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Adult stem cell (SC) behavior is tightly coordinated by the signals received 

from the “niche” - the microenvironment that the SCs reside in. Little is known 

about the role of the niche in SC specification during organ morphogenesis. In 

particular, the question of whether the niche exists prior to SC specification or 

whether it is recruited after SC establishment in a developing tissue remains 

largely unanswered. In addition, the signals responsible for the specification and 

regulation of SCs during morphogenesis remain unexplored. 

To answer these questions, I focused my analysis on the earliest stages of 

hair follicle (HF) morphogenesis. Using immunofluorescence and live imaging, I 

found that in developing HFs, basal cell divisions are asymmetric and 

perpendicular to the basement membrane. These divisions result in differential 

levels of WNT signaling in the daughter cells, with basal cells remaining WNThigh, 

and suprabasal cells becoming WNTlow. Using in utero lentiviral transduction and 

genetic mouse models, I created mosaic epidermis with gain- or loss-of-function 

for WNT signaling to demonstrate that juxtaposition of WNTlow and WNThigh cells 

is sufficient to confer SOX9+ cell fate to the WNTlow cells. This suggested that the 



 

perpendicular asymmetric divisions that I observed in the developing HFs 

produce the WNT gradient, necessary for the establishment of SOX9+ cells.  

To further investigate the mechanism behind SOX9+ cell specification, I 

investigated the signaling patterns of SHH, previously suggested to regulate 

Sox9 expression. Interestingly, while Shh was expressed exclusively by the 

WNThigh basal cells, SHH signaling was primarily detected in the suprabasal 

SOX9+ cells. By inducing the expression of lentivirus-delivered Shh at different 

stages in morphogenesis, I found that the levels of WNT signaling dictate the 

responsiveness to SHH. When WNT signaling is low or moderate, cells respond 

to SHH, resulting in the inhibition of WNT signaling. However, WNThigh cells are 

resistant to SHH signaling. Thus, in the suprabasal SOX9+ daughters, SHH acts 

to repress WNT signaling, further boosting the levels of SOX9, while due to high 

levels of WNT signaling in the basal daughters, they are unable to respond to 

SHH and remain SOX9-negative. 

 Finally, using Shh-CreER lineage-tracing, I demonstrated that the earliest 

asymmetric cell divisions of the WNThigh, Shh+ cells produce SOX9+ cells that 

eventually contribute to the adult stem cell pool. Interestingly, SOX9+ cells are 

produced only during the early asymmetric cell divisions, while the same Shh+ 

cells later give rise to various differentiated lineages of the developing HF.  

Thus, in developing HFs, asymmetric cell divisions produce a WNTlow 

SOX9+ SC daughter and a WNThigh “niche” cell daughter that produces SHH, 

necessary to suppress WNT signaling and expand the SOX9+ SCs. 
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CHAPTER 1: INTRODUCTION 

Adult tissues are maintained and repaired by resident stem cells (SCs), 

which are capable of long-lived self-renewal and differentiation into one or more 

cell types. Depending on the state and the function of the organ, SCs can remain 

quiescent for prolonged periods of time, or undergo activation and expansion to 

replenish the SC pool or to produce transit-amplifying cells, which will undergo 

additional rounds of division to give rise to differentiated cells – the functional 

units of a given organ. 

SC behavior depends on the signals received from their “niche”, which is 

defined as the local tissue microenvironment that maintains and regulates SC 

function (Morrison and Spradling, 2008; Schofield, 1978). The niche is typically 

composed of heterologous cell types, but can also include transit-amplifying cells 

(TACs) as well as differentiated cells that have descended from the SCs (Hsu et 

al., 2014b; Hsu et al., 2011). Additionally, SCs can also signal back to their 

progeny to regulate their fate and function (Pardo-Saganta et al., 2015). The 

signaling crosstalk between the niche and the SCs in various adult tissues has 

been the focus of intensive research. 

The developmental origins of SCs are less well understood. Organ 

morphogenesis generally involves rapid, but well-orchestrated, cell proliferation 

to produce enough building blocks that will fulfill the function of a given organ. At 

the same time, at some point during this process, a distinct pool of cells – the 

stem cells - needs to be set apart that will maintain the organ throughout the life 
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time of the organism. The mechanisms regulating tissue resident SC 

specification during organ morphogenesis remain largely obscure. In addition, 

given the dependence of SCs on their niche for maintenance and regulation in 

adulthood, the importance of the niche for SC specification is a fascinating 

question. Is the niche set up first to be subsequently populated by SCs or are the 

SCs specified first and then recruit specific cell types from their microenvironment 

to form the niche for their maintenance and regulation? 

Epidermis and the hair follicles (HFs) provide an excellent model to study 

the behavior and regulation of SCs. While the mechanisms involved in the 

regulation of SC quiescence and activation, as well as SC fate, are becoming 

increasingly well understood, the origins of HFSCs remain largely unknown. 

In this chapter, I will provide a brief overview of our current understanding 

of the role of the niche in SC regulation in adult tissues, with a particular focus on 

the HF. I will then discuss what is known about the mechanisms of SC 

specification during morphogenesis of various tissues. Finally, I will describe the 

signaling pathways and known regulators that have been implicated in the 

induction and coordination of HF morphogenesis and SC specification. 

Stem cell identity 

SCs are defined by their capacity for long-term self-renewal and ability to 

give rise to one or multiple types of differentiated cells within a given tissue. 

Thus, every SC division has the potential to be symmetric – giving rise to two 
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SCs or two differentiating cells, or asymmetric – giving rise a to SC and a 

differentiating cell. The choice between a symmetric and an asymmetric cell 

division can be governed by both cell intrinsic and cell extrinsic factors. Cell 

intrinsic mechanisms involve asymmetric partitioning of cellular components to 

one daughter cell, but not the other, thus affecting their fates differentially. 

Alternatively, daughter cells can be positioned in different extracellular 

environments following the division, such that the environment will determine the 

fate of each daughter cell (Knoblich, 2008). Defects in self-renewal mechanisms 

can cause developmental defects or contribute to cancer initiation and 

progression. 

SC identity and function depend on the expression of a core set of genes, 

which vary depending on the tissue. Their expression is regulated by epigenetic 

marks on the chromatin, which in turn depend on the signals received from the 

microenvironment. SC identity can be conferred to a non-SC by turning on the 

expression of these “core signature genes” – often transcription factors (TFs). 

One example is the generation of induced pluripotent stem cells (iPSCs), where 

forced expression of four pioneer transcription factors (Sox2, Klf4, Oct3/4, and c-

Myc) is sufficient to convert a differentiated fibroblast into an iPSC (Takahashi 

and Yamanaka, 2006). 

This cell fate reprogramming depends on the ability of the pioneer factors 

to bind to “closed” chromatin (as defined by lack of DNAse I hypersensitivity and 
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epigenetic marks) and to turn on the expression of other genes important for SC 

identity (Iwafuchi-Doi and Zaret, 2014).  

SC reprogramming can also occur in vivo, and usually involves TACs or 

even differentiated cells reverting back to SC fate. This reprogramming is 

achieved by signals sent out from the SC niche in response to tissue damage or 

SC niche vacancy, and will be discussed next.  

 

Stem cell regulation by the niche 

Schofield was the first to propose and define the term “niche” in the 

context of the microenvironment that regulates the behavior of hematopoietic 

SCs. In particular, he described several attributes that a SC niche should 

possess, such as control of SC proliferation and quiescence, integration of 

signals reflecting tissue and organismal state, and conferral of SC features on 

daughter cells depending on their location following cell division – inside or 

outside of the niche (Schofield, 1978).   

Since then, SC niches have been described for a variety of organs, 

although new microenvironment components of each specific niche continue to 

be elucidated. The best understood SC-niche models are the male and female 

germ line stem cells (GSCs) in the fly Drosophila. Male GSC niche consists of the 

somatic hub cells at the testis tip. Female GSCs reside at the very tip of the 

ovary, in physical contact with the somatic cap cells, which act as the GSC niche 

and are critical for the maintenance of the GSCs (Fuller and Spradling, 2007; Xie 
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and Spradling, 2000). Although Drosophila male and female GSC niches consist 

of heterologous cell types, recent findings in the hematopoietic system, HFs and 

in the intestine have shown that SC progeny can also contribute to the SC niche 

and regulate SC function (Hsu et al., 2011; Sato et al., 2011; Scadden, 2014). 

Drosophila GSC niche is also able to confer stemness to TA cells that 

have left the niche and embarked on the path to differentiation (Brawley and 

Matunis, 2004). The ability of the niche to induce stemness in cells that have 

already left the niche has also been demonstrated in various mammalian organs, 

such as the intestine (van Es et al., 2012), the lung (Tata et al., 2013), and the 

HF (Rompolas et al., 2013). 

Hair follicle stem cells 

HFSCs reside in a niche called “the bulge” (Cotsarelis et al., 1990). The 

bulge has been identified as the location of HFSCs based on their slow cycling 

properties. This was first demonstrated using tritiated thymidine ([3H]TdR), 

where mice are repeatedly treated with [3H]TdR over several days such that the 

majority of their cells becomes labeled and then chased for several weeks. 

During the chase period, fast-cycling cells dilute the label, while slow-cycling cells 

remain labeled. Based on these observations, the slow-cycling population within 

HFs was mapped to the bulge region (Cotsarelis et al., 1990). It took several 

more years to demonstrate that these slow-cycling cells within the bulge region 

possess the properties of SCs. This was achieved by adapting the pulse-chase 
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strategy using tetracycline-inducible histone, tagged with GFP (H2BGFP) 

(Tumbar et al., 2004). Labeled cells were then purified and subjected to the 

ultimate test, where they were able to reconstitute entire HFs in nude mice 

(Blanpain et al., 2004). 

Therefore, although HFSCs are more quiescent than other cells within the 

HFs, their proliferation and exit form the niche can be triggered upon the HF entry 

into the growth phase of the hair cycle (anagen). Once activated, HFSCs give 

rise to cells within the outer root sheath (ORS), which reside within the basal 

layer of HFs. The ORS cells continue to proliferate and produce TACs, which 

constitute the matrix. The matrix cells undergo additional rounds of proliferation 

and proceed to differentiate into seven lineages that fulfill the role of producing 

the hair, and supporting its growth (Blanpain and Fuchs, 2006; Greco et al., 

2009; Hsu et al., 2011) (Figure 1-1). 

As matrix cells exhaust their proliferative capacity, hair growth stops and 

the HF enters a destructive phase (catagen). During catagen, the lower two-

thirds of the mature HF undergo apoptosis and degenerate. The bulge region 

containing SCs is spared, as well as the cells within the ORS. The cells in the 

upper ORS form the new bulge, while the cells within the lower ORS form the hair 

germ (Hsu et al., 2011). Upon completion of catagen, the HF enters a resting 

phase (telogen). Telogen phase becomes progressively longer as mice age. 
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Figure 1-1. Hair follicle cycle. HFSCs are located in the bulge and remain 
quiescent as long as the HF is in telogen. Upon entry into the growth phase of 
the hair cycle (anagen), HFSCs in the bulge as well as in the germ become 
activated and give rise to the outer root sheath (ORS) cells, located within the 
basal layer of HFs. ORS cells proliferate and give rise to the transit-amplifying 
cells in the matrix. The matrix undergoes further proliferation and gives rise to 
several differentiated lineages within the HF. Eventually, the HF enters the 
regression phase (catagen), during which the lower part of the HF undergoes 
apoptosis, leaving behind the bulge and the hair germ, which will fuel subsequent 
hair cycles.  
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Eventually, a new round of anagen initiates, with the activation of the cells 

within the hair germ, followed by the activation of several cells within the new 

bulge. The hair cycle then repeats (Figure 1-1). 

Maintaining hair follicle stem cell identity 

HFSC identity is maintained by a set of transcription factors, loss of which 

results in the failure of HFSCs to maintain their fate and differentiate. One 

example is LHX2, loss of which results in HFSC differentiation into sebocytes 

(Folgueras et al., 2013). Another example is SOX9, loss of which results in HFSC 

differentiation into the epidermal cells (Kadaja et al., 2014). Additionally, loss of 

SOX9 in embryonic epidermis results in the failure to establish the SC pool during 

HF morphogenesis (Nowak et al., 2008; Vidal et al., 2005). 

Apart from maintaining SC identity in vivo, HFSCs can be isolated and 

cultured in vitro, then grafted back onto a nude mouse along with freshly isolated 

newborn dermal fibroblasts to regenerate entire HFs (Blanpain et al., 2004; Lichti 

et al., 1993; Weinberg et al., 1993). Additionally, HFSCs can participate in wound 

repair, where they adopt the epidermal fate and regenerate the epidermis (Taylor 

et al., 2000; Tumbar et al., 2004). Therefore, HFSCs need to maintain their 

stemness in culture while at the same have the flexibility to change their fate “on 

demand” in response to changes in the environment, when tissue damage needs 

to be repaired. 
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It has been recently demonstrated that SOX9 is necessary for the 

maintenance of HFSC fate both in vivo and in vitro due to its unique ability to act 

as a pioneer transcription factor (Adam et al., 2015; Nowak et al., 2008; Vidal et 

al., 2005). The critical role of SOX9 in establishing and maintaining HFSC identity 

was demonstrated by analyzing its binding patterns to the chromatin of HFSCs in 

vivo, in vitro and upon wounding. SOX9 was found to bind within the super-

enhancers of multiple genes, essential for proper HFSC function (including Lhx2, 

Tcf3, Tcf4, Nfatc1, and others). Although the expression of these genes is 

normally confined to the HF, such that they are Polycomb-repressed in the 

interfollicular epidermis (IFE), induction of SOX9 expression in the adult IFE was 

sufficient to induce their expression in the IFE, demonstrating that SOX9 is a true 

pioneer transcription factor, able to induce chromatin remodeling and removal of 

inhibitory marks (Adam et al., 2015). 

The ability of SOX9 to induce the expression of other key HFSC 

transcription factors in the IFE and in culture, and to maintain HFSC fate in 

various circumstances suggests that it is the combination of internal factors (such 

expression of SOX9) and the microenvironment that dictates the state and 

function of HFSCs. Previous studies have suggested that when HFSCs are laser-

ablated in vivo, it is in fact possible to convert non-SC epithelial cells to HFSC 

fate, by triggering their mobilization and migration into the unoccupied niche 

(Rompolas et al., 2013). This finding further underlies the critical role of the niche 

in specifying and maintaining HFSCs in adult HFs. 
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Hair follicle stem cell niche microenvironment 

The HFSC niche is composed primarily of dermal fibroblasts that become 

a permanent appendage of the adult HF during its morphogenesis and constitute 

the dermal papilla (DP). Several factors produced by the DP have been 

suggested to participate in HFSC activation, such as FGFs, TGFβ2, and BMP 

inhibitors (Sostdc1, Bambi, and Noggin) (Greco et al., 2009; Oshimori and Fuchs, 

2012; Rendl et al., 2005; Rendl et al., 2008; Rosenquist and Martin, 1996). At the 

same time, BMP4 produced by the DP contributes to maintaining HFSC 

quiescence (Plikus et al., 2008). Interestingly, DP ablation experiments have 

shown it to be dispensable for HFSC quiescence, but required for HFSC 

activation (Rompolas et al., 2012). 

HFSCs also receive regulatory signals from other cellular types that are in 

proximity to the HFSCs and can be considered a part of their regulatory niche. 

For example, activation of HFSCs during anagen is accompanied by 

angiogenesis, and inhibiting angiogenesis results in delayed anagen induction 

(Mecklenburg et al., 2000; Yano et al., 2001). This suggests that vascularization 

is necessary for proper activation of HFSCs during anagen. Another possible 

component of the HFSC niche are neurons that innervate the upper bulge. 

Nerves produce SHH that signals to the upper bulge and may guide their 

behavior during wounding (Brownell et al., 2011). Additionally, neuropeptides 

substance P and nerve growth factor (NGF) can be produced by the nerves in 

stressful conditions to halt proliferation and induce catagen (Peters et al., 2006). 
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Finally, subcutaneous fat also produces signals that can both activate and inhibit 

HFSCs. For example, mature cutaneous adipocytes produce BMP2 to inhibit 

HFSC activation and anagen entry (Plikus et al., 2008). Interestingly, immature 

adipocytes produce platelet-derived growth factor alpha (PDGFA) to activate 

HFSCs via PDGF signaling in the DP (Festa et al., 2011). 

Apart from the heterologous non-epithelial cell types, differentiated 

progeny of HFSCs also contribute to the regulation of HFSC quiescence (Hsu et 

al., 2011) and activation (Hsu et al., 2014b) and can be considered part of the 

niche. The suprabasal layer of the bulge, marked by keratin 6, produces BMP6 

and FGF18 (Hsu et al., 2011) that keeps HFSCs quiescent. Additionally, upon 

onset of anagen, TACs that have descended from HFSCs start expressing Shh, 

which signals to HFSCs to induce their proliferation (Hsu et al., 2014b). 

Apart from the evidence above, the importance of the HFSC niche in 

maintaining and regulating HFSCs is highlighted by laser ablation experiments, 

which have shown that the DP is essential for HFSC activation in telogen, but 

may be dispensable for the maintenance of quiescence (Rompolas et al., 2012). 

At the same time, HFSC grafts only give rise to hair when coupled with purified 

neonatal dermal fibroblasts, further underlining the importance of the signals 

emanating from the dermis (Lichti et al., 1993; Weinberg et al., 1993). Finally, the 

niche is sufficient to convert non-SC epithelial cells to SC fate, by triggering their 

mobilization and migration into the unoccupied niche upon HFSC ablation 

(Rompolas et al., 2013). 



 12 

Ectodermal appendage morphogenesis 

Teeth, nails, several eccrine glands (mammary, sweat, salivary, and 

lacrimal glands), and hair are all derivatives of the ectoderm (Pispa and Thesleff, 

2003). Despite their functional diversity, they share several common features in 

development. Ectodermal appendage morphogenesis initiates through a 

crosstalk between the epithelial cells and the mesenchymal cells, resulting in the 

formation of placodes – aggregates of epithelial cells that mark the location of the 

future ectodermal appendage. Formation of epithelial placodes is accompanied 

by the condensation of mesenchymal cells underneath and formation of the 

dermal papilla.  

Initial hair placode formation occurs via centripetal migration of basal skin 

cells into the site of the future hair placode, and cell compaction. Cell proliferation 

does not play a major role in this process (Ahtiainen et al., 2014). Similar 

observations have been made during early feather formation, where little 

proliferation is occurring both in the feather epidermis and the underlying dermis 

undergoing condensation (Wessells, 1965). Finally, mammary placode formation 

and initial stages of morphogenesis do not involve proliferation. After initial 

specification, mammary rudiment growth lags behind that of the rest of the body. 

However, in the last days of pregnancy the relations are reversed, and the 

mammary gland rudiment undergoes a burst of growth and proliferation 

(Balinsky, 1950).  
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After initial specification and condensation, subsequent appendage 

morphogenesis depends on the continuous crosstalk between the epidermis and 

the mesenchyme. The signaling molecules from the WNT, TGFβ, hedgehog 

(Hh), and FGF families are used reiteratively at different stages of ectodermal 

organogenesis to produce the final shape and function of the tissue. 

Signaling pathways in hair follicle morphogenesis 

WNT signaling 

Hair follicle morphogenesis initiates at E14, with the specification of hair 

placodes. From tissue recombination experiments, where mesenchyme and 

epithelium of different species, body regions or developmental time points were 

paired, the outcome was mostly dictated by the identity of the mesenchyme 

(Bereiter-Hahn et al., 1984; Sengel, 1976). Although the first signal remains 

elusive, several lines of evidence suggest that it is a member of the WNT family 

of ligands and will be discussed below. 

There are 19 genes encoding members of the WNT family (Clevers and 

Nusse, 2012). Wnt3a, Wnt4, Wnt5a, Wnt6, Wnt10a, Wnt10b, Wnt11, Wnt16 are 

expressed in the embryonic skin at various stages of morphogenesis (Fu and 

Hsu, 2012; Huelsken et al., 2001; Reddy et al., 2001). Wnt3a, Wnt4, and Wnt6 

are expressed throughout the epidermis, Wnt10a and Wnt10b are upregulated in 

the placode upon specification, Wnt16 is downregulated in placodes, while 

Wnt5a and Wnt11 are expressed by the dermal condensates. 
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WNT signaling can trigger a canonical and a non-canonical signaling 

cascade. The canonical cascade (Figure 1-2) involves the ligand binding to a 

heterodimeric complex, which consists of a Frizzled (Fz) and a Low-density 

lipoprotein receptor-related protein 5 or 6 (LRP5/6). There are 10 mammalian Fz 

receptors. WNT ligand binding to the Fz receptors is promiscuous, with several 

WNTs capable of binding the same Fz receptor, and vice versa (Janda et al., 

2012). In the absence of the WNT ligand, β-catenin is sequestered by a 

degradation complex, which is held together by scaffolding proteins Axin and 

APC. In this complex, β-catenin is phosphorylated by CK1 and GSK3 and 

targeted for proteasomal degradation by β-TrCP. Upon WNT ligand binding to 

Fz/LRP complex, Axin is phosphorylated by the receptor complex, which 

destabilizes the degradation complex and allows β-catenin accumulation in the 

cytoplasm and entry into the nucleus. Although β-catenin does not bind the 

chromatin directly, upon entry in the nucleus, β-catenin interacts with 

transcription factors in the TCF/LEF family, which includes LEF1, TCF1, TCF3, 

and TCF4 and regulates gene expression (Behrens et al., 1996; Molenaar et al., 

1996). WNT/β-catenin-dependent gene expression is highly context and tissue 

dependent. One of the most consistently WNT-activated genes is Axin2. Axin2-

based reporters are widely used as a proxy for WNT signaling as well as for 

lineage-tracing of WNT-responsive cells (Lustig et al., 2002a). Additionally, 

several WNT reporters have been generated where reporter transcription is 

downstream of a minimal promoter and an enhancer containing several copies of 
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With permission from (Reya and Clevers, 2005) 
 
Figure 1-2. Canonical WNT signaling. In the absence of WNT signaling (left 
panel), β-catenin is sequestered in the cytosol in a complex with axin, APC and 
GSK3, where is phosphorylated and targeted for degradation. Upon WNT ligand 
binding (right panel), the degradation complex is disassembled and β-catenin is 
stabilized. β-catenin translocates to the nucleus where it interacts with TCF/LEF 
transcription factors, thus regulating gene expression. 
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The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also
been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in
stem and progenitor cells is subverted in cancer cells to allowmalignant proliferation. Insights gained from understanding how the
Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and
haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.

S
tem cells are cells that have the unique ability to self-
renew as well as to generate more differentiated progeny.
The most primitive stem cell is the embryonic stem cell,
which is derived from the inner cell mass of the blasto-
cyst. This cell is pluripotent and can thus generate all the

tissues of the body. Following the pioneering work on haemato-
poietic stem cells over the last five decades, a multitude of recent
studies have indicated that most other adult tissues also harbour
stem cells. These adult stem cells are normally involved in homeo-
static self-renewal processes but can also be rapidly recruited to
repair tissues upon injury. With the study of adult stem cell biology,
recurring roles of a limited set of signalling cascades are rapidly
being uncovered. One of these is the canonical Wnt cascade.
Notably, inmany of the same tissues where theWnt cascade controls
stem cells, cancer ensues upon dysregulated activation of this
pathway. Conceptually, this indicates that an efficient road to cancer
involves the hijacking of physiological regulators of stem cell
function in these particular tissues. Below, we first outline the
canonical Wnt cascade, and then describe its mirror image roles
in the biology of stem cells and cancer.

The canonical Wnt signalling pathway in development
The discovery of the common origin of the Drosophila segment
polarity geneWingless and the murine proto-oncogene Int-1 (ref. 1)
laid the keystone of a signalling pathway now commonly referred to
as the canonical Wnt cascade (Fig. 1). Wnt genes, of which the
human genome harbours almost 20, occur throughout the animal
kingdom. Signalling is initiated when Wnt ligands engage their
cognate receptor complex, consisting of a serpentine receptor of the
Frizzled family and a member of the LDL receptor family, Lrp5/6.
The central player is a cytoplasmic protein termed b-catenin, the
stability of which is regulated by the destruction complex. There are
b-catenin-independent, non-canonical signalling pathways
induced by Wnt, and their mechanism of action has been described
elsewhere2. When Wnt receptors are not engaged, two scaffolding
proteins in the destruction complex—the tumour suppressors
adenomatous polyposis coli (APC) and axin—bind newly syn-
thesized b-catenin. CKI and GSK3, two kinases residing in the
destruction complex, then sequentially phosphorylate a set of con-
served Ser and Thr residues in the amino terminus of b-catenin. The
resulting phosphorylated footprint recruits a b-TrCP-containing E3
ubiquitin ligase, which targets b-catenin for proteasomal
degradation.

Receptor occupancy inhibits the kinase activity of the destruction
complex by an incompletely understood mechanism involving the
direct interaction of axinwith Lrp5/6, and/or the actions of an axin-
binding molecule, Dishevelled. As a consequence, b-catenin
accumulates and travels into the nucleus where it engages the N
terminus of DNA-binding proteins of the Tcf/Lef family3. The

vertebrate genome encodes four highly similar Tcf/Lef proteins.
In the absence of a Wnt signal, Tcf/Lef proteins repress target genes
through a direct association with co-repressors such as Groucho.
The interaction with b-catenin transiently converts Tcf/Lef factors
into transcriptional activators. Drosophila genetics has recently
identified two additional nuclear components, Pygopus and Bcl9
(also known as legless), conserved in vertebrates. Pygopus is
essential for transcriptional activation of Tcf/Lef target genes,
whereas Bcl9 seems to bridge Pygopus to Tcf-bound b-catenin. In
sum, the canonical pathway translates a Wnt signal into the
transient transcription of a Tcf/Lef target gene programme4.

From crypt physiology to colon cancer
The intestinal tract consists of the small intestine (duodenum,

Figure 1 The canonical Wnt signalling pathway. In the absence of Wnt signalling
(left panel), b-catenin is in a complex with axin, APC and GSK3-b, and gets
phosphorylated and targeted for degradation. b-Catenin also exists in a cadherin-
bound form and regulates cell–cell adhesion. In the presence of Wnt signalling (right
panel), b-catenin is uncoupled from the degradation complex and translocates to
the nucleus, where its binds Lef/Tcf transcription factors, thus activating target
genes. (Adapted from ref. 44.)

review article

NATURE |VOL 434 | 14 APRIL 2005 | www.nature.com/nature 843
© 2005 Nature Publishing Group



16 

LEF/TCF-binding sites, such as TOPGAL and BATGAL (DasGupta and Fuchs, 

1999; Maretto et al., 2003). 

Based on these reporters as well as nuclear β-catenin and LEF1 

expression, WNT signaling is active in the upper dermis of developing skin as 

early as E12.5 – prior to HF morphogenesis. Starting at E13.5-E14, WNT 

reporter activity increases in the nascent hair placodes and underlying dermal 

condensates (DasGupta and Fuchs, 1999; Zhang et al., 2009; Zhou et al., 1995).   

Several secreted proteins that work through different mechanisms 

negatively regulate the canonical WNT signaling pathway. For example, Frizzled-

related proteins (sFRPs) and WNT inhibitory protein (WIF) bind WNT ligands and 

prevent their interaction with the WNT receptors (Bovolenta et al., 2008). On the 

other hand, proteins of the Dickkopf (DKK) family antagonize WNT signaling by 

binding LRP5/6 (Glinka et al., 1998). APCDD1 is another example of a WNT 

signaling antagonist. APCDD1 is a membrane-bound glycoprotein, which inhibits 

WNT signaling by binding both WNT ligand and LRP receptor (Shimomura et al., 

2010). 

Non-canonical WNT signaling pathways also proceed through WNT ligand 

binding to Fz receptors, however in this case, ligand binding to the receptor does 

not result in β-catenin stabilization and induction of TCF/LEF-dependent 

transcription. The best-characterized non-canonical WNT signaling pathway is 

the planar cell polarity (PCP) pathway. In this case, Fz receptor activation results 

in the downstream activation of small GTPases RAC1 and RHOA, as well as 
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JNK, which control various aspects of cytoskeleton and can also affect 

transcription. The PCP pathway regulates cellular polarity and affects various 

morphogenetic processes, such as gastrulation and neural tube closure to name 

a few (Gomez-Orte et al., 2013). 

Both canonical and non-canonical WNT signaling branches are involved in 

coordinating HF morphogenesis. Several lines of evidence suggest that 

canonical WNT signaling is the first signaling pathway absolutely required for the 

specification of HFs as well as other ectodermally-derived skin appendages. 

Keratin 14 promoter-driven epidermis-specific overexpression of Dkk1 or 

knockout of β-catenin completely abolish HF specification (Andl et al., 2002; 

Huelsken et al., 2001). Conversely, hyperactivation of WNT signaling by 

epidermis-specific expression of a non-degradable, constitutively active form of 

β-catenin results in ectopic HF formation (Gat et al., 1998). 

Additionally, modulating the intensity of WNT signaling has been proposed 

to regulate the spacing and patterning of the developing HFs. For example, 

overexpressing variable levels of Dkk2 in the epidermis affects the density of 

specified HFs, with the density of specified HFs correlating to the level of 

transgene expression (Sick et al., 2006). 

On the other hand, the non-canonical WNT/PCP signaling branch has 

been implicated in HF polarity. PCP signaling components Vangl2 and Celsr1 are 

critical for proper HF angling during HF morphogenesis (Devenport and Fuchs, 

2008). Additionally, epidermis-specific deletion of Fz6 results in generation of 
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whorls and tufts of hair on the mouse skin, resembling Fz loss-of-function 

phenotypes in the Drosophila wing (Guo et al., 2004; Vinson et al., 1989). 

Interestingly, Wnt5a and Wnt11, two WNT ligands expressed by the dermal 

condensate shortly after hair placode specification, are known to preferentially 

activate non-canonical WNT signaling. Wnt5a and Wnt11 are involved in the 

regulation of convergent extension in lower vertebrates, while Wnt5a has also 

been shown to regulate PCP in mice during cochlear development (Heisenberg 

et al., 2000; Moon et al., 1993; Qian et al., 2007). It remains unknown whether 

Wnt5a and Wnt11 signal through the non-canonical WNT/PCP pathway to 

regulate HF polarity. 

SHH and BMP signaling 

While WNT signaling is considered to be the first signal required for HF 

specification, several additional signaling pathways take part in regulating various 

aspects of HF morphogenesis. 

Sonic hedgehog (SHH) signaling is downstream of WNT signaling. SHH is 

one of three mammalian hedgehog proteins, the other two being Indian and 

Desert hedgehog. In vertebrates, SHH is secreted and signals by binding to the 

receptor patched (PTCH1). Upon SHH interaction with PTCH1, smoothened 

(SMO) is released from PTCH1 inhibition and activates glioma-associated 

oncogene (GLI) family of transcription factors GLI1-GLI3 (Ingham and McMahon, 

2001). GLI1 acts exclusively as a transcription activator, while GLI2 and GLI3 can 
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be post-transcriptionally processed by cleavage and phosphorylation to act both 

as transcription activators and repressors (Koebernick and Pieler, 2002). GLI1 is 

not required to initiate SHH signaling, and is itself a direct downstream 

transcriptional target of SHH. Therefore, GLI1 promoter has been used to 

generate SHH reporters (Bai et al., 2002b). 

Shh expression becomes upregulated in the hair placode shortly after 

specification. Based on Gli1-LacZ reporter activity, SHH signals both to the 

epidermal placode, as well as to the dermal condensate (Jamora et al., 2003; St-

Jacques et al., 1998). Apart from a variety of developmental phenotypes in 

various organs, Shh knockout embryos also fail to develop HFs, which become 

arrested shortly after specification, and do not invaginate into the dermis (St-

Jacques et al., 1998). The defects in HF morphogenesis have been attributed to 

the failure to recruit the dermal condensate, as well as decreased proliferation in 

the hair placode (St-Jacques et al., 1998; Woo et al., 2012). Additionally, SHH 

regulates the expression of noggin in the dermal condensate, which feeds back 

to the developing hair follicle to further boost the expression of Shh, as well as to 

repress BMP signaling (Woo et al., 2012). 

Bone morphogenetic proteins (BMP) belong to the transforming growth 

factor β (TGFβ) superfamily, which consists of at least 30 genes in mammals, 

including 3 TGFβ isoforms, 4 activin β chains, nodal, 10 BMPs and 11 growth 

and differentiation factors (GDFs). TGFβ signaling proceeds through the ligand 

binding to a heterotetrameric receptor complex, which consists of type I and type 
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II receptors, with a conserved intracellular Ser-Thr kinase domain. Upon ligand 

binding, the type II receptor phosphorylates and activates the type I receptor, 

which enables the recruitment and phosphorylation of receptor-activated SMADs 

(R-SMADs). SMAD C-terminal phosphorylation by the receptor complex allows 

R-SMADs to form a complex with SMAD4. SMAD complexes accumulate in the 

nucleus, where they can bind and regulate the expression of target genes 

(Schmierer and Hill, 2007). 

The signaling of TGFβ ligands can be counteracted by several soluble 

factors, which bind the TGFβ ligands and prevent them from interacting with the 

receptors. Most are BMP antagonists, such as chordin, noggin, sclerostin, and 

members of the Cerberus family (Balemans and Van Hul, 2002). Additional 

inhibitors include follistatin, which inhibits activin signaling, but can also bind 

BMPs and GDF8 (Thompson et al., 2005). 

BMPs are expressed in a tissue specific manner, with diverse biological 

functions in different tissues. During HF morphogenesis, BMP2 is expressed in 

the developing hair placode, while BMP4 is expressed in the underlying dermal 

condensate. BMP signaling has various roles at different stages of HF 

morphogenesis. During HF specification, BMP signaling is thought to be involved 

in HF patterning, where it acts by antagonizing the HF fate. To counteract the 

inhibitory effects of BMP signaling, noggin is produced by the dermal condensate 

in a SHH-dependent manner (Botchkarev et al., 1999; Woo et al., 2012). Noggin 

knockout embryos have less HFs specified, and those specified are delayed in 
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their morphogenesis (Botchkarev et al., 1999). Additionally, BMP inhibition by 

noggin is necessary for Lef1 expression in the developing HFs (Botchkarev et al., 

1999; Jamora et al., 2003). 

WNT-SHH crosstalk in Drosophila 

Some of the earliest examples of the crosstalk between WNT (wingless in 

Drosophila) and hedgehog (HH) signaling pathways come from work in the 

Drosophila embryo, in particular, in the context of intrasegmental patterning 

during morphogenesis. Insect bodies are composed of segments, which give rise 

to particular structures and patterns according to their position. The Drosophila 

body plan is established at the blastoderm stage of embryonic development. The 

blastoderm is a single-layer epithelium covering the Drosophila embryo (Ingham, 

1988). By the time the blastoderm is formed, transcripts of wingless (wg) and 

engrailed (en) accumulate in fourteen stripes along the anterior-posterior axis of 

the embryo, and are expressed at each side of the border between segments 

(Akam, 1987; Ingham, 1988; Lee et al., 1992). Subsequently, the en+ domain 

expresses hh. Hh and wg act in concert to maintain each other’s expression (Lee 

et al., 1992; Tabata et al., 1992). 

Stem cell specification during organ morphogenesis 

As I have previously discussed, adult SC identity and function are 

determined by a core set of genes that are expressed in tissue-specific manner. 
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SC niches are critical for the maintenance of the SC fate and regulation of SC 

function, but can also confer stemness to TACs and even differentiated cells 

when they are returned to the niche upon SC depletion or if vacancies arise. 

The mechanisms governing the specification of SCs during organ 

morphogenesis are more obscure. What mechanisms trigger or restrict the 

expression of the core genes that are necessary and sufficient for SC identity and 

function? When during morphogenesis are SCs specified? Given the importance 

of the niche in the maintenance and regulation of adult SCs, what is the role of 

the niche in SC specification? Answering these questions is important as it might 

give us cues on how to recapitulate these processes in vitro in order to derive 

functional SCs for regenerative medicine. 

In the majority of described models, SC establishment relies on signals 

emanating from a pre-established niche. In Drosophila gonads, the SC niche acts 

as a signaling center to recruit and maintain germ SCs from among a small 

population of undifferentiated primordial germ cells (PGCs) (Dansereau and 

Lasko, 2008). PGCs outside of the niche directly enter cyst (females) or 

gonialblast (males) differentiation pathways (Bhat and Schedl, 1997; Song et al., 

2002; Zhu and Xie, 2003). In the developing intestine, cells expressing SC 

marker Lgr5 are initially present throughout the epithelium. They become 

confined to the crypt base as the villus buckles, thereby concentrating 

differentiation signals within the upper tip region (Shyer et al., 2015). Finally, 

hematopoietic stem cells (HSCs) are specified from the dorsal aorta endothelial 
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cells, which receive signals from vascular smooth muscle cells (Clements and 

Traver, 2013). These examples, described in more details below, demonstrate 

that SC specification during morphogenesis generally depends on the signals 

received from heterologous cell types that constitute the niche at that point in 

development. 

Drosophila germ stem cell specification 

The mechanisms involved in the specification, maintenance and 

differentiation of Drosophila germline stem cells (GSCs) lay the foundation of our 

understanding of SC regulation and clearly show the importance of the niche in 

the process. In the female, the core of the GSC niche consists of 5-7 somatic cap 

cells that form adherens junctions with 2-3 GSCs, physically anchoring them to 

the anterior of each germarium (Spradling et al., 1997; Xie and Spradling, 2000).  

The female GSC niche additionally consists of the terminal filament (TF) cells 

and the sheath cells, surrounding the ovariole (Spradling et al., 2001). In the 

male, the niche consists of approximately 12 somatic hub cells, which maintains 

5-9 GSCs (Hardy et al., 1979; Le Bras and Van Doren, 2006). 

Drosophila germline stem cells (GSCs) are derived from a population of 

primordial germ cells (PGCs), which are set aside from the somatic lineages 

early in the fly development. PGCs and the somatic gonadal precursors (SGPs) 

are specified at different locations, and come from different lineages, the SGPs of 

mesodermal origin, and PGCs coming from the embryonic posterior pole. 
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Therefore, the PGCs must migrate from the posterior of the embryo to meet the 

SGPs and form the embryonic gonad. The direction of PGC migration is 

determined by repulsive cues provided by two phospholipid phosphatases 

Wunen and Wunen2 (Renault et al., 2004; Zhang et al., 1997), as well as by 

attractive signals produced by SGPs, including Hedgehog as well as products of 

HMG-CoA reductase (Deshpande et al., 2001; Van Doren et al., 1998). 

 Once PGCs migrate and adhere to the gonadal precursors, they migrate 

anteriorly to form a gonad. The SGPs then ensheath the PGCs, thus forming the 

niche. The ensheathing process requires the expression of the adhesion 

molecule E-Cadherin and another transmembrane protein Fear-of-Intimacy, 

expressed by the SGPs (Jenkins et al., 2003; Van Doren et al., 2003). The 

adhesion with and ensheathing of the PGCs by the SGPs essentially completes 

the formation of the GSC niche. The PGCs that did not establish adherens 

junctions with the mesoderm and thus did not enter the niche fail to maintain 

PGC status and differentiate (Song et al., 2002). 

Apart from the physical adhesion and ensheathing that are required for the 

maintenance of GSCs in undifferentiated state, additional signaling pathways 

play an important role in this process, which differ slightly between males and 

females. In the female, Dpp signaling is the primary GSC maintenance pathway. 

Dpp, the Drosophila homolog of BMP2, is produced by the somatic niche and 

signals nonautonomously over the short range to repress GSC cytoblast 

differentiation. Dpp maintains GSC fate by repressing the expression of an RNA-
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binding protein bag of marbles (bam) (Song et al., 2004). Bam forms a protein 

complex with Bgcn, another RNA-binding protein, and together they act to 

downregulate several important SC maintenance factors, such as Nanos (Nos), 

E-cadherin, germline Piwi, microRNAs, and Dpp signaling (Perinthottathil and 

Kim, 2011). Dpp signaling is required throughout embryonic and larval 

development to repress PGC differentiation and to maintain their potential to 

become GSCs (Zhu and Xie, 2003). Dpp signaling also plays a role in male GSC 

maintenance, and represses the expression of Bam (Kawase et al., 2004). 

However, in the male, Bam is not required for differentiation, and overexpression 

of Dpp is not sufficient to block differentiation (Schulz et al., 2004). 

In the male germline, the Jak-Stat pathway is the main determinant of 

GSC identity. In this case, the hub cells express Upd – a short-range signal that 

signals to GSCs via the Domeless receptor and Hopscotch (Kiger et al., 2001; 

Tulina and Matunis, 2001). Jak-Stat pathway activation results in the 

phosphorylation of Stat92E transcription factor, which activates the expression of 

genes necessary for GSC state (Bausek, 2013). Importantly, during testis 

morphogenesis, after gonad coalescence, all PGCs maintain activated Stat92E. 

However, active Jak-Stat signaling becomes restricted to the PGCs directly 

attached to the hub cells, while PGCs further away from the hub have low levels 

of phosphorylated Stat92E and initiate differentiation (Sheng et al., 2009).  

While Dpp and Jak-Stat signaling pathways are mostly unidirectional from 

the niche to the GSCs, it is worth noting that GSCs can also signal to their niche. 
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For example, in the female, Notch signaling plays an important role in the 

maintenance of GSCs and control of GSC numbers. In this case, Notch ligands 

are expressed by the GSCs and signal to the cap cells. Delta overexpression in 

the germline causes expansion of the cap cells, which consequently increases 

vacancies in the niche, resulting in more GSCs (Ward et al., 2006). 

In summary, specification of GSCs in Drosophila testis and ovaries 

depends on the signals produced by the pre-established niche. In the case of 

female germline development, cap cells express Dpp, which signals to the PGCs 

to maintain them in undifferentiated state, allowing them to adopt GSC fate. In the 

case of testis development, the hub cells express Upd, which signals to the 

adjacent PGCs, allowing them to become GSCs and preventing their 

differentiation. 

Intestinal stem cell specification 

Intestinal SCs (ISCs) are among the best-studied epithelial SC populations 

in mammals. In adult, ISCs reside in the intestinal crypt, and are identified by the 

expression of Lgr5 (Barker et al., 2007). ISCs are tightly regulated by their niche, 

which consists of heterologous cell types, as well as Paneth cells, which are 

descendants of the ISCs (Barker, 2014).  Despite the recent progress in our 

understanding of adult ISC regulation, little is known about the origins of ISCs. 

The development of the small intestine varies slightly among vertebrates. 

In the chick, the sequential differentiation of the smooth muscle layers of the gut 
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restricts the expansion of the growing endoderm and mesenchyme, causing the 

epithelium to fold into longitudinal ridges, followed by a zigzag pattern, and lastly 

individual villi (Shyer et al., 2013). In the mouse, villi emerge at embryonic day 

(E) 14.5 directly from a smooth lumen. In this model, the contribution of the 

smooth muscle to villi formation is less well defined. Inhibition of muscle 

differentiation via treatment with platelet-derived growth factor (PDGF) receptor 

kinase inhibitor AG1295 or a calcineurin inhibitor tacrolimus (FK-506) impairs villi 

formation, suggesting that smooth muscles contribute to villi formation (Fukuda et 

al., 1998; Kurahashi et al., 2008; Shyer et al., 2013). However, both drugs can 

exert additional functions that could contribute to villi formation impairment. For 

example, mesenchymal cells that cluster within villi also express Pdgfra, and thus 

can also affect villi formation (Karlsson et al., 2000). An alternative mechanism of 

villi formation in the mouse gut suggests a Turing-based model (Walton et al., 

2016). In this case, hedgehog ligands produced by the epithelium signal to the 

mesenchyme and induce mesenchymal cell cluster formation. These 

mesenchymal clusters subsequently express BMP ligands and receptors. 

Modulating BMP signaling affects the villi pattern in a manner consistent with 

Turing activator/inhibitor model (Walton et al., 2016). Regardless of the model, 

villification occurs well before the appearance of the intestinal crypts, and the 

specification of various epithelial cell types that populate them, which take place 

postnatally. 
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To determine when ISCs first emerge in the developing gut, studies have 

relied on the Lgr5GFP-IRES-CreER knock-in mice (Barker et al., 2007). At E12.5, GFP 

signal can be found throughout the epithelium of the small intestine. Afterwards, it 

becomes progressively restricted to the space between villi as they form (Shyer 

et al., 2015). Interestingly, Paneth cells are not present in the developing gut until 

P15-P21, where they intermingle between GFP+ cells (Kim et al., 2012), 

suggesting that restriction of GFP+ cells to the intervilli regions is largely 

independent of the signals received from Paneth cells. 

In the mouse, villi formation is accompanied by the formation of a 

mesenchymal condensate at the villus tip, also known as villus cluster (Karlsson 

et al., 2000). In the chick, bending of the epithelium induces increased local 

concentration of Hh signaling within the villus cluster, which results in a local 

increase of BMP signaling and inhibition of proliferation at the villi tips (Shyer et 

al., 2015). In the adult ISC niche, BMP has been shown to inhibit ISC self-

renewal by antagonizing WNT signaling (He et al., 2004). Thus, increased BMP 

signaling at the villi tips during villi morphogenesis might potentially inhibit WNT 

signaling and ISC fate, restricting ISCs to the villi crypts. In support of this 

mechanism, blocking SHH or BMP signaling in cultured samples of E14 chick 

intestines increased proliferation and expanded the expression of Sox9 – a target 

of WNT signaling in the intestines (Shyer et al., 2015). 

On the other hand, a study that has investigated the status of WNT 

signaling using TOP-GAL, Axin2-LacZ and nuclear β-catenin as reporters in 
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developing mouse intestines has found little evidence for WNT signaling in E14.5 

mouse intestines, despite the broad expression patterns of Lgr5-GFP reported by 

Shyer et al (Kim et al., 2007; Shyer et al., 2015). Additionally, as intestinal 

morphogenesis progresses between E16 and birth, WNT signaling is restricted to 

villi, and excluded from intervillus regions. Interestingly, WNT signaling starts 

shifting to the intervillus spaces shortly after birth and is fully shifted to the 

intervillus spaces by post-natal day 3 (Kim et al., 2007). Therefore, whether WNT 

or additional signals are responsible for the expression of Lgr5-GFP and Sox9 in 

the epithelial cells lining the developing intestines remains to be determined. 

Nevertheless, the available data suggest that during intestinal 

morphogenesis, the entire epithelial lumen has the potential to acquire ISC fate. 

Increased local concentration of SHH-BMP signaling in the villus clusters 

contributes to the inhibition of ISC fate at the villi tips, gradually restricting ISCs to 

the intervilli regions. This suggests a model where ISCs are passively restricted 

to the intervilli spaces, rather than actively specified by a niche. 

Hair follicle stem cell specification 

HFSC bulge niche becomes apparent when the HF undergoes the first 

round of growth and degeneration (catagen). At that point, the HFSCs are 

protected from catagen and remain in the bulge, where they become active again 

at the onset of the next hair cycle (Fuchs, 2007). However, a distinct population 

of quiescent cells within the upper ORS can be identified by pulse-chase 
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experiments as early as two days after birth, demonstrating that HFSCs are 

specified during embryogenesis, much earlier than the first telogen entry (Nowak 

et al., 2008). Already at that stage, HFSCs express several transcription factors 

that mark and regulate HFSC function during adult homeostasis, such as Lhx2, 

Sox9, Nfatc1, and Tcf3/4, but still lack other adult HFSC markers such as CD34 

(Nowak et al., 2008). 

Some of these transcription factors have also been shown critical for 

HFSC specification during HF morphogenesis. For example, epidermis-specific 

deletion of Lhx2 and Sox9 results in the failure to specify the early HFSC pool 

(Folgueras et al., 2013; Nowak et al., 2008). On the other hand, other 

transcription factors, such as Nfatc1, regulate HFSC function during adult 

homeostasis and their loss does not affect HFSC specification during 

morphogenesis, despite their expression during that stage (Horsley et al., 2008). 

Interestingly, Lhx2 and Sox9 are expressed in distinct populations of cells in the 

developing HFs right from the onset, where they can be detected by antibody 

staining at the placode level (Nowak et al., 2008; Rhee et al., 2006). At this stage 

of morphogenesis, Lhx2 is expressed by the basal cells of the hair placodes, 

while Sox9 largely marks the suprabasal cells. The mechanisms involved in 

establishing this early cellular heterogeneity within the developing hair placodes 

are currently unknown. 

Given SOX9’s role as a pioneer factor, expression of which is necessary 

and sufficient to maintain HFSC fate in vivo and in culture (Adam et al., 2015), 
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this raises an additional question of whether Sox9 expression in hair placodes 

marks a pool of cells that will later contribute to the adult SC pool in mature HFs. 

If this is the case, what are the mechanisms involved in their specification and 

control of their expansion and differentiation in the absence of the bulge – their 

niche? 
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CHAPTER 2: DETERMINANTS OF HETEROGENEITY DURING HAIR 

FOLLICLE MORPHOGENSIS 

Organ morphogenesis requires several processes to occur in parallel or 

sequentially. During morphogenesis, a given organ must undergo the 

specification of the various cell types, which are the building blocks for that given 

tissue and will fulfill its functions. These cell types need be properly positioned 

and organized within the organ, such that the overall morphology of the organ is 

conducive to its proper function. Finally, in many organs, a restricted pool of SCs 

needs to be set apart to maintain the organ in homeostasis, replenish dying cells 

and participate in tissue repair. 

The hair follicle is a useful model to study organogenesis, where organ 

morphology, cell type specification, and SC restriction occur during five days 

between initial hair placode formation at E14.5 and birth. Interestingly, cellular 

heterogeneity can be observed as early as at the placode stage, where the basal 

cells express high levels of P-cadherin and Lhx2, while the suprabasal cells 

express E-cadherin and Sox9 (Nowak et al., 2008; Rhee et al., 2006).  How this 

heterogeneity is achieved so early in morphogenesis is unknown. 

To address this question, I used a combination of mosaic lentiviral lineage 

tracing, fixed immunofluorescence and live imaging of cell divisions within the 

placodes and IFE, as well as mosaic genetic perturbations. I found that 

exclusively perpendicular divisions to the basement membrane within hair 

placodes set up the scene for differential fates of the daughter cells. The balance 
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of WNT and SHH signaling within the daughter cells subsequently determines 

their fates. 

Results 

Divisions within early hair placodes are perpendicular to the basement 

membrane and asymmetric 

To address how cell type heterogeneity is established at the earliest 

stages of HF morphogenesis, I used in utero transduction to selectively infect the 

single layer of surface ectoderm of E9.5 embryos with lentivirus (LV), which by 

24-48h, stably integrates into the host genome and is thereafter propagated to 

progeny. The progeny of the transduced cells will contribute to the IFE, the HFs, 

as well as other ectodermal appendages (Beronja et al., 2010). 

I infected Rosa26-fl-STOP-fl-YFP (R26YFPfl/+) embryos with LV 

expressing an inducible CreER recombinase (LV-CreER) (Figure 2-1A). Low-

dose tamoxifen at E15.5 activated CreER in isolated cells throughout the skin. 

The treated embryos were harvested 48 hours later, at E17.5, allowing for 1-2 

cell divisions to take place following tamoxifen treatment. Several small YFP+ 

clones with P-cadhi SOX9- basal and SOX9+ suprabasal cells were detected 

within hair placodes (Figure 2-1B). One way this type of pattern could be 

generated is by a basal cell undergoing a perpendicular division relative to the 

basement membrane, giving rise to a basal and a suprabasal cell (Figure 2-1C), 

which subsequently acquire different fates. 
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Figure 2-1. Short-term lineage-tracing in the epidermis. (A) Lineage-tracing 
strategy using lentiviral transduction of CreER. Rosa26-lox-STOP-lox-EYFP 
embryos were transduced with LV-CreER at E9.5. Pregnant dams were treated 
with tamoxifen at E15.5 and embryos were harvested at E17.5 and processed for 
immunofluorescence. (B) Lineage-traced clone in a placode. Arrows mark Pcadhi 
SOX9– basal and SOX9+ suprabasal cells within a YFP+ clone. White dashed 
lines indicate basement membrane. (C) Schematic of perpendicular placode 
division that would give rise to a vertical clone as observed in (B).  
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To address how the LV-generated short-term lineage-tracing pattern 

observed above is generated, I investigated the first cell divisions that occur 

following placode formation. Immunolabeling for acetylated tubulin decorated the 

stable spindle microtubules and the cleavage furrow of mitotic cells, and P-

cadherin (Pcad) distinguished placodes from interfollicular epidermis (IFE). 

Unexpectedly, nearly all mitotic spindles within (Pcadhi) hair placodes were 

oriented perpendicular (>45° angle) to the underlying basement membrane 

(Figure 2-2A). Quantitative analysis of an additional cleavage furrow marker, 

survivin, was suggestive of a perpendicular bias of late-stage mitotic division 

planes within these early stages of epithelial budding (Figure 2-2B). Hitherto 

overlooked, the nearly exclusive perpendicular angling further distinguished hair 

placodes from IFE, where such perpendicular spindles are fewer and have been 

linked to early steps involved in forming the skin barrier (Clayton et al., 2007; 

Lechler and Fuchs, 2005; Williams et al., 2014).  

To ascertain whether perpendicular spindle orientations resolve into basal 

and suprabasal daughters, my collaborators Aaron Mertz and Irina Matos in the 

Fuchs lab developed a method to perform 4D video-microscopy on immobilized, 

ex utero E14.5 mouse embryos whose epidermis expressed a fluorescently 

tagged histone gene (Krt14–H2BGFP).  Placodes were readily identified by their 

tight cell packing and hexagonal organization (Figure 2-2C). In total, we 

measured relative positions of daughters from 322 basal placode divisions. 
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Figure 2-2. Cells divide perpendicularly in hair placodes. (A) Perpendicular 
divisions during metaphase (top) and telophase (bottom) in mouse hair placodes. 
(B) Quantification of parallel and perpendicular division orientation based on 
spindle axis of basal cells in IFE and placodes. Data are % ± standard deviation 
(SD) from pooled counts in n=3 embryos, 41 placodes, 187 IFE divisions. (C) 
E14.5 dorsal skin visualized by live imaging of K14–H2B–GFP embryos. (Left) 
Stitched image of placodes (asterisks) and IFE. (Right) Placode (yellow outline) 
surrounded by IFE. Arrows indicate examples of a parallel or perpendicular 
division, depicted in (D,E), respectively. (D) Time course from live imaging of 
parallel division in basal IFE. (Left) Planar views centered in basal plane with 
dividing cell pseudo-colored cyan. (Right) Sagittal views reconstructed from 
confocal stacks. Dividing cell circled in cyan. (E) Time course from live imaging of 
perpendicular division in placode. (Top) Planar views centered in basal plane at 
height 0µm, with dividing cell pseudo-colored cyan. (Bottom left) Planar views 
after mitosis indicating pseudo-colored basal daughter at –3µm (left, magenta) 
and suprabasal daughter at +6µm (right, green). (Bottom right) Sagittal views 
reconstructed from confocal stacks. Dividing cell circled in cyan. Schematic of 
perpendicular placode division. (F) Quantifications of division outcomes in IFE 
and placodes based on live imaging of placodes. Data are mean % ± SD from 
322 divisions, n=3 embryos. All scales bars, 10µm, except (C), 50µm. 
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Parallel divisions were largely confined to IFE (Figure 2-2D). By contrast, 

divisions within placodes were nearly exclusively vertical, leaving one daughter at 

–3µm and one daughter at +6µm relative to the basal plane (Figure 2-2E).

Together, these data showed that perpendicular spindle orientations within the 

hair placodes result in a basal daughter that remains attached to the basement 

membrane and a suprabasal daughter that is born unattached. The movies 

corroborated my spindle axis measurements and showed an equal proportion of 

parallel and perpendicular divisions in basal IFE, but almost exclusively 

perpendicular divisions in basal placodes (Figure 2-2F). 

To determine when the heterogeneity first arises following the 

perpendicular divisions within early hair placodes, I performed whole-mount 

immunofluorescence of late-stage mitoses within placodes (Figure 2-3A). 

Imaging analysis and quantification revealed that basal daughters differentially 

inherited Pcad, indicating that these perpendicular divisions are asymmetric 

(Figure 2-3B,C). 

Previous work in Caenorhabditis elegans and Drosophila has implicated 

the Gαi–LGN/AGS3–NuMA–dynein/dynactin pathway in the regulation of 

asymmetric cell divisions. These proteins are asymmetrically distributed at the 

cell cortex during mitosis and govern spindle positioning (Knoblich, 2008; Siller 

and Doe, 2009). In chick neuroepithelium or during mammalian neurogenesis, 

LGN also regulates spindle orientation, promotes planar divisions, and is 

symmetrically inherited (Konno et al., 2008; Morin et al., 2007). However, in the 
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Figure 2-3. Perpendicular divisions within placodes are asymmetric.  
(A) Schematic of epithelial bud imaging. Dashed lines mark imaging planes. (B) 
Planar and sagittal projections through hair placode, subjected to whole-mount 
IMF. Pcad enriched in basal cells. Vertical division (asterisk) marked by Survivin 
(arrows) to identify midbody of late-stage mitotic daughters (cyan lines). (C) 
Quantifications of Pcad IMF. Data (mean ± SD) are from 3 embryos (n=26 
doublets). (D) Suprabasal enrichment of LGN (arrow) in the suprabasal cell in 
hair placode. White dashed lines indicate basement membrane. Tissues 
processed as indicated for immunofluorescence. All scale bars, 10µm, except 
lower-right sagittal views in (B), 5µm.
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developing IFE, LGN is apically localized in dividing cells, and becomes 

asymmetrically inherited during mitosis. In the IFE, LGN binds to Gαi, links mitotic 

spindles to the apical PAR3/aPKC complex, and promotes asymmetric divisions. 

Disruption of LGN using LV-delivered shRNAs caused spindle orientation defects 

during divisions of basal IFE cells, which negatively affects epidermis 

differentiation and leads to barrier defects of affected pups (Williams et al., 2011; 

Williams et al., 2014).   

Similar to the IFE, LGN was also apically localized in perpendicular, late-

stage mitotic placode cells, resulting in its asymmetric distribution to suprabasal 

daughters (Figure 2-3D). Together, this data suggest that the perpendicular 

divisions within early hair placodes are asymmetric. 

Perpendicular divisions in hair placodes asymmetrically partition WNT 

signaling 

WNT signaling is required for hair placode specification, and its levels are 

increased upon HF specification (Andl et al., 2002; DasGupta and Fuchs, 1999) 

(Figure 2-4). 

However, the role of WNT signaling in establishing cellular heterogeneity 

within early hair placodes has not been explored. Therefore, I monitored the 

status of WNT signaling in the basal and suprabasal cells of developing hair 

placodes. Surprisingly, only basal LHX2+ daughters exhibited intense nuclear 
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Figure 2-4. Inhibition of WNT signaling blocks hair placode formation. 
K14rtTA+ and K14rtTA- littermates were transduced with doxycycline-inducible 
Dkk1 lentivirus, which also expresses H2BGFP under a constitutive PGK 
promoter. Treatment with doxycycline resulted in Dkk1 overexpression, which 
blocked hair placode specification.  
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LEF1, a transcription factor that forms a complex with β-catenin necessary to 

propagate WNT signal to regulate transcription (Figure 2-5A). Additionally, 

genetic loss of Lef1 has been previously shown to inhibit HF morphogenesis (van 

Genderen et al., 1994). 

To further address whether Lef1 expression patterns correlate with active 

WNT signaling, I determined the status of WNT signaling using in vivo WNT 

reporter activity. Strong activity of WNT reporter Axin2-LacZ (Lustig et al., 2002b) 

in basal Pcadhi LHX2+ cells confirmed that WNT signaling was high in the 

daughter cells that remained attached to underlying basement membrane, but 

decreased in the suprabasal SOX9+ cells (Figure 2-5A). 

It has been demonstrated that activated focal adhesion kinase (FAK) has 

the ability to phosphorylate and inactivate GSK3β (Gao et al., 2015). GSK3β 

inhibition prevents the phosphorylation of β-catenin, leading to reduced 

degradation of β-catenin, thus mimicking WNT stimulation (Wu and Pan, 2010). 

In turn, FAK activity is dependent upon integrin signaling, which mediate 

adhesion between basal cells and the basement membrane (Parsons, 2003). 

Interestingly, in work carried out by my collaborator Vincent Fiore in the 

Fuchs lab, activated FAK and β1-integrin concentrated on the basement 

membrane-associated side of WNThi basal placode cells (Figure 2-5B). This 

observation was in line with higher levels of WNT signaling in the basal cells of 

hair placodes, suggesting a possible role for β1-integrin-FAK signaling in 

stabilizing β-catenin and boosting WNT signaling. 
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Figure 2-5. WNT signaling is asymmetrically partitioned to basal cells in 
placodes. (A) IMF or X-gal staining of WT placodes. Note enrichment of WNT-
signaling in basal cells and absence of WNT-signaling in suprabasal cells 
(arrows). (B) Basal enrichment (arrows) of phospho-Tyr397 (P)-Focal Adhesion 
Kinase (FAK) and active β1-integrin in hair buds. White dashed lines indicate 
basement membrane. Tissues processed as indicated for IMF (Pcad, LEF1, 
SOX9, LHX2, P-FAK, Active β1-integrin) or X-gal (Axin2-LacZ). All scale bars, 
10µm. 
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Differential WNT-signaling is Key for Coupling Asymmetric Fates to 

Asymmetric Cell Divisions 

The striking difference in the levels of WNT signaling between basal and 

suprabasal cells within hair placodes suggested that the purpose of the 

perpendicular divisions within placodes is to release suprabasal daughters from 

the high-WNT-signaling environment of their parents. Thus, I hypothesized that 

super-activation of WNT-signaling should prevent SOX9+ cell specification. With 

my collaborator Irina Matos, I tested this possibility by mosaically ablating the 

gene encoding APC, a member of the AXIN-APC-GSK3β complex that 

sequesters and targets non-junctional β-catenin for phosphorylation and 

proteosome-mediated degradation (Azzolin et al., 2014; Li et al., 2012; Mendoza-

Topaz et al., 2011). 

Given the severity of conditionally ablating Apc in skin (Kuraguchi et al., 

2006), we infected E9.5 Apcfl/fl; R26YFPfl/+ embryos with low-titer LV-Cre. Small 

mosaic patches of Apc-null-derived YFP+ epidermal cells exhibited robust WNT-

signaling as evidenced by elevated nuclear β-catenin and LEF1 (Figure 2-6A,B). 

Notably, the Apc-null patches were Pcadhi and LHX2+ and devoid of SOX9, 

indicating a skewing of fates relative to their wild-type counterparts (Figure 2-6B). 

Within the basal plane, a halo of WT SOX9+ cells surrounded the Apc-null 

patches (Figure 2-6B). Since the SOX9+ halo was ApcWT while LHX2+ cells were 

Apc-null, halo cells could not have been generated by asymmetric cell divisions. 

Rather, the unifying feature between this mosaic, genetically altered skin and 
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Figure 2-6. SOX9+ cells are associated with APC-null WNThigh regions of 
the epidermis. (A) Immunohistochemistry of Apcfl/fl epidermis uninfected (top) or 
LV-Cre-transduced (bottom), generating Apc-null regions with increased WNT 
activity, indicated by intense β-catenin signal. (B) Planar confocal IMF of Apcfl/fl; 
R26YFPfl/+ epidermis mosaic for LV-Cre. Note WNT-hyperactivated next to WNT-
normal regions establish boundary for asymmetric cell fates. Tissues processed 
as indicated for immunohistochemistry (β-catenin) or immunofluorescence 
(LEF1, Pcad, LHX2, SOX9, YFP). Dashed lines in (A) indicate basement 
membrane.  
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native, asymmetrically dividing skin placodes was differential levels of WNT-

signaling in LHX2+ versus SOX9+ neighbors.  

To pursue the hypothesis that specification of SOX9+ cells is dependent 

on juxtaposing WNTlo and WNThi cells, I tested the reverse, namely the 

consequences to asymmetric cell fates when mosaic clones null for the β-catenin 

gene (Ctnnb1) were juxtaposed with WT clones. For this experiment, I infected 

E9.5 Ctnnb1fl/fl; R26YFPfl/+ or Ctnnb1fl/+; R26YFPfl/+ embryos with LV-Cre, 

generating WT regions and regions that have lost β-catenin.   

In WT patches, nuclear LEF1 was seen throughout IFE, even though it 

was higher in hair placodes. By contrast, Ctnnb1-null epidermal patches lacked 

not only β-catenin, but also nuclear LEF1 (Figure 2-7A). Loss of β-catenin has 

destabilized adherens junctions, which resulted in the overall reduction of 

junctional Pcad staining in the epidermis (Figure 2-7B). In highly transduced 

epidermal regions, basal placode markers LHX2 and high Pcad were not found in 

Ctnnb1-null regions, further underscoring the requirement of WNT-signaling for 

placode formation (Figure 2-7B). Nevertheless, I was able to find small patches 

of un-transduced WT cells that formed hair placodes. Notably, a halo of SOX9-

expressing Ctnnb1-null epidermal cells surrounded these WT placodes. 

Analogous to the loss of APC experiments, based on the expression of YFP, 

these SOX9+ cells did not descend from the WT cells constituting the nascent 
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placodes. Instead, the close juxtaposition of β-catenin-null and WT cells was 

sufficient to induce the expression SOX9 in those cells. 

Interestingly, as demonstrated by LV-Cre-mediated YFP+ lineage tracing, 

these SOX9+ cells remained in the epidermis and did not migrate into or 

contribute to HFs (Figure 2-7C). 

Together, these gain- and loss-of-function studies provided compelling 

evidence that the key feature enabling SOX9+ cell specification is juxtaposition of 

WNThi and WNTlo signaling cells, regardless of the absolute levels of WNT 

signaling activity. I demonstrate here that SOX9+ cell specification can be 

achieved by juxtaposing APC-null WNThi cells with WT cells (in which case WT 

cells act as WNTlo), or by juxtaposing β-catenin-null WNTnull cells with WT cells 

(in which case WT cells act as WNThi).  In developing HFs, this juxtaposition 

appeared to be achieved through perpendicular asymmetric cell divisions, 

displacing the suprabasal daughter from the WNThi environment of its parent and 

linking asymmetric fates to asymmetric divisions. My findings show that if this 

condition is met by other means (e.g., through mosaic genetic mutation), 

asymmetric divisions are not needed to generate asymmetric fates. Thus, 

although WNT signaling is essential for hair placode specification, it is both 

dispensable for and also repressive of SOX9 expression. 
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Figure 2-7. β-catenin-null cells acquire SOX9+ fate when juxtaposed next to 
WT cells. (A) Planar confocal IMF in Ctnnb1fl/fl; R26YFPfl/+ embryos transduced 
with LV-Cre. Note selective loss of LEF1 in IFE patches where β-catenin is 
absent. (B) Planar confocal IMF in Ctnnb1fl/fl (or fl/+); R26YFPfl/+ embryos infected 
with high-titer LV-Cre to generate small regions of β-catenin+ untransduced cells 
surrounded by β-catenin– transduced cells. (C) Sagittal IMF in placode (top) and 
peg (bottom) of R26YFPfl/+; Ctnnb1fl/fl embryos transduced with LV-Cre. Bracket 
indicates SOX9+ IFE halo. Note YFP+ SOX9+ IFE cells do not contribute to 
mature HF. Dashed lines in (C) indicate basement membrane, in (A), borders 
between transduced and untransduced regions. Scale bars in (A), 50µm; in 
(B,C), 20µm.
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SHH Produced by WNThi Placode Cells Promotes Symmetric Divisions of 

SOX9+ Cells But Cannot Signal Its Own Cells  

My results thus far suggested that SOX9+ cell specification is dependent 

upon downregulating WNT signaling in the suprabasal cells of the hair placodes. 

However, if downregulation of WNT signaling was sufficient to specify SOX9+ 

cells, then all β-catenin-null cells would be SOX9+, yet SOX9+ cells cannot be 

entirely independent of WNT signaling, as Ctnnb1-null epidermal halos of SOX9+ 

cells were restricted to regions juxtaposed to (WNT-responding) WT placodes. 

One possibility consistent with these data is that adjacent WNThi cells generate a 

downstream effector, which reinforces SOX9+ cell specification and/or 

expansion. A good candidate was SHH, whose loss does not compromise WNT-

signaling nor formation of epithelial buds (Jamora et al., 2003). 

Using in situ hybridization, with help from June de la Cruz in the lab, I first 

verified that the basal WNThi placode cells are positive for Shh (Figure 2-8A). 

Next, I used Gli1-LacZ reporter to determine which cells are undergoing active 

SHH signaling (Bai et al., 2002b).   As SHH is known to signal to the underlying 

dermal condensate (Woo et al., 2012), Gli1-LacZ reporter activity in these dermal 

cells was anticipated (Figure 2-8B). Within developing placodes and germs 

however, SOX9+ cells displayed stronger SHH-reporter activity than basal 

LEF1/WNThi cells. Comparing Shh expression and WNT and SHH reporter 

activities, three patterns emerged: 1) Basal hair bud cells produce Shh but show 

only high WNT-signaling and no SHH-signaling; 2) Suprabasal placode cells 
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Figure 2-8. WNThigh cells express Shh, but display little SHH signaling. (A) 
Combined Shh in situ hybridization and SOX9 immunofluorescence (Left) or Shh 
in situ (Right) on sagittal sections of WT hair placode (top) and hair germ 
(bottom). Note Shh expressed by SOX9- basal HF cells. (B) Gli1LacZ/βgal 
immunofluorescence of sagittal sections of placode (top) and hair germ (bottom). 
Note low SHH-signaling (Gli1LacZ/βgal) in basal Pcadhigh cells. White dashed 
lines indicate basement membrane. Scale bars, 10µm. 
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show low WNT-signaling but elevated SHH-signaling; and 3) Nascent dermal 

papilla cells exhibit both WNT- and SHH- signaling. 

Based on these observations, I had two hypotheses: 1) SHH-producing 

cells are unable to undergo autocrine SHH signaling; 2) In developing hair buds, 

high WNT-signaling antagonizes SHH-signaling. To test these hypotheses, I 

engineered a mouse model that allowed us to activate Shh at different stages in 

epidermis development. I used a transgenic mouse model that constitutively 

expresses reverse tetracycline transactivator (rtTA) from the epidermis-specific 

keratin 14 promoter (K14rtTA). Upon treatment with doxycycline, rtTA is activated 

and can bind to Tet-Reponse Elements (TRE) to drive gene expression. These 

mice were crossed to Gli1-LacZ reporter mice to monitor SHH signaling. 

Additionally, I used a lentiviral construct harboring the cDNA for the N-terminal 

Shh, which does not need to be post-translationally processed, is not lipid-

modified and is therefore readily soluble (Zeng et al., 2001). The expression of 

Shh was driven by a minimal CMV promoter preceded by tandem TRE elements. 

The LV also harbored a constitutively expressed PGK-H2BGFP cassette to label 

LV-transduced cells. I transduced E9.5 K14rtTA; Gli1LacZ embryos with LV-TRE-

Shh-PGK-H2BGFP, which allowed us to visualize which cells were LV-

transduced and to induce Shh expression at different points in development by 

switching them to doxycycline-containing food  (Figure 2-9A). 

When Shh was induced at E13.5 (prior to HF specification) and analyzed 

at E15.5, ectopic paracrine SHH-signaling occurred in the WT IFE cells 
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surrounding GFP+ transduced Shh-expressing IFE cells (Figure 2-9B). 

Intriguingly, however, clear signs of autocrine SHH-signaling were also noted, as 

evidenced by dual presence of H2B–GFP and β-galactosidase. This clearly 

demonstrated that Shh-expressing cells are competent to undergo autocrine SHH 

signaling. Interestingly, SOX9 was elevated in regions of and surrounding the 

transduced GFP+Shhhi epidermal patches (Figure 2-9C). Scattered SOX10+ 

epidermal melanocytes showed Ab cross-reactivity, providing an internal control. 

To determine if SHH signaling induces the expression of Sox9 alone, or further 

changes the fate of the SOX9+ cells, I repeated the experiment on the 

background of K17mRFP reporter mice. Ectopically specified SOX9+ epidermal 

cells expressed the K17mRFP reporter, analogous to SOX9+ in WT hair 

placodes (Figure 2-9D). 

Moreover, regions of ectopic Shh expression showed strong repression of 

nuclear LEF1, normally present throughout the epidermis (Figure 2-9E). Taken 

together, these findings suggest that, under conditions where WNT-signaling is 

normally present but not as high as during placode specification, SHH can signal 

in autocrine manner and repress WNT signaling. 

To explore this antagonism further, I induced Shh at E15.5, i.e., at a stage 

after HF morphogenesis was initiated. Analyses at E17.5 showed that LEF1 

expression in the established WNThi pocket cells of the HF was refractory to 

elevated Shh, and no signs of fate conversion were observed, as transduced 

cells failed to acquire SOX9+ state (Figure 2-9F). 
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Figure 2-9. Ectopic SHH induces SOX9+ cell fate and inhibits WNT 
signaling. (A) Strategy for activating ectopic Shh in embryonic epidermis. (B)
Immunofluorescence of sagittal sections of E15.5 Gli1LacZ epidermis transduced 
with LV-TRE-Shh, induced at E13.5, and immunolabeled for Gli1-LacZ. Boxed 
area is magnified. Arrows denote autocrine SHH-signaling. (C-E) Planar confocal 
IMF of E15.5 K14rtTA (C, E) or K14rtTA; K17mRFP (D) epidermis transduced 
with LV-TRE-Shh, induced at E13.5, and immunolabeled for SOX9 (C, D) or 
LEF1 (E). Note SOX9 and K17mRFP induction (C, D) and LEF1 inhibition (E) in 
transduced regions. (F) IMF of sagittal sections of E17.5 HFs transduced with 
LV-TRE-Shh, induced at E15.5. Note that once HFs start to mature, SHH-
transduced pocket cells (arrows) do not show signs of LEF1 reduction or SOX9 
induction.
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Finally, if autocrine SHH-signaling is repressed by elevated WNT-

signaling, then exclusive paracrine signaling should be observed when WNT-

signaling is ectopically elevated. To test this hypothesis, I returned to our mosaic 

Apc loss-of-function model. First, Irina and I confirmed that Shh expression is 

dependent on elevated WNT signaling, such that only Apc-null cells expressed 

Shh (Figure 2-10A). Next, we purified WT and Apc-null cells from the transduced 

embryos and performed qRT-PCR. As expected, Apc-null cells expressed very 

high levels of WNT-target gene Axin2 (Figure 2-10B). However, while these cells 

expressed high levels of Shh, they showed no signs of responding to it, as 

judged by failure to upregulate SHH target genes Gli1 and Ptch1. Together, these 

results are consistent with the view that, in cells that do not experience high 

levels of WNT, autocrine or paracrine SHH signaling can occur and suppress 

WNT signaling. However, in WNThi cells expressing Shh, such as in WT hair 

placodes or in Apc-null regions, high WNT-signaling prevents autocrine signaling. 

Given that the basal cells within hair placodes express high levels of Shh, 

but the suprabasal SOX9+ cells undergo higher levels of SHH signaling, I 

hypothesized that the role of SHH signaling within developing HFs is to suppress 

WNT signaling in the suprabasal daughter cells following the asymmetric 

perpendicular division. To understand the role of SHH signaling in asymmetric 

fate specification, I analyzed SOX9+ and LEF1+ populations in Shh-null hair buds. 

However, and in striking contrast to WT HFs, LEF1/WNThi cells were more 
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Figure 2-10. WNThigh cells produce, but do not respond, to SHH. (A) Sagittal 
section of combined in situ and IMF of Apc-null cells from Fucci; Apcfl/fl; 
R26YFPfl/+ epidermis transduced with LV-Cre. Note Shh induced in ectopic 
WNThigh cells. (B) Quantitative real-time (qRT-)PCR in FACS-purified Apc-null 
and WT cells from n=3 litters, mean ± SD. 
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abundant than SOX9+ cells by the hair germ stage (Figure 2-11B). Moreover, the 

overall intensity of SOX9 immunofluorescence was reduced in the absence of 

SHH. Together, these findings demonstrated that although SHH signaling is not 

necessary for SOX9+ cell specification, it is essential to repress WNT signaling in 

the suprabasal placode cells, as well as to expand the SOX9+ cells and to boost 

their fate by suppressing WNT-signaling. 

SHH-signaling plays a key role in the recruitment and assembly of the 

dermal condensate (Karlsson et al., 1999; St-Jacques et al., 1998). To address 

whether there is an additional crosstalk of epidermally-derived SHH with the 

dermis that is responsible for the above phenotypes, I analyzed embryos with 

epidermis-specific loss of Smoothened, which is necessary to transduce SHH 

signaling. WNT-signaling perturbations within Shh-null hair buds appeared to 

emanate from epithelial alterations in SHH-signaling, since they still occurred 

when I selectively ablated Smoothened in embryonic skin epithelium. Thus, in the 

absence of this key receptor for SHH-signaling, the population of WNThi LEF1+ 

basal cells was expanded, analogous to what I saw in Shh-null hair germs 

(Figure 2-11C). 

Next, I investigated the contribution of SHH signaling to the conferral of 

SOX9+ status in the suprabasal cells within placode versus the basal SOX9+ 

cells forming the halo surrounding hair placodes. In contrast to early WT 

placodes and germs, the surrounding halo of SOX9+ IFE cells was missing in 
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Figure 2-11. LEF1+ cells are expanded, while SOX9+ cells are reduced in 
Shh KO hair follicles. (A) IMF of sagittal sections of Shh-/- and Shh+/- hair 
placode and germ. (B) Quantifications of SOX9+ and LEF1+ cells relative to 
number of Pcad+ cells in sagittal sections of Shh–/– and Shh+/– HFs. m is slope ± 
standard error. r2 is coefficient of determination. Epithelial buds of same stage 
and size were compared from n=3 embryos, 54 HFs for SOX9, 105 HFs for 
LEF1. (C) Planar confocal IMF of epithelial-specific Smoothened heterozygote 
and Smoothened-null hair bud showing LEF1 expanded suprabasally (brackets), 
as in Shh-null embryo. 
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Shh-null placodes, even though suprabasal SOX9+ cells were still found (Figure 

2-12A). To determine whether paracrine SHH signaling is responsible for the 

appearance of the SOX9+ halo, I transduced Smofl/fl; R26-YFPfl/+ embryos with 

LV-Cre to generate mosaic hair placodes, where some cells have lost Smo. 

Smoothened-null cells still contributed to the pool of suprabasal SOX9+ placode 

cells, but not to IFE halos of SOX9+ cells (Figure 2-12B). 

Finally, the imbalance of SOX9+ and LEF1+ daughter cells in Shh-null hair 

buds could be caused by defect in spindle positioning during cell divisions, if they 

were regulated by SHH signaling. However, when I quantified the orientation of 

cell divisions within Shh-null hair placodes, they were still exclusively 

perpendicular to the underlying basement membrane (Figure 2-12C). These data 

further underscore the importance of WNT, but not SHH, for these divisions. 
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Figure 2-12. SHH signaling specifies basal SOX9+ cells surrounding 
developing hair placodes. (A) Planar confocal IMF of basal and suprabasal 
cells in a placode from E15.5 Shh+/- and Shh-/- epidermis immunolabeled for 
SOX9 and Pcad. Note SOX9+ suprabasal cells and their absence in the basal 
layer of Shh-/- placode. (B) Planar confocal IMF of basal and suprabasal cells in a 
placode from E15.5 Smofl/fl; R26YFPfl/+ embryos transduced mosaically with LV-
Cre, immunolabeled for SOX9 and YFP. Note the absence of SOX9+ cells in the 
transduced (outlined) basal, but not suprabasal, cells (arrowheads). (C) (Top) 
IMF of sagittal sections of Shh–/– hair bud showing perpendicular divisions 
occurring independently of SHH-signaling (boxed region magnified at right). 
(Bottom) Quantifications of division orientations in IFE and placodes of Shh+/– 
and Shh–/– placodes. Data are % ± SD (Shh–/–: 30 divisions in 13 HFs, 116 
divisions in IFE; Shh+/–: 31 divisions in 11 HFs; 98 divisions in IFE). 
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Discussion 

To determine how heterogeneity arises during the earliest stages of HF 

morphogenesis, I performed mosaic short-term lineage tracing using epidermis-

specific lentiviral transduction. I found examples of single clones composed of 2-

3 cells, organized perpendicular to the basement membrane. Although the clones 

have arisen from a single progenitor, the cells expressed different markers, with 

the suprabasal cell becoming SOX9+ and the basal cell remaining Pcadhi and 

SOX9-, suggesting that they have acquired differential fates shortly after the 

division. The perpendicular organization of the clones suggested that they have 

arisen from a progenitor undergoing a perpendicular asymmetric division relative 

to the basement membrane. 

In previous studies, analyses of spindle orientations in skin were confined 

to either epidermis (Clayton et al., 2007; Lechler and Fuchs, 2005; Williams et al., 

2011) or basal cell carcinomas (BCCs) (Larsimont et al., 2015). It is striking that, 

in contrast to epidermis where perpendicular spindles peak at ~50-60%, or to 

BCC where epidermal orientations are randomized, virtually all hair placode 

spindles are oriented perpendicularly. 

The mechanism behind the exclusively perpendicular divisions within hair 

placodes remains to be elucidated. Oscar Hertwig has proposed over 100 years 

ago that cells preferentially divide along their long axes, suggesting that cell 

shape determines cell division orientation (Hertwig, 1884). More recently, 

computational models have been developed that can predict the division axis 
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based on cell shape (Minc et al., 2011). However, cell polarity and attachment to 

the extracellular matrix also affect the orientation of cell division (Grill et al., 2001; 

Thery et al., 2005). During the first steps of hair placode formation, cells undergo 

centripetal migration and compaction (Ahtiainen et al., 2014). This results in 

dramatic cell shape changes within the developing hair placode, where cells 

become apico-basally elongated. Both cell compaction and apico-basal 

elongation might in turn contribute to orienting cell division perpendicular to the 

basement membrane. 

The relation between placode formation, asymmetric cell division, and 

SOX9+ cell specification became particularly intriguing when I first observed 

signs of asymmetric partitioning of WNT-signaling between placode daughters 

following the division. Growing evidence has suggested that WNTs may be a 

critical link between SC niche signaling and oriented cell divisions. In the early C. 

elegans embryo, WNT-signaling is coupled to spindle orientation through 

polarization of the β-catenin destruction complex (Cabello et al., 2010; Sugioka et 

al., 2011). In cultured human pluripotent SCs, a polarized bioactive WNT bead 

applied to one side of the cell surface results in an asymmetric division, with 

nuclear β-catenin confined to the daughter touching the WNT bead (Habib et al., 

2013). In another study, membrane receptors for non-canonical WNT signaling 

antagonize canonical WNT signaling in adult hematopoietic SCs to differentially 

control proliferative states of daughters (Sugimura et al., 2012). Our findings now 

suggest a tantalizing possibility that during epithelial bud formation, the basement 



61 

membrane polarizes and restricts canonical WNT signaling, such that the 

pathway becomes asymmetrically partitioned in a perpendicular division. 

A myriad of factors could participate in polarizing WNT signaling to 

the basal side of placode cells. Heparin sulfate proteoglycans, which can bind 

and modulate WNT ligands, are enriched within basement membranes (Astudillo 

and Larrain, 2014; Baeg et al., 2001). The basement membrane is known to 

polarize a number of surface receptors including integrins that are essential for 

proper spindle orientation (Lechler and Fuchs, 2005), and similar intertwined or 

independent interactions could also polarize WNT receptors. Preferential 

activation of integrins and associated FAK on the basal side of placode cells 

favors FAK’s direct inactivation of GSK3β (Gao et al., 2015) and β-catenin 

stabilization basally. Conversely, since APC orients mitotic spindles of Drosophila 

germ cells relative to the hub cells (Yamashita et al., 2003) and can associate 

with PAR3/aPKC in mammalian cells (Etienne-Manneville and Hall, 2003; 

Kodama et al., 2003), the β-catenin destruction complex is favored to be apically 

enriched. Although the mechanism remains incompletely understood, the highly 

polarized placode cells and underlying basement membrane provide an 

environment conducive to preferentially retaining WNT-signaling in the basal 

daughter and reducing it in the suprabasal daughter of asymmetric cell divisions. 

Suprabasal fates of asymmetrically dividing epidermal and placode cells 

differ markedly. Based on our findings, these differences appear to be rooted in 

relative levels of β-catenin/LEF activity within basal progenitors. Indeed, our 
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mosaic loss- and gain-of-function studies provided powerful genetic evidence that 

WNT-signaling and its associated SHH expression within basal progenitors are 

critical for reducing WNT-signaling and elevating SHH-signaling in suprabasal 

placode daughters to a level compatible for SOX9 induction. Our ability to 

genetically uncouple asymmetric cell fates from both perpendicular and 

asymmetric cell divisions by juxtaposing WNThi and WNTneg/lo cells underscores 

the importance of asymmetric cell divisions in establishing this condition within 

the native epithelial bud. Interestingly, it is not the absolute levels of WNT 

signaling that determine cell fates, but rather the relative levels of WNT signaling 

in the juxtaposed cells. For example, pairing β-catenin-null cells (WNTneg) with 

WT cells endows the β-catenin-null cells with the SOX9+ fate. At the same time, 

juxtaposing APC-null (WNThi) cells with WT cells endows the WT cells with the 

SOX9+ fate. This uncoupling illustrates how changes in microenvironment and/or 

genetic mutations can alter cell fates. 

The incompatibility of elevated WNT signaling and SOX9 expression in 

developing HFs is reminiscent of their mutually exclusive signaling in digit 

patterning (Raspopovic et al., 2014). Additionally, knockout of β-catenin in the 

limb results in the expansion of Sox9 toward the ectoderm, whereas β-catenin 

gain-of-function results in Sox9 down-regulation (Hill et al., 2005; Hill et al., 

2006). 

While juxtaposition of WNThi and WNTlo cells is sufficient to induce SOX9+ 

fate in the WNTlo cells, I also found that the levels of SOX9 and the expansion of 
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SOX9+ cells depends on SHH signaling. Previously, it was observed that, in 

E18.5 skin of Shh-null or Gli2-null embryos, SOX9 is low or absent, and when 

SMOOTHENED or SHH signaling are superactivated in adult epidermis, SOX9-

expressing BCCs develop (Larsimont et al., 2015; Vidal et al., 2005). 

Interestingly, BCC formation and Sox9 expression on the background of 

constitutively active Smoothened still requires WNT/β-catenin (Yang et al., 2008; 

Youssef et al., 2012). Additionally, SOX9+ cells also seem to undergo WNT 

signaling, based on nuclear β-catenin staining both in early human and mouse 

BCCs (Yang et al., 2008). It is not clear at present what role WNT signaling has 

in the initiation of BCC and in the regulation of SHH signaling and Sox9 

expression. While all my SHH overexpression experiments were done on WT 

background, it would be interesting to repeat them on WNTnull background, to 

determine whether Sox9 induction by SHH is also dependent on WNT signaling 

embryonically. While it is clear from the mosaic β-catenin loss-of-function data 

that cell autonomous WNT signaling is not required for Sox9 expression, it is 

possible that additional factors expressed by WNT-signaling cells are necessary 

for Sox9 induction. 

Another long-standing mystery is why the Shh-expressing pocket in HFs is 

so small (DasGupta and Fuchs, 1999; Noramly et al., 1999; St-Jacques et al., 

1998). Our genetic studies show that elevating WNT-signaling in the hair placode 

generates SHH, but raises the threshold for autocrine SHH-signaling. 

Conversely, if WNT-signaling is sufficiently low, the block in autocrine SHH-
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signaling can be lifted and SHH is able to repress low-moderate levels WNT 

signaling. 

SHH-WNT antagonism has been shown to play a role in several other 

developmental systems. For example, it also plays a role in taste papilla 

development, where Shh expression is WNT/β-catenin-dependent, but at the 

same time SHH antagonizes WNT signaling (Iwatsuki et al., 2007). Additionally, 

crosstalk between WNT and SHH signaling sets up the dorsoventral patterning of 

the vertebrate nervous system. In this case, WNT induces the expression of Gli3, 

a negative regulator of SHH signaling, thus restricting SHH response (Alvarez-

Medina et al., 2008). Finally, reciprocal antagonism between WNT and SHH 

signaling regulates the extent of neural stem cell proliferation in the Xenopus 

retina (Borday et al., 2012). In this case, Wnt and Hedgehog signalling pathways 

restrain each other’s activity through the transcriptional regulation of Gli3 and 

Sfrp-1. 

The mechanisms mediating the mutual WNT-SHH antagonism in the 

developing HFs remain to be elucidated. It has been previously demonstrated in 

293 cells that Sox9 overexpression can suppress β-catenin-induced expression 

of the WNT reporter TOPFLASH (Akiyama et al., 2004). This inhibition is not 

achieved by SOX9 binding and competing at the Tcf/Lef DNA-binding sites. On 

the other hand, SOX9 C-terminal transactivation domain can directly interact with 

the Armadillo repeats of β-catenin and compete for binding with TCF/LEF 

transcription factors. Additionally, binding of SOX9 and β-catenin induces β-
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catenin degradation, which can be inhibited by MG132, a proteasome inhibitor 

(Akiyama et al., 2004; Topol et al., 2009). Therefore, it is possible that SHH-

driven induction of Sox9 further dampens WNT signaling, by competing with 

TCF/LEF binding to β-catenin and by inducing its degradation. 

Irrespective of mechanism, the outcome of this balanced antagonism 

between WNT and SHH signaling is that WNThi basal cells divide asymmetrically 

to generate WNTlo daughters, which later become SCs. As our genetic analyses 

confirm, these features are WNT-dependent and SHH-independent. By contrast, 

in a SHH-dependent and WNT-independent fashion, SHH-signaling reinforces 

expression of the SOX9 master regulator by dampening WNT signaling and 

expands the SC pool. Genetic perturbation of either WNT-signaling or SHH-

signaling specifically within the epithelium is sufficient to skew differential fate 

outcomes and behaviors. 

Materials and Methods 

Mouse Strains and constructs 

All animals used for the experiments were generated previously: K14-rtTA, 

Smofl/fl, Shhneo, Gli1Lacz, Rosa26Flox-Stop-Flox-YFP, Ctnnb1fl/fl, Axin2LacZ, Fucci, and 

Apcfl/fl (Bai et al., 2002a; Brault et al., 2001; Chiang et al., 1999; Corrales et al., 

2006; Dassule et al., 2000; Harfe et al., 2004; Kuraguchi et al., 2006; Litingtung 

et al., 1998; Long et al., 2001; Lustig et al., 2002b; Mao et al., 1999; Muzumdar 

et al., 2007; Nguyen et al., 2006; Sakaue-Sawano et al., 2008; Soeda et al., 
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2010; Srinivas et al., 2001) were described previously. Lhx2-EGFP mice were 

from The Gene Expression Nervous System Atlas (GENSAT) Project, NINDS 

Contracts N01NS02331 & HHSN271200723701C to The Rockefeller University 

(New York, NY, USA). K14-H2BGFP transgenic mice were generated with 

standard pronuclear injections (Fuchs Lab). Lentiviral doxycycline-inducible Shh 

overexpression construct (LV-TRE-Shh-PGK-H2BGFP) has been previously 

described (Hsu et al., 2014b). Construct for the lentiviral CreERT2 has been 

previously described (Williams et al., 2014). Construct for the lentiviral Cre has 

been previously described (Beronja et al., 2010). Dkk1 from pCS2+ Dkk1-flag 

(gift from Xi He (Addgene plasmid # 16690)) was cloned by PCR to replace Shh 

in the LV-TRE-Shh-PGK-H2BGFP. 

Embryo Preparation, Immunofluorescence and In Situ Hybridization 

For immunofluorescence, embryos were fixed in 4% PFA in PBS for 1h at 

room temperature and washed extensively in PBS. For whole-mount or tissue 

sections, samples were permeabilized for 3 hours in 0.3% Triton X-100 in PBS, 

or embedded in OCT (Tissue Tek), cut at a thickness of 10μm and permeabilized 

for 10 min 0.3% in Triton X-100. Tissue samples were then blocked in Gelatin 

Block (2.5% fish gelatin, 5% normal donkey serum, 1% BSA, 0.3% Triton, 1× 

PBS). When immunolabeling with mouse antibodies, sections were incubated 

with the M.O.M. blocking kit according to manufacturer’s instructions (Vector 

Laboratories). The following primary antibodies were used: P-Cadherin (goat, 
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1:400, R&D AF761), phospho-Tyr397 FAK (rabbit, 1:200, Cell Signaling D20B1), 

active β1-integrin (rat, 1:150, BD, 9EG7) Survivin (rabbit, 1:300, Cell Signaling 

2808), LEF1 (rabbit, 1:300, Fuchs Lab), SOX9 (rabbit, 1:300, Fuchs Lab), LHX2 

(rabbit, 1:2000, Fuchs Lab), anti-GFP/YFP (chicken, 1:2000, Abcam), β-catenin 

(mouse, 1:1000, BD 610154), acetylated tubulin (mouse, 1:500, Sigma T7451), 

Beta-Gal (rabbit, 1:10000, MP Bio). Primary antibodies were incubated at 4C 

overnight. After washing with 0.3% Triton X-100 in PBS, samples were incubated 

for 2h at room temperature with secondary antibodies conjugated with Alexa 488, 

RRX, or 647 (respectively, 1:1000, 1:500, and 1:100, Life Technologies). 

Samples were washed, counterstained with 4'6'-diamidino-2-phenilindole (DAPI) 

and mounted in Prolong Gold. 

LacZ-derived β-galactosidase activity was assayed on frozen sections 

(10μm) fixed with 0.5% glutaraldehyde in PBS for 2 min, washed with PBS, and 

then incubated with 1 mg/ml Xgal substrates in PBS with 1.3 mM MgCl2, 3 mM 

K3Fe(CN)6, and 3 mM K4Fe(CN)6 for 1 hr at 37C. In situ hybridization for Shh 

was performed as described previously (DasGupta and Fuchs, 1999). 

Immunohistochemistry 

Pre-fixed (4% PFA in PBS) paraffin embedded embryos were cut at 10μm. 

Immunohistochemistry was performed by incubating sections at 4 °C overnight 

with primary antibodies against mouse anti-β-catenin (mouse, 1:1000, Sigma, 

15B8). For brightfield immunohistochemistry, biotinylated species-specific 
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secondary antibodies followed by detection using (ImmPRESS reagent kit 

peroxidase Universal - Vector Labs) and DAB kit (ImmPACT DAB Peroxidase 

(HRP) SubstrateVector Labs) were used according to the manufacturer’s 

instructions. 

Confocal and Epifluorecence Imaging 

Epifluorescence images were acquired with an Axio Oberver.Z1 

microscope equipped with a Hamamatsu ORCA-ER camera (Hamamatsu 

Photonics), and with an ApoTome.2 (Carl Zeiss) slider that reduces the light 

scatter in the fluorescent samples, using 20×, 40×, and 63× objectives, controlled 

by Zen software (Carl Zeiss). Confocal images were acquired with a Zeiss 

LSM780 laser-scanning microscope (Carl Zeiss MicroImaging) through a 40× or 

63× oil objective. For whole mount imaging, z stacks of 20–40 planes (0.25mm) 

were acquired. 

Lentiviral Lineage Tracing 

LV-CreERT2 was used for short-term lineage tracing as previously 

described (Williams et al., 2014). This construct was found to have no detectable 

leakiness in the absence of tamoxifen both in vitro and in vivo. The R26flox-stop-

flox-YFP mouse was used as a reporter for Cre activation and to trace progeny. 

The fluorescent signal was detected using a polyclonal antibody against GFP, 

which recognizes cytoplasmic YFP, whose progeny could then be discriminated 
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on the basis of their proximity. Low-titer virus containing the CreERT2 cassette 

was transduced into E9.5 embryos and clonal recombination was induced by 

administering a single dose of tamoxifen (4mg per dam) by oral gavage, as 

intraperitoneal injection of tamoxifen at doses sufficient to induce recombination 

frequently led to aborted litters. 48h following tamoxifen administration was 

empirically determined to be sufficient to allow most clones labeled to consist of 

1–3 cells. Tamoxifen was administered at E15.5 to monitor peak placode 

formation. Although CreERT2 was delivered at the time when the epidermis was a 

single layer of basal cells, it will be expressed in all of their descendants owing to 

its ubiquitous PGK promoter. Only cells within early epithelial buds were counted 

as it is unlikely that they were present at the time of labeling given the rapid rate 

of HF morphogenesis at this age. Clones were imaged with Pcad and SOX9 as 

markers. 

Spindle Orientation and Division Measurements 

The method for measurement of division angles has been described previously 

(Williams et al., 2014). Briefly, late-stage mitotic cells were identified by the 

presence of survivin immunoreactivity at the midbody/cleavage furrow. Cells 

were scored only if both daughter nuclei surrounding the survivin staining could 

be unambiguously identified. Angles were measured by drawing a line through 

the centers of the two nuclei, and parallel to the basement membrane. To reduce 

any bias in data collection, all data from each group were not analyzed until all 
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images were collected. n values are indicated in the main text; each experiment 

was repeated with at least two replicates and data from at least 3 embryos. No 

statistical method was used to predetermine sample size, but data were collected 

from all available embryos of the indicated genotypes. All graphs and statistical 

analyses (Fisher’s exact tests) were produced using Prism. 
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CHAPTER 3: SPECIFICATION AND CONTROL OF THE EARLIEST HAIR 

FOLLICLE STEM CELL PROGENITORS 

While the heterogeneity within developing HFs can be observed very early 

during HF morphogenesis, the earliest time point when HFSCs are specified 

remains to be elucidated. Interestingly, LHX2 and SOX9 – two transcription 

factors critical for HFSC specification and maintenance – are expressed as early 

as during the placode stage of HF morphogenesis (Nowak et al., 2008; Rhee et 

al., 2006). Additionally, SOX9 is a pioneer transcription factor, whose expression 

is sufficient to dramatically change the chromatin architecture and induce the 

expression of previously polycomb-repressed genes (Adam et al., 2015). 

As I have discussed in the previous chapter, SOX9+ cells are specified by 

perpendicular asymmetric divisions of SOX9- basal placode cells via WNT-SHH 

antagonism. To determine if the SOX9+ cells specified during early placode 

morphogenesis might be the HFSC progenitors and later contribute to the adult 

HFSC pool, I performed lineage tracing of different populations of hair placode 

cells. Additionally, I elucidated the mechanisms involved in the control of HFSC 

progenitor numbers specified via asymmetric divisions. Interestingly, basal 

WNThigh placode cells undergo slow divisions, and spend prolonged periods of 

time in the G1 phase of the cell cycle. On the other hand, SOX9+ HFSC 

progenitors undergo more rapid divisions. Finally, I also found that only early 

divisions within the hair placode give rise to SOX9+ HFSC progenitors, while later 
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divisions give rise to the differentiated lineages within the HF, further restricting 

the HFSC progenitor pool. 

Results 

SOX9+ cells specified by asymmetric cell divisions within hair placodes 

contribute to the adult HFSC pool 

As I have discussed in Chapter 2, Shh is expressed exclusively by the 

basal WNThi placode cells, and is absent from the SOX9+ cells. Additionally, 

SOX9+ cells are specified by perpendicular asymmetric cell divisions of the basal 

WNThi Shh+ cells. Previous experiments with R26LacZ reporter mice showed 

that progeny of both ShhCre (Levy et al., 2005) and Sox9Cre (Nowak et al., 

2008) label the entire HF, but they were unable to address temporal contributions 

of SHH+ and SOX9+ cells to various lineages within the developing HFs. 

To assess whether the SOX9+ cells generated via early asymmetric cell 

divisions within the hair placode contribute to the adult HFSC pool, I used 

ShhCreER lineage tracing to label cells in early hair buds and trace their fate. To 

support our finding that SHH+ cells divide perpendicularly and give rise to 

suprabasal SOX9+ cells, Aaron and I labeled SHH+ cells within early hair buds 

using ShhCreER; R26mTmGfl/+ embryos. In this mouse model, prior to Cre-

mediated recombination, all cells within the animal are Tomato+. Upon 

recombination, the expressed fluorescent protein switches from tomato to GFP. 

30h after tamoxifen induction, we performed two-color live imaging of hair 
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placodes, which were the only structures with GFP+ cells (Figure 3-1A, left). Over 

18h of imaging, only a few GFP+ (SHH+) mitoses were observed. However, these 

divisions were perpendicular, generating one daughter cell atop the other (Figure 

3-1A, right). 

Next, I labeled a small number of cells within E14.5→E17.5 ShhCreER;

R26YFPfl/+ hair buds by a single tamoxifen treatment and traced their fates into 

adulthood. YFP+ cells were seen within the expected domains of emerging 

placodes and germs (Figure 3-1B). Only basal cells were labeled at the placode 

stage, in agreement with Shh being expressed only in that population, also 

demonstrating that ShhCreER faithfully recapitulates endogenous Shh 

expression (Figure 3-1B, top left). As the HFs progressed through 

morphogenesis into the hair germ and hair peg stages, SOX9+ cells became 

YFP+, showing that they are progeny of the Shh+ basal cells (Figure 3-1B, germ 

and peg). 

As a positive control, I used Sox9CreER; R26YFPfl/+, which was expected 

to label SOX9+ cells, but not basal WNThi Shh+ SOX9- cells. Lineage tracing 

using Sox9CreER clearly demonstrates that the progeny of SOX9+ cells does not 

contribute to the basal WNThi pocket and instead remains at the upper part of 

invaginating HFs (Figure 3-1B). Thus, as predicted from our findings, Shh-

expressing cells gave rise to SOX9+ daughters, but Sox9-expressing cells at 

these early stages generated only SOX9+ daughters and did not contribute to the 

WNThi Shh+ pocket.  
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Figure 3-1. Embryonic ShhCreER and Sox9CreER lineage tracing. (A) Live 
imaging of perpendicular division of SHH+ placode cell. (Left) Labeled membrane 
shows SHH+ (GFP+) cells within a placode. (Right) Time course of maximum-
intensity projections of planar confocal stacks (Top) and sagittal reconstructions 
(Bottom) of perpendicular division of SHH+ placode cell (green) leading to a basal 
(green) and suprabasal (red) cell (overlap, yellow). t=0 corresponds to onset of 
mitosis as determined by cell rounding. (B) Examples of lineage tracings of SHH+ 
cells marked at early stages of HF morphogenesis. Note that SHH+ cells give rise 
to SOX9+ cells, but SOX9+ cells do not generate Pcadhi SHH+ cells. White dashed 
lines indicate basement membrane. All scale bars, 10µm. 
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Next, I repeated the induction of ShhCreER and Sox9CreER lineage 

tracing during hair placode morphogenesis by a single tamoxifen treatment, and 

traced the labeled cells into adulthood, when the bulge HFSC niche is 

established. Strikingly, progeny from these early ShhCreER-marked cells wound 

up in the adult bulge, marked by keratin 24 (K24) (Figure 3-2, left). Moreover, 

ShhCreER-marked cells were functional and contributed to all SC lineages in 

subsequent rounds of hair cycling (Figure 3-2, right). Additionally, Sox9CreER-

marked cells within the placode were also found in the adult bulge SC pool and 

also contributed to subsequent hair cycles (Figure 3-2, right). Together, these 

findings support the notion that HFSCs are born from early asymmetric cell 

divisions within developing hair placodes. 

HF asymmetry is established during morphogenesis and is maintained into 

adulthood 

While ShhCreER and Sox9CreER lineage tracing labeled sparse YFP+ 

cells within the expected domains of emerging placodes (Figure 3-1B), strikingly 

ShhCreER often marked cells within the anterior (A) placode, while Sox9CreER 

frequently marked cells within the posterior (P) (Figure 3-3A). Such examples 

reflect planar cell polarity (PCP) established by the time of labeling (DasGupta 

and Fuchs, 1999; Devenport and Fuchs, 2008). 

As the HF morphogenesis progressed, the asymmetric pattern of labeling 

by ShhCreER and Sox9CreER was maintained, such that if a YFP-marked Shh- 
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Figure 3-2. Embryonically labeled SC progenitors contribute to the adult 
HFSC pool. Examples of lineage tracings monitored to 1st telogen and anagen. 
Note ShhCreER; R26YFP+ (and Sox9CreER) labeled cells contribute to adult SC 
pool (K24+) (bracket), and to all HF lineages in subsequent hair cycle (right). All 
scale bars, 10µm. 
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expressing cell was more centrally located, its progeny formed the inner layer of 

SOX9+ cells, while if the YFP+ Shh-expressing cell was at the anterior-most 

boundary of the pocket, it generated the anterior outer layer of SOX9+ cells 

(Figure 3-1B, germ and peg, left). Conversely but again, in agreement with the 

placode’s planar polarization at the invagination stage, a number of Sox9-CreER 

lineage-tracings resided along the posterior side of developing HFs (Figure 3-

3A). Upon completion of morphogenesis, the A-P polarity in lineage-tracings was 

maintained for Shh-CreER, but often disappeared with Sox9-CreER (Figure 3-

3B,C). 

To determine whether the anterior-posterior asymmetry established during 

placode morphogenesis is maintained into adulthood, I quantified the labeling 

asymmetry within HFs in first and second telogen and anagen. Strikingly, even 

after undergoing catagen and entering first telogen, ShhCreER labeled cells 

remained anterior (Figure 3-3D,E). Upon entry into next anagen, this anterior 

patterning was maintained, and the marked bulge cells generated the new ORS, 

as well as contributed to internal differentiated lineages. When I followed the 

lineage tracing into the next hair cycle, anterior asymmetry was lost in the new 

bulge and subsequent hair cycle (Figure 3-3D,F). This loss of asymmetry was 

expected, given that the new bulge and hair germ are formed from the old ORS, 

and the ORS was already partially labeled during the previous anagen (Hsu et 

al., 2014a). 
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Figure 3-3. A-P asymmetry within HFs is maintained through development 
into adulthood. (A) Quantification of YFP+ cells on anterior and posterior sides 
of 34 (Shh-CreER) and 41 (Sox9-CreER) developing HFs in n=3 embryos. (B) 
Lineage-tracings tracked to HF maturation in P0–P1 pups. (C) Quantification of 
labeled cells on anterior and posterior sides of mature HFs (n=12, ShhCreER 
and n=8 Sox9CreER). (D) ShhCreER lineage-tracings monitored to the 1st and 
2nd adult resting (telogen) and growth (anagen) phases. Note labeling in ORS 
(arrows), matrix, and differentiating hair cells. (E) Quantification of 
ShhCreER/YFP+ cells on anterior and posterior sides of bulge in first telogen→
anagen transition from n=25 HFs. (F) Quantification of labeled cells in matrix and 
ORS during 1st and 2nd anagen (34 HFs 1st anagen from n=3 mice; 26 HFs 2nd 
anagen from n=2 mice). Dashed white lines mark basement membrane. Bracket 
denotes bulge SC niche. Scale bars: all 10µm. 
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Controlling the number of SOX9+ stem cell progenitors 

In order to understand how the number of SOX9+ SC progenitors is 

controlled, I analyzed the proliferation patterns of basal WNThi SOX9- placode 

cells, and the suprabasal WNTlo SOX9+ daughter cells.  

To address this question, I used Fucci embryos, where nuclei of G1/G0 

cells are labeled with monomeric Kusabira-Orange 2 (mKO2) (Ahtiainen et al., 

2014; Sakaue-Sawano et al., 2008). Additionally, the pregnant dams were 

administered a short pulse of nucleotide analogue 5'-ethynyl-2'-deoxyuridine 

(EdU) to label dividing cells. From analysis of both planar and saggital views of 

developing hair placodes, EdU showed little or no overlap with mKO2+ cells 

(Figure 3-4A). In the epidermis, mKO2 marked nuclei in terminally differentiating 

suprabasal layers (Figure 3-4A, asterisks). Within hair germs, however, mKO2 

marked LHX2+ basal cells.  

Next, I used Fucci; Lhx2EGFP embryos to perform quantitative flow 

cytometry analysis to determine the relative number of mKOhi cells in the hair 

placodes and the IFE. This analysis confirmed that, in total, ~20% of hair placode 

cells were mKO2hi (Figure 3-4B,C). This result was in stark contrast to IFE, 

where only 2% of α6hi cells were mKO2hi. 

In many cell types, WNT-signaling is thought to promote self-renewal and 

proliferation (Clevers et al., 2014; Pei et al., 2012; Reya et al., 2003; Shin et al., 

2011). In the hair placodes, however, the WNThi pocket was also the most  
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Figure 3-4. Cells in hair placodes undergo prolonged G1 phase of cell 
cycle. (A) mKO2 epifluorescence and immunolabeling of skin from Fucci; 
Axin2LacZ embryo following 4hr EdU (Axin2-LacZ=β-galactosidase). Asterisks 
denote terminally differentiating epidermal cells overlying the developing HF. 
Scale bar 10µm. (B) Flow-cytometry plots for α6 and mKO2 in E17.5 LHX2-
EGFP embryonic HF (EGFP+) and IFE (EGFP–). Note that a significant fraction of 
α6hi HF, but not IFE cells are mKO2bright (red box). Mean fluorescence intensities 
(MFI) in IFE and HF for mKO2+ cells (Inter+High). Data are from 5 independent 
analyses and are mean ± SD. (C) Flow cytometry analysis scheme of developing 
HFs and IFE from Lhx2-EGFP embryos. Epidermis was identified as CD140a– 
and α6+. Hair buds are Lhx2-EGFP+, while IFE is Lhx2-EGFP–, α6hi.  
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quiescent (Figure 3-4A, top), suggesting a link between WNT signaling and 

proliferation. 

To determine whether high levels of WNT signaling in the epidermis cause 

cells to cycle slower, Irina and I crossed Fucci mice with APCfl/fl; R26-YFPfl/+ 

transduced with low titer LV-Cre. The mKO2hi population was accentuated when 

β-catenin stabilization was enhanced genetically (Figure 3-5A). Quantitative flow 

cytometry further demonstrated a dramatic increase in the number of APC-null 

mKO2hi cells relative to uninfected controls (Figure 3-5B,C), thereby reinforcing 

the notion that, in developing epithelial buds in vivo, high WNT-signaling slows 

proliferation. 

That said, the WNThi cells appeared to be in an extended G1 rather than a 

G0 state, since asymmetric divisions within this basal pocket were still seen at the 

hair germ and peg stages, and since occasional mKO2-negative and EdU+ cells 

were captured within this pocket (Figure 3-6). 

From these data, I concluded that the early WNThi basal cells within the 

HF not only divide asymmetrically, but also do so infrequently. These coupled 

behaviors ensure that the pocket of WNThi cells, established during placode 

formation, maintains a constant position and small size throughout HF 

morphogenesis. At the same time, this mechanism allows for tight control of the 

number of the SOX9+ SC progenitors produced via the early asymmetric 

divisions. 
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Figure 3-5. WNT Signaling Induces Prolonged G1 Phase of Cell Cycle. (A) 
Planar confocal IMF of epidermis from E14.5 Fucci;Apcfl/fl;R26YFPfl/+ embryo 
transduced mosaically with LV-Cre and labeled with EdU 4hr prior to 
immunolabeling as shown. Note mKO2bright and EdUlow signals in WNT-
hyperactive (YFP+) regions. (B) Flow-cytometry plots for α6 and mKO2 in E14.5 
Fucci;Apcfl/fl;R26YFPfl/+ embryos transduced with LV-Cre. Note that a significant 
fraction of transduced, but not WT cells are mKO2bright (red box). Mean 
fluorescence intensities (MFI) in transduced and WT cells for mKO2 (Inter+High). 
Data are from 5 independent analyses and are mean ± SD. (C) Flow cytometry 
analysis scheme of APC-KO vs. WT cells from APCfl/fl; R26-YFPfl/+ embryos 
mosaically transduced with LV-Cre. Epidermis was identified as CD140a–. APC-
KO regions are YFP+, WT cells are YFP–, α6hi. 
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Figure 3-6. WNThi cells are in an extended G1 rather than G0 state. IMF of 
sagittal sections of hair germs showing examples of EdU+ cell (left, arrow) and 
mKO2-negative dividing cell (right, box) within Pcadhi (WNThi) mKO2+ pocket. 
Scale bar 10µm.  
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In contrast to WNThi basal cells, SOX9+ suprabasal cells showed signs of 

rapid proliferation and expansion. From live imaging experiments, Aaron 

observed divisions within the suprabasal plane of the placode (Figure 3-7A). In 

contrast to those of the basal layer, suprabasal divisions within early placodes 

were exclusively parallel relative to the embryo surface. 

Further evidence came from proliferation analysis of SOX9+ and LEF1+ 

cells following a short EdU pulse. At the placode stage, SOX9+ and LEF1+ cells 

were comparably proliferative, consistent with their derivation from asymmetric 

divisions (Figure 3-7C). However, none of the SOX9+ cells were mKO2hi, thereby 

distinguishing suprabasal placode cells from mKO2hi terminally differentiating 

epidermal cells and basal WNThi cells (Figure 3-7B). Moreover by the hair germ 

and peg stage, proliferation within the SOX9+ population clearly surpassed that in 

WNThi LEF1+ cells (Figures 3-7C,D). 

The positive correlation between proliferation and SOX9 was as striking as 

the inverse correlation between proliferation and LEF1/WNT-signaling. This 

correlation was accentuated in the proliferative SOX9+ WT IFE halos around 

WNThi Apc-null non-proliferative patches within Apc mosaic skin (Figure 3-7E). 

The consequence of these WNT-dependent differences became 

increasingly apparent as HF morphogenesis progressed. While LEF1+ WNThi cell 

numbers remained constant, SOX9+ WNTlo cells expanded (Figure 3-7F). SOX9+ 

cell divisions appeared to be symmetric, with randomized spindle orientations 

(Figure 3-7G). 



Figure 3-7. SOX9+ Cells Expand Symmetrically During HF Morphogenesis. 
(A) Time course from live imaging of parallel suprabasal division in placode. 
(Top) Planar views centered in suprabasal plane with dividing cell pseudo-
colored green. (Bottom) Sagittal views reconstructed from confocal stacks. 
Dividing cell circled in cyan. t=0 corresponds to onset of mitosis as determined by 
DNA condensation. 75 suprabasal divisions imaged from n=3 embryos. (B) 
Sagittal endogenous fluorescence (mKO2) and IMF (SOX9) of hair bud from 
E17.5 Fucci embryo after 4h pulse of EdU. Asterisk marks terminally 
differentiating suprabasal cell in the epidermis. (C) Quantification of proliferation 
(4h EdU pulse) of SOX9+ and LEF1+ cells at different HF morphogenesis stages. 
Data from n=3 litters, 74 HFs and are mean ± SD. (D) Sagittal IMF (SOX9, Pcad) 
during different HF morphogenesis stages after 4h pulse of EdU. (E) Planar 
confocal IMF of Apcfl/fl; R26YFPfl/+ epidermis transduced mosaically with LV-Cre, 
following 4h EdU pulse. (F) Quantification of numbers of LEF1+ and SOX9+ cells 
at different HF morphogenesis stages. Data from n=3 litters, 117 HFs and are 
mean ± SEM. (G) IMF of sagittal sections of HFs showing examples (arrows) of 
parallel, perpendicular, and suprabasal divisions in SOX9+ cells. White dashed 
lines indicate basement membrane. Scale bars in (A,B,D,G), 10µm; in (E), 20µm. 
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Only early asymmetric divisions within placodes produce SOX9+ HFSC 

progenitors 

When ShhCreER lineage tracing was started at the hair placode stage, it 

resulted in the labeling of suprabasal SOX9+ HFSC progenitors (Figure 3-1B, 

left). However, when developing hair follicles were labeled at more advanced 

stages of HF morphogenesis, spatial organization was still consistent with 

asymmetric cell divisions, but ShhCreER marked progeny now consisted of inner 

SOX9- HF layers expressing differentiation markers for the companion layer (Cp; 

keratin 6) and inner root sheath (IRS; GATA3) (Figure 3-8).  

These results demonstrate that only early asymmetric cell divisions by 

Shh-expressing parents give rise to SOX9+ SC progenitors, while their later 

asymmetric cell divisions generate the differentiated cells of the hair lineages. 

Along with slow asymmetric divisions of WNThi basal cells within hair 

placodes, this fate switch mechanism of Shh+ cells at later stages of HF 

morphogenesis ensures a tight control of the number of SOX9+ SC progenitors 

produced during HF development. 
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Figure 3-8. Shh+ cells give rise to differentiated lineages later in 
morphogenesis. Examples of lineage tracings from cells marked at later stages 
of HF morphogenesis and monitored to HF maturation (P1–4). Note that SHH+ 
cells marked at later times give rise to differentiated lineages: K6, companion 
layer (Cp, arrows); GATA3, inner root sheath (IRS, arrows). White dashed lines 
indicate basement membrane. All scale bars, 10µm. 
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Discussion 

Using ShhCreER and Sox9CreER lineage tracing initiated at the earliest 

stages of HF morphogenesis and traced into adulthood, I demonstrate that the 

SOX9+ cells produced by asymmetric cell divisions of the basal WNThi cells are  

SC progenitors that contribute to the adult SC pool. Previously, using Sox9Cre, it 

was shown that Sox9-expressing cells give rise to the entire HF and all its 

lineages, however, the earliest appearance of SC progenitors remained unknown 

(Nowak et al., 2008). Using ShhCreER, I show that Shh+ cells in hair placodes 

undergo slow asymmetric divisions to give rise to SOX9+ HFSC progenitors. I 

confirm this observation by using Sox9CreER, where I induce labeling at the 

earliest stages of HF morphogenesis and demonstrate that the first SOX9+ cells 

in hair placodes contribute to the bulge stem cell pool. 

Interestingly, the labeling patterns generated by ShhCreER and 

Sox9CreER lineage tracing were asymmetric, such that ShhCreER-labeled 

lineage contributed to the anterior side of the developing HFs, while Sox9CreER-

labeled progeny contributed preferentially to the posterior side. This highlights the 

notion that PCP is established prior to the initiation of HF morphogenesis, and is 

critical to the proper HF patterning (Devenport and Fuchs, 2008). It also suggests 

that there is little cell mixing taking place during HF morphogenesis and even into 

adulthood, such that a cell labeled anteriorly tends to remain there along with its 

progeny. It is most striking that even after the mature HF undergoes catagen and 

enters first adult telogen, this asymmetry is largely maintained. During the first 
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adult anagen, the asymmetry is maintained preferentially in the matrix, while the 

ORS is now labeled on both sides. Upon entry into second adult anagen, the 

asymmetry is lost. These observations are consistent with the previous work 

showing that cells residing within the upper and middle ORS survive and give rise 

to the new bulge and germ, respectively (Hsu et al., 2011). 

A final conundrum is how, in a system like this one, the numbers of SC 

progenitors and SCs are controlled. Interestingly, during early HF 

morphogenesis, the SOX9- WNThi pocket of cells at the invaginating tip of the HF 

that undergoes asymmetric divisions to give rise to SOX9+ cells spends 

prolonged time in the G1 phase of the cell cycle and undergoes rare divisions, 

thus producing few SOX9+ SC progenitors. This is likely a WNT-dependent 

characteristic, as APC-null cells are even slower cycling. 

This observation contrasts with the role of WNT signaling in the intestine, 

where loss of APC results in hyperproliferation, loss of differentiation and 

expansion of SC-like cells (Andreu et al., 2005; Sansom et al., 2004). However, 

the role of WNT signaling in the intestine goes beyond regulating SC 

maintenance. Interestingly, the highest levels of WNT signaling in the intestine 

occur in Paneth cells – post-mitotic differentiated cells that are derived from 

intestinal SCs (Cheng and Leblond, 1974). Additionally, high levels of WNT 

signaling are detected in the differentiating cells of the HF that will form the hair 

shaft (DasGupta and Fuchs, 1999). At the same time, I have detected low-

moderate levels of WNT signaling throughout the developing epidermis. 
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Additionally, loss of β-catenin results in decreased proliferation in developing 

epidermis (data not shown). Finally, LEF1 and TOPGAL activity are also detected 

in the proliferative hair germ at the onset of a new hair cycle, and loss of β-

catenin results in the failure of HFSCs to enter anagen (DasGupta and Fuchs, 

1999; Lien et al., 2014). These observations suggest that relative levels of WNT 

signaling determine the outcome, such that low-moderate WNT signaling is 

necessary for maintenance of proliferation, while high levels of WNT signaling 

induce differentiation. 

The observations that the SOX9- WNThi basal cells in developing HFs are 

slow cycling were made based on the levels of EdU incorporation, as well as 

using Fucci embryos, where cells in G0/G1 are marked with mKO2 (Sakaue-

Sawano et al., 2008). Fucci reporter hCdt1-mKO2 is a transgenic mouse model, 

where the reporter is expressed from a constitutively active chicken beta-actin 

gene promoter (CAG), such that the reporter continues to be transcribed and 

accumulates in a cell until the next entry into the S phase, where hCdt1 is 

proteolytically degraded. Therefore, the intensity of the signal correlates with the 

length of time a cell has spent without entering S phase. This is also supported 

by the brightness of the suprabasal cells of the epidermis, which are non-

proliferative and therefore continue to accumulate the G0/G1 reporter. Strikingly, 

the SOX9- WNThi basal cells within developing HFs are marked by high levels of 

Cdt1-mKO2, providing another line of evidence that these cells are truly slowly 

cycling and produce few SOX9+ SC progenitors. 



92 

Apart from spending prolonged time in G1 and undergoing rare 

asymmetric divisions thus limiting the number of SOX9+ SC progenitors, only 

asymmetric divisions of WNThi cells within hair placodes give rise to SOX9+ cells, 

but not at later stages, where they give rise to differentiated cells. At the later 

stages of morphogenesis, WNThi, Shh+ cells act similar to the WNThi, Shh+ cells 

of the adult HF matrix in anagen, where they give rise to the various differentiated 

lineages of the adult HF (DasGupta and Fuchs, 1999; Genander et al., 2014). 

This is also supported by Axin2-CreER lineage tracing in developing HFs, where 

tracing at germ or peg stages labels much fewer HFSCs than tracing starting at 

the placode stage (Xu et al., 2015). The mechanisms regulating this fate switch 

are currently unknown. One possible hypothesis might be in the relative levels of 

WNT signaling, such that the intensity of WNT signaling at the leading edge of a 

developing HF keeps increasing throughout HF morphogenesis, possibly boosted 

by further signals coming from the growing dermal papilla. Eventually, the levels 

are high enough such that suprabasal daughter cells of the asymmetric cell 

divisions acquire a differentiated fate rather than SC progenitor fate. 

Materials and Methods 

Mouse Strains and constructs 

All animals used for the experiments in this manuscript were generated 

previously: ShhCreER, Sox9CreER, Rosa26Flox-Stop-Flox-YFP, Fucci, Apcfl/fl, and 

Rosa26mTmGfl/+ (Bai et al., 2002a; Brault et al., 2001; Chiang et al., 1999; 
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Corrales et al., 2006; Dassule et al., 2000; Harfe et al., 2004; Kuraguchi et al., 

2006; Litingtung et al., 1998; Long et al., 2001; Lustig et al., 2002b; Mao et al., 

1999; Muzumdar et al., 2007; Nguyen et al., 2006; Sakaue-Sawano et al., 2008; 

Soeda et al., 2010; Srinivas et al., 2001) were described previously. Lhx2-EGFP 

mice were from The Gene Expression Nervous System Atlas (GENSAT) Project, 

NINDS Contracts N01NS02331 & HHSN271200723701C to The Rockefeller 

University (New York, NY, USA). 

Tissue Preparation and Immunofluorescence 

4h prior to the desired stage of development, EdU (500 μg/g, Life 

Technologies) was injected intraperitonally in pregnant females and embryos 

were then processed. Typically, >3 embryos from independent experiments were 

analyzed for each condition. 

For immunofluorescence, tissues were fixed in 4% PFA in PBS for 1h at 

room temperature and washed extensively in PBS. For whole-mount or tissue 

sections, samples were permeabilized for 3 hours in 0.3% Triton X-100 in PBS, 

or embedded in OCT (Tissue Tek), cut at a thickness of 10μm and permeabilized 

for 10 min 0.3% in Triton X-100. Tissue samples were then blocked in Gelatin 

Block (2.5% fish gelatin, 5% normal donkey serum, 1% BSA, 0.3% Triton, 1× 

PBS). When immunolabeling with mouse antibodies, sections were incubated 

with the M.O.M. blocking kit according to manufacturer’s instructions (Vector 

Laboratories). The following primary antibodies were used: P-Cadherin (goat, 



94 

1:400, R&D AF761), Survivin (rabbit, 1:300, Cell Signaling 2808), SOX9 (rabbit, 

1:300, Fuchs Lab), LHX2 (rabbit, 1:2000, Fuchs Lab), anti-GFP/YFP (chicken, 

1:2000, Abcam), acetylated tubulin (mouse, 1:500, Sigma T7451), Beta-Gal 

(rabbit, 1:10000, MP Bio), K24 (rabbit, 1:5,000, Fuchs lab). 

Primary antibodies were incubated at 4°C overnight. After washing with 

0.3% Triton X-100 in PBS, samples were incubated for 2h at room temperature 

with secondary antibodies conjugated with Alexa 488, RRX, or 647 (respectively, 

1:1000, 1:500, and 1:100, Life Technologies). Samples were washed, 

counterstained with 4'6'-diamidino-2-phenilindole (DAPI) and mounted in Prolong 

Gold, and EdU incorporation was detected by Click-It EdU AlexaFluor 647 

Imaging Kit (Life Technologies). 

Confocal and Epifluorescence Imaging 

Epifluorescence images were acquired with an Axio Oberver.Z1 

microscope equipped with a Hamamatsu ORCA-ER camera (Hamamatsu 

Photonics), and with an ApoTome.2 (Carl Zeiss) slider that reduces the light 

scatter in the fluorescent samples, using 20×, 40×, and 63× objectives, controlled 

by Zen software (Carl Zeiss). Confocal images were acquired with a Zeiss 

LSM780 laser-scanning microscope (Carl Zeiss MicroImaging) through a 40× or 

63× oil objective. For whole mount imaging, z stacks of 20–40 planes (0.25mm) 

were acquired. 
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Fluorescence Activated Cell Sorting 

Back skins from E17.5 Lhx2-EGFP/Fucci embryos were dissected and 

treated overnight with dispase (Gibco, 0.4mg/ml) at 4°C, which selectively 

removed the epidermis, hair placodes, and hair germs from the skin. This 

epidermal fraction was placed in a solution of 1:1 Trypsin (GIBCO):Versene 

(Thermo) at room temperature for 8-10 min on an orbital shaker. 

Back skins from E14.5 APC/YFP/Fucci embryos were dissected and 

immediately placed in Trypsin at room temperature for 20 minutes. After 

centrifugation (300g × 10min), cells were rinsed with PBS and single cell 

suspensions were obtained. Antibodies and epifluorescence markers are as 

indicated in the text. DAPI was used to exclude dead cells. Cell isolations were 

performed on FACSAria sorters equipped with DIVA software (BD Biosciences), 

and analyzed using FlowJo. 
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CHAPTER 4: SUMMARY AND PERSPECTIVES 

Organ morphogenesis depends on the specification of various cell types 

that will fulfill the function of the organ. Cell type specification needs to take place 

at the right time, while concurrently maintaining correct positioning within the 

tissue. Additionally, SCs need to be set apart that will participate in tissue 

homeostasis as well as in tissue repair, if need arises. Finally, proliferation needs 

to be tightly coordinated in order to produce enough properly positioned 

functional cells of the tissue, but at the same time to allow for the specification of 

SCs that are usually more quiescent. 

In adult tissues, the niche defines SC identity and numbers. While niche 

signaling typically emanates from heterologous cell types, niche SCs can signal 

to their progeny (Pardo-Saganta et al., 2015) and SC progeny can signal back to 

their parents (Hsu et al., 2014b; Hsu et al., 2011). In all of these cases, however, 

niche vacancies are sensed and replenished to maintain a fixed SC number. 

Non-homeostatic vacancies can even be replenished by non-stem cells, further 

underscoring the importance of the niche microenvironment in dictating SC 

behavior (Blanpain and Fuchs, 2014). This raises a conundrum for SC 

specification during morphogenesis. Does SC specification require a pre-existing 

niche or can it occur independently? 

I used HFs as a model to understand how cellular heterogeneity is 

established during HF morphogenesis, how proliferation is spatiotemporally 

regulated, and whether SC specification requires a pre-existing niche. 
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Establishing heterogeneity during hair follicle morphogenesis 

Two distinct cell types, marked by SOX9 and LHX2, are found within the 

developing HFs shortly after hair placode specification (Nowak et al., 2008; Rhee 

et al., 2006). By performing short-term lineage tracing using lentiviral delivery of 

CreER into Rosa26-YFPfl/+ embryonic epidermis, I found that suprabasal SOX9+ 

cells and basal SOX9- LHX2+ cells are derived from a common progenitor. By 

analyzing angles of cell division in fixed tissues as well as by live imaging, I found 

that in contrast to the IFE, where approximately 50% of divisions are parallel to 

the basement membrane and 50% are perpendicular, within developing hair 

placodes, virtually 100% of divisions are perpendicular to the basement 

membrane and asymmetric, giving rise to the suprabasal SOX9+ and basal 

SOX9- cells. 

To understand how the two daughters of the asymmetric division acquire 

different fates, I looked at the patterns of WNT and SHH signaling within the 

developing HFs. Previous studies have demonstrated that ablation of WNT 

signaling abolishes hair bud specification entirely, while disruption of SHH 

signaling arrests HF development after specification. However, little is known 

about the role of these pathways in determining heterogeneity during these early 

stages. Previous studies on WNT- and SHH-signaling relied on their loss and 

gain of function in the entire epidermis, which precluded them from 

understanding the role of these signaling pathways in discrete cell populations 

within the epidermis and the HF, as they naturally arise. Therefore, I took 
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advantage of the in utero epidermis-specific lentiviral gene delivery (Beronja et 

al., 2010) to create juxtaposing regions of high and low WNT or SHH activity, 

more closely recapitulating the patterns observed naturally. Using these mosaic 

analyses, I demonstrated that the purpose of perpendicular divisions within the 

placode is to achieve differential partitioning of WNT signaling to the basal cells 

and to place the SOX9+ daughter cell outside of its WNThigh parent cell 

environment. Moreover, although the WNThigh basal daughter is the source of 

SHH, high levels of WNT signaling prevent it from responding to SHH, and only 

the suprabasal WNTlow daughter can respond. Additionally, I show that SHH is 

able to repress low-moderate levels of WNT signaling, which contributes to 

further repression of WNT signaling in the suprabasal SOX9+ cells, boosting the 

levels of SOX9 and driving their expansion (Figure 4-1). 

While other signaling pathways likely intersect the circuitry, antagonism 

between WNT and SHH pathways is crucial not only in balancing asymmetric 

and symmetric cell divisions, but also in delineating cellular fates and proliferation 

rates. Our findings illuminate why both signaling pathways have such profound 

impact on cancers of the skin, where spindle orientations, cellular fates, and 

proliferative rates are imbalanced (Beronja et al., 2013; Blanpain and Simons, 

2013; Larsimont et al., 2015). Our results also pave the way for delving further 

into how these two signaling pathways establish their antagonistic interplay in 

morphogenesis and SC establishment. 

Future efforts can focus on elucidating the mechanisms behind the WNT-
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SHH antagonism observed during HF morphogenesis. Understanding this 

process might provide novel ways to target these pathways in malignancies, 

where they become deregulated. 

Figure 4-1. WNT-SHH antagonism drives the specification of suprabasal 
SOX9+ cells following basal asymmetric cell division. In response to 
elevated WNT-signaling, basal cells within the primitive epithelial bud undergo 
asymmetric cell divisions giving rise to suprabasal cells. Basal cells retain this 
high WNT-signaling, and express Shh.  Suprabasal cells respond to SHH, which 
further decreases WNT-signaling but promotes their expansion by undergoing 
symmetric cell divisions. By contrast, the elevated WNT-signaling in the basal
cells prevents them from responding to SHH, and drives them into a slow-cycling 
state, permissive for asymmetric but not symmetric divisions. Illustration provided 
by Irina Matos.  
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Specification and control of the earliest hair follicle stem cell progenitors 

Recent work from our lab has shown that SOX9 is a critical transcription 

factor for the maintenance of HFSC fate (Adam et al., 2015; Kadaja et al., 2014). 

More importantly, SOX9 can act as a pioneer transcription factor, remodeling 

chromatin, establishing superenhancers, and turning on the expression of 

epigenetically-repressed genes, conferring SC properties to SOX9+ cells within 

the epidermis (Adam et al., 2015). SOX9 expression in a subset of cells within 

developing hair placodes has suggested that HFSCs might be specified much 

earlier than previously thought, and prior to the establishment of the niche 

(Nowak et al., 2008). 

To address this question, I used ShhCreER mouse model to perform short 

and long-term lineage tracing. Based on my previous findings, SOX9+ cells are 

derived from the basal WNThigh Shh+ cells. Additionally, SOX9+ cells no longer 

express Shh. Therefore, ShhCreER lineage tracing allowed me to label the basal 

WNThigh cells and their progeny – the SOX9+ cells. By administering just one 

pulse of tamoxifen during hair placode formation, I was able to label SOX9+ cells 

in hair placodes and germs, which readily contributed to the stem cell pool that 

was established shortly after birth. By tracing into first telogen, when the bulge 

can be distinguished morphologically for the first time, it was clear that SOX9+ 

cells labeled at the placode stage readily contribute to the adult SC pool, and to 

the subsequent rounds of HF regeneration. 

Performing lineage tracing with the Sox9CreER mouse model further 
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supported these results. In this case, only SOX9+ cells were labeled during hair 

placode morphogenesis, but not the basal SOX9- WNThigh Shh+ cells, supporting 

the notion that SOX9+ cells are derived from the basal WNThigh cells, and not 

vice versa. Analogous to ShhCreER lineage tracing, Sox9CreER-labeled cells 

contributed to the adult stem cell pool (Figure 4-2). 

 

Figure 4-2. SOX9+ cells derived from asymmetric cell divisions in hair 
placodes contribute to the adult SC pool. ShhCreER lineage tracing was 
performed by administering a single pulse of tamoxifen during hair placode 
morphogenesis and chasing into adulthood. Illustration provided by Irina Matos. 
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the organization of cell types within the developing hair placode right from its 

specification (Devenport and Fuchs, 2008). However, it also highlights that 

despite rapid proliferation and acquisition of the correct shape of the HF, there is 

little cell rearrangement within the organ, such that cells from the anterior side 

rarely cross over to the posterior side. This raises an interesting question of how 

the shape of the HF is determined, and whether cell migration plays a role. Even 

more strikingly, preferential anterior labeling was maintained through the first 

cycle of catagen and telogen, such that the anterior side of the hair matrix was 

still preferentially labeled in the case of ShhCreER. However, the ORS of most 

HFs was equally labeled by ShhCreER in first anagen, which explains why in 

second anagen, both matrix and ORS were mostly equally labeled. 

Figure 4-3. HF asymmetry is established early in HF morphogenesis and is 
maintained into adulthood. Shh is expressed by the anterior WNThi basal cells 
of hair buds. Upon asymmetric divisions, Shh-expressing progenitors produce 
SOX9+ cells. SOX9+ daughter cells resulting from these divisions remain on the 
anterior side of developing hair follicles and later contribute to the anterior side of 
the adult stem cell niche. This asymmetry is resolved during subsequent hair 
cycling, because the new stem cell niche is derived from surviving outer root 
sheath cells of the previous cycle. Illustration provided by Irina Matos. 
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In the case of Sox9CreER lineage tracing, the asymmetry mostly 

disappears by the time HFs reach maturity and can no longer be observed in 

subsequent hair cycles. This suggests that more cell mixing takes place in the 

upper HF, where SOX9+ cells reside, possibly due to the higher rates of 

proliferation of SOX9+ cells. 

The next question that I aimed to address is how SC numbers are 

controlled during HF morphogenesis. First of all, I found that the basal WNThigh 

cells are slow cycling, spend prolonged time in the G1 phase of the cell cycle, 

and undergo rare asymmetric divisions, giving rise to few SOX9+ cells. Secondly, 

the fate of the daughter cells switches as morphogenesis progresses, such that 

asymmetric divisions of the WNThigh Shh+ cells within placodes give rise to 

SOX9+ cells, while as morphogenesis progresses, more and more asymmetric 

divisions give rise to differentiating SOX9- cells that will form the inner HF 

lineages. Therefore, the slow cycling properties of the WNThigh cells allow for tight 

control of the number of SOX9+ cells produced, while daughter cell fate switch 

cuts of further SOX9+ cell generation as morphogenesis progresses. 

An important question that still remains to be elucidated is what 

determines the location of the HFSC bulge niche in the upper ORS of the 

developing HF? Recent work has demonstrated that when the SCs within the 

upper ORS of developing hair pegs are laser ablated, non-SCs enter the niche 

and can be reprogrammed to acquire the SC fate and contribute to the adult SC 

pool (Xu et al., 2015). These findings suggest that the location of the SC pool is 
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not determined by cell-intrinsic methods, but additional signals from the 

surrounding niche dictate the location of the SC pool within the upper ORS and 

are able to confer stemness to non-SCs that enter the niche. This is of the adult 

HFSCs, where non-SCs are able to enter the niche and acquire stemness if the 

SCs in the bulge are ablated (Rompolas et al., 2013). What are the extrinsic 

signals that determine the location of the bulge in the upper ORS of hair pegs? In 

part, the answer likely stems from the temporal distancing of uppermost, 

proliferating SOX9+ SCs from their SHH-signaling center, reminiscent of what 

happens in the adult hair cycle (Hsu et al., 2014b). In adult HFs, upon entry in 

anagen, transit-amplifying cells in the matrix secrete SHH that signals to the 

bulge SCs to drive their proliferation. As the HF extends into the dermis, SHH-

producing matrix becomes further removed from the bulge, until the signal is no 

longer received in sufficient quantities and the cells enter quiescence, which 

signals the end of anagen. Similarly, during HF morphogenesis, SHH-producing 

WNThigh cells move further into the dermis as the hair peg elongates, such that 

cells in the upper ORS receive progressively less signal. As I have shown, SHH 

is a major driver of proliferation in developing HFs, therefore it is conceivable that 

upon removal of SHH, upper ORS becomes more quiescent. However, removal 

of the SHH source is likely not the only determinant of the location of HFSCs in 

the upper ORS. First nerve fibers associate with developing hair placodes and 

hair germs as early as E15.5 (Peters et al., 2002). Interestingly, upper ORS is the 

site of attachment of nerve endings within the developing HFs (data not shown). 
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Intriguingly, peripheral nerves innervate the cells above the adult bulge and 

secrete SHH, which may regulate their behavior upon wounding (Brownell et al., 

2011). The signals that recruit nerve fibers to the upper ORS of developing HFs 

remain unknown. It is also unknown whether nerve fibers secrete SHH or 

additional signaling molecules during HF morphogenesis, and how that 

influences the location of the function of the HFSCs. 

Apart from becoming more quiescent, HFSCs also adopt unique cell 

morphology, which also distinguishes them from the rest of the ORS. Previous 

work in the adult HFs has implicated LHX2 in the regulation of cell morphology in 

the HFSC bulge (Folgueras et al., 2013). Additionally, epidermis-specific deletion 

of Lhx2 results in the failure of HFSC specification during morphogenesis 

(Folgueras et al., 2013; Rhee et al., 2006). It is tempting to speculate that LHX2 

may also play a role in driving the cytoskeletal changes in the HFSCs during 

morphogenesis. Finally, it is unclear how the morphological changes that 

accompany HFSC localization within the upper ORS impact their function. 

Conclusion 

By studying HF morphogenesis in the embryo, I have discovered a unique 

mechanism of how SC identity is acquired and how SC numbers are controlled in 

early development. Here, I show that SCs are born through asymmetric divisions 

at a stage that occurs long before establishment of the HF bulge niche. 

Moreover, and in striking contrast to an adult niche, SC identity in early 
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development is acquired by the daughter that moves away from its parent’s 

microenvironment. Furthermore, the paucity of WNT-signaling distributed to the 

SC daughter allows it to receive a paracrine SHH signal produced by its WNThi 

sister cell, which acts like a temporary niche. This interaction leads not only to 

reinforced levels of the HFSC master regulator, SOX9, but also to further 

suppression of Lef1, allowing SC progenitors to expand through symmetric and 

escape the WNThi slow-cycling asymmetric division status of its parent. In this 

model, the asymmetric cell division produces two daughter cells, such that one 

becomes the SC and the other – a temporary niche, producing the signal 

necessary for SC maintenance and expansion. 

Understanding the mechanisms of lineage and SC specification during 

morphogenesis can guide our efforts in regenerative medicine, which aims to 

direct multipotent SCs into discrete lineages. 
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