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The value the world sets upon motives is often grossly unjust and inaccurate. Consider, 

for example, two of them: mere insatiable curiosity and the desire to do good. The latter 

is put high above the former, and yet it is the former that moves one of the most useful 

men the human race has yet produced: the scientific investigator. What actually urges 

him on is not some brummagem idea of Service, but a boundless, almost pathological 

thirst to penetrate the unknown, to uncover the secret, to find out what has not been found 

out before. His prototype is not the liberator releasing slaves, the good Samaritan lifting 

up the fallen, but a dog sniffing tremendously at an infinite series of rat-holes. 

H. L . Mencken 

The right answer to a trivial question is also trivial, but the right question, even when 

insoluble in exact form, is a guide to major discovery. 

Edward O. Wilson 
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1. A B S T R A C T 

This thesis describes the investigation of the mechanisms of signal transduction activated 

by tumor necrosis factor (TNF) superfamily proteins. Ligands of the TNF family engage 

TNF receptor (TNFR) family proteins, leading to a wide variety of cellular effects, and 

these interactions are implicated in inflammation, immune regulation, bone homeostasis, 

and development. TNFR proteins lack intrinsic enzymatic activity, and are coupled to 

intracellular signaling cascades by TNFR associated factor (TRAF) proteins, which are 

cytoplasmic adaptor molecules. The roles of TRAF1, TRAF2, and TRAF6 are 

investigated structurally and functionally in the activation of NF-kB, AP-1, and Src-

family kinases. Cbl proteins are identified as positive and negative regulators of TRAF-

mediated Src-family kinase signaling. The molecular structure of TRAF6 is determined 

and structure-function relationships between TRAF6 and the receptors to which it binds 

are examined. A physiological role for TRAF1 is identified in the regulation of TRAF2. 

This finding elucidates the role of translocation into lipid rafts in TRAF signaling and 

regulation. The implications of these findings are considered primarily in the reciprocal 

regulation of immunity and bone homeostasis by TRAF-mediated signaling pathways. 



2. General Introduction 

2. GENERAL INTRODUCTION 

2.1 TNF/TNFR Superfamilies 

Lymphotoxin (1) and tumor necrosis factor (TNF) (2) were first identified in the late 

1960s and early 1970s as factors produced by immune cells that induced the death of 

various types of tumor cells. As molecular cloning became commonplace, it became clear 

that the genes that encoded these factors were part of a large family of genes, the 

identification of which continues to expand to this day. The TNF superfamily consists of 

a wide variety of proteins, some cell-bound and others secreted, that regulate a wide 

variety of cellular processes. In particular, TNF family proteins regulate the life and death 

of not only tumor cells, but of activated cells of the immune system. They modulate the 

activation state of immune cells, and as we are increasingly becoming aware, they 

mediate the signals that these cells send to each other. TNF family proteins have been 

implicated in areas outside of inflammation and immunity, including bone homeostasis, 

lymph node organogenesis, hair follicle development, and mammary gland development 

(3). A holistic view of the TNF family clearly demonstrates that, through TNF family 

proteins, these myriad biological processes are inextricably linked, and the widespread 

sequelae of inflammatory processes can be explained through the actions of the TNF 

family. 

TNF family proteins mediate cellular effects by binding to their cognate cellular 

receptors, members of the TNF Receptor (TNFR) superfamily (3-6). TNF family proteins 

are expressed as type II transmembrane proteins that form trimers and may interact with 

their cognate receptors as cell-bound or soluble forms (7). TNFR family proteins are type 

I transmembrane proteins with conserved cysteine-rich domains (CRDs) that typically 



2. General Introduction 

consist of three conserved disulfide bridges (8). These domains form elongated receptor 

chains that intercalate with protomers of ligand trimers (9). It has been suggested that 

encounter with a ligand trimer induces the trimerization of a receptor, which leads to 

intracellular signaling, although recently it has been shown that TNFR proteins self-

assemble in the absence of ligand, undergoing conformational changes upon ligand 

engagement that lead to signaling (10). While the extracellular ligand-binding domains of 

TNFR proteins are similar, there are three divergent subgroups of TNFR proteins that can 

be classified by motifs (or lack thereof) in their cytoplasmic tails: death receptors, decoy 

receptors, and activating receptors. Since TNFR proteins appear to lack intrinsic 

enzymatic activity, their intracellular signals are mediated by cytoplasmic adaptor 

proteins. 

2.1.1 Death Receptors 

Apoptosis, or programmed cell death, is a necessary feature of embryonic development, 

lymphocyte homeostasis, CD8+ T cell-mediated killing of virus-infected or tumor cells, 

and the maintenance of "immune privileged" sites such as the eye (11,12). As opposed to 

death through necrosis, which is a response to physical injury to cells, apoptosis is a 

highly regulated process in which a cell "commits suicide." Morphological characteristics 

of apoptosis include membrane blebbing, cytoplasmic, nuclear, and chromatin 

condensation, and DNA fragmentation. The cell is reduced to fragments termed apoptotic 

bodies, which have intact membrane structures that contain surface markers that signal 

phagocytic cells to engulf them (13). This orderly process prevents the release of 

inflammatory stimuli that characterizes necrosis. During development, as tissues and 

structures differentiate, it is essential for certain cells to die in order to generate proper 

morphology. For example, in limb development, if there is a defect in apoptosis, the 

tissues in between digits may persist, resulting in webbing. During a cellular immune 

-3 



2. General Introduction 

response, there is massive proliferation of activated lymphocytes. While these activated 

lymphocytes are necessary to clear the infectious agent, they can cause collateral damage 

through nonspecific inflammation, and if they persisted, the body would eventually be 

overrun by lymphocytes. Indeed, mice and humans with mutations in Fas or FasL have 

autoimmune syndromes characterized by massive accumulation of activated lymphocytes 

and greatly enlarged lymph nodes (14). Thus, activated lymphocytes are extremely 

sensitive to apoptotic stimuli and lymphocyte homeostasis is maintained through the 

process of apoptosis (4). Death receptors such as TNFR1 and Fas contain a conserved 

intracellular "death domain" (DD) that can interact with intracellular DD containing 

adaptor proteins such as TRADD and FADD (15-17). FADD couples Fas and the 

TNFR1-TRADD complex to caspase-8 activation, which results in the orderly sequence 

of proteolytic events of apoptosis. 

2.1.2 Decoy Receptors 

Decoy receptors of the TNFR superfamily include osteoprotegerin (OPG) (18), DcRl 

(19,20), DcR2 (21-24), and DcR3 (25). Their function is to negatively regulate the effects 

of various TNF family ligands by preventing their interaction with cell-bound receptors 

that mediate the dominant signals activated by those ligands. OPG is a soluble decoy 

receptor for TRANCE (discussed in more detail in section 2.3). DcRl is a GPI-linked 

decoy receptor for the pro-apoptotic TNF family member TRAIL, DcR2 is a 

transmembrane decoy receptor for TRAIL, and DcR3 is a soluble decoy receptor for 

FasL. The expression of decoy receptors plays an important role in tempering the potent 

effects of TNF family members. Another mechanism of generating decoy receptors is 

through the proteolytic cleavage of cell-bound TNFR family proteins, rendering them 

soluble. This has been shown in the case of TNFR1, TNFR2, CD27, CD30, CD40, and 

Fas (26). A third mechanism of generating decoy receptors is through alternative splicing 

• 4-



2. General Introduction 

of TNFR family proteins, generating membrane-bound receptors with no cytoplasmic 

tails, which has been shown for Fas (27) and CD40 (28). 

2.1.3 Activating Receptors 

Activating TNF receptors mediate their intracellular signals through a different set of 

adaptor proteins termed TNF receptor associated factors, or TRAFs. While DD 

containing receptors interact with cytoplasmic adaptor molecules that activate the pro-

apoptotic caspase cascade, receptors that interact with TRAF proteins activate a variety 

of signal transduction pathways that mediate a large number of cellular effects, including 

survival, proliferation, differentiation, activation, and migration, to name but a few. 

TRAF proteins will be discussed in greater detail in the next section. Table 2.1 lists 

known TNFR family proteins (by standardized TNFRSF nomenclature), their ligands, 

intracellular adaptor molecules with which they interact, and known physiological 

functions (adapted from (3)). 
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Table 2.1; T N F R superfamily members 

TNFR 

SF# 

IA 

IB 

3 

4 

5 

6 

7 

8 

9 

10A 

10B 

IOC 

10D 

11A 

IIB 

12 

14 

16 

17 

18 

19 

Receptor 

TNFR1 

TNFR2 

LTpR 

OX40 

CD40 

Fas 

CD27 

CD30 

4-IBB 

DR4 

DR5 

DcRl 

DcR2 

TRANCE 

-R 

OPG 

DR3 

HVEM 

NGFR 

BCMA 

AITR 

Troy 

TACI 

EDAR 

Other names 

p55,CD120a 

p75, CD 120b 

TNF-R-III 

CD 134 

CD95, Apol 

CD 137 

Apo2, TRAIL-

Rl 

TRAIL-R2 

TRAEL-R3 

TRAIL-R4 

RANK 

OCIF 

Apo3, 

TRAMP 

ATAR 

p75 

GITR 

Taj 

Ligand(s) 

TNF-a, LT-a 

TNF-a, LT-a 

LT-P 

OX40L 

CD40L 

(CD 154) 

FasL 

CD27L (CD70) 

CD30L 

4-1BBL 

TRAIL 

TRAIL 

TRAIL 

TRAIL 

TRANCE 

(RANKL, 

OPGL, ODF) 

TRANCE 

TWEAK 

LT-a, LIGHT 

NGF 

BLyS 

AITRL 

BLyS 

EDA 

Intracellular 

adaptors 

TRADD, RIP, 

TRAF1,2,5 

(indirect) 

TRAF1,2,5 

TRAF3,5 

TRAF1,2,3,5 

TRAF1,2,3,5,6 

FADD 

TRAF2,5 

TRAFl.2,3,5 

TRAF1,2,3 

FADD 

FADD 

None 

None 

TRAF1,2,3,5,6 

c-Src, c-Cbl 

None 

TRADD 

TRAF1,2,3,5 

TRAF6 

TRAF1,2,3 

Physiological Functions 

Macrophage activation, G C 

formation 

Bacterial response, T cell 

homeostasis 

L N organogenesis 

T cell activation 

B cell proliferation, maturation, 

class switching, D C maturation, 

activation, survival 

Lymphocyte homeostasis, T cell 

cytotoxicity, immune privilege 

maintenance 

T cell activation 

T cell regulation, expressed on 

Reed-Sternberg cells (HD) 

DC-T cell communication 

Lymphocyte homeostasis 

Lymphocyte homeostasis 

Decoy for TRAIL 

Decoy for TRAIL 

Osteoclastogenesis, D C 

survival/activation, mammary 

gland development, L N 

organogenesis 

Decoy for T R A N C E 

H S V receptor, T cell proliferation 

Neurogenesis 

B cell responses 

Inhibits TCR-induced apoptosis 

Regulator of hair follicles? 

B cell survival 

DR6 

LMP1 Self-activating TRAF1,2,3,5 E B V protein, activates B cells 

-6 



2. General Introduction 

2.2 TRAF proteins 

There are six known mammalian TRAF proteins, of which TRAF1, 2, 3, 5, and 6 have 

been shown to interact directly or indirectly with members of the TNFR superfamily (29-

31). In addition, TRAF6 mediates signaling from several other receptors that are not 

TNFR family proteins, including IL-1R, IL-18R, and Toll-like receptors (TLRs). The 

physiological role and binding partners of TRAF4 are presently unclear. TRAF proteins 

are characterized by a highly conserved C-terminal domain called a TRAF domain that 

mediates interactions of TRAFs with other proteins. The N-terminal domains of TRAFs 

are slightly more divergent, but each TRAF contains one or more zinc-binding domains 

that enable the activation of signaling cascades. TRAF proteins have been implicated in 

the activation of several kinase cascades, including MAP kinases, IkB kinases, and Src-

family kinases, resulting in the ultimate activation of transcription factor complexes 

including AP-1, NF-kB, Elk-1, ATF2, and others. Thus, TRAF proteins exert their 

function by linking TNFR family proteins to these kinase cascades and subsequent 

regulation of gene expression. 

2.2.1 TRAF identification, genetics, and expression 

TRAF1 was first identified through the biochemical purification of intracellular factors 

interacting with TNFR2, and TRAF2 was cloned via a yeast two-hybrid system using 

TNFR2 as bait (32). TRAF3 (also called CD40bp, LAP-1, and CRAF1) was identified as 

an intracellular factor interacting with CD40 and LMP1 (33-35). TRAF4 was identified 

by differential screening of a cDNA library generated from tumor cells (36). The 

existence of multiple TRAFs suggested a larger family of proteins with a conserved 

domain (the TRAF domain), and degenerate PCR strategies were employed to clone 
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TRAF5 and TRAF6, which were also independently identified by yeast two-hybrid 

screening using CD40 as bait and the screening of an EST expression library (37-40). 

Since the identification of TRAF6 over 5 years ago, no other proteins strictly defined as 

belonging to the TRAF family have been identified, although some TRAF-like proteins 

that may have divergent functions have been identified recently (41). Evolutionary 

conservation of TRAFs is suggested by the identification of a TRAF in the nematode C. 

elegans (42) and two TRAFs in Drosophila (dTRAFl and dTRAF2, (43)). To date, all 

six mammalian TRAFs have been deleted in mice by gene targeting, revealing various 

physiological roles for each (to be discussed further in section 2.2.5). Of the six 

mammalian TRAFs, sequence conservation analysis has shown that TRAFs 1, 2, 3, and 5 

are closely related, while TRAFs 4 and 6 are more evolutionarily divergent. Of these 

evolutionary relations, TRAF1 and TRAF2 appear to have arisen after duplication of a 

common precursor, while TRAF3 and TRAF5 are derived from a different common 

precursor (44). 

Expression patterns of TRAF proteins are widely variable. TRAF2, 3, and 6 are 

expressed in most cell and tissue types (32-35,39,40). The expression patterns of TRAF1, 

4, and 5 are more restricted. The highest levels of endogenous TRAF1 expression have 

been found in tonsils, spleen, lung, and testis (32), while TRAF5 is expressed in spleen, 

lung, and thymus (37,38). The expression pattern of TRAF4 underscores its apparent lack 

of function in the arena of other TRAF proteins (inflammation and immunity), as it is 

predominantly expressed during embryogenesis and in certain neural tissues (36). While 

the expression of TRAF2, 3,5, and 6 appears to be largely constitutive in the cells that 

express those TRAFs, the expression of TRAF 1 is tightly regulated. Most cells with the 

potential to express TRAF1 express it at very low levels in a resting state. However, 

inflammatory stimuli including TNF family proteins, IL-1, LPS, and lymphocyte receptor 
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engagement induces rapid upregulation of TRAF1 expression (45). Promoter analysis of 

the trafl locus shows the presence of NF-kB and AP-1 sites (46), thus, intriguingly, 

transcription factors activated by TRAF-dependent signals upregulate the expression of 

TRAFL 

2.2.2 Structural features of TRAFs 

The domain organization of TRAFs comprises a modular structure characteristic of 

adaptor proteins whose function is to link structurally dissimilar factors. As shown in 

Figure 1, the C-terminal TRAF domain (32) can be further divided into two sections, 

TRAF-N and TRAF-C. The TRAF-N section is helical and adopts the form of a coiled 

coil, mediating oligomerization of TRAF proteins. The TRAF-C domain also contributes 

to oligomerization as well as to interactions with TNFR family proteins and other 

cytoplasmic factors (47). The N-terminal halves of TRAF proteins are somewhat more 

divergent, but all TRAFs except for TRAF1 contain a RING finger motif at their N-

termini. The RING finger comprises a set of four closely spaced Zn fingers, which, in 

turn, consist of two residues that can chelate a single Zn2+ ion (generally cysteines, but 

occasionally histidines or acidic residues). C-terminal to the RING finger in TRAF2, 3, 5, 

and 6 are five Zn fingers, while in TRAF1, there is a single Zn finger, and in TRAF4, 

there are seven Zn fingers. In addition to the Zn binding motifs in TRAF4 are two 

potential nuclear localization signals (NLS), which may direct TRAF4 localization to the 

nucleus (36), while TRAF1, 2, 3, 5, and 6 are chiefly cytoplasmic in their distribution. 

While nearly all known interactions between TRAFs and other proteins such as TNFRs 

and cytoplasmic factors are mediated through the TRAF domain (31), the RING and Zn 

fingers appear to be necessary for the ability of TRAFs to activate kinase cascades (47). 

Accordingly, deletion of the N-terminal domains of TRAFs renders them dominant 

negative for signal transduction. 
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Figure 2.1. Domain organization of mammalian TRAF proteins. 

The structures of the T R A F domains of TRAF2 and TRAF3 have been determined by x-

ray crystallography, and have provided important insights into the mode of interaction 

between TRAFs and other proteins (48-51). Much as T N F family ligands are trimeric, 

and their binding to T N F R family receptors dictates receptor trimers, the binding of 

T R A F proteins to the cytoplasmic tails of TNFR proteins is also trimeric. The TRAF 

domains of TRAF2 and TRAF3 adopt a mushroom-shaped structure, with the coiled-coil 

TRAF-N domains forming the stalk and the TRAF-C domains forming the cap. The 

receptor-binding portion of the TRAF-C domain of TRAF2 forms a groove in which 

receptor sequences bind symmetrically in an extended conformation (51). The interaction 

of TRAF2 with T R A D D , which couples TRAF2 to TNFR1, comprises a more extended 

binding interface, and suggests that T R A D D may compete with other receptor sequences 
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for TRAF2 (52). The thermodynamic properties of TRAF2-receptor interactions show 

significantly lower affinity of TRAF2 monomers for receptor peptides than is the case 

with trimeric TRAF2 (53). This suggests an oligomerization-driven affinity or avidity 

enhancement of TRAF-receptor binding interactions, which may illuminate a mechanism 

of action for TRAF proteins. It has been shown that induced multimerization of the N-

terminal halves of both TRAF2 and TRAF6 can activate signaling, which suggests that, 

in vivo, receptor-induced TRAF trimerization is necessary for the activation of signal 

cascades (54). 

2.2.3 TRAF-interacting proteins 

As adaptor proteins for TNFR family members, TRAFs mediate the assembly of 

cytoplasmic signaling complexes at the receptor. They have been shown to interact with a 

wide variety of cytoplasmic factors, either directly or indirectly, in addition to the TNFR 

family proteins listed in Table 2.1. In addition to forming self-associated homotrimers, 

some TRAF proteins can hetero-oligomerize with each other. Specifically, TRAF2 has 

been shown to form hetero-oligomers with TRAF1 and TRAF5 (32,55) while TRAF3 can 

form hetero-oligomers with TRAF5 (56,57). Interestingly, the hetero-oligomerization 

pairs of TRAF 1/2 and TRAF3/5 mirror the evolutionary origin of those pairs of TRAFs 

(44), which suggests that hetero-oligomerization is a product of closely related structures. 

This may provide a further layer of regulatory roles for TRAFs - the regulation of other 

TRAFs. TRAF proteins bind to and mediate the function of several general types of 

intracellular factors, including kinases, regulators of signaling pathways, structural 

proteins, and other adaptor molecules (31). TRAFs are well-characterized activators of 

MAP kinase signaling pathways, and have been shown to interact with and activate these 

cascades at the level of MAP3Ks and MAP4Ks, including ASK1 (58,59), TAK1 (60), 

MEKK1 (54), NIK (61), and GCK3 (62). Some other kinases implicated in TRAF 
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signaling are Src-family kinases (63,64), IRAK (39), and PKC (65). Most of the 

interactions demonstrated for TRAF proteins with kinases are mediated via the TRAF 

domain. However, the TRAF domain alone acts as a dominant negative, thus the N-

terminal RING and Zn fingers appear to play a vital role in the activation of these kinase 

cascades (47,66). Known interactions of TRAFs and intracellular factors are listed in 

Table 2.2 (adapted from (31)). 
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Table 2.2. TRAF-interacting cytoplasmic proteins and their functions 

Cytoplasmic factor 

RIP (Receptor interacting protein) 

RIP2 

IRAK (IL-1 receptor associated 

kinase) 

IRAK2, IRAK-M 

NIK (NF-icB inducing .kinase) 

ASK1 (apoptosis signal -regulating 

kinase-1 

TAK1 (TGF-P associated kinase-1) 

MEKK1 (MEK/ERK Kinase-1) 

IRE1 

GCK (Germinal center kinase) 

CDK9 (cyclin dependent kinase 9) 

PKC^ (protein kinase C, i\ isoform) 

TBK1/NAK 

c-Src 

cIAP-1 (cellular inhibitor of 

apoptosis-1) 

cIAP-2 

TRIP (TRAF inhibitory protein) 

TANK/I-TRAF 

A20 

T R A D D (TNFR associated D D 

containing protein) 

FLASH (FLICE-associated huge 

protein) 

ABIN (A20 binding protein) 

ECSIT 

T6BP (TRAF6 binding protein) 

TTRAP 

Filamin 

MIP-T3 

Caveolin-1 

p62 nucleoporin 

Interacting 

TRAFs 

1,2,3 

1,2,3,5,6 

6 

6 

1,2,3,5,6 

1,2,3,5,6 

6 

2,6 

2 

2 

2 

6 

2 

1,3,6 

1,2 

1,2 

1,2 

1,2.3 

2 

2 

2 

2 

6 

6 

2,3,5,6 

2 

3 

1,2 

3 

Function 

Activation of IKK, assembly of T N F R 1 complex 

Simile to RIP 

With M y D 8 8 or TIRAP/MAL, mediates signaling 

from IL-1R and TLRs to T R A F 6 

Similar to IRAK 

MAP3K-like kinase upstream of IKK activation 

MjAP3K upstream of J N K activation 

M.AP3K upstream of IKK, J N K 

M A P 3 K upstream of J N K 

ER-associated stress kinase 

M A P 4 K upstream of J N K 

Cell cycle regulation 

Mitogenic signaling 

Upstream of IKK activation 

Multifunctional tyrosine kinase 

Anti-apoptotic adaptor 

Similar to cIAP-1 

Inhibitor of T R A F signaling 

Regulator of T R A F signaling 

Antiapoptotic, anti-inflammatory regulator 

Mediates assembly of T N F R 1 complex, associates 

with RIP, F A D D , A20 

Assembly of apoptosis-inducing complex with 

caspase-8, possible role in IKK activation 

Inhibits IKK activation 

Enhances IKK activation 

Inhibits T6-IRAK interaction 

Competes with T R A F 6 for C D 4 0 binding, 

inhibitor of T R A F signaling 

Actin-binding protein 

Binds to microtubules 

Required for formation of caveolae 

Mediates nuclear entry 
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2.2.4 Signaling pathways activated by TRAFs 

TRAFs are defined by their ability to couple TNFR family proteins to signaling pathways 

that result in the cellular effects mediated by TNF family ligands. The most well-studied 

signaling pathways activated by TRAF proteins are those leading to the activation of the 

transcription factors NF-kB and AP-1. NF-kB describes a set of five transcription factor 

subunits: p50, p52, RelA, RelB, and cRel (67,68). An active complex of NF-kB consists 

of two of these subunits, either as a homodimer or a heterodimer. NF-kB complexes are 

maintained in the cytoplasm in an inactive state by an inhibitory protein, IkB, of which 

there are several variants (a, (3, y,and e among them). When a cell receives an NF-kB 

activating stimulus, a large, multiprotein complex of IkB kinases (IKK) phosphorylates 

IkB on two serine residues (69). Phospho-lKB is then recognized by ubiquitin-

conjugating enzymes, which quickly ubiquitinate it, resulting in its degradation. The 

released NF-kB subunits then translocate to the nucleus, where they bind to specific 

promoter sites, activating transcription of a wide variety of genes, including cytokines, 

adhesion molecules, transcription factors, and survival factors. Most TNF family-induced 

NF-kB activation has been associated with cell proliferation, survival, and differentiation 

signals. Oligomerization of TRAF proteins in a receptor complex results in the 

recruitment and activation of various kinases upstream of IKK, including RIP (70), NIK 

(61), TAK1 (60), MEKK1 (54), and MEKK3 (71). It is likely that no single one of these 

kinases is essential for TRAF-mediated NF-kB activation, but rather they may have 

overlapping or cell type-specific roles (72). Recently, in vitro biochemical studies have 

suggested that the mechanism of TRAF-mediated IKK activation involves the ability of 

the RING finger of TRAF6 to act as an E3 ubiquitin ligase, mediating non-classical K63-

linked polyubiquitnation of TRAF6 as well as of the IKK complex (73,74). 
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AP-1 describes a dimeric transcription factor complex comprising combinations of Jun 

(v-Jun, c-Jun, JunB, or JunD), Fos (v-Fos, c-Fos, FosB, Fral, or Fra2), or activating 

transcription factor (ATF2, ATF3, or B-ATF) proteins. c-Jun is activated by JNK, a 

stress-related MAP kinase (75). TRAF proteins, in particular TRAF2, activate JNK by 

activating upstream MAP3Ks including ASK1 (58,59), MEKK1 (54), TAK1 (60), and 

the MAP4K GCK (62). These kinases in turn activate MAPKKs such as MKK4 and 

MKK7, which phosphorylate JNK (76). As is the case with IKK kinases, genetic deletion 

of several of the MAP3Ks upstream of JNK has not revealed an absolute requirement for 

any one of these kinases in TRAF-mediated JNK activation, implying that there may be 

some redundancy in TRAF-mediated JNK activation (71,77,78). In lymphocytes, JNK 

activation appears to be associated with proliferation and survival signals, while in some 

other cell types, it is associated with apoptotic signals and stress responses (75,76). 

Notably, JNK is activated in response to physical and osmotic stress as well as in 

response to irradiation and DNA damage (79). In addition to JNK, other MAPKs are 

activated by TRAF signaling, including ERK and p38. ERK activates the transcription 

factor Elk-1, which is involved in cell activation and survival signals. p38 activates the 

AP-1 component ATF2, which has been implicated in stress and activation responses 

(76,79). Recently, we (63) and others (64) have shown that TRAF6-mediated signals can 

activate c-Src family tyrosine kinases. c-Src is essential for TRANCE-mediated 

osteoclast activation, and Src family kinase-mediated PI3-K activation results in the 

activation of Akt, a kinase associated with survival signals. 

Some typical examples of TRAF-mediated signaling pathways are illustrated by those 

activated by TNF-a, TRANCE, and IL-1. TNF-a has two known transmembrane 

receptors, TNFR1 and TNFR2. TNFR1 is a DD-containing receptor, and does not 

directly bind to any TRAF proteins, while TNFR2 has no DD and can directly bind to 
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TRAF1 and 2 (and possibly TRAF5) (32). While TNFR1 is expressed on most cell types, 

the expression of TNFR2 is restricted to hematopoietic cells (80,81). Additionally, while 

TNFR1 can be stimulated by cell-bound or soluble TNF-a, TNFR2 is only responsive to 

cell-bound TNF-a (82). Upon ligand engagement, TNFR1 recruits TRADD and RIP to 

the receptor complex via DD interactions (17,70). There are two essential pathways that 

can be activated at this point - TRADD can recruit FADD, which activates the caspase 

cascade, resulting in apoptosis, or it can recruit TRAF2, which activates NF-kB and AP-1 

signaling, which results in survival or proliferation (17). TNFR2, on the other hand, lacks 

a DD, and can bind to TRAF2, activating survival pathways (32). Interestingly, TNFR2 

stimulation has been shown to potentiate TNFR 1-mediated apoptosis, and this may be 

accomplished through the depletion of available TRAF2 (83). Thus, the available pool of 

TRAF2 may serve to regulate the balance of life and death in TNF signaling. Figure 2.2 

diagrams some features of TNF signaling. 

TRANCE-R, unlike TNFR1, lacks a DD, and its cytoplasmic tail can recruit TRAF1, 2, 

3,5, and 6 (84). The TRAF6 binding sites are distinct from the binding site for the other 

TRAFs in TRANCE-R. The TRAF1/2/3/5 sites are associated with the activation of NF-

kB and JNK similar to TNFR2, as are the TRAF6 binding sites. In addition, TRAF6 has 

been implicated in MAPK activation and c-Src activation (63). IL-1 is not a TNF family 

protein, and its receptor is not a TNFR family protein, although it signals through 

TRAF6, but indirectly. IL-1 binding to IL-1R, which is associated with an accessory 

protein (IL-lRAcP), induces the formation of a receptor complex that includes the 

cytoplasmic factors MyD88 and Tollip. MyD88 and Tollip then associate with the 

cytoplasmic factor IRAK. IRAK binds to TRAF6, enabling the activation of similar 

downstream signals as from TRANCE-R (39,85-89). IRAK is also a key intermediate in 

Toll-like receptor (TLR) signaling (90-92). TLRs recognize repetitive sequences such as 
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bacterial and viral products, and are associated with innate immunity. Thus, by mediating 

signals from both TNFR family proteins and TLRs, TRAF6 serves as a molecular bridge 

between adaptive and innate immunity. TRAF6-dependent signaling mechanisms from 

TRANCE-R and IL-1R are shown in Figure 2.3. 

TNF 

TNFR1 

T R A N C E 

TRANCE-R 

TRAF2/5 

TRADD 

TRAF2 TRAF2 

\ / 
NF-kB, AP-1 

1 

SURVIVAL 

IL-1RACP 

JNK, p38, ERK 

lTRAF3 NF-kB 

s i V 

Figure 2.2. Signaling pathways 

activated by TNF. Soluble TNF-

a acts primarily on TNFR1 while 

membrane-bound TNF-a acts on 

TNFR2. TNFR1 associates with 

TRAF2 through TRADD and RIP, 

while TRAF2 binds directly to 

TNFR2. Death domains (DD) are 

shown in red. 

Figure 2.3. TRAF6-dependent 

signaling pathways. T N F R 

family members such as 

TRANCE-R and CD40 bind to 

TRAF6 as well as other TRAFs, 

activating various pathways 

including Src-family kinases. IL-

1R and Toll-like receptors are 

indirectly linked to TRAF6 

through MyD88, Tollip, and 

IRAK. 

NF-kB JNK 

2.2.5 T R A F knockout mice 

All six of the T R A F proteins have been deleted in mice by gene targeting, and the 

phenotypes of these mice reveal divergent roles for each T R A F . TRAF1-/- mice have no 

apparent developmental defects but appear to have enhanced inflammatory and T cell 
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responses to TNF (93). The biochemical function of TRAF1 in its regulation of TRAF2 is 

revealed in TRAF1-/- cells and will be discussed in detail in section 3.3. TRAF2 has been 

targeted by deletion as well as by overexpression of a dominant negative form of TRAF2 

in lymphocytes (94,95). TRAF2-/- mice appear relatively normal at birth but become 

progressively runted and cachectic and generally die within several weeks. This is most 

likely due to a "feed-forward" response of macrophages to TNF, as TRAF2-/-

macrophages produce large quantities of TNF in response to TNF stimulation, leading to 

systemic inflammation. TRAF2-/- cells show a lack of TNF-induced JNK activation but 

still have NF-kB activation, although they display an enhanced tendency toward TNF-

induced apoptosis relative to wild-type cells (94). Crossing of TRAF2-/- mice to TNF-/-

or TNFR1-/- mice greatly ameliorates the wasting phenotype (96). Overexpression of 

dominant negative TRAF2 (lacking the RING and Zn finger domains) in lymphocytes 

results in reduced JNK but not NF-kB activation in response to TNF and CD40L (95). 

The residual NF-kB activation may be explained by a redundant role of TRAF5, as 

TRAF2-/-TRAF5-/- cells have a complete lack of TNF-induced NF-kB activation (97). 

TRAF3-/- mice, like TRAF2-/- mice also appear normal at birth but become 

progressively runted and die within several weeks. Reconstitution of lethally irradiated 

mice with TRAF3-/- fetal liver cells produces lymphocyte, granulocyte, and erythroid 

lineages in those mice, but T cell responses are somewhat reduced, although CD40 

signaling does not appear to be compromised (98). TR..AF4 deletion results in tracheal 

malformation (99). Deletion of TRAF5 produces a relatively mild phenotype, with some 

defects in CD40-mediated B cell responses (100). TRAF6-/- mice have severe 

osteopetrosis, or thickening of bones, due to a defect in osteoclast function. Two separate 

deletions of TRAF6 have been reported, and one completely lacks osteoclasts (101), 

while the other has osteoclasts that are incapable of resorbing bone (102). In addition, 

both TRAF6-deficient strains have reduced responses to LPS, IL-1, and CD40. Thus, 
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despite the similarities in signaling pathways activated by different TRAF proteins, each 

appears to have a distinct physiological role. 

2.3 Physiological processes regulated by TNF family proteins 

TNF family proteins play vital roles in a wide variety of cellular processes, including 

development, inflammation, immunity, and bone homeostasis. As TNF/TNFR family 

proteins mediate communications between cells, they are important cellular organizers, 

mediating the formation of multicellular structures including inflammatory foci, 

lymphoid organs, bone, hair follicles, and lactating mammary glands (3). The signals 

transduced by TNFR family proteins that activate survival, death, differentiation, 

activation, and proliferation determine the dynamic organizing and reorganizing events 

that characterize the systems regulated by TNF/TNFR interactions. In particular, we shall 

consider the role of these interactions in immunity and bone homeostasis, which are both 

typified not by the permanence of any cellular structures but rather by the constant state 

of flux that ensures the robustness of each system. Additionally, it is becoming clear that 

the apparent divergence of the highly specialized cell types that constitute these 

apparently divergent systems is less obvious on a molecular level, and in fact, these 

systems are quite interdependent. In particular, the communication between these systems 

via TNF/TNFR family proteins is bridged by the processes and systemic metabolic 

requirements of inflammation. 

2.3.1 Dendritic cells 

Dendritic cells (DC) are essential organizers of immune responses. They are highly 

specialized cells that capture antigens in peripheral tissues, migrate to lymphoid organs, 

and organize T cell responses. The life cycle of the dendritic cell consists of several well-
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defined stages, including differentiation, maturation, activation, and apoptosis (103). All 

of these processes are regulated to some extent by the action of TNF family proteins on 

DCs, in particular TNF, CD40L, and TRANCE (104), while DCs can stimulate T cells 

via expression of OX40L, CD27L, and 4-1BBL (3). Additionally, extracellular signals 

not originating from TNF family proteins in DCs are still TRAF-dependent, as DCs are 

highly sensitive to bacterial and viral products that signal through TLRs (103), as well as 

to IL-1, which utilize TRAF6 in their signaling pathways. DC signals that influence T 

cells are shown in Figure 2.4 and T cell signals that influence DCs are shown in Figure 

2.5. 

4-1 BBL 

CD27L 

O X 4 0 L 

Interleukins 

Interferons 

C D 8 0 / C D 8 6 

^Integrins, 

Tolerance*^ 

Thymic 

Selection J 

Maturation 

Survival Thl/Th2 

Figure 2.4. DC-T cell cross-talk I. DCs mediate a wide variety of effects on T cells, in part through the 

actions of the TNF family proteins 4-1 BBL, CD27L, and OX40L. 
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Figure 2.5. DC-T cell cross-talk II. DCs respond to a wide variety of signals from their environment and 

from T cells with which they interact. TRAF-dependent factors that influence DCs include LPS, viral 

products, IL-1, TNF, CD40L, and TRANCE. 

DCs arise from multipotent precursors of the monocyte lineage. Autocrine TNF 

production is thought to contribute to differentiation to immature DCs (105). Immature 

DCs reside in peripheral tissues, sampling antigens. They are highly specialized for this 

task, efficiently internalizing particles from their environment. At this stage, the 

expression of T cell costimulatory molecules such as CD80, CD86, and MHC is low, as 

is the expression of TNFR family proteins such as CD40 and TRANCE-R. Many stimuli 

can induce the maturation of DCs, including microbial products that bind to TLRs, and 

inflammatory cytokines such as IL-1, TNF, and CD40L. As DCs mature, endocytosis 

decreases, and the surface expression of costimulatory molecules, CD40, and TRANCE-

R increases (106). Maturing DCs migrate to draining lymph nodes, where they encounter 

activated T cells, engaging in a sophisticated cross-talk with them. In the absence of 

external survival stimuli, mature DCs rapidly undergo apoptosis (107), which is a likely 
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regulatory mechanism preventing autoimmunity. A productive interaction between an 

antigen-bearing DC and an antigen-specific T cell involves signals influencing both the 

DC and the T cell. Stimulation of the TCR and costimulatory receptors such as CD28 

upregulate TNF, CD40L, and TRANCE on T cells, which provide survival and activation 

signals to the DC, so that it may engage more T cells in an ongoing immune response 

(104). Immature DCs are able to stimulate regulatory T cells leading to tolerogenic 

responses (108), thus the phenotype of DCs is an important regulator of the quality and 

intensity of a given immune response. 

TNF family members are important regulators of DC function. CD40L induces DC 

maturation, survival, and cytokine production (109). CD40L deficiency leads to a 

markedly reduced ability of DCs to stimulate T cell-dependent responses (110). 

TRANCE- and CD40L- mediated increases in DC survival have potent effects on 

antigen-specific T cell responses (107,111,112), suggesting that the persistence of 

antigen-bearing mature DCs in the lymph node is an important factor in determining the 

efficiency of T cell responses. TNF-deficient mice display reduced antiviral responses, 

which is likely to be due to a defect in maturation (113). The spontaneous apoptosis of 

mature DCs appears to be at least partially due to autocrine activation of TNFR1, as 

TNFR1-/- DCs are highly resistant to spontaneous apoptosis (114). While the importance 

of TNF family proteins to DC biology is indisputable, the signaling pathways activated 

by TNF family proteins in DCs have not been well documented. A deeper understanding 

of the roles of specific signals induced by TNF family proteins in DCs may provide tools 

to manipulate the quality and intensity of immune responses. 
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2.3.2 Osteoimmunology: cross-talk between bone and the immune system 

It has long been known that the cells of the immune system originate in the bone marrow. 

While the differentiation of lymphocytes and other cells of the hematopoietic system in 

bone marrow has been well described, relatively little attention has been paid to the 

effects that immune cells have on the bone itself. The possibility that immune cells can 

affect bone has been suggested in a variety of pathological conditions where normal bone 

growth and remodeling is disrupted, including autoimmune diseases and cancers of the 

hematopoietic system. The recent identification of some of the molecular mechanisms 

that govern bone physiology and immunity has revealed a striking amount of cross-talk 

between the two systems. It is rapidly becoming apparent that the fields of bone biology 

and immunology are inextricably intertwined. 

2.3.2.1 Bone disease and osteoclasts 

Rather than simply serving as a rigid, static frame on which to hang flesh and vital 

organs, skeletal bone is the result of a continuous, dynamic process of mineralization and 

resorption. These opposing actions are carried out by two cell types, osteoblasts and 

osteoclasts, and must be kept in balance to maintain skeletal integrity and systemic 

calcium metabolism. A disruption of this balance is most often observed when the rate of 

resorption by osteoclasts exceeds the rate of mineral deposition by osteoblasts, and bone 

mass is lost, as in osteoporosis (115). Increased bone resorption is observed in many 

inflammatory and autoimmune diseases, such as rheumatoid arthritis (116), periodontal 

disease (117), and Paget's disease (118). Bone destruction is also common secondary to 

many cancers, both those that reside in bone like leukemias and multiple myeloma, as 

well as breast and prostate cancers (119). A common clinical complication of cancer-

mediated bone resorption is humoral hypercalcemia of malignancy (120). 
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Osteoclasts differentiate from multipotent bone marrow-derived cells of the 

monocyte/macrophage lineage (121). The life of an osteoclast can be broken down into 

four sequential stages: differentiation from multipotent bone marrow progenitors into 

mononuclear osteoclasts, fusion into multinucleated cells, activation to resorb bone, and 

apoptosis. These stages are regulated by the interactions of osteoclasts and their 

precursors with osteoblasts and other stromal cells in bone tissue, which stimulate or 

inhibit osteoclastogenesis in response to various stimuli, such as parathyroid hormone 

(PTH), vitamin D3, and calcitonin. Deficiencies in normal osteoclast function lead to 

osteopetrosis, or a thickening of bone due to insufficient resorption, while hyperactivity 

of osteoclasts leads to osteoporosis, or loss of bone mass. 

Studies in osteopetrotic mice with spontaneous and engineered mutations have revealed 

some of the genetic factors responsible for each of the stages in the osteoclast life cycle. 

Two factors crucial for the differentiation of osteoclasts are M-CSF (macrophage colony-

stimulating factor) and TRANCE. Mice with a mutated M-CSF gene completely lack 

osteoclasts (122), as do mice with targeted deletions of TRANCE and TRANCE-R (123-

125). Not all osteopetrotic mice lack osteoclasts; those with targeted deletions of TRAF6 

(101,102) or the non-receptor tyrosine kinase c-Src (126,127) have osteoclasts, but they 

are incapable of being activated to resorb bone. Other mutant mice with osteopetrosis 

have demonstrated the importance of the transcription factors NF-kB (128) and AP-1 

(129) in osteoclast development. 

2.3.2.2 TRANCE/TRANCE-R/OPG regulation of osteoclasts 

Studies of TRANCE and its two receptors TRANCE-R and OPG has suggested that cells 

of the immune system and the cells that remodel bone may regulate each other's function. 

TRANCE is normally expressed on osteoblasts and activated T cells, and its activating 
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receptor TRANCE-R is expressed on myelomonocytic cells, including osteoclasts and 

DCs (104). Although TRANCE and CD40L appear to have largely overlapping functions 

in stimulating the activation, survival, and adjuvant properties of DCs (107,130,131), 

TRANCE has been shown to be essential for certain CD40-independent anti-viral T cell-

specific responses (112,132). In addition to its role in the regulation of osteoclasts and 

DCs, TRANCE is essential for lymph node organogenesis (133) and it regulates the 

function of activated T cells (134,135). OPG is a non-signaling soluble decoy receptor for 

TRANCE that negatively regulates its function by blocking the ability of TRANCE to 

bind to TRANCE-R on target cells (18,136). 

TRANCE-R signaling through TRAF6 is of particular interest in osteoclasts because 

TRAF6 plays a role in TRANCE-mediated NF-kB and JNK activation (84,137). TRAF6 

also provides a crucial link to the activation of c-Src, which activates the survival kinase 

Akt, prolonging the lifespan of activated osteoclasts (63,64). In addition, c-Src activation 

leads to the cytoskeletal changes such as membrane ruffling and actin ring formation 

necessary for osteoclasts to resorb bone (127). 

Since TRANCE is expressed on activated T cells, and is crucial for T cell-DC 

communication, one might expect massive bone resorption under most inflammatory 

conditions. Indeed, it has been shown that TRANCE on activated T cells could activate 

osteoclasts in an induced arthritis model, and blocking TRANCE with OPG abrogated 

bone destruction but not inflammation (138). Furthermore, the bacteria that cause 

periodontal disease induce TRANCE expression on T cells, leading to alveolar bone 

destruction (139). Under conditions of estrogen withdrawal similar those seen in 

postmenopausal osteoporosis, it was found that increased TNF production by T cells 

augments TRANCE-mediated osteoclastogenesis (140). In TRANCE-deficient mice, it 
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has been shown that some of the osteoclast defects could be rescued by transgenic 

overexpression of TRANCE on T lymphocytes (124), which suggests that T cells may 

have a role in osteoclast activation under non-pathologic conditions. Figure 2.6 

summarizes some key interactions between activated T cells, other inflammatory signals, 

osteoclasts, and osteoblasts. Our T cells are constantly working to fight off the universe 

of antigens in which we live, so what prevents them from causing extensive bone loss? 

Infection, 

Inflammation 

Survival, ^ / O C \ Calciotropi^ 
Cytokine production \ / \ ctimuli 

n \ \ x (Precursor) 

"^/trancf. 

4TRANCE-R 

Activation, 

Maturation 

V 
Bone Resorption 

Figure 2.6. The interface between bone and the immune system. TRANCE on activated T cells 

stimulates DC as well as osteoclasts. Inflammatory mediators also affect OC function. 

2.3.2.3 Regulatory mechanisms for inflammation-induced bone loss 

Recently, a crucial counter-regulatory mechanism whereby activated T cells can inhibit 

TRANCE-mediated osteoclast development and activation through the action of the 

antiviral cytokine IFN-y was demonstrated (141). While the type of T cells involved in 

inflammatory responses express TRANCE, they also secrete IFN-y. IFN-y can block 
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TRANCE-mediated osteoclastogenesis in vitro, and in mice deficient for the IFN-y 

receptor, bone destruction in an autoimmune arthritis model is greatly exacerbated. 

As is shown in Figure 2.7, the mechanism for this strong blockade of TRANCE signaling 

by IFN-y in osteoclast precursors appears to be through activation of the ubiquitin-

proteasome pathway for protein degradation (142), specifically targeting TRAF6 for 

degradation. Osteoclast formation in the presence of IFN-y could be rescued by 

overexpression of TRAF6 in precursor cells, and IFN-y's suppressive effect on 

osteoclastogenesis was markedly decreased in mice lacking proteasome components. 

Moreover, TRANCE-R is not the only receptor that signals through TRAF6. Signals 

downstream of CD40 are also attenuated by IFN-y treatment. TRAF6 is an essential 

intermediate in signaling by LPS and IL-1, pathways associated with innate immunity 

(101,102). Given that IL-1 (143) and LPS (144) can induce osteoclastogenesis and bone 

resorption, it will be interesting to examine the effects of IFN-y on those pathways as 

well. Figure 2.8 diagrams some key signaling pathways involved in the balance between 

T cell-mediated osteoclast activation and inhibition. 
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IFN-y 

OPG 

IFN-yR 

Figure 2.7. IFN-y negatively regulates 

TRANCE-mediated osteoclastogenesis. 

Activated T cells express both T R A N C E 

and IFN-y. While T R A N C E can activate 

osteoclastogenesis in a TRAF6-dependent 

manner, IFN-Y upregulates pathways leading 

to the degradation of TRAF6. This may 

explain why inflammatory processes do not 

always lead to bone loss. 

T R A N C E 

1 O P G 

IL-1 T R A N C E - R LPS 
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T R A F 6 

/ I V IFN-y 

NF-kB JNK c-Src 

Bone 

Mineralization 

Bone 
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Figure 2.8. The osteoclast signaling axis. Factors promoting bone resorption by activating osteoclast 

function are shown in blue, and factors promoting bone mineralization by inhibiting osteoclast function are 

shown in red. 
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2.3.2.4 Other inflammatory regulators of osteoclasts 

Clearly, we are only beginning to scratch the surface of the relationship between bone 

biology and the immune system. Other immunomodulatory factors, including TNFa 

(145,146), IL-6, IL-11, IL-15, and IL-17 can positively modulate osteoclast function, 

while IL-4, IL-10, IL-13, IL-18, and TGF-p can inhibit bone resorption (147). The 

clinical sequelae of bone destruction in inflammatory diseases are significant, and some 

treatment initiatives targeting TNF (148) have shown promising preliminary results. 

However, systemically targeting TNF, TRANCE, or other immune mediators to prevent 

chronic bone loss may result in long-term immunodeficiencies. The future design of 

treatments for bone loss must incorporate greater sensitivity to the potential detrimental 

effects of those treatments on normal immune function. Cell type-specific inhibitors of 

various signaling intermediates in osteoclast activation such as c-Src present a step in the 

right direction (149), and further advances in understanding the differences in signaling 

pathways activated in osteoclasts and dendritic cells should lead to more therapeutic 

targets. 

The cells that resorb bone come from the same hematopoietic lineage as the cells that 

process and present antigens in the immune system. As is highlighted by the regulatory 

relationships between TRANCE, TRANCE-R, and OPG, immune cells and bone cells 

use similar molecular mechanisms in their normal functions. Increasingly, it is becoming 

evident that there is significant cross-talk between bone and the immune system under 

normal physiological conditions as well as in inflammatory pathological conditions. In 

light of recent advances in the treatment of both inflammatory diseases and osteoporosis, 

the challenge now is to carefully navigate the interface between bone (osteo-) and the 
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immune system. This challenge opens a new field of study, which we propose to call 

osteoimmunology (150). 

2.4 TNF/TNFR proteins and TRAFs in health and disease 

Beyond diseases of bone, there are many other clinical conditions in which dysregulation 

of TNF family proteins have been implicated, including Crohn's disease, stroke, multiple 

sclerosis, and Alzheimer's disease (151). Defects in CD40L expression results in X-

linked hyper-IgM syndrome, in which B cell isotype switching is impaired, and patients 

are susceptible to a variety of infections (152-155). Similar clinical findings have been 

linked to mutations in the CD40 gene (156). LMP1 is a viral protein expressed in 

Epstein-Barr virus-infected B cells, mimicking a constitutively active CD40 (35) and 

HVEM is a receptor for herpes simplex virus on T cells (157). While the basic 

underpinnings of TNFR family signaling are established, the precise mechanisms of 

action of TRAFs and their downstream targets are less clear. A greater understanding of 

TRAF-mediated signaling mechanisms, including: differentiating the mechanisms by 

which TRAFs activate different kinase cascades, determining the individual roles of each 

TRAF, elucidating structure-function relationships of TRAFs and interacting proteins, 

identifying modes of TRAF regulation, and dissecting the roles of combinations of 

TRAFs and specific receptors in a cell type-specific manner will be essential to 

understanding and manipulating these conditions in the future. The goal of this thesis is 

to address some of these issues pertaining to the mechanisms of TRAF signaling. 
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3. RESULTS 

3.1 A POSITIVE REGULATORY ROLE FOR CBL FAMILY PROTEINS IN 

T R A N C E A N D CD40L-MEDIATED A K T A C T I V A T I O N 
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3.1.1 Summary 

TRANCE is a TNF family member essential for osteoclast differentiation, and it induces 

the activation and survival of osteoclasts and mature dendritic cells. We recently 

demonstrated that TRANCE activates Akt via a mechanism involving TRANCE-

R/RANK, TRAF6, and c-Src. Here, we show that TRANCE-R and CD40 recruit TRAF6, 

Cbl family scaffolding proteins, and the phospholipid kinase PI3-K in a ligand-dependent 

manner. The recruitment of Cbl-b and c-Cbl to TRANCE-R is dependent upon the 

activity of Src-family kinases. TRANCE and CD40L-mediated Akt activation is 

defective in Cbl-b -/- dendritic cells and CD40L-mediated Akt activation is defective in 

c-Cbl -/- B cells. These findings implicate Cbl family proteins as not only negative 
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regulators of signaling, but as positive modulators of TNF receptor superfamily signaling 

as well. 

3.1.2 Introduction 

Tumor necrosis factor (TNF) family proteins mediate diverse effects on cells of the 

hematopoietic lineage via their cognate receptors, members of the TNF receptor (TNFR) 

family (1). TNFR family proteins lack intrinsic enzymatic activity, but are linked to 

intracellular signaling cascades through TNFR associated factor (TRAF) proteins, and 

numerous TNF family proteins have been shown to activate nuclear factor-kappa B (NF-

kB) and mitogen-activated protein kinase (MAPK) cascades (2). TNF-related activation-

induced cytokine (TRANCE; also called RANKL, ODF, and OPGL) is a TNF family 

member expressed on activated T cells and osteoblasts that regulates the function of 

dendritic cells and osteoclasts through its cognate receptor, TRANCE-R (also called 

RANK) (3). Recently, we demonstrated that in addition to activating NF-kB (4) and c-jun 

N-terminal kinase (JNK) (5), TRANCE activates Akt, a serine/threonine kinase 

implicated in survival signals, through a mechanism involving TRAF6 and the 

nonreceptor tyrosine kinase c-Src (6). 

c-Cbl is a cytoplasmic adapter molecule that has been implicated in the negative 

regulation of signaling from a variety of receptor tyrosine kinases, including growth 

factor receptors and antigen receptors in lymphocytes (7,8). A highly related protein, Cbl-

b, has been identified (9). The domain structure of Cbl proteins consists of several 

functional domains, including an SH2-like phosphotyrosine-binding domain, a RING 

finger, a proline-rich domain, and a leucine zipper. Originally identified as a viral proto-

oncogene that acquires transforming potential with the 70z deletion (10), Cbl has been 
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implicated in the negative regulation of tyrosine kinase signaling by shortening the 

duration of activating signals (7). 

c-Cbl and Cbl-b have been shown to interact with a wide variety of activated signaling 

molecules including phosphatidylinositol 3-kinase (PI3-K), Src-family tyrosine kinases, 

Syk, and adaptor proteins Grb2 and She (11-14). One mechanism by which they may 

negatively regulate signaling is by acting as an E3 ubiquitin ligase, which results in the 

degradation of activated molecules by the proteasome (15-17). This E3 ubiquitin ligase 

activity has been localized to the RING finger of c-Cbl, and the RING finger has been 

associated with the negative regulation of a number of tyrosine kinases, including the 

epidermal growth factor receptor (EGFR) (18,19), syk (20), and CSF-1R (21), among 

others. Cbl-b has been associated with the negative regulation of Vav-mediated JNK 

activation (22) and EGFR signaling (23). 

Mice with targeted deletions in c-Cbl (24), and recently, Cbl-b (25,26) have been 

described; each displays a phenotype of decreased thresholds for lymphocyte activation 

and development of autoimmunity. Mice with a targeted deletion in c-Cbl display 

enhanced thymic positive selection, likely due to the persistence of activated 

costimulatory molecules that are ordinarily targeted for degradation by c-Cbl (24). Cbl-b-

/- mice demonstrate T cell hyperactivation and hyperproliferation in response to antigen 

receptor stimulation, uncoupling of T cell receptor (TCR) and CD28 stimulation, and 

develop spontaneous autoimmunity (25,26). 

In this report, we identify a mechanism by which the TNF family members TRANCE and 

CD40L activate Akt through their cognate receptors TRANCE-R and CD40. We 

previously demonstrated that, upon ligand engagement, TRANCE-R forms a complex 
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with c-Src and TRAF6 (6). We now show that PI3-K and Cbl proteins are also 

components of this signaling complex. Examination of the mechanism of the interaction 

of c-Cbl and Cbl-b with TRANCE-R shows a requirement for c-Src kinase activity, 

which may be regulated by TRAF6. Furthermore, a stable complex of TRANCE-R and 

Cbl-b is observable only in presence of a proteasome inhibitor, suggesting that Cbl-b may 

negatively regulate TRANCE signaling by downregulating one or more components of 

the TRANCE-R signaling complex. Finally, using cells derived from Cbl-b -/- and c-Cbl 

-/- mice, we show that Akt activation by TRANCE and CD40L in dendritic cells is 

dependent on Cbl-b, while Akt activation in B cells by CD40L is dependent on c-Cbl, 

suggesting a novel positive regulatory role for Cbl proteins in signaling. 

3.1.3 Experimental Procedures 

3.1.3.1 Reagents 

MG-132 was from Calbiochem; SAM68 was from Santa Cruz Biotechnology; PPI was 

from Alexis Biochemicals, soluble hCD8-TRANCE (TRANCE) was purified from insect 

cells as described (27); and soluble mCD8-CD40L (CD40L) was generated in insect cells 

and supernatant was used at a 1:100 dilution as described (28). 

Antibodies (Abs) specific for phospho-Akt (Ser-473), Akt, and IicB-a were from New 

England Biolabs; c-Src (N-16), TRAF6 (H-274), and Cbl-b (N-19) were from Santa Cruz 

Biotechnology; phosphotyrosine (4G10-HRP) and the p85 subunit of PI3-K (rabbit 

antiserum) were from Upstate Biotechnology Ine; c-Cbl (17) from Transduction 

Laboratories; HA (12CA5) from Boehringer Mannheim, and the Flag epitope (M2) were 

from Sigma. Anti-TRANCE-R (1E6.66) was previously described (29) and anti-CD40 
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(FGK-115) was purified from supernatants of hybridoma cells provided by Dr. Randolph 

Noelle (Dartmouth University, Hanover, NH). 

3.1.3.2 Primary Cells 

Mature dendritic cells were generated from bone marrow precursors as described (30). 

Osteoclasts were generated from bone marrow precursors as described (31). 

Lymphocytes were prepared from whole spleens by making single-cell suspensions 

followed by erythrocyte lysis and plating for lh on tissue culture plates to deplete 

adherent cells. 

3.1.3.3 Plasmids 

Expression constructs encoding FLAG-tagged wild-type mouse TRANCE-R (TR-wt), 

chicken c-Src, c-SrcKD (K295M), and HA-tagged human c-Cbl in pcDNA3.1 

(Invitrogen) have been described (6). TR-Y345F, Y440F, and Y468F were generated by 

the QuickChange method of site directed mutagenesis (Stratagene). HA-tagged human 

Cbl-b (WT and AN) constructs in the pCEFL vector were kindly provided by Dr. Stan 

Lipkowitz (National Cancer Institute, Bethesda, MD) and have been described (32). 

3.1.3.4 Cell Stimulation, Transfection, and Analysis 

In vitro differentiated mature dendritic cells and osteoclasts, and freshly isolated 

splenocytes were extensively washed to remove exogenous growth factors, cultured in 

medium with low serum (0.5% FCS, 2-4 h), then stimulated by adding TRANCE or 

CD40L as indicated. After stimulation, cells were washed with ice-cold PBS, lysed, and 

subjected to immunoprecipitation and western blotting as described (6). In order to 

control for equal loading of each timepoint, the protein concentration of each sample was 
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determined and samples were normalized for total protein content prior to further 

processing. 

293T cells were transfected by calcium phosphate precipitation as described (4). The 

amount of transfected DNA was held constant to 1 }J.g by addition of empty vector DNA 

where necessary. Cells were processed for analysis 24 h after transfection. Where 

indicated, MG-132 or an equivalent amount of vehicle (DMSO) was added to a final 

concentration of 10 ,uM 4 h prior to processing. Cells were processed and subject to 

immunoprecipitation and western blotting as described (6). All transfection experiments 

were repeated at least three times and representative results are shown. 

3.1.4 Results 

3.1.4.1 TRANCE-R and CD40 Interact with PI3-K and c-Cbl Upon Ligand 

Stimulation 

Since TRANCE activates Akt in dendritic cells (DC) and osteoclasts, and Akt activation 

is dependent on the activity of PI3-K, we investigated whether PI3-K was associated with 

TRANCE-R. In order to determine whether PI3-K is part of the TRANCE-R signaling 

complex in primary cells, we immunoprecipitated TRANCE-R from TRANCE-treated 

DC. The p85 regulatory subunit of PI3-K was recruited to TRANCE-R in a ligand-

dependent manner (Figure 3.1.1 A, top), which correlates with Akt phosphorylation in the 

whole cell extract (6). Since PI3-K has been shown to associate with the cytoplasmic 

scaffolding protein c-Cbl in a variety of cell types, we probed the TRANCE-R 

immunoprecipitates for c-Cbl and found that it associates with TRANCE-R in a 

TRANCE-dependent fashion. This correlates with a ligand-dependent increase in 

TRANCE-R-associated TRAF6 (Figure 3.1.1 A, top). Immunoprecipitation of c-Cbl from 
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dendritic cell lysates confirmed that TRAF6 inducibly associates with c-Cbl upon ligand 

stimulation (Figure 3.1.1 A, bottom). 

In order to determine whether other TNFR family members known to signal through 

TRAF6 behave similarly to TRANCE-R, we treated DC with CD40L, which, like 

TRANCE, promotes the survival and activation of myeloid dendritic cells (33). 

Immunoprecipitation of CD40 and western blotting showed that there was a ligand-

dependent increase in the p85 subunit of PI3-K and c-Cbl associated with CD40 (Figure 

3.LIB, top). As we have previously found with TRANCE-R (6), Src-family kinase 

activity co-precipitates with ligand-stimulated CD40 as assayed by the ability of the 

immunoprecipitates to phosphorylate recombinant SAM68, a known Src-family kinase 

substrate, in vitro (Figure 3.LIB, bottom). 

We previously observed a peak of TRANCE-induced Akt phosphorylation after 20 

minutes of stimulation (6). In order to determine if this activation correlates kinetically 

with PI3-K recruitment to TRANCE-R, we stimulated DC with TRANCE for up to 60 

minutes. Surprisingly, although PI3-K and c-Cbl continue to accumulate in the 

TRANCE-R complex in increasing amounts (Figure 3.1.1C, top), Akt activation 

decreases after 20 minutes of stimulation (Figure 3.1.1C, bottom. See also Figure 

3.1.4A). 

Since TRANCE-mediated Akt activation in DCs is dependent on the activity of Src-

family kinases and can be inhibited by the Src-family kinase inhibitor PPI (6), we 

endeavored to determine whether the association of c-Cbl and PI3-K is dependent on Src-

family kinase activity. We pretreated DCs with PPI or vehicle (DMSO), stimulated the 

DCs with TRANCE, and immunoprecipitated c-Cbl. In the absence of PPI, c-Cbl was 
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constitutively phosphorylated on tyrosine in unstimulated DCs, and its phosphorylation 

state was unaffected by TRANCE treatment. Pretreatment with PPI completely blocked 

all c-Cbl phosphorylation (Figure 3.LID, top). However, the phosphorylation state of c-

Cbl did not affect its binding to PI3-K, as PI3-K was constitutively associated with c-Cbl 

regardless of PPI treatment or TRANCE stimulation (Figure 3.LID, bottom). To ensure 

that TRANCE stimulation activated signaling by TRANCE-R, we probed whole cell 

extracts with antibodies to IkB-oc and observed equivalent TRANCE-dependent 

degradation of IkB-cc in both DMSO- and PPI-pretreated cells (not shown). 
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Figure 3.1.1. PI3-K and c-Cbl are recruited to T R A N C E - R and C D 4 0 upon ligand stimulation in 

dendritic cells. 

A. Dendritic cells were treated for the indicated number of minutes with T R A N C E (2 |Jg/ml) and lysed. 

T R A N C E - R (top) and c-Cbl (bottom) were immunoprecipitated and the immunoprecipitates were probed 

with antibodies to PI3-K, c-Cbl, and T R A F 6 as indicated. 

B. D C were treated with soluble C D 4 0 L (1:100) for the indicated number of minutes and C D 4 0 was 

immunoprecipitated. The immunoprecipitates were probed with antibodies to c-Cbl and PI3-K (top and 

middle). An in vitro Src-family kinase assay was performed on the C D 4 0 immunoprecipitates (bottom) 

with recombinant S A M 6 8 as a substrate. 

C. D C were treated as in (A), T R A N C E - R was immunoprecipitated, and the immunoprecipitates were 

probed with antibodies to PI3-K and c-Cbl as indicated (top). Whole cell extracts ( W C E ) were 

immunoblotted with antibodies to phospho-Akt (Aktp) and PI3-K as indicated. 

D. D C were pretreated with vehicle ( D M S O ) or PPI (10 \xM) for 90 minutes, then stimulated and lysed as 

in (A). c-Cbl was immunoprecipitated and the immunoprecipitates were probed with antibodies to 

phosphotyrosine, c-Cbl, and PI3-K as indicated. 
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3.1.4.2 TRANCE-R and Cbl Proteins Interact only in the Presence of Active Src 

To further elucidate the mechanism of c-Cbl's interaction with TRANCE-R, we 

transiently transfected HEK 293T cells with constructs driving the expression of c-Cbl, c-

Src, or Flag-epitope tagged TRANCE-R from a CMV promoter. In the presence of 

overexpressed c-Src, an anti-c-Cbl antibody co-immunoprecipitated TRANCE-R (Figure 

3.1.2A, lane a). In the absence of overexpressed c-Cbl, endogenous c-Cbl was sufficient 

to demonstrate a c-Src dependent interaction with TRANCE-R (Figure 3.1.2A, lane c). 

Conversely, in the absence of overexpressed c-Src, neither overexpressed nor endogenous 

c-Cbl could co-precipitate TRANCE-R (Figure 3.1.2A, lanes b and d). To differentiate 

between catalytic and structural roles for c-Src in the TRANCE-R/c-Cbl complex, we 

cotransfected a kinase-inactive mutant of c-Src (c-SrcKD) with TRANCE-R and c-Cbl. 

While the wild-type c-Src construct used has been shown to phosphorylate c-Cbl in 

overexpression systems, c-SrcKD does not (34). Immunoprecipitation of TRANCE-R 

with the Flag antibody and western blotting revealed that the kinase-active form of c-Src 

was able to promote a strong interaction between c-Cbl and TRANCE-R (Figure 3.1.2B, 

lane a). The kinase-inactive form of c-Src, however, could not promote a strong 

interaction between c-Cbl and TRANCE-R (Figure 3.1.2B, lane b). 

To determine if Cbl-b, another Cbl family protein, could also interact with TRANCE-R, 

we cotransfected Cbl-b, TRANCE-R, and c-Src or c-SrcKD. Immunoprecipitation of 

TRANCE-R with the Flag antibody did not reveal the presence of Cbl-b protein in either 

case (Figure 3.1.2C, lanes a and b). However, in the presence of MG-132, a proteasome 

inhibitor (35), we were able to coprecipitate Cbl-b with TRANCE-R in a c-Src kinase-

dependent manner (Figure 3.1.2C, lanes c and d). This suggests that Cbl-b may 

downregulate one or more of the essential components of the TRANCE-R complex by 

ubiquitination, thus creating a transient interaction between TRANCE-R and Cbl-b. 
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Indeed, when we expressed TRANCE-R in the presence of c-Src and full-length Cbl-b, 

w e observed a marked decrease in the amount of T R A N C E - R protein in the cell extract 

(Figure 3.1.2D, lane a). However, w h e n w e either substituted a truncated form of Cbl-b 

with a deletion of the N-terminal S H 2 domain (Cbl-bAN, Figure 3.1.2D, lane b), omitted 

c-Src (lane c), or both (lane d), TRANCE-R expression was normal, which suggests that 

Cbl-b m a y mediate T R A N C E - R downregulation in a c-Src dependent manner. 
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Figure 3.1.2. c-Cbl and Cbl-b interact with 

T R A N C E - R in a c-Src kinase dependent 

manner. 

A. 293T H E K cells were transiently transfected 

with Flag-epitope tagged TRANCE-R (TR, 0.5 ng), 

c-Cbl (0.3 p,g), and c-Src (0.05 ng) as indicated, c-

Cbl was immunoprecipitated and the 

immunoprecipitates (IP) were probed with 

antibodies to Flag and c-Cbl as indicated. The 

whole cell extracts (WCE) were probed with 

antibodies to Flag and c-Src as indicated. 

B. As in (A), with either wild-type (WT, 0.05 

ng, lane a) or a kinase dead (KD, 0.1 ng. lane 

b) mutant of c-Src (K295M) transfected as 

indicated. T R A N C E - R was 

immunoprecipitated with an anti-Flag 

antibody. 

C. As in (B), but with transfection of Cbl-b 

(0.3 ng) instead of c-Cbl. MG-132, a 

proteasome inhibitor was added 4 h prior to 

cell lysis to a concentration of 10 \M where 

indicated (+, c and d) and an equivalent 

amount of D M S O (vehicle) was added to the 

other samples (-, a and b). 

D. 293T cells were transfected with TR, c-Src, 

and either wild-type Cbl-b (WT, lanes a and c) 

or a truncation mutant in which the N-terminal 

SH2 domain of Cbl-b has been deleted (AN, 

0.3 ng. lanes b and d) as indicated. Whole cell 

extracts (WCE) were probed with antibodies 

to Flag, H A (Cbl-b and Cbl-bAN), and c-Src. 

The relative positions of Cbl-b and Cbl-bAN 

are indicated. 
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3.1.4.3 c-Src Phosphorylates TRANCE-R 

Since c-Cbl and Cbl-b interact with TRANCE-R only in the presence of active c-Src, we 

investigated whether this interaction is dependent on tyrosine phosphorylation of 

TRANCE-R. Sequence analysis of the cytoplasmic domain of mouse TRANCE-R 

revealed the presence of three tyrosine residues that could potentially serve as targets of 

c-Src: Y345, Y440, and Y468. Alignment with human TRANCE-R shows that while 

Y345 and Y468 are conserved, Y440 is not. There is an additional tyrosine in human 

TRANCE-R at position 422, corresponding to position 418 in mouse TRANCE-R (Figure 

3.1.3A). In order to determine if any of the tyrosine residues in mouse TRANCE-R are 

phosphorylated by c-Src, we employed site-directed mutagenesis to change each of the 

tyrosine residues to phenylalanine. We then cotransfected the tyrosine mutants of 

TRANCE-R with c-Src or c-SrcKD and immunoprecipitated TRANCE-R. Western 

blotting of the immunoprecipitates with an anti-phosphotyrosine antibody revealed that 

wild-type TRANCE-R is phosphorylated by or downstream of c-Src on Y468, as only the 

Y468F mutant was not phosphorylated in the presence of c-Src. Neither wild-type 

TRANCE-R nor any of its tyrosine mutants was phosphorylated on tyrosine when 

cotransfected with c-SrcKD, suggesting that Y468 is a specific target of c-Src activity 

(Figure 3.1.3B). We then cotransfected TRANCE-R constructs containing tyrosine 

mutations with c-Src and Cbl-b or c-Cbl and found that Cbl-b and c-Cbl co-precipitated 

with all of the Y-F mutants of TRANCE-R, which suggests that the interaction between 

TRANCE-R and Cbl is not dependent on the tyrosine phosphorylation of TRANCE-R 

(Figure 3.1.3C-D). There was no interaction between a mutant of TRANCE-R with the 

cytoplasmic tail deleted and c-Cbl or Cbl-b, indicating that the interaction is specific to 

the cytoplasmic tail of TRANCE-R (data not shown). 
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Figure 3.1.3. TRANCE-R is phosphorylated on 

tyrosine 468 by c-Src, but tyrosine 

phosphorylation of TRANCE-R is not necessary 

for association with Cbl-b and c-Cbl. 

A. Alignment of amino acid sequences of a 

portion of the cytoplasmic tails of human and 

mouse TRANCE-R. Mouse residues are 

numbered, and tyrosine residues are indicated 

in boldface. 

B. 293T cells were transfected with Flag-

tagged mouse TRANCE-R constructs with the 

indicated point mutations (WT, wild-type) and 

either c-Src or c-SrcKD. TRANCE-R was 

immunoprecipitated with an anti-Flag 

antibody and the immunoprecipitates were 

probed with an antibody to phosphotyrosine 

(4G10). 

C. 293T cells were transfected with 

TRANCE-R or its tyrosine mutants as 

indicated, Cbl-b, and c-Src. MG-132 (10 nM) 

was added 4 h prior to cell lysis. TRANCE-R 

(WT or tyrosine mutants) was 

immunoprecipitated and the 

immunoprecipitates were probed with 

antibodies to Cbl-b or Flag as indicated. The 

whole cell extracts were probed with Cbl-b or 

c-Src as indicated. 

D. As in (C), but with c-Cbl substituted for 

Cbl-b. 

3.1.4.4 Cbl Proteins Regulate T R A N C E - and CD40-Mediated Akt Activation 

Gene-targeted mice with deletions in c-Cbl (24) and Cbl-b (25,26) have been described 

recently. In order to determine the role of Cbl proteins in TRANCE and CD40L-mediated 

activation of Akt, w e used B lymphocytes, osteoclasts, and D C derived from mice 

deficient in c-Cbl or Cbl-b. In cells derived from Cbl-b-deficient mice, we observed that 

neither TRANCE (Figure 3.1.4A) nor CD40L (Figure 3.1.4B) was able to strongly 

activate Akt in DC within 20 minutes of stimulation, as opposed to what we observed in 

wild-type cells. In all cases, NF-kB activation as measured by IkB-o: degradation was 

identical in wild-type and knockout cells. Interestingly, at later time points (>3h), 

56-



3. Results 

TRANCE and CD40L treatment did result in Akt activation in DC, which was similar to 

a second wave of Akt activation observed in wild-type cells, suggesting that other gene 

products that activate Akt via a Cbl-b-independent mechanism are upregulated over this 

time period. Since Akt has been widely characterized as a survival factor, we investigated 

whether there was a defect in TRANCE- or CD40L-mediated survival in Cbl-b -/- DC. 

Perhaps due to the intact secondary wave of Akt activation, there was no difference 

observed in TRANCE or CD40L-mediated survival in DC derived from Cbl-b-/- mice 

over a 72h period (data not shown). In DC derived from c-Cbl-/- mice, we did not 

observe any differences in TRANCE or CD40L-induced Akt activation or survival (data 

not shown). 

In contrast to the results obtained in DC, in B lymphocytes from c-Cbl-/- mice, there was 

a marked deficiency in CD40L-induced Akt activation but Akt activation was intact in 

Cbl-b-/- B lymphocytes (Figure 3.1.4C). In osteoclasts derived from c-Cbl-/- and Cbl-b-/-

mice, we did not observe any defects in TRANCE-induced Akt activation (Figure 

3.1.4D). Consistent with intact TRANCE-mediated Akt activation in c-Cbl-/- and Cbl-b-

/- osteoclasts, we did not observe any defects in the differentiation or survival of 

osteoclasts derived from these mice as determined by TRAP assay (data not shown). 

Taken together, these results suggest that Cbl-b and c-Cbl may have cell type-dependent, 

overlapping roles in Akt activation. It appears that c-Cbl is required for CD40L-

dependent Akt activation in B cells while Cbl-b is required for TRANCE and CD40L-

dependent Akt activation in DC. In osteoclasts, c-Cbl and Cbl-b appear to be able to 

substitute for one another in TRANCE-dependent Akt activation. In whole cell extracts, 

protein expression levels of c-Cbl and Cbl-b in dendritic cells, B lymphocytes, and 

osteoclasts do not account for these cell type specific differences in function (data not 
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shown). It has been reported recently that, in c-Cbl-/- osteoclasts, Cbl-b is compensatorily 

overexpressed (36). However, it is possible that the availability of c-Cbl and Cbl-b to the 

various receptor signaling complexes differs in a cell type dependent manner due to 

other, as yet unidentified components of the signaling complexes. 
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Figure 3.1.4. Cbl proteins are required 

for cell type-specific T R A N C E and 

CD40L-mediated Akt activation. 

A. D C were derived from wild-type or 

Cbl-b deficient (-/-) mice, serum starved, 

and treated with T R A N C E (2 ng/ml) for 

the indicated time. Lysates (50 ng) were 

immunoblotted with a phospho-specific 

Akt antibody to indicate activation of 

Akt (Akt11). Membranes were stripped 

and reprobed with antibodies to total Akt 

to normalize for protein loading, and 

IkB-cc to demonstrate activation of the 

NF-kB signaling pathway as indicated. 

Note degradation of IkB-oc after 5 

minutes and appearance of newly 

synthesized protein by 180 minutes. 

B. As in (A), but cells were treated with 

CD40L (1:100) instead of T R A N C E . 

C. B lymphocytes were isolated from the 

spleens of wild-type, c-Cbl, or Cbl-b 

deficient (-/-) mice, serum starved, and 

treated with C D 4 0 L for the indicated 

time. Lysates were immunoblotted as in 

(A) and (B). 

D. Osteoclasts were derived from bone 

marrow of wild-type, Cbl-b, or c-Cbl 

deficient (-/-) mice, serum starved, and 

treated with T R A N C E for the indicated 

time. Lysates were immunoblotted as in 

(A), (B), and (C). 
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3.1.5 Discussion 

3.1.5.1 A Positive Signaling Role for Cbl 

While Cbl family proteins have been widely held to play a negative role in tyrosine 

kinase signaling, our results suggest a positive role as well. c-Cbl and Cbl-b have been 

demonstrated to associate with the p85 subunit of PI3-K both constitutively and in 

response to ligand stimulation in a number of cell types and receptor/ligand pairs (12-

14,37). In dendritic cells, we observed constitutive association between c-Cbl and PI3-K, 

which is independent of Src-family kinase activity. Overexpression of Cbl-b has been 

shown to abrogate -Akt activation downstream of EGFR in response to ligand stimulation 

(23), and the hyperactivation and increased survival of T cells in Cbl-b -/- mice suggests 

that Cbl-b negatively regulates TCR and CD28-mediated signaling (25,26). However, 

using cells derived from gene-targeted mice, we found that in dendritic cells, Cbl-b is 

required for TRANCE and CD40L-induced Akt activation, and in B lymphocytes, c-Cbl 

is required for CD40L-induced Akt activation. In osteoclasts, c-Cbl and Cbl-b appear to 

substitute for one another in TRANCE-induced Akt activation. Cbl proteins, therefore, 

may positively regulate PI3-K activation via TNFR family proteins in a receptor- and cell 

type-specific manner by recruiting PI3-K to the receptor complex, where it is 

phosphorylated by Src family kinases. 

3.1.5.2 Potential Negative Roles for Cbl in T R A N C E Signaling 

This positive role, however, appears to be short-lived, as Akt activation by TRANCE and 

CD40L declines in dendritic cells after approximately 20 minutes of stimulation. It is 

possible that Cbl proteins are responsible for the termination of signaling by 

downregulating Src kinases, PI3-K, TRAF6, or TRANCE-R and CD40 via internalization 
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and/or ubiquitination. EGFR, a receptor tyrosine kinase, is rapidly autophosphorylated 

within several minutes of ligand binding and its major signaling events take place rapidly 

(38). Cbl-mediated ubiquitination of EGFR becomes evident on the order of 20-30 

minutes after ligand binding, and quenches the activation signal over the next 20-30 

minutes (15). Since c-Cbl binds exclusively to phosphorylated EGFR, only activated 

EGFR is ubiquitinated and targeted for destruction. For productive signaling to occur, 

there is necessarily a time lag between the activation of the kinase and its destruction. It 

is therefore likely that, by acting as a scaffold for the assembly of the PI3-K signaling 

complex and the TRANCE-R signaling complex, Cbl can make a short-lived positive 

contribution to signaling before downregulating activated proteins. Since the TRANCE-

R-c-Cbl-PI3-K complex is observed in DCs long after Akt activation is quenched (Figure 

3.1.1C), it is possible that Akt downregulation is independent of Cbl in the receptor 

complex. 

In support of the notion that Cbl indeed has a role in the negative regulation of TRANCE 

signaling, we were only able to observe Cbl-b binding to TRANCE-R in the presence of 

MG-132, a proteasome inhibitor. Additionally, we found that overexpression of full-

length Cbl-b and c-Src resulted in a marked decrease in TRANCE-R protein in cell 

lysates, while eliminating either the N-terminal domain of Cbl-b or c-Src overexpression 

did not reduce TRANCE-R protein levels. This suggests that TRANCE-R and/or other 

essential activated components of the TRANCE-R signaling complex are targeted for 

proteasome-mediated degradation by Cbl-b. Three likely candidates are TRAF6, c-Src, 

and PI3-K. Recently, Takayanagi et al. (38) demonstrated that TRAF6 is ubiquitinated 

and subsequently degraded by the proteasome in response to TRANCE stimulation in 

osteoclast precursor cells. Harris et al. (39) reported that active c-Src is ubiquitinated and 

subsequently degraded while the steady-state level of c-Src KD is consistently higher than 
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that of active c-Src. This may explain the slight increase in c-Src observed in the whole 

cell extract in the presence of MG-132 in Figure 3.1.2C. Fang et al. (41) reported that 

Cbl-b binds to and induces ubiquitination of the p85 subunit of PI3-K. 

3.1.5.3 Roles of TRAF6 and c-Src in Receptor Assembly 

We have shown that the C-terminal receptor binding domain of TRAF6 can interact with 

TRANCE-R (4) and c-Src (6). We have also found that the C-terminal half of TRAF6 

interacts with c-Cbl and Cbl-b. This interaction promotes the activation of c-Src to 

tyrosine phosphorylate c-Cbl and Cbl-b, but phosphorylation is dependent on the N-

terminal half of TRAF6 (6 and data not shown). Since catalytically active c-Src is 

necessary to promote an interaction between TRANCE-R and Cbl proteins, but 

phosphorylation of TRANCE-R on a specific tyrosine residue does not affect binding, it 

is likely that phosphorylation of Cbl proteins ultimately promotes this interaction. 

Nevertheless, the possibility remains that a component of the complex that has yet to be 

identified is the true target of c-Src that facilitates Cbl-TRANCE-R binding. Therefore, in 

addition to activating the PI3-K cascade, c-Src appears to play a vital role in the assembly 

of the signaling complex. 

3.1.5.4 Physiological Consequences of Cbl in TRANCE and CD40L Signaling 

If Cbl-b is essential for Akt activation by TRANCE and CD40L in dendritic cells, why is 

there no apparent defect in DC survival in Cbl-b-/- mice? When bone marrow-derived 

DC reach maturity after 8 days in GM-CSF culture, they begin to undergo apoptosis in 

the absence of survival stimuli (40). However, this process is observable on the order of 

many hours to days, and is most likely due to high levels of pre-existing bcl-2 protein 

(27). In Cbl-b-/- DC, we observed Akt activation after several hours of TRANCE or 

CD40L stimulation, consistent with a second wave of activation seen in wild-type DC. It 
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is possible that this Cbl-b independent Akt activation is due to the expression of new 

gene products induced by TRANCE or CD40L in DC, since other signaling pathways 

activated by these cytokines appear to be intact in Cbl-b deficient cells. NF-kB 

activation, as measured by decreasing and subequently increasing IkB levels, follows 

identical kinetics in Cbl-b-/- and wild-type DC. Furthermore, the upregulation of IkB 

observed in these cells at the 3 h time point suggests that the expression of other proteins 

that could potentially activate Akt is upregulated. Attempts to inhibit this second wave of 

Akt activation by blocking new gene transcription via the addition of cycloheximide were 

unsuccessful, as even extremely low doses of cycloheximide (<50 ng/ml) completely 

abrogated even the first wave of Akt activation (data not shown). Therefore, the 

contribution of Akt activation to TRANCE and CD40L-mediated DC survival remains to 

be determined. 

While Akt is principally known as a regulator of cell survival, it is possible that it may 

serve other roles as well. Meili et al. have shown that Akt plays an essential role in cell 

motility in chemoattractant responses in Dictyostelium (41). In particular, Akt has effects 

on actin-mediated cytoskeletal rearrangements. Since dendritic cells, when activated, are 

quickly mobilized to migrate from outer tissues to draining lymph nodes, it is possible 

that Akt activation by TNF family proteins or other inflammatory mediators such as IL-1 

and LPS (6) plays a role in DC migration. Indeed, CD40L-CD40 (42) and LPS-Toll-like 

Receptor (43) interactions appear to be required for dendritic cell migration in vivo. We 

did not observe significant differences in DC migration in Cbl-b deficient mice (data not 

shown), but again, the later wave of Akt activation in Cbl-b -/- DC could be sufficient to 

allow DC migration within the experimental time frame. Given the importance of Akt in 

a variety of cell functions, further study is warranted to determine its role in DC biology. 
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Survival 
Cytoskeletal changes7 
Motility? 

Ubiquitmation/Degradation 
of signaling complex components 

Figure 3.1.5. M o d e l of the proposed mechanism of Akt activation by T R A N C E . 

A. Soluble T R A N C E binds to membrane-bound T R A N C E - R , leading to its aggregation. T R A F 6 and c-Src 

are recruited to the T R A N C E - R complex. 

B. Cbl recruits PI3-K to the T R A N C E - R complex. 

C. c-Src, activated by its association with T R A F 6 , phosphorylates PI3-K, activating it to phosphorylate 

membrane phosphatidyl inositides. Akt is recruited to these phosphatidyl inositides via its pleckstrin 

homology domain and is activated. 

D. Cbl acts as an E 3 ubiqutin ligase, leading to the ubiquitination and subsequent degradation of one or 

more components of the T R A N C E - R signaling complex, quenching the activating signal. 

3.1.5.5 Conclusion 

TRANCE and CD40L activate Akt in a variety of cell types. In dendritic cells, the 

TRANCE-R and CD40 signaling complexes recruit TRAF6, Src family kinases, PI3-K, 

and Cbl in a ligand-dependent manner. The association of TRANCE-R and c-Cbl and 

Cbl-b is dependent on Src kinase activity, and TRAF6 can enhance Src-mediated Cbl 

phosphorylation. Cbl-b appears to downregulate T R A N C E - R expression in a Src-

dependent manner. In c-Cbl and Cbl-b deficient mice, there are cell type-specific defects 

in Akt activation downstream of TRANCE-R and CD40, indicating that Cbl proteins may 

be required for T R A N C E and CD40L-dependent PI3-K activation. In Figure 3.1.5, we 

propose a model in which Cbl brings PI3-K to the receptor complex, where it is activated 

by c-Src with rapid kinetics. Concurrently, but with slightly slower kinetics, Cbl acts as a 

ubiquitin ligase, leading to the degradation of one or more of the essential components of 
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the signaling complex, quenching the activating signal. Cbl proteins thereby may act as 

both positive and negative regulators of TRANCE and CD40L signaling in a kinetically 

controlled manner. 
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3.2.1 Summary 

We determined crystal structures of TRAF6, alone and in complex with TRAF6-binding 

sites from CD40 and TRANCE-R/RANK at 2.5, 1.8 and 2.0A resolution. The structures 

reveal a distinct receptor-binding groove of TRAF6, the key structural determinant of the 

interaction. The structural information allows the identification and further confirmation 

of TRAF6-binding sequences in the IRAK proteins using quantitative affinity 

determinations. This leads to a proposed TRAF6-binding motif, whose structural 

requirement was further investigated using site-directed mutagenesis. The mutual 

recognition of TRAF6 with CD40, TRANCE-R, and the IL-1 receptor (via IRAK) was 

further demonstrated in vivo by correlating the mutational effects of receptors and of a 
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dominant negative form of TRAF6 on downstream NF-kB, JNK, and p38 signaling. The 

structures of the TRAF6 complexes also provide a physical model for the connection to 

Src signaling through cooperative ternary complex formation. These studies jointly 

establish the structural basis of TRAF6 as the direct convergence point for the TNF 

receptor and the IL-1 receptor superfamilies. 

3.2.2 Introduction 

Tumor necrosis factor receptor (TNFR) family proteins are important regulators of 

immune and inflammatory responses. TNFR family proteins lack intrinsic signaling 

activity, but they are coupled to downstream signaling molecules through TRAF (TNFR 

Associated Factor) proteins, of which six have been identified (1). Of the known TRAF 

proteins, TRAF6 is of particular interest because, while it functions similarly to other 

TRAFs in mediating signaling by TNFR family proteins, it is also the only TRAF known 

to mediate signaling from receptors other than TNFR family members. Specifically, 

TRAF6 has been implicated as a key mediator of signals originating from the interleukin 

(IL)-l receptor (IL-1R) (2) and Toll-like receptors (TLR), which bind to the bacterial 

product lipopolysaccharide (LPS) (3). Thus, TRAF6 represents a central point of 

convergence for signaling by TNFR and IL-1R/TLR family proteins, and it plays a 

critical role in bone homeostasis and both adaptive and innate immunity. 

Two TNFR family proteins that bind directly to TRAF6 are CD40 and TRANCE-R. 

CD40 is a key regulator of B cell proliferation, survival, and isotype switching, as well as 

a mediator of dendritic cell (DC) maturation, survival, and costimulatory ability (4). 

TRANCE-R is also important for DC survival and costimulation, and it is essential for 

osteoclast differentiation, maturation, and survival (5). Additionally, TRANCE has been 
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shown to be a critical regulator of mammary gland development and lactation (6). 

TRAF6 does not directly interact with IL-1R or TLR proteins. IL-1R and TLRs bind to 

the cytoplasmic protein MyD88 (7-9), which interacts with the N-terminal portion of IL-

1R associated kinase (IRAK). TRAF6 binds to the C-terminal domain of activated IRAK 

in a similar fashion to its interaction with TRANCE-R and CD40 (10). 

Studies from knockout mice have shown that TRAF6 is necessary for normal bone 

metabolism, as mice deficient in TRAF6 have severe osteopetrosis due to defects in 

osteoclast differentiation and maturation (11,12). This phenotype is remarkably similar to 

that found in mice deficient for TRANCE (13,14), TRANCE-R (15), and c-Src (16), 

which has suggested that TRAF6 may serve to link TNF signaling pathways to Src-

family tyrosine kinase pathways (17). Additionally, TRAF6-deficient mice have defects 

in signaling by IL-1, CD40L, and LPS, which results in deficiencies in nitric oxide 

production by macrophages as well as in B lymphocyte proliferation and isotype 

switching (11). Furthermore, TRAF6-/- mice display defects in lymph node 

organogenesis (12), which has also been observed in TRANCE-deficient mice (13,14). 

TRAF6 has the characteristic domain structure of TRAF proteins, with an N-terminal half 

containing a RING finger and several zinc finger domains, which have been shown to be 

essential for the activation of downstream signaling pathways, including NF-kB, MAPK, 

and Src-family kinases (2,17,18). The C-terminal half of TRAF6 consists of the highly 

conserved TRAF domain (19), with a coiled-coil domain required for TRAF 

oligomerization and a receptor-binding domain. The C-terminal half of TRAF6 acts as a 

dominant negative inhibitor of signaling by binding to the receptor but preventing the 

activation of downstream kinases (2). 
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Of the six TRAF proteins, TRAFs 2, 5, and 6 can activate the NF-kB and MAPK 

signaling pathways including ERK, p38, and JNK (1). Although TRANCE-R and CD40 

have been shown to activate NF-kB and MAPK via TRAF2 and TRAF5 in 

overexpression experiments (20,21), there is evidence that in primary cells, TRAF6 may 

be the key physiological mediator of signaling by these receptors. In TRAF6-/- osteoclast 

precursor cells, TRANCE stimulation fails to activate NF-kB, p38, or JNK (22). In the 

cytoplasmic tails of both TRANCE-R and CD40, the binding site for TRAF6 is proximal 

to the membrane and is distinct from the binding site for TRAFs 1, 2, 3, and and 5, which 

bind to more C-terminal sites on each receptor. Furthermore, the sequence of the 

receptor-binding TRAF domain of TRAF6 is the least conserved of all the TRAFs (2), 

suggesting that TRAF6 may have a distinct mode of receptor binding from the other 

TRAF proteins. 

Although the RING and zinc fingers in the N-terminal half of TRAF6 are necessary for 

the activation of downstream kinases, the receptor-binding domain is important 

structurally because oligomerization of TRAF6 at the receptor in response to ligand 

stimulation is a physiological prerequisite for signaling (23). A detailed structural 

understanding of the receptor binding mode of TRAF6 will help to elucidate the 

mechanism of TRAF6 signaling and will provide a framework for the rational design of 

immunomodulatory and anti-osteoporotic therapeutics. 

3.2.3 Results and Discussion 

3.2.3.1 Identification of the core receptor binding site for TRAF6 

As a first step toward understanding the molecular basis of the signaling specificity of 

TRAF6, we used CD40 as a prototype since it contains a rather short cytoplasmic domain 
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(residues 216-277). The C-terminal region of this domain (residues 246-277) contains the 

known TRAF2-binding site, while the N-terminal region (residues 216-245) has been 

implicated in TRAF6 binding (24,25). To pinpoint the TRAF6-binding site of CD40, we 

generated a series of deletions within this region and measured the binding affinity of 

these peptides to the TRAF domain of TRAF6 (residue 333-508), using isothermal 

titration calorimetry (ITC) (Figure 3.2.1 A) (26). The interaction of TRAF6 with the entire 

N-terminal region of the CD40 intracellular domain exhibited a dissociation constant of 

"60 U.M. A short peptide of CD40 (residues 230-238) conferred close to 90% of the 

binding energy to TRAF6, while further deletion abolished the interaction. This short 

region of CD40 formed the biochemical basis for the structural studies on TRAF6 

interactions. 

3.2.3.2 Crystal structures of TRAF6 

We determined three crystal structures of the TRAF-C domain of TRAF6 (residues 346-

504), in its free form and in complex with the minimal TRAF6-binding site from human 

CD40 (230-KQEPQEIDF-238) and the homologous sequence of human TRANCE-R 

(342-QMPTEDEY-349), at 2.5A, 1.8A and 2.0A respectively. To facilitate 

crystallization, the CD40 sequence in the complex contains a mutation (N237D) that has 

been shown previously to enhance affinity to TRAF6 (Figure 3.2.1 A) (21). The overall 

architectures of the three TRAF6 structures are rather similar, with rms distances of 0.4A 

among the peptide-bound and 0.6A between the free and bound forms. Previous 

structural and biochemical studies have established that TRAF proteins are able to form 

trimers (23,27-29), as a way to sense receptor trimerization and oligomerization by 

trimeric extracellular ligands (30). Even though the current TRAF6 structures are 

monomeric due to the deletion of their coiled-coil regions, the putative 3-fold axis of the 

structures can be located. When this is aligned in the vertical orientation, the receptor 
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peptides lie along a surface ridge from the top (near the cellular membrane) to the bottom 

(towards the cytoplasm) ends of the molecule (Figure 3.2.IB). This directionality of the 

peptides makes possible the direct docking of the receptors onto TRAF6 after exiting 

from their transmembrane regions. The peptides extend the total length of 25A along this 

side of TRAF6 and bury ~580A2 surface area. 

220 230 240 
KKVAKKPTNKAPHPKQEPQE1NFPDDI.PGS 
KQEPQEINFPDDLPGS 
KQEPQEINF 
fiEINF 

KOEPOEIDF 

below detection 

•V59MM 
Kdj=98|pM 
K„-237mH 

Kd=84|pM 
I I I I 

B 

1.0 2.0 3.0 4.0 
AQ (kcal/mol) 

5.0 6.0 

Figure 3.2.1. Overview of the 

structures. 

A. M a p p i n g of TRAF6-binding 

site on CD40, showing a 

representative isothermal 

titration curve (left) and the AG 

and KD of the interaction of 

TRAF6 with CD40 deletion 

series (right). 

B. Ribbon drawings of the 

structure of TRAF6 in complex 

with CD40, viewing down the 

putative three-fold axis of the 

TRAF6 molecule (left) and with 

the three-fold axis in a vertical 

orientation (right). 

C. Structural superposition of 

the TRAF6/CD40 complex with 

a TRAF2/CD40 complex, 

showing the distinct peptide 

directions in the two 

complexes. Same orientations 

as in (B). 

loop v 

Substantial structural differences between T R A F 6 and T R A F 2 (27-29) result in dramatic 

differences in the bound peptides, yielding a 40° cross in the peptide directions in their 

respective complexes (Figure 3.2.IC). The most prominent conformational difference 

resides at the (33-(34 loop of TRAF6, which exhibits up to 11.5A in Ca distances relative 

to TRAF2. This loop is displaced away from the receptor-binding site so that it no longer 
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interacts with the peptides in the TRAF6 complexes. The conformational change of the 

^3- (341oop is most likely brought about by the replacement of a 398-GxGxGxG-404 

sequence in TRAF2 and other TRAFs with non-glycine residues in TRAF6. In TRAF2, 

the (33- (34 loop is highly twisted. The glycine residues are crucial for maintaining two 

successive tight (3-turns of type II' (residues 399-DGTG-402) and type II (residues 402-

GAGT-405) respectively, which require glycines at specific positions. These two turns 

are further proceeded by a type I turn (395-YLNG-398) within the same loop. In TRAF6, 

the analogous residues continue further along the p3 strand, followed by a sharp type I 

turn at P398 (i+1 residue) to create a 90° bend in the loop. Most other connections 

between (3 strands show modest but significant differences in C„ positions (2-5A). A 

superposition of the TRAF6 structure in complex with CD40 with a TRAF2 structure in 

complex with CD40 shows an rms distance of 1.2A for 127 aligned Ca positions within 

3.0A. 

Both main chain and side chain hydrogen bonding interactions appear to play key 

anchoring roles in receptor recognition by TRAF6. A large portion of the receptor 

peptides (Q234-F238 for CD40 and T345-Y349 for TRANCE-R) assumes a typical anti-

parallel (3 conformation and makes main chain hydrogen bonds with residues P468-G472 

in the (37 strand of TRAF6 (Figure 3.2.2A and 3.2.2B). The side chains of E235 of CD40 

and E346 of TRANCE-R fit snugly into a surface groove and form hydrogen bonds to the 

main chain amide nitrogens of L457 and A458. In CD40, the carboxylate of D237 m.akes 

a hydrogen bond and a salt bridge to K469 of TRAF6. This salt bridge may explain the 

higher affinity of the N237D mutant of CD40 to TRAF6. In TRANCE-R, the carboxylate 

of D347 forms hydrogen bonds and a salt bridge to the guanidinium group of R392. The 

TRAF6 surface is in general rather basic, formed, among others, by the side chains of 
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R392 and K469, and is complementary to these acidic residues in the CD40 and 

TRANCE-R sequences (Figure 3.2.2C). 

•f 

^ M.MJ 
PM4 

•^™y» 

-OTA v&<*» 
h.WJP 

• TRAFS 
• CIMO 

• TRAK6 
• I PJ PM I IP 

Figure 3.2.2. Structural details of the 

interaction of TRAF6 with CD40 and 

TRANCE-R. 

A. Details of the TRAF6/CD40 interaction. 

B. Details of the TRAF6/TRANCE-R 

interaction. 

C. Electrostatic characteristics of TRAF6 

interactions, shown here for the TRAF6/CD40 

interaction. 

D. Stereo view of the superposition of CD40 

with TRANCE-R peptides. 

/ a > 
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A m o n g the eight residues that directly contact T R A F 6 (Q231-F238 of C D 4 0 and Q342-

Y349 of TRANCE-R), there are other important hydrophobic and hydrophilic 

interactions. Residue K230 of CD40 does not make any van der Waals contacts to 

TRAF6, in contrast with the previous notion that K230 is important for TRAF6 

interaction (21). Residues Q231-P233 of CD40 and Q342-P344 of TRANCE-R interact 

with hydrophobic TRAF6 residues F471 and Y473 to close the partially exposed 

hydrophobic core. In particular, the proline residue in both structures is completely 

buried. The side chains of Q231 of CD40 and Q342 of TRANCE-R are relatively less 

well defined and highly exposed to solvent, even though they appear to form several 

potential hydrogen bonds (Table 3.2.2). A dramatic difference exists between the 
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conformation of residue F238 of CD40 and the corresponding residue Y349 of 

TRANCE-R. While F238 inserts in between a series of aromatic and positively charged 

side chains including F410, R392, H394 and H412 of TRAF6, Y349 binds at the surface 

of this highly basic and aromatic region of TRAF6. A model building excise shows that 

the extra hydroxyl in Y349 appears to expel its insertion into the same pocket. 

Comparison of the CD40 and the TRANCE-R conformations by aligning the 

corresponding TRAF6 structures reveals the structural conservation and variation 

between the two sequences (Figure 3.2.2D). As residues E235 of CD40 and E346 of 

TRANCE-R superimpose extremely well and form crucial hydrogen bonding interactions 

with TRAF6, we denote this residue as the P0 position of the TRAF6-binding sequence. 

Residues P233 of CD40 and P344 of TRANCE-R are therefore at the P.2 position, while 

residues F238 of CD40 and Y349 of TRANCE-R reside at the P3 position. Main chain 

conformations are identical between the P^ to the P0 positions and slight deviations occur 

at the P,-P3 positions. Asp residues at both P, and P2 are able to form hydrogen bonds 

(Figure 3.2.2A and 3.2.2B), while a Glu at P2 is no longer able to preserve the same 

interaction. There are significant conformational adjustments in the side chains of the 

hydrogen bonding partners in TRAF6 (R392 and K469) in the presence and absence of 

these specific interactions. The difference in the side chain positions of the P3 residues is 

not a consequence of the main chain difference, but rather a change in the side chain 

torsion. 
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Table 3.2.1. Crystallographic statistics. 

CRYSTAL 
PEPTIDE 
PROTEIN CONSTRUCT 
SPACE GROUP 
CELL DIMENSIONS (A) 

DIFFRACTION DATA 
RESOLUTION (A) 
RSYM (LAST SHELL) (%) 
COMPLETENESS (LAST 

SHELL) (%) 

REFINEMENT 
RESOLUTION (A) 
SIGMA CUTOFF 
NUMBER OF PROTEIN 

RESIDUES 
NUMBER OF PROTEIN 

ATOMS 
NUMBER OF SOLVENT 

ATOMS 
NUMBER OF 

REFLECTIONS USED 
RMSD BOND LENGTH (A) 
RMSD BOND ANGLE (°) 
R (IW) (%) 

NATIVE 

NONE 
346-504 

P2, 
A=32.2, B=55.6, 

C=47.7,_=101.0° 

40-2.5 
9.2(24.1) 

92.8 (90.4%) 

20-2.5 

2.0 
155 

1269 

45 

5538 

20.4 (27.4) 

CD40 COMPLEX 

HCD40 
346-504 
P2,2,2, 

A=39.9, B=43.8, 

C=101.4 

40-1.8 

5.6(22.1) 

99.1 (93.0) 

20-1.8 

2.0 
164 

1340 

122 

14644 

20.3 (25.8) 

TRANCE-R 

COMPLEX 

HTRANCE-R 
346-504 
P2,2121 

A=38.0,B=45.0, 

C=106.5 

40-2.0 

5.5 (13.9) 

96.0 (86.9) 

20-2.0 

2.0 
161 

1331 

80 

12396 

21.3(24.2) 

3.2.3.3 Affinities of various TRAF6-binding sequences for T R A F 6 and identification 

of a consensus binding site 

To determine whether the observed interaction of TRAF6 with CD40 and TRANCE-R 

can be applied to the signal transduction of the IL-1R/TLR superfamily, we utilized the 

structural information to identify and align putative TRAF6-binding sequences from 

IRAK and its homologues IRAK2 and IRAKm (Figure 3.2.3). We used isothermal 

titration calorimetry to measure the affinities of these sequences for TRAF6. These ITC 

experiments showed that all the identified sequences in IRAK proteins produced binding 

affinities similar to that of the CD40 peptide (Figure 3.2.3), clearly demonstrating the 

78-



3. Results 

generality of the TRAF6 interaction and the mechanism of convergence of TRAF6 

signaling by the two superfamilies of receptors. In contrast, two sequences from NGFR 

and TACI, which were previously implicated in TRAF6 binding (31,32) but do not bear 

any recognizable structure-based sequence homology, failed to interact with our TRAF6 

construct. It is possible that these sequences bind to a different region of TRAF6. 

K D ( M M ) KA(103M-1) 

h C D 4 0 2 3 0 - K Q E P Q E I N F - 2 3 8 237 4.2±0.9 
hCD 4 0 (N237D) 2 3 0 - K Q E P Q E I D F - 2 3 8 84 11.912.2 
m C D 4 0 234-RQDPQEMED-242 
h T R A N C E - R 341-RQMPTEDEY-349 78 12.814.1 
m T R A N C E - R 337-RKIPTEDEY-345 
hIRAK 701-RQGPEESDE-709 56 17.912.3 
m I R A K 666-SQGPEESDE-674 
hIRAK-2 523-SNTPEETDD-531 64 15.713.0 
h I R A K - M 475-PSIPVEDDE-483 143 7.011.3 

Motif xxPxEdd(FXIXE) 
P o s i t i o n P j ^ P Q ^ P 3 

Other sequences 
hTACI SP E P V E T C S F C F P E C b e l o w d e t e c t i o n 
hNGF receptor E G E K L H S D S G I S V D S b e l o w detection 

Figure 3.2.3. Structure-based identification and alignment of TRAF6-binding sequences, showing the 

proposed TRAF6-binding motif and the measured KD of the interactions. 

The structural and sequence information led to a putative TRAF6-binding motif of 

xxPxEdd(F/Y/D/E) (positions P_4 to P3) (Figure 3.2.3), which is distinct from what was 

proposed earlier (21,24). The inclusion of the P.4and P3 residues in the motif is based on 

the role of their main chain atoms in closing the hydrophobic core of TRAF6. The Asp 

residues at positions P, and P2 are shown in lower case, as these may be the most 

favorable residues due to the specific hydrogen bonds, but other residues, especially 

acidic residues are tolerated at these positions due to the general charge complementarity 

with TRAF6. Based on the current structural information, we suspect that the Asp and 

Glu residues at the P3 position may adopt the Y349 conformation in TRANCE-R, rather 

than the inserted F238 conformation, due to a potential unfavorable charge burial. 
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To establish the importance of the peptide sequence in the context of full-length CD40 

intracellular domain, we used native gel shift and size exclusion chromatography to 

determine the mutational effects of CD40 and TRAF6 on this mutual recognition in vitro 

(Table 3.2.2). We performed mutagenesis for five out of the eight CD40 residues in 

contact with TRAF6. These residues exhibit either substantial surface area burials and/or 

potential hydrogen bonding interactions. Mutations E235A (P0) and F238A (P3) resulted 

in complete abrogation of binding, demonstrating the importance of these residues in 

TRAF6 recognition. While P233A (P.2) did not show qualitative difference in TRAF6 

binding, a P233Q mutation abolished the interaction, confirming that the buried binding 

pocket for P233 could not accommodate large side chains. On the TRAF6 side, we 

individually mutated all contacting residues involved in CD40 interaction to alanines to 

determine the energetic contributions of their side chains. Two residues, F471 and Y473, 

were singled out as the most crucial, as they produced drastic effects in the qualitative 

gel-shift and size exclusion assays. Other individual mutations did not produce qualitative 

differences in CD40 binding, suggesting that these residues contribute collectively, rather 

than singly, to the interaction. In addition, it is possible that the relative importance of 

TRAF6 residues may be somewhat different for different interacting sequences. 

Our structural observation raises the question whether the conserved Glu at the P0 

position of the TRAF6-binding motif is analogous to the P0 position (a Glu or a Gin) of 

the TRAF2-binding motif (29). Interestingly, even though the binding peptides for 

TRAF6 and TRAF2 take their own courses on the surface of the TRAF proteins, they 

intercept near the P0 residues (Figure 3.2.IC). In TRAF2 complexes, three Ser residues 

(S453-S455) appear to form a tight grip at the side chain of the P0 Glu or Gin. In TRAF6, 

these three residues are replaced by L456-L457-A458. Reciprocal movements in both 
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TRAF6 and the peptides are apparent to accommodate the P0 Glu at this position. The 

side chains of L456 and L457 move away from E235 to create an optimal cavity for E235 

to approach in the main chain amides of L457 and A458 for hydrogen bonding 

interactions. In addition, an E235Q mutation of CD40 did not produce qualitative 

difference in TRAF6 binding (Table 3.2.2). These observations led us to propose a model 

of co-evolution between TRAF proteins and their binding sequences, in which the P0 

residue serves as a primary conserved feature or anchoring point in this process. 

Table 3.2.2. Structural characteristics and mutational effects of the T R A F 6 / C D 4 0 

interaction as assessed by native gel shift and size exclusion chromatography. 

Mutations Effects Surface area burial Side chain exposure in the complex 

0.28 

0.10 

0.20 

0.55 

0.31 

Human CD40 mutations 

Q231A(PJl) 

P233A (P.2) 

P233Q 

E235A (P0) 

E235Q 

N237A (P2) 

F238A (P3) 

Human TRAF6 mutations 

R392A (R400)* 

F410A(F418)* 

E448A 

L456A 

P468A 

K469A (K477)* 

F471A(F479)* 

Y473A(Y481)* 

V474A 

T475A 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

109 A 

105 A 

123 A 

56A 

129A 

3lA 

36A 

36A 

26A 

46A 

62A 

46A 

56A 

37A 

25A 

0.10 

0.01 

0.20 

0.24 

0.43 

0.27 

0.01 

0.01 

0.26 

033 

+: binding preserved, no or minor effects; -: binding disrupted, major effects 

*shown in parentheses are corresponding residues in mouse TR,AF6 used in the 

dominant negative experiments (see below) 
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3.2.3.4 Mapping of potential TRAF6-binding sites in CD40, TRANCE-R, and IRAK 

Previous studies have localized a single TRAF6 binding site in CD40 to a membrane 

proximal region (21). In TRANCE-R, we (20) and others (24) have identified at least two 

regions of potential TRAF6 interaction: one in what we have defined as the membrane 

proximal "N domain" of the cytoplasmic tail of TRANCE-R, and another in the "M 

domain," which is C-terminal to the N domain. The binding site(s) for TRAFs 1, 2, 3, and 

5 is in the extreme C-terminal portion of TRANCE-R, the "C domain," and this domain 

does not appear to interact with TRAF6 (20). In IRAK, similar to TRANCE-R, two 

potential TRAF6-interacting regions have been identified in the C-terminal portion of the 

molecule, defined as "Cl" and " C 2 " (10). With our structural information about the 

consensus binding sequence for TRAF6 (xxPxEdd[F/Y/E/D], Figure 3.2.3), we identified 

one T R A F 6 binding site in C D 4 0 and three potential T R A F 6 binding sites each in 

T R A N C E - R and I R A K (Figure 3.2.4A). T w o of the predicted binding sites in T R A N C E -

R are located in the "M" region and two of the predicted binding sites in IRAK are 

located in the "Cl" region defined by previous mapping studies (Figure 3.2.4B). 

Consensus 
mCD40 
mTR-sitel 
mTR-site2 
mTR-site3 
hIRAK-aitel 
hIRAK-aite2 
hIRAK-site3 

P x 
237 - P Q 
340 - P T 
373 - P L 
447 - P G 
542 - P Q 
585 - P V 
704 - P E 

1 2 3 
d d(F/l/D/E) 
H E D 
D E Y 
V G E 
D H E 
N S Y 
S D E 
S D E 

Silcl SiteZ S«e3 rHAFl/2/3/S 
342 375 449 binding 

N + I Ml C 
Tfi-FL «Mrefla5miftyTrin̂  235-358 1 354-536 | 53a-625~~| 

F i g u r e 3 . 2 . 4 . I d e n t i f i c a t i o n o f c o n s e n s u s 

TRAF6-binding sequences in mCD40, 

mTRANCE-R, and hIRAK. 

A. Alignment of consensus TRAF6-binding 

sequences. P0 position is boxed in gray. 

B. Schematic domain structure of TRANCE-

R and IRAK. FL denotes full-length; N, M, 

and C in TRANCE-R follow convention in 

(20). D D denotes death domain, U D 

unknown domain, and K D kinase domain 

(IRAK). TRAF6-binding sites are marked 

with arrows and the P0 residue number is 

noted. 
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3.2.3.5 Functional mapping of predicted TRAF6-binding residues on CD40, 

TRANCE-R, and IRAK 

In order to determine the relative in vivo contributions of each residue in the predicted 

TRAF6-binding consensus sequences of mCD40, mTRANCE-R (site 1), and hIRAK (site 

3), we changed potential TRAF6-interacting residues by site-directed mutagenesis and 

analyzed the ability of these mutants to activate NF-kB in a luciferase reporter assay. 

Mutation of positions P.4, P.2, P0, P2, and P3 revealed that each of the residues from P_2 to 

P3 contributed to TRAF6-mediated NF-kB activation, while the side chain of postion P.4 

was unimportant for TRAF6-mediated NF-kB activation, in agreement with the structural 

observation that the contribution of the P.4 position to TRAF6 binding is from the main-

chain Ca. In CD40, there was a variable degree of inhibition in each of the mutants, with 

E239A mutation, predicted by our structural observations to be at the center of the 

TRAF6 binding groove (postion P0), producing the most significant block in NF-kB 

activation (Figure 3.2.5A). The residual NF-kB activity in the CD40 mutants is due to an 

incomplete block of TRAF6 binding and/or normal binding to other TRAFs including 

TRAF2 and TRAF5 through CD40's C-terminal TRAF-binding site, shown to interact 

with TRAFs 1, 2, 3, and 5 but not TRAF6 (21). In order to map similar sites on 

TRANCE-R and IRAK and rule out the possibility of other TRAFs contributing to NF-

kB activation, we examined deletion constructs of TRANCE-R and IRAK predicted to 

have only a single TRAF6 binding site (TR-N and IRAK-AC 1, Figure 3.2.4B). Without 

the potential for residual activity mediated by other TRAFs, it is clear that single 

mutations of P 2, P0, P2, and P3 are all capable of substantial inhbition of TRAF6-mediated 

NF-kB activation by TR-N and IRAK-AC1 (Figure 3.2.5, B and C). To examine whether 

other TRAF6-mediated signaling pathways are blocked by these mutations, we 

performed an in vitro JNK assay on overexpressed TR-N and its mutants, obtaining 

similar results (Figure 3.2.5D). Taken together, these data suggest that mutation of any of 
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the predicted TRAF6-interacting residues of the consensus binding site is sufficient to 

block TRAF6-mediated signaling by CD40, TRANCE-R, or IRAK. 

A '50 B "t 
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-«GST-c-junF" 
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Figure 3.2.5. Functional importance of predicted TRAF6-binding residues in C D 4 0 , T R A N C E - R , 

and IRAK. 

A. Site-directed mutagenesis was employed to generate point mutations in residues predicted to bind to 

TRAF6 in mCD40. CD40 (wild-type and mutants, 100 ng) were transfected in 293T cells with an NF-kB-

responsive luciferase reporter plasmid (75 ng) and 3-galactosidase (25 ng). Relative luciferase activity was 

normalized for 3-galactosidases activity. Representative results of at lest 3 separate transfections are 

shown. 

B. Mouse TRANCE-R consisting of the extracellular domain and residues 235-368 of the cytoplasmic tail 

(TR-N, wild-type and mutants, 50 ng) was transfected as in A. 

C. Human IRAK (full-length, FL; and with a deletion of residues 522-618, AC1; wild-type and mutants, 

100 ng) was transfected as in A. 

D. As in B, but TR-N constructs were transfected with JNK1 and the lysates were subjected to an in vitro c-

Jun N-terminal kinase assay. MEKK1 was included as a positive control. 

3.2.3.6 Functional mapping of predicted receptor-binding residues on T R A F 6 

We next determined the importance of the observed TRAF6 interface for signaling by 

C D 4 0 , T R A N C E - R , and I R A K using a dominant negative assay. The receptor-binding 
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TRAF domain of TRAF6 has been shown to exert a strong dominant negative phenotype 

on endogenous signaling by these receptors, presumably due its ability to bind to 

receptors and its lack of the N-terminal domains necessary for downstream signaling 

(2,33,34). Mutant TRAF domain constructs of TRAF6 that are defective in receptor or 

IRAK binding, on the other hand, should then be incapable of or exhibit reduced ability 

for dominant negative interference. 

We created the following point mutants of dominant negative mouse TRAF6 (T6.DN, 

residues 289-530) by site-directed mutagenesis: R400A, F418A, K477A, F479A, and 

Y481A (see Table 3.2.2 for the corresponding human TRAF6 residues). When co-

expressed with CD40, R400A, F479A and Y481A exhibited significantly reduced ability 

to inhibit NF-kB activation, while the F418A and K477A mutants retained the ability to 

reduce NF-kB activation nearly as well as wild-type TRAF6.DN (Figure 3.2.6A). When 

co-expressed with TR-N, all of the TRAF6.DN mutants could inhibit NF-kB activation 

to varying degrees, but none of the mutants could block activation as strongly as wild-

type TRAF6.DN (Figure 3.2.6B). Taken together, these functional data are consistent 

with the TRAF6 interface defined by structural studies. 

To test the effect of the TRAF6.DN mutants on IL-1 mediated NF-kB activation, we 

transfected 293T cells with the various TRAF6.DN constructs and NF-kB responsive 

reporter elements, and treated them for 6 hours with IL-1. The F418A and K477A 

mutants could block NF-kB induction as effectively as wild-type TRAF6.DN, while the 

others demonstrated virtually no blockade (Figure 3.2.6C), confirming the functional 

significance of the observed structural information on IL-1 signaling as well. As there are 

several known IRAK isoforms, the complete inability of some of the TRAF6 mutants to 

exert dominant negative interference on NF-kB activation confirmed our structural 
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observation on the conserved recognition of TRAF6 for all three IRAKs including IRAK, 

IRAK2 and IRAKm. 

Figure 3.2.6. Functional importance of 

predicted receptor and IRAK-binding sites on 

TRAF6. 

A. Residues 289-530 of mouse TRAF6 (T6DN, 

wild-type and mutants as indicated, 800 ng) was 

cotransfected with wild-type mouse CD40 (100 

ng). NF-kB activity was determined as in A. 

B. As in A, but with wild-type TR-N (50 ng) 

instead of CD40. 

C. T6.DN (wild-type and mutants as indicated, 

800 ng) was transfected as in A and B. Cells 

were treated with 1 ng/ml recombinant hIL-la 6 

hours prior to h.arvesting. 
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3.2.3.7 Relative contributions of each TRAF6-binding site in TRANCE-R and IRAK 

Since there are multiple predicted TRAF6-binding sites in both TRANCE-R and IRAK, 

we assayed the relative contribution of each of these binding sites to signaling by full-

length TRANCE-R and IRAK. As mutation of the P0 glutamate residue was sufficient to 

substantially reduce TRAF6-mediated signaling by all of the consensus sites examined in 

Figure 3.2.5, we employed only P0 E-A mutations to examine each predicted site in full-

length TRANCE-R and IRAK individually and in combination. Single mutations of 

E342A, E375A, and E449A resulted in minimal effects on the ability of overexpressed 

TRANCE-R to activate NF-kB. Double mutations, particularly 342/375 and 342/449, and 

to a lesser extent 375/449, slightly reduced NF-kB activation by TRANCE-R, but not 

substantially. Triple mutation of E342A, E375A, and E449A (E3A) markedly reduced 

TRANCE-R-mediated NF-kB activation (Figure 3.2.7A). It is somewhat surprising that 

any single TRAF6-binding site was sufficient to mediate TRANCE-R-induced NF-kB 

activation almost to the level of the wild-type sequence. The functional NF-kB activating 

potential by these mutants was confirmed structurally by their ability to bind to and 

immunoprecipitate TRAF6. The relative amount of TRAF6 immunoprecipitated by 

TRANCE-R mutants correlated with the relative ability of these mutants to activate NF-

kB. In particular, double mutants with the site 1 E342A mutation (342/375 and 342/449) 

co-precipitated less TRAF6 than did the 375/449 mutant, and the E3A mutant co-

precipitated a negligible amount of TRAF6 (Figure 3.2.7B). 

-87-



3. Results 

A 50 C izs 

,100 

25 

o-t̂  

ro ro 

< 
CNJ 

< 
CT> 

CT> 

(SJ 
co ro ro uj 

IP: aTRANCE-R 

WCE 

35 

o 30 

.2 2S 

-«TRANCE-R I 20 

— — — ' " • — -«TRAF6 
15 

i ̂ TRANCE-R 10 

-*TRAF6 

Figure 3.2.7. Relative contributions of each TRAF6-binding site to TRANCE-R and IRAK signaling. 

A. Full-length TRANCE-R (wild-type and mutants as indicated, 50 ng) was transfected and NF-kB 

activity was determined as in Figure 3.2.5. 

B. TRANCE-R (wild-type and mutants as indicated, 500 ng) was co-transfected with wild-type TRAF6 

(500 ng). Cell lysates were immunoprecipitated with an antibody to TRANCE-R (1E6.66) and 

immunoprecipitates (IP) and whole cell lysates (WCE) were probed with anti-Flag M 2 antibody. 

C. TRANCE-R constructs consisting of the ectodomain/transmembrane region and residues 354-536 of 

the cytoplasmic tail (TR-M, see Figure 3.2.4B for diagram, wild-type and mutants as indicated, 50 ng) 

were transfected as in A. 

D. Full-length IRAK (wild-type and mutants as indicated, 100 ng) was transfected as in A. 

In the double mutants, mutation of the two " M " region glutamates (375/449) consistently 

produced less inhibition of NF-kB activation than did either double mutant involving the 

"N" region glutamate (342/375 and 342/449), so we examined the relative contribution of 

sites 2 and 3 in the context of the "M" region alone. Unexpectedly, the E375A mutation 

almost completely abolished TR-M-mediated NF-kB activation, while the E449A 
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mutation had minimal effect (Figure 3.2.7C). Similar results were obtained with 342/375 

and 342/449 mutants of the "N+M" regions, omitting the "C" region (data not shown). 

This discrepancy between the "M" region or "N+M" region alone and the full 

cytoplasmic tail of TRANCE-R suggests a potential cooperativity between the C-terminal 

portion of TRANCE-R and the third TRAF6 binding site. Whether this is due to binding 

of other TRAFs to the "C" region or differential protein folding leading to masking of 

site 3 in the absence of the "C" region is unclear at this point. 

Mutation of the three predicted TRAF6-binding sites in IRAK revealed, unexpectedly, a 

slight gain of NF-kB-activating potential by mutation of site 1 (E544A), as full-length 

IRAK with a single E544A mutation activated NF-kB slightly more strongly than wild-

type full-length IRAK. Single mutation of E587A and E706A both reduced NF-kB 

activation by IRAK, while double mutation of E544A with either E587A or E706A 

slightly increased NF-kB activation over single mutants of either E587A or E706A. 

Triple mutation of E544A, E587A, and E706A almost completely reduced NF-kB 

activation by IRAK to background levels (Figure 3.2.7D). The increased activity 

observed in single and double mutants containing E544A suggests that site 1 in IRAK 

may somehow negatively regulate IRAK signaling by sequestering TRAF6 away from 

the other two sites while not allowing it to activate downstream signals or through some 

other, unknown mechanism. Given that the mode of TRAF6 interaction with TNFR 

family receptors is trimeric, it is likely that the mode of TRAF6 interaction with IRAK is 

similarly trimeric. There may be structural constraints of trimeric IRAK that prevent 

trimeric TRAF6 from interacting properly with site 1, thus sequestering monomeric 

TRAF6 at that site, preventing it from trimerizing and activating downstream signals. 
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3.2.3.8 The role of TRAF6 in ligand-dependent signaling by TR-N 

In order to confirm the functional role of TRAF6 in TRANCE-mediated signaling, we 

generated stable HEK 293 cell lines expressing TR-N and TR-N-E342A. Stable clones 

were selected that expressed similar levels of surface TR-N as determined by FACS 

analysis (data not shown). In response to TRANCE stimulation, 293/TR-N cells 

demonstrated strong activation of JNK as measured by an in vitro kinase assay, while 

293/TR-N-E342A cells did not activate JNK in response to TRANCE (Figure 3.2.8A, 

top). Similarly, TRANCE stimulation of 293/TR-N cells resulted in p38 activation as 

measured with phospho-p38 specific antibodies, while TRANCE did not activate p38 in 

293/TR-N-E342A cells (Figure 3.2.8A, bottom). In order to measure TRANCE-

dependent NF-kB activation, we transfected 293/TR-N and 293/TR-N-E342A cells with 

an NF-kB reporter plasmid, stimulated the cells for 24h with soluble TRANCE, and 

measured reporter activity. While 293/TR-N cells showed a robust activation of NF-kB 

in response to TRANCE, 293/TR-N-E342A cells had no measurable NF-kB induction in 

response to TRANCE (Figure 3.2.8B). Thus, the observed effects achieved by transient 

overexpression of TR-N constructs elsewhere in this report are similar to those found in a 

ligand-dependent situation with stable expression of TR-N. Furthermore, TR-N is 

functional for surface expression and ligand-dependent signaling through TRAF6 and 

will be a useful tool to isolate TRAF6-specific signals emanating from TRANCE-R. 
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Figure 3.2.8. Ligand-dependent T R A F 6 

signaling by TR-N. 

A. Stably transfected 293 cells expressing TR-N 

(wild-type and E342A as indicated) were 

stimulated with T R A N C E (2 ng/ml) for the 

indicated time, lysed, and subjected to an in 

vitro J N K assay. Whole cell extracts ( W C E ) 

were probed with phospho-specific and total 

ap38 antibodies as indicated. 

B. Stably transfected 293 cells expressing TR-N 

(wild-type and E342A as indicated) were 

transfected with an NF-kB luciferase reporter 

plasmid and stimulated for 24h with the 

indicated amount of soluble T R A N C E . 

Luciferase activity was measured as in Figure 

3.2.5. 

3.2.3.9 Relative contributions of T R A F 6 - b i n d i n g sites a n d T R A F 1 / 2 / 3 / 5 binding 

sites to CD40 and T R A N C E - R signaling 

To account for residual, non-TRAF6-mediated NF-kB activation by TRANCE-R and 

CD40, we overexpressed an excess of TRAF2 or TRAF6 constructs lacking the N-

terminal zinc-binding domains as dominant negatives (T2.DN and T6.DN). With wild-

type full-length CD40, T6.DN inhibited NF-kB activation slightly more than did T2.DN. 

CD40-E239A activated NF-kB as strongly as CD40-WT + T6.DN, while CD40-E239A + 

T2.DN showed no NF-kB activation, suggesting that the defined TRAF6-binding site in 

CD40 is the only TRAF6-binding site in CD40 capable of signaling (Figure 3.2.9A). A 

similar set of transfections with TR-N and TR-N-E342A shows that TR-N activates NF-

kB exclusively through TRAF6, as T2.DN had no effect on the ability of TR-N to 

activate NF-kB (Figure 3.2.9B). To determine if the C-terminal TRAF1/2/3/5 binding 

site(s) contribute to the residual non-TRAF6-dependent NF-kB activation in full-length 

TRANCE-R, we transfected the TR-FL-E3A construct with T6.DN and T2.DN. T6.DN 

had minimal effect on the residual activity of TR-FL-E3A to activate NF-kB, while 

T2.DN abolished the residual NF-kB activity (Figure 3.2.9C). Since TRANCE-R has 
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three TRAF6-binding sites, in order to more directly compare it to C D 4 0 , we deleted the 

"M" region, which contains two TRAF6-binding sites, leaving only site 1 (TR-AM, 

Figure 3.2.4B). The relative inhibition of TR-AM and TR-AM-E342A signaling by 

T6.DN and T2.DN (Figure 3.2.9D) was comparable to that observed in C D 4 0 - W T and 

CD40-E239A (Figure 3.2.9A). Thus, the presence of three TRAF6-binding sites in 

T R A N C E - R as opposed to a single TRAF6-binding site in C D 4 0 suggests that T R A F 6 

may play a more dominant role in T R A N C E - R signaling. This may explain the observed 

absence of NF-kB, JNK, and p38 activation in TRAF6-/- cells upon T R A N C E treatment 

despite the presence of other TRAFs in those cells (22). 
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Figure 3.2.9. Relative contributions of TRAF6- and TRAFl/2/3/5-binding sites to CD40 and 

TRANCE-R signaling. 

A. CD40 constructs (wild-type and E239A as indicated, 100 ng) were cotransfected with empty vector, 

TRAF6 residues 289-530 (T6.DN, 800 ng) or TRAF2 residues 241-501 (T2.DN, 800 ng) and subjected 

to an NF-kB reporter assay as in Figure 3.2.5. 

B. As in A, but with TR-N (50 ng) instead of CD40. 

C. As in A, but with full-length TRANCE-R (TR-FL, W T and triple E-A mutant, E3A, as indicated, 50 

ng). 

D. As in A, but with full-length TRANCE-R or TRANCE-R with a deletion of residues 254-536 (TR-AM, 

W T and E342A as indicated). 
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3.2.10 Formation of a ternary complex consisting of TRAF6, CD40, and c-Src 

A specific role of TRAF6 in anti-apoptotic signaling (17,35) has recently been 

demonstrated by its activation of the Ser/Thr kinase Akt, which specifically 

phosphorylates and inactivates pro-apoptotic molecules such as B A D and pro-caspase-9 

(36-38). For TRANCE-R, this Akt activation appears to be mediated by c-Src, a member 

of the Src tyrosine kinase family, with TRAF6 acting upstream of c-Src activation. Mice 

deficient in either TRAF6 (11,12) or c-Src (18) share similar phenotypes in TRANCE-R -

mediated osteoclast function. A universal role of TRAF6 as an upstream event for Akt 

activation through the Src kinases has also been implicated for CD40 (39-41) and IL-

1/Toll-like receptor signaling (17). 

* 

proline-rich 
sequence of 
TRAF6 

Figure 3.2.10. Ternary complex formation 

of T R A F 6 , CD40, and c-Src. 

A. Mapping of the potential Src-binding site 

on the surface of the T R A F 6 / C D 4 0 

complex. C D 4 0 peptide: ball and stick 

model; TRAF6: green; proline-rich sequence 

of TRAF6: orange. 

B. Native gel electrophoresis, showing the 

ternary complex formation of TRjAF6, GST-

CD40cyt, and c-Src. 

proposed Src-binding 
site on a receptor 

B 
C D 4 0 T R A F 6 c-Src complex 
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The structures of TRAF6 in complex with CD40 and TRANCE-R suggest a model for a 

ternary complex formation among TRAF6, a receptor and a Src kinase (Figure 3.2.10A). 

TRAF6 is the only TRAF family member that contains a putative SH3 domain binding 

sequence (462-PxxPxxP-468) as an insertion between the strands (36 and [57. 

Interestingly, residues 465-468 within this proline-rich sequence are disordered in the 

free TRAF6 structure and become ordered in the CD40 and TRANCE-R-bound 

structures. Previous binding studies using in vitro translated proteins suggested that c-Src 

interacts with TRAF6 via these proline-rich sequences and with TRANCE-R via a region 

immediately after its TR.^VF6-binding site. In the TRAF6 complexes, these proline-rich 

residues are situated adjacent to the bound CD40 and TRANCE-R receptor peptides, 

suggesting that a Src kinase may interact with an integrated surface formed by both 

TRAF6 and the receptors. 

To determine whether such a ternary complex can be assembled in vitro, we assessed the 

pattern of native gel shift using purified TRAF6, GST-CD40 intracellular domain and c-

Src (Figure 3.2.10B). The native gel clearly shows that a ternary complex is formed upon 

addition of the three proteins, as shown by the disappearance of protein bands 

corresponding to the individual components. Therefore, the biochemical evidence further 

suggests a cooperative (rather than a competitive) assembly of the ternary complex, 

providing an explanation for the interdependence of TRAF6 and Src kinases in the signal 

transduction of these receptors. The experiment also demonstrates a direct linkage of a 

TRAF protein to a downstream molecule among the many that have been implicated but 

not proven in TRAF signaling. 
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3.2.4 Conclusion 

Our studies of the TRAF domain of TRAF6 reveal the structural underpinnings of its 

interaction with TNFR family proteins and components of the IL-lR/Toll-like receptor 

family signaling complex. Previous studies have demonstrated that TRAF6 is divergent 

from other TRAF proteins in that it binds to unique receptor sites and participates in 

signal transduction downstream of non-TNFR family proteins through its association 

with IRAK. While the overall structure of TRAF6 is similar to that of TRAF2, its mode 

of binding to receptor sequences is quite divergent, although it centers around a critical 

binding residue on the receptor (Glu) similar to TRAF2's binding to a central receptor 

residue (Gin). This suggests an evolutionary point of divergence between TRAF6 and 

TRAFs 1, 2, 3, and 5. Identification of a consensus binding sequence for TRAF6 revealed 

that there are numerous TRAF6 binding sites in TRANCE-R and IRAK, which we have 

confirmed functionally. Finally, we propose a potential mechanism by which TRAF6 

links TNFR family proteins and the c-Src tyrosine kinase, in a cooperative ternary 

complex assembly. Given the importance of TRAF6 in bone remodeling and adaptive 

and innate immunity, structural information about its mode of signaling is an important 

starting point for the rational design of anti-osteoporotic and anti-inflammatory 

molecules. 

3.2.5 Experimental Procedures 

3.2.5.1 Isothermal titration calorimetry 

Peptides containing putative TRAF6-binding sequences were chemically synthesized 

with amino-terminal acetylation and carboxy-terminal amidation. The molecular mass of 

each peptide was verified by MALDI-TOF mass spectrometry. A different TRAF6 

construct (residues 333-508), which was expressed and purified similarly as described for 
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the TRAF6 construct used for crystallization, was used for ITC experiments due to its 

higher expression yield. Both protein and peptides were dialyzed extensively against 

50mM sodium phosphate at pH 7.5 for at least two days at 4°C to ensure buffer 

equilibration. Accurate concentrations of the protein and peptide samples after dialysis 

were determined by quantitative amino acid analysis. ITC experiments were performed at 

20°C for determination of binding enthalpy and affinity using a microcalorimetry system 

(MicroCal Inc.). Approximately 20 to 45 injections were titrated for each measurement. 

The data were analyzed by the ORIGIN data analysis software (MicroCal Inc.) (26). The 

heat of dilution obtained from injecting a ligand into the buffer was subtracted before the 

fitting process. 

3.2.5.2 Protein expression, purification and crystallization 

The TRAF proteins contain an N-terminal effector domain of RING and zinc-fingers and 

a C-terminal TRAF domain that can be further divided into a coiled-coil region and a 

homologous TRAF-C domain for receptor interaction (1,19). A combination of genetic, 

biochemical and crystallographic methods was used in identifying a crystallizable TRAF 

domain construct of TRAF6 and a detailed description will be presented elsewhere. In 

summary, the TRAF6 construct (residues 346-504) containing a carboxy-terminal His-tag 

was expressed in E. coli with overnight IPTG induction at 20°C. The protein was purified 

by Ni-affinity chromatography and gel filtration. The protein was concentrated to around 

3 mg/ml and crystallized under 5-25% PEG8K and lOOmM Tris at pH 7.5. For complex 

formation with TRAF6-binding peptides, a 10-fold molar excess of a mutant human 

CD40 peptide (230-KQEPQEIDF-238) or a human TRANCE-R peptide (342-

QMPTEDEY-349) was included in the crystallization drops. Crystals grew as thin plates 

and chunky prisms respectively in the absence and presence of the peptides. 
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3.2.5.3 Data collection and structure determination 

Preliminary crystal characterization and screening were conducted on an Raxis-IV 

imaging plate detector mounted on a Rigaku RU300 X-ray generator. Diffraction data 

were collected at the X4A beamline of NSLS and the Al beamline of CHESS. The 

structures were determined by molecular replacement using the program Replace . The 

atomic model of the TRAF domain of TRAF2 was modified by removing the side chains 

of residues that are not conserved in TRAF6. Structural refinement was performed by the 

simulated annealing protocol in CNS (42). Ribbon and stick models were created using 

Setor (43) and the molecular surface representation was calculated and presented by 

Grasp (44). 

3.2.5.4 Native gel shift and size exclusion chromatography 

Native gel shift experiments were performed using the PhastGel system (Pharmacia) and 

8-25% gradient polyacrylamide gel. Size exclusion chromatography was carried out 

using a Superdex 200 (10/30) column (Pharmacia). 

3.2.5.5 Transfection and Reporter Assays 

Mouse CD40 was cloned by RT-PCR from whole spleen mRNA and inserted into the 

pFLAG-CMVl cloning vector (Sigma). Flag-tagged mouse TRANCE-R consisting of the 

extracellular domain and residues 235-368 or 354-536 of the cytoplasmic tail (TR-N and 

TR-M), mouse TRAF6 consisting of residues 289-530 (T6.DN), and TRAF2 consisting 

of residues 241-501 (T2.DN) have been described (20). Site-directed mutagenesis of 

CD40, TRANCE-R, IRAK, and TRAF6.DN was performed on the indicated residues by 

the Quick-change method (Stratagene). All constructs were confirmed by sequencing. 
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293T HEK cells were transfected in 6-well plates with the indicated amounts of CD40, 

TR-N, and TRAF6.DN and mutants along with 75 ng of an NF-KB-luciferase reporter 

plasmid and 25 ng of a (3-galactosidase plasmid to control for transfection efficiency. 

Transfection amounts were kept constant at 1 (ig by addition of empty pFLAG-CMV 1 

vector. Cells were harvested 24-30 h after transfection and reporter activity was assayed 

as described (20). Where indicated, cells were treated with 1 ng/ml recombinant human 

IL-1 (R & D) 6 hour prior to harvesting. 

For the in vitro JNK kinase assay, full length TRANCE-R, TR-N, TR-N mutants, and 

MEKK1 were transfected along with JNK1 (100 ng) as indicated. JNK1 was 

immunoprecipitated with an a-JNKl antibody (E-17, Santa Cruz Biotechnology), and 

the immunoprecipitates were subjected to an in vitro kinase assay using recombinant 

GST-c-jun (1-79, Calbiochem) as a substrate as described previously (45). Transfection 

efficiency was confirmed by western blotting the immunoprecipitates with a-JNKl. 

Stable cell lines expressing TR-N and TR-N-E342A were generated by co-transfection of 

HEK 293 cells with the indicated expression vectors with a vector carrying a neomycin 

resistance plasmid (pcDNA3.1). Cells were selected for resistance to G418 and cloned by 

limiting dilution. Clones with similar levels of surface expression of TR-N were 

identified by FACS analysis. 
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3.3.1 Summary 

TRAF2 is a critical adaptor molecule for TNF receptors in inflammatory and immune 

signaling. In response to ligand engagement, TRAF2 is recruited to CD40 and 

translocates to lipid rafts in a RING finger-dependent process, which is required for its 

ability to activate downstream kinases. TRAF1 can displace TRAF2 and CD40 from raft 

fractions, and it promotes the ability of TRAF2 to sustain activation of signal cascades. 

Replacement of the RING finger of TRAF2 with a raft-targeting dual acylation signal 

restores JNK activation and association with the cytoskeletal protein Filamin, but not NF-

kB activation. TRAF1-/- dendritic cells show attenuated responses to secondary 

stimulation by TRAF2-dependent factors. These findings offer insights into the 

mechanism of TRAF2 signaling and identify a physiological role for TRAF1 as a positive 

regulator of TRAF2 signaling. 
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3.3.2 Introduction 

Tumor necrosis factor (TNF) family proteins are essential regulators of the life and death 

of hematopoietic cells, bone and mammary gland homeostasis, and embryonic 

development (1). Signaling through TNF receptor (TNFR) proteins is mediated in part by 

TNFR associated factor (TRAF) adaptor proteins, which have been shown to activate the 

transcription factor NF-kB, MAP kinases, and Src-family kinases (2). Of the six 

mammalian TRAFs, sequence conservation analysis has shown that TRAFs 1, 2, 3, and 5 

are closely related, while TRAFs 4 and 6 are more evolutionarily divergent. Of these 

evolutionary relations, TRAF1 and TRAF2 appear to have arisen after duplication of a 

common precursor, while TRAF3 and TRAF5 have arisen from a different common 

precursor (3). 

The general domain organization of TRAF proteins, of which TRAF2 is the archetype, 

comprises an N-terminal zinc-binding domain, specifically a RING finger followed by 

several Zn fingers, and a C-terminal TRAF domain, consisting of a coiled-coil which 

permits TRAF oligomerization (TRAF-N) and a receptor binding domain (TRAF-C) 

(4,5). There are some exceptions to this scheme, most notably in TRAF1, which has a C-

terminal TRAF domain that is highly homologous to TRAF2, but lacks the RING and all 

but one of the Zn fingers. The specificity conferred by a particular TRAF-binding 

receptor is conferred by its relative affinity for the different TRAF proteins, the cell type-

specific expression of TRAFs, and the stoichiometry of TRAFs in a given receptor 

complex. Trimeric TNF family ligands bind to trimerized TNFR family proteins, 

dictating a trimeric mode of binding of TRAFs in which the affinity and avidity of TRAF 

proteins for receptor complexes is greatly enhanced (6-9) 
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Although TRAFs are essential adaptors for signaling through TNFR family proteins, they 

do not appear to possess intrinsic enzymatic activity and the precise mechanism of their 

action is as yet unknown. It is clear that the TRAF domain of TRAF2 is necessary for its 

direct interactions with TNFR proteins such as TNFR2, CD40, TRANCE-R, CD30 and 

others, as well as interactions with cytoplasmic factors including TRADD, RIP, NIK, 

ASK1, GCK, c-IAPs, I-TRAF, TRIP, A20 and others (2,10,11). However, expression of 

the TRAF domain alone inhibits signaling by TNF family ligands, and indeed, mutants of 

TRAF2 lacking the RING finger act as dominant negative factors for NF-icB and MAPK 

activation (12,13). The N-terminal RING and Zn fingers are therefore required for the 

activation of these cascades. The RING finger has been proposed to interact with 

MEKK1, a MAP3K that is potentially involved in TNF-a induced JNK activation 

(14,15), and the actin-binding protein Filamin (16), but physical association of the RING 

finger of TRAF2 and these proteins has not been rigorously demonstrated. TRAF2A, a 

splice variant of TRAF2 identified only in the murine traf2 locus which carries a 7-amino 

acid insert in the RING finger, cannot activate NF-kB, but is capable of JNK activation 

(3,17). It has been recently shown in vitro that the RING fingers of TRAF2 and TRAF6 

can serve as E3 ubiquitin ligases, mediating non-degradative K63 polyubiquitination of 

some interacting partners of TRAFs as well as TRAFs themselves. This 

polyubiquitination is linked to the ability to activate the IKK complex upstream of NF-

kB (18,19). Ubiquitination of TRAFs may also lead to signal-dependent degradation, thus 

serving as a means of downregulating TRAF-dependent signals (20). 

While most TRAFs are constitutively present in the cell types in which they are 

expressed, TRAF1 is absent in most resting cells (21). Expression of TRAF1 is rapidly 

upregulated in response to NF-kB and AP-1 activation by a variety of inflammatory 

mediators, including TNF-a, CD40L, LPS, and lymphocyte receptors (22-24). By itself, 
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TRAF1 does not appear to activate signaling cascades activated by TRAF2, although it 

can hetero-oligomerize with TRAF2 (4) and interact with many of the same receptors and 

cytoplasmic proteins as TRAF2 (11). While the exact physiological role of TRAF1 is 

unknown, it appears to positively regulate survival signals mediated by TRAF2 

(22,25,26). Recently, TRAF1 was found to be a target of caspases, and the resulting 

cleavage product negatively regulated the anti-apoptotic signals of TRAF2 during TNF-

induced cell death (27,28). 

An emerging theme in cell surface receptor signaling is detergent-resistant liquid-ordered 

lipid membrane microdomains, or lipid rafts (29-32). Contrary to the long-held fluid-

mosaic model of membranes as proteins floating freely in a sea of phospholipids, it 

appears that the membrane lipids may have regions of higher-order organization enriched 

in cholesterol and sphingolipids that coalesce around activated transmembrane receptor 

protein complexes. These complexes are resistant to solubilization at low temperatures in 

non-ionic detergents such as Triton X-100 and thus may serve to assemble or exclude 

various signaling complex components, which may enhance signaling specificity. 

Recently, several reports have demonstrated that CD40 engagement or Epstein-Barr virus 

LMP1 expression results in recruitment of CD40 or LMP1, TRAF2, TRAF3, and several 

other proteins to lipid rafts, which are thought to be intrinsic to some of the signaling 

functions of CD40 and LMP1 (33-37). 

In this report, we examine the role of the translocation of TRAF2 into detergent-insoluble 

complexes in the TRAF2-dependent activation of NF-kB and JNK. In response to CD40 

stimulation, TRAF2 translocates into lipid rafts in a RING finger-dependent process, 

which is required for kinase activation. TRAF1, which is upregulated in response to 

TRAF2-mediated signals, regulates the removal of CD40 and TRAF2 from insoluble 
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complexes, but increases the ability of TRAF2 to mediate sustained activation of NF-icB 

and JNK. Substitution of the RING finger of TRAF2 with a lipid raft-targeting dual 

acylation signal rescues JNK activation, but not NF-kB activation by TRAF2, suggesting 

that raft translocation is necessary and sufficient for JNK activation, but insufficient for 

NF-kB activation. Finally, in TRAF1-/- dendritic cells, we show that maturation by 

CD40L leads to a loss of soluble TRAF2 and a concomitant reduction in TNF, TRANCE, 

and CD40L-mediated survival, revealing a positive physiological role for TRAF1 in the 

regulation of TRAF2-dependent signaling. 

3.3.3 Results 

3.3.3.1 TRAF1 increases the detergent solubility of TRAF2 

Recently, it has been shown by several groups that CD40 engagement results in 

translocation of TRAF2 to detergent resistant lipid-ordered membrane microdomains, or 

lipid rafts (33-37). Since TRAF1 can hetero-oligomerize with TRAF2 and interact with 

the TRAF2 binding site of CD40, we investigated the effect of TRAF1 on the solubility 

of TRAF2 in non-ionic detergent (0.75% Triton X-100). Transient overexpression of 

TNFR or TRAF proteins leads to self-aggregation and signaling, mimicking ligand 

engagement, so we co-transfected HEK 293T cells with constant amounts of plasmids 

driving the expression CD40 and TRAF2, while titrating the amount of TRAFl. In the 

absence of TRAFl, a majority of TRAF2 was found in the insoluble fraction, while the 

addition of TRAFl resulted in a dose-dependent redistribution of TRAF2 to the soluble 

fraction (Fig. 3.3.1 A). The N-terminal zinc-binding RING finger of TRAF2 has been 

shown to be essential for NF-kB (12) and JNK (13) activation. It has also been suggested 

that the zinc binding capacity of TRAF2 is required for its translocation into lipid rafts 

(33). To determine if the RING finger of TRAF2 mediates translocation into the insoluble 
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fraction, we cotransfected CD40 and wild-type TRAF2 or TRAF2 with a deletion of the 

first 87 amino acids (T2A87), which comprise the RING finger, with or without TRAFl. 

T2A87 was found completely in the soluble fraction, regardless of TRAFl expression 

(Fig. 3.3.IB). Like TRAFl, TRAF5 has been shown to hetero-oligomerize with TRAF2 

(38). In order to determine if TRAF5 can mediate solubilization of TRAF2, we 

cotransfected CD40, TRAF2, and TRAFl or TRAF5. While TRAFl can mediate 

solubilization of TRAF2, TRAF5 cannot (Fig. 3.3.IC), suggesting a unique role for 

TRAFl. 

To determine if TRAFl could indeed mediate translocation of TRAF2 out of lipid rafts 

under sustained signaling conditions, we performed sucrose density gradient 

centrifugation on extracts of cells transfected with CD40, TRAF2 or T2A87, with or 

without TRAFl, treated for the last 6 h prior to lysis with soluble CD40L. In cells 

transfected with CD40 and TRAF2, both CD40 and TRAF2 could be found in the low-

density raft fractions, co-migrating with the known raft-associated tyrosine kinase Lyn 

(Fig. 3.3.ID, upper left). However, addition of TRAFl resulted in redistribution of both 

CD40 and TRAF2 out of the raft fractions (Fig. 3.3.ID, upper right). T2A87 was not 

found in significant amounts in the raft fractions with or without TRAFl, and even in the 

absence of overexpressed TRAFl, T2A87 coexpression resulted in a steady-state 

reduction of CD40 in the raft fractions as compared to coexpression with wild-type 

TRAF2 (Fig. 3.3.1D, bottom). Although TRAFl resulted in a complete loss of TRAF2 

from the raft fractions, there was still a considerable amount of insoluble TRAF2 in the 

crude cell extract, which may represent cytoskeleton-associated TRAF2 ((35) and further 

discussion below). To visually examine the distribution of TRAF2 in the cell, we co­

transfected TRAF2 fused at its C terminus to EGFP (TRAF2-GFP) with or without CD40 

and TRAFl. Fluorescence microscopy 24 hours after transfection revealed that TRAF2-
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GFP by itself was distributed throughout the cytoplasm with several aggregates in the 

cell, which is consistent with the ability of overexpressed T R A F 2 to self-associate. 

Coexpression of C D 4 0 resulted in the complete redistribution of T R A F 2 - G F P to punctate 

structures distributed throughout the cell. Addition of T R A F l to T R A F 2 - G F P alone or 

with C D 4 0 resulted in the continuous distribution of T R A F 2 throughout the cytoplasm 
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Figure 3.3.1. T R A F l regulates the 

detergent solubility of TRAF2. 

A. 293T H E K cells were transfected in 6-

well plates with the indicated amounts of 

CD40, TRAFl, and TRAF2. Total D N A 

content was maintained constant at 1 )J.g by 

the addition of empty vector. Cells were 

lysed in 0.75% Triton X-100, and soluble 

(S) and insoluble (I) fractions were 

immunoblotted as indicated. After probing 

with T R A F 2 antibodies (C-20), blots were 

stripped and reprobed with anti-Flag M 2 to 

detect TRAFl and CD40. 

B. As in (A), but with 0.1 jig of TRAF2 or an N-terminal truncation mutant removing the first 87 residues 

(comprising the RING finger) of TRAF2 (T2A87). 0.5 ,ug of TRAFl was transfected where indicated (+). 

C. As in (A), with TRAF5 where indicated. 

D. 293T cells were transfected with 1.5 jig of TRAF2 or T2A87, 2.5 ng of TRAFl, and 1.0 ng of CD40 

where indicated. Cells were treated with CD40L 6 h prior to harvesting then subjected to sucrose gradient 

density centrifugation as described in Experimental Procedures and immunoblotted as indicated. 

-TRAFl +TRAF1 
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E. 293T cells were transfected as in (A) with TRAF2-GFP or GFP alone (0.2 ng), CD40 (0.1 (ig). and 

TRAFl (0.3 ng) as indicated. Cells were visualized by fluorescent microscopy 24 h after transfection. 

3.3.3.2 Differential effects of T R A F 2 and T R A F 6 on CD40 localization 

While oligomerization at the receptor appears to be necessary for the translocation of 

TRAF2 and CD40 into lipid rafts (33), it is unclear whether receptor engagement per se is 

sufficient for stable translocation of the receptor. The cytoplasmic tail of CD40 has two 

defined TRAF binding sites, one that is proximal to the membrane to which TRAF6 

binds, and a more distal site which binds to TRAFs 1, 2, 3, and 5 (7). While TRAF2 and 

TRAF3 have been shown to be recruited to membrane rafts by CD40 engagement in 

primary cells (34), TRAF6 does not appear to play a prominent role in CD40-associated 

lipid rafts (33). In order to compare the contributions of TRAF2 and TRAF6 to CD40 

translocation, we generated point mutants of CD40 that are deficient in binding to 

TRAF2, TRAF6, or both. Based on structural studies, we (section 3.2) and others (7) 

have identified E239 of mouse CD40 (corresponding to E235 of human CD40) as a 

critical binding residue for TRAF6 and Q253 (corresponding to Q252 of human CD40) 

as a critical binding residue for TRAF2. Cotransfection of CD40 and alanine mutations of 

E239, Q253, or both with TRAF2 followed by immunoprecipitation of CD40 

demonstrated that TRAF2 binding to CD40-Q253A is greatly attenuated (Fig. 3.3.2A, 

top). A similar cotransfection of CD40 constructs with TRAF6 and immunoprecipitation 

of TRAF6 demonstrated that TRAF6 binding to CD40-E239A is greatly attenuated (Fig. 

3.3.2A, bottom). Sucrose density gradient fractionation revealed that wild-type CD40 and 

CD40-E239A translocated to raft fractions, but to a greater extent in the presence of 

overexpressed TRAF2 than in the presence of overexpressed TRAF6. However, CD40-

Q253A and the double E239A/Q253A mutant remained in the soluble fraction in the 

presence of overexpressed TRAF2 or TRAF6 (Fig. 3.3.2B). Since CD40-WT is found in 
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the raft fraction in the presence of overexpressed TRAF6 at similar levels to those of 

CD40-E239A, raft translocation of CD40 appears to be dependent on its ability to bind to 

TRAF2, but not to TRAF6. Furthermore, a higher level of raft-associated CD40-E239A 

than CD40-WT was observed in the presence of overexpressed TRAF2, which suggests 

that TRAF6 binding may actually decrease the steady-state affinity of CD40 for the raft 

fraction. 

A m 
.̂ *r ̂  
< **• CM 
01 fo \ 

. cn y~> <n 
C N N. (O 
> HJ U IN j ^ W f l m ^ CD40/mutants 

WCE tm •»^-**«TRAF2 

ro 
< S ~ 
CT, rn ^ 

. fY> cn Oi 
C c\j cy, m 
s uj a w 

1 (*•> "" m -«CD40/mutants 
IP:aTRAF6!(«,»,. m * „TRAF6 

WCE «»«» — mm -«CD40/mutants 

B 

1 
+T2 
+T6 
+T2 
+T6</' 
+T2 
+T6 
+T2 
+T6 " 

Fraction # 
Rafts Cvtosol 
2 3 4 5 W n i O 

m ^ ^ m m + CD40- WT 

* 1 ^^^^BAd40-E239A 
. * mmmmm'* 

" j Z 2 8 ^ CD40-Q2 5 3 A 

" ,n-r-'7^mmmmmmmlCD40-Z39/Z53 

Figure 3.3.2. TRAF2 regulates the steady-state detergent solubility of CD40. 

A. 293T cells were transfected with Flag-tagged CD40 constructs (0.5 ng of W T or mutants as indicated) 

and TRAF2 (0.5 ng. top) or Flag-tagged TRAF6 (0.5 ng» bottom). CD40 was immunoprecipitated with 

anti-Flag M 2 antibodies and immunoprecipitates were probed for TRAF2 and CD40 as indicated. TRAF6 

was immunoprecipitated with anti-TRAF6 antibodies and immunoprecipitates were probed for CD40 and 

TRAF6 as indicated. 

B. As in Fig. ID, but cells were transfected with CD40-WT or the indicated mutants (1.0 ng) and TRAF2 

or TRAF6 (1.5 ng) and subjected to sucrose density gradient centrifugation and immunoblotting. 

3.3.3.3 T R A F l promotes sustained TRAF2-mediated signaling 

It has previously been shown that stable expression of T R A F l promotes sustained J N K 

activation by TNF-a (22). We found that, with the transfection of limiting amounts of 

TRAF2 (100 ng) and treatment with TNF-a (5 ng/ml) over the final 6 hours prior to cell 

lysis, TRAFl co-expression increased the steady-state level of JNK activation, which 

correlates with the redistribution of TRAF2 from the insoluble fraction to the soluble 

fraction (Fig. 3.3.3A). Short-term treatment by TNF-a (<30 minutes) induced high levels 

of JNK activation in untransfected cells or cells transfected with TRAF2 and varying 

amounts of TRAFl ((22) and data not shown). In an NF-tcB-luciferase reporter assay, 
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levels of luciferase activity should reflect the integrated total of NF-kB activation over 

the time between transfection and cell lysis. We found that, although increasing levels of 

TRAFl expression had little effect on the ability of limiting amounts of CD40 (50 ng) 

alone to activate NF-kB, in the presence of limiting amounts of TRAF2 (100 ng), TRAFl 

overexpression could increase sustained NF-kB reporter activity (Fig. 3.3.3B). Thus, the 

ability of TRAF2 to mediate the sustained activation of downstream signal cascades 

appears to correlate with its solubility. 

IP: JNK 1 

TRAFl (ng) 0 0 0.1 0.5 
TRAF2(ng) 0 0.1 0.1 0.1 

Kinase assay **». 4 M M M > •* GST-c-jun"" 

Probe:JNK1 • * > • * * 

Probe: 
aTRAF2 

r»jNKip 
l-«JNK1 
-«TRAF2 

-«TRAF2 

Figure 3.3.3. T R A F l promotes sustained 

TRAF2-mediated J N K and NF-kB activation. 

A. 293T cells were transfected with T R A F l and 

T R A F 2 as indicated. 6 h prior to harvesting, 10 

ng/ml TNF-a was added to the culture medium. 

Cells were lysed in 0.75% Triton X-100 and 

subjected to an in vitro J N K kinase assay or 

fractionation as in Fig. 1. 

B. 293T cells were transfected with varying 

amounts of T R A F l (0, 0.1, or 0.5 ng. indicated 

by broadening line), C D 4 0 (50 ng), and T R A F 2 

(0.1 ng) as indicated and subjected to an NF-kB 

reporter assay. Values are indicated as fold 

increase over background, and are normalized 

against an internal standard (P-galactosidase). 

3.3.3.4 Raft translocation of T R A F 2 is necessary and sufficient for JNK, but not NF-

kB activation 

Since the RING finger of TRAF2 is necessary for NF-kB (12) and JNK (13) activation, 

as well as for raft translocation (Fig. 3.3.2), we investigated whether raft translocation is 

sufficient for the ability of TRAF2 to activate these signals. Many Src-family kinases are 

acylated, leading to their accumulation in membrane rafts (29). Previously, fusion of the 
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N-terminal myristoylation/palmitoylation signal sequence of Lck to Akt has been used to 

force membrane localization of Akt, leading to constitutive Akt activity (39). We 

therefore generated cDNA encoding the myristoylation-palmitoylation signal from Lck 

linked to the N-terminus of T2A87 (M/P-T2A87), thus directing redistribution of T2A87 

to the membrane raft fraction in a RING finger-independent manner. When 

overexpressed with or without CD40 and/or TRAFl, M/P-T2A87 was localized primarily 

in the insoluble fraction, although co-expression of TRAFl could redistribute a small 

amount of M/P-T2A87 to the soluble fraction (Fig. 3.3.4A). M/P-T2A87 could not 

substantially activate NF-kB (Fig. 3.3.4B). However, in a JNK assay, overexpressed 

M/P-T2A87 was able to rescue the deficiency in JNK activation by T2A87, although only 

about half as efficiently as wild-type TRAF2 (Fig. 3.3.4C). This bifurcation of the ability 

to activate JNK and NF-kB indicates that the RING finger's ability to mediate raft 

translocation is necessary and sufficient for JNK activation. However, raft translocation 

is not sufficient to activate NF-kB, suggesting that the RING finger has an essential 

function in addition to raft translocation that is required for NF-kB activation. 

Since it has been suggested that the RING finger of TRAF2 is necessary to interact with 

the MAP3K MEKK1 (14), which may be, in turn, necessary for JNK activation (15), we 

tested the ability of M/P-T2A87 to induce the translocation of MEKK1 to detergent-

resistant membranes. Co-expression of wild-type TRAF2, T2A87, and M/P-T2A87 with 

MEKK1 and lysis in 0.75% Triton X-100 showed that the ability of TRAF2 to mediate 

translocation of MEKK1 into the insoluble fraction correlated with its ability to activate 

JNK. Wild-type TRAF2 and M/P-T2A87 induced the translocation of MEKK1, but 

T2A87 did not (Fig. 3.3.4D, top). ASK1, another MAP3K known to interact with TRAF2 

and activate JNK, interacts with the TRAF domain of TRAF2. Unlike MEKK1, the 

association of ASK 1 and TRAF2 is not dependent on the RING finger of TRAF2 (40,41). 
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Accordingly, A S K 1 did not translocate to detergent-resistant membranes upon co-

expression with TRAF2 (Fig. 3.3.4D, bottom). The apparent necessity of the RING finger 

for interaction with MEKK1 actually reflects a requirement for lipid raft translocation but 

not the physical presence of the RING finger. Thus, since MEKK1 was previously shown 

to interact with a TRAF2 fusion construct with the C-terminal TRAF domain replaced by 

FKBP (14), it appears that MEKK1 interacts with the Zn fingers of TRAF2, and this 

interaction is dependent upon the ability of TRAF2 to translocate to lipid rafts. 
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Figure 3.3.4. Forced raft localization of T R A F 2 is sufficient to activate J N K , but not NF-kB. 

A. 0.1 ng °f wild-type T R A F 2 (wt), T2A87, or T2A87 with an N-terminal myristoylation-palmitoylation 

signal peptide (M/P-T2A87) was cotransfected with or without T R A F l (+, 0.5 ng). with or without C D 4 0 

(+, 0.2 ng) as indicated. Soluble and insoluble fractions were prepared as in Fig. 3.3.1. T h e relative 

proportion of soluble T R A F 2 or its mutants w a s determined by densitometry and is indicated below the 

immunoblots (Note: this is a reflection of values relative to one another, but does not provide an absolute 

measure of solubility). 

B . Cells were transfected with the indicated T R A F 2 constructs (0.4 ng) and subjected to an N F - k B reporter 

assay as in Fig. 3.3.3B. 

C. Cells were transfected as in (B) and subjected to an in vitro J N K assay as in Fig. 3.3.3A. 

D. Cells were transfected with the indicated T R A F 2 constructs (0.3 n g ) and M E K K 1 or A S K 1 (0.3 n g ) as 

indicated and soluble and insoluble fractions were prepared and immunoblotted. 
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3.3.3.5 Raft translocation is necessary for the interaction of TRAF2 with the actin-

binding protein Filamin 

Some TRAF proteins have been shown, upon activation, to localize to the actin 

cytoskeleton (35), potentially mediated through binding to Filamin (16). Furthermore, 

although nearly all of the known interactions TRAF2 has with other proteins appear to be 

mediated through the TRAF-C domain, it was proposed that TRAF2 interacts with 

Filamin through its RING finger domain (16). The presence of non-raft-associated, 

insoluble TRAF2 but not T2A87 in crude extracts (Fig. 3.3.2A) led us to investigate 

whether raft translocation was necessary for binding to cytoskeletal components. We 

cotransfected Filamin with TRAF2, T2A87, or M/P-T2A87 in the presence or absence of 

TRAFl. We then lysed the cells in 0.5% NP-40 to more efficiently dissociate M/P-T2A87 

from membrane rafts, and separately lysed a small aliquot of cells in 0.75% Triton X-100 

to show raft association. Immunoprecipitation of Filamin and western blotting revealed 

that, surprisingly, M/P-T2A87 could interact with Filamin as efficiently as wild-type 

TRAF2, while non-acylated T2A87 could not (Fig. 3.3.5, left side). Thus, it appears that, 

as in the case of MEKK1 (Fig. 3.3.4D), the RING finger is not essential for physical 

interaction of TRAF2 and Filamin, but raft translocation, ordinarily mediated by the 

RING finger, is necessary for Filamin binding. Furthermore, TRAFl was able to compete 

for binding to Filamin with TRAF2, thus in the presence of overexpressed TRAFl, 

TRAF2 did not bind to Filamin (Fig. 3.3.5, right side). This suggests that sequestration 

into the cytoskeleton by Filamin may serve to inactivate TRAF2 after it has translocated 

into membrane rafts, thus downregulating sustained or repeated TRAF2 signaling by 

internalization and possible degradation (36). By preventing TRAF2 from interacting 

with Filamin, TRAFl may therefore prolong and enhance TRAF2 mediated signaling. 
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Figure 3.3.5. Interactions with T R A F 2 

a n d the actin-binding protein Filamin 

are dependent o n raft translocation of 

TRAF2. 

Cells were transfected as indicated with 

HA-tagged Filamin (a.a. 1644-2118; 0.3 

ng), TRAF2 constructs (0.3 ng). and 

TRAFl (0.3 ng) as indicated. Upon 

harvesting, 80% of the cells were lysed in 

0.5% NP-40, subjected to 

immunoprecipitation of Filamin with 

antibodies against HA, and immunoblotted 

as indicated. The remaining cells were 

lysed in 0.75% Triton X-100 and soluble 

and insoluble fractions were 

immunoblotted as indicated. 

3.3.3.6 T R A F l recycles T R A F 2 for signaling via serial receptor engagement in 

dendritic cells 

TRAFl is not ordinarily expressed at high levels in non-activated cells, but it is rapidly 

upregulated by NF-kB activation downstream of TNF family ligand stimulation (22). 

Therefore, we hypothesized that TRAFl may play a physiological role in situations 

where multiple T N F family ligands that signal through T R A F 2 engage cells over time. 

Dendritic cells (DCs) are known to respond to numerous TNF family members 

throughout their life cycle, including TNF-a, CD40L, and TRANCE. Furthermore, 

histological studies have shown that TRAFl expression is consistently elevated in DCs, 

perhaps more so than in any other cell type examined (21). Using bone marrow-derived 

DCs from wild-type mice and mice with a targeted deletion of the TRAF domain of 

TRAFl (TRAFl-/-; Y. Pewzner-Jung et al, manuscript in preparation), we found that 

CD40L or LPS maturation induces comparable levels of CD86 expression on CDllc+ 

cells (Fig. 3.3.6A), suggesting that TRAFl is not required for DC differentiation or 

maturation. 
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In wild-type DCs, TRAFl expression is relatively low in the immature stage, but is 

greatly upregulated by maturation in CD40L or LPS (Fig. 3.3.6B). Treatment of 

immature or LPS-matured DCs from wild-type or TRAFl-/- mice with CD40L induced 

similar levels of NF-kB activation as measured by IkB degradation (Fig. 3.3.6B, lanes 1-

2, 5-6, 7-8, and 11-12). In DCs matured in CD40L, there was a marked deficiency in NF-

kB activation by CD40L restimulation in TRAFl-/- DCs as compared to wild-type DCs 

(Fig. 3.3.6B, lanes 3-4 and 9-10). Consistent with this deficiency in NF-kB activation, 

there was substantially less pre-existing soluble TRAF2 in CD40L-matured TRAF1-/-

DCs than in CD40L-matured wild-type DCs (Fig. 3.3.6B, lanes 1 and 3 vs. lanes 7 and 

9). Similar levels of pre-existing soluble TRAF2 were observed in immature and LPS-

matured TRAFl-/- DCs and wild-type DCs prior to CD40L restimulation (Fig. 3.3.6B, 

lanes 5 and 11). CD40L restimulation in all cases resulted in similar short-term (20 

minutes) reductions of soluble TRAF2, consistent with previous observations (34,36). 

Once mature, DCs quickly undergo apoptosis in the absence of survival stimuli provided 

by activated T cells including TNF family ligands such as TNF-a, CD40L, and TRANCE 

(42). We found that TRAFl-/- DCs matured in CD40L display severely impaired survival 

in response to TNF-a stimulation and partially impaired survival in response to CD40L, 

with a negligible defect in TRANCE-mediated survival. TRAFl-/- DCs matured in LPS, 

which does not signal through TRAF2, had comparable survival responses to wild-type 

DCs under stimulation by TNF-a, CD40L, and TRANCE (Fig. 3.3.6C). Thus, TRAFl 

appears to be dispensable for the first TRAF2-dependent signal (CD40L-induced 

maturation), but its upregulation by the maturation signal maintains high levels of soluble 

TRAF2, enabling subsequent TRAF2-dependent signals (TNF-a or CD40L-induced 

survival) to occur. While TRANCE can activate NF-icB through TRAF2 in vitro, (43), it 
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predominantly signals through T R A F 6 (43,44), which m a y explain the negligible 

difference in survival observed in CD40L-matured wild-type and TRAFl-/- DCs. 
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Figure 3.3.6. T R A F l - / - dendritic cells 

have deficient secondary responses to 

TRAF 2 - d e p e n d e n t signals. 

A. Wild-type and TRAFl-/- (Tl-/-) D C s 

were matured by overnight culture in 

CD40L (1:200) or LPS (100 ng/ml) and 

CD86 expression was monitored by 

FACS analysis. Immature cells are 

shown as shaded areas on the histogram 

and matured cells are shown as broad 

dark lines. 

B. DCs were matured as in (A) 

(immature, lanes 1-2 and 7-8; CD40L 

matured, lanes 3-4 and 9-10; LPS 

matured, lanes 5-6 and 11-12), starved in 

medium containing 0.5% serum for 2 h, 

and restimulated with CD40L (1:200) as 

indicated for 20 minutes (even numbered 

lanes; odd numbered lanes were not 

restimulated). Cells were lysed and the 

soluble fractions were immunoblotted as 

indicated. Normalized ratios of soluble 

TRAF2 relative to the level of soluble 

TRAF2 in unstimulated immature cells 

were determined by densitometry and 

are indicated below the P-actin blots. 

C. DCs prepared as in (A) were 

incubated in normal medium, or medium 

containing TNF-a (10 ng/ml), CD40L 

(1:200), or TRANCE (1 ng/ml) for 48 h 

as indicated. Survival was determined by 

PI exclusion FACS. Specific rescue is 

represented as [% of surviving cells 

(stimulated)-% of surviving cells 

(unstimulated)]/[(100 % of surviving 

cells (unstimulated)]. 
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3.3.4 Discussion 

The data presented in this report reconcile widely varying observations about TRAF2 

signaling to provide a potential mechanism of TRAF2's action. First, the mechanism of 

TRAF2 signaling centers on its ability to translocate to lipid rafts. The N-terminal RING 

finger domain of TRAF2 is necessary both for TRAF2's ability to activate signaling 

cascades and to translocate to lipid rafts. Enforced raft translocation of TRAF2 lacking its 

RING finger (T2A87) rescues T2A87's ability to activate JNK, but not NF-kB. Second, 

under conditions of sustained stimulation through TRAF2-dependent receptors, TRAF2 

becomes mostly insoluble and total cellular TRAF2 decreases. Third, TRAFl is known to 

be upregulated by activation of NF-kB and AP-1, often in TRAF2-dependent signaling. 

TRAFl can displace TRAF2 from rafts and promote sustained TRAF2-mediated 

signaling in response to a single stimulus or multiple stimuli over time. Thus, a dynamic 

model emerges of translocation of the receptor complex mediated by TRAF2, which is 

likely to be the trigger for signal activation in response to a stimulus. The physiological 

role for TRAFl is to "reset" the system by dissociating TRAF2 from insoluble complexes 

and enabling subsequent stimuli to transduce signals through TRAF2. 

Prior reports have suggested that a receptor, such as CD40, translocates to rafts upon 

ligand engagement and this leads to binding of TRAF proteins (33,34). In agreement with 

the potential requirement for zinc binding ability for TRAF2 to translocate to rafts (33), 

we have found that TRAF2 requires its N-terminal RING finger domain to translocate to 

the insoluble fraction (Fig. 3.3.1). Nevertheless, a mutant of TRAF2 lacking the RING 

finger, T2A87, is fully capable of binding to CD40 and acting as a dominant-negative for 

TRAF signaling (12.13). Furthermore, we have found that T2A87 overexpression actually 

reduces the amount of raft-associated CD40 (Fig. 3.3.ID), so the TRAF domain of 
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TRAF2 can clearly interact with CD40 in the soluble fraction. Although short-term 

stimulation of a CD40 mutant that cannot bind to TRAF2 resulted in its apparent 

translocation to lipid rafts (33), our data show that steady-state residence in lipid rafts by 

CD40 is dependent on its ability to bind to TRAF2 (Fig. 3.3.2). This suggests that the 

ability to activate downstream signals upon binding to a receptor is tied to the ability of 

TRAF2 to translocate the receptor complex to lipid rafts. It is thought that the N-terminal 

domain of TRAF2 somehow activates kinases that lead to NF-kB and MAPK signaling. 

However, with the exception of MEKK1 (14), all of the kinases known to interact with 

TRAF2 interact with the C-terminal receptor-binding domain (11). Our data suggest that 

MEKK1 does not physically associate with the RING finger of TRAF2 since enforced 

raft translocation of M/P-T2A87 induces JNK activation and translocation of MEKK1 

(Fig. 3.3.4). This apparent discrepancy may be explained by the observation that wild-

type TRAF2 did not interact with MEKK1 until TNF-a stimulation (14). TNF-a 

stimulation likely induced the translocation of TRAF2 to lipid rafts, where it may have 

had better access to MEKK1 or to intermediary proteins linking TRAF2 to MEKK1. 

Taken together with observations by the same authors that a construct with replacement 

of the TRAF-C domain of TRAF2 with an inducible multimerization signal could interact 

with and activate MEKK1, our data suggest that TRAF2 interacts with MEKK1 via its Zn 

fingers, but can only do so upon raft translocation. Regardless, the importance of 

MEKK1 in TNF-a mediated JNK activation is disputable, as genetic deletion targeting 

different regions of MEKK1 has shown opposite results with regard to its role in TNF-

mediated JNK activation (15,45). Thus, all of the known protein-protein interactions 

mediated by TRAF2 appear to be via the C-terminal receptor-binding TRAF domain or 

Zn fingers, but not the RING finger. This favors a model wherein receptor engagement 

by a ligand recruits TRAF2 and cytoplasmic factors including MAP3Ks, first in the 

soluble fraction. Subsequently, the RING finger mediates translocation of the receptor 
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complex to lipid rafts, which may simultaneously activate and release the kinases in a 

concerted mechanism, the details of which are still unclear. 

While the ability of TRAF2 to translocate to rafts appears to be tied to its ability to 

activate signal cascades, we have found that in primary cells under circumstances of 

sustained receptor engagement (~16h) in the absence of TRAFl, the steady-state level of 

TRAF2 in the soluble fraction decreases and TRAF2-dependent receptors become 

refractory to further stimulation (Fig. 3.3.6). Others have demonstrated that, under short-

term periods of signaling (<1 h), TRAF2 becomes insoluble and degrades in response to 

CD40 (36) and CD30 engagement (46). Stimulation of TNFR2 has resulted in a depletion 

of soluble TRAF2, potentiating TNFR 1-mediated cell death (47). Thus, while 

translocation into lipid rafts is essential for TRAF2 to activate signaling processes, once 

translocated, it appears that a given complex of TRAF2 is inactivated, thus supporting the 

idea that translocation and kinase activation are concerted, instantaneous processes. 

TRAFl, however, is able to displace TRAF2 away from the insoluble fraction back into 

the cytosolic fraction. The mechanism of how this happens is unclear, but it is possible 

that TRAFl hetero-oligomerizes with TRAF2, displacing it from rafts, and/or it competes 

with TRAF2 for binding sites on the receptor. In support of this, in transient transfection 

assays with prolonged TNF-a stimulation or overexpression of CD40 and TRAF2, which 

simulates prolonged stimulation, TRAFl not only increases the solubility of TRAF2, but 

it also increases JNK and NF-kB activation (Fig. 3.3.3). 

The presence of considerable amounts of TRAF2 in insoluble complexes that are not raft-

associated (Fig. 3.3.ID) indicates that there may be another subcellular location of 

insoluble TRAF2 complexes. TRAF2 has been shown to interact with Caveolin-1 (48) 

and the actin-binding protein Filamin (Fig. 3.3.5 and (16)) and has been suggested to 
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accumulate in perinuclear (49) or cytoskeletal compartments after signaling (35). This 

may ultimately lead to degradation of TRAF2 (36,46). Given TRAF2's association with 

lipid rafts and caveolae, a reasonable model suggests that, upon receptor enagement, 

TRAF2 first translocates to membrane rafts, where it can activate kinase cascades. It then 

may be internalized via caveolae, whereupon it is trafficked to cytoskeletal compartments 

and/or degraded. Since we found that only TRAF2 that is capable of raft translocation 

can bind to Filamin and that TRAFl can disrupt the interaction of TRAF2 and Filamin 

(Fig. 3.3.5), it appears that cytoskeletal trafficking of TRAF2 is a consequence of raft 

translocation. Furthermore, it is likely that TRAFl influences the intracellular trafficking 

of activated TRAF2 by solubilizing it not only from lipid rafts, but also from cytoskeletal 

structures. This may, in turn, prevent or reduce the degradation of activated TRAF2 

complexes, thereby increasing the available levels of soluble TRAF2 for subsequent 

signaling by engagement of multiple TNF receptor family proteins over time (Fig. 3.3.6). 

The implications of TRAFl's ability to regulate the solubility of TRAF2 leading to 

positive signaling outcomes are supported by several studies. Previously, we have found 

that transgenic overexpression of TRAFl in T cells leads to prolonged survival of 

activated CD8+ T cells that may otherwise be subject to TNF-a induced apoptosis (26). 

Others have shown that TRAFl, in concert with TRAF2, c-IAPl, and C-IAP2, contributes 

to the suppression of TNF-a induced caspase-8 activation and subsequent cytoprotection 

(25). In stable transfectants overexpressing full-length TRAFl, but not in transfectants 

expressing an N-terminal truncation of TRAFl, NF-kB and JNK activation was sustained 

(22). It has recently been observed that TRAFl is a target of caspases during apoptosis, 

which results in a decrease in its cytoprotective properties and a concomitant decrease in 

sustained antiapoptotic signaling by TRAF2 (27,28). During the preparation of this 

manuscript, it was reported that TRAFl deficiency results in "positive"' modulation of 
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TNF-a signaling in T lymphocytes (50). The increased TNF-induced skin necrosis 

observed in those TRAFl-/- mice is reminiscent of the "feed-forward" TNF-induced TNF 

overproduction in TRAF2-/- cells (51), and thus may point to a "negative" role of TRAFl 

in one aspect of TNF signaling but that "negative" role is in terms of a "positive" role in 

TRAF2 regulation. 

In this study, in TRAFl-/- DCs, CD40 signaling in the short term (up to 20 minutes) on 

immature cells is intact and comparable to that of wild-type cells, enabling NF-kB 

activation and functional maturation, as well as depletion of TRAF2 from the soluble 

fraction (Fig. 3.3.6). Since the signaling and functional outcomes in immature wild-type 

and TRAFl-/- DCs are indistinguishable, and since immature wild-type DCs express low 

levels of TRAFl, it is likely that the initial stimulation is TRAFl-independent. However, 

after 24 hours of stimulation by CD40L and a brief starvation period followed by 

restimulation, there is a marked difference between wild-type and TRAFl-/- cells. 

Despite similar CD40L-dependent induction of CD40 expression in wild-type and 

TRAFl-/- DCs (data not shown), CD40L can re-activate NF-kB in wild-type cells, but 

NF-kB activation in TRAFl-/- cells is greatly attenuated. This correlates directly with the 

level of pre-existing TRAF2 in the soluble fraction. These signaling events correlate 

strongly with substantially reduced DC survival mediated by the TRAF2-dependent 

factors TNF-a and CD40L in TRAFl-/- DCs matured in CD40L as compared to those 

matured in LPS, a TRAF2-independent factor. In TRAFl-/- DCs matured in CD40L, 

TNF-a provided virtually no survival effect, while CD40L was able to promote survival, 

albeit to a lesser extent than in wild-type DCs, and TRANCE promoted similar survival 

levels in wild-type and TRAFl-/- DCs. This is consistent with the fact that TRAF2 is the 

predominant TRAF protein that mediates survival signaling downstream of TNFR1, 
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while CD40 and TRANCE-R can signal through TRAF6 as well as through TRAF2 

(7,43). 

The role of TNF family ligand signaling in dendritic cell homeostasis is well 

documented. Dendritic cells residing in peripheral tissues become activated by the 

presence of inflammatory mediators, including IL-1, LPS, and TNF-a, or the presence of 

activated T cells, which may express TNF-a, CD40L, or TRANCE (52). Recently, it has 

been shown that transgenic overexpression of CD40L in epidermis leads to chronic skin 

inflammation and autoimmunity, mediated in large part by the excessive activation and 

maturation of Langerhans cells, which are epidermal DCs (53). TNF-a deficient mice 

have attenuated antiviral responses, in part due to deficiencies in maturation and 

upregulation of costimulatory factors due to a lack of auctocrine TNF-a production (54). 

There are two receptors for TNF-a: TNFR1 and TNFR2. TNFR1 can activate both the 

apoptotic caspase cascade and, via the interaction of TRADD with TRAF2, it can activate 

pro-survival signaling, while TNFR2 lacks a death domain and cannot activate caspases 

(1). The spontaneous apoptosis of mature DCs appears to be at least partially due to 

autocrine activation of TNFR1, as TNFR1-/- DCs in culture are highly resistant to 

spontaneous apoptosis (55). Given that TRAFl is highly expressed in DCs (21) and it 

regulates the availability of TRAF2 for anti-apoptotic signaling, it is likely that the 

balance between caspase activation and pro-survival signals is regulated to some extent in 

DCs by TRAFl. This hypothesis is consistent with our finding in TRAFl-/- DCs that 

maturation of DCs by CD40L tilts the balance of TNF-a signaling from survival to 

apoptosis due to a depletion of soluble TRAF2. 

What remains unclear is the mechanism of action of the RING finger that enables 

translocation of TRAF2 and the associated receptor complex. One potential mechanism 
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has emerged recently in studies examining a non-classical polyubiquitination mechanism 

mediated by the RING finger of TRAF6 (18,19). In these elegant in vitro studies, a 

protein complex that can activate IKK, leading to NF-kB activation, was biochemically 

purified. It was found that TRAF6 associates with the ubiquitin-conjugating enzymes 

Ubcl3 and UevlA, which results in polyubiquitination on K63 of ubiqutin (as opposed to 

proteasome-targeting K48 polyubiquitination), which is attached to TRAF6 itself, in a 

process dependent on the RING finger and oligomerization of TRAF6. This 

ubiquitination step, in turn, activates a complex consisting of the TAK1 (a MAP3K), 

TAB1, and TAB2, which can subsequently activate the IKK complex upstream of NF-kB 

as well as MKK6, which is upstream of JNK. Interestingly, TAB2 has been shown to 

translocate from membrane-associated fractions to the cytoplasm upon activation of the 

TAK1/TAB1/TAB2 complex (56). While it is unclear whether TRAF2 undergoes the 

same process as TRAF6, it is tempting to speculate that the formation of K63-linked 

polyubiquitinated complexes is tied to the translocation of TRAF2 to lipid rafts. This is a 

particularly intriguing hypothesis in light of the fact that various forms of ubiquitination 

have been tied to trafficking between cellular compartments (57). It is possible, then, that 

ubiquitinated TRAF2 can then interact with raft-associated proteins, possibly including 

the TAK1/TAB1/TAB2 complex or an analog of this complex with similar function, 

displacing them into the cytoplasm where they can phosphorylate substrates leading to 

NF-kB and JNK activation. Clearly, the role of ubiquitination in RING-dependent raft 

translocation and kinase activation merits further investigation. 
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4. Recycling of TRAF2 leading to 
sustained signaling/availability to 
other TNFR family members 

Figure 3.3.7. Proposed model of the mechanism of TRAF2 signaling and its regulation by TRAFl. 

Upon ligand engagment, a TNFR family protein recruits TRjAF2 and various kinases via the C-terminal 

TRAF domain of TRAF2. The receptor complex assembles in the soluble fraction. Upon complex 

assembly, the N-terminal RING finger of TRAF2 mediates translocation of the receptor complex into 

detergent-resistant lipid rafts. This translocation event simultaneously activates and releases the kinases, 

while isolating TRj\F2 in an insoluble complex that may be internalized and/or degraded. The activated 

kinases ultimately activate transcription factors such as NF-kB and AP-1, which upregulate the expression 

of TRAFl. TRAFl then releases TRAF2 from insoluble complexes by hetero-oligomerization with TRAF2 

or competing for receptor binding sites. This results in an increase of soluble TRAF2 that is available for 

subsequent signaling events mediated by other TRAF2-dependent TNFR family proteins. 

Conclusion 

While previous reports have concluded that T R A F signaling takes place within the rafts, 

our results suggest a slightly altered model (Fig. 3.3.7). Since the receptor, T R A F 2 , and 

downstream signaling components can interact in soluble lysates, and especially since 

T2A87 cannot translocate to rafts but can still interact with both the receptor and 

downstream components, it appears that the act of translocation is coupled to the 

activating event. Thus, upon receptor engagement, the receptor, T R A F 2 , and downstream 

signaling molecules assemble in the soluble fraction. Subsequently, T R A F 2 translocates 

with the receptor to lipid rafts, simultaneously releasing and activating the downstream 

kinase. It is unclear what the exact mechanism of activation of the downstream kinase is, 

but it is possible that K63-linked polyubiquitination and/or raft-associated kinases such as 
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c-Src either directly or indirectly activate these kinases. TRAF2 is now sequestered in the 

rafts, unable to stimulate additional molecules of downstream kinases. As TRAF2 has 

been shown to interact with caveolin-1 (48) and the actin-binding protein Filamin (16), 

which is a raft translocation-dependent process (Fig. 3.3.6), it is possible that TRAF2 

and/or other components of the receptor complexes are internalized and degraded. As a 

result of this initial signaling, NF-kB and AP-1 are activated and TRAFl gene expression 

is turned on. TRAFl protein levels rise, and now TRAFl can relocate TRAF2 to the 

soluble cytoplasmic fraction and potentially protect it from degradation, where it can re­

assemble receptor signaling complexes and continue the cycle. This allows for what 

appears to be "sustained" signaling or restimulation through the same receptor, or 

stimulation through multiple TNFR family proteins that bind to TRAF2 over time. 

3.3.5 Ex.perimental Procedures 

3.3.5.1 Reagents 

Recombinant mouse TNF-a, ILA, and GM-CSF were from R&D Systems, LPS (E. 

Coli 055:B5) was from Sigma, soluble hCD8-TRANCE (TRANCE) was purified from 

insect cells as described (58), and soluble mCD8-CD40L (CD40L) was generated in 

insect cells and supernatant was used at a 1:200 dilution as described (59). 

Antibodies (Abs) specific for lKB-a were from New England Biolabs; TRAF2 (N-19 and 

C-20), TRAFl (N-19), Lyn (44), JNK1 (N-19), MEKK1 (C-22), and ASK1 (H-300) were 

from Santa Cruz Biotechnology; P-actin (Ab-1) was from Calbiochem; HA (12CA5) 

from Boehringer Mannheim; the Flag epitope (M2) was from Sigma; and TRAF6 was 

generously provided by Dr. Sankar Ghosh (Yale University). 
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3.3.5.2 Constructs 

Mouse CD40 was cloned by RT-PCR from whole spleen mRNA and inserted into the 

pFLAG-CMVl cloning vector (Sigma). Mouse TRAF2 and T2A87 in pcDNA3.1 have 

been previously described (60). To make M/P-T2A87, complementary oligonucleotides 

encoding the N-terminal 12 residues of Lck (MGCVCSSNPEDD) with appropriate 

flanking restriction sites were annealed, digested, and ligated into the expression vector 

encoding T2A87 at the 5' end of T2A87. To make TRAF2-GFP, cDNA encoding EGFP 

from the EGFP-N3 vector (Clontech) was ligated into pcDNA3.1. TRAF2 was amplified 

by PCR using a C-terminal primer that fused sequence encoding a flexible linker 

(GGGS)2 to the C-terminus and eliminated the stop codon, and this product was ligated in 

frame upstream of EGFP. ASK1 in pcDNA3 was generously provided by Dr. James 

Woodgett (Ontario Cancer Institute, University of Toronto) and HA-tagged Filamin (a.a. 

1644-2118) was generously provided by Dr. Ulrich Siebenlist (NIAID, NIH). MEKK1 in 

pCFL and Flag-tagged mouse TRAFl, TRAF5, and HA- and Flag-tagged TRAF6 have 

been previously described (43). Site-directed mutagenesis of CD40 was performed on the 

indicated residues by the Ex-Site method (Stratagene). All constructs were confirmed by 

sequencing. 

3.3.5.3 Dendritic cells 

Dendritic cells were generated from bone marrow precursors via a modification of 

existing protocols (61,62). Bone marrow precursors were plated in 24-well tissue culture 

plates at a density of 106/ml, 1 ml/well, in RPMI-1640 medium containing 5% heat-

inactivated FBS, 10 mM HEPES (pH 7.0), (3-mercaptoethanol, penicillin, streptomycin, 

and rmGM-CSF (25 ng/ml) and rmIL-4 (5 ng/ml) for 7 days in a 37°, 5% C02 incubator, 

with replacement of 800 fil of medium on days 2 and 4 and the addition of 500 jil of 
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medium on day 6. On day 7, cells were left alone or stimulated overnight with CD40L 

(1:200) or LPS (100 ng/ml). On day 8, cells were removed for FACS analysis, transferred 

to a new 24 well plate for restimulation (see below), or transferred into 96-well plates 

(105 cells/well in 200 ul of medium without GM-CSF or IL-4, containing 5% serum and 

the indicated stimuli [TNF-a, 10 ng/ml; CD40L, 1:200; or TRANCE, 1 ug/ml] in 

triplicate) for survival assays. Maturation was assayed by FACS analysis of CD86, 

CD80, and I-Ab expression, gated on CDllc+ cells on a FACSCalibur (Becton-

Dickinson). Survival was assayed by FACS analysis of propidium iodide exclusion after 

48 h as described previously (58). 

3.3.5.4 Cell Stimulation, Transfection, and Analysis 

In vitro differentiated dendritic cells were extensively washed to remove exogenous 

growth factors, cultured in medium with low serum (0.5% FBS, 2-4 h), then stimulated 

by adding TNF-a, TRANCE, or CD40L as indicated. After stimulation, cells were 

washed with ice-cold PBS, lysed, and subject to SDS-PAGE and western blotting. In 

order to control for equal loading of each timepoint, the protein concentration of each 

sample was determined and samples were normalized for total protein content prior to 

further processing. 

293T cells were transfected in 6-well plates by calcium phosphate precipitation as 

described (43). The amount of transfected DNA was held constant to 1 fig by addition of 

empty vector DNA where necessary. Cells were processed for analysis 24-30 h after 

transfection. For NF-kB reporter assays, cells were transfected with the indicated 

amounts of expression constructs and mutants along with 75 ng of an NF-KB-luciferase 

reporter plasmid and 25 ng of a [3-galactosidase plasmid to control for transfection 

efficiency. Transfection amounts were kept constant at 1 ag by addition of empty 
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pFLAG-CMVl vector. Luciferase and [3-galactosidase activity was measured as 

described (43). In vitro JNK assays were performed on cell lysates as described (59). All 

transfection experiments were repeated at least three times and representative results are 

shown. 

Where indicated, cells were harvested in 1 ml ice-cold PBS, then lysed in a solution of 

150 mM NaCl, 20 mM HEPES (pH 7.0), 10% glycerol, and 0.75% Triton X-100 with 

protease and phosphatase inhibitors (1 mM PMSF, 1 u.g/ml leupeptin, 0.1 U/ml aprotinin, 

10 mM NaF, and 5 mM Na3V04). For lysis in NP-40, cells were lysed in HNE buffer (20 

mM HEPES, pH 7.0; 150 mM NaCl, 5 mM EDTA) with 0.5% NP-40 and protease 

inhibitors. Cell lysates were incubated on ice for 20-30 minutes, vortexed extensively, 

and centrifuged in a microfuge at maximum speed at 4° for 10 minutes. Soluble fractions 

were removed and subjected to SDS-PAGE or immunoprecipitation. Insoluble fractions 

were washed extensively in lysis buffer and solubilized via the addition of SDS gel-

loading buffer, vortexing, and boiling for 10 minutes. Immunoprecipitation was carried 

out by the addition of an antibody as indicated to the soluble fraction, rotation at 4° for 2-

3 h, followed by the addition of 15 ul protein G-sepharose equilibrated in lysis buffer and 

rotation at 4° for 1 h. The beads were washed 3 x in lysis buffer containing detergent and 

once in lysis buffer without detergent. SDS gel-loading buffer was added and samples 

were boiled and subjected to SDS-PAGE and western blotting. 

3.3.5.5 Sucrose density gradient centrifugation 

293T cells were transfected as indicated in 10 cm tissue culture plates with 4 ug total 

DNA. Six hours prior to harvesting, CD40L (1:200) was added to the culture medium. 

Cells were harvested in ice-cold PBS and lysed in 1 ml of HNE containing 0.25% Triton 

X-100, incubated on ice for 30 minutes, and vortexed extensively. One ml of an 80% 
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sucrose solution in HNE was mixed with the lysate, and this was overlaid with 2 ml of a 

30% sucrose solution in HNE, followed by 1 ml of a 5% sucrose solution in HNE. The 

samples were centrifuged in a Beckman SW55Ti rotor at 200,000 x g overnight at 4° as 

described (35). 0.5 ml fractions were taken from the top of the gradient to which 250 ul 

of 2x SDS gel-loading buffer was added. 30 ul of each fraction was subjected to SDS-

PAGE and western blotting. 
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3.4 SUPPLEMENTARY RESULTS 

The results presented in this section do not clearly fit anywhere into the three major 

results sections, but comprise some important observations about TRAF signaling that 

contribute to the continuity of this thesis. Although the results presented here are far from 

comprehensive, they are presented in support of ideas that will be addressed in the 

general discussion in section 4. These results pertain to TRAF-mediated activation of 

Src-family kinases, which represents a new TRAF-activated signaling pathway 

previously identified by our laboratory (1). 

3.4.1 Phosphorylation of TRANCE-R by c-Src downregulates the surface expression 

of TRANCE-R 

Joseph R. Arron, Masha Vologodskaia, and Yongwon Choi 

TRANCE and c-Src are essential components of the signaling processes that underlie 

osteoclast biology. Gene targeting experiments have demonstrated that TRANCE is 

required for the differentiation of osteoclasts from hematopoietic precursors (2). 

Although mice deficient in c-Src have osteoclasts, osteoclast function in c-Src-/- mice is 

severely impaired, leading to osteopetrosis (3). Osteoclasts from these mice fail to 

undergo cytoskeletal rearrangements such as the formation of ruffled borders and actin 

rings necessary for bone resorption (4). Since TRANCE is necessary to induce these 

morphological and functional changes in mature osteoclasts (5), we reasoned that 

TRANCE and c-Src acted in a shared biochemical pathway. We recently demonstrated 

that TRANCE treatment results in activation of Akt in osteoclasts and dendritic cells, and 

that this process is dependent upon c-Src activity. Exposure to TRANCE leads to the 
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association of c-Src with TRANCE-R and an increase in the kinase activity of Src-family 

kinases (1). Furthermore, as we have shown in Section 3.1, c-Src mediates tyrosine 

phosphorylation of TRANCE-R on a specific residue (Y468 in mouse TRANCE-R) (6). 

We therefore investigated the role of tyrosine phosphorylation of TRANCE-R in its 

expression and signaling. 

Although a Y468F mutation in mouse TRANCE-R abolished phosphorylation of 

TRANCE-R by c-Src, it did not affect the ability of TRANCE-R to interact with c-Cbl or 

Cbl-b (6). In order to further investigate the role of TRANCE-R tyrosine phosphorylation 

in TRANCE-mediated signaling, we attempted to generate cell lines that stably expressed 

wild-type TRANCE-R or TRANCE-R with a Y468F mutation (TR-wt or TR-Y468F). 

Using the pMI retroviral vector, we generated retroviruses containing a construct driving 

the expression of TR-wt or TR-Y468F followed by an internal ribosomal entry site 

(IRES) and cDNA encoding human CD2. Using these retroviruses, we infected 

KMls8.3.5.1 (K8) T cell hybridomas, which do not ordinarily express TRANCE-R on 

their surface as determined by FACS analysis (data not shown). Two days after infection, 

FACS analysis of the bulk cell population revealed the presence of hCD2+, TRANCE-R+ 

cells infected with wild-type TR-wt and TR-Y468F viruses (Figure 3.4.1, left panels). 

Ten days after infection and selection in 500 Ug/ml G418, the bulk population of cells 

contained hCD2+, TRANCE-R+ cells only in the sample infected with TR-Y468F. In 

samples infected with TR-wt, there were no TRANCE-R+ cells despite the presence of 

hCD2+ cells (Figure 3.4.1, middle panels), suggesting that, despite the presence of TR-wt 

mRNA, cell surface expression of TR-wt was impaired. Infected cells were cloned by 

limiting dilution, and representative clones are shown in the right panels of Figure 3.4.1. 
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Figure 3.4.1. Phosphorylation of TRANCE-R on Y468 prevents stable cell surface expression of 

TRANCE-R. 

KMls8.3.5.1 T cell hybridoma cells (K8) were infected with retroviruses driving expression of wild-type 

TRANCE-R (TR-wt) or TR-Y468F upstream of an IRES-hCD2 insert. FACS analysis of infected K8 cells 

is shown 2 d after infection (left panels). 10 d after infection and G418 selection (middle panels), and 

representative clones obtained by limiting dilution (right panels). 

W e next determined whether TRANCE-mediated signaling leading to the activation of 

Src-family kinase dependent pathways is affected by the Y468F mutation in TRANCE-R. 

We have previously found that the activation of Akt by TRANCE is dependent on 

TRAF6 and Src-family kinases (1), so we investigated TRANCE-mediated Akt activation 

in K8/TR-Y468F stable cells. While K8 cells alone did not show activation of Akt or 

JNK in response to TRANCE stimulation, K8/TR-Y468 cells showed Akt and JNK 

activation in response to TRANCE (Figure 3.4.2). K8/TR-wt cells did not show 

activation of any signaling pathways in response to the addition of soluble TRANCE, 

consistent with the observation that they do not express TRANCE-R on their surface 

(data not shown). 
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Figure 3.4.2. Y468 of TRANCE-R is not 

required for TRANCE-activated signaling. 

Parental K8 cell line (left) or a stable clone 

expressing TR-Y468F (right) were starved in 

0.5% FBS for 2-3 h and stimulated for the 

indicated number of minutes with soluble 

T R A N C E (2 ng/ml). Cell lysates were 

immunoblotted with antibodies to phospho-Akt 

and total Akt (WCE, top), or subjected to an in 

vitro JNK kinase assay (bottom). 

Previously, w e have attempted to generate stable cell lines expressing wild-type full-

length TRANCE-R on the cell surface, and these attempts have failed in a wide variety of 

c o m m o n cell lines, including H E K 293, Cos, C H O , HeLa, and others (data not shown). 

While TRANCE-R mRNA expression has been detected in numerous cell types and 

tissues, including skeletal muscle, thymus, liver, colon, small intestine, and adrenal gland 

(7), high levels of cell surface expression of T R A N C E - R have only been observed on 

mature DCs. Notably, high surface expression of TRANCE-R has not been observed on 

immature DCs, macrophages, or naive lymphocytes (8). Osteoclasts and activated 

lymphocytes respond to T R A N C E stimulation, but cell surface expression of T R A N C E -

R on these cell types is very low relative to the expression of TRANCE-R on mature 

DCs. Taken together with the finding that TR-Y468 can be stably expressed on the cell 

surface, these observations suggest that tyrosine phosphorylation of T R A N C E - R on 

Y468 in most cell types may activate a strong internalization or degradation signal. 

Why, then, is TRANCE-R expressed at such high levels on mature DCs? As DCs mature, 

they downregulate endocytosis so as to express the highest possible levels of peptide -

M H C complexes and costimulatory molecules on their surface for efficient T cell priming 

(9). The downregulation of endocytosis by mature DCs appears to be tied to the 

regulation of Rho-family GTPases, particularly Cdc42 (10). Thus, the high levels of 
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surface TRANCE-R expression in mature DCs may be a by-product of low endocytic 

activity in mature DCs. The normal or elevated endocytic activity in the cell lines 

mentioned above or immature DCs may be sufficient to prevent high stable levels of 

surface TRANCE-R expression in those cells. Further investigation of the role of 

phosphorylation of Y468 in TRANCE-R and cytoplasmic factors that bind to phospho-

Y468 may reveal important regulatory processes that underlie the efficient endocytosis 

displayed by immature DCs. 

3.4.2 The N-terminus of TRAF6 has a unique role in c-Src activation 

Joseph R. Arron, Takashi Kobayashi, and Yongwon Choi 

TRAF6 and c-Src have overlapping roles in TRANCE signaling in osteoclasts, as 

determined by genetic and biochemical experiments (1,3,4,11-13). We have found that 

TRAF6 can interact with c-Src (1) and c-Cbl (6). Furthermore, while the interaction with 

c-Src and c-Cbl appears to be dependent only on the TRAF domain of TRAF6, 

expression of full-length TRAF6 leads to the activation of c-Src, resulting in the tyrosine 

phosphorylation of c-Cbl. Thus, similar to the activation of IKK and JNK signal cascades 

(14,15), there is a requirement for the N-terminal RING and Zn fingers of TRAF6 to 

activate c-Src. We have shown in that the RING finger of TRAF2 is necessary for its 

translocation to lipid rafts and the activation of IKK and JNK cascades (Section 3.3). It 

has been well established that acylated Src-family kinases localize to lipid rafts (16). In 

order to determine if the N-terminal RING and Zn fingers of TRAF2 and TRAF6 have 

unique roles, we generated chimeric TRAF proteins, comprising the N-terminus of one 

TRAF and the TRAF domain of another TRAF. This approach has been previously used 

to dissect the differential signals transduced by TRAF3 and TRAF5 (17). 

142 



3. Results 

W e generated two chimeric TRAF2-TRAF6 constructs: 1) Residues 1-240 of m T R A F 2 

fused to residues 289-530 of mTRAF6 (N2-C6), and 2) residues 1-288 of TRAF6 fused 

to residues 241-501 of TRAF2 (N6-C2). Overexpression of TRAF2, TRAF6, N2-C6, and 

N6-C2 induced NF-kB and JNK activation (Figure 3.4.3A and B), although the N2-C6 

construct activated NF-kB at 3-4-fold levels lower than did similar amounts of TRAF2, 

TRAF6, or N6-C2. When we transfected the various TRAF constructs with c-Cbl and 

limiting amounts of c-Src and examined tyrosine phosphorylation of c-Cbl, we found that 

TRAF6 and the N6-C2 construct could promote efficient phosphorylation of c-Cbl, but 

TRAF2 and N2-C6 could not, although there was a slight increase over background 

levels in phospho-c-Cbl in the presence of overexpressed TRAF2 (Figure 3.4.3C). Thus, 

while the TRAF domain is sufficient for TRAF6 to interact with c-Src and c-Cbl, the N-

termin.al RING and Zn fingers have a unique role in the activation of c-Src, and this 

function cannot be substituted by the N-terminal domain of TRAF2. Conversely, the N-

terminal RING and Zn fingers of TR.*AF6 are able to confer c-Src activating ability to the 

TRAF domain of TRAF2. 
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Figure 3.4.3. Differential abilities of the N-

terminal RING and Zn fingers of TRAF2 and 

TRAF6 to activate c-Src. 

A. TRAF2, TRAF6, and chimeras consisting of 

the N-terminal half of TRAF2 fused to the C-

terminal half of TRAF6 (N2-C6) and the N-

terminal half of TRAF6 fused to the C-terminal 

half of TRAF2 (N6-C2) (0.5 jug) were transfected 

into 293T cells with an NF-KB-responsive 

reporter plasmid and luciferase activity was 

measured 24h after transfection. 

B. As in (A), but an in vitro JNK assay was 

performed on the cell lysates. 

C. TRAF6, T6.DN, TRAF2, T2.DN, N2-C6, and 

N6-C2 (0.5 ,ug) were co-transfected as indicated 

with HA-tagged c-Cbl (0.3 ng) and c-Src (10 ng). 

c-Cbl was immunoprecipitated with antibodies to 

HA and immunoprecipitates were immunoblotted 

with antibodies to phosphotyrosine (4G10). 

Despite numerous observations that T R A F 2 and T R A F 6 activate similar signaling 

pathways through the action of their RING and Zn fingers (18), our findings suggest that 

the functions of these domains may be divergent, and this may point to divergent 

mechanisms of action between TRAF2 and TRAF6. Thus, there are two potential 

mechanisms whereby TRAF2 and TRAF6 can achieve signaling specificity: 1) binding to 

different receptor sites (Section 3.2) and 2) differential ability to activate signaling 

cascades through the action of the N-terminal RING and Zn fingers. 
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4. GENERAL DISCUSSION 

This thesis investigates the proximal components of TNFR family protein signal 

transduction, specifically pertaining to the assembly and regulation of signaling 

complexes mediated by TRAF proteins. Evolutionary, structural, and functional studies 

have all established a distinction between the TRAF proteins that activate signal cascades 

downstream of TNFR family proteins. This distinction is exemplified in examination of 

TRAF2 and TRAF6. While TRAF2 and TRAF6 appear to interact with an overlapping 

subset of intracellular molecules and TNFR family proteins, there are key distinctions to 

be made. Not only do TRAF2 and TRAF6 interact with different receptor sequences via 

their TRAF domains, but the functions of their N-terminal domains are also divergent. 

While it has long been understood that TRAFs were crucial for assembling signaling 

complexes upon TNF family ligand engagement of TNFRs, the mechanism of action of 

TRAFs has not been well characterized. The work presented in this thesis, along with 

other recent reports, makes significant progress toward delineating a mechanism of action 

for TRAF proteins. Two emerging themes in the mechanisms of TRAF signaling are 

ubiquitination and lipid raft translocation. Another important consideration in TRAF 

signaling lies in the other, often-ignored side of signal transduction - the negative 

regulation of signaling. Mechanisms of negative regulation of TRAF signaling appear to 

be tied to the very things that are required for signal activation, and it will be interesting 

to examine these phenomena in the context of signaling in general. 

4.1 Distinctions between TRAF6 and other TRAFs 

Examples of the two major types of signal-activating TRAFs are TRAF6 and TRAF2. 

TRAFl, 3, and 5 have more in common with TRAF2 than with TRAF6, although there 

are some key differences between them. Of TRAFl, 3, and 5, only TRAF5 has been 
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shown to activate NF-kB and AP-1 similar to TRAF2 (1,2). However, while TRAF2 

interacts directly with many receptors, TRAF5 may interact only indirectly with some 

receptors via hetero-oligomerization with TRAF3 (3). TRAF3 does not activate NF-kB or 

AP-1, but it is apparently essential for normal development and immune regulation (4). 

This essential role of TRAF3 may lie in its ability to recruit TRAF5 to receptors, or there 

may be additional regulatory roles for it that have not yet been identified. TRAFl is 

highly homologous to TRAF2 in its TRAF domain, but it lacks the N-terminal structures 

(RING and multiple Zn fingers) that enable TRAF2 to activate signals (5). Nonetheless, 

as we have seen in section 3.3, TRAFl is a key regulator of TRAF2-mediated signaling, 

most likely due to its ability to hetero-oligomerize with TRAF2 and regulate its 

subcellular distribution. TRAFl, 2, 3, and 5 all interact with similar receptor sites, albeit 

with slightly different affinity/avidity profiles (6). 

TRAF6 has the most evolutionarily divergent TRAF domain, although its 

oligomerization appears to activate NF-kB and AP-1 very similarly to TRAF2. TRAF6 

binds to a distinct receptor sequence from TRAF2, as we have defined in section 3.2. 

Thus, one obvious level of specificity that may be conferred by TRAF6 is that it can 

potentially interact with a completely different array of receptors. Furthermore, TRAF6 

can interact with IRAK proteins, which, unlike TNFR proteins, are intracellular adaptors 

for non-TNFR family receptors (7,8). The IL-l/TLR family of receptors is very important 

in general inflammation and innate immunity, thus TRAF6 is a bridge between innate and 

adaptive immunity. Not only does TRAF6 have key roles in immunity, but the same 

inflammatory factors and repetitive sequences that mediate innate immunity can also 

affect bone homeostasis (section 2.3.2). TRAF6 has been shown to be vital for osteoclast 

physiology, and we have recently found that dendritic cells, which arise from the same 

hematopoietic precursors as osteoclasts, are also dependent on TRAF6 for their 
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maturation (T. Kobayashi et al., unpublished data). Thus, by virtue of the fact that DCs 

and OCs come from the same precursors, and the same factors are responsible for the 

final stage of their maturation and activation, and these factors are all dependent on 

TRAF6 for signal transduction, it is apparent that TRAF6 plays a central role in 

osteoimmunology. Figure 4.1 details the roles of TRAF6 in the parallel development of 

DCs and OCs. 
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Figure 4.1. Parallel lifecycles of dendritic cells and osteoclasts and the role of T R A F 6 in 

osteoimmunology. 

D C s and O C s differentiate from c o m m o n myeloid hematopoietic precursors. Factors mediating D C 

differentiation include G M - C S F , IL-4, and TNF. D C differentiation is dependent on the combination of the 

NF-kB subunits p50 and RelA (F. Ouaaz, J. Arron, Y. Zhang, Y. Choi, and A. Beg, manuscript submitted). 

O C differentiation is dependent on M - C S F , T R A N C E , and the transcription factors c-Fos and the 

combination of NF-kB subunits p50 and p52 (9). The maturation of D C s and O C s are both mediated by 

TRAF6-dependent factors, including LPS, C p G , and IL-1. C D 4 0 L also induces D C maturation, while 

T R A N C E induces O C maturation. Mature, activated D C s and O C s rapidly undergo apoptosis in the 

absence of survival signals provided by T R A N C E and C D 4 0 L . TRANCE-mediated D C survival is 

dependent on the combination of the NF-kB subunits p50 and cRel, while TRANCE-mediated O C survival 

is dependent on Akt. 

Since it appears likely that the T R A F domain of TRAF2 and TRAF6 is responsible for 

most protein-protein interactions (Sections 2.2 and 3.3), it might be reasonable to 

conclude that the specificity of signaling mediated by TRAF2 and TRAF6 is encoded in 

the T R A F domain, because it determines which upstream molecules are coupled to which 
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downstream molecules. For example, IRAK has three TRAF6 binding sites and no 

TRAF2 binding sites while TNFR2 has one TRAF2 binding site and no TRAF6 binding 

sites. Since TRAF2 and TRAF6 interact with overlapping but distinct subsets of 

intracellular signaling molecules, one would expect there to be a qualitative difference 

between the effects of IL-1 and TNF on a given cell. Nonetheless, the specificity of 

TRAF signaling does not appear to be localized exclusively to the TRAF domain. As we 

have shown in section 3.3, the RING finger of TRAF2 mediates its translocation to lipid 

rafts, and without TRAFl, TRAF2 remains in insoluble complexes after translocation. 

TRAF6, on the other hand, does not appear to accumulate in insoluble complexes ((10) 

and data not shown). While translocation appears to be necessary for the ability of 

TRAF2 to activate signaling cascades, it is unclear whether the same can be said for 

TRAF6. 

4.2 c-Src activation by TRAF6 

While the N-terminal RING and Zn fingers of both TRAF2 and TRAF6 mediate the 

activation of NF-kB and AP-1, the N-terminal half of TRAF6 can also strongly activate 

c-Src, while the N-terminal half of TRAF2 can only weakly activate c-Src, if at all 

(section 3.4). This result is particularly interesting in light of the fact that we previously 

observed that c-Src and c-Cbl interacted with TRAFl, TRAF3, and TRAF6, but not with 

TRAF2 or TRAF5 ((11) and data not shown). In fact, the pattern of co­

immunoprecipitation of c-Src and c-Cbl with various TRAFs correlates with the tendency 

of the TRAFs to localize in the soluble fraction of cells lysed in Triton X-100 (data not 

shown). Thus, it is possible that the reason we did not observe co-immunoprecipitation of 

c-Src and c-Cbl with TRAF2 is because that interaction may have taken place in the 

insoluble fraction, which, at the time, we ignored. In support of the notion that the TRAF 

domain of TRAF2 can in fact interact with c-Src and c-Cbl, the N6-C2 chimeric TRAF 
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construct could activate c-Src-mediated c-Cbl phosphorylation (section 3.4). 

Alternatively, while there is no doubt that the TRAF domain of TRAF6 can interact with 

c-Src, it may be possible that elements in the N-terminal half of TRAF6 can also interact 

with c-Src when oligomerized (as is the case in the N6-C2 construct, where the TRAF 

domain of TRAF2 mediates oligomerization). Previously, we did not observe interaction 

between c-Src with the N-terminal half of TRAF6 alone (11), but it is apparent that the 

N-terminal half of TRAF6 can activate signaling by itself if it is oligomerized artificially 

by some means other than the TRAF domain (12,13). However, our biochemical and 

strucutural studies (section 3.2) suggest that c-Src can interact with a specific part of the 

TRAF domain distal to the N-terminal half of TRAF6. Thus, if c-Src can interact with 

only the TRAF domain, then there is a unique ability of the RING and Zn fingers of 

TRAF6 to mediate c-Src activation. If c-Src can also interact with the oligomerized 

RING and Zn fingers of TRAF6 but not TRAF2, then the specific ability of the N-

terminal half of TRAF6 to interact with c-Src may mediate c-Src activation. While the 

currently available data do not completely rule out either possibility, the fact that c-Src 

can interact with the TRAF domain alone of TRAF6 favors the first possibility. 

4.3 Ubiquitination as a mechanism of TRAF signaling 

If the RING finger of TRAF proteins is not required for the interaction of TRAFs and any 

other proteins known to interact with TRAFs (section 3.3), how does it activate signaling 

cascades? One established function of RING finger domains is the ability to mediate 

ubiquitination of other proteins by acting as E3 ubiquitin ligases (14). For example, we 

(section 3.1) and others (15-17) have shown that Cbl family proteins mediate the 

degradation of activated signaling molecules in a RING finger-dependent manner, which 

is accomplished by the ubiquitination of target proteins. Recently, the RING fingers of 

TRAF2 and TRAF6 have been shown in vitro to mediate a novel form of 
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polyubiquitination (13,18). The well-characterized degradative pathway of ubiquitination 

involves polyubiquitination wherein ubiquitin chains are formed with covalent linkage of 

one ubiquitin molecule to the target protein and further molecules of ubiquitin are 

covalently linked to K48 of the previous ubiquitin. K48-linked polyubiquitination leads 

to proteasomal degradation of the targeted protein. The novel form of ubiquitination 

mediated by TRAF proteins involves the formation of polyubiquitin chains linked 

through K63 of ubiquitin. This does not appear to mediate degradation of the target 

proteins. However, TRAF6-mediated K63-linked polyubiquitination appears to be 

required for the activation of the IKK complex leading to NF-kB activation. In addition 

to ubiquitinating downstream signaling molecules, TRAF6 itself is polyubiquitinated 

through a K63 linkage. It is thought that TRAF2 undergoes a similar process. 

While K63-linked polyubiquitination appears to be required for NF-kB activation, our 

findings in section 3.3 demonstrate that the RING finger is dispensable for the activation 

of JNK by TRAF2 if raft translocation of TRAF2 is artificially induced. Taken together 

with the findings that K63-linked polyubiquitination leads to the activation of NF-kB as 

well as JNK (13), our observations that M/P-T2A87 can activate JNK but not NF-kjB 

(Fig. 3.3.4) suggest that RING finger-mediated polyubiquitination of TRAF2 may 

mediate its translocation into lipid rafts. Although translocation is sufficient for JNK 

activation, the ubiquitination process is likely to be required in addition to translocation 

for NF-kB activation. A caveat to this hypothesis is that the RING fingers on various 

TRAF proteins may function differently. TRAF3 does not translocate to insoluble 

complexes or activate JNK upon overexpression, but replacement of the RING finger of 

TRAF3 with the RING finger of TRAF5 has been shown to induce its translocation and 

its ability to activate JNK (19). However, endogenous TRAF3 has been shown to be 

strongly recruited to lipid rafts upon CD40 engagement or LMP1 expression (20-22), 
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which may be mediated by its hetero-oligomerization with TRAF5. The murine splice 

variant of TRAF2, TRAF2A, can activate JNK but not NF-kB (23), so it is possible that 

TRAF2A possesses an intrinsic property of the RING finger that enables raft 

translocation, but is not capable of mediating K63-linked polyubiquitination leading to 

NF-kB activation. 

While the possibility remains that the RING finger mediates ubiqutination and raft 

translocation as completely separate processes, it is simpler and more likely that the 

RING finger mediates one process, which results in the other process. Thus, RING-

mediated K63-linked polyubiquitination of TRAF proteins may increase the affinity of 

TRAFs for lipid rafts either intrinsically or by mediating the interaction of 

polyubiquitinated TRAFs with raft-specific proteins. Alternatively, the RING finger of 

oligomerized TRAF proteins may mediate translocation into rafts, where proteins 

mediating polyubiquitination reside, thus the co-localization of TRAFs and ubiquitinating 

enzymes enables their activation. Given that enforced raft localization of M/P-T2A87 can 

activate JNK signaling but not NF-kB activation in the absence of the RING finger, it 

seems likely that ubiquitination may precede raft translocation, since there is no evidence 

that raft translocation is absolutely necessary for NF-kB activation. However, 

ubiquitination is required for NF-kB activation. Therefore, an orderly progression of 

TRAF signaling may proceed as follows: 1) ligand-mediated receptor trimerization, 2) 

TRAF recruitment and trimerization, 3) recruitment of TRAF-interacting signaling 

molecules in the soluble fraction, 4) RING finger-mediated polyubiquitination of the IKK 

complex and TRAFs (leading to NF-kB activation), and 5) polyubiquitin-mediated TRAF 

translocation to lipid rafts leading to JNK activation (Figure 4.2). Clearly, the role of 

ubiquitination in RING-dependent raft translocation and kinase activation merits further 

investigation. 

153-



4. General Discussion 

Figure 4.2. Proposed 

model of ubiqutin-

mediated signaling by 

TRAF proteins. See 

text for details. 
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4.4 Raft translocation as a mechanism of T R A F signaling 

The role of lipid rafts has been an emerging theme in signal transduction in recent years 

(24-26). Because of the differential affinities of various proteins for lipid-ordered 

microdomains, these domains may serve to concentrate certain proteins in close 

proximity to one another while excluding other proteins. Recently, rafts have also been 

suggested to be involved in cell polarity, by redistributing relative amounts of 

transmembrane and raft-associated proteins on different sides of a cell (27). W e have 

observed a crucial role of raft translocation in TRAF2-mediated signaling (section 3.3). 

Of particular interest is that, while raft translocation of T R A F 2 is necessary for its ability 

to activate certain signals, once it has translocated to lipid rafts, it does not relocalize to 

the soluble cytoplasmic fraction in the absence of T R A F l . Furthermore, when T R A F 2 is 

trapped in insoluble complexes as a result of an initial receptor engagement, it cannot 

activate signals in response to subsequent receptor engagements. Thus, the translocation 

of T R A F 2 to rafts appears to simultaneously activate downstream signals and inactivate 

T R A F 2 . While T R A F 2 does accumulate in lipid rafts to some extent during steady-state 

signaling, it appears that a majority of insoluble T R A F 2 may not be raft-associated. 

T R A F l , which is not expressed in naive cells, is upregulated by TRAF2-dependent 

signals, and its function appears to be to regulate steady-state levels of soluble T R A F 2 . It 

also prevents the steady-state association of T R A F 2 with the cytoskeletal protein Filamin. 

T R A F 2 must be able to translocate to rafts in order to associate with Filamin. It appears 
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that TRAF2 undergoes a cycle of raft translocation, internalization (possibly mediated by 

interactions with caveolin), and sequestration in insoluble cytoskeletal complexes and/or 

degradation. While raft translocation is necessary for the positive effects of TRAF2 

(activation of signaling cascades), it appears that raft translocation downregulates the 

ability of activated TRAF2 to activate further signaling cascades in the absence of 

TRAFl. Therefore, raft translocation serves a positive and negative role in TRAF2 

signaling. 

The temporally regulated positive and negative roles of raft translocation in TRAF2 

signaling is reminiscent of the temporally regulated positive and negative roles of Cbl 

proteins in TRAF6-mediated Akt activation (section 3.1). In each case, the association of 

components of a TNFR protein signaling complex with a regulatory factor (Cbl in the 

case of TRAF6 and c-Src and lipid rafts in the case of TRAF2) is necessary for both the 

activation of a signaling pathway and the ultimate quenching of that signal. This type of 

complex regulation is seen in other examples of Cbl signaling, such as from the EGF 

receptor (16), and in Src-family kinase signaling (28), where only activated kinases are 

susceptible to degradation by ubiquitination or inactivation by phosphatases. It is striking 

that in all of these cases, downregulation of a given component takes place as a direct 

consequence of the component's activation. 

Since TRAF2's solubility is regulated by TRAFl, how is TRAF6 regulated? While we 

have found that TRAF2 becomes insoluble in the steady state in the absence of TRAFl, 

we have not found the same to be true for TRAF6. Furthermore, while TRAF2 can 

induce steady-state raft translocation of CD40, TRAF6 appears to inhibit steady-state raft 

translocation of CD40 (Figure 3.3.2). TRAFl or TRAF3 alone do not localize to 

insoluble complexes upon overexpression, while TRAF2 and TRAF5 do localize to 
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insoluble complexes (data not shown). This appears to directly correlate to the ability of 

overexpressed TRAF2 and TRAF5 to activate NF-kB and JNK, while overexpressed 

TRAFl and TRAF3 cannot. Although it can activate NF-kB and JNK, TRAF6 does not 

accumulate in insoluble complexes upon overexpression, and it been suggested that 

TRAF6 does not translocate to lipid rafts upon CD40 stimulation (10). However, the 

methods used to identify raft-associated TRAFs are based on relative detergent solubility. 

It is possible that TRAF6 is in fact raft associated upon ligand stimulation, but not as 

strongly as TRAF2 and it was therefore not detected in defined "raft fractions." 

In the case of LMP1 expression, it was found that TRAF2 and TRAF3 could be either 

detected or not detected in defined "raft fractions," depending on the lysis conditions 

(22). TRAF6 can interact with and is a potent activator of c-Src, a dually acylated raft-

associated kinase. Given these observations, it appears likely that TRAF6 may be able to 

translocate to lipid rafts in order to activate kinase cascades in the same manner as 

TRAF2, but it is able to easily dissociate from rafts, whereupon it can activate subsequent 

signals. TRAF2, on the other hand, becomes stuck in rafts and/or other insoluble 

fractions, and its solubility is regulated by an additional factor, TRAFl. In order to 

thoroughly examine these possibilities, real-time fluorescence imaging of TRAF2 and 

TRAF6 in live cells may be necessary. Additionally, the regulation of TRAF6 after its 

activation should be closely examined. TRAF2 can interact with caveolin (29) and 

Filamin (30), thus it is possible that TRAF2 is internalized and sequestered in the 

cytoskeleton after raft translocation. It has been suggested that Filamin plays a role in 

TRAF6 signaling (30), but a direct interaction has not been demonstrated. A mode of 

activation-induced TRAF6 downregulation through degradative ubiquitination has been 

shown, and this pathway may be unique to TRAF6, while sequestration in insoluble 
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complexes (and possible subsequent degradation) may be unique to the downregulation 

ofTRAF2. 

4.5 Physiological regulation of TRAF signaling 

Ultimately, the answers to many remaining questions about TRAF signaling lie in the 

observation of different cell types in the context of the whole organism. While TRANCE 

can activate a variety of signaling pathways in DCs and OCs, the functional roles of these 

signaling pathways are divergent. We have previously shown that the TRANCE-

R/TRAF6/c-Src/PI3-K pathway leading to the activation of Akt is an important survival 

signal for OCs (11). Others have implicated this pathway in TRANCE-mediated survival 

of ductal epithelial cells in breast tissue (31). However, this pathway appears to be less 

crucial in TRANCE-mediated DC survival, as Cbl-b-/- DCs are deficient in TRANCE-

mediated Akt activation, but have no survival defects relative to wild-type DCs (section 

3.1). Recently, we have found that TRANCE-mediated survival in mature DCs is 

specifically dependent upon the NF-kB subunits p50 and cRel in combination (F. Ouaaz, 

J. Arron, Y. Zhang, Y. Choi, and A. Beg, manuscript submitted). While recent evidence 

has suggested that PI3-K activation may regulate NF-kB transcriptional activity (32), the 

cross-talk between these pathways appears to be highly cell type-specific, and in fact may 

be specific to the RelA NF-kB subunit. Another level of cell type specificity in TRAF 

signaling comes from the transcriptional regulation of TNFR proteins. It has recently 

been shown that there are numerous alternatively spliced forms of CD40 in different cell 

types that may have differential abilities to interact with TRAFs (33). Given the 

observations that tyrosine phosphorylation on a particular residue of TRANCE-R 

regulates its cell surface expression (section 3.4) and that TRAF6 deficiency completely 

abrogates TRANCE-mediated signal activation despite the ability of full-length 

TRANCE-R to signal through TRAF2 (34), it is possible that TRANCE-R is similarly 
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alternatively spliced. In addition to the specific effects of proximal components of the 

signaling complex, it is likely that other, TRAF-independent signals that are activated 

within the cell may affect signals downstream of TRAFs. For example, IFN-y stimulation 

of OC precursors has been shown to induce the degradation of TRAF6 (35). Taken 

together, these and many other observations demonstrate that an understanding of TRAF 

signaling must be at a level deeper than simple protein-protein interactions. 

4.6 Conclusions 

It is clear is that the fine regulation of TRAF signaling in primary cells is dependent upon 

multiple factors, including: 1) the relative levels of various TRAFs within a given cell, 2) 

the availability of soluble TRAFs for ligand-dependent signaling, 3) the availability of 

downstream signaling components that interact with TRAFs, and 4) the recent history of 

TRAF-dependent signals in a given cell. These all contribute to the differential activation 

of various signaling pathways, ultimately leading to different gene expression profiles 

and cellular effects. While the work presented here has made considerable progress 

toward elucidating structural and functional features of the mechanisms of TRAF 

signaling, it has raised a number of further questions. What are the individual roles of the 

RING and each Zn finger in TRAF2 and TRAF6? While it is structurally similar to 

TRAF2, TRAF3 does not appear to regulate signaling in the same way as TRAF2 - what 

does TRAF3 do? What does TRAF4 do? We have identified a biochemical role for 

TRAFl, but there do not appear to be a strong phenotype in TRAFl-/- mice. What are 

some physiological situations in which TRAFl-mediated TRAF2 regulation might be 

important? TRANCE-R, a TNFR family protein, has three TRAF6 binding sites and two 

TRAF 1/2/3/5 binding sites. These account for about 10% of its cytoplasmic tail. CD40, 

which binds to the same TRAFs, has a considerably shorter cytoplasmic tail. What does 

the rest of TRANCE-R do? What non-TRAF proteins does it interact with, in TRAF 
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dependent and independent fashions? Ultimately the observations about the molecular 

phenomena that underlie TNF family signaling must be extrapolated into a 

comprehensive understanding of and ability to manipulate the wide range of 

physiological processes linked to inflammation and immunity. 
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