reflects days since infection. Each maroon line reflects a single animal; bold black line 
reflects the population average. 
 

used for the first round of PCR were 5’-GGCTTAGGCATCTCCTATGGCAGGAAGAA-3’ 

and 5’-GGTGTGTAGTTCTGCCAATCAGGGAAGWAGCCTTGTG-3’, and primers for 

the second round of PCR were 5’-TAGAAAGAGCAGAAGACAGTGGCAATGA-3’ and 

5’-TCATCAATGGTGGTGATGATGATGTTTTTCTCTCTGCACCACTCTTCT-3’. PCR 

bands were cloned by topoisomerase-mediated ligation (pCR4 TOPO-TA kit, Invitrogen) 

and the resulting plasmids sequenced (Genewiz). Sequencing of plasma virus shortly 

after infection revealed rapid viral diversification (Fig. 1.4), but recurring mutations that 

would suggest a need for viral adaptation to hu-mice were not observed. Sequencing of 

clonal virus from purified viral stocks confirmed that the measured viral diversity in hu-

mice was not merely an artifact of PCR errors (Fig. 1.4). These data indicated that HIV-

1YU2 infection in hu-mice was robust and resembled many elements of acute HIV-1 

infection in humans. 
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Figure 1.4: Rapid viral diversification after clonal infection.  

Left, mutations in env gp120 in the plasma viruses of HIV-1YU2-infected mice shortly after infection. Red 
and green bars reflect non-synonymous and synonymous mutations with respect to HIV-1YU2, 
respectively. Horizontal lines reflect a single gp120 sequence from the animal indicated at left. Right, 
mutations due to PCR errors in single sequences obtained from gp120 cloning of the HIV-1YU2 viral stock. 
The indicated sample copy number (as measured by viral load) used for RT-PCR is given at left of each 
sequence. Mutation frequency due to PCR was significantly lower (p < 0.01) than that found in plasma 
viruses from untreated infected animals. 
 

Individual bNAbs rapidly select for viral resistance 

While early experiments in HIV-1-infected humans showed that first-generation bNAbs 

were therapeutically ineffective, none of the broader and substantially more potent 

second-generation bNAbs had yet been evaluated in any therapeutic context. To 

investigate whether second-generation bNAbs could suppress active HIV-1 infection in 

vivo, I treated viremic HIV-1YU2-infected hu-mice with one of several different second-

generation monoclonal bNAbs. Antibodies were chosen on the basis of their potency, 

breadth, and target site on the HIV-1 envelope trimer: PG16 is a glycan-binding 

antibody that targets a conformational epitope spanning gp120 variable loops 1 and 

2(49); 10-1074 and PGT128 target the base of the gp120 variable loop 3 and interact 
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with a conserved glycan at position N332(33, 50); 3BC176 targets a quaternary epitope 

that exists as a conformational intermediate spanning the gp120-gp41 interface(34); 

and NIH45-46G54W (45-46W) is a more potent, engineered variant of the bNAb NIH45-

46, which targets the CD4-binding site on gp120(32, 51). All five antibodies exhibited 

strong neutralizing potency against HIV-1YU2 in vitro, with IC50s ranging from 0.02-

0.3(52) in a TZM-bl neutralization assay(53). Treatment of viremic animals with 

individual bNAbs led to transient reductions in plasma viral loads in a majority of 

animals for all but one of the bNAbs tested (Fig. 1.5).  
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  D    

 
T1/2 (days):           6.3  2.5         0.7   2.2       3.1 
 
Figure 1.5: Individual bNAbs transiently lower viral load.  

A, viral loads (log10 cpm) in hu-mice treated with the indicated bNAb. Antibodies were administered during 
the period shaded in gray. Each line reflects a single animal. B, population average viral loads 
(normalized to baseline) for each group of animals in A (and control animals from Fig. 1.3). Averages 
were computed by moving average (geometric mean). C, quantitation of viral load changes (normalized to 
baseline) at the indicated number of days after initiation of bNAb treatment. Viral load changes one week 
after treatment initiation were significantly different from control animals for two bNAbs (* = p <0.05, ** = p 
<0.01, Kruskal-Wallis test). Viral loads for all groups returned to baseline levels four weeks after treatment 
initiation. Scale, as in B. D, bNAb IgG concentrations in plasma of NRG mice and corresponding half-lives 
are shown. Mice were injected intravenously with 0.5mg of each antibody (red arrows) and the plasma 
concentration over time was measured by anti-human IgG1 ELISA.  
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Strong reductions in viral load were observed after one week of bNAb treatment for all 

bNAbs except 3BC176 (Fig. 1.5A,B). Viral loads returned to baseline levels in bNAb-

treated animals two weeks after treatment initiation (Fig. 1.5C), when antibody was still 

being administered. It was therefore anticipated that the viruses had acquired mutations 

conferring resistance to bNAb neutralization. The env gp120 sequences from plasma 

virus of treated animals were sequenced to identify mutations that might have arisen in 

response to bNAb treatment. As expected, nearly all viral sequences obtained from 

animals treated with PG16, 45-46W, PGT128, or 10-1074 carried amino acid changes 

at sites known to be critical for their interaction with gp120 (Fig. 1.6). PG16-associated 

mutations universally removed the putative N-linked glycosylation site (PNGS) at 

residue 160 by mutation of either N160 or T162. 45-46W-associated mutations occurred 

at CD4bs residues spanning either 279-281 or 458/459, with a highly prevalent mutation 

to A281T. PGT128-associated mutations universally removed the PNGS at residue 332 

by mutation of either N332 or S334. 10-1074-associated mutations were extremely 

restricted, with 51 of 53 sequences mutated to N332K. Viruses obtained from animals 

treated with bNAb 3BC176, for which viral loads increased acutely following therapy 

initiation, did not contain recurring mutations in gp120, despite that antibody having the 

longest half-life in mouse plasma (Fig. 1.5D). These data suggested that 3BC176 was 

sub-therapeutic against HIV-1YU2 infection in hu-mice. 
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A

 
B

 
 
Figure 1.6: env gp120 sequences reveal amino acid substitutions at antibody contact sites.  

A, individual viral sequences from animals treated with the indicated bNAb (or controls), annotated as in 
Fig. 1.4. Gray shaded vertical lines reflect recurring mutations not found in bNAb contact sites; blue 
shaded vertical lines reflect recurring mutations in bNAb contact sites. The Hxb2-aligned gp120 residues 
are shown above each blue shaded line. B, summary of amino acid changes (from A) in bNAb contact 
sites for animals treated with the indicated bNAb. Original residues in HIV-1YU2 are given at the perimeter, 
while colored slices and corresponding letters reflect the mutation observed. Numbers in the center of 
each pie chart give the number of mice, followed by the number of discrete gp120 sequences obtained. 
 

To determine whether the amino acid changes in gp120 found in antibody contact sites 

conferred resistance to neutralization, I introduced selected point mutations into HIV-
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1YU2 pseudoviruses and assayed for bNAb neutralization in vitro by TZM-bl assay. This 

work was performed in collaboration with the laboratory of Dr. Michael S. Seaman (Beth 

Israel Deaconess Medical Center, Boston, MA). Expectedly, amino acid changes arising 

in bNAb contact sites fully abrogated neutralizing activity of the respective bNAbs in a 

majority of cases (Fig. 1.7). Strikingly, the number of amino acid positions on gp120 that 

were mutated in response to bNAb pressure was very low, suggesting that the strong in 

vivo neutralizing potency of each effective bNAb overwhelmingly restricted the possible 

routes of viral escape.  

 

Figure 1.7: Amino acid changes found in bNAb contact sites confer bNAb resistance.  

HIV-1YU2 point mutants were generated based upon the gp120 sequences of animals treated with the 
indicated bNAb at left. Pseudoviruses carrying the indicated point mutants (in bold at left, Hxb2-aligned 
gp120 residue) were tested for neutralization in vitro by the indicated bNAbs at right. IC50 (ug/ml) is shown 
for each condition. Red shading, < 0.1 ug/ml; orange shading, < 1.0 ug/ml; yellow-orange shading, < 10 
ug/ml; yellow shading, < 50 ug/ml. 
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Of note, two of the bNAbs tested, PGT128 and 10-1074, share a common epitope 

comprised of a glycan moiety at position N332. While both bNAbs exhibited similar 

neutralizing potencies against unmutated HIV-1YU2 (Fig. 1.7), the viral sequences that 

emerged after bNAb treatment of infected hu-mice reflected key differences in bNAb 

resistance profiles (Fig. 1.6B). Whereas PGT128 treatment elicited any of several 

different mutations at either N332 or S334, all of which merely removed the N-linked 

glycan at position 332, 10-1074 treatment elicited a highly restricted escape profile 

limited almost exclusively to N332K. When pseudoviruses harboring various mutations 

at the 332 position were tested for neutralization by PGT128 or 10-1074, it was evident 

that mere removal of the 332 glycan was sufficient for PGT128 resistance, but only the 

N332K mutation resulted in complete resistance to 10-1074 (Fig. 1.7). This restrictive 

escape requirement may explain why viremia in one of the six mice treated with 10-

1074 alone became suppressed and failed to escape antibody pressure (Fig. 1.5A), 

despite a very high pre-treatment viral load.  

 

In conclusion, individual highly potent bNAbs can transiently depress viral loads in hu-

mice, and rapidly select for bNAb-resistant viruses through restricted patterns of escape 

conferred by amino acid changes in the antibody binding sites on gp120. 

 

Combinations of bNAbs can suppress viral loads in hu-mice 

As treatment of hu-mice with individual bNAbs imposed strong selective pressure on 

viral populations, I sought to test whether combinations of multiple highly potent bNAbs 

could further restrict virus escape pathways and possibly prevent viral escape. As was 
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done for individual bNAbs, HIV-1YU2-infected, viremic hu-mice were treated with a 

combination of three bNAbs: 3BC176, PG16, and 45-46W (tri-mix, Fig. 1.8). While a 

plurality of tri-mix-treated animals exhibited transient viral load depression followed by 

rebound to pre-treatment levels, three animals fell below the assay LOQ (800 cpm) 2-3 

weeks after initiation of bNAb therapy. Viral blips were occasionally observed thereafter, 

but these three animals exhibited sustained viremic suppression during the antibody 

treatment period. These data stand in contrast to animals treated with individual bNAbs, 

in which virus nearly always rebounded to pretreatment levels after two weeks of bNAb 

therapy. 

 

Figure 1.8: A bNAb tri-mix can durably suppress viremia in some hu-mice.  

Left, viral loads (log10 cpm) of twelve hu-mice treated with a bNAb tri-mix of 3BC176, PG16 and 45-46W 
(lines and shading as in Fig. 1.5A). Right, population average changes in viral loads for the indicated 
treatment groups (as in Fig. 1.5B).  
 

To determine whether the viruses that rebounded to pre-treatment levels carried escape 

mutations to the antibodies comprising the tri-mix, I again obtained individual gp120 

sequences from plasma virus (Fig. 1.9). Almost without exception, discrete gp120 

sequences carried mutations in both PG16 and 45-46W contact sites, many of which 
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were previously shown to confer complete resistance to the respective bNAbs (Fig. 1.7). 

No recurring mutations were observed that could confer resistance to 3BC176, as 

expected from individual bNAb therapy with that antibody. This result yields two 

observations: first, extensive viral diversification occurs within 2-3 weeks of infection 

that is sufficient to form clones harboring simultaneous resistance mutations to PG16 

and 45-46W; and second, the co-existence of resistance mutations to both PG16 and 

45-46W is not deleterious to viral fitness. 

 

 

Figure 1.9: Simultaneous bNAb escape mutations arise in tri-mix treated animals.  

Left, plasma virus gp120 sequences (as in Fig. 1.6A) of tri-mix treated animals after viral rebound (2-6 
weeks after treatment initiation). Right, pie charts (as in Fig. 1.6B) showing the prevalence of amino acid 
changes at PG16 (top) or 45-46W contact sites. 
 

While tri-mix therapy resulted in most animals developing viral resistance to both PG16 

and 45-46W, the finding that viral suppression did occur in some animals suggested 
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that the requirement for two simultaneous bNAb resistance mutations severely 

restricted the likelihood of viral escape. To test whether requiring additional resistance 

mutations would increase the likelihood of viremic control, I added two additional 

bNAbs, PGT128 and 10-1074, to the tri-mix (penta-mix). These two antibodies target 

the same viral epitope, which does not overlap with PG16 or 45-46W, and they were 

found to share consistent resistance mutations when used individually to treat hu-mice 

(Fig. 1.6). Strikingly, penta-mix treatment (Fig. 1.10) resulted in viremic control in all 

fourteen animals. Viral loads in all animals remained below baseline during the entire 

treatment period, and most also remained below the assay LOQ during that time. 

 

Figure 1.10: A bNAb penta-mix suppresses viremia in hu-mice.  

Left, viral loads (log10 cpm) of penta-mix treated hu-mice (as in Fig. 1.5A). Right, population average viral 
load changes for the indicated treatment groups (as in Fig. 1.5B). 
 

A minority of animals had detectable viral loads, despite continued penta-mix therapy. 

To determine whether these animals harbored resistance mutations to the entire penta-

mix, I again obtained individual plasma virus gp120 sequences. Surprisingly, all viral 

sequences in all animals from which sequences could be obtained were defective, 

replete with STOP codons reflecting APOBEC3G/3F signature mutations (Fig. 1.11). It 
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remains unclear whether these defective RNA sequences reflect egress of Env-free 

particles, or whether they are instead the products of infected cell apoptosis. 

 

Figure 1.11: Penta-mix treated animals do not carry functional plasma virus.  

Gp120 sequences (as in Fig. 1.6) from penta-mix treated animals that were persistently viremic at low 
levels are shown. Asterisks indicate mutations resulting in STOP codons.  
 

To validate that viral suppression by bNAbs was the result of an inability to generate 

simultaneous resistance mutations, as opposed to low-level persistence and ongoing 

replication of resistant virus, I withdrew suppressed tri-mix and penta-mix treated 

animals from antibody therapy (Fig. 1.12). In a majority of cases, viremia returned 

coincident with the disappearance of bNAbs from mouse plasma (as measured by anti-

gp120 ELISA). The rapid re-emergence of viremia upon antibody decay suggested that 

the presence of the bNAbs was, indeed, responsible for sustained virological 

suppression. Furthermore, when penta-mix treated animals were re-treated with the 

same penta-mix after viremia had returned, their viral loads again became rapidly 
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suppressed, indicating that the rebounding virus remained sensitive to neutralization by 

the penta-mix.  

 

Figure 1.12: Withdrawal of bNAb therapy results in viremic rebound.  

Viral loads (blue lines/symbols, left y-axis) and HIV-1-specific human IgG1 (yellow lines/symbols, right y-
axis) for each animal suppressed by either tri-mix (top) or penta-mix bNAb therapy are shown. Green 
dashed line gives the average viral load of control mice at equivalent times post-infection. Bottom-right, 
retreatment of penta-mix treated animals (viral loads shown in blue lines/symbols) post-rebound re-
suppresses viral loads. 
 

To confirm that the rebounding virus in bNAb-suppressed animals did not carry 

simultaneous bNAb resistance mutations, I obtained plasma gp120 sequences from 

rebound plasma virus (Fig. 1.13). As expected, no viral sequences were found that 

We attempted to clone gp120 sequences from the plasma and cell-
associated RNA of all penta-mix mice. Although we succeeded in
obtaining sequences from three mice during the treatment period,
every sequenced clone had at least one in-frame stop codon, all of
which were consistent with signature APOBEC3G/F mutations
(Supplementary Fig. 12 and Supplementary Table 3b). In contrast,
27 out of 28 gp120 sequences from viruses cloned after therapy was
stopped and viral load rebounded did not have stop codons (Fig. 3d
and Supplementary Table 3b). Furthermore, viruses that rebounded
carried no or only one signature resistance mutation and remained

susceptible to the penta-mix as viraemiawas controlled by re-treatment
(Fig. 3e). Therefore, humanized mice treated with the penta-mix were
unable to escape antibody pressure by way of envelope mutations, but
the virus remained latent throughout the treatment period in at least
7 out of 8 mice.
HIV-1 infection in humanizedmice differs fromHIV-1 infection in

humans in a number of important respects including a lower total viral
load and a near absence of antibody-mediated immune responses, and
therefore there is no pre-existing selective pressure on the envelope18

(Supplementary Fig. 13).
Previous antibody therapy experiments in humanized mice and

humans concluded that treatment with combinations of antibodies
had only limited effects against established HIV-1 infection4,23,24.
However, the broadly neutralizing antibodies used in those experi-
ments (that is, in mice b12, 2G12, 2F5; in humans 2G12, 4E10, 2F5)
were orders of magnitude less potent than the ones used in this study.
The difference in potency and the extended combination of broadly
neutralizing antibodies probably account for the differences between
our findings and earlier work.
Combinationantibody therapy resembles antiretroviral, antimicrobial

or anti-tumour combined therapy, in that escape requires the improbable
appearance of multiple simultaneous mutations. However, antibodies
differ from other therapeutic modalities for HIV in several respects.
First, they can neutralize the pathogen directly; second, they have the
potential to clear the virus and infected cells through engagement of
innate effector responses25; third, immune complexes produced by the
passively transferred antibodies may enhance immunity to HIV-126;
and fourth antibodies have far longer half-lives than currently used
antiretroviral drugs. Finally, anti-HIV-1 antibodies can be stably
expressed in mammalian hosts for many months using adeno-
associated viruses and therefore the potential exists to prolong their
bioavailability further27,28. Althoughwe have not combined antibodies
and small molecule antiretroviral drugs, we speculate that such com-
binations may be particularly effective because antibodies add a new
modality to existing therapies. In addition, a combination of highly
potent antibodies may be effective in suppressing viraemia in indivi-
duals who do not tolerate anti-HIV medication.
This study establishes the principle that broadly neutralizing anti-

bodies can suppress HIV-1 viraemia to levels that are below detection
in humanized mice for prolonged periods of time. Their efficacy as
therapeutics and their long-term effects onHIV-1 infection in humans
can only be evaluated in clinical trials.

METHODS SUMMARY
Mice. Human fetal livers were procured from Advanced Bioscience Resources
(ABR), Inc. NODRag12/2Il2rgnull mice (The Jackson Laboratory) were irradiated
with 100 cGy and reconstituted by injecting 1.5–23 105 human CD341 haema-
topoietic stem cells (HSCs) intrahepatically. Eight or more weeks after CD341

HSC injection, mice were infected intraperitoneally with HIV-1YU2 (57.5 ng p24).
Viral load was determined 14–20 days after infection and mice with viral loads
.43 103 copiesml21 were subjected to experiments. All experiments were per-
formedwith authorization from the Institutional Review Board and the IACUC at
The Rockefeller University.
Measuring HIV-1 viral load. Total RNA was extracted from 100ml EDTA-
plasma and samples were analysed for HIV-1 RNA by qRT–PCR. Primers and
an amplicon-specific probe targeted a conserved region within the HIV-1 59 long
terminal repeat. Forward and reverse primer sequences were 59-GCCTC
AATAAAGCTTGCCTTGA-39 and 59-GGCGCCACTGCTAGAGATTTT-39,
respectively29. The internal probe (59-AAGTAGTGTGTGCCCGTCTGTTRT
KTGACT-39)29 contained a 59 6-carboxyfluorescein reporter and an internal/39
ZEN-Iowa Black FQ double-quencher (Integrated DNA Technologies). The reac-
tion mix was prepared using the TaqMan RNA-to-Ct 1-Step kit (Applied
Biosystems). Cycle threshold (Ct) values were correlated to standard samples of
known viral RNA copy number. The lower limit of detection was found at 800
HIV-1 RNA copiesml21.
Antibody treatment. Filtered (Ultrafree-CL 0.22mm, Millipore) 0.5mg of each
antibody was injected subcutaneously once (3BC176) or twice (PG16, 45-46G54W,
PGT128, 10-1074) per week (Supplementary Fig. 5).
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Figure 3 | Viral rebound in HIV-1YU2-infected humanized mice after
cessationof antibody therapy. Viral load inRNAcopiesml21 (blue, left y axis)
and antibody concentration reactive to YU2 gp120 in mgml21 (orange, right y
axis) over time (x axis) after the last antibody injection (day 0). The green dotted
line indicates the viral load average of the control group (Fig. 1a). a, Viral load
and YU2 gp120-reactive antibody concentration after stopping tri-mix therapy
in mice that effectively controlled viraemia below the limit of detection. mAb,
monoclonal antibody. b, gp120 sequences illustrated as in Fig. 2b for viruses
obtained after viral rebound frommice previously treated with tri-mix therapy.
Vertical blue bars highlight sites in which selected mutations are able to confer
resistance (Supplementary Table 3a and Supplementary Fig. 8). c, Viral load and
YU2 gp120-reactive antibody concentration after stopping penta-mix therapy.
d, gp120 sequences for viruses obtained after rebound from mice previously
treated with penta-mix therapy (Supplementary Table 3b). e, Viral load of four
mice re-treated with penta-mix therapy after viral rebound (c). Treatment
period is highlighted in grey. Mouse numbers correspond to the mice in c.
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We attempted to clone gp120 sequences from the plasma and cell-
associated RNA of all penta-mix mice. Although we succeeded in
obtaining sequences from three mice during the treatment period,
every sequenced clone had at least one in-frame stop codon, all of
which were consistent with signature APOBEC3G/F mutations
(Supplementary Fig. 12 and Supplementary Table 3b). In contrast,
27 out of 28 gp120 sequences from viruses cloned after therapy was
stopped and viral load rebounded did not have stop codons (Fig. 3d
and Supplementary Table 3b). Furthermore, viruses that rebounded
carried no or only one signature resistance mutation and remained

susceptible to the penta-mix as viraemiawas controlled by re-treatment
(Fig. 3e). Therefore, humanized mice treated with the penta-mix were
unable to escape antibody pressure by way of envelope mutations, but
the virus remained latent throughout the treatment period in at least
7 out of 8 mice.
HIV-1 infection in humanizedmice differs fromHIV-1 infection in

humans in a number of important respects including a lower total viral
load and a near absence of antibody-mediated immune responses, and
therefore there is no pre-existing selective pressure on the envelope18

(Supplementary Fig. 13).
Previous antibody therapy experiments in humanized mice and

humans concluded that treatment with combinations of antibodies
had only limited effects against established HIV-1 infection4,23,24.
However, the broadly neutralizing antibodies used in those experi-
ments (that is, in mice b12, 2G12, 2F5; in humans 2G12, 4E10, 2F5)
were orders of magnitude less potent than the ones used in this study.
The difference in potency and the extended combination of broadly
neutralizing antibodies probably account for the differences between
our findings and earlier work.
Combinationantibody therapy resembles antiretroviral, antimicrobial

or anti-tumour combined therapy, in that escape requires the improbable
appearance of multiple simultaneous mutations. However, antibodies
differ from other therapeutic modalities for HIV in several respects.
First, they can neutralize the pathogen directly; second, they have the
potential to clear the virus and infected cells through engagement of
innate effector responses25; third, immune complexes produced by the
passively transferred antibodies may enhance immunity to HIV-126;
and fourth antibodies have far longer half-lives than currently used
antiretroviral drugs. Finally, anti-HIV-1 antibodies can be stably
expressed in mammalian hosts for many months using adeno-
associated viruses and therefore the potential exists to prolong their
bioavailability further27,28. Althoughwe have not combined antibodies
and small molecule antiretroviral drugs, we speculate that such com-
binations may be particularly effective because antibodies add a new
modality to existing therapies. In addition, a combination of highly
potent antibodies may be effective in suppressing viraemia in indivi-
duals who do not tolerate anti-HIV medication.
This study establishes the principle that broadly neutralizing anti-

bodies can suppress HIV-1 viraemia to levels that are below detection
in humanized mice for prolonged periods of time. Their efficacy as
therapeutics and their long-term effects onHIV-1 infection in humans
can only be evaluated in clinical trials.

METHODS SUMMARY
Mice. Human fetal livers were procured from Advanced Bioscience Resources
(ABR), Inc. NODRag12/2Il2rgnull mice (The Jackson Laboratory) were irradiated
with 100 cGy and reconstituted by injecting 1.5–23 105 human CD341 haema-
topoietic stem cells (HSCs) intrahepatically. Eight or more weeks after CD341

HSC injection, mice were infected intraperitoneally with HIV-1YU2 (57.5 ng p24).
Viral load was determined 14–20 days after infection and mice with viral loads
.43 103 copiesml21 were subjected to experiments. All experiments were per-
formedwith authorization from the Institutional Review Board and the IACUC at
The Rockefeller University.
Measuring HIV-1 viral load. Total RNA was extracted from 100ml EDTA-
plasma and samples were analysed for HIV-1 RNA by qRT–PCR. Primers and
an amplicon-specific probe targeted a conserved region within the HIV-1 59 long
terminal repeat. Forward and reverse primer sequences were 59-GCCTC
AATAAAGCTTGCCTTGA-39 and 59-GGCGCCACTGCTAGAGATTTT-39,
respectively29. The internal probe (59-AAGTAGTGTGTGCCCGTCTGTTRT
KTGACT-39)29 contained a 59 6-carboxyfluorescein reporter and an internal/39
ZEN-Iowa Black FQ double-quencher (Integrated DNA Technologies). The reac-
tion mix was prepared using the TaqMan RNA-to-Ct 1-Step kit (Applied
Biosystems). Cycle threshold (Ct) values were correlated to standard samples of
known viral RNA copy number. The lower limit of detection was found at 800
HIV-1 RNA copiesml21.
Antibody treatment. Filtered (Ultrafree-CL 0.22mm, Millipore) 0.5mg of each
antibody was injected subcutaneously once (3BC176) or twice (PG16, 45-46G54W,
PGT128, 10-1074) per week (Supplementary Fig. 5).
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Figure 3 | Viral rebound in HIV-1YU2-infected humanized mice after
cessationof antibody therapy. Viral load inRNAcopiesml21 (blue, left y axis)
and antibody concentration reactive to YU2 gp120 in mgml21 (orange, right y
axis) over time (x axis) after the last antibody injection (day 0). The green dotted
line indicates the viral load average of the control group (Fig. 1a). a, Viral load
and YU2 gp120-reactive antibody concentration after stopping tri-mix therapy
in mice that effectively controlled viraemia below the limit of detection. mAb,
monoclonal antibody. b, gp120 sequences illustrated as in Fig. 2b for viruses
obtained after viral rebound frommice previously treated with tri-mix therapy.
Vertical blue bars highlight sites in which selected mutations are able to confer
resistance (Supplementary Table 3a and Supplementary Fig. 8). c, Viral load and
YU2 gp120-reactive antibody concentration after stopping penta-mix therapy.
d, gp120 sequences for viruses obtained after rebound from mice previously
treated with penta-mix therapy (Supplementary Table 3b). e, Viral load of four
mice re-treated with penta-mix therapy after viral rebound (c). Treatment
period is highlighted in grey. Mouse numbers correspond to the mice in c.
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carried mutations expected to confer resistance to either the tri-mix or the penta-mix, 

although occasional mutations could be identified to one of the bNAbs in some mice.  

 

 

Figure 1.13: Rebounding virus from bNAb-suppressed mice is not bNAb-resistant.  

Plasma gp120 sequences (as in Fig. 1.6) from tri-mix (top) or penta-mix treated animals maintaining 
viremic suppression during treatment. 
 

In summary, these experiments demonstrated that bNAbs can apply strong selective 

pressure on viral populations in the context of active HIV-1 viremia in infected hu-mice. 

Due to the high mutation rate of HIV-1, bNAb-resistant viruses were rapidly selected in 

response to treatment of infected animals with individual monoclonal bNAbs. However, 

combinations of bNAbs resulted in durable viremic suppression, and increasing the 

We attempted to clone gp120 sequences from the plasma and cell-
associated RNA of all penta-mix mice. Although we succeeded in
obtaining sequences from three mice during the treatment period,
every sequenced clone had at least one in-frame stop codon, all of
which were consistent with signature APOBEC3G/F mutations
(Supplementary Fig. 12 and Supplementary Table 3b). In contrast,
27 out of 28 gp120 sequences from viruses cloned after therapy was
stopped and viral load rebounded did not have stop codons (Fig. 3d
and Supplementary Table 3b). Furthermore, viruses that rebounded
carried no or only one signature resistance mutation and remained

susceptible to the penta-mix as viraemiawas controlled by re-treatment
(Fig. 3e). Therefore, humanized mice treated with the penta-mix were
unable to escape antibody pressure by way of envelope mutations, but
the virus remained latent throughout the treatment period in at least
7 out of 8 mice.
HIV-1 infection in humanizedmice differs fromHIV-1 infection in

humans in a number of important respects including a lower total viral
load and a near absence of antibody-mediated immune responses, and
therefore there is no pre-existing selective pressure on the envelope18

(Supplementary Fig. 13).
Previous antibody therapy experiments in humanized mice and

humans concluded that treatment with combinations of antibodies
had only limited effects against established HIV-1 infection4,23,24.
However, the broadly neutralizing antibodies used in those experi-
ments (that is, in mice b12, 2G12, 2F5; in humans 2G12, 4E10, 2F5)
were orders of magnitude less potent than the ones used in this study.
The difference in potency and the extended combination of broadly
neutralizing antibodies probably account for the differences between
our findings and earlier work.
Combinationantibody therapy resembles antiretroviral, antimicrobial

or anti-tumour combined therapy, in that escape requires the improbable
appearance of multiple simultaneous mutations. However, antibodies
differ from other therapeutic modalities for HIV in several respects.
First, they can neutralize the pathogen directly; second, they have the
potential to clear the virus and infected cells through engagement of
innate effector responses25; third, immune complexes produced by the
passively transferred antibodies may enhance immunity to HIV-126;
and fourth antibodies have far longer half-lives than currently used
antiretroviral drugs. Finally, anti-HIV-1 antibodies can be stably
expressed in mammalian hosts for many months using adeno-
associated viruses and therefore the potential exists to prolong their
bioavailability further27,28. Althoughwe have not combined antibodies
and small molecule antiretroviral drugs, we speculate that such com-
binations may be particularly effective because antibodies add a new
modality to existing therapies. In addition, a combination of highly
potent antibodies may be effective in suppressing viraemia in indivi-
duals who do not tolerate anti-HIV medication.
This study establishes the principle that broadly neutralizing anti-

bodies can suppress HIV-1 viraemia to levels that are below detection
in humanized mice for prolonged periods of time. Their efficacy as
therapeutics and their long-term effects onHIV-1 infection in humans
can only be evaluated in clinical trials.

METHODS SUMMARY
Mice. Human fetal livers were procured from Advanced Bioscience Resources
(ABR), Inc. NODRag12/2Il2rgnull mice (The Jackson Laboratory) were irradiated
with 100 cGy and reconstituted by injecting 1.5–23 105 human CD341 haema-
topoietic stem cells (HSCs) intrahepatically. Eight or more weeks after CD341

HSC injection, mice were infected intraperitoneally with HIV-1YU2 (57.5 ng p24).
Viral load was determined 14–20 days after infection and mice with viral loads
.43 103 copiesml21 were subjected to experiments. All experiments were per-
formedwith authorization from the Institutional Review Board and the IACUC at
The Rockefeller University.
Measuring HIV-1 viral load. Total RNA was extracted from 100ml EDTA-
plasma and samples were analysed for HIV-1 RNA by qRT–PCR. Primers and
an amplicon-specific probe targeted a conserved region within the HIV-1 59 long
terminal repeat. Forward and reverse primer sequences were 59-GCCTC
AATAAAGCTTGCCTTGA-39 and 59-GGCGCCACTGCTAGAGATTTT-39,
respectively29. The internal probe (59-AAGTAGTGTGTGCCCGTCTGTTRT
KTGACT-39)29 contained a 59 6-carboxyfluorescein reporter and an internal/39
ZEN-Iowa Black FQ double-quencher (Integrated DNA Technologies). The reac-
tion mix was prepared using the TaqMan RNA-to-Ct 1-Step kit (Applied
Biosystems). Cycle threshold (Ct) values were correlated to standard samples of
known viral RNA copy number. The lower limit of detection was found at 800
HIV-1 RNA copiesml21.
Antibody treatment. Filtered (Ultrafree-CL 0.22mm, Millipore) 0.5mg of each
antibody was injected subcutaneously once (3BC176) or twice (PG16, 45-46G54W,
PGT128, 10-1074) per week (Supplementary Fig. 5).
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Figure 3 | Viral rebound in HIV-1YU2-infected humanized mice after
cessationof antibody therapy. Viral load inRNAcopiesml21 (blue, left y axis)
and antibody concentration reactive to YU2 gp120 in mgml21 (orange, right y
axis) over time (x axis) after the last antibody injection (day 0). The green dotted
line indicates the viral load average of the control group (Fig. 1a). a, Viral load
and YU2 gp120-reactive antibody concentration after stopping tri-mix therapy
in mice that effectively controlled viraemia below the limit of detection. mAb,
monoclonal antibody. b, gp120 sequences illustrated as in Fig. 2b for viruses
obtained after viral rebound frommice previously treated with tri-mix therapy.
Vertical blue bars highlight sites in which selected mutations are able to confer
resistance (Supplementary Table 3a and Supplementary Fig. 8). c, Viral load and
YU2 gp120-reactive antibody concentration after stopping penta-mix therapy.
d, gp120 sequences for viruses obtained after rebound from mice previously
treated with penta-mix therapy (Supplementary Table 3b). e, Viral load of four
mice re-treated with penta-mix therapy after viral rebound (c). Treatment
period is highlighted in grey. Mouse numbers correspond to the mice in c.
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We attempted to clone gp120 sequences from the plasma and cell-
associated RNA of all penta-mix mice. Although we succeeded in
obtaining sequences from three mice during the treatment period,
every sequenced clone had at least one in-frame stop codon, all of
which were consistent with signature APOBEC3G/F mutations
(Supplementary Fig. 12 and Supplementary Table 3b). In contrast,
27 out of 28 gp120 sequences from viruses cloned after therapy was
stopped and viral load rebounded did not have stop codons (Fig. 3d
and Supplementary Table 3b). Furthermore, viruses that rebounded
carried no or only one signature resistance mutation and remained

susceptible to the penta-mix as viraemiawas controlled by re-treatment
(Fig. 3e). Therefore, humanized mice treated with the penta-mix were
unable to escape antibody pressure by way of envelope mutations, but
the virus remained latent throughout the treatment period in at least
7 out of 8 mice.
HIV-1 infection in humanizedmice differs fromHIV-1 infection in

humans in a number of important respects including a lower total viral
load and a near absence of antibody-mediated immune responses, and
therefore there is no pre-existing selective pressure on the envelope18

(Supplementary Fig. 13).
Previous antibody therapy experiments in humanized mice and

humans concluded that treatment with combinations of antibodies
had only limited effects against established HIV-1 infection4,23,24.
However, the broadly neutralizing antibodies used in those experi-
ments (that is, in mice b12, 2G12, 2F5; in humans 2G12, 4E10, 2F5)
were orders of magnitude less potent than the ones used in this study.
The difference in potency and the extended combination of broadly
neutralizing antibodies probably account for the differences between
our findings and earlier work.
Combinationantibody therapy resembles antiretroviral, antimicrobial

or anti-tumour combined therapy, in that escape requires the improbable
appearance of multiple simultaneous mutations. However, antibodies
differ from other therapeutic modalities for HIV in several respects.
First, they can neutralize the pathogen directly; second, they have the
potential to clear the virus and infected cells through engagement of
innate effector responses25; third, immune complexes produced by the
passively transferred antibodies may enhance immunity to HIV-126;
and fourth antibodies have far longer half-lives than currently used
antiretroviral drugs. Finally, anti-HIV-1 antibodies can be stably
expressed in mammalian hosts for many months using adeno-
associated viruses and therefore the potential exists to prolong their
bioavailability further27,28. Althoughwe have not combined antibodies
and small molecule antiretroviral drugs, we speculate that such com-
binations may be particularly effective because antibodies add a new
modality to existing therapies. In addition, a combination of highly
potent antibodies may be effective in suppressing viraemia in indivi-
duals who do not tolerate anti-HIV medication.
This study establishes the principle that broadly neutralizing anti-

bodies can suppress HIV-1 viraemia to levels that are below detection
in humanized mice for prolonged periods of time. Their efficacy as
therapeutics and their long-term effects onHIV-1 infection in humans
can only be evaluated in clinical trials.

METHODS SUMMARY
Mice. Human fetal livers were procured from Advanced Bioscience Resources
(ABR), Inc. NODRag12/2Il2rgnull mice (The Jackson Laboratory) were irradiated
with 100 cGy and reconstituted by injecting 1.5–23 105 human CD341 haema-
topoietic stem cells (HSCs) intrahepatically. Eight or more weeks after CD341

HSC injection, mice were infected intraperitoneally with HIV-1YU2 (57.5 ng p24).
Viral load was determined 14–20 days after infection and mice with viral loads
.43 103 copiesml21 were subjected to experiments. All experiments were per-
formedwith authorization from the Institutional Review Board and the IACUC at
The Rockefeller University.
Measuring HIV-1 viral load. Total RNA was extracted from 100ml EDTA-
plasma and samples were analysed for HIV-1 RNA by qRT–PCR. Primers and
an amplicon-specific probe targeted a conserved region within the HIV-1 59 long
terminal repeat. Forward and reverse primer sequences were 59-GCCTC
AATAAAGCTTGCCTTGA-39 and 59-GGCGCCACTGCTAGAGATTTT-39,
respectively29. The internal probe (59-AAGTAGTGTGTGCCCGTCTGTTRT
KTGACT-39)29 contained a 59 6-carboxyfluorescein reporter and an internal/39
ZEN-Iowa Black FQ double-quencher (Integrated DNA Technologies). The reac-
tion mix was prepared using the TaqMan RNA-to-Ct 1-Step kit (Applied
Biosystems). Cycle threshold (Ct) values were correlated to standard samples of
known viral RNA copy number. The lower limit of detection was found at 800
HIV-1 RNA copiesml21.
Antibody treatment. Filtered (Ultrafree-CL 0.22mm, Millipore) 0.5mg of each
antibody was injected subcutaneously once (3BC176) or twice (PG16, 45-46G54W,
PGT128, 10-1074) per week (Supplementary Fig. 5).
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Figure 3 | Viral rebound in HIV-1YU2-infected humanized mice after
cessationof antibody therapy. Viral load inRNAcopiesml21 (blue, left y axis)
and antibody concentration reactive to YU2 gp120 in mgml21 (orange, right y
axis) over time (x axis) after the last antibody injection (day 0). The green dotted
line indicates the viral load average of the control group (Fig. 1a). a, Viral load
and YU2 gp120-reactive antibody concentration after stopping tri-mix therapy
in mice that effectively controlled viraemia below the limit of detection. mAb,
monoclonal antibody. b, gp120 sequences illustrated as in Fig. 2b for viruses
obtained after viral rebound frommice previously treated with tri-mix therapy.
Vertical blue bars highlight sites in which selected mutations are able to confer
resistance (Supplementary Table 3a and Supplementary Fig. 8). c, Viral load and
YU2 gp120-reactive antibody concentration after stopping penta-mix therapy.
d, gp120 sequences for viruses obtained after rebound from mice previously
treated with penta-mix therapy (Supplementary Table 3b). e, Viral load of four
mice re-treated with penta-mix therapy after viral rebound (c). Treatment
period is highlighted in grey. Mouse numbers correspond to the mice in c.
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number of bNAbs targeting different epitopes dramatically improved rates of control. 

Antibody decay in bNAb-suppressed animals revealed that viremia returned after 

prolonged periods of control, and that re-emergent viruses remained bNAb-sensitive. 

These data stand in stark contrast to earlier studies in hu-mice and in humans, which 

found that the weaker, first-generation bNAbs were largely ineffective in suppressing 

established HIV-1 infection. I conclude that second-generation bNAbs are potent 

antiviral agents against active HIV-1 infection in hu-mice. 

!
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CHAPTER II: DURABLE CONTROL OF HIV-1 INFECTION BY SINGLE BNABS 

FOLLOWING SUPPRESSIVE ANTI-RETROVIRAL THERAPY 

 

3BNC117 and 45-46W elicit similar profiles of HIV-1YU2 resistance  

I previously found that the CD4bs bNAb 45-46W was strongly selective for viral 

resistance in hu-mice [Figs. 1.5-1.7 and (52)]. However, this antibody is an engineered 

variant of a naturally occurring CD4bs bNAb, and may not arise or be tolerated in 

humans. Additionally, 45-46W had the shortest half-life in mice of any bNAb tested (0.7 

days). To test whether a naturally arising CD4bs bNAb would be effective against HIV-1 

in vivo, I tested the effectiveness of a similar bNAb, 3BNC117(32), as a mono-

therapeutic against established HIV-1YU2 infection in hu-mice. 3BNC117, like 45-46W, 

dramatically and transiently reduced viral loads (Fig. 2.1A). 3BNC117 also exhibited an 

improved half-life over 45-46W, at 2.0 days (Fig. 2.1B). Viral sequencing identified 

resistance mutations that highly resembled those found in 45-46W-treated hu-mice (Fig. 

2.1C). 
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Figure 2.1: 3BNC117 elicits viral resistance at CD4bs residues.  

A, Viral loads are transiently depressed by treatment of HIV-1YU2-infected hu-mice with 3BNC117. B, 
Serum half-life of 3BNC117 in NRG mice, as in Fig. 1.5D. C, mutations identified in gp120 from 
3BNC117-treated mice (in A). The profile of CD4bs mutations among all clones is shown at right, as in 
Fig. 1.6B.   
 

An optimized bNAb tri-mix controls viremia and lowers cell-associated HIV-1 DNA 

I previously found that treating HIV-1-infected hu-mice with a combination of five bNAbs 

suppressed viral loads in all treated animals. However, one antibody (3BC176) was 

found to be therapeutically ineffective, while another (PGT128) resulted in a less-

restricted escape profile than a highly similar antibody (10-1074). Additionally, I opted to 

replace 45-46W with 3BNC117 because of its more favorable serum accumulation and 

similar viral resistance profile (Fig. 2.1). Thus, three antibodies were chosen that target 

three distinct viral epitopes and elicit three distinct restrictive viral escape pathways: 

PG16, 10-1074, and 3BNC117. Treatment of hu-mice with this new combination 

Figure S2 
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resulted in strong viral load suppression in all animals (Fig. 2.2), as was previously 

found with the original penta-mix.  

 In addition to suppressing plasma viral loads, the optimized tri-mix also reduced 

levels of cell-associated HIV-1 DNA in peripheral blood (Fig. 2.2). DNA levels dropped 

by an average of 0.8 log10 HIV-1 DNA copies per million human PBMC over the six-

week treatment period. This result stands in contrast to the limited effects of HAART on 

cell-associated DNA in humans, which may become reduced by 0.5-1 log10 HIV-1 DNA 

copies per million PBMC after more than a year on HAART(54). However, it should be 

noted that these experiments did not include untreated or ART-treated control animals, 

and a strong conclusion that the decline in cell-associated HIV-1 DNA is due to active 

clearance of infected cells by bNAbs cannot be made.  
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Figure 2.2: An optimized bNAb tri-mix suppresses viral load and lowers intracellular HIV-1 DNA.  

Top, plasma viral loads of hu-mice treated with 3BNC117, PG16, and 10-1074. At left and right, absolute 
plasma viral loads at the indicated time points are shown; in the middle, the viral load change in logs over 
time (red line and green line reflect population averages of treated and untreated mice respectively, 
geometric mean). Bottom, intracellular HIV-1 DNA from PBMC of hu-mice at top. At left and right, 
absolute DNA copies per million PBMC at the indicated time points; in the middle, HIV-1 DNA load 
change in logs over time (red line, as in top-middle). 
 

An oral ART regimen suppresses viral loads in hu-mice 

As I sought to explore whether bNAbs could prevent viremic rebound in hu-mice already 

suppressed by ART, it was critical to develop a means of delivering ART drugs to hu-

mice that would effectively suppress viral loads. Based on the work of previous 

groups(55, 56), I developed an oral ART regimen (cART) comprised of three drugs 

commonly used to treat HIV-1-infected humans: tenofovir disoproxil fumarate (TDF, 

1.23 mg/animal p.o., Gilead); emtricitabine (FTC, 1.48 mg/animal p.o., Gilead); and 

raltegravir (RTV, 2.46 mg/animal p.o., Merck). Drugs were crushed into fine powder, 

suspended in sterile PBS, and administered daily by gavage to hu-mice (Fig. 2.3). In 
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contrast to untreated animals, viral loads in hu-mice treated for three weeks with cART 

dropped by an average of 2.0 log10 cpm (Fig. 2.3A). Withdrawal of cART resulted in 

immediate viral rebound to pre-treatment levels, which were sustained thereafter. To 

ensure that ART did not select for specific mutations in gp120 that might later confound 

bNAb treatment experiments, viral gp120 sequences were obtained from untreated and 

cART-treated mice (Fig. 2.3B). Fortunately, and expectedly, no cART-associated 

recurring mutations could be identified in gp120, validating that env is not under 

selection by cART. While viral clones revealed, on average, one consensus mutation 

per animal, none of the identified mutations would be expected to confer resistance to 

any of the bNAbs under study. Therefore, cART is a suitable means by which to 

suppress viral loads in hu-mice for the purposes of investigating the ability of bNAbs to 

prevent post-suppression viral rebound. 
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Figure 2.3: Daily oral cART rapidly lowers viral load in hu-mice.  

A, plasma RNA viral loads in untreated (left) and cART-treated hu-mice over time. cART was 
administered by daily gavage during the time points shaded in blue. B, gp120 sequences from untreated 
(top) and cART-treated hu-mice following viral rebound.  
 

Suppressing viral load reduces the likelihood of viral escape from bNAbs 

It is understood that combinations of ART drugs with distinct antiviral mechanisms 

rapidly suppress viral loads in HIV-1-infected humans by requiring the simultaneous 

occurrence of viral strains resistant to all drugs used. Similarly, my work has shown that 

combinations of potent bNAbs targeting different viral epitopes suppress viral loads in 

hu-mice, while bNAb monotherapy rapidly selects for viral resistance. The 
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aforementioned experiments involving cART treatment of hu-mice showed that viral 

rebound occurs rapidly following withdrawal of cART, just as occurs in humans 

undergoing ART treatment interruption(57), suggesting that the viral reservoirs which 

persist despite suppressive ART are substantial. I therefore sought to determine 

whether suppression of active viremia, thereby reducing the total body load of HIV-1, 

has a measurable impact on the likelihood of viral escape from bNAbs. To answer this 

question, I suppressed HIV-1YU2-infected hu-mice with cART, later adding a monoclonal 

bNAb and withdrawing cART (Fig. 2.4) to observe viral escape.  

 

 

Figure 2.4: Individual bNAbs maintain virological suppression after ART withdrawal.  

Viral loads are shown of hu-mice suppressed with cART, followed by withdrawal of cART in the presence 
of the indicated bNAb. cART treatment is shown in blue shading, cART plus the indicated bNAb in purple 
shading, and treatment with the indicated bNAb alone in red shading. Dark blue lines/symbols, mice that 
remain suppressed following cART withdrawal; red lines/symbols, mice that escape bNAb pressure 
following cART withdrawal; green line, population average of untreated animals at similar times post-
infection.  
 

Contrary to what had previously been observed in humans(26, 27), hu-mice treated with 

single bNAbs when withdrawn from cART largely remained suppressed under bNAb 

pressure. Of 10 mice treated with 45-46W, eight mice remained suppressed, as did four 

of eight mice treated with 3BNC117, seven of eight mice treated with 10-1074, and one 

of five mice treated with PG16. Of note, hu-mice with detectable viral loads above 103 
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cpm at time of cART withdrawal uniformly escaped bNAb pressure, as might have been 

expected from the aforementioned bNAb monotherapy experiments (Fig. 1.5). However, 

the vast majority of hu-mice that had viral loads below 103 cpm following cART 

withdrawal were successfully maintained on bNAb monotherapy (eight of eight 45-46W-

treated animals, four of seven for 3BNC117, seven of seven for 10-1074, and one of 

three for PG16). These data suggest that bNAb monotherapy can successfully contain 

HIV-1 viremia once already suppressed (by ART, e.g.).  

  

To verify that sustained virological suppression under bNAb monotherapy was not the 

result of intensification of the ART regimen prior to cART withdrawal, I conducted an 

experiment identical to that shown in Fig. 2.4 with 45-46W, with the following 

modification: 45-46W was used to intensify cART for two weeks, but was withdrawn 

coincident with cART withdrawal, and raltegravir monotherapy was maintained instead 

(Fig. 2.5). 45-46W was chosen for this experiment because all eight mice with 

undetectable viral loads after cART withdrawal remained suppressed on 45-46W 

monotherapy, and because its short half-life (Fig. 1.5D) would render continuation with 

raltegravir to be properly monotherapeutic. In contrast to hu-mice continuing with 45-

46W monotherapy, which all remained suppressed, viremia in all hu-mice continuing on 

raltegravir monotherapy rapidly returned to baseline levels (Fig. 2.5).  
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Figure 2.5: bNAb intensification of cART does not prevent viral rebound when stopped coincident 

with cART withdrawal.  

Left, viral loads of cART-treated mice intensified with 45-46W and continued on 45-46W monotherapy 
following cART withdrawal (copied from Fig. 2.4). Right, cART-treated mice intensified with 45-46W and 
continued on raltegravir monotherapy following cART and 45-46W withdrawal. 
 

To confirm that sustained virological suppression under bNAb monotherapy was, 

indeed, the result of bNAb pressure, I withdrew hu-mice (from Fig. 2.4) from bNAb 

therapy and followed them to observe viral rebound. As expected from earlier 

experiments (Fig. 1.12), in the vast majority of suppressed animals, viremia rebounded 

coincident with the disappearance of antibody from blood plasma (Fig. 2.6) at time 

points that were expected based upon antibody half-lives. The vast majority of viral 

rebound events occurred when antibody concentrations were low (<1 ug/ml) or 

undetectable, indicating that bNAb monotherapy was, indeed, responsible for the 

sustained virological suppression observed in these animals.  
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Figure 2.6: Viral rebound following bNAb monotherapy is coincident with bNAb decay.  

Plasma viral loads (blue lines/symbols) and human IgG1 (maroon lines/symbols) are shown for hu-mice 
suppressed during bNAb monotherapy (from Fig. 2.4). Each plot reflects a single animal. X-axis reflects 
days since cART initiation. End of bNAb treatment is shown in red shading. Only in ID#399 did viremia 
rebound prior to antibody decay (viral load line/symbols shown in red). 
 

To determine whether rebounding viruses remained sensitive to bNAb neutralization, I 

obtained gp120 sequences from animals that rebounded to detectable levels before and 

after antibody decay (Fig. 2.7). Expectedly, animals that rebounded during bNAb 

monotherapy carried signature resistance mutations to the respective bnAbs (Fig. 2.7A), 

as had been previously identified (Figs. 1.6, 2.1). In contrast, animals that rebounded 

after suppressive bNAb monotherapy did not harbor resistant viruses (Fig. 2.7B), with 

one exception (ID#399). These data are in line with previous observations from mice 

that were successfully suppressed by combinations of bNAbs (Figs. 1.12-13), whose 

rebounding viruses also did not carry signature resistance mutations. To verify that the 

sequences arising from animals rebounding after suppressive bNAb monotherapy 

indeed remained sensitive to the bNAbs, near-complete gp120 sequences were grafted 

into an HIV-1YU2 env pseudovirus vector (by direct cloning of the KpnI-MfeI region of 
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each viral gp120 clone into the respective restriction sites of pSVIII-HIV-1YU2) and tested 

for neutralization by the respective bNAb used in treatment experiments for each animal 

(Fig. 2.7C). As a control, viruses from animals rebounding during bNAb monotherapy 

were also cloned and tested for neutralizing sensitivity. Expectedly, viruses that carried 

signature resistance mutations (arising during bNAb monotherapy) were highly resistant 

to bNAb neutralization, whereas those without signature mutations (arising after 

suppressive bNAb monotherapy) remained sensitive to neutralization.  
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Figure 2.7: Viruses from mice suppressed by bNAb monotherapy remain neutralization-sensitive.  

Gp120 sequences from mice rebounding during bNAb monotherapy (A, Fig. 2.4, red lines/symbols) or 
after suppressive bNAb monotherapy (B, Fig. 2.4, 2.6) are shown. C, Neutralizing sensitivities of 
pseudoviruses derived from mice rebounding before or after bNAb monotherapy are shown. Box shading, 
as in Fig. 1.7. 
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Whereas individual bNAbs were fully unable to suppress established viremia and rapidly 

selected for resistant viruses (Figs. 1.5-7), these experiments showed that suppressing 

viral loads with cART prior to bNAb monotherapy enabled high rates of sustained 

virological control (Figs. 2.4-7). Taken together, these data show that suppressing viral 

loads (e.g. with cART) significantly improves the ability of bNAbs to control HIV-1 

viremia in vivo, and suggest that bNAbs could effectively replace ART in HIV-1-infected 

humans who suffer from the burdens of daily ART. 

 

Gene therapy enables durable virological control by individual bNAbs alone 

My experiments thus far had demonstrated that administration of a single monoclonal 

bNAb to cART-suppressed hu-mice could maintain virological suppression when cART 

was withdrawn. However, this approach required constant administration of purified 

bNAb protein twice per week at high doses (0.5mg per injection). I hypothesized that 

repeated administration of antibody could be unnecessary if a gene therapy-based 

approach were possible that permitted stable antibody expression from a one-time 

intervention. Adeno-associated virus (AAV) vectors offered a promising solution to this 

problem: their genome size permits the insertion of a complete immunoglobulin gene 

that could be optimized for high stable expression in mice, and they exhibit a low 

immunogenicity profile both in mice and in humans(24, 58, 59). To determine whether 

an AAV-based gene therapy platform would support stable expression of bNAbs in hu-

mice, bNAb-encoding AAVs were developed in collaboration with Dr. James Wilson at 

the University of Pennsylvania. I injected 1011 genomes of an AAV vector encoding 
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recombinant 3BNC117 (AAV-3BNC117) per animal intramuscularly into HIV-1YU2-

infected hu-mice (Fig. 2.8). 3BNC117 titers increased steadily until 21 days post-

injection (Fig. 2.8A), as expected from previous studies(24) given the time required for 

AAV infection to establish a double-stranded episome capable of being transcribed. 

While titers were lower than those obtained by passive administration of 3BNC117 

protein, which usually accumulated around 100 ug/ml (Figs. 2.1, 2.6), I found that the 

viruses in all mice harbored signature resistance mutations to 3BNC117 (Fig. 2.8B) 

bearing a high degree of similarity to those identified following passive bNAb 

monotherapy (Fig. 2.1). Interestingly, the overall profile of mutations observed in AAV-

3BNC117 treated animals was noticeably more diverse than that of mice treated with 

passive 3BNC117 protein, which had higher serum accumulation. This likely reflects 

that a wider resistance profile is tolerated when serum 3BNC117 concentrations are 

low. In sum, a single injection of AAV-3BNC117 treatment led to durable 3BNC117 titers 

and imposed selective pressure on viral populations in hu-mice. 
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Figure 2.8: AAV-3BNC117 expresses 3BNC117 stably in hu-mice and selects for viral escape.  

A, Viral loads of HIV-1YU2-infected hu-mice treated at day 0 with AAV-3BNC117 (left) and gp120-binding 
human IgG1. B, gp120 sequences of mice after injection of AAV-3BNC117. Individual sequences from 
each animal (left) and the summary of amino acid changes in CD4bs residues are shown. 
 

To determine whether AAV-expressed bNAbs could durably maintain virological 
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may have been the direct result of some cART drugs interfering with AAV infectivity: the 

nucleotide analogue reverse-transcriptase inhibitor, TDF, has some reactivity with 

mammalian DNA polymerase, and may have impaired completion of the double-

stranded AAV genome following AAV transduction.) For this reason, only animals with 

detectable plasma gp120-binding human IgG1 at 21d post-AAV injection were followed 

(Fig. 2.9B). cART was withdrawn in the presence of AAV-expressed 3BNC117, and viral 

loads and antibody titers were monitored over time. Three of five mice remained durably 

suppressed for more than 75 days after cART withdrawal, while two mice rebounded 

shortly following cART withdrawal (one of which had detectable viral loads at the time 

cART was withdrawn).  

 

To validate that the durably suppressed animals were, indeed, controlled by bNAb 

expression (as opposed to being unable to support viremia due to loss of the human 

graft, e.g.), I challenged the two surviving mice with serum from mice carrying 

3BNC117-resistant virus. Both mice rapidly became viremic upon re-challenge, 

demonstrating that control was conferred directly by AAV-3BNC117. Serum 3BNC117 

titers in all five mice remained stable over the ~100-day observation period (Fig. 2.9C). 

Virus gp120 sequences from both mice that rebounded shortly following cART 

withdrawal confirmed the presence of 3BNC117 signature resistance mutations (Fig. 

2.9D), and pseudoviruses derived from each animal confirmed their resistance to 

3BNC117. Following reinfection of AAV-3BNC117-suppressed animals, re-emergent 

virus was sequenced and the presence of 3BNC117 resistance mutations from the re-

infecting inoculum was confirmed (Fig 2.9E), validating that viral rebound post-



!45 

reinfection was, indeed, due to re-infection. Together, these data show that a single 

dose of AAV-3BNC117 can achieve stable titers in hu-mice and durably maintain 

virological suppression. 

 

Figure 2.9: AAV-expressed 3BNC117 maintains stable titers and durably controls viremia.  

A, Plasma gp120-binding human antibody titers in mice injected with a single dose of AAV-3BNC117 in 
the presence or absence of daily cART. B, Single-shot AAV-3BNC117 monotherapy following viremic 
suppression with cART. Blue shading, cART only; green shading, cART plus AAV-3BNC117; pink 
shading, AAV-3BNC117 only. Red arrow, point where mice were injected with 3BNC117-resistant virus. 
C, Viral loads (red or blue lines/symbols, left y-axis) and antibody titers (yellow lines/symbols, right y-axis) 
for each animal in B at the indicated number of days after starting cART (x-axis). D, gp120 sequences 
from the two animals that rebounded shortly after cART withdrawal. E, gp120 sequences from the two 
animals that were re-infected after prolonged viral suppression on AAV-3BNC117 monotherapy.  
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As cART unexpectedly impaired AAV transduction in hu-mice, I attempted an alternative 

approach to circumvent the need for AAV delivery during cART. To test whether an AAV 

vector encoding the bNAb 10-1074 could replicate the encouraging results I obtained for 

AAV-3BNC117, I first treated cART-suppressed mice passively with 10-1074 IgG 

(biotinylated for detection purposes) to bridge cART withdrawal before injecting AAV-10-

1074 (Fig. 2.10). In this experiment, mice that remained viremic after cART withdrawal 

in the presence of passive 10-1074 were un-enrolled because of incomplete viremic 

suppression, and were not administered AAV-10-1074 (Fig. 2.10A). Passive 10-1074 

administration was terminated following AAV-10-1074 injection, and the decay of 

passive 10-1074 IgG from plasma was measured (Fig. 2.10B). While precise 

quantitative results could not be obtained for biotinylated 10-1074 protein, the 

disappearance of a measurable signal by ELISA indicated the complete decay of 

passively administered protein by experiment day 80 in all animals, as would have been 

predicted based on the half-life of 10-1074 in hu-mice (Fig. 1.5D). Because total gp120-

binding human IgG concentrations remained largely unchanged during this period, the 

antibody titers after experiment day 60 were assumed to reflect those of the AAV-

derived 10-1074 antibody. A single injection of AAV-10-1074 produced high titers that 

were extremely stable, with many animals retaining titers in excess of 100 ug/ml 70 

days after AAV injection.  
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Figure 2.10: A single dose of AAV-10-1074 durably maintains virological suppression.  

A, Viral loads in cART-suppressed hu-mice bridged with passive, biotinylated 10-1074 IgG prior to AAV-
10-1074 injection (annotated as in Fig. 2.2). Dashed lines/gray symbols reflect mice that were un-enrolled 
due to measurable viral loads after passive 10-1074 administration; yellow shading, AAV-10-1074 
monotherapy. B, viral loads and gp120-binding human IgG1 from individual mice (in A), annotated as 
indicated (ID#683, red line indicates viral load). C, gp120 sequences from ID#683 after viral rebound. D, 
Neutralization sensitivity and mutation summary of pseudovirus from ID#683 (in C) against 10-1074. 
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Of the seven animals that were injected with AAV-10-1074, only one animal rebounded 

during AAV-10-1074 monotherapy (ID#683), and gp120 sequences from that animal 

were found to harbor mutations that rendered the virus completely resistant to 

neutralization by 10-1074 (Fig. 2.10C, D). The remaining six mice receiving AAV-10-

1074 remained suppressed for the duration of the experiment, despite receiving no 

further interventions after the single dose of AAV-10-1074. As these six animals failed to 

rebound after decay of the passively administered antibody, I concluded that a single 

injection of AAV-10-1074 durably sustained viremic control in six of seven animals. 

Together with the aforementioned results from AAV-3BNC117, these experiments 

demonstrate that AAV-driven expression of individual bNAbs can durably sustain 

virological control in cART-suppressed hu-mice. 

 

In summary, the experiments conducted herein demonstrate that suppressing viral load 

can dramatically improve the ability of individual bNAbs to control HIV-1YU2 viremia as 

monotherapeutics in hu-mice. AAV-driven bNAb expression was as effective as passive 

bNAb monotherapy in achieving this virological control, and these experiments provide 

proof-of-concept support for the idea that bNAbs delivered by a gene therapy approach 

could comprise a single-shot, functional cure for HIV-1 infection.  

! !
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CHAPTER III: 3BNC117 DELAYS VIRAL REBOUND IN HIV-1-INFECTED HUMANS 

DURING TREATMENT INTERRUPTION 

 

I previously found that individual bNAbs could maintain virological suppression in hu-

mice that were withdrawn from cART. To test whether similar effects could be observed 

in humans, we conducted a clinical trial to determine whether the bNAb 3BNC117 could 

maintain virological suppression in HIV-1 infected humans undergoing analytical 

treatment interruption (ATI) of their HAART regimen. 3BNC117 had previously been 

tested for safety in humans in a phase I clinical trial(60) and a single infusion of 

3BNC117 antibody was well tolerated up to 30 mg/kg. In that study, viremic individuals 

were administered 3BNC117 at various doses. Pharmacokinetics, safety profile, and 

effects on viral load and neutralizing sensitivity to 3BNC117 were monitored. It was 

found that intravenous infusion of 3 - 30 mg/kg 3BNC117 transiently reduced viral loads, 

resulting in viral load rebound to pre-treatment levels within 3-5 weeks and selection for 

3BNC117-resistant mutations. These results were in line with previous observations in 

both 3BNC117-treated, HIV-1-infected hu-mice (Chapter 1) and SHIV-infected 

macaques(61, 62). To determine whether multiple infusions of 3BNC117 would be safe 

in humans and could maintain virological suppression during ATI, we performed a 

phase IIa open-label trial. 

 

HIV-1-infected patients were screened for neutralizing sensitivity to 3BNC117 by a bulk 

viral outgrowth assay (Fig. 3.1). Patients whose culture viruses had a 3BNC117 IC50 

below 2.0 ug/ml in the TZM-bl assay were subsequently enrolled. Of 90 viral outgrowth 
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cultures from 85 patients screened, 11 (12%) were resistant to 3BNC117 (IC50 

>20ug/ml) while 57 (63%) were highly sensitive (IC50 > 2ug/ml). By comparison, the 

same cultures assayed for sensitivity to the bNAbs 10-1074 and PG16 yielded 14% and 

21% resistance, and 80% and 59% high sensitivity, to those respective antibodies.  

 

Figure 3.1: Patient screening for virus sensitivity to 3BNC117 neutralization in a TZM-bl assay.  

Culture virus sensitivity (IC50 and IC80) to the indicated bNAbs are shown. Cultures with 3BNC117 IC50s < 
2 ug/ml are shaded in dark orange, while cultures with IC50s < 2 ug/ml to 10-1074 or PG16 are shaded in 
light orange. Samples that were not analyzed are marked “ND.” 
 

Study design included two infusions, three weeks apart, with the first infusion given two 

days prior to starting ATI (Fig. 3.2). ATI was maintained until subjects received two 

consecutive viral load measurements > 200 cpm. In addition to having sensitive virus at 

the time of screening, subjects were enrolled on the basis of good heath, high CD4+ T-

cell counts, and repeated viral load measurements < 20 cpm. Subjects whose ART 

Culture Virus ID TCID50/ml IC50 IC80 IC50 IC80 IC50 IC80 Culture Virus ID TCID50/ml IC50 IC80 IC50 IC80 IC50 IC80
1 B69D2 267,184 1.281 4.647 0.974 5.741 >50 >50 46 B125 85,449 0.348 1.123 0.088 0.187 0.016 0.039
2 B73-13 2,795 0.102 0.288 0.024 0.084 0.023 0.077 47 B148 456,878 1.142 3.043 0.521 1.373 0.014 0.087
3 B73-13/2 31,250 0.094 0.267 0.028 0.086 0.023 0.067 48 B151 18,275 0.075 0.368 0.025 0.086 0.004 0.010
4 B74-13 69,877 0.542 1.622 0.062 0.198 0.023 <0.023 49 B152 69,877 0.154 0.417 0.012 0.034 0.008 0.342
5 B76-14 3,655 2.331 8.516 >50 >50 >50 >50 50 B153 267,184 1.170 4.099 >50 >50 1.572 >50
6 B77 456,878 0.077 0.221 0.128 0.292 0.014 0.068 51 B155 5,663,186 2.725 7.564 >50 >50 14.735 >50
7 B80 6,679,594 0.248 0.908 0.126 0.366 >50 >50 52 B155-2 781,250 2.251 7.874 >50 >50 3.421 >50
8 B82 91,376 2.347 6.781 0.674 2.435 0.04 0.344 53 B155BV2 1,132,637 3.843 8.731 ND ND
9 B88 6,679,594 0.904 3.111 3.551 23.522 4.533 >50 54 B156 31,250 >50 >50 ND ND
10 B89 39,493,845 3.189 11.365 0.825 2.223 9.81 >50 55 B161 69,877 0.158 0.538 0.500 3.408 0.103 4.989
11 B92 13,471,913 6.625 27.427 0.658 1.768 0.012 0.106 56 B164 69,877 0.486 1.620 0.459 1.461 0.240 11.974
12 B93 1,335,919 >50 >50 15.464 >50 1.318 >50 57 B165 156,250 0.385 0.750 ND ND
13 B96 3,906,250 0.415 1.116 0.096 0.268 0.721 45.948 58 B166 69,877 0.185 0.404 ND ND
14 B98 2,284,389 5.787 17.308 0.758 2.031 0.006 0.034 59 B167 91,376 >50 >50 0.489 2.574 3.220 >50
15 B99 781,250 0.387 1.430 0.330 0.919 >50 >50 60 B168 53,437 35.349 >50 0.280 0.745 0.007 0.019
16 B100 69,877 4.384 16.923 0.051 0.124 0.124 >50 61 B169 91,376 4.989 15.443 >50 >50 0.008 0.069
17 B103 69,877 0.138 0.645 >50 >50 0.001 0.005 62 B175 349,386 0.291 0.810 ND ND
18 B104 31,250 0.237 0.843 >50 >50 0.053 36.619 63 B177 456,878 12.387 >50 ND ND
19 B105 349,386 13.994 >50 0.537 1.816 0.022 0.324 64 B183 13,975 15.489 >50 0.021 0.056 >50 >50
20 B106 349,386 0.346 1.605 0.246 0.843 0.002 0.008 65 B184V2 6,250 0.187 0.667 0.043 0.118 0.202 >20
21 B107 2,284,389 >50 >50 0.732 2.024 >50 >50 66 B185 156,250 1.839 5.152 ND ND
22 B109 349,386 0.486 2.133 0.040 0.109 >50 >50 67 B191 349,386 2.508 7.031 ND ND
23 B112 349,386 0.355 1.206 0.299 0.982 >50 >50 68 B193 10,687 12.007 >50 ND ND
24 B114 349,386 0.134 0.362 >50 >50 0.176 1.014 69 B194 91,376 0.370 0.998 ND ND
25 B114BV2 156,250 0.514 1.873 ND ND 70 B195 69,877 11.939 28.190 ND ND
26 B115 91,376 1.462 2.634 0.197 0.690 0.015 0.033 71 B196A 349,386 >50 >50 ND ND
27 B116 1,746,928 3.652 12.244 26.072 >50 0.094 0.764 72 B196B 69,877 >50 >50 ND ND
28 B119 1,746,928 0.525 2.418 0.089 0.410 6.672 >50 73 B197 5,108,049 3.031 9.205 ND ND
29 B123 18,275 0.269 0.768 0.152 0.346 0.291 7.603 74 B199 2,284,389 3.206 8.671 ND ND
30 B124 349,386 0.772 2.572 0.198 0.675 <0.001 0.003 75 B200 781,250 0.411 0.790 ND ND
31 B125 85,449 0.348 1.123 0.088 0.187 0.016 0.039 76 B211 781,250 >20 >20 0.402 2.413 >20 >20
32 B127 349,386 0.857 7.362 0.043 0.101 >50 >50 77 B212 69,877 0.655 2.207 0.390 1.304 1.504 >20
33 B129 1,746,928 0.572 2.833 1.395 14.138 0.016 0.051 78 B214 0.941 0.130 0.071
34 B130 1,746,928 1.989 5.285 >50 >50 0.027 0.303 79 B219 0.417 1.257 7.569
35 B133 1,579,754 0.875 2.369 15.587 >50 0.269 6.092 80 B220 31,250 3.423 10.461 0.083 0.222 >20 >20
36 B136 53,437 0.181 0.502 0.010 0.039 >50 >50 81 B221 18,275 0.641 2.913 0.072 0.241 0.003 0.008
37 B139 1,746,928 0.499 3.380 0.044 0.493 9.192 >50 82 B224 0.385 0.022 0.007
38 B140 597,441 0.239 1.032 0.175 0.739 0.004 0.014 83 B226 6.001 0.198 0.011
39 B143 349,386 0.488 1.595 >50 >50 >50 >50 84 B228 91,376 >20 >20 0.084 0.293 0.003 0.029
40 B144 156,250 0.139 0.456 0.132 0.426 0.005 0.017 85 B236 10,687 0.735 2.532 0.320 1.105 0.010 0.038
41 B144AB 11,421,944 >50 >50 0.417 1.450 0.008 0.020 86 B244 53,437 0.315 1.063 1.174 4.106 13.120 >20
42 B148 456,878 1.142 3.043 0.521 1.373 0.014 0.087 87 B248 781,250 >20 >20 0.355 0.981 >20 >20
43 B149 1,132,637 0.632 2.088 0.043 0.114 >50 >50 88 B254 53,437 0.324 1.091 0.028 0.122 2.800 >20
44 B121 69,877 >50 >50 ND ND 89 B258 556,278 1.385 5.319 0.816 3.346 0.005 0.018
45 B123 18,275 0.269 0.768 0.152 0.346 0.291 7.603 90 B266 33,397,968 0.927 3.324 0.399 1.395 0.366 >20

3BNC117 10-1074 PG16 3BNC117 10-1074 PG16
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regimens included an NNRTI were switched to Dolutegravir four weeks prior to ATI 

because of the comparatively longer half-lives of NNRTIs. In total, eight subjects were 

enrolled, though two subjects were later excluded because their viral loads were not 

fully suppressed at the time the first infusion was given.  

 

 

Figure 3.2: Study design and timeline.  

Axis numbers indicate study week. ATI was initiated at week zero. Two infusions of 3BNC117 were 
administered three weeks apart, where indicated. Assays performed at each study time point are 
indicated with a “+” (dashed lines, purple crosshairs reflect assays conducted at time of viral rebound). 
Sensitivity was performed by bulk viral outgrowth culture of patient PBMC (as in Fig. 3.1). Viral load was 
measured from 1 ml EDTA-blood plasma by clinical assay. Plasma IgG concentrations of 3BNC117 were 
measured by an anti-idiotype ELISA to detect 3BNC117 (CellDex Pharmaceuticals). Gp160 sequencing 
was performed by single-genome amplification(63) of either culture supernatant or plasma virus, when 
possible. 
  

Viral loads of all six subjects remained suppressed below 200 cpm during the first three 

weeks after the first infusion (Fig. 3.3). Viral loads remained suppressed until two to six 

weeks after the second infusion (study weeks 5-9), when plasma concentrations of 

3BNC117 had declined well below peak levels (Fig. 3.3). Rebound occurred at plasma 

3BNC117 concentrations ranging from 18.2 – 123.3 ug/ml, indicating that this may 

reflect the therapeutic threshold for 3BNC117-mediated viral suppression. These data 
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stand in stark contrast to results obtained in earlier clinical trials(26, 27), in which a 

combination of three first-generation bNAbs were unable to delay viral rebound during 

ATI in a majority of subjects. 

 

Figure 3.3: Viral loads and serum 3BNC117 titers in HIV-1-infected subjects during ATI.  

Viral loads (black lines/symbols) and serum 3BNC117 titers (blue lines/symbols) for each of the six ATI 
subjects are shown (x-axis: weeks post-ATI). Gray shading indicates ART treatment before and after ATI; 
blue arrows indicate 3BNC117 infusions.  
 

To determine whether viral rebound after 3BNC117 infusion was associated with viral 

resistance to 3BNC117, we cultured subject viruses before, during and after viral 

rebound, and assayed for 3BNC117 neutralization (Fig. 3.4). While moderate decreases 

in 3BNC117 neutralizing sensitivity were observed for most patients at the time of 

rebound (noted by an increase in 3BNC117 IC50), sensitivities returned to baseline 

levels in nearly all cases after re-treatment with ART. On average, 3BNC117 

neutralizing sensitivities were 6.2-fold higher at rebound than at baseline (geometric 

mean), but retained sensitivity < 5 ug/ml in all but one case (#708). These data 
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indicated that the rebounding viruses in 3BNC117-infused subjects were those against 

which low serum 3BNC117 titers were sub-therapeutic due to their reduced sensitivity. 

 

Figure 3.4: Moderate resistance to 3BNC117 is observed in subject viruses during rebound.  

Top, viral loads (copied from Fig. 3.3) and cultured virus sensitivity to 3BNC117 (IC50, red lines/symbols) 
are shown; open red symbol, IC50 >20 ug/ml. All other features as in Fig. 3.3. Bottom, summaries of 
subject 3BNC117 titers and cultured virus IC50s at the indicated time points. Baseline was defined as 
either the screen or Week 0 time point; rebound was defined as any time point at which viral load 
exceeded 200 cpm; re-treat was defined as any time point after resuming ART when viral load was < 20 
cpm. 
 

To further evaluate whether rebounding viruses harbored resistance to 3BNC117, I 

sequenced plasma viruses at rebound and analyzed them for signature resistance 

mutations in gp160 (Figs. 3.5, 3.6). For comparison, sequences were also obtained 
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from viral cultures at screen or prior to 3BNC117 infusion for each subject. Whereas 

viral sequences from pre-treatment cultures uniformly clustered separately from viruses 

obtained in plasma sequences at rebound, plasma sequences from both rebound time 

points always clustered closely together and were highly clonal (Fig. 3.5). These data 

indicate that viral rebound was characterized by rapid expansion of a viral clone. 

Individual sequences were also analyzed for the presence of signature mutations known 

to confer resistance to 3BNC117 (Fig. 3.6). Clear mutations likely to confer resistance to 

3BNC117 neutralization could be identified in three of six subjects: one mutation, 

A281D, arose in both #702 and #703, while R456S arose in #704. Other changes 

between pre-ATI and rebound viruses could be identified, but none that could be 

expected to confer resistance to 3BNC117.  
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Figure 3.5: Viral gp160 sequences at rebound are different from those found before ATI.  

Proportional alignment trees of gp160 sequences obtained by SGA for each subject before ATI and 
during viral rebound are shown. White circles, pre-ATI culture-derived sequences; light blue circles, early 
rebound plasma sequences; dark blue circles, late rebound plasma sequences.  
 

701 702 703 704 707 708 
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Figure 3.6: Signature 3BNC117 resistance mutations are rarely observed in plasma rebound virus.  

Amino acid profiles of SGA sequences obtained for each subject’s virus at the indicated time points are 
shown over regions known to be important for 3BNC117 neutralization. Where indicated at left, “c” 
reflects culture virus, while “p” reflects plasma virus. Signature resistance mutations arising during 
rebound are highlighted in red, while mutations arising that are not known to affect neutralizing sensitivity 
are in green. 
 

Taken together, these data demonstrate that two infusions of 3BNC117 delayed 

virological rebound in all six patients. Rebound occurred when serum titers of 3BNC117 

were low, and viruses at rebound exhibited only moderate viral resistance to 3BNC117 

neutralization. 
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CHAPTER IV: A REPLICATION-COMPETENT, IN VIVO-ADAPTED HIV-1 

REPORTER VIRUS  

 

Design of a replication-competent HIV-1 reporter virus 

My aforementioned experiments in hu-mice and humans uniformly encountered a 

common scenario in which HIV-1 viremia returns following withdrawal of suppressive 

therapy (or during suppressive therapy, if the outgrowing virus is resistant to that 

therapy). These events are understood to reflect the outgrowth of virus from 

spontaneously reactivated, latently HIV-1-infected cells (LICs, described in the 

introduction to this thesis). Because these cells are poorly understood, and as they 

comprise the major barrier to eradicating HIV-1 infection in humans, I sought to develop 

a means by which to identify and characterize LICs. 

 

HIV-1SV40HSA  

To construct a replication-competent HIV-1 strain capable of reporting latent infection, I 

first modified the HIV-1YU2 molecular clone (used in my hu-mice experiments) to carry a 

small transcription cassette decoupled from the viral promoter that would express a cell 

surface marker on any infected cell (latent or otherwise). This virus contained an SV40 

virus immediate early promoter (SV40pro) upstream of a murine cell surface marker, 

CD24/heat-stable antigen (HSA), in between the env and nef open reading frames (Fig. 

4.1A). Such a design was intended to constitutively label infected cells, such that LICs 

could be identified by HSA despite the absence of viral gene expression. The resulting 

recombinant strain, HIV-1SV40HSA, produced well at high infectious titers and replicated in 
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human PBMC (Fig. 4.1B, C), albeit with reduced kinetics relative to the parental HIV-

1YU2. Expression of the heterologous marker, HSA, was robust and clearly labeled p24+ 

cells (Fig. 4.1D) by flow cytometry. Infection of seven hu-mice with HIV-1SV40HSA initially 

resulted in two animals becoming infected, but neither animal carried the intact reporter 

virus: the plasma virus from one animal (ID#802) had excised much of the SV40HSA 

cassette (as evidenced by RT-PCR spanning the env-nef region), while the second 

animal (ID#691) had no detectable HSA+ cells among p24+ cells in the spleen when 

sacrificed. The failure of five of seven animals to become infected at all, despite good 

humanization, was a clear and further indication that HIV-1SV40HSA was not able to replicate 

stably in vivo.  
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Figure 4.1: An HIV-1 reporter virus replicates in vitro, but does not establish viremia in vivo.  

A, Schematic and design of an HIV-1 reporter virus, HIV-1SV40HSA. At top, the recombinant HIV-1 viral 
genome with the SV40pro and HSA marker gene inserted as shown; at bottom, a summary of the viral 
and cellular markers anticipated upon HIV-1SV40HSA infection for identification of infected cells. B, Infectivity 
of two independent viral preparations of HIV-1YU2 (YU2) and HIV-1SV40HSA (SV40HSA) in a HeLa-based 
cell line capable of being infected by HIV-1. C, Infection spread in human PBMC challenged at day 0 with 
equivalent infectious titers of YU2 and SV40HSA. Average of two human PBMC donors infected in 
parallel are shown. D, Viral and recombinant marker expression in human PBMC (from C) eight days 
after infection with the indicated virus. E, Infection of hu-mice with HIV-1SV40HSA. ID#691 was sacrificed at 
the indicated timepoint and splenocytes assayed for p24+ and HSA+ cells.  
 
 
 
 
 
 

0 5 10 15
0.1

1

10

Days post-infection

%
 c

el
ls

 p
24

+ 

YU2 (avg)
SV40HSA (avg)

%
 c

el
ls

 in
fe

ct
ed

 

Days post-infection 

C 

1 10 100 1000
0.01

0.1

1

10

100

Reciprocal dilution

%
 c

el
ls

 H
IV

-1
 +

Infectivity (TZM.BT)

YU2 prep1

SV40HSA prep1
YU2 prep2

SV40HSA prep2

%
 c

el
ls

 in
fe

ct
ed

 

Reciprocal dilution 

B 

Gag 

Pol 3’LTR 
Vif 

Vpr Tat 

Rev 

Env 
Vpu 

Nef 

5’LTR 
x 

x 

NL4/3 NL4/3 YU2 

YU2SV40HSA 

SV40 
HSA 

Gag 

Pol 3’LTR 
Vif 

Vpr Tat 

Rev 

Env 
Vpu 

Nef 

5’LTR 
x 

x 

NL4/3 NL4/3 YU2 

YU2SV40HSA 

SV40 
HSA 

A 

HIV-1SV40HSA 

CD4+ 
T 

CD4+ 
T 

Latently infected Uninfected Actively infected 

CD4lo 
T 

p24 
Env 
HSA 

– 
– 
– 

+ 
+ 
+ 

– 
– 
+ 

p24 

H
SA

 

Uninfected YU2 SV40HSA 

D
on

or
 1

 
D

on
or

 2
 

D 

0 10 20 30 40
102

103

104

105

106

Days post-infection

V
ira

l L
oa

d

SV40HSA infection

Sac

#691
#802
n=5

E 



!60 

Improving the fitness of HIV-1SV40HSA 

To improve the replicative fitness of HIV-1SV40HSA, I constructed a number of variants 

rationally designed to attempt enhancement of viral fitness (Table 4.1). For brevity, a 

simple description of the outcomes of each virus is provided. Viruses that could be 

produced at useful infectious titers were assayed for spread in a human acute 

lymphoblast CD4+ T-cell line (CEM.NKR.CCR5, NIH AIDS reagent program, hereafter 

CEMs) by tracking the percent of infected cells (by p24+ staining on flow cytometry) 

over time in the presence or absence of an HIV-1 protease inhibitor, indinavir sulfate 

(IS), to inhibit viral spread (Fig. 4.2). In this assay, CEMs were infected with equivalent 

titers of each virus (41 – 355 TCID50/well) and assayed every three days for p24+ cells 

by flow cytometry. Spread was determined as the ratio of the frequency of p24+ cells in 

non-IS-treated and IS-treated conditions. Because CEMs rapidly spread infection, high-

titer conditions did not always yield striking differences between viral variants, while low-

titer conditions permitted strong separation of variants on the basis of spread fitness. 

 

Table 4.1: List of reporter virus variants of HIV-1SV40HSA and their performance in vitro. 

 

Variant name Modification relative to HIV-1SV40HSA Infectivity Marker 
expression

Virus 
spread

SV40HSA (none) +++ +++ +
vavHSA human vav  promoter replacing SV40pro +++ - n/d

SV40HSA_SA splice acceptor added after HSA +++ +++ +
SV40HSArev SV40HSA in antisense - n/d n/d

SV40HSApArev SV40HSA with poly-A signal, in antisense - n/d n/d
SV40HSA(dVprHA) Additional marker for LTR expression in vpr ++ +++/+++ -

dVpr(SV40HSA) SV40HSA cassette relocated to vpr +++ + n/d
SV40HSA(TM2) YU2 env triple-bNAb escape mutant (+) n/d n/d

SV40HSA_UbiNef Nef ORF fused to HSA with Ubi cleavage site +++ ++ +
SV40HSA_Vpu+ Vpu ORF restored by replacement of ATG +++ +++ -
89.6_SV40HSA YU2 env swapped for dual-tropic 89.6 env - n/d n/d
Q23_SV40HSA* YU2 env swapped for Q23.17 env +++ ++++ +++
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Figure 4.2: Infection spread of HIV-1SV40HSA variants in CEM.NKR.CCR5 cells.  

Results from one of two identical experiments is shown (data points are the average of duplicate 
experimental replicates). Y-axis reflects the ratio of p24+ cells in non-indinavir sulfate-treated and 
indinavir sulfate-treated cultures. Black lines/symbols, wild-type HIV-1YU2; blue lines/symbols, HIV-
1SV40HSA; pink lines/symbols, Q23_SV40HSA; gray lines/symbols, other variants (from Table 4.1) 
performing worse than or equivalent to HIV-1SV40HSA. Dashed lines/open circles reflect points at which 
data could not be reliably obtained due to depletion of culture cells by viral cytopathic effects. Results 
from this assay are summarized in Table 4.1 under “Virus spread.” 
 

Of all variants tested, none replicated with enhanced fitness relative to the original HIV-

1SV40HSA except for one virus bearing a different env gene, from the strain Q23.17 

(Q23_SV40HSA). As this virus was found to spread significantly better than HIV-

1SV40HSA, and with near-wild type kinetics, I sought to determine the mechanisms 

responsible for this enhancement. It was particularly curious that swapping the viral env 

gene would have such dramatic effects on spread, as the original HIV-1SV40HSA bearing 

the YU2 env gene did not appear to exhibit defects in infectivity. However, the HIV-1 

env gene contains numerous features beyond the Gp160 open reading frame that may 

impact replicative fitness: in particular, the second exons for genes tat and rev, a splice 

site critical for their expression, and a rev-responsive DNA element, are all encoded 
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bearing the original YU2 env gene, but in which a 432bp segment of gp41 spanning the 

AleI/BamHI sites was replaced with the Q23.17 sequence [YU2(Q23)_SV40HSA]. This 

minimal segment was sufficient to confer all of the enhanced replicative capacity of the 

full Q23.17 env gene, but in the context of a predominantly YU2-based env (Fig. 4.3).  

 

Figure 4.3: Grafting a gp41 fragment from Q23.17 onto YU2 confers remarkable spread fitness.  

Virus spread in CEMs infected at a range of titers is shown as the % p24+ cells at each time point. Open 
circles indicate points at which extensive viral cytopathic effects prevented reliable data collection. 
Dashed black lines/symbols: HIV-1SV40HSA; blue lines/symbols, Q23_SV40HSA; solid black lines/symbols, 
YU2(Q23)_SV40HSA. The wild-type HIV-1YU2 is underlaid on each graph as a reference. 
 

HIV-1IL16HA  

Further modifications included evaluation of different minimal promoter sequences to 

optimize heterologous marker expression, as well as replacement of the HSA 

ectodomain with an influenza haemagglutinin tag (HA)(64), to reduce background 

staining. For brevity, a summary of the respective variants tested is provided (Table 

4.2). An optimized virus was identified, HIV-1IL16HA, that exhibited both strong replicative 

fitness and high marker expression in vitro (Fig. 4.4).  
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Table 4.2: Modifications of YU2(Q23)SV40HSA to improve marker expression and staining. 

 

*This virus later re-named “HIV-1IL16HA” 

 

 

 

 

 

Figure 4.4: Replacing SV40pro with a minimal human IL-16 promoter enhances marker expression.  

A, In vitro infection of human PBMC with the indicated YU2(Q23) promoter variant. Uninfected cells are 
shown in gray. Histogram populations are gated on CD4-low/HA+ (except for uninfected controls, gated 
on CD4+/HA-). B, At left, viral spread in CEMs (% p24+ cells at each time point are shown, for both non-
IS-treated and IS-treated conditions). At right, HA expression (MFI) of p24+ CEMs infected with the 
indicated YU2(Q23) promoter variant (or wild-type HIV-1YU2). Bars reflect averages of five cultures each. 
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YU2/Q23_SV40HSA (none) +++ ++++ +++
YU2/Q23_SV40HA HSA ectodomain replaced with HA-tag +++ +++ +++
YU2/Q23_CD4HA SV40pro replaced with minimal CD4 promoter +++ ++ +++

YU2/Q23_IL16f.HA SV40pro replaced with full IL16 promoter +++ ++++ n/d
YU2/Q23_IL16s.HA* SV40pro replaced with minimal IL16 promoter +++ ++++ +++
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An in vivo-adapted HIV-1IL16HA 

To determine whether HIV-1IL16HA was capable of launching stable viremia in hu-mice, I 

infected mice with either a high-titer virus prep of HIV-1IL16HA or cells from a culture of 

human PBMC highly infected with the same virus (Fig 4.5). All animals became viremic 

five days after infection, but at low viral loads (Fig. 4.5A). Viral loads failed to increase 

after two to three weeks of infection. To validate that the originating virus, indeed, 

replicated stably in the animals, infected animals were sacrificed and splenocytes 

assayed for infection. 10% of cells were assayed by flow cytometry for the presence of 

HA+ cells, while the remaining 90% were added to viral outgrowth cultures. While 

extremely few HA+ cells could be observed in the spleens directly (data not shown), 

viral outgrowth cultures revealed that the viruses in some animals largely retained 

expression of the HA marker (Fig. 4.5B), signifying that the low-level viral replication in 

these animals faithfully maintained the recombinant reporter cassette. 

 

Figure 4.5: HIV-1IL16HA stably replicates at low levels in hu-mice.  

A, viral loads in HIV-1IL16HA-infected animals. Mice were sacrificed where “X”-marks are indicated; mice 
with positive outgrowth cultures (B) are identified. B, spleen viral outgrowth cultures from the indicated 
animals after 1-2 weeks of co-culture.  
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As the intact outgrown virus from HIV-1IL16HA infected animals may have acquired 

adaptive mutations that could enhance replicative fitness in vivo, I attempted serial 

passaging of the virus in hu-mice (Fig. 4.6). Cultured cells from the splenic outgrowth 

culture of ID#273 were injected intravenously into four animals (P1 mice), and viral 

loads were monitored. All animals became viremic, with viral loads steadily climbing to 

peak levels by three weeks post-infection. Mice were sacrificed and spleens analyzed 

for the presence of HA+ cells, this time revealing clear populations of infected cells (Fig. 

4.6B). Animals had varying degrees of retention of the HA reporter, with ID#283 being 

the most intact. Interestingly, the HA+ cells in splenic outgrowth cultures from these 

animals were CD4-high (unlike the majority of cells infected with either HIV-1IL16HA or the 

parental ID#273 virus), providing further evidence of viral evolution (Fig. 4.6C).  
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Figure 4.6: Passaging HIV-1IL16HA in vivo results in higher viral loads.  

A, Viral loads of hu-mice infected with virus outgrown from ID#273 (P1 mice). Animal IDs are indicated. B, 
Spleen cells stained for HA, Env, and CD4 by flow cytometry (gated on CD3+/CD8-/mCD45-/live). C, Viral 
outgrowth cultures from bulk splenocytes (in B) of P1 mice after 1-2 weeks of co-culture. As a reference, 
the outgrowth culture from the parental virus, ID#273, is shown along with an uninfected mouse 
outgrowth culture. 
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among infected ID#300 splenocytes (Fig. 4.7B), indicating that the viral species 

circulating in that animal carried adaptive mutations that permitted both high viral loads 

and stable retention of the HA reporter in hu-mice. To determine whether the ID#300 

virus had improved over the ID#283 virus, I infected new animals intravenously with 

cultured cells highly infected with supernatant harvested from splenic outgrowth cultures 

of each virus (Fig. 4.7C, D). Eight days after infection, nearly all animals infected with 

either virus had high viral loads >104 cpm, and HA+ cells could be clearly seen in the 

PBMC of some animals. Animals infected with the ID#300 virus had significantly higher 

viral loads than those infected with the ID#283 virus, indicating that further adaptation 

rendered the ID#300 virus more infectious in hu-mice. Of note, HA+ cells in the ID#300 

culture appeared to regain some ability to down-regulate CD4, indicating continuing 

evolution over the ID#283 virus. To preserve the adapted virus from ID#300 for 

experimentation, the ID#300 splenic outgrowth culture was expanded and a high-titer 

prep was obtained by collection of the culture supernatant. The resulting prep is referred 

to as HIV300. 
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Figure 4.7: Further passage selects for a well-adapted, stably replicating reporter virus.  

A, Viral loads of hu-mice infected with virus from ID#283 by intra-peritoneal injection of cultured cells (P2 
mice). B, Spleen cells from ID#300 sacrificed 27 days after infection (gated on CD3+/CD8-/mCD45-/live). 
C, Human PBMC cultures infected with virus harvested from ID#283 and ID#300 splenic outgrowth 
cultures (infection day 6). D, Viral loads of hu-mice injected intravenously with cultured cells (from C) 
infected with either ID#283 (P2B mice) or ID#300 (P3 mice).  
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passage, with several coding mutations becoming fixed. A consensus adapted genome 

could be obtained from the sequences of animals infected with the ID#300 virus, with 

numerous mutations relative to the originating HIV-1IL16HA (Table 4.3). These mutations 

included four coding changes in env, two coding changes in nef (one reflecting a 16bp 

frame-shifting deletion in the 3’ end of nef, resulting in a 44aa elongation of the Nef C-

terminus), and restoration of the vpu ATG start codon (naturally mutated in the 

originating YU2-derived sequence). These mutations may explain the loss of CD4 

down-regulation classically seen for actively infected cells, as Nef is known to down-

regulate CD4 via interaction of its C-terminus with the AP-2/Clathrin adaptor(65). This 

effect is specifically known to be abolished by any of several mutations, including 

mutation of V180 (as found in the adapted viruses). It is noteworthy that Nef expression 

may have been achieved through translation of a continuous open reading frame 

initiated within the HSA-HA gene, rather than from its own ATG, which could result in a 

failure to myristoylate the N-terminus of Nef that would impact its ability to localize to the 

plasma membrane. Additionally, restoration of the vpu ATG in the final passages may 

explain the partially regained ability to down-regulate CD4, as Vpu is known to bind CD4 

directly to mediate its degradation(66, 67).  
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Figure 4.8: Viral sequencing reveals evolutionary selection for mutations in HIV-1IL16HA.  

A schematic of the originating virus, HIV-1IL16HA, is shown at top. Each horizontal line below reflects a 
spatially aligned viral genome sequence, with identified mutations annotated as described. At right, the 
animal ID is shown; “cx” refers to viral sequencing performed on culture supernatant from splenic 
outgrowth culture of the indicated animal; “pl” refers to viral sequencing from plasma virus.  
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Table 4.3: Summary of consensus mutations identified in ID#300 and HIV300-infected hu-mice 

 

 

To determine whether the consensus mutations identified from ID#300 virus-infected 

animals were sufficient to launch high-level viremia in hu-mice, I constructed a 

molecular clone bearing the mutations listed in Table 4.3. The resulting virus, hereafter 

referred to as HIVivoHA, was produced and tested for infectivity in vitro and in vivo (Fig. 

4.9). In vitro infection of human PBMC resulted in very high infectivity (>10% of cells 

infected 2d after infection) and recapitulated the cellular and viral gene expression 

profile of HIV300-infected cells by flow cytometry (Fig. 4.9B). Following intra-peritoneal 

challenge of hu-mice, HIVivoHA infection yielded high viral loads comparable to those 

obtained by HIV300 infection 8 days after infection (Fig. 4.9C). These data validate that 

HIVivoHA is an in vivo-adapted, highly infectious molecular clone of a recombinant HIV-1 

reporter virus. To my knowledge, this is the first demonstration of a recombinant HIV-1 

reporter virus that can stably replicate with high viral loads in vivo.   

Nt pos. 
(Hxb2)

Nt pos.     
(HIV-1IL16HA) Nt mutation Gene

AA mutation 
(Hxb2)

AA mutation 
(HIV-1IL16HA) Notes

826 826 T/C gag - -
6043 6043 G/A tat - - Falls within splice donor

rev S25N S25N
6063 6063 C/T vpu +fMet +fMet Restores Vpu ATG start codon
6310 6307 G/A env S29N S29N
7516 7477 G/A env G431E G431E Adjacent to CD4 contacts
7647 7608 A/G env M475V M475V Adjacent to CD4 contacts
8244 8205 G/A env D664N D674N Falls within MPER

- 8923 G/A IL16pro - - Downstream of TSS
9335 9709 T/A nef V180E V180E

9349 9722 16bp del. nef Δ185-207 Δ185-207
Results in frameshift at R184 causing 

elongated Nef C-terminus (extra 44 aa)
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Figure 4.9: An infectious molecular clone, HIVivoHA, recapitulates features of the primary isolate.  

A, Flow cytometry analysis of viral and cellular gene expression in healthy donor human PBMC infected 
with the indicated viruses (2d after infection). B, Expression levels of p24+ cells (from samples in A) by 
flow cytometry; geometric mean fluorescence intensity is shown for the indicated viruses. C, Viral loads 
8d after infection by intra-peritoneal injection of the indicated viral prep. 
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food(68). Viral loads became suppressed over three to four weeks of continuous cART. 

Animals infected with ID#283 virus were sacrificed after all three cART-treated animals 

had dropped to undetectable viral loads. Spleen cells were assayed for the presence of 

HA+ cells. As expected, the two mice that did not receive cART had detectable 

populations of Env+/HA+ cells indicative of active infection (as well as Env-/HA+ cells, 

which may or may not reflect latent infection). The three cART-treated animals, in 

contrast, only had Env-/HA+ cells, and at extremely low frequencies (Fig. 4.10B). This 

rare population of Env-/HA+ cells may reflect (or may include) bona fide LICs, but 

significant further experimentation is required.  

 

 

Figure 4.10: Rare HA+/Env- cells persist in reporter-infected hu-mice treated with cART.  

A, Viral loads of P2B mice (Fig. 4.7D) over time with (top) or without cART treatment, sacrificed where 
indicated. B, Spleen cells of sacrificed P2B mice (from A) and an uninfected control, analyzed by flow 
cytometry for the presence of HA+ cells. Events shown were gated on CD3+/CD8-/mCD45-/live (from a 
total of 106 un-gated events). Spleen samples yielded approximately 2 – 15 x 106 events each, depending 
on the animal. 
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To test whether latent infection was possible with the adapted reporter viruses, I treated 

P3 mice (Fig. 4.7D) with cART until their viral loads dropped below detection, then 

withdrew them from cART. Viral loads and PBMC were assayed (Fig. 4.11). As 

expected, cART treatment led to a disappearance of HA+/p24+ cells from PBMC 

coincident with viral load suppression (Fig. 4.11). Withdrawal of cART after viral loads 

dropped below detection resulted in rapid viral rebound to pre-treatment levels, 

coincident with the re-appearance of HA+/p24+ cells in all animals. These data 

suggested that the in vivo-adapted reporter virus (from ID#300) was capable of 

establishing latent infection in hu-mice, and provided further confirmation that the 

reporter virus could stably and faithfully replicate in hu-mice. 

 

 

 

Figure 4.11: In vivo-adapted reporter virus demonstrates stability and latency in vivo.  

Left, viral loads of P3 mice (Fig. 4.7D) treated with cART for 32 days (blue shading), then withdrawn from 
cART. Right, flow cytometry analysis of HA+/p24+ cells in PBMC of P3 mice at the indicated time points 
at left. 
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Most infected cells that do not express Env harbor defective HIV-1 genomes 

The intended design of my recombinant HIV-1 latency reporter virus was to facilitate 

identification of LICs. However, HIV-1 infection is highly error-prone, and it is probable 

that a significant fraction of HA-expressing cells not expressing viral markers (such as 

Env) may, in fact, be defective rather than latent. To determine the extent of defective 

infection in the Env- subset of HA+ cells, I developed assays to quantitatively and 

qualitatively characterize HIV-1 genome integrity of single cells (Fig. 4.12). Cells were 

stained for Env using a combination of biotinylated bNAbs, 3BNC117 and 10-1074. By 

adapting a method for single-cell PCR(69), I sorted single cells from the spleen of 

ID#300 and cloned their env genes. Cells were lysed and reverse-transcribed first with a 

primer targeting the 3’ LTR polyadenylation signal(70). I then performed quantitative 

PCR on 10% of the cell lysate (using a secondary RT-PCR step targeting either the 

HIV-1 pol region or the HA gene). This approach was designed to quantify total 

intracellular viral nucleic acids to determine the relative abundance of unspliced LTR-

driven (pol-targeted) and IL16pro-driven (HA-targeted) transcripts. Whereas Env+ cells 

harbored significantly higher levels of LTR-driven viral nucleic acids than Env- cells, all 

HA+ cells exhibited relatively equal abundance of IL16pro-driven transcripts. All CD4+ 

cells that were HA-/Env- (assumed to be uninfected) had undetectable levels of either 

form of nucleic acids, validating that the assay was clean. These data suggested that 

Env- cells may have been Env- because of lower viral transcription levels, which might 

be indicative of cells in, or transitioning into, latency. To verify that these Env- cells were 

not simply harboring defective viral genomes (due to aberrations in env, e.g.), I next 

amplified the complete env region from the same single-cell RT lysate as I had used for 
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intracellular qRT-PCR (using 5% of total lysate). Of all cells, PCR bands were obtained 

for 35/40 Env+ cells and 20/40 Env- cells. No bands were obtained from HA-/Env- cells. 

PCR band recovery was linked to viral nucleic acid (vNA) abundance. Sequencing 

revealed that, while 17/18 Env+ cells harbored fully intact env ORFs, only 5/20 

sequences from Env- cells were intact. These data suggested that the majority of 

infected, Env- cells among ID#300 splenocytes harbored defective virus, rather than 

being latently infected. However, these defective env genes were obtained from Env- 

cells expressing high enough levels of vNAs to yield a PCR band from 5% of lysate, and 

it remains to be seen whether a subset of the un-amplified cells (which expressed lower 

levels of pol-containing vNAs) comprises the latent fraction. 
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Figure 4.12: Single-cell analyses reveal that reporter virus-infected, Env- cells carry defective env.  

Fluorescence-activated cell sorting of single cells from ID#300 (copied from Fig. 4.7B) for single cell 
analyses is shown. Cells were sorted into a single 96-well plate with the layout shown at bottom-left, then 
lysed and reverse-transcribed. A fraction of the RT reaction was used for quantitative PCR (with an 
additional target-specific RT step) to measure viral nucleic acids (vNA) containing the indicated targets, in 
two separate reactions, at top-right. Data are shown as 40 minus the cycle threshold (Ct) for each assay; 
wells for which no Ct was achieved were assigned a Ct value of 40. At bottom-left, another fraction of the 
original RT reaction was used for nested PCR targeting the complete env gene. PCR products were 
analyzed on an e-gel, with positive bands indicated by a small black box. 18 positive bands among Env+ 
cells and all 20 positive bands among Env- cells were sequenced (both by Sanger and Illumina methods) 
and analyzed for the presence of functional, intact env genes (alignments shown at bottom-right, black 
lines indicate mismatches with respect to the consensus env sequence). 
 

 

A single-cell viral outgrowth assay to identify bona fide LICs 

In order to determine whether HA+ cells that do not express Env indeed harbor 

functional viral genomes, it was critical to establish an assay that could report intact 

virus from within a single cell. As viral outgrowth is the only definitive assay for 

determining the presence of cells harboring functional viruses, I combined single-cell 
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sorting techniques with a classic viral outgrowth assay to establish a means of 

amplifying virus from individual cells. (For brevity, it shall suffice to state that significant 

adaptation was required in order to establish an assay that yielded an appreciable 

frequency of outgrowth.) The assay was performed as follows: two days prior to sorting, 

healthy donor PBMC were stimulated with 1ug/ml phytohaemagglutinin (PHA) in the 

presence of 100 IU/ml IL2. Separately, PHA-stimulated healthy donor PBMC were 

infected in vitro with HIV300. On the day of sorting, CD4+ T-cells were magnetically 

isolated from the PHA-stimulated, uninfected blasts, and seeded at 5x104 cells per well 

in a 50ul volume into round-bottom 96-well plates. Single cells infected with HIV300 

(Fig. 4.13A) were sorted on top of the CD4+ blasts, and media volume was increased to 

150 ul/well with 100 IU/ml IL-2 and 5 ug/ml polybrene (Pb). To test whether various 

stimuli might be capable of enhancing outgrowth, replicate cultures were treated with 

either 100 IU/ml IL-2 or IL-2 plus the putative latency-reversing agent (pLRA) ingenol 

dibenzoate (Ing)(71). Three days after sorting, 100 ul media was removed, cells were 

resuspended in 100 ul fresh media containing IL-2 and Pb, and transferred to flat-

bottom 96-well plates with 5x104/well freshly stimulated CD4+ healthy donor blasts. 

Medium was changed every three days, and fresh CD4+ blasts were again added on 

day 10 of culture. On day 14, cells were assayed for the presence of p24 antigen in 

supernatant by ELISA (Lenti-X p24 rapid titer kit, Clontech). 10/20 cultures of Env+ cells 

and 8/20 cultures of Env- cells treated with IL-2 alone became positive, whereas only 

4/20 Env+ cells and 0/20 Env- cells treated with IL-2 + Ing were positive (Fig. 4.13B). 

These data indicated that, while IL-2 treatment was sufficient to produce ~50% viral 
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outgrowth from Env+ cells, the addition of ingenol dibenzoate had deleterious effects on 

outgrowth [as had been found for other pLRAs, (70)].  

 

Figure 4.13: A single-cell viral outgrowth assay to detect cells harboring intact viral genomes.  

A, FACS of infected (HA+) Env+ or Env-, or uninfected CD4 cells, from a healthy donor human PBMC 
culture infected with HIV300. B, Single cells sorted (from A) into viral outgrowth cultures with the indicated 
conditions. Results of a p24 ELISA with matching plate layout are shown, with positive wells marked by a 
solid black circle. C, Single cells sorted (as in A, from a separate infection with more stringent gating for 
Env- cells, not shown) into viral outgrowth cultures with the indicated conditions (as in B).  
 

In a second experiment (Fig. 4.13C), I attempted the following additional conditions: 1 

ng/ml IL-7, or 30 ng/ml RLI (IL-15/IL-15Ra superagonist), or 50 ng/ml PMA + 1 uM 

Ionomycin (PMA/I) instead of IL-2(44, 70, 72-74). Outgrowth cultures from Env+/HA+ 

cells were positive in 11/20 wells treated with IL-2, 10/20 wells treated with IL-7, 6/20 

wells treated with RLI, and 0/20 wells treated with PMA/I (Fig. 4.13C). Env-/HA+ cells 
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uniformly grew out at far lower frequencies, at 4/20 wells treated with IL-2, 2/20 treated 

with IL-7, 3/20 treated with RLI, and 0/20 treated with PMA/I. None of the cultures into 

which CD4+/Env-/HA- cells were sorted produced a p24+ signal, indicating that the 

assay was clean. These results demonstrated that single Env+/HA+ cells could reliably 

spread virus to outgrowth cultures stimulated with IL-2, IL-7, or RLI. The dramatically 

lower rates of outgrowth observed for Env-/HA+ cells is unsurprising, given the 

aforementioned results obtained from single-cell analyses of genome integrity from 

ID#300 splenocytes. However, it was encouraging that some cells from this subset 

resulted in positive outgrowth cultures, possibly validating that LICs may be found within 

the HA+/Env- fraction. 

 In summary, through a combination of rational design and directed evolution 

approaches, I was able to generate an HA-expressing HIV-1 reporter virus that would 

robustly and faithfully replicate in hu-mice. Single-cell analyses revealed that significant 

differences exist between Env+ and Env- cells among HA+ (reporter virus-infected) 

cells: while Env+ cells harbored abundant viral transcripts and readily yielded positive 

outgrowth cultures, Env- cells harbored comparatively fewer viral transcripts, and rarely 

yielded positive outgrowth cultures. Significant follow-up work remains to determine the 

frequency of bona fide LICs among HA+/Env- cells, both in vitro and in vivo. 

!  
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CHAPTER V: DISCUSSION 

 
Antibodies as effective therapeutic agents in vivo 

HIV-1 antibody research has seen a renaissance over the past decade, due in large 

part to the popularization of single-cell cloning techniques that facilitated antibody 

discovery(69). This development gave rise to improved understanding of the diverse 

range of B-cell responses to HIV-1 infection(20, 32, 75, 76), and as a result, several 

extremely potent bNAbs were identified targeting previously unknown sites of 

vulnerability on the viral spike [reviewed in (77)].  

Though the utility of bNAbs as putative antiviral agents was proposed shortly 

after the discovery of neutralizing sera(78, 79), it was not until ten years later that 

members of the first generation of monoclonal bNAbs were shown to be protective 

against infection in animal models(22, 23). However, when tested in therapy 

experiments, the same antibodies were unable to control HIV-1 infection in either hu-

mice or in humans(25-27). While the successful results of protection experiments lent 

hope to the idea that bNAbs could confer immunity if elicited by vaccination, the 

discouraging results of therapy experiments led to the notion that bNAbs could not 

comprise an effective antiviral regimen or a therapeutic vaccine. 

 The subsequent identification of highly somatically mutated bNAbs that were 

orders of magnitude more potent than first-generation bNAbs raised the possibility that 

better antibodies might succeed where the early generation had failed. The experiments 

I conducted (outlined in Chapter I of this thesis) were designed specifically to test that 

possibility. Those experiments showed that several second-generation bNAbs 

independently exerted selective pressure on established HIV-1 infection in hu-mice, and 
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when combined, could rapidly and durably suppress viral loads. These encouraging 

results were later recapitulated in SHIV-infected macaques(61, 62), and the ability of 

bNAbs to exert strong selective pressure on viral populations was recently confirmed in 

HIV-1-infected humans(60, 80).  

 The experiments I conducted with single bNAbs in viremic hu-mice revealed 

several striking differences in antibody effectiveness that could not have been predicted 

on the basis of the in vitro neutralizing potencies of the bNAbs tested. For example, 

3BC176, a bNAb with in vitro potency against HIV-1YU2  equivalent to PG16, PGT128, or 

10-1074, was unable to transiently reduce viral loads or select for resistance mutations 

in infected hu-mice despite having the longest half-life of the five bNAbs tested. PG16, 

which exhibited in vitro neutralizing potency equivalent to PGT128 and 10-1074, had the 

smallest effect on viral load of the four efficacious bNAbs tested. Additionally, 10-1074 

was found to be dramatically more escape-restrictive than its highly similar counterpart, 

PGT128, despite equivalent in vitro neutralizing potencies.  

These single-bNAb therapy experiments highlighted that in vitro neutralizing 

potency is merely one metric by which to assess bNAb effectiveness against HIV-1, and 

demonstrated the significant utility of the hu-mouse model for gleaning critical 

information about bNAb activity in vivo and their restrictiveness on viral escape 

pathways. However, significant caveats to this hu-mouse model must be acknowledged 

that limit the extrapolative capacity of these results. First, the hu-mouse model I 

employed is highly immune-compromised, with respect to both human and murine 

immune cell lineages. It is not outfitted with human thymus and liver implants [as for 

BLT mice, (56)], which are known to improve some adaptive cell-mediated and humoral 
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responses to pathogens, and the model is extremely deficient in myeloid lineages and 

natural killer cells. These adaptive and innate immune effector cells may play significant 

roles in the dynamics of viral infection in humans, and are largely absent in this hu-

mouse model. It remains unclear whether such cells (or their murine counterparts) can 

direct bNAb-mediated ADCC in hu-mice, for example, which may be a critical factor in 

the activity of certain bNAbs against HIV-1 infection in vivo. The results of these studies, 

therefore, must be interpreted with the understanding that specific mechanisms outside 

direct virus neutralization have not been determined in assessing bNAb activity in vivo.  

Another caveat of the hu-mouse model I have employed throughout this thesis is 

that all experiments in Chapters I and II were conducted using HIV-1YU2, which is a 

clonal YU2 env chimera of a laboratory-adapted strain (NL4/3). The YU2 env was 

chosen because it is a clade B virus that is difficult to neutralize (Tier 2), but which is 

potently neutralized in vitro by the six bNAbs tested in the experiments in Chapters I 

and II. It remains to be determined whether similar results would be obtained with other 

viral envs against which the tested bNAbs are less potent, or with primary clinical 

isolates, against which bNAbs may exhibit different activities in vivo. Furthermore, these 

experiments were conducted following infection with a molecular clone, which was 

permitted to diversify for 2-4 weeks prior to treatment. The viral diversity that could be 

expected from such an acute infection in an animal three orders of magnitude smaller 

than a human is likely to be dwarfed by that of HIV-1-infected humans, who are often 

chronically infected for months to years and have far greater total body viral loads.  

However, it should be noted that many of the general findings made in Chapters I 

and II with respect to bNAb activity against established HIV-1YU2 infection in hu-mice 
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have now been recapitulated in both SHIV-infected macaques and in humans, as 

discussed in Chapter III and in (60-62, 80). Nonetheless, the extreme diversity of HIV-1 

strains should be factored into any attempt to extrapolate from the profiles of viral 

escape described for HIV-1YU2, as pathways to bNAb resistance are likely to differ 

significantly between virus strains and in the context of chronic infection. 

 

Reducing viral load improves bNAb effectiveness 

The central finding outlined in Chapter II of this thesis holds that viral load suppression 

prior to bNAb therapy improves the likelihood of sustained viral control by bNAbs, 

directly implying a link between viral load and the propensity for viral escape. This result 

was obtained by reducing viral loads first with cART, then withdrawing cART in the 

presence of a single bNAb. Whereas treatment of viremic (non-suppressed) animals 

with a single bNAb uniformly resulted in rapid viral escape, pre-suppression of viral 

loads below the limit of detection permitted high rates of sustained virological control 

with the same bNAbs. Animals whose viral loads were not fully suppressed before 

initiation of bNAb monotherapy quickly escaped antibody pressure, as was expected 

from the bNAb monotherapy experiments in viremic animals (Chapter I). Similar results 

were obtained for multiple bNAbs, and when animals were administered the same 

bNAbs by either continuous injection of IgG1 protein or a single gene therapy treatment, 

demonstrating that the general effect observed was highly reproducible. 

It shall be noted that the results obtained for PG16-treated animals, in which only 

one of five animals remained suppressed during bNAb monotherapy, should not be 

taken to signify that PG16 is an inferior bNAb. PG16-treated animals, in contrast to 
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those treated with the other three bNAbs (Fig. 2.4), were infected for an extra week prior 

to cART suppression, thereby permitting further viral diversification prior to treatment. In 

addition, only three of five animals were below detection at the time cART was stopped, 

of which one remained suppressed under PG16 monotherapy. These results rather 

imply that viral diversity is a key determinant of the effectiveness of bNAb monotherapy: 

the prevalence of bNAb escape variants in viral reservoirs is likely to increase with the 

duration of infection(81). 

The general finding that pre-suppression improves rates of bNAb-mediated 

therapeutic control can be explained by two non-mutually exclusive possibilities: first, 

viral load suppression reduces total viral diversity, simply due to the fact that far fewer 

infected cells are present at low viral loads than at high viral loads (therefore, even if the 

average diversity between viruses among infected cells is the same at high and low viral 

loads, the total diversity is necessarily lower because the total number of infected cells 

is smaller); and second, viral resistance may arise either through selection of pre-

existing variants, or as a result of creation during bNAb therapy and selection thereafter. 

In the latter scenario, a high viral load would be deleterious to effective therapy because 

of the possibility that ongoing viral replication may occur until viral loads are fully 

suppressed, creating an additional time window in which an escape variant may be 

generated. This would be possible if privileged zones exist in which bNAb penetrance is 

insufficient to block all new infections. In either case, it is logical that the likelihood of 

viral escape from bNAbs (or any therapeutic intervention) would be linked to viral load. 

Indeed, these results were largely confirmed in 3BNC117 clinical trials: whereas 

treatment of viremic individuals resulted in transient viral load reduction, followed by 
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rebound to pretreatment levels within 3-4 weeks and selection for 3BNC117 resistance, 

treatment of aviremic individuals with 3BNC117 (Chapter III) coincident with ATI 

resulted in sustained virological suppression for 5-9 weeks, with variable levels of 

selection for resistance. 

An important caveat of the experiments in cART-suppressed animals in Chapter 

II is that the cART regimen used may have been inadequate to suppress viremia in all 

hu-mice. While a majority of animals treated with cART did become suppressed in the 

experiments in Chapter II, it was later evident from larger experiments involving hu-mice 

treated with cART alone for six weeks (data not shown) that bNAb co-administration 

with cART for the latter two weeks of cART treatment intensified suppressive therapy. 

Therefore, it is possible that bNAb monotherapy in these experiments was less effective 

than would be expected with a fully effective cART regimen. In later experiments 

(Chapter IV), an optimized cART regimen was used that fully suppresses viral loads in 

HIV-1YU2-infected hu-mice(68). 

 

An optimized bNAb cocktail suppresses viremia and lowers cell-associated DNA 

Two additional findings were made regarding the dynamics of bNAb-mediated viral 

suppression in the experiments outlined in Chapter II. First, an optimized bNAb cocktail 

of only three bNAbs suppressed viral loads, an improvement over the five-bNAb cocktail 

described in Chapter I. Second, suppressive bNAb therapy with the optimized tri-mix 

reduced cell-associated viral DNA. The first finding is notable because it signifies that, 

much like HAART in humans, which is effective because it combines drugs that target 

different elements of the viral life cycle (or have distinct mechanisms that target the 
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same elements, such as NNRTIs and NRTIs), bNAb therapy is most effective when its 

components target distinct viral epitopes. While the removal of 3BC176 from the original 

penta-mix was obvious because it was sub-therapeutic in monotherapy experiments, 

removal of PGT128 was decided upon because it was the weaker of two bNAbs 

targeting the same epitope. The three bNAbs used in the optimized tri-mix, 3BNC117, 

PG16, and 10-1074, each target a distinct epitope on the viral spike and elicit distinct 

resistance mutations. The ability of this optimized tri-mix to suppress viral loads (where 

an original tri-mix comprised of 3BC176, PG16, and 45-46W had largely failed) is 

probably due to the requirement for three simultaneous escape mutations. The original 

tri-mix was ineffective because it only required two simultaneous mutations, to PG16 

and 45-46W (since 3BC176 was sub-therapeutic). Therefore, viral suppression by 

bNAbs can be generally understood to depend upon the likelihood of generating 

simultaneous resistance mutations to all components of the regimen. 

 The finding that bNAb therapy reduced levels of cell-associated viral DNA is 

encouraging because of the comparative inability of HAART to lower this measurement 

in humans over short timescales. This result suggests that bNAbs may act to clear 

infected cells via an ADCC-like mechanism, which may more effectively reduce HIV-1 

DNA than passively blocking new infections (as HAART does). However, these results 

should be interpreted with the caution that cART-treated control mice were not included 

in these experiments, so the reduction in cell-associated DNA due to blocking new 

infections in hu-mice remains unknown. Furthermore, hu-mice are not humans, and the 

myriad factors that influence cell-associated viral DNA levels may be substantially 
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different in humans. Therefore, it cannot be ruled out that the effects of bNAb therapy 

on HIV-1 DNA in hu-mice are limited to blocking new infections.  

 

BNAb gene therapy durably sustains virological suppression 

Two observations on the experiments from Chapter II must be made about the results 

with AAV-based gene therapy. First, these experiments are highly encouraging that a 

single-shot approach could be used to deploy bNAbs to durably suppress viral loads in 

humans. Such a therapy, if found to be safe and effective in humans, would permit a 

“functional cure” of HIV-1 infection by relieving an infected person of all subsequent 

interventions – notably, daily ART – for an extended period. However, it was found 

during the course of these experiments that the cART regimen used in hu-mice inhibited 

AAV transduction, which must be considered if such an approach (or any other gene 

therapy approach) is to be attempted in humans. Second, it is further encouraging that 

bNAb titers remained stable for a majority of the observation period in both AAV-

3BNC117 and AAV-10-1074-treated animals. It has since been found in hu-mice and in 

humans that viral loads negatively impact antibody titers(60, 68). This is because a 

neutralizing event results in destruction of both a virus and the antibodies to which it is 

bound. Even under suppressive therapy, latently infected cells are constantly becoming 

reactivated and releasing viral particles that can exhaust antibody titers. This variable 

must be accounted for in assessing the stability of antibody expression by gene therapy 

in HIV-1-infected persons. It is possible that deleterious effects on antibody expression 

were not observed in these experiments because of the relatively short timescales in 

which these AAV experiments were conducted (on the order of weeks). 
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3BNC117 delays viral rebound during ATI 

In Chapter III of this thesis, results of a clinical trial showed that two infusions of 

3BNC117 concurrent with ATI yielded virological suppression for 5-9 weeks during ATI. 

Historically, rebound occurs within 2-3 weeks in most infected individuals following 

ATI(40). The early clinical studies using first-generation bNAbs in the setting of ATI also 

found that a majority of chronically infected individuals rebounded within this timeframe. 

These studies highlight the importance of antibody potency in therapeutic contexts: two 

of the bNAbs (2F5 and 4E10) in the early clinical trials were deemed sub-therapeutic, 

while the only antibody found to exert any selective pressure on patient viruses (2G12) 

was 2-3 orders of magnitude less potent than, and only a third as broad as, 3BNC117. 

The success of 3BNC117 in prolonging virological suppression during ATI likely reflects 

that this bNAb was sufficiently potent to prevent recrudescence of viremia.  

 Three observations were made during the course of this work that warrant further 

exploration. First, rebound was merely delayed for 3-6 weeks beyond historical controls; 

second, rebounding plasma viruses were less sensitive (on the whole) to 3BNC117 than 

pre-treatment viruses; and third, rebound occurred when serum antibody titers were 11-

45 times greater than the IC50s of the rebound outgrowth cultures. To address all three 

observations, follow-up studies are presently underway in which the frequency and 

number of 3BNC117 infusions given during ATI were increased. These studies should 

definitively reveal whether rebound during ATI in the experiments described in Chapter 

III was the result of viral escape from 3BNC117, or simply the result of viral outgrowth at 

sub-therapeutic antibody titers. If the primary mode of rebound is escape, rebound 
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should again occur between 5-9 weeks of ATI, even when antibody titers are high. If, 

however, the primary mode of rebound is outgrowth at sub-therapeutic antibody titers, 

rebound should occur later, at equivalent antibody titers as those described for patients 

receiving only two infusions in Chapter III. Importantly, even if rebound can be explained 

by outgrowth of resistant viruses, viral outgrowth cultures obtained after ATI was 

terminated and subjects resumed HAART revealed baseline-level sensitivities to 

3BNC117, indicating that broad resistance had not been selected as a result of infusion. 

 To expand upon the latter two observations that rebound was associated with 

loss of sensitivity and occurred at detectable antibody concentrations, it bears 

mentioning that a single viral outgrowth culture was used to determine baseline viral 

sensitivity of each patient to 3BNC117. Such a method already suffers an extreme 

sampling bias on the basis of utilizing only five million subject CD4+ T-cells, which are 

but a tiny fraction of the T-cell repertoire in an infected person. Additionally, bulk 

outgrowth cultures are highly clonal due to rapid spread of the first (or fittest) viruses to 

become reactivated, as can be seen from the nearly absent diversity of gp160 

sequences obtained from pre-ATI cultures for each subject (Fig. 3.5). The use of such a 

screening technique fails to capture any of the broad viral diversity that would be 

expected to exist within each subject’s T-cell repertoire. A much more informative 

approach (underway in follow-up studies) would be to utilize a larger number of subject 

lymphocytes in a limiting-dilution viral outgrowth culture designed to reactivate only one 

infected cell per well. Such an approach should yield a far more diverse profile of viral 

sequences and culture virus sensitivities at baseline for each study subject. Moreover, 

virus profiling in this way should permit a far more meaningful comparison of plasma 
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viruses at rebound to the pre-treatment repertoire. It may be found, for example, that the 

moderate loss of 3BNC117 sensitivity found in viral outgrowth cultures (and anticipated 

from plasma sequences) at rebound merely reflects expansion of a pre-existing viral 

clone that is unable to be neutralized by the limiting serum antibody titers found at time 

of rebound.  

 

Paradigms of bNAb-mediated HIV-1 therapy in vivo 

The experiments described in Chapters I-III of this thesis explored the abilities of bNAbs 

to antagonize established HIV-1 viremia in animal models and in humans. In summary, 

this work demonstrated that several second-generation bNAbs could succeed where 

first-generation bNAbs had failed in controlling HIV-1 viremia in vivo.  

I found that second-generation bNAbs were extremely active as single reagents 

in exerting selective pressure on viral populations, often sufficient to transiently depress 

viral loads by more than a log. Combining multiple bNAbs severely limited the likelihood 

of viral escape, resulting in prolonged virological suppression in a majority of cases. 

Withdrawal of suppressive bNAb therapy resulted in viral rebound coincident with 

antibody washout, demonstrating that suppression was indeed maintained by the 

bNAbs. Viruses rebounding after prolonged suppression by bNAbs did not harbor 

resistance mutations, further confirming that the bNAbs had prevented viral escape.  

 As is true of HAART in humans, successful bNAb therapy was contingent upon 

the ability of the regimen to tightly restrict pathways for viral escape. Three bNAbs 

requiring two simultaneous mutations yielded minimal rates of control, while five 

antibodies requiring three simultaneous mutations yielded complete control in all 
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animals. Optimization of this regimen to comprise three bNAbs, each requiring a distinct 

resistance mutation, recapitulated the results seen for treatment with all five bNAbs.  

 Whereas several bNAbs were required to suppress established viremia when 

viral loads were high, I found that pre-suppression of viral loads with cART enabled 

bNAbs to sustain virological suppression as monotherapeutics after cART withdrawal. 

This effect was observed for all four bNAbs tested, and was most successful when viral 

loads were below detection at the time cART was withdrawn. These results were initially 

obtained by repeated administration of bNAb protein, but were completely recapitulated 

by gene therapy experiments deploying bNAb-expressing AAVs, for which only a single 

shot was required to maintain durable virological control. In light of the lifelong and daily 

burden faced by HIV-1 infected individuals undergoing HAART, these results provide 

proof-of-concept support for the hypothesis that bNAbs might one day comprise an 

effective alternative to ART drugs. It should be noted, however, that there may be 

impaired antibody penetrance into lymphoid tissues and the brain, where high local 

concentrations of bNAbs may be needed to maintain antiviral activity. 

 The findings made in hu-mice that individual bNAbs could delay viral rebound in 

an ATI-like setting were later confirmed in humans in a phase IIa clinical trial. Two 

infusions of the bNAb 3BNC117, which was already shown to be safe in humans(60), 

significantly delayed viral rebound during ATI without selecting for broad viral 

resistance. In addition to validating the exceptional utility of the hu-mouse model as a 

preclinical platform for evaluating putative HIV-1 therapeutics, the results of this trial are 

extremely encouraging and demonstrate that bNAbs can be potent antiviral agents 

against HIV-1 infection in humans. 
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 A common thread through the findings of Chapters I-III is that the propensity for 

viral reservoirs to harbor bNAb-resistant clones was a key determinant of the success of 

bNAb therapy. Suppression of viral loads dramatically reduced the likelihood for viral 

escape, signifying that viral reservoir size and total diversity are smaller when viral loads 

are low. However, viral reservoirs indeed persisted despite prolonged suppression by 

bNAbs, as both hu-mice and humans rebounded after bNAb therapy when serum 

antibody levels were low. Re-emergent viruses in mice did not carry signature 

resistance mutations, while rebounding viruses in 3BNC117-treated humans during ATI 

revealed only moderate loss of neutralizing sensitivity. (In contrast, non-suppressive 

bNAb therapy in both hu-mice and in humans resulted in strong selection for viral 

resistance to bNAbs.) These results highlighted that, not only did the hu-mouse model 

harbor reservoirs of latently infected cells, those cells were also refractory to bNAb 

therapy.  

Subsequent work(68) not described here revealed that reservoirs of latently 

infected cells in hu-mice were somewhat labile, and could be disrupted by interventions 

aimed at reactivating latently infected cells in the presence of bNAbs. However, 

significant questions remained as to the mechanisms by which those interventions, and 

concurrent bNAb administration, succeeded in disrupting latent reservoirs in hu-mice. 

Those questions, being important to the development of means to eradicate HIV-1 

infection, required answers for which tools by and large did not yet exist: latently 

infected cells cannot yet be distinguished from uninfected cells by any known means, 

precluding their purification and study. I therefore pursued the goal of developing a 

means to identify latently infected cells using the hu-mouse model of HIV-1 infection. 
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A replication-competent reporter virus designed to identify latently infected cells 

Many attempts have been made to study supposed latently infected cells in vitro(45, 82-

85). Many such platforms have employed recombinant viral genomes harboring reporter 

genes to facilitate identification of latently infected cells, either in real time or post-

reactivation. However, such viruses suffer numerous critical weaknesses that preclude 

their ability to identify bona fide latently infected cells. In two models(82, 83), two-color 

reporter viruses were designed for single-round infection in vitro. These viruses lack 

functional env genes, and therefore cannot spread. This property limits any ability to 

determine whether the cells identified as “latent” harbor functional viruses, because 

such cells cannot spread their virus. Furthermore, the determination of latency is made 

on the basis of cells expressing a “constitutive” marker driven by a promoter de-coupled 

from the viral LTR, but not an LTR-driven marker. While cells can be readily identified 

which satisfy that criterion, one such platform (45) found that the EF-1a promoter 

utilized for constitutive marker expression became quickly disabled in infected primary 

CD4+ T-cells when those cells were reverted to a resting phenotype. A second platform 

(82) utilized a CMV promoter for constitutive marker expression, which is highly 

dependent upon NF-kB, a factor also critical for LTR-driven expression(86). Both 

models, therefore, are unlikely to be capable of identifying latently infected cells in vitro, 

and cannot be used to identify bona fide latently infected cells that arise through the 

natural spread of HIV-1 infection in vivo. 
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 To overcome the limitations of previous models, I set out to design a replication-

competent HIV-1 reporter virus that would enable the identification and study of latently 

infected cells at single-cell resolution ex vivo. This virus was intended to constitutively 

express a surface marker on all infected cells, thereby facilitating the identification of 

latently infected cells as those lacking viral gene markers such as Env or p24. An 

important criterion was that cells putatively identified as latent should be recoverable as 

live cells for downstream analyses, permitting proof that they were, indeed, latently 

infected. As described at length in Chapter IV of this thesis, the road to a reporter virus 

that stably replicated in vivo was long, but ultimately successful. Through repeated re-

design and gradual refinement, a reporter virus was developed that replicated with wild-

type kinetics in a human CD4+ T-cell line in vitro. That virus, HIV-1IL16HA, was then 

passaged in hu-mice to select for adaptive mutations that would confer additional 

replicative fitness in vivo. The adapted virus (HIV300) reproducibly yielded high viral 

loads, demonstrated the capacity to form latently infected cells, and exhibited stable 

reporter retention during the course of infection in hu-mice. An infectious molecular 

clone derived from the sequence of that strain was constructed (HIVivoHA), yielding high 

viral loads in hu-mice and recapitulating the features of the adapted primary isolate.  

 

Single-cell assays to facilitate dissection of HIV-1 latency 

In order to prove that cells identified as “latent” did, in fact, harbor functional proviruses 

that can become reactivated to spread infection, it was necessary to design assays that 

would determine the functionality of proviruses contained within individual sorted cells. 

Therefore, I established staining protocols to permit single-cell sorting of cells on the 
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basis of a recombinant marker (HA) and a viral marker (Env). I subsequently developed 

three separate assays to facilitate characterization of putative latently infected cells after 

single-cell sorting: a quantitative intracellular viral nucleic acid assay to detect the 

relative abundance of viral (LTR-driven) and recombinant (IL16pro-driven) transcripts, 

which was intended to distinguish latently infected cells from actively infected cells; an 

env RT-PCR assay to determine whether individual Env- cells harbored intact env 

genes; and a viral outgrowth assay to determine whether individual, putative latently 

infected cells could be reactivated to spread infection. 

 

Further proof is required to determine whether HIVivoHA can identify latency 

 The experiments outlined in Chapter IV of this thesis differ significantly from 

those of Chapters I-III in that the primary focus of Chapter IV was the design and 

development of a tool, the in vivo-adapted latency reporter virus HIVivoHA, rather than 

the pursuit of experimental findings. Hence, the discussion of Chapter IV shall be 

primarily concerned with the characteristics and caveats of the reporter virus I designed, 

as well as identifying further experiments required to assess its utility for studying bona 

fide latently infected cells. 

 One of the key realizations made while characterizing the in vivo-adapted latency 

reporter virus was that HA+ cells that were Env- predominantly contained defective env 

genes. This result should not be surprising, in light of the fact that HIV-1 infection is 

highly error-prone. It has been long understood that sizeable pools of HIV-1 DNA exist 

that harbor defective viruses(12). These pools can easily confound the study of latency 

ex vivo, and extreme care must be taken to separate defective from intact infections 
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insofar as that is possible. Whereas two groups recently identified pools of clonal 

integrations within cancer genes as a major component of the viable HIV-1 latent 

reservoir(87, 88), it was later found that the vast majority (or all) of clonal integrations, in 

fact, harbored defective (yet integrated) proviruses(89). An elegant and exhaustive 

study (13) revealed that, while the pool of HIV-1 DNA in cells is orders of magnitude 

greater than the pool of cells that can be reactivated to produce virus by outgrowth 

assays in vitro, a substantial population of cells fails to reactivate that appear to harbor 

intact proviruses. In that study, roughly 12% of non-induced proviruses appeared intact 

by near-full length genome sequencing of cell DNA, while the rest were defective.  

Any number and manner of aberrations can result in a defective provirus. With 

respect to the reporter virus I have designed, the recombinant cassette (IL16pro-HA) is 

only 5% of the size of the viral genome. This makes it highly likely that cells infected 

with such a virus can suffer aberrations that render the viral genome defective, yet leave 

the IL16pro-HA cassette intact. Thus, infected cells can be identified on the basis of HA 

expression (and absent Env expression, e.g.) that reflect dysfunctional infected cells, 

rather than latently infected cells, as was found for ID#300 splenocytes in the single-cell 

experiments outlined in Chapter IV. It is also important to note that these single-cell 

experiments were conducted on cells from a viremic animal, rather than a cART-

suppressed one. Bona fide latently infected cells, almost by definition, are cells 

harboring intact proviruses that can persist for extended periods of time in vivo. It 

therefore remains critical to determine whether, indeed, any of the HA+ cells that persist 

after suppressive therapy in HIVivoHA-infected hu-mice harbor intact proviruses that can 

be reactivated. Should such experiments confirm that a subset of such HA+ cells 
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harbors intact virus, they would definitively prove that the HIVivoHA reporter virus can 

identify bona fide latently infected cells – a feat not yet possible by any known means. 

However, even if a subset of HA+ cells are found to harbor latency, extensive further 

research must still be conducted to determine what, if any, unique features describe 

latently infected cells harboring intact proviruses, as opposed to those harboring 

defective ones.  

In sum, the experiments conducted in Chapter IV of this thesis describe a new 

tool that may be useful in characterizing latent infection. Further work is required to 

determine whether the reporter virus described can, indeed, identify bona fide latently 

infected cells. Despite that important uncertainty, HIVivoHA should nonetheless prove to 

be a valuable tool for future experimentation, as it is the first known recombinant HIV-1 

reporter virus capable of stably replicating at high viral loads in vivo.  

!
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