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A b s t r a c t 

The Nova paraneoplastic antigens are neuron-specific RNA-binding proteins that are 

essential for neuronal viability and participate in the control of alternative splicing. In 

this study, the yeast two-hybrid system is used to isolate Nova-interacting proteins. A 

novel RNA-binding protein named brPTB is identified, that is closely related to the poly­

pyrimidine tract-binding protein (PTB) and is ennched in the brain at the mRNA and 

protein levels. brPTB interacts with Nova proteins in vitro and in vivo. Splicing assays 

in kidney epithelial cell lines show that brPTB inhibits the effect of Noval in the 

inclusion of alternatively spliced exons in two target pre-mRNAs: glycine receptor oc2 

subunit (GlyRa2) and GABAA receptor y2 subunit (GABAARy2). Furthermore, in the 

case of GlyRoc2, brPTB binds to a site adjacent to Noval in a 90 nucleotide fragment of 

intronic RNA upstream of the alternatively spliced exon, but with an affinity more than 

10-fold lower than Noval. When the brPTB site is mutated, binding is abolished and the 

inhibitory effect on Noval-dependent exon inclusion disappears. In addition, it is shown 

that the inhibitory effect of brPTB on Noval splicing does not occur in neuronal cells. 

These results suggest that brPTB is a tissue-restricted RNA-binding protein that 

specifically interacts with Nova and inhibits its ability to activate exon selection. Nova 

proteins localize in distinct nuclear foci, but fail to co-localize with any of the known 

proteins that occupy sub-nuclear structural domains. Both endogenous and transfected 

brPTB and Nova proteins co-localize in these foci in neuroblastoma cell lines but not in 

non-neuronal cells. A model is proposed whereby alternative splicing and nuclear 

localization mediated by Nova and brPTB are linked as the consequence of their protein 

interaction in specific cell types. 
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C h a p t e r 1 - G e n e r a l I n t r o d u c t i o n 

R N A - b i n d i n g proteins a n d R N A - b i n d i n g d o m a i n s 

In eukaryotic cells, the path of RNA molecules, from DNA transcribed in the nucleus to 

protein synthesized in the cytoplasm, encompasses a multitude of steps, including 

capping, polyadenylation, splicing, editing, nuclear export, localization, translation, 

stability and, finally, turnover. The existence of these separate biochemical stages in the 

metabolism of RNA provides the distinct opportunity for regulation at different levels 

and with broad outcomes. The effectors of these processes are RNA-binding proteins 

(RBPs) consisting of diverse families of proteins that mediate their actions through direct 

binding to RNA targets. 

Amino acid sequence analysis and phylogenetic data on a plethora of existing 

RBPs has resulted in the recognition of numerous sub-families, each with distinct 

features most notable of which are the various RNA-binding motifs (Burd and Dreyfuss, 

1994). More recently, structural information has provided concrete evidence for the 

mechanism of RNA binding and its implications in the proposed functional role of these 

proteins. A review of RBP families and their most prominent members is therefore 

warranted before any detailed examination of their cellular function. An informative way 

to categorize these RBPs is based on the amino acid sequence similarities and predicted 

functional significance of their RNA-binding motifs (Burd and Dreyfuss, 1994; Varani 

and Nagai, 1998). 



RRM-type RNA-binding proteins 

Newly transcribed RNAs in the nucleus, called heterogeneous nuclear RNAs (hnRNAs), 

exist in complexes with proteins, forming heterogeneous nuclear ribonudeoprotein 

particles (hnRNPs; Dreyfuss et al., 1993; Matums et al., 1993). Early studies have 

identified a number of proteins involved in the assembly of these particles and have 

determined, albeit crudely, the sequence requirements for their RNA binding by 

ribohomopolymer binding assays (Dreyfuss et al., 1988; Swanson and Dreyfuss, 1988). 

Comparisons of the sequence and overall structural organization of different hnRNP 

proteins established common motifs that were hypothesized to bind RNA, and led to the 

identification of the RNA Recognition Motif (RRM) that, since then, has been recognized 

as the most prevalent RNA-binding domain (Swanson et al.. 1987; Siomi and Dreyfuss, 

1997). 

The RRM motif was first identified as a repeated domain in the sequence of the 

hnRNP protein Al and the polyadenylate binding protein (PABP; Adam et al., 1986). 

Each RRM (also called RNP, for ribonudeoprotein motif) consists of 80-100 amino acids 

that comprises of a secondary structure with two a helices and four (3 sheets separated by 

loops of variable length (Nagai et al., 1990). The amino acid sequences of the first and 

third fi sheets constitute the most conserved elements of the RRM and have been named 

RNP2 and RNP1, respectively (Burd and Dreyfuss, 1994; see also Figure 2). The 

remainder of the RRM domain contains many conserved hydrophobic residues that are 

thought to mediate proper folding but play a small role in actual RNA-binding specificity 

(Birney et al., 1993). The sequence specificity of RNA-binding and, ultimately, the 

function of these RRM-containing proteins have been shown to differ substantially (see 



below). Nevertheless, the evolutionary conservation of several residues and their similar 

secondary structure suggested that these proteins share common folding properties and 

similar protein-RNA interface features (Kenan et al., 1991). 

When the crystal structure of the first RRM domain was solved (from the splicing 

factor U1A snRNP), it was found that the highly conserved RNP2 and RNP1 segments 

form (3 sheets that lie juxtaposed and exposed to solvent, available for contact with RNA 

molecules (Nagai et al., 1990). Co-crystal structures of the RRM domains from this and 

other proteins bound to RNAs (with or without intramolecular base-pairing) have 

determined the specific characteristics of RNA-protein recognition and have provided 

insight into the mechanism guiding sequence-specific RNA binding (Oubridge et al., 

1994; Handa etal., 1999). 

From these and other studies, a general model for RNA binding by RRM domains 

has emerged that involves a general recognition of the RNA molecule by the charged and 

aromatic amino acid residues of RNP2 and RNP1, and a more sequence-specific 

interaction with the variable loop element before RNP1 (Burd and Dreyfuss, 1994). 

Added complexity and specificity can be achieved when proteins that contain more than 

one RRM domains (such as the translation regulator PABP, the splicing factor U2AF65 

and the hnRNP protein Al) require their contiguous RNA-binding motifs for proper 

recognition of the same RNA molecule (Nietfeld et al. 1990; Zamore et al., 1992). 

Interestingly, other proteins that contain multiple RRMs may bind distinct RNA targets 

with each RNA-binding domain and perform different functions. For instance, the U1A 

snRNP protein has been shown through UV cross-linking and immunoprecipitation 

assays to bind to the Ul snRNA through the first RRM and to a polyadenylation signal 



via its second R R M , suggesting that it plays a role in both splicing and polyadenylation 

and perhaps providing a link between the two processes (Lutz and Alwine, 1994). 

Members of the RRM-type of RBPs include a variety of proteins with different 

RNA-binding specificities and diverse functions in RNA metabolism. For example, 

hnRNP Al contains two RRM domains and has been shown to influence 5' splice site 

selection in vitro (Ge and Manley, 1990; Mayeda and Krainer, 1992). Furthermore, it has 

been suggested to compete with another RRM-containing protein (ASF/SF2) that favors 

more proximal 5' splice sites. These results have also been verified by in vivo 

overexpression/RT-PCR splicing assays (Caceres et al., 1994). Sex lethal is a Drosophila 

RRM-containing protein that activates a female-specific splicing switch by binding to a 

polypyrimidine tract upstream of a repressed exon. This is hypothesized to block the 

binding of another RRM protein, U2AF65, an essential splicing activator that is now free 

to activate the lower-affinity female-specific site (Valcarcel et al., 1993). 

The hnRNP I protein, also known as the polypyrimidine tract binding protein 

(PTB), was first identified as a protein that binds the polypyrimidine tract that typically 

precedes 3' splice sites and was later recognized as an hnRNP protein (Garcia-Blanco et 

al., 1989; Ghetti et al., 1992). It contains four RRM domains that have been suggested to 

play different roles in RNA-binding, dimerization and splicing repression (Gil et al., 

1991; Patton et al., 1991; reviewed in Wagner and Garcia-Blanco, 2001). In vitro 

splicing assays and immunodepletion experiments have implicated PTB in the control of 

alternative splicing through a mechanism that possibly involves repression of 3' splice 

sites via competition with U2AF65 for binding, similar to the one proposed for Sex lethal 

(Singh et al., 1995; reviewed in Valcarcel and Gebauer, 1997; see below). 



Thus, the interplay between various R R M proteins on specific R N A targets and, 

more importantly, the competition for binding of these RNAs has been shown to regulate 

various processes such as alternative splicing and polyadenylation. This underscores the 

biological significance of the RRM domain in regulating RNA-binding and mediating 

control of RNA processing and calls for more studies that would clearly identify the 

specific sequence requirements and understand the pathophysiology behind disorders 

involving mutations in RRM proteins that result in aberrant RNA-binding. 

KH-type RNA-binding proteins 

The first member of this sub-family of RNA-binding proteins was the hnRNP K protein, 

whose amino acid sequence revealed three similar domains that were named KH motifs 

(for hnRNP K Homology; Siomi et al., 1993a). Sequence comparisons identified other 

KH-type RBPs including the product of the fragile X/mental retardation gene (FMRP; 

Siomi et al., 1993b), the paraneoplastic neurologic disease antigens Noval and Nova2 

(Buckanovich et al., 1993; Yang et al., 1998) and the yeast splicing factor Mer-1 

(Nandabalan et al., 1993). Most of these proteins have one to three KH motifs containing 

approximately 70 amino acids each, with a core Gly-X-X-Gly sequence, conserved 

hydrophobic residues and a variable loop (Burd and Dreyfuss, 1994). Until recently, data 

for the function of KH-containing proteins in the binding of RNA had been limited and 

consisted mostly of in vitro assays (Siomi et al., 1993b; Ashley et al., 1993; Siomi et al., 

1994; Buckanovich et al., 1996; Yang et al., 1998). Mutations of highly conserved 

residues in the KH domain impaired RNA binding ability in vitro (Siomi et al., 1994) and 

have been associated with human disease (De Boulle et al., 1993). 



Structural data on the K H motif came first from N M R spectroscopy studies on the 

vigilin protein and showed the globular KH domain to contain three antiparallel (3 sheets 

on one face backed by three a helices on the other (Musco et al., 1996). Further analysis 

of the structures of single KH domains from FMRP, Nova, and hnRNP K, supported the 

conclusion that the RNA-protein interface is most likely located in the loop between the 

first two helices that contains the strongly conserved tetrapeptide GXXG (Musco et al., 

1997; Baber et al., 1999; Lewis et al., 1999). Definitive evidence for this interaction was 

provided by the co-crystal structure of the third Nova2 KH domain in association with a 

single stem loop RNA molecule (Lewis et al., 2000). These studies showed that, unlike 

the (3 sheet of the RRM motif, it is an a/(3 platform flanked by the invariant GXXG motif 

of the KH domain that recognizes and binds RNA. Furthermore, the residue mutated in a 

severe form of fragile X/mental retardation disease is predicted by this analysis to change 

the hydrophobicity of the cc/(3 platform and alter the RNA-binding properties of FMRP 

Even though they are not as numerous as the RRM-type RBPs, KH-containing 

proteins have often been implicated in human disease. Whether their function is ablated 

by mutations (FMRP) or autoantibodies (Nova), there has been evidence linking the 

specific defect in RNA-binding of these proteins to the underlying disease (De Boulle et 

al., 1993; Siomi et al., 1994; Buckanovich et al., 1996; Jensen et al, 2000a; Lewis et al., 

2000). KH-type proteins must therefore play significant roles in RNA biology that, when 

perturbed in some human disorders, can cause distinct phenotypes that are likely to 

provide more clues for the biological function of these proteins in vivo. 

Sequence similarities between the KH-type RBP Sam68 (see below), a female 

germ-cell specific tumor-suppressor gene from Caenorhabditis elegans named GLD-1 



and the shrimp GRP33 protein prompted the identification of the K H motif-containing 

GSG (for GRP33/Sam68/GLD-1) super-domain (Jones and Schedl, 1995). Mutations in 

a conserved residue of the KH domain in GSG eliminate the tumor-supressor function of 

GLD-1 and implicate RNA-binding in this function as well as in oogenesis for which 

GLD-1 is essential (Jonas and Schedl, 1995). The cloning of the cDNA for the splicing 

factor SF1 identified it as another member of this sub-family of KH-type RBPs (Arning 

et al., 1996). 

Other RNA-binding domains 

Several other motifs have been described that can bind RNA and characterize additional 

sub-families of RBPs. The arginine-rich motif (ARM) is, as the name suggests, a short 

domain (10-20 amino acids) of mostly arginine residues (Burd and Dreyfuss, 1994). 

Described mostly in viral proteins, this domain is thought to recognize RNA as an a helix 

(Lazinski et al., 1989; Tan et al., 1993). The role of arginine residues in these protein-

RNA interactions is thought to be two-fold: increasing the non-specific binding of RNA 

through their positive charges while forming specific hydrogen bonds. The HIV Rev and 

Tat proteins which contain this domain, have been implicated in diverse functions 

concerning RNA metabolism such as trans-activation of transcription and export of 

unspliced viral RNA (Malim et al., 1989). Surprisingly, the same motif can assume two 

different conformations during RNA-binding: the Rev ARM binds as an a helix while the 

Tat peptide is a fi sheet and yet they both penetrate the major groove of their respective 

RNA targets (Puglisi et al., 1995). 



The R G G box is an RNA-binding domain that was first described in hnRNP U 

(Kiledjian and Dreyfuss, 1992; Puglisi et al., 1992). It contains 20 to 25 amino acids with 

closely spaced arginine-glycine-glycine (RGG) repeats that assume a (3 spiral 

conformation (Ghisolfi et al., 1992; Burd and Dreyfuss, 1994). Curiously, most proteins 

that contain an RGG box (such as hnRNP Al, FMRP, and Nucleolin) also contain other 

RNA-binding domains, most often an RRM motif, suggesting that perhaps the RGG box 

is not involved in sequence specific RNA binding, but rather facilitates binding by other 

domains. 

Other RNA-binding domains that have been described, but not yet adequately 

characterized, include the double stranded RNA-binding motif (DSRM), the zinc 

finger/knuckle motif and the cold shock domain (Burd and Dreyfuss, 1994; Siomi and 

Dreyfuss, 1997). Recently, it has also been proposed that the homeodomain of the 

Drosophila protein bicoid, usually involved in DNA binding and transcription activation, 

can also bind the 3' UTR of RNA and act as a translational repressor (Dubnau and 

Struhl, 1996). 

Functions of RNA-binding proteins 

As mentioned above, the processing of RNA molecules, from heterogeneous nuclear 

RNAs (hnRNAs or pre-mRNAs) to mature transcripts ready to be translated in the 

ribosome, involves many steps that are regulated by RBPs. The effect of RBPs on the 

metabolism of RNA is a consequence of direct binding which can alter the RNA's 

structural conformation, affect its localization pattern, facilitate or impede its accessibility 

to regulatory molecules (including other proteins), and control its stability. 



Consequently, RBPs play a crucial role in the post-transcriptional control of gene 

expression and thus of cellular processes in general (Siomi and Dreyfuss, 1997). Many 

of the varied functions of RBPs are coupled to preceding or subsequent events in the 

lifecycle of the RNA molecule hence providing continuity and an added opportunity for 

control and regulation. The functions of RBPs will be reviewed here in a sequential 

manner, as the transcript moves from the nucleus to the cytoplasm. 

Transcription and mRNA processing 

Even though the general transcription factors are DNA-binding proteins, the role played 

by RNA-binding proteins in the control of transcription (and especially its termination) is 

significant and has been mostly recognized through the study of retroviral RBPs and their 

function in trans-activation and anti-termination (e.g. the HIV protein Tat and the phage 

N protein, respectively; Rees et al., 1996; Su et al., 1997; Legault et al., 1998). An 

analysis of the function of these RBPs is not in the scope of this thesis. Instead, a review 

of RBP functions in transcription will be limited to recent intriguing findings that provide 

evidence for the spatial, temporal and functional linkage of transcription to mRNA 

processing (collectively defined as the biochemical reactions that transform newly 

synthesized pre-mRNA to mature mRNA, including 5' capping, splicing of introns and 3' 

cleavage and polyadenylation). 

Reports have shown that mRNA processing in vivo occurs co-transcriptionally 

(Beyer and Osheim, 1988; Bauren et al., 1998). The carboxy-terminal domain (CTD) of 

RNA polymerase II (RNA pol II) has emerged as a leading candidate in mediating the 

coupling of all three major mRNA processing reactions to transcription, but the precise 
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mechanism for this remains unknown (McCracken et al., 1997). In agreement with this 

hypothesis, the CTD domain contains tandem peptide repeats that have been proposed to 

mediate protein-protein interactions and are the regulatory target of phosphorylation by 

kinases (Komarnitsky et al., 2000; Schroeder et al., 2000). 

The activation of the c-Src kinase during mitosis has been shown to result in the 

interaction with and phosphorylation of a KH-type RBP named Sam68 (Fumagalli et al., 

1994; Taylor and Shalloway, 1994). Sam68 is a functional homologue of the HIV 

protein Rev since dominant negative mutants of Sam68 block the transactivation of RRE-

containing transcripts (Rev Response Element; Reddy et al., 1999). Phosphorylation of 

Sam68 abolishes its RNA-binding activity and its ability to act as a Rev homologue 

(Derry et al., 2000). This suggests that the regulation of transcription and pre-mRNA 

processing is linked to signal transduction pathways, highlighting the fact that RNA-

binding proteins may play crucial roles in the response of the cell to external stimuli. 

The mRNA processing reactions (capping, splicing and polyadenylation) are 

thought to be interdependent, but all three can be separately stimulated by the RNA pol II 

CTD (Fong and Bentley, 2001). Furthermore, different domains of the CTD and specific 

interactions with other RBPs or protein complexes (e.g. the cleavage stimulation factor; 

CstF) have been proposed to be responsible for this effect (Fong and Bentley, 2001). As 

a domain of RNA pol II, the CTD is uniquely positioned during RNA transcription to 

mediate and couple subsequent processing reactions (Roberts et al., 1998). Apart from its 

physical location in the protein complex on transcribed RNA, its ability to interact with 

other proteins enables the CTD to attract other RBPs, such as members of the SR family 
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of splicing factors, to transcription sites in the nucleus where splicing can occur 

concurrently (Yuryev et al., 1996; Misteli and Spector, 1999; see below). 

The enzymatic complexes regulating and affecting 5' capping and 3' cleavage and 

polyadenylation of the pre-mRNA are quite large and involve many factors including 

many RNA-binding proteins that are not going to be discussed here (for reviews see 

Colgan and Manley, 1997; Bentley, 1998; Shatkin and Manley, 2000). It is of interest to 

note however, that accumulating data on these processes point to the interpretation that 

they do not occur independently of each other and are instead part of an intricate 

regulation pattern that ensures the correct processing of the mRNA on all fronts. For 

example, splicing factors have also been shown to regulate polyadenylation by binding to 

intronic enhancer sequences (Lou et al., 1996; Lou et al., 1998). Furthermore, RBPs 

involved in processing seem to be involved in the regulation of other, downstream events 

in the metabolism of mRNA. The proteins mediating 5' capping are members of the cap 

binding complex (CBC) and have recently been shown to interact with the nuclear pool 

of the translation initiation factor eIF4G and possibly facilitate the transfer of mRNA to 

the cytoplasm for efficient translation (Fortes et al., 2000; McKendrick et al., 2001). 

Splicing 

Given that splicing concerns the physical joining of discontinuous exons in eukaryotic 

pre-mRNAs, it is expected that RNA-binding proteins will play a crucial role in this 

process. The basal splicing machinery of the cell consists of small nuclear RNAs 

(snRNAs) and a number of associated RBPs resulting in the formation of five complexes 

(Ul, U2, U4, U5 and U6 snRNPs, for small nuclear ribonudeoprotein particles) that 
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associate with newly synthesized pre-mRNA in an orderly way (reviewed in Staley and 

Guthrie, 1998; Smith and Valcarcel, 2000; Hastings and Krainer, 2001). In addition, the 

spliceosome, as it is assembled on the new transcript, will eventually contain a multitude 

of non-snRNP RBPs such as members of the SR family (named for their common motif 

rich in serine and arginine residues), the U2 auxiliary factor (U2AF), splicing factor 1 

(SF1; also known as branch point binding protein, BBP) and others. 

Despite the fact that introns can vary substantially in size and sequence, they 

maintain several conserved motifs, most prominently dinucleotides in their 5' and 3' ends 

(splice donor and acceptor site, respectively), a polypyrimidine tract, and a branch point 

adenosine. These motifs are recognized by components of the splicing machinery: Ul 

snRNP binds to the 5' splice site; U2AF is composed of two subunits, U2AF65 and 

U2AF35, which bind to the polypyrimidine tract and the 3' splice site, respectively; SF1 

binds to the branch point adenosine. This forms the commitment complex which, with 

the addition of U2 snRNP and ATP, becomes the pre-spliceosome. In turn, the 

recognition of the pre-spliceosome by the U5-U4-U6 tri-snRNP results, after 

rearrangements, in the fully-competent spliceosome. Furthermore, the interaction of Ul 

snRNP with the 5' splice site enhances the recognition and splicing of the upstream 3' 

splice site, a result that helped establish the idea behind the exon definition model 

(Robberson et al., 1990; Kuo et al., 1991). This model predicts that protein-protein 

interactions across the exon facilitate the recognition of the upstream 3' and downstream 

5' splice sites and help "define" the exon and mark it for splicing. 

Alternative (as opposed to constitutive) splicing concerns exons that for various 

reasons are not always included in the mature mRNA. These include cassette exons, 
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mutually exclusive exons and the existence of alternative splice sites (5' or 3'). 

Particular intronic or exonic sequences besides the splice sites (which in these cases 

usually have weak consensus) are the cis-acting elements responsible for the regulation of 

alternative splicing and can function positively (enhancers) or negatively (repressors or 

silencers). These sequences have been therefore defined as intronic or exonic splicing 

enhancers or silencers (ISE, ESE, ISS and ESS). Successful splicing events in this case 

are characterized by the interplay of general splicing factors (e.g. snRNPs) with specific 

regulatory factors (trans-acting enhancer or repressor factors of splicing). 

The SR proteins are a family of RBPs that have been grouped together by their 

similarity in structural organization and function in pre-mRNA splicing (Zahler et al., 

1992, Fu, 1995). They contain at least one RRM-type RNA-binding domain in their N-

terminus and a C-terminal domain characterized by multiple arginine-serine dipeptide 

repeats (RS domain) which can mediate protein-protein interactions. The role of the SR 

proteins is proposed to be in forming bridging interactions between essential splicing 

factors recognizing different splice sites. For example, the SR proteins ASF/SF2 and 

SC35 interact with Ul snRNP and the heterodimer U2AF through their RS domains, 

thereby forming a complex across the intron and facilitating the necessary 

transesterification reactions that will join the two exons (Wu and Maniatis, 1993; Kohtz 

et al., 1994). In concert with this, SR protein-bound enhancer elements can activate weak 

3' splice sites supporting a role for SR proteins in stabilizing U2AF binding (Buvoli et 

al., 1997). Alternatively, the interactions between SR proteins (perhaps recruited by 

specific exonic elements) and splice site-bound general factors could favor exon 

definition (Smith and Valcarcel, 2000; see above). 
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Thus, S R proteins can function both as general splicing factors (in bridging splice 

sites; see above) and as specific splicing enhancers (dependent on the binding of cis-

elements). For example, ASF/SF2 has been described to function as a sequence-specific 

splicing enhancer in alternative splicing (see below), but also as a general factor in 

constitutive splicing as the interaction with Ul snRNP and U2AF would imply. The 

latter is supported by experiments in a tet-inducible system that have shown ASF/SF2 to 

be an essential gene for cell viability and required for alternative splicing, that cannot be 

rescued by other SR proteins (Wang et al., 1996). Importantly, the RS domain is 

responsible for mediating the enhancer sequence-dependent splicing function of SR 

proteins and it can be uncoupled from its function in general splicing (Graveley and 

Maniatis, 1998). In conclusion, SR proteins can play important roles in alternative 

splicing as they are recruited to regulated exons directly by intronic or exonic cis-

elements (Lavigueur et al., 1993; Sun et al., 1993) or indirectly through protein-protein 

interactions with other trans-acting splicing factors (Lynch and Maniatis, 1996). 

In this way, they can also function in the coupling of splicing to previous 

biochemical processes in RNA metabolism (e.g. transcription). The SR proteins 

ASF/SF2 and 9G8 stimulate splicing of an exon in the fibronectin pre-mRNA in vivo, 

through an exonic splicing enhancer sequence (ESE). Significantly, promoter swapping 

experiments and mutational analysis of cis-acting elements have shown that successful 

splicing regulation by SR proteins in this transcript depends on promoter structure, 

suggesting that interactions between RNA pol II and the promoter could regulate 

alternative splicing by influencing SR proteins (Cramer et al., 1999). Recent experiments 

have shed light on the molecular mechanism behind this coupling by showing that a 
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novel transcriptional activator termed p52 co-localizes with ASF/SF2 and their 

interaction modulates alternative splicing in vitro and in vivo (Ge et al., 1998). 

Another large family of RBPs that has been implicated in the regulation of 

alternative splicing are the hnRNP proteins. This hypothesis is consistent with their 

specific localization in the nucleus and their early binding of hnRNA. The hnRNP Al 

protein was found to have the opposite effect from ASF/SF2 in 5' splice site selection in 

vivo (Caceres et al., 1994). However, this was the result of overexpression experiments 

with minigene constructs in HeLa cells and the two proteins were not tested in the same 

experiment to prove antagonism. Nevertheless, they are in agreement with previous in 

vitro mRNA splicing data where addition of hnRNP Al counteracts the specific 

stimulatory effect of ASF/SF2 (Mayeda and Krainer, 1992; Sun et al., 1993). The 

positive effect of ASF/SF2 is thought to be mediated by stimulating the binding of Ul 

snRNP to the 5' splice site (Eperon et al., 1993). While the molecular mechanism of 

splicing repression by hnRNP Al has not been elucidated, it has been shown to depend 

on splicing silencer sequences (Blanchette and Chabot, 1999; Caputi et al., 1999; Del 

Gatto-Konczak et al., 1999). In these studies, in vivo splicing assays using minigene 

constructs from a variety of alternatively spliced transcripts were performed in several 

cell lines and the effect of co-transfected hnRNP Al and/or ASF/SF2 was measured by 

RT-PCR. Recent data support a similar interaction between hnRNP Al and ASF/SF2 in 

the control of 3' splice site choice as well (Bai et al., 1999). The effect on both 5' and 3' 

splice site choice by these proteins lends support to the exon definition model and 

suggests a role for constitutive splicing factors in the regulation of tissue-specific 
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alternative splicing, perhaps through slight variations in their levels or modifications (see 

below). 

The hnRNP I/PTB protein binds CU-rich sequences in the polypyrimidine tract of 

introns and was for that reason hypothesized to be involved in constitutive splicing 

(Garcia-Blanco et al., 1989; Patton et al., 1991). However, since then, PTB has been 

found to mediate the repression of exon inclusion through the binding of intronic splicing 

silencer (ISS) elements in a number of alternatively spliced mRNAs including c-src 

(Chan and Black, 1997), o-actinin (Southby et al, 1999), fibroblast growth factor 

receptor-2 (Carstens et al., 2000), a-tropomyosin (Gooding et al., 1998), (3-tropomyosin 

(Mulligan et al., 1992), and GABAA receptor y2 subunit (Ashiya and Grabowski, 1997). 

Mutation of the PTB sites within the different ISSs results in reduced binding in vitro and 

reverses exon repression in vivo (Gooding et al., 1994; Perez et al., 1997a; Chou et al., 

2000). Furthermore, PTB-mediated exon repression can be abolished in vitro by 

competition with exogenous RNAs (Ashiya and Grabowski, 1997; Chan and Black, 

1997) or immunodepletion of PTB (Southby et al, 1999; Chou et al., 2000) and can be 

reconstituted by adding back recombinant PTB protein (Ashiya and Grabowski, 1997; 

Southby et al, 1999; Chou et al., 2000). 

These results, together with its presumed ubiquitous protein distribution, have 

prompted the suggestion that PTB is a universal splicing repressor of weak exons 

(Wagner and Garcia-Blanco, 2001). However, PTB is unlikely to act independently of 

other factors in exon repression for a number of reasons. First, PTB is expressed in 

tissues where some of these exons are included in the mature mRNA. The first event in 

which a role for PTB in splicing repression was described involved an exon in the (3-
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tropomyosin pre-mRNA (Mulligan et al, 1992) that was not included in non-muscle cells 

(Guo et al., 1991). Second, the presence of exogenous PTB binding sites is not sufficient 

for the repression of heterologous exons (Lin and Patton, 1995; Perez et al., 1997a; 

Gooding et al., 1998). Third, additional silencer sequences and presumably the 

corresponding trans-acting RBP factors are required for the repression of some exons 

(Del Gatto-Konczak et al., 1999; Carstens et al., 2000). In addition, PTB has been 

isolated as part of a multi-protein complex associated with some of these regulatory 

elements (Chan and Black, 1997; Grossman et al., 1998; Chou et al., 2000). Finally, little 

data exists for the requirement of PTB as a splicing repressor in vivo. Studies of knock­

out and transgenic mice (if viable) will likely settle the questions of where PTB is 

actually expressed, whether it is an essential splicing factor, and what its exact role is in 

the splicing of a number of target pre-mRNAs. 

The observation that the intronic binding sites for PTB sometimes overlap those 

for U2AF (Lin et al., 1995; Singh et al., 1995) has resulted in the hypothesis that the 

mechanism of splicing repression by PTB involves the competition for binding sites with 

general splicing factors, similar to the mechanism described for the action of the 

Drosophila RBP Sex lethal (Valcarcel et al., 1993; see below). However, in most of the 

regulated exons mentioned above there is no such overlap. Another proposed model for 

the function of PTB takes advantage of the existence of multiple PTB sites in most of 

these transcripts, often located in both introns flanking the repressed exon (Perez et al., 

1997a; Southby et al., 1999; Carstens et al, 2000; Chou et al., 2000). Together with 

evidence that PTB can multimerize (Perez et al., 1997b; Oh et al., 1998), it is plausible 

that RNA-binding on specific ISSs and protein-protein interactions of multiple PTB 
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monomers across the exon results in its repression, possibly by inhibiting the accessibility 

of ESEs (Chou et al., 2000; Wagner and Garcia-Blanco, 2001). A similar model has been 

proposed for the action of hnRNP Al on the regulation of an alternative exon in its own 

transcript (Blanchette and Chabot, 1999). In this case however, binding of multiple ISSs 

in the flanking introns by hnRNP Al results in the inclusion of the downstream exon. 

A novel family of RBPs that have recently been described to regulate cell-specific 

alternative splicing are the CELF protein (CUG-BP and ETR-3-Like Factors; Ladd et al., 

2001). CUG-binding protein (CUG-BP), the first homologue of this family, was 

identified due to its ability to bind CUG-triplet repeats and was recognized to have a 

similar structure to hnRNP proteins (Timchenko et al., 1996). CUG-BP has been 

implicated in the pathogenesis of myotonic dystrophy (DM), possibly through its 

regulation of the alternative splicing of the cardiac troponin T (cTNT) pre-mRNA 

(Philips et al., 1998). Elav-Type RNA binding protein 3 (ETR-3) is similar in sequence 

to CUG-BP and has also been shown to bind CUG-triplet repeats (Lu et al., 1999). 

Members of the CELF family have been shown to be differentially expressed in a 

developmentally-regulated way and to bind in vitro to muscle-specific splicing enhancer 

sequences (MSEs) present in introns flanking an alternatively spliced exon in the cTNT 

pre-mRNA (Ladd et al., 2001). Furthermore, it was shown that members of this family 

activate MSE-dependent exon inclusion in a cTNT minigene in vivo, and that ETR-3 

protein expression differences during development correlate with exon usage in cTNT 

splicing. This suggests that the regulation of alternative splicing could be the result of 

competition and/or synergism among many RBPs that function as a complex (see below). 
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Overall, S R and h n R N P proteins have been known to act as enhancers or 

repressors in the alternative splicing of numerous transcripts, including their own in some 

autoregulatory cases (Smith and Valcarcel, 2000). The exact mechanism for this function 

is not known but has been proposed to be mediated by the binding of specific cis-acting 

RNA elements (exonic or intronic splicing enhancers and silencers). Future studies 

including biochemical and structural analyses of the RNA-protein interactions, 

determination of the domains involved in protein-protein interactions and genetic studies 

(such as knock-out and transgenic animals) will help elucidate the molecular mechanism, 

the likely RNA targets and the biological significance of the function of RBPs in splicing. 

One of the most significant consequences of alternative splicing in the biology of 

a complex organism is the spatial and temporal differential processing of mRNAs and the 

generation thereby of diverse proteins from the same transcript. This would suggest that 

the regulation of alternative splicing can be modulated in a tissue- or developmental 

stage-specific manner. Several mechanisms have been proposed to this effect including 

variations in the relative concentrations of general splicing factors, post-translational 

modifications, and the existence of tissue-, cell- or developmentally-restricted splicing 

factors (Lopez, 1998). One of the best studied examples of this is the hnRNP-like protein 

Sex lethal (Sxl) of Drosophila melanogaster that is exclusively present in female flies and 

sets up a sex-specific splicing pattern of downstream effector genes in the sexual 

determination pathway (Boggs et al., 1987; Bell et al., 1988). In the case of the 

transformer mRNA, this is thought to occur by the binding of Sxl to the polypyrimidine 

tract thus forcing the essential splicing factor U2AF to activate a lower-affinity female 

20 



specific splice site (Valcarcel et al., 1993). A similar mechanism has been proposed for 

the splicing inhibition by Sxl of another RNA target, msl-2 (Merendino et al., 1999). 

This result, together with the proposed competition between U2AF65 and PTB on 

the polypyrimidine tract, would suggest that a fundamental characteristic of alternative 

splicing is the existence of splice sites with different affinities and that the regulation of 

exon inclusion or exclusion depends on binding competition by splicing factors. The 

default splicing pattern would then be one that includes exons with the strongest splice 

sites (i.e. closest to the consensus for binding by the general splicing factors). On the 

other hand, the inclusion of regulated exons (which contain weaker splice sites) will 

depend on the balance between enhancer and silencer elements and the actions of the 

RBPs that recognize them. This interplay between multiple RBP factors would require 

the formation of large complexes on the pre-mRNA in a regulated and orderly way. 

Examples of this can be found in the study of alternative splicing in Drosophila 

development where the P-element transposase is only produced in germline cells (Laski 

et al., 1986). In somatic cells, the retention of intron 3 in the P element transcript results 

in the production of a transposase inhibitor and requires a regulatory sequence in exon 3 

(an exonic splicing silencer, ESS). This ESS is bound by numerous trans-acting factors 

including Ul snRNP, the Drosophila hnRNP protein hrp48, and the P-element somatic 

inhibitor protein (PSI), a germ-cell specific KH-type RBP that functions in splicing 

repression (Siebel et al., 1992; Siebel et al., 1994). The mechanism of splicing inhibition 

in this complex is not clear but is known to involve an interaction between PSI and Ul 

snRNP (Labourier et al., 2001). Furthermore, transcriptional repression of the P-element 

promoter results in reduced splicing of intron 3 in a negative autoregulatory feedback 



loop, and provides additional evidence for the coupling of splicing to transcription 

(Roche et al., 1995). 

Another example is provided by the Drosophila gene doublesex where female-

specific processing of exon 4 requires a purine-rich exonic splicing enhancer (ESE). This 

element is bound by an RBP complex including the RS domain-containing Tra and Tra2 

proteins, and the Drosophila homologues of the SR proteins ASF/SF2 and 9G8 

(Heinrichs and Baker, 1995; Lynch and Maniatis, 1996). The assembly of this complex 

is cooperative, depends on Tra and is thought to activate splicing by stabilizing U2AF 

binding. Two human homologues of Tra-2 have been identified as the first mammalian 

RBPs that are sequence-specific splicing activators without being essential splicing 

factors since HeLa cell extracts that are lacking Tra2 proteins can still function in 

constitutive splicing (Tacke et al., 1998). 

It is likely though that the paradigms established in Drosophila concerning 

alternative splicing are not entirely accurate in mammals where the existence of all-or-

nothing splicing patterns is improbable due to the complexity, number and density of 

cells. Instead, models that have been proposed to explain the mechanism of splicing 

regulation in mammalian cells suggest that an interplay is at work between positive and 

negative trans-acting factors and between constitutive splicing factors and sequence- or 

cell- specific proteins. This results in promoting exon selection (positive regulation) or 

repressing exon inclusion (negative regulation) according to the relative levels of the 

factors involved which interact with the pre-mRNA as a complex (Grabowski, 1998). 

These complexes are a testament to the intricate balance of power between competing 

signals that will eventually lead to the inclusion or not of an exon. 
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The reasons for the existence of such a complex system of regulation in 

mammalian cells are multifaceted (Smith and Valcarcel, 2000). First, there are more 

genes and splicing events (compared to lower organisms) that would require many single, 

dedicated, transcript-specific splicing factors. In the model described above, the same 

proteins in different combinations can achieve regulation of multiple transcripts. Second, 

since there are various RBPs involved in splicing regulation, there will have to be 

numerous binding sites for them on the pre-RNA. In some cases, these cis-acting signals 

are not the best consensus sequences for binding and only provide for weak protein-RNA 

interactions. Consequently, recognition of the RNA and successful splicing will depend 

on the interaction of multiple elements and allows for an additional layer of control. 

Finally, multiple splicing components provide for sensitive responses to varying levels of 

any of these proteins as well as to the signals that regulate them and produce differences 

in splicing patterns that are better attuned to environmental cues or developmental 

requirements. 

However, even in this model, the requirement for some tissue- or cell-specific 

factors remains, whether it is in the actual splicing regulator that exists in different levels 

among various cell types or in other regulatory proteins (such as kinases) that in turn 

affect the post-translational state of splicing factors. A lot of work on alternative splicing 

regulation in mammalian systems has concentrated in the nervous system where the 

functional diversification of proteins resulting from differential mRNA processing can be 

advantageous in allowing neurons to transmit and respond to specific electrical or 

chemical signals and mediate information processing through plasticity, learning and 
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memory. The regulation of alternative splicing by RBPs in the nervous system will be 

discussed below. 

Nuclear export and shuttling 

In addition to altering its structural characteristics, RBPs can provide the RNA 

with localization and targeting signals. Many RBPs have been shown to move between 

the nucleus and the cytoplasm through the nuclear pore complex (NPC) and it is 

reasonable to assume that this transport affects the localization pattern of bound RNAs 

(reviewed in Nigg, 1997; Nakielny and Dreyfuss, 1999). The fact that different classes of 

RNA molecules use distinct and non-overlapping mechanisms of nuclear export 

(Jarmolowski et al., 1994), together with the existence of several components of the NPC 

that seem to recognize assorted signals on the transported proteins (Yang et al., 2001), 

suggest that there are multiple layers of control and varying degrees of regulation in the 

nuclear transport of protein and mRNA. For both nuclear import and export, many 

peptide signal sequences and their corresponding receptors have been identified, and the 

molecular mechanisms for the trafficking of proteins (many of them RBPs) through the 

NPC have begun to be elucidated. 

The best characterized peptide sequence guiding nuclear import (called a nuclear 

localization signal, NLS), is the mono- or bi-partite NLS that contains one or two groups 

of positively charged residues, respectively (exemplified by the SV40 T antigen and 

nucleoplasmin sequences). NLS sequences are bound by the importin (3 receptor that 

mediates nuclear entry (Gorlich et al., 1995). Other co-factors (such as RanGDP; see 
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below) are required for this process and many more signal-receptor pairs have been 

identified (Nakielny and Dreyfuss, 1999). 

Since mRNA is synthesized in the nucleus and must be transported out to the 

cytoplasm, a more in-depth review of some relevant facts about the nuclear export of 

mRNA ribonudeoprotein particles (mRNPs) and the shuttling of some RBPs is 

appropriate. Various elements on the mRNA seem to influence its nuclear export. The 

5' cap and the associated cap-binding complex (CBC) proteins stimulate nuclear export 

(Izaurralde et al., 1992; Visa et al., 1996). Also, the existence of unspliced introns in the 

mRNA prevents its export into the cytoplasm and provides a mechanism for the 

prevention of improper translation of unprocessed messages (see below). The most 

important mediator of mRNA export, however, is the binding by RBPs and the specific 

peptide signals that they contain. 

Insight into the function of RBPs in the export of RNA came from the study of 

retroviruses and their regulated export of intron-containing RNAs. The HIV protein Rev 

was the first RNA-binding protein identified to contain a nuclear export signal (NES) 

consisting of a short leucine-rich peptide (Fischer et al., 1995; Wen et al., 1995). Rev 

was found to interact with and use the cellular receptor protein Crml for nuclear export 

(Fornerod et al., 1997; Stade et al., 1997). Crml associates with RanGTP (a small, GTP-

bound GTPase providing energy for the transport) and the NES sequence in a manner that 

is inhibited by leptomycin B in vivo, an observation that has allowed the identification of 

many Rev-like RNA export pathways (reviewed in Izaurralde and Mattaj, 1995; Stutz 

and Rosbash, 1998). 



The discovery that some hnRNP proteins are able to shuttle between the nucleus 

and the cytoplasm has led to the identification of shuttling or bi-directional signals that 

provide information for both the import and export of the protein (Pinol-Roma and 

Dreyfuss, 1992; Michael et al, 1995; Lee et al., 1996b). Specifically, the hnRNP protein 

Al has been shown to shuttle due to the M9 sequence, a domain of approximately 40 

amino acids rich in glycine and aromatic residues (Michael et al., 1995). The receptor for 

the M9 signal has been identified as the transportin protein, which differs from the 

importin family of receptors and acts independently of the import pathway of proteins 

containing classical NLS sequences (Pollard et al., 1996). 

The hnRNP K protein also contains a bi-directional shuttling domain that has 

been named KNS (for hnRNP K Nuclear Shuttling domain) and differs from both the 

classical NLS domain and the M9 sequence of hnRNP Al (Michael et al., 1997). This 

domain has been shown, in competition assays with saturating levels of other signals, to 

mediate the import of hnRNP K protein independently of importin or transportin proteins 

and suggests that the KNS domain utilizes a novel import pathway, one that possibly 

does not require soluble factors. 

Surprisingly, the hnRNP K protein also contains a classic bi-partite NLS 

sequence, whose deletion does not impair nuclear localization since the KNS is able to 

mediate nuclear import (Michael et al., 1997). In contrast to hnRNP Al, the nuclear 

localization of full length hnRNP K protein does not depend on RNA pol II function. 

However, when a construct of the hnRNP K protein lacking the classic NLS domain was 

tested in the presence of actinomycin D (a transcription inhibitor), it was found that 

nuclear import became transcription dependent (Michael et al., 1997). This would 
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suggest a role for h n R N P proteins Al and K in the nuclear export of m R N A s and the 

existence of a waste-preventing mechanism blocking their re-import into the nucleus in 

the absence of active transcription. In the latter case, the function of hnRNP proteins in 

the nucleus mediating RNA export would not be required, but their contribution to 

cytoplasmic processes could be useful (see below). 

These results, together with previous observations on the shuttling of other 

hnRNPs suggest different functions for these proteins according to their localization and 

shuttling patterns (Pinol-Roma and Dreyfuss, 1991). hnRNPs C and U do not shuttle and 

localize to the nucleus by virtue of their classic NLS in a transcription-independent 

manner. hnRNPs Al and I lack a classic NLS, shuttle, and their nuclear localization is 

transcription-dependent. Finally, hnRNP K contains both a classic NLS and a shuttling 

domain and its nuclear localization becomes transcription-dependent only in the absence 

of the classic NLS. This organization hints at the existence of at least two distinct 

pathways for the nuclear import of these proteins that are under differential regulation 

depending on whether the proteins function in the export of mRNA. The prediction 

would be that hnRNPs Al and I mediate RNA export while hnRNP K does so only when 

its classical NLS domain is masked, perhaps through protein-protein interactions or other 

associations that result in conformational changes in the protein. 

It is becoming increasingly clear, therefore, that the export of mRNA from the 

nucleus, where it was synthesized and processed, to the cytoplasm, where it will be 

translated, is mediated by RBPs and occurs in ribonudeoprotein (RNP) complexes. The 

fact that these RBPs have other functions in the metabolism of RNA, strongly suggests 

that nuclear transport does not occur independently of preceding events or without 
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influencing subsequent ones. Earlier evidence had shown that the nucleocytoplasmic 

transport of some RBPs depends on transcription, as described above (Pinol-Roma and 

Dreyfuss, 1991; Pinol-Roma and Dreyfuss, 1992; Lee et al., 1996b). 

More recent reports have linked mRNA nuclear export to pre-mRNA processing 

(Huang and Carmichael, 1996; Luo and Reed, 1999; Brodsky and Silver, 2000; Daneholt, 

2001) and splicing (Kataoka et al, 2000; Le Hir et al, 2000a; Zhou et al., 2000; Huang 

and Steitz, 2001; Le Hir et al., 2001; Luo et al., 2001). In the latter case, RBPs provide a 

means by which to imprint newly spliced transcripts with information that will follow 

them to the cytoplasm and perhaps regulate downstream events (Matsumoto et al. 1998; 

Le Hir et al., 2000b). These RBPs that associate with mRNAs only as a consequence of 

splicing events have been referred to as the exon-exon junction complex (EJC) and 

include the splicing factors SRml60, DEK and RNPS1, the shuttling protein Y14 and the 

mRNA export factor REF/Aly. 

Since some of the hnRNP proteins that play a role in splicing are also able to 

shuttle between the nucleus and the cytoplasm (e.g. hnRNP Al), it has been suggested 

that they may associate with RNA transcripts during earlier biochemical steps and follow 

or guide it through subsequent events (Kataoka et al, 2000; Mili et al., 2001; Zenklusen 

et al., 2001). While the two modes of RNA export (via an hnRNP particle or through 

splicing-dependent mRNP complexes with EJC proteins) may seem to be competing, 

they can provide additional regulatory steps for the cell or allow it to identify, for 

example, intron-containing transcripts and retain them in the nucleus (reviewed in Reed 

and Magni, 2001). In support of this model, protein components of the EJC have been 
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found to belong to or interact with proteins of the m R N A surveillance machinery (Kim et 

al., 2001b; Lykke-Andersen et al., 2001; see below). 

Other proteins that have been shown to shuttle and could mediate the export of 

bound mRNAs include the HuR protein (also known as HuA), a member of the Hu 

family of paraneoplastic antigens (Fan and Steitz, 1998a). The shuttling domain of HuR, 

which lacks a classical NLS, was named HNS (for HuR Nuclear Shuttling sequence) and 

exhibits similarity to the M9 domain of hnRNP Al in its sequence composition as well as 

in regulating nuclear localization in a transcription-dependent fashion. However, the 

function of HuR and the proposed consequence of its shuttling most likely concerns its 

role in the stability of bound mRNA and will be discussed later. Another RBP that has 

been shown to shuttle between the nucleus and the cytoplasm and has been proposed to 

be involved in the regulation of RNA stability is the hnRNP D protein (Loflin et al., 

1999). In addition, members of the SR family of proteins have been shown to shuttle and 

could play a role in the export of RNA (Caceres et al., 1998). Indeed, two shuttling SR 

proteins have been shown recently to promote the nuclear export of intronless RNA and 

could provide the necessary adaptor function for molecules not exposed to EJC proteins 

or bound by hnRNP protein during splicing (Huang and Steitz, 2001). 

Cytoplasmic localization 

The specific localization of mRNAs in the cytoplasm is an important means by which to 

achieve spatially regulated protein synthesis and its aftermaths during development and 

beyond (Bandziulis et al., 1989; Curtis et al, 1995; Mohr and Richter, 2001). Most 

signals on the mRNA controlling cytoplasmic localization have been identified in the 3' 
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untranslated region (UTR) and are bound by RBPs that mediate this process (Jansen, 

2001). Significantly, many of these RBPs have been found to belong to the hnRNP 

family and support a general model for the function of these proteins in the cytoplasm 

after binding their mRNA targets in the nucleus and mediating their export (Shyu and 

Wilkinson, 2000). 

Several mechanisms for the localization of mRNA in the cytoplasm have been 

described. Active transport of bound mRNA by RBPs, presumably through interactions 

with motor proteins and the cytoskeleton, occurs with some hnRNP proteins suggesting 

that the cytoplasmic localization of transcripts depends on previous, nuclear events. 

These processes have been visualized in Drosophila embryos and Xenopus oocytes, and 

the proteins involved show homology to mammalian hnRNPs (Cote et al., 1999; Lall et 

al., 1999). Other mechanisms for the selective cytoplasmic localization of mRNA 

involve localized stabilization of transcripts (as observed for a Drosophila heat shock 

protein; Bashirullah et al., 1999) or local trapping of the RNA (as is the case with the 

Staufen RBP anchoring bicoid message in Drosophila; St. Johnston et al., 1991). 

The zipcode-binding protein (ZBP-1) is an interesting RBP that contains RNA-

binding domains of both the KH- and RRM-type (Ross et al., 1997). It was identified as 

a protein that binds the 3'UTR "zipcode" element of (3-actin mRNA that had been 

previously shown to be necessary for the correct cytoplasmic localization of that 

transcript in fibroblasts (Kislauskis et al., 1994). ZBP-1 is highly homologous to another 

protein named Vera (or VglRBP), which has been shown to mediate the specific 

cytoplasmic localization of a Xenopus mRNA (Deshler et al., 1997; Havin et al., 1998). 

While Vera is thought to mediate the association of its bound mRNA with microtubules 
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(Elisha et al., 1995), the localization of (3-actin m R N A by ZBP-1 requires the presence of 

microfilaments (Sundell and Singer, 1991; Ross et al., 1997). Furthermore, the sequence 

elements recognized by these two homologous proteins on the 3' UTR of their respective 

mRNA targets are radically different. These results suggest that proteins of similar 

sequence and structure can not only have different binding specificities but also utilize 

different cellular machineries to achieve cytoplasmic localization. A related function of 

RBPs concerns the facilitation of local actin polymerization, possibly in order to better 

anchor mRNA molecules in the cytoplasm (Zhao et al., 2001). 

Functional associations between the endoplasmic reticulum (ER) and RBPs 

responsible for the cytoplasmic localization of mRNA have also been described. The 

Xenopus protein Vera co-fractionates with ER membranes (Deshler et al., 1997), while 

the mammalian homologue of the Drosophila RBP Staufen co-localizes with the rough 

ER and co-sediments with polysomes (Marion et al., 1999). Furthermore, specific signals 

on RNAs are responsible for their localization to specific ER subdomains (Choi et al., 

2000). These results suggest that cytoplasmic localization of mRNA and association with 

particular sub-domains of the ER is mediated by RBPs and specifies an important 

mechanism for the eventual localization of proteins to different cellular compartments. 

In contrast to nuclear transport, little is know about the exact molecular 

mechanism and the peptide signals responsible for the movement and the correct 

cytoplasmic localization of RBPs and, consequently, of bound mRNAs. Recently, 

functional interactions between RBPs and motor proteins that could mediate movement 

across the cytoskeleton have been reported. Deletion of the microtubule motor protein 

kinesin I in Drosophila germ cells results in the specific absence of Staufen protein and 
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oskar m R N A (whose cytoplasmic localization is dependent on intact Staufen function) 

from the posterior pole (Brendza et al., 2000). Importantly, this mislocalization was 

corrected by the addition of a wild type kinesin I transgene. 

The RBP Swallow is required for the correct localization of the bicoid mRNA to 

the anterior pole of the Drosophila oocyte (Nusslein-Volhard et al., 1987). In a recent 

study, the anterior localization of Swallow protein was found to require an intact 

microtubule network with correct polarity (Schnorrer et al., 2000). Using yeast-two-

hybrid screens, Swallow was found to interact with the motor protein dynein with which 

it co-immunoprecipitates in ovarian extracts. Furthermore, in transgenic flies carrying a 

deletion of the Swallow peptide domain that interacts with dynein, Swallow protein did 

not localize to the anterior pole (Schnorrer et al., 2000). Even though the localization of 

bicoid mRNA in these mutants was not tested, these results suggest an important 

functional interaction between RBPs that are responsible for mRNA localization and 

motor proteins of the cytoskeleton. As mentioned above, specific requirements for 

microtubules and microfilaments have also been established for the cytoplasmic 

localization of Vg-1 and (3-actin mRNAs, respectively. 

Additionally, in budding yeast, the localization of the cell fate determinant Ashl 

to the presumptive daughter nucleus occurs at the level of the mRNA and depends on the 

presence of its 3' UTR and an intact actin cytoskeleton (Takizawa et al., 1997). Protein-

protein interactions between a novel family of RBPs (the She proteins) have been shown 

in this case to be important for the tethering of Ashl mRNA to the Myo4p myosin motor 

protein and could explain the requirement for both the 3'UTR and the actin cytoskeleton 

for proper localization of this message (Bohl et al., 2000; Long et al., 2000). Another 
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novel R B P named Loci that binds double stranded R N A , has been shown to also be 

required for efficient localization of Ashl mRNA (Long et al., 2001). Surpnsingly, the 

localization of this protein is exclusively nuclear, suggesting again that previous (nuclear) 

events are necessary for the cytoplasmic localization of RNA and highlighting the 

importance of cross-talk between nucleus and cytoplasm and the crucial role that RBPs 

play in mediating this communication. 

Translation control, stability and turnover 

The mRNP complexes involved in translation initiation, elongation and termination are 

well characterized and will not be considered here. However, a couple of interesting 

instances involving the regulation of translation and its coupling to other events in 

mRNA metabolism (especially cytoplasmic localization and nuclear transport) have been 

reported to involve several RBPs, particularly members of the hnRNP family. 

The hnRNP protein A2 has been implicated in the translational regulation of the 

mRNA for myelin basic protein (MBP) in vivo (Kwon et al., 1999). Specifically, hnRNP 

A2 enhances the translation of a heterologous transcript that includes a particular 

sequences from the 3' UTR of MBP mRNA. Coupled with the described function of 

hnRNP A2 in shuttling and the cytoplasmic localization of this transcript (Munro et al., 

1999; see below) these results place hnRNP A2 in the forefront of an integrated role in 

the metabolism of target mRNAs. The function of other shuttling hnRNP proteins in the 

regulation of translation has also been described. The hnRNP proteins Al and I/PTB 

have been shown to mediate cap-dependent translation (Svitkin et al., 1996), and hnRNP 

I/PTB has also been implicated in the regulation of cap-independent translation in viral 
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transcripts (Kaminski et al., 1995). Also, hnRNP C, even though considered to be a 

mostly nuclear protein, has been associated with the binding of an internal ribosomal 

entry site (IRES; Sella, 1999). 

Another example of the involvement of hnRNP proteins in translation control 

concerns hnRNPs K and E. These proteins have been affinity purified from rabbit 

reticulocytes using a particular sequence in the 3'UTR of the erythroid 15-lipoxygenase 

gene (LOX) called the differentiation control element (DICE; Ostareck et al., 1997). This 

element had previously been shown to be responsible for the translational silencing of 

LOX mRNA until the final steps of reticulocyte maturation (Ostareck-Lederer et al., 

1994). More recent evidence has suggested that the mechanism of silencing by DICE 

and hnRNPs K and E entails the inhibition of joining by the 60S ribosomal subunit in the 

formation of the 80S subunit at the AUG start codon (Ostareck et al., 20001). Moreover, 

the regulation of this translational silencing is mediated through the phosphorylation of 

hnRNP K by the extracellular-signal-regulated kinase (ERK). This phosphorylation is 

necessary both for the cytoplasmic localization of hnRNP K and its ability to silence 

translation of DICE-containing mRNAs (Habelhah et al, 2001). 

Several lines of evidence suggest that the regulation of mRNA translation is 

coupled to the stability and turnover of the transcript. For example, interactions between 

translation initiation factors and decapping enzymes have been proposed to arbitrate the 

decision on whether the transcript will undergo translation or degradation (Schwartz and 

Parker, 2000; Vilela et al., 2000). Additionally, the poly(A)-binding protein (PABP) has 

been hypothesized to provide a link between translation and mRNA decay by being part 

of a complex bound to an RNA instability element (Grosset et al, 2000). Another protein 
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identified in this complex is hnRNP D which had been previously implicated in m R N A 

stability and highlights again the centrality of hnRNP proteins in mRNA metabolism 

(Loflin et al., 1999). 

The Hu proteins are a family of proteins that have been identified as target 

antigens in paraneoplastic encephalomyelitis/sensory neuropathy (Szabo et al., 1991). 

They consist of at least four homologous members each with three RRM-type RNA-

binding motifs (HuA through D; Okano and Darnell, 1997). They are similar to the 

Drosophila proteins Sex lethal and Elav that have been implicated in the regulation of sex 

determination and neuronal development, respectively, possibly through the control of 

alternative splicing (Robinow et al., 1988; Valcarcel, 1993; Koushika et al., 2000). Hu 

proteins have been shown to bind AU-rich elements (AREs) in the 3'UTR of mRNAs and 

have been hypothesized to play a role in the stability and degradation of ARE-containing 

messages (Fan et al., 1997; Jain et al., 1997; Myer et al., 1997; Fan and Steitz, 1998b; 

Ford et al., 1999). Moreover, transfection of HuB results in increased steady-state levels 

of the mRNA encoding for neurofilament M protein and induces the formation of 

neurites in cell culture (Antic et al., 1999). However, it is not known whether the 

increased level of message was due to increased stability or translation initiation. 

Furthermore, the specific details of this binding and the exact mechanism by which Hu 

proteins affect mRNA translation and/or stability have not yet been discerned. 

A novel function of RBPs emerging from recent reports has been the prevention 

of unspliced transcripts from exiting the nucleus and the regulation of nonsense-mediated 

decay of such mRNAs that do cross the nuclear membrane into the cytoplasm. This is 

particularly interesting since one of the prototype RBPs with a role in RNA transport is 
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the HJV protein Rev which actually mediates nuclear export of unspliced, viral mRNAs. 

After the initial observation that splicing mutants in the yeast allowed pre-mRNA to be 

mistakenly transported to the cytoplasm (Legrain and Rosbach, 1989), current work has 

focused on the role of specific RBPs in nonsense-mediated mRNA decay and the 

functional coupling of this surveillance process to previous events (i.e. splicing). The 

successful result of splicing (witnessed by the occurrence of exon-exon junctions and the 

formation of the EJC) serves as both a mediator of mRNA nuclear export (see above) and 

a marker for the mRNA surveillance machinery of the cell in order to avoid nonsense-

mediated decay of the mature transcript in the cytoplasm. RBPs in the EJC (such as Y14 

and RNPS1) were found to interact with the mRNA surveillance machinery (hUpf 

complex) and mediate its function (Kim et al., 2001a; Lykke-Andersen et al, 2001). 

Taken together, the evidence described in the preceding sections point out the 

multiple functions of many RBPs and especially the hnRNP proteins. This suggests that 

individual hnRNP proteins could be trans-acting factors that bind their mRNA targets 

shortly after or concurrently with transcription, participate in their splicing and 

processing reactions, guide them through nuclear export and mediate their cytoplasmic 

localization and selective translation. A striking example is provided by the hnRNP 

I/PTB protein that has been implicated in the control of mRNA splicing, poly(A) 

cleavage, nuclear export, cytoplasmic localization and translation (Valcarcel and 

Gebauer, 1997; Moreira et al., 1998; Cote et al., 1999; Gosert et al., 2000; see above). 

Thus, hnRNP proteins provide a strong model for the integrated function of RBPs and a 

distinct opportunity for the regulation of RNA metabolism in multiple, linked steps (Shyu 

and Wilkinson, 2000). 
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R N A - b i n d i n g proteins in the nervous system 

The particular functions of RBPs in the nervous system will be considered in the context 

of two processes on the elucidation of which significant progress has been made recently 

and which constitute the focus of this thesis, namely the regulation of alternative splicing 

and the trafficking and localization of RBPs and mRNA, particularly at the synapse. 

Neuronal functions of RBPs will also be considered as those emerge from the study of 

neurologic diseases, especially neurodegeneration. 

Neuron-specific alternative splicing 

The regulation of the inclusion of alternatively spliced (cassette) exons in the nervous 

system has furthered our understanding of the general aspects of alternative splicing as 

well as the particular tissue- or cell-specific factors and processes that are required. The 

tyrosine kinase c-src gene contains a small alternative exon (called Nl) that is only 

included in neurons (Pyper and Bolen, 1989). A cis-acting element promoting the 

neuron-specific inclusion of this exon has been identified in the downstream intron (an 

Intronic Splicing Enhancer, ISE) and has been shown to activate inclusion of a 

heterologous exon in the human (3-globin gene (Min et al., 1995; Modafferi and Black, 

1997). UV-cross-linking experiments identified a complex of proteins that bind to this 

element only in neuronal cell nuclear extracts (Min et al., 1995). 

This complex included the hnRNP F and H proteins and a novel KH-containing 

RBP named KSRP (for KH-type Splicing Regulatory Protein) that is homologous to the 

Drosophila PSI protein and the human transcription factor Fuse-Binding Protein (FBP; 

Min et al., 1995; Min et al., 1997; Chou et al., 1999). Immunodepletion experiments 
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followed by the addition of recombinant proteins established a role for these proteins in 

the activation of the Nl exon in vitro. The fact that none of the identified trans-acting 

RBPs is neuron-specific has precluded any conclusions that their action on Nl splicing is 

sufficient for its neuron-specific inclusion. Cross-linking of KSRP to the downstream 

ISE (also called the downstream control sequence, DCS) was enhanced in nuclear 

extracts from neuronal cells compared to non-neuronal cells and the expression of KSRP 

protein (but not mRNA) was slightly increased in neuronal cell lines (Min et al., 1997). 

Additional sequences were found to regulate exon Nl inclusion including a 

splicing enhancer sequence in exon Nl (an ESE) that cooperates with the ISE and a 

splicing silencer sequence in the upstream intron (an ISS) that represses the action of the 

downstream ISE (Chan and Black, 1995; Modafferi and Black, 1999). Mutagenesis 

analysis and in vitro splicing assays with nuclear extracts have identified a conserved 

CUCUCU element in the upstream intron to be required for splicing repression (Chan 

and Black, 1995). RNA competition experiments have suggested that this repression is 

mediated by RBPs and UV-cross-linking identified PTB as one of the proteins bound to 

the upstream ISS (Chan and Black, 1995; Chan and Black, 1997). Addition of purified 

PTB to RNA competition experiments with this upstream ISS restores repression of the 

Nl exon (Chan and Black, 1997), while immunodepletion experiments in HeLa nuclear 

extracts suggest that PTB is necessary for Nl exon skipping (Chou et al., 2000). 

PTB can be cross-linked to CUCUCU sequence elements in both the upstream 

and downstream ISS and mutations in the downstream binding sequence can cause the 

dissociation of PTB from the upstream ISS (Chou et al., 2000). In neuronal cells, where 

Nl is included, PTB dissociates from the upstream ISS in the presence of ATP These 
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results suggest that an ATP-dependent event in neuronal cells is responsible for the 

removal of PTB from the upstream ISS, which in turn destabilizes PTB binding to the 

downstream ISS and allows splicing of the Nl exon. A neuronally-enriched homologue 

of PTB (called nPTB) was isolated from neuronal cell lines with affinity chromatography 

using DCS RNA and was found to bind the CUCUCU sequence more stably than PTB 

but to be a weaker splicing repressor in vitro (Markovtsov et al., 2000). This result lead 

to the hypothesis that nPTB mediates Nl exon inclusion through a permissive mechanism 

by binding the repressor element and preventing binding by PTB. However, it is not 

certain that PTB functions in the repression of Nl splicing in vivo or that nPTB is a 

splicing activator (or, more accurately, a de-repressor). No in vivo splicing assays have 

been done on c-src and the presumed protein-protein interactions in the recruitment of a 

regulatory splicing complex have not been verified. Furthermore, there is no in vivo data 

on the correlation of PTB levels and splicing patterns of c-src or, for that matter, of any 

other presumed PTB splicing target. 

Another transcript that contains a neuron-specific cassette exon is the GABAA 

receptor y2 subunit (GABAARy2) mRNA. Since the initial discovery that transcripts of 

GABAARy2 in brain tissues can contain a cassette exon of 24 nucleotides (Whiting et al., 

1990), mutagenesis analysis on minigene constructs and transfection/RT-PCR splicing 

assays in neuronal cell lines have identified an intronic repressor element near the 3' 

splice site upstream of the alternatively spliced exon 9 (Zhang et al., 1996). UV-cross-

linking and RNA competition assays with HeLa cell nuclear extracts suggested that this 

element is bound by PTB (Ashiya and Grabowski, 1997). Furthermore, the addition of 

recombinant PTB protein in the RNA-competed in vitro splicing assays results in exon 9 
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repression. A sequence alignment from intronic splicing repressor elements from this 

and other transcripts with a demonstrated affinity for PTB in vitro, identified a UUCUCU 

consensus (Patton et al., 1991; Mulligan et al., 1992; Chan and Black, 1995; Singh et al., 

1995; Ashiya and Grabowski, 1997). 

When UV-cross-linking/RNA competition assays were repeated in rat brain 

nuclear extracts, the levels of PTB protein were reduced and a protein (tentatively called 

p59) with different electrophoretic mobility from PTB (59 kDa vs. a 60 kDa doublet) but, 

nevertheless, immunoreactive to an hnRNP I-specific monoclonal antibody was observed 

(Ashiya and Grabowski, 1997). Together with the results on the differential regulation of 

c-src splicing in neuronal cells (Chan and Black. 1997; see above), this suggested a 

model whereby exon repression by PTB is alleviated in the brain through the differential 

expression of PTB protein and its p59 homologue (Grabowski, 1998). 

In addition to GABAARy2, the repression of the neuron-specific exon in two 

additional transcripts, clathrin light chain B and /V-methyl-D-aspartate (NMDA) receptor 

NR1 subunit, was shown, in splicing switch assays with RNA competitors, to depend on 

PTB-binding sites (Zhang et al., 1999). Again, the existence of a neural form of PTB 

correlated with exon inclusion in neuronal extracts, and the addition of recombinant PTB 

protein switched splicing to the non-neuronal pathway. Besides being mostly correlative, 

these studies do not present concrete evidence on the factors responsible for the 

regulation of neuron-specific splicing in these pre-mRNAs. The significance of the cis-

acting sequence elements identified has not been substantiated in vivo, and the trans­

acting factors involved in splicing regulation are only hinted at. The cloning of the 
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presumably neuron-specific PTB homologue would be a step in the right direction, as 

would the characterization of its function in splicing regulation in vivo. 

A well-studied example of the coupling between alternative splicing and other 

events in mRNA processing (e.g. polyadenylation), concerns the calcitonin/calcitonin 

gene-related peptide (CGRP) transcript. Downstream of alternative exon 4 exists an ISE 

that resembles a pseudo exon, mutations on which reduce in vitro binding by PTB (Lou et 

al., 1996; Lou et al. 1998). Exon 4 contains a polyadenylation site and is included in 

thyroid C cells, thereby generating the shorter calcitonin mRNA. In neurons, exon 4 is 

repressed and a second polyadenylation site at the end of exon 6 generates CGRP mRNA. 

In vivo transfection/RT-PCR splicing assays in non-neuronal cell lines using a 

CGRP minigene resulted in the unexpected finding that PTB binding of the ISE enhances 

exon 4 inclusion (Lou et al., 1999). Mutations in the ISE that favored binding by U2AF65 

resulted in exon repression in vivo and inhibited polyadenylation in vitro. However, the 

apparent enhancement of exon inclusion by PTB can be explained if one considers that 

the PTB-mediated repression of the 3' splice site of the pseudo exon results in increased 

usage of the upstream 3' splice site of exon 4. Moreover, an additional binding site for 

PTB (a pyrimidine tract) was identified close to the poly(A) signal sequence in exon 4 

(Lou et al., 1999) similar to the PTB biding site identified near the poly(A) signal of the 

mouse C2 complement gene (Moreira et al., 1992). These results, while preliminary and 

unconfirmed in vivo, suggest that an added function of PTB is in the regulation of 

polyadenylation and possibly in its functional coupling to splicing. 

The Nova family of RBPs have been isolated through their involvement in 

paraneoplastic opsoclonus myoclonus ataxia (POMA) and consist of two identified 
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members, Noval and Nova2 (Buckanovich et al., 1993; Yang et al., 1998). They have 

been shown to bind RNA through ribohomopolymer and filter-binding assays and their in 

vitro sequence preferences for RNA targets have been studied through RNA selection 

strategies (Buckanovich and Darnell, 1997; Yang et al., 1998). Finally, crystal structures 

have demonstrated the mode of RNA binding (Lewis et al., 2000). A Noval knock-out 

mouse was recently described that established Nova as the first mammalian neuron-

specific splicing regulator (Jensen et al., 2000a). 

A combination of RT-PCR, RNAse protection and co-transfection assays 

identified two transcripts whose alternative exons were positively regulated by Nova: the 

glycine receptor oc2 subunit and the GABAA receptor y2 subunit (Jensen et al., 2000a). In 

Noval-null mice the inclusion of alternatively spliced exons in these transcripts, but not 

others tested, was reduced compared to their wild type litter mates. This effect was 

similar to the one seen in co-transfection/splicing assays with minigene constructs of the 

same mRNAs (Jensen et al., 2000a; K. Dredge and R. Darnell, unpublished 

observations). Furthermore, recent evidence suggests that the action of Nova in 

regulating alternative splicing is part of an interplay with other tissue-restricted factors 

(Polydorides et al., 2000; see Chapter 4). Even though the difference, if any, in the 

physiological function of these splicing isoforms is not known, the fact that they are both 

receptors for inhibitory neurotransmitters is in agreement with a lack of inhibitory control 

phenotype, observed in patients with POMA (Darnell, 1996). 

Recently, the Hu proteins have also been implicated in the control of alternative 

splicing in the nervous system. The Drosophila HuB homologue Elav (Embryonic lethal 

abnormal vision) is a neuron-specific RBP that has been shown to regulate the alternative 
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splicing of neuroglian, armadillo and erect wing transcripts (Koushika et al., 1996; 

Koushika et al., 2000; Lisbin et al., 2001). The authors used quantitative RT-PCR in 

Elav-null eye imaginal disc clones and ectopic Elav-expressing wing imaginal discs (the 

equivalent of knock-out and transgenic mice) to show that the neuron-specific splice 

forms of armadillo and erect wing transcripts, but not of several ubiquitously-expressed 

genes, depend on and correspond to Elav levels (Koushika et al., 2000). Transgenic flies 

carrying reporter minigene constructs of neuroglian were also used to identify the 

sequences responsible for Elav-mediated alternative splicing (Lisbin et al., 2001). 

Furthermore, as mentioned above, the Elav-like ETR proteins play a role in the regulation 

of cTNT splicing (Ladd et al., 2001). With the exception of HuA/R, the expression of Hu 

proteins and their Drosophila homologue Elav is restricted to the nervous system making 

them important factors in tissue-specific splicing regulation (Okano and Darnell, 1997). 

Postsynaptic localization of mRNA 

The first example of an mRNA being selectively localized in the neuronal dendrite was 

reported by in situ hybridization assays for the transcript of the dendritic-specific 

microtobule-associated protein MAP2 (Gamer et al., 1988). Since then, a number of 

messages have been found to be localized in dendritic processes including the alpha 

subunit of type II calcium calmodulin-dependent protein kinase (CAMKIIa), the mRNA 

encoding for the vasopressin precursor protein (VP) and the immediate-early gene Arc 

(Benson et al., 1992; Miyashiro et al., 1994; Lyford et al., 1995; Crino and Eberwine, 

1996; Mayford et al., 1996b; Mohr et al., 2001). As well, the localization of (3-actin 

mRNA has been observed in neurites and growth cones (Bassell et al., 1998). 
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This localization has been proposed to provide a way for neurons to achieve 

localized protein synthesis with all the advantages this might confer, i.e. polarity, 

synaptic plasticity, memory, etc. Consistent with this hypothesis, the existence of 

selectively localized polyribosomes in postsynaptic dendritic sites in CNS neurons has 

been long known (Steward and Levy, 1982). Significantly, the localization of some of 

those mRNAs in dendrites is stimulated by synaptic activity, a regulatory mechanism 

which is present exclusively in neurons, suggesting that selective localization of 

messages post-synaptically can indeed constitute a mechanism mediating plasticity. For 

example, the localization of Arc mRNA in post-synaptic hippocampal dendrites and the 

resulting selective protein synthesis was enhanced by high frequency activation and also 

resulted in the selective accumulation of newly synthesized Arc protein in the same area 

(Steward et al., 1998). Furthermore, this activity-dependent mRNA localization requires 

the activation of NMDA receptors (Steward and Worley, 2001). The expression of an 

activated CaMKII transgene that is independent of calcium regulation resulted in a loss of 

hippocampal long-term potentiation and a deficit in spatial memory formation, implying 

that the selective localization of transcripts in post-synaptic dendrites, is crucial for the 

physiology of neurons (Mayford et al., 1996a). 

While the cellular mechanisms responsible for the localization of these mRNAs 

are not yet understood, some of the cis-acting elements on the 3' UTR that are necessary 

for dendritic targeting have been identified and seem to share common features (Mori et 

al., 2000). Therefore, it is reasonable to assume that trans-acting RBPs are responsible 

for the dendritic localization of mRNA. Recently, the in vitro interaction of PABP with 

the 3' UTR sequence responsible for the dendritic localization of the VP mRNA has been 
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reported (Mohr et al., 2001), but these results are preliminary and their in vivo 

significance unclear since binding of the 3' UTR by PABP is required for stabilization 

and translation initiation. 

Another example of an RBP controlling cytoplasmic localization in the central 

nervous system (CNS), involves MBP mRNA in oligodendrocyte peripheral processes 

(Ainger et al., 1997). While the signals in the 3' UTR of the transcript responsible for 

this effect have been characterized, the actual trans-acting protein regulating this effect 

remains elusive. Contradictory reports have implicated one of the quaking KH-type 

proteins and the hnRNP protein A2 in the localization of MBP mRNA (Hoek et al., 1998; 

Munro et al., 1999; Li et al., 2000). However, in both cases the evidence is 

circumstantial and indirect as no co-localization or direct binding in vivo was shown. 

The possibility that quaking is the RBP responsible for the localization of MBP mRNA in 

oligodendrocytes is intriguing since mutations in the quaking gene have been correlated 

with demyelination phenotypes (Ebersole, 1996). 

RNA-binding proteins and neurologic disease 

The importance of the role played by RBPs in normal cell function is underscored when 

such processes are perturbed by genetic defects or other diseases targeting specific gene 

products (e.g. autoimmune disorders). Furthermore, the study of various diseases has 

allowed for the identification of many RBPs and has hinted at their function in vivo. For 

example, defects in spermatogenesis have been attributed to specific deletions of a gene 

encoding for a protein with an RNA-binding domain (Reijo et al, 1995; Eberhart et al., 

1996) but specific in vivo RNA targets for this protein and its homologues have not yet 
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been identified. Autoantibodies from patients with systemic lupus erythematosus (SLE) 

have been used to clone many of the proteins that participate in the formation of snRNPs, 

the essential splicing factors (Hinterberger et al., 1983; Wieben et al., 1985). 

Many RBPs have been implicated in the pathogenesis of neurologic disease. 

Quaking is a KH-type RBP that also contains signal transduction motifs and has been 

implicated in the localization of target mRNAs in oligodendrocytes (see above). 

Mutations in the quaking gene-product result in severe defects in myelination and 

embryogenesis (Ebersole et al., 1996). Another function of quaking has been described 

in the induction of apoptosis (Chen and Richard, 1998). Curiously, other KH-type RBPs 

have been implicated in the induction of apoptosis as well, including the Drosophila 

homologues of Sam68, KEPI and Sam50 (Di Fruscio et al., 1998), the paraneoplastic 

antigen Nova (Jensen et al., 2000a), the cellular p53 target MCG10 (Zhu and Chen, 

2000), and the Drosophila homologue of FMRP (Wan et al., 2000). In the case of Nova 

and FMRP proteins, apoptosis has been observed in neuronal cells suggesting that the 

particular function of these proteins in mRNA metabolism is related to programmed cell 

death, and providing clues about the mechanism of dysfunction in neurologic disease. 

Other neurologic disorders have been identified where the protein involved is 

thought to play a role in splicing regulation either as a regulator of the general splicing 

machinery, such as the survival of motor neurons (SMN) protein in spinal muscular 

atrophy (SMA; Pellizzoni et al., 1998; see below) or by controlling the neuron-specific 

splicing of an alternatively regulated exon, such as the Nova protein in POMA (see 

above). SMA is a relatively common motor neuron degenerative disease that results from 

mutations in the SMN gene (Lefebvre et al., 1995). SMN was found to interact and co-
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localize with SIP1 (SMN-Interacting Protein 1), and this interaction is essential for the 

biogenesis of snRNPs (Fischer et al., 1997; Liu et al., 1997). Dominant negative SMN 

mutants cause the redistribution of snRNP complexes and inhibit pre-mRNA splicing in 

vitro (Pellizzoni et al., 1998). However, apart from a role as a protein whose function is 

critical in mRNA biogenesis, these studies do not specifically explain the pathogenesis of 

SMA, or the actual cause of the commonly associated fatality in this disorder. 

Neurologic disorders where the biochemical cause for the erratic mRNA 

processing is not completely understood include inherited frontotemporal dementia and 

Parkinsonism linked to chromosome 17 (FTDP-17) and amyotrophic lateral sclerosis 

(ALS). In both cases, however, the involvement of RBPs and alternative splicing 

mechanisms is highly suspected. In FTDP-17, some mutations identified in patients with 

the disease map to a 5' splice site and result in the increased usage of an alternatively 

spliced exon in the mRNA for tau, a microtubule-associated protein (Hutton et al., 1998). 

The inclusion of this exon increases the number of microtubule-binding repeats in the tau 

protein and this has been proposed to explain the increased tau deposits in the neurons 

and glial cells of these patients (Spillantini et al., 1997). In the case of ALS, the mRNA 

of the glutamate transporter EAAT2 (Excitatory Amino Acid Trasporter 2) was found to 

be abnormally spliced, but only in neuro-pathologically affected areas in patients with the 

disease (Lin et al., 1998). In vitro expression of these aberrant transcripts resulted in 

proteins that were either rapidly degraded or predicted to function as dominant negatives 

(Lin et al., 1998), thus providing a link to the glutamate-mediated excitotoxicity that has 

been postulated to cause ALS (Rothstein, 1996). However, the cellular event responsible 

for this abnormal splicing pattern has not been identified yet. 
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The paraneoplastic neurologic disorders (PNDs) are a rare group of syndromes 

that involve autoimmune responses to antigens ectopically expressed by systemic tumors 

(reviewed in Darnell, 1996; Musunuru and Darnell, 2001). These antigens are normally 

expressed in the nervous system where they are suspected to have important functions in 

the physiology and development of neurons. A successful anti-tumor immune response 

results in high-titer antibodies that, by crossing into the central nervous system (CNS), 

can cause specific neurological symptoms. The clinical presentation of PND patients 

allows for insight into the various functions of these onconeural antigens that have been 

cloned using patient sera (Buckanovich et al., 1993; Yang et al., 1998). Importantly, 

among the categories of onconeural antigens so far identified is a group of RNA-binding 

proteins that include the Nova and Hu proteins (see above). Furthermore, since these 

proteins are present exclusively in neurons (except for HuA/R; Okano and Darnell, 

1997), the study of their interactions with RNA targets or other proteins provides a means 

to examine neuron-specific cellular functions. 

The abundance of genetic or immunologically-mediated defects in neuronal 

physiology attributable to improper function of RBPs together with specific examples of 

RBP functions in the nervous system as described above, attests to the magnitude of the 

role played by RBPs in the regulation of RNA metabolism in neurons. Furthermore, it 

underscores the fact that this role is likely to be important in the development and general 

maintenance of the nervous system, including information processing in the brain. In any 

case, neurodegenerative disorders have been associated with abnormal mRNA processing 

either as a primary defect (SMA) or as a specific dysfunction in a particular transcript or 

pathway (FTDP-17, ALS, and POMA). A better knowledge of the interactions between 
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the proteins involved and their R N A targets (and not only in neurons) will clearly open 

the way for the understanding of physiological processes as well as the reasons why these 

processes go wrong in disease and the consequences thereof. Insight from molecular, 

genetic, biochemical and structural studies will be crucial in elucidating the mechanism 

of RNA binding, the important cis- and trans-acting elements involved, the relative 

sequence requirements and the functional significance of protein-RNA and protein-

protein interactions. 

Summary 

The study of RNA-binding proteins has been an area of tremendous growth in recent 

years and it is highlighted by the existence of many human disorders where the function 

of a specific RBP is affected. These disorders, as well as data on the structure and 

localization of these proteins, provide the framework for examining their role in the 

cellular metabolism of mRNA. A central theme in this introduction has been that 

sequential biochemical steps in the metabolic evolution of mRNA within the cell are 

tightly linked spatially and functionally and that this coupling can be mediated by RBPs. 

Since they are unlikely to act completely independently of other factors, investigating 

interacting partners of RBPs is useful in elucidating the mechanism of this coupling and 

ultimately providing clues for their biological role. This thesis concerns the study of the 

RBP Nova, the search for its interacting protein partners and the ways these interactions 

may affect its function in alternative splicing and nuclear localization. 
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C h a p t e r 2 - M a t e r i a l s a n d M e t h o d s 

Yeast two-hybrid library screens 

Full-length Noval, full-length Nova2 and Nova2 spacer (amino acids 230-407) bait 

constructs were cloned into the LexA vector pBTM116 (trp+; kindly provided by Drs. 

Susan Smith and Titia de Lange), and transformed with LiOAc into the LD40 yeast strain 

(also provided by Drs. Susan Smith and Titia de Lange). LD40 yeast are leu-/trp- and 

contain the lacZ and His+ genes under the control of LexA promoters. The resulting 

transformants were control-tested to make sure that there was no induction of lacZ 

expression independently of prey constructs (colony lift/X-gal assays without a co-

transformed Gal4 activation domain construct). Screens of adult mouse brain or E 11.5 

whole mouse Matchmaker c D N A libraries (in the pGADIO vector, leu+; Clontech) were 

performed following the Matchmaker System protocol (Clontech). The total number of 

successful transformants in each screen (colonies that were trp+/leu+) was divided by the 

number of independent clones in each library to give the percentage screened (% ser. in 

Table 1). Large scale LiOAc transformations of each amplified library into LD40 yeast 

already carrying a bait construct were plated onto triple dropout media (tip-, leu-, his-). 

The resulting colonies that were able to grow in these plates were his+ and were also 

assayed for (3-galactosidase production (blue staining) in a colony lift/X-gal assay 

(following a modified protocol from the Matchmaker System, Clontech; Yang, 1997, 

PhD Thesis, Rockefeller University). These colonies were deemed true positives when 

their (3-galactosidase staining turned white upon removal of the bait plasmid (by growing 

in trp+/leu- single dropout media). The prey plasmid was then extracted from the white 

colonies and sequencing of the clones was performed with vector-specific primers 

(Operon). Sequences were analyzed with MacVector Software and compared to the 

NCBI database for homology. Screens with full length Nova2 baits were performed by 

Yolanda Yang and have been previously described (Yang, 1997). All D N A sequencing 

throughout this work was performed by the Rockefeller University Protein/DNA 

Technology Center. 
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Yeast two-hybrid protein interaction assays 

Deletion constructs of Nova2 (in pBTM116) and brPTB (in pGAD424; Clontech) were 

made by PCR with specifically designed primers (Operon, see list below), gel-extracted 

(Qiaex II, Qiagen), subcloned into p G E M T vectors (Promega), verified by sequencing, 

digested with Sacl and Sail restriction endonucleases and cloned into the Sacl/Sall site of 

pGAD424 vectors. For the experiments mapping yeast-two-hybrid interactions between 

deletion constructs (Table 2, Figure 8), plasmids were sequentially transformed (first 

pBTM116 bait constructs, then pGAD424 prey constructs) into LD40 yeast with LiOAc 

and plated in the appropriate media (first trp-, then trp-/leu-). Colony lift/X-gal assays 

were used to determine the strength of the interaction, judged by the intensity of blue 

staining. Interactions between Nova full length and partial deletion constructs were also 

tested as a control for the intensity of the blue staining. 

Cloning of mouse brPTB cDNA 

A gel-extracted (Qiaex II, Qiagen) 1.3 kb EcoRI fragment of coding sequence from the 

brPTB clone isolated in the yeast-two-hybrid screen was used to make a radioactive D N A 

probe (32P-dATP, Amersham; Prime-it II Kit, Stratagene) and to screen an adult mouse 

brain c D N A phage library (Uni-ZAP XR, Stratagene). A total of 5.4xl05 phage clones 

were screened (following the protocol in Molecular Cloning, by Sambrook, Fritch and 

Maniatis, Cold Spring Harbor Laboratory Press, 1989), and after three rounds of initial 

screening and two rounds of secondary isolation and hybridization, four single clones 

were identified, three of which were identical by restriction digest analysis. Sequencing 

revealed that the two unique clones were overlapping and contained the 1.6 kb predicted 

open reading frame and a 1.4 kb 3'UTR as shown in Figure 1. 

DNA preparation and restriction digest analysis 

Unless otherwise stated, all plasmid D N A was prepared using Spin mini-prep kits 

(Qiagen) and analyzed by restriction digestion using enzymes, buffers and protocols 

supplied by New England Biolabs. D N A was separated by electrophoresis in standard lx 

TBE/1-1.5 % agarose gels and photographed under U V light. Plasmid D N A for 
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transfections into cell lines was prepared by a modified cesium chloride method 

(Molecular Cloning, by Sambrook, Fritch and Maniatis, Cold Spring Harbor Laboratory 

Press, 1989). 

RNA preparation and Northern blot analysis 

Total R N A was extracted from wild type mice using a modified guanidine-acid phenol 

protocol as previously described (Yang et al., 1998), separated on a 1 % agarose/2.2 M 

formaldehyde gel and transferred to a nylon membrane (NEN) by capillary transfer in 

10X SSC (Molecular Cloning, by Sambrook, Fritch and Maniatis, Cold Spring Harbor 

Laboratory Press, 1989). The integrity and size of the R N A samples was determined by 

ethidium bromide staining of a duplicate gel. The membranes were U V cross-linked, and 

hybridized using the QuikHyb system and following the manufacturer's protocol 

(Stratagene). The radioactively labeled probes used to screen the membrane included the 

one used to clone brPTB c D N A (see above) and a 1.2 kb EcoRI fragment from the 

coding sequence of mouse PTB, also isolated in the yeast two-hybrid screen, gel 

extracted (Qiaex II, Qiagen) and labeled in the same way (32P-dATP, Amersham; Prime-it 

II Kit, Stratagene). Exposure of the washed, wrapped membranes was carried out 

overnight (-80°C) on Kodak X - O M A T A R film. 

Protein preparation and Western blot analysis 

Fresh tissue specimens were obtained from adult wild type mice, homogenized in IX 

RIPA buffer (150 m M NaCl, 50 m M Tris-Cl pH 7.5, 1 % NP-40, 0.5 % D O C , 0.1 % 

SDS) and left on ice for 20 minutes. Alternatively, the medium from cultured cells was 

aspirated and the cells were resuspended in IX lysis buffer (1% Triton X-100, 10 m M 

Tris-Cl pH 7.6, 50 m M NaCl, 30 m M sodium pyrophosphate, 50 m M NaF, 1 m M EDTA, 

1 m M EGTA, complete protease inhibitors-Boehringer Mannheim) and vortexed. Cell 

debris were precipitated by centrifuging at 14,000 rpm for 15 minutes and the supernatant 

was passed through a 20G needle to shear chromosomal DNA. Proteins were separated 

by 10 % SDS-PAGE (following the protocol in Current Protocols in Protein Science, 

John Wiley & Sons, Ine, 1995) and transferred to PVDF membranes (Millipore). Equal 
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loading of total protein from each tissue (50 ng/lane) was determined by Bradford assay 

and verified by Coomassie blue staining of a duplicate gel. Membranes were blocked for 

one hour at room temperature in 5 % non-fat milk in R buffer (0.15 M NaCl, 10 m M 

Tris-Cl, 1 m M EDTA, 0.1 % Triton X-100), incubated with primary antibodies in 5 % 

milk in R buffer at 4°C overnight and washed five times with alternating high salt (1 M 

NaCl, 20 m M Tris-Cl, 0.1 % Triton X-100) and high detergent (0.15 M NaCl, 5 m M 

EDTA, 50 m M Tris-Cl, 1 % Triton X-100, 0.05 % SDS) buffers. After incubation for an 

hour at room temperature with secondary, HRP-conjugated antibodies (Jackson 

Immunoresearch) in 5 % milk in R buffer, the membranes were again washed five times 

with alternating high salt/high detergent buffers and the signal was detected by 

chemiluminescence (NEN). The membranes were wrapped (SaranWrap) and exposed on 

Biomax M R film (Kodak). 

Generation of polyclonal anti-brPTB antibody 

After an unsuccessful attempt to generate an antibody against a peptide unique to brPTB, 

a polyclonal anti-brPTB antibody was produced by injection of two rabbits with full-

length recombinant brPTB fusion protein (see Fusion protein synthesis below) and 

Freund's adjuvant (Pocono Rabbit Farm & Laboratory). Pre- and post-immune test sera 

were assayed by Western Blot against purified recombinant PTB and brPTB fusion 

proteins (50 ng/lane) to determine antibody reactivity, specificity and appropriate dilution 

(see Figure 4). Of the two animals immunized with the full-length brPTB protein, one 

developed immunity against brPTB and its serum was used in all subsequent experiments 

at a 1:5000 dilution. The other animal exhibited background reactivity to brPTB protein 

even in the pre-immune state. 

Antibodies 

The following primary antibodies were used throughout this work: 

P O M A patients' Ri serum (Buckanovich et al, 1993) 

Nova2-specific anti-peptide antibody (Yang, 1997) 

polyclonal anti-HuA (generously provided by Dr. Joan Steitz) 
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polyclonal anti-PTB (generously provided by Dr. Doug Black) 

monoclonal anti-myc (9E10, generously provided by Dr. Jan Karlseder) 

monoclonal anti-T7 (Novagen) 

monoclonal M 5 anti-flag (Sigma) 

polyclonal anti-GST (Sigma) 

monoclonal anti-GFP (Clontech) 

monoclonal anti-MAP2 (Sigma) 

monoclonal anti-GFAP (DAKO) 

polyclonal anti-matrin3 (generously provided by Dr. Somanathan) 

polyclonal anti-coilin p80 (R288, generously provided by Dr.Gall) 

polyclonal anti-Noppl40 (RE10, generously provided by Dr. Meier) 

monoclonal anti-SIP-1 (generously provided by Dr. Dreyfuss) 

monoclonal anti-Sm (Y12, generously provided by Dr. Gall) 

monoclonal anti-SC35 (generously provided by Dr. Gall) 

monoclonal anti-SR (16H3, Covance) 

monoclonal anti-SR (1H4, Covance) 

monoclonal anti-CTD domain of R N A polll (Covance). 

A variety of HRP-, Cy2-, Cy3- and Cy5-conjugated species-specific secondary antibodies 

were used as appropriate, following dilutions suggested by the manufacturer (Jackson 

Immunoresearch). DAPI stain (Sigma) was used at 1000 ug/mL to visualize cell nuclei. 

Fusion protein synthesis 

Full-length Noval and full-length Nova2 recombinant GST-fusion proteins were 

produced and purified as previously described (Yang, 1997). Full-length T7/His tagged 

brPTB and PTB proteins were produced by subcloning EcoRI fragments from the yeast-

two-hybrid prey vectors into pET21 (Novagen) and transforming BL21 competent cells, 

followed by standard IPTG-induction and purification by nickel-chelation 

chromatography. 
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G S T pull-down assays 

In vitro G S T pull-down assays were performed as previously described (Yang, 1997). 

Briefly, the indicated amounts of G S T and T7-tagged purified recombinant fusion 

proteins were incubated in a low stringency buffer and GST proteins were isolated using 

Glutathione-Sepharose 4B beads (Pharmacia) following the manufacturer's protocol. 

Any T7-tagged proteins pulled down with the GST proteins were eluted in SDS loading 

buffer, analyzed in SDS/PAGE and detected by Western blot. In vivo GST pull-down 

assays were performed by transfecting (Fugene6, Boehringer Mannheim) N2A cells with 

Noval and Nova2 eukaryotic GST fusion protein expression constructs (cloned in the 

pEBG vector, kindly provided by Dr. T Shishido). Cells were harvested two days later, 

lysed on ice for 45 minutes (1 % Triton X-100, 10 m M Tns-Cl pH 7.6, 50 m M NaCl, 30 

m M sodium pyrophosphate, 50 m M NaF, 1 m M EDTA, 1 m M EGTA, complete protease 

inhibitors-Boehringer Mannheim) and the D N A pellet was removed by centrifugation. 

Nuclei were disrupted by sonication and G S T pull-downs were performed with 

Glutathione-Sepharose 4B beads (Pharmacia) following the manufacturer's protocol. 

Cell cultures 

All cell lines were maintained in 10% F B S / D M E M with penicillin/streptomycin, grown 

to 6 0 % confluence in 6 well plates or chamber slides and transfected using Fugene6 

according to the manufacturer's protocol (Boehringer-Mannheim). 293T cells (ATCC) 

are a primary human embryonal kidney cell line transformed with the SV40 T antigen. 

N 2 A cells (ATCC) are a mouse neuroblastoma cell line. 

Immunofluorescence of cell cultures 

For immunofluorescence of cell cultures, cells were plated onto chamber slides (Nalge 

Nunc), transfected where appropriate, and two days later rinsed, fixed (10 minutes in 2 % 

paraformaldehyde in PBS at room temperature), washed, permeabilized (10 minutes in 

0.5 % NP-40 in PBS at room temperature), washed again, blocked (1 hour at room 

temperature in PBG: 0.2 % gelatin and 0.5 % bovine serum albumin in PBS) and stained 

overnight with primary antibody in PBG at 4°C. After three washes in PBG, slides were 
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incubated with fluorochrome-conjugated secondary antibodies in P B G for 1 hour at room 

temperature. Slides were then washed three times in PBG, once with DAPI in PBS, and 

once in PBS alone. Slides were left at room temperature to dry and then covered with 

mounting medium (Biomeda) and a coverslip (Fisher) before being sealed with nail 

polish (Revlon). The slides were observed under multiple wavelength fluorescence from 

a mercury lamp (AttoArc), in an upright microscope (Zeiss Axiolpan). Pictures were 

taken with a digital camera (Hamamatsu Orca), using Openlab software (Improvision) 

and presented with Photoshop software (Adobe). 

Immunofluorescence of tissue sections 

For immunofluorescent staining of rat and mouse brains, tissue sections were fixed in 

formalin/PBS and paraffin embedded as described above. After permeabilization in 0.5 

% NP-40, the sections were blocked in 0.2 % gelatin and 0.5 % bovine serum albumin in 

PBS. Primary anti-brPTB polyclonal antiserum (1:5000 dilution) and anti-MAP2 

monoclonal antibody (SIGMA, 1:500), anti-GFAP monoclonal antibody ( D A K O 

Corporation, 1:25) or P O M A patient sera (1:500) were incubated with tissue sections at 

4°C overnight. Proteins were visualized using Cy2 anti-mouse IgG and Cy3 anti-rabbit 

IgG or Cy5 anti-human IgG and Cy2 anti-rabbit IgG (all from Jackson ImmunoResearch) 

by confocal microscopy (Zeiss). W e confirmed that sections stained with brPTB/Cy2 

gave no signal when detected at the wavelength of Cy5 in the absence of POMA/Cy5. 

Immunohistochemistry 

Adult rats (male Sprague-Dawley), E 16 Rat embryo and P 5 mouse (male CD1) were 

used. Brains were perfused with formalin/PBS, paraffin embedded, and sectioned at 14 

um. After deparaffinization, sections were boiled in 0.01 M citric acid (pH 6.0) in a 

microwave for 10 minutes. All immune reactions were preceded by a blocking step 

(PBS, 0.05 % triton X-100, 2 % normal horse serum), and were carried out at 4°C 

overnight. All sections were washed (PBS, 0.05 % triton X-100), incubated with 

biotinylated secondary antibodies (Vector Laboratories) and washed again. Signals were 

enhanced by addition of HRP-conjugated avidin (Vector Laboratories), developed with 
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diaminobenzidene (DAB) in the presence of H,0,, and visualized by light microscopy 

using a Zeiss Axioplan microscope. 

GFP-fusion constructs and live immunofluorescence 

All GFP-Nova constructs were prepared by PCR of Nova fragments with specifically 

designed primers (Operon, see list below), gel-extracted (Qiaex II, Qiagen), sub-cloned 

into the p G E M T shuttle vector (Promega), verified by sequencing, digested with Sail and 

Bglll restriction endonucleases and cloned into Sall/Bglll sites of the pEGFP-Cl vector 

(Clontech). Plated N2A cells were transfected with Cesium Chloride preparations of the 

plasmid D N A and observed two days later live, under a mercury lamp (AttoArc) with an 

inverted microscope (Zeiss Axiovert S100). Pictures were taken as before. Specific 

amino acid mutations on all GFP constructs were made with the QuikChange Site-

directed Mutagenesis Kit (Stratagene) and site specific primers (see list below) and 

verified by sequencing. The constructs presented in Figure 29 were prepared as follows: 

GFP vector: empty GFP vector (pEGFP-Cl, Clontech) 

GFP-Noval: full length Noval sequence (amino acids 1-506) inserted into pEGFP-Cl 

GFP-Nova2: full length Nova2 sequence (amino acids 1-489) inserted into pEGFP-Cl 

GFP-NLS: amino acids 25-41 of Noval protein (putative NLS) inserted into pEGFP-Cl 

GFP-NLS K27E: as in GFP-NLS with a mutation substituting glutamate for lysine 27 

GFP-NLS K40E: as in GFP-NLS with a mutation substituting glutamate for lysine 40 

GFP-NLS K27,40E: as in GFP-NLS with glutamate substituting for lysines 27 and 40 

GFP-Noval K27E: as in GFP-Noval with a mutation substituting glutamate for lysine 27 

GFP-Noval K40E: as in GFP-Noval with a mutation substituting glutamate for lysine 40 

GFP-Noval K27,40E: as in GFP-Noval with glutamate substituting for lysines 27 and 40 

GFP-Noval ANLS: as in GFP-Noval with a mutation deleting amino acids 24-41 

GFP-Noval KH1/2: amino acids 1-242 of Noval protein inserted into pEGFP-Cl 

GFP-Noval sp/KH3: amino acids 242-503 of Noval protein inserted into pEGFP-Cl 

GFP-Noval spacer: amino acids 242-423 of Noval protein inserted into pEGFP-Cl 

GFP-Noval t.spacer: amino acids 242-360 of Noval protein inserted into pEGFP-Cl 
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In vivo splicing assays 

Cells (30% confluent in 6-well plates, Corning) were transfected with 0.25 (xg of the 

GlyRa2 minigene (described in Jensen et al., 2000a), 0.125 jug of p C M V P-galactosidase 

(Gibco-BRL) and variable amounts of pcXHookNoval, pflagbrPTB and pcXHook empty 

vector. The total amount of D N A transfected in each experiment was kept constant by 

the addition of corresponding amounts of the appropiate empty vectors. Construction of 

pcXHookNoval has been described (Jensen et al., 2000a); pflagbrPTB and pmycPTB 

were made by sub-cloning EcoRI fragments of the yeast-two-hybrid prey isolates of 

brPTB and PTB into pcDNAflag and pcDNAmyc respectively (both parent vectors were 

kindly provided by Drs. Jan Karlseder and Titia de Lange). R N A was collected 40 hours 

after transfection and RT-PCR was performed with primers (one radioactively labeled) 

specific for exons 2 and 4 of GlyRa2 as previously described (Jensen et al., 2000a). 

Exons 3A and 3B were distinguished by Sspl digest of Exon 3A-containing PCR product 

and their ratio was determined by non-denaturing SDS-PAGE, followed by quantitation 

with a Molecular Dynamics Storm Phosphorimager and ImageQuant software. The 

GABAARy2 minigene construct was made by Kate Dredge. Mutations on both minigene 

constructs were made with the QuikChange Site-directed Mutagenesis Kit (Stratagene) 

and specifically designed primers (Operon) and verified by sequencing. 

Filter binding assays 

Radioactively labeled 90 nt fragments of wild type or mutant GlyRa2 intron2 and an 

unrelated rRNA fragment were synthesized as described (Jensen et al., 2000b). 

GABAARy2 85 nt fragments of intronic R N A were made by PCR with specific primers, 

the 5' of which contained the T7 R N A polymerase sequence (Operon, see list below). 

Filter binding assays using Noval and brPTB fusion proteins were performed as 

described (Buckanovich and Darnell, 1997; Yang, et al., 1998) and the Kd was 

determined by graph analysis on KaleidaGraph software. 
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Electrophoretic mobility shift assays 

Electrophoretic mobility shift assays were performed by combining Noval and brPTB 

fusion proteins, at the concentrations indicated, in gel shift buffer (250 m M KOAc, 50 

m M Tris-OAc pH 7.7. 10 m M DTT, 5 m M Mg(OAC)2, 1 mg/mL tRNA), adding 

radioactively labeled wild type or mutant GlyRa2 R N A fragments (final concentration 

0.6 nM) and Ficoll loading buffer (final concentration 2.5% Ficoll) and incubating for 30 

minutes at 4°C. The samples were separated by non-denaturing 8% PAGE/0.5 X TBE at 

200V, 4°C, and exposed on Kodak Biomax M R film overnight (-80 °C). 

Primers 

For intronic GlyRcc2 and GABAARy2 R N A fragments: 

#GlyRFr905'T7: 

A G T A A T A C G A C T C A C T A T A G G G A T C A T G C A G T T C T G G T T T A A T 

#GlyRfr903': A G C T C C A T C A A C A T C T G T G G 

#T7GABA100: 

G A A A T T A A T A C G A C T C A C T A T A G G G A G T A A T T T G T C T T A T T T T G T T T C 

For mutations in PTB sites in GlyRcc2 and GABAARy2 minigenes and R N A fragments: 

#Gly90PTBC/T5': G C A G T T C T G G T T T A A T T T T T T T T T T T T G C A G T C T C A T C A T C 

#Gly90PTBCAT3': G A T G A T G A G A C T G C A A A A A A A A A A A A T T A A A C C A G A A C T C 

#GABA-GA2.5':GTCTTATTTTGTTTCGATTTCTCGATTTTTTTTCCTTTTCC 

#GABA-GA2.3': 

G G A A A A G G A A A A A A A A T C G A G A A A T C G A A A C A A A A T A A G A C 

#GABA-GA1.5':GCAATTCGATTTTCTGTCTACAAATCCAAAGCTTCTTCGG 

#GABA-GA1.3': C C G A A G A A G C T T T G G A T T T G T A G A C A G A A A A T C G A A T T G C 

For mutations in amino acids of the Noval NLS in pEGFP constructs: 

#N 1K27E5': C C G G A C T C G C G G G A A A G G C C G C T T G A A G C 

#N1K27E3': G C T T C A A G C G G C C T T T C C C G C G A G T C C G G 

#N 1K40E5': G C C G G C A G C A C C G A G A G G A C C A A C A C G 

#N 1K40E3': C G T G T T G G T C C T C T C G G T G C T G C C G G C 

For brPTB deletion mutants in yeast-two-hybrid prey constructs: 
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#brPTB30:CTCGAGTGGACGGAATTGTCACTGAGG 

#brPTB31: CTCGAGAAGATAAAATGGATGGGGC 

#brPTB32:CTCGAGACAAAGAACTAAAGACAGATAATAC 

#brPTB33:CTCGAGAGAGTGCGGTGACTCCAGC 

#brPTB34:CTCGAGTTGTGAATTTGAATGTAAAATAC 

#brPTB35: CTCGAGTGCCTGGAGTCTCAGC 

#brPTB36rc:CGGCCGGATTGGAGTACTGGATGTAAA 

#brPTB37rc:CGGCCGGTTTGGAAAAATCAATCC 

#brPTB38rc: CGGCCGCCACTCGGCCAGCGG 

#brPTB39rc:CGGCCGCGATTGTTGACTTGGAGAAAGAC 

#brPTB40:GTCGACTGGACGGAATTGTCACTGAGG 

#brPTB41: GTCGACAAATGGATGGGGCTCCCT 

#brPTB42:GTCGACACAAAGAACTAAAGACAGATAA 

#brPTB43: GTCGACAGAGTGCGGTGACTCCAGC 

#brPTB44:GTCGACTTGTGAATTTGAATGTAAAATAC 
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C h a p t e r 3 - A n o v e l , b r a i n - e n r i c h e d h o m o l o g u e o f 

PTB interacts with Nova 

Introduction 

The Nova proteins constitute a family of neuron-specific, RNA-binding proteins that 

have been implicated as the antigens in paraneoplastic opsoclonus-myoclonus ataxia 

(POMA). They have high homology with the hnRNP K protein with which they share 

their organization of three RNA-binding domains (RBD) of the KH (hnRNP K 

Homology) type. Noval was one of the very first human, neuron-specific, RNA-binding 

proteins (RBP) to be identified, but its role remained unclear at first. It was cloned by 

screening a human cerebellar cDNA expression library with a high-titer serum from a 

POMA patient (Buckanovich et al., 1993). 

Using the same serum to screen a small cell lung cancer expression library, 

yielded a second family member named Nova2 (Yang et al., 1998). Interestingly, the 

expression patterns of the two proteins in neurons are almost complementary with Noval 

restricted to the hypothalamus and ventral midbrain, hindbrain and spinal cord and Nova2 

present at highest levels in the cortex, thalamus, inferior colliculus, inferior olive and the 

external granule cell layers of the cerebellum (Buckanovich et al., 1993; Buckanovich et 

al., 1996; Yang et al., 1998). 

The fact that Noval expression in the developing nervous system is restricted to 

neurons of the ventral brain stem, ventral spinal cord and cerebellum suggested initially 

that it might be important in the development and patterning of these structures 
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(Buckanovich et al., 1993). Indeed, later work showed that Noval is essential for 

neuronal viability since null mice exhibit apoptotic cell death in hindbrain and ventral 

spinal cord neurons (Jensen et al., 2000a). 

Nova proteins are similar in their amino acid sequence and structural features to 

two other KH-type RBPs, hnRNP K and the fragile X mental retardation protein (FMRP) 

They all harbor two adjacent KH domains, a spacer and a third RNA-binding domain 

(KH domain in Nova and hnRNP K, RGG box in FMRP). Both FMRP and hnRNP K 

contain nuclear export sequences and have been shown to shuttle between the nucleus 

and the cytoplasm (Michael et al., 1997; Feng et al., 1997). Many nuclear KH-type RBPs 

have been shown to regulate pre-mRNA splicing in different organisms, such as MER-1 

in yeast (Nandabalan and Roeder, 1995), PSI in Drosophila (Siebel et al., 1995), and SF1 

and KSRP in mammals (Arning et al., 1996; Min et al., 1997). However, the best 

characterized role for hnRNP K and FMRP involves translation control in the cytoplasm 

(DeBoulle et al., 1993; Ostareck et al, 1997). 

Because of the sequence homology of Nova with hnRNP K and the presence of 

consensus KH-type RNA-binding motifs, it was hypothesized that it too is an RNA-

binding protein. A variety of in vitro and in vivo experiments demonstrated that Noval is 

an RNA-binding protein with a consensus sequence for binding and identified putative 

target RNA transcripts in the metabolism of which Noval could play a role (Buckanovich 

et al., 1996; Buckanovich et al., 1997). Similarly, Nova2 was found to bind RNA targets 

in vitro but with a sequence specificity that differed from Noval (Yang, 1997; Yang et 

al., 1998). However, the disparity in the RNA sequences is subtle and Nova proteins are 

able to bind each other's targets, albeit with slightly smaller affinity. 
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Besides clues obtained from sequence and structure similarities to hnRNP K and 

FMRP, insight into the function of Noval came from studies of its binding to specific 

physiologic RNA targets, such as the glycine receptor a2 subunit (GlyRa2) pre-mRNA 

(Buckanovich et al., 1997). Structural and biochemical studies of the Noval protein-

RNA interaction demonstrated it is of high affinity, specificity and functional importance 

and determined the particular RNA sequence characteristics and peptide domain 

requirements (Buckanovich and Darnell, 1997; Lewis et al., 2000; Jensen et al., 2000b). 

As well as making contacts with RNA, many RNA-binding proteins have been 

known to engage in protein-protein interactions that are likely to be important in 

mediating their biological function. For example, in the eukaryotic nucleus, many 

ribonudeoprotein (RNP) complexes are known to exist (e.g. the spliceosome) whose 

function is both dependent on and a consequence of specific protein contacts within these 

complexes. Thus, the search for specific protein interactions of RBPs is expected to yield 

important information on their function within the cell. Various domains of RBPs have 

been hypothesized to be responsible for such protein-protein interactions including the 

RNA-binding motifs themselves (RRM- or KH-type; Chen et al., 1997; Kielkopf et al., 

2001), the RS domains of SR proteins (Valcarcel and Green, 1996; Xiao and Manley, 

1997), and the glycine-rich domain of hnRNP Al and Sxl (Cartegni et al., 1996; Wang et 

al., 1997). 

Several findings support the idea that Nova proteins may undergo protein-protein 

interactions in addition to RNA binding. First, the co-crystal structure of a Nova-RNA 

complex reveals that most of the KH domain is accessible for protein-protein 

interactions, even when bound to RNA (Lewis et al., 2000). Dynamic light scattering 
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experiments showed that the K H 3 of Noval is capable of forming dimers in solution and 

tetramers in the presence of RNA. Second, 32% of Noval (164/510 aa) and 39% of 

Nova2 (190/492 aa) peptide sequences consist of an unstructured spacer domain linking 

the second and third KH domains (Buckanovich et al., 1993; Yang et al., 1998). This 

spacer domain is the region of greatest sequence divergence between Noval and Nova2 

family members (56% identity and 66% homology at the amino acid level; the KH 

domains are 89% identical, 96% homologous) and between Nova and several closely 

related KH-domain containing proteins (hnRNP El/2, hnRNP K; Lewis et al., 1999). 

The spacer region contains several proline-rich and alanine/glycine-rich stretches that 

may represent protein interaction motifs. Third, there are several reports on the existence 

of homotypic and heterotypic interactions between KH-containing RBPs such as the 

Fragile X Mental Retardation Protein (FMRP) family (Siomi et al., 1996), the quaking 

protein (Zorn and Krieg, 1997), and the Sam68 protein (Chen et al., 1997). Furthermore, 

preliminary experiments from our lab have shown that Nova proteins are able to form 

homodimers and heterodimers in vitro and interact in the yeast-two-hybrid system (Yang, 

1997; Yang etal., 1998). 

To examine whether Noval and Nova2 interact specifically with other proteins 

and to identify what those may be, yeast two-hybrid screens were performed using Nova 

proteins as bait. The results shed new light to our understanding of Nova biology and 

made possible the exploration of the effect of specific protein interactions on the in vivo 

function of Nova. 
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Results 

Identification of proteins that interact with Noval and Noval 

Yeast two-hybrid screens were performed in order to identify proteins that might interact 

with Noval and Nova2. Adult mouse brain and embryonic day 11.5 (E 11.5) whole 

mouse cDNA libraries were screened with various Nova bait constructs including full 

length Noval, full length Nova2, and the Nova2 spacer (amino acids 230-407). The 

latter domain of Nova2 does not contain any RNA binding motifs and has been 

previously shown to mediate at least part of the homotypic and heterotypic interactions 

between Nova proteins (Yang, 1997). 

As summarized in Table 1, a number of different RNA-binding proteins were 

isolated in the yeast-two-hybrid screens as possible Nova interactors, including two novel 

sequences. One of these novel sequences (novel RRM) contained RRM-type RNA-

binding motifs and exhibited a brain-specific mRNA expression pattern (data not shown). 

The other, was named brain-enriched polypyrimidine tract-binding protein (brPTB) 

because it displayed a strong sequence similarity to PTB (also known as hnRNP I) and 

was characterized further (see below). 

Strikingly, several of the proteins pulled out of the libraries belong to distinct, 

well-defined families such as the paraneoplastic antigen Hu protein family (HuA, HuB 

and HuD) and the PTB protein family (matrin3, hnRNP I/PTB, hnRNP L, and brPTB). 

Additionally, other proteins that play a role in RNA metabolism were found to interact 

with Nova2. SRp20 is a member of the SR family of splicing factors with a role in pre-

mRNA processing and alternative splicing regulation (Zahler et al., 1992; Heinrichs and 

Baker, 1997; Neugebauer and Roth, 1997). YL2/p32, a protein known to co-purify with 
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ASF/SF2 and interact with the HTV protein Rev, is thought to mediate nuclear export of 

unspliced messages (Luo et al. 1994, Tange et al. 1996). 

Cloning of brain-enriched Polypyrimidine Tract-Binding Protein (brPTB) 

Since the sequence of brPTB identified in the yeast-two-hybrid screen lacked a portion of 

the 5' end (as determined by the absence of alignment with PTB in that region), an EcoRI 

fragment was used to make a radioactively-labeled probe and screen an adult mouse brain 

cDNA phage library. A 3.0 kb brPTB cDNA containing the predicted full length coding 

sequence was isolated after three rounds of screening (see Materials and Methods). 

The 1.6 kb open reading frame encodes for a predicted 532 amino acids and is 

followed by a 1.4 kb 3' UTR (Figure 1). Sequence analysis shows that brPTB protein 

shares 73% identity and 84% similarity with PTB at the amino acid level. These numbers 

jump to 80% and 91%, respectively, over the four RRM domains (Figure 2). The brPTB 

cDNA also contains a putative nuclear localization signal (NLS) and a consensus 

polyadenylation signal. 

A sub-family of RRM-type RNA-binding proteins interact with Nova 

Interestingly, some of the proteins that were identified in the yeast two-hybrid screen 

with Nova baits (hnRNP I/PTB, hnRNP L, brPTB and matrin 3) form a distinct sub­

group of the RRM-type family of RNA-binding proteins based on amino acid homologies 

over their RRM domains (Figure 2; Burd and Dreyfuss, 1994). While the sequence of 

these proteins matches the RRM domain consensus overall, they differ significantly over 

their ribonudeoprotein motifs (RNPs), which are thought to mediate the actual binding to 
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R N A targets (Nagai et al., 1990). Specifically, the PTB/brPTB family lacks the 

glycine/phenylalanine doublets (GF) that are prominent in the RNP1 motif of most RRMs 

and instead contain hydrophobic and polar amino acids. In the case of RNP2, the 

consensus among RRM-containing proteins calls for the presence of glycine and 

hydrophobic residues whereas the PTB/brPTB family in addition to the hydrophobic 

residues, contains a histidine and polar amino acids. 

The interaction of these proteins with the Nova family members was equally 

robust (Table 2). In assays measuring the interaction between the PTB/brPTB family 

members with Noval and Nova2 in the yeast-two-hybrid system, their behavior was 

indistinguishable. All four proteins were capable, when fused to the Gal4 activation 

domain (GAD), to interact with Noval or Nova2 fused to the LexA binding domain and 

activate the LexA promoter thus conferring the ability to grow in his- media. In colony 

lift/X-gal assays, the same interactions resulted in strong blue staining confirming their 

strong interaction with Noval and Nova2. 

brPTB expression in the nervous system 

To examine the expression pattern of brPTB, Northern blot analysis was performed on 

several mouse tissues (Figure 3). brPTB mRNA was detected preferentially in the brain, 

including the cortex, cerebellum and brainstem, with very reduced levels evident in some 

organs outside the nervous system, most notably the heart. brPTB is expressed at similar 

levels across different developmental stages, ranging from El8 to adult. In contrast, a 

PTB probe detected mRNA in all tissues, although the possibility that this probe might 

cross-react with brPTB cannot be ruled out. 
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In order to evaluate the tissue expression of brPTB protein, we generated a 

specific antibody by immunizing rabbits with a purified, recombinant full-length brPTB 

fusion protein. While the pre-immune serum was non-reactive, the anti-brPTB 

polyclonal serum (a-brPTB) recognizes a protein of approximately 57-59 kDa (Figure 

4A). Furthermore, this antibody is brPTB-specific at this dilution (1:5000) since it reacts 

with brPTB fusion protein but not with the same amount of PTB (Figure 4B). 

Western blot analysis using this brPTB antibody revealed that brPTB protein, like 

its mRNA, is enriched in neural tissues, including the cortex, cerebellum, brainstem and 

spinal cord (Figure 5). brPTB is also expressed at high levels in the testis and at 

considerably lower levels in the liver, heart, lung, skeletal muscle and thymus with no 

expression evident at all in the spleen and kidneys. This pattern contrasts with the strict 

brain-specific expression of Nova proteins. 

Immunohistochemical studies were performed in order to further define the 

expression pattern of brPTB protein in rat and mouse tissues (Figure 6). Strong reactivity 

to the brPTB -specific antibody was present in most brain tissues including cerebellum, 

brainstem, spinal cord and hypothalamus (Figure 6A, B, C and D). brPTB was also 

expressed in the peripheral nervous system and neural crest derivatives, including the 

dorsal root and trigeminal ganglia (Figure 6C and D), the cochlear spiral and intestinal 

ganglion cells (Figure 6E and F) and the adrenal medulla (Figure 6C). Non-neural tissues 

that expressed brPTB included the heart and, at low levels, the liver and adrenal glands 

(Figure 6C and data not shown). 

To examine the subcellular distribution of brPTB, we used immunofluorescence 

microscopy on rat sections. brPTB protein is predominantly nuclear and stains both 

68 



neurons and astrocytes in confocal microscopy images of cells doubly stained for brPTB 

and the neuronal marker MAP2 (Figure 6G) or the astrocytic marker GFAP (Figure 6H). 

While not strictly a neuronal protein like Nova, brPTB is preferentially enriched in the 

nervous system where it stains neurons as well as other cell types such as astrocytes. 

brPTB and Nova proteins interact in vitro and in vivo 

To confirm the results of the yeast two-hybrid assay, and to demonstrate that the Nova-

brPTB interaction is not dependent on additional yeast proteins or RNA, we assayed the 

interaction between brPTB and the Nova proteins in vitro and in vivo, using a GST pull­

down assay. In vitro, purified brPTB specifically interacts with Noval and Nova2 fusion 

proteins, and this interaction is not affected by pre-treating each protein sample with 

RNAse A (Figure 7A). 

In N2A cells, a neuroblastoma cell line that expresses endogenous brPTB (see 

below), transfected Noval and Nova2 GST-fusion expression vectors result in the 

precipitation of the endogenous brPTB protein (Figure 7B). In contrast, a control 

transfection with a vector expressing GST protein alone does not pull down brPTB. 

Taken together, these data demonstrate that brPTB and Nova proteins are capable of 

interacting directly and independently of an RNA intermediate in both the test tube and 

cultured cell lines. 

We further dissected the interaction between brPTB and the Nova proteins by 

using truncation constructs in the yeast-two hybrid assay (Figure 8). The spacer domain 

of Nova2 (aa 230-407) lacks a KH-type RNA-binding motif but is sufficient in producing 

as robust an interaction with brPTB as were full length Noval or Nova2, confirming the 
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result of the G S T pull-down assay that no R N A intermediate is required for the Nova-

brPTB interaction. 

In contrast, no single brPTB deletion construct was adequate in mediating a 

strong interaction with Nova. Multiple peptide domains in the brPTB protein seem to be 

required for the contact with Nova as witnessed by the fact that non-overlapping 

truncation mutants of brPTB were incapable of interacting with Nova as strongly as the 

full length protein. From these experiments, at least two important regions in brPTB can 

be identified that are necessary for the interaction with Nova, one in the N terminus and 

another in the C terminus. However, these conclusions are preliminary since the question 

of functionality and proper structural folding of the truncation mutants in the yeast 

system needs to be addressed. The truncation constructs were indeed capable of 

expressing proteins of the appropriate size as judged by Western blot assays of yeast cell 

lysates (data not shown). 

70 



Discussion 

A novel, brain-enriched, PTB-like protein has been identified that specifically interacts 

with the neurologic disease antigen Nova. Several earlier studies predicted the existence 

of a neuronal isoform of PTB. Three distinct isoforms of PTB are known, each with 

different sizes of a spacer region between the second and third RNA binding domains 

(Gil et al., 1991; Patton et al., 1991; reviewed in Wagner and Garcia-Blanco, 2001). The 

existence of a neuronal PTB homologue was predicted from studies of cell extracts that 

were able to replicate aspects of neuron-specific alternative splicing in vitro (reviewed in 

Grabowski, 1998). These studies documented a PTB-like protein species enriched in 

nuclear extracts of brain tissue (Ashiya and Grabowski, 1997) and retinoblastoma cell 

lines (Chan and Black, 1997) that migrated more slowly on SDS-PAGE than PTB 

(around 59 kDa; named p59 or nPTB). The brPTB cDNA clone identified here predicts a 

protein that is slightly larger than PTB (57.6 vs. 57.2 kDa; Gil et al., 1991), and is most 

likely the previously identified p59/nPTB brain-enriched species. 

Yeast two-hybrid screens using Nova proteins as bait identified several PTB-

related RNA-binding proteins. Four of the most robustly interacting proteins in these 

screens were PTB, hnRNP L, matrin3 and brPTB. These proteins constitute a subfamily 

of RRM-type RNA binding proteins, as first suggested by comparisons of PTB and 

hnRNP L (Ghetti et al., 1992), because their RRM motifs are strongly homologous with 

each other but only weakly homologous to the canonical RRM consensus sequence. The 

interactions between Nova and the various members of this subfamily suggest that they 

may be mediated by a domain shared among these proteins, which seems likely to 

include the atypical RRM motif itself. However, mapping of the interaction between 

71 



Nova and brPTB failed to reveal a single deletion mutant that interacted strongly with 

Nova, suggesting either that the full-length protein is necessary for the interaction or that 

several different domains are important for a robust interaction. It is also possible that 

improper structural folding of the deletion constructs precluded any interaction. 

While matrin3 was the only protein that was isolated with both Noval and Nova2 

baits, it can be further supported from the results of the yeast-two-hybrid screens that the 

two Nova proteins participate in comparable types of protein-protein interactions and, 

quite possibly, through the same peptide domains. First, Noval and Nova2 have very 

high amino acid sequence identity and prominent structural similarities (Buckanovich et 

al, 1996; Yang et al, 1998; Lewis et al, 1999; Lewis et al, 2000). Second, they interact 

homotypically and heterotypically with each other (Yang, 1997; Yang et al., 1998; Figure 

8). Third, they are able to function as baits in yeast-two-hybrid screens and identify 

proteins belonging to the same family of RNA-binding proteins: Noval interacts with 

HuB, HuD and matrin3 and Nova2 interacts with HuA, hnRNP L, matrin3, PTB and 

brPTB (Table 1). These interactions of Nova proteins are highly likely to be mediated by 

similar structural motifs and point to their possible interchangeability within the nervous 

system. Preliminary evidence from our lab has hinted at a compensatory mechanism for 

the expression of Nova2 in Noval-null mice (M. Ruggiu and R. Darnell, unpublished 

observations). 

The region of highest sequence divergence between Noval and Nova2 is the 

spacer region between RNA-binding domains KH2 and KH3. It has not been possible to 

use the Noval spacer as bait in a yeast-two-hybrid screen as it activates the LexA 

promoter on its own without the need for a GAD-fusion prey. However, given the prey 
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isolated with the Nova2 spacer and their resemblance to the ones isolated by Noval and 

Nova2 full-length constructs, it is unlikely that drastically different proteins would have 

been identified by a screen with the Noval spacer domain as bait. Furthermore, full-

length Noval and Nova2 constructs exhibit the same behavior in their interactions with 

some of the prey isolated in the screens performed here (see Table 2 and Figures 7 and 8). 

For a complete list of prey isolated with the Nova2 spacer and their interactions with 

Nova constructs in yeast-two-hybrid see the Appendix. 

The experiments presented have identified proteins that interact with Noval and 

Nova2. In the yeast-two-hybrid screens, some proteins were isolated independently in 

different screens or had sequence and domain similarities with other prey, even belonging 

to the same sub-family of proteins. Because of this and by virtue of their expression 

pattern and their functional attributes it seems likely that these interactions are real and 

biologically significant. In one example, that of the newly-identified, brain-enriched 

homologue of PTB, the interaction with Nova has been verified in vitro and in vivo. 

Thus, attractive hypotheses can be formed about the effect that these interactions may 

have on the function of Nova proteins and about the roles that Nova proteins may play in 

RNA metabolism within the cellular environment. 

The expression of brPTB is significantly enriched in the brain at the mRNA and 

protein level (this work; Lillevali et al., 2001). It is also robustly expressed in the testis 

and at much lower levels in the heart and skeletal muscle. The expression of PTB mRNA 

is thought to be mostly ubiquitous (Markovtsov et al. 2000; Polydorides et al., 2000; 

Figure 3) although this is controversial as some reports claim significantly reduced levels 

in adult brain (Patton et al., 1991; Lillevali et al., 2001) and skeletal muscle (Lillevali et 
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al., 2001). Reports on the protein expression of P T B are also contradicting in that it is 

found in several neural cell lines (Markovtsov et al. 2000) but not in nuclear extracts 

from rat brain (Ashiya and Grabowski, 1997). 

Several lines of evidence suggest that the interaction between brPTB and Nova is 

real and of biological significance. Both proteins are expressed in the same cells, i.e. 

neurons, and while brPTB is also expressed in other cells of the nervous system, such as 

glial cells, as well as in other tissues altogether, its brain-enriched expression pattern 

suggests that it is of functional importance in the nervous system. Nova and brPTB are 

predominantly nuclear proteins and share homology with hnRNP K and I, respectively, 

both of which are mostly nuclear proteins that are known to participate in various aspects 

of RNA metabolism. The two proteins are able to interact in vitro without any RNA 

intermediates and in vivo as GST-Nova fusion constructs overexpressed in N2A cells pull 

down endogenous brPTB protein. An attempt to co-immunoprecipitate endogenous 

proteins from brain tissues using either the anti-brPTB polyclonal antibody or anti-Nova 

patient serum was unsuccessful. In the latter case, it is possible that the anti-Nova serum 

disrupted protein-protein interactions, since it is thought to recognize parts of the spacer 

and third KH domains of the Nova proteins which have been shown here to mediate, at 

least partially, the interaction with brPTB (Buckanovich et al., 1996; Dredge and Darnell, 

personal communication; Figure 8). To verify that brPTB and Nova proteins interact 

functionally, immunofluorecence studies were performed on their nuclear localization 

(Chapter 5). The effect of this interaction was tested with in vivo splicing assays that 

have recently been developed for Nova (Chapter 4). 
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The interactions with known splicing factors and regulators (such as SRp20 and 

hnRNP I/PTB) would suggest that Nova contributes to the splicing regulation of some of 

its RNA targets (see Chapter 4). Another function for Nova proteins could be in the 

nuclear export of mRNA messages due to its interaction with proteins that participate in 

such transport (e.g. hnRNP L and hnRNP I/PTB). The cellular protein p32/YL2 was 

originally identified due to its co-purification with the SR protein ASF/SF2 from HeLa 

cells (Krainer et al., 1991). It has been shown to interact with many viral proteins, 

including the HTV Rev and Tat proteins (Luo et al., 1994; Yu et al., 1995). The murine 

homologue of p32, called YL2, increases the nuclear export of unspliced viral messages 

mediated by Rev (Luo et al., 1994). Furthermore, Rev acts a bridge between its response 

element (RRE) on the RNA and p32 (Tange et al., 1996). Together with the interaction 

between p32 and ASF/SF2, this suggests that p32 acts to mediate an interaction between 

Rev and the splicing machinery, perhaps allowing Rev-bound viral RNAs to bypass the 

splicing apparatus and other checkpoints and to be exported unspliced. In concert with 

this theory, p32 has been found to specifically inhibit ASF/SF2 phosphorylation and thus 

inactivate it as a splicing enhancer or repressor (Petersen-Mahrt et al., 1999). Since Nova 

contains a Rev-like NES sequence its interaction with p32/YL2, if proven, can have 

significant functional implications in its action in splicing and nuclear export. 

The interaction of Nova with the Hu family of proteins is interesting because 

these proteins are paraneoplastic antigens as well and may suggest an interplay among 

proteins whose ectopic expression appears to be beneficial for some tumors. The Hu 

proteins participate in the control of mRNA stability and translation and a role can be 

envisioned in these processes for the small but significant portion of Nova that is 
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cytoplasmic. Finally, many of these proteins (such as SRp20, PTB, matrin3, hnRNP L) 

form distinct structures in the eukaryotic nucleus and the participation of Nova in the 

formation of such bodies will be examined (see Chapter 5). 
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Table 1. Yeast two-hybrid screens with Nova protein constructs. 

LD40 yeast host strains were transformed with the indicated bait constructs (Bait, LexA 

fusions) and mouse libraries (Library, GAD fusions). Positive prey were isolated by 

growth on His" media and selected by positive (blue) LacZ staining in a colony lift/X-gal 

assay (see Materials and Methods). The identities of the interacting proteins were 

determined by examining prey sequences against the NCBI database (Prey isolated). E 

11.5: embryonic day 11.5 whole mouse library. # Clones: total number of independent 

clones in the library. % ser: percentage of clones in the library that were screened after 

multiple transformations, aa: amino acid sequence. The first two full-length Nova2 

screens presented here were the result of previous work (Yang, 1997). 
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Bait 

N o v a 2 

full length 

N o v a 2 

full length 

Library 

adult brain 

E 11.5 

# Clones 

1.5x106 

1.2 x 1 0 6 

% ser. 

4 0 7 

7 5 8 

Prev isolated 

matrin3 

H u B 

b r P T B 

matrin3 

P T B 

S R p 2 0 

h n R N P L 

N o v a 2 E 1 1 . 5 

(aa 230-407) 

1.2 x 1 0 6 167 p32/YL2 

H u A 

novel R R M 

Noval adult brain 1.5 x 1 0 6 107 

full length 

matrin3 

H u B 

H u D 

Noval E 11.5 

full length 

1.2 x 1 0 6 142 matrin3 



Figure 1. Nucleotide and amino acid sequence of mouse b r P T B . 

The cDNA sequence of mouse brPTB contains a 1.6 kb open reading frame encoding for 

a predicted 532 amino acids. The four RRM-type RNA-binding domains are boxed. A 

putative nuclear localization sequence (NLS) is marked with a double underline. The 

polyadenylation signal located approximately 300 bp upstream of the poly(A) tail is 

underlined. A bold box indicates an amino acid not present in the cDNA clone from the 

yeast two-hybrid library. Nucleotide number from the start of the clone is indicated on 

the right. ***: stop codon. 
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Asn 
GTA 
val 
CTG 
Leu 

TCT 
Ser 
CTT 
Leu 
AAA 
Lys 

AAT 
Asn 
CAC 
His 
GGA 
Gly 

ATG 
Met 
ATT 
H e 
AAA 
Lys 

AGT 
Ser 
CGA 
Arg 
AAC 
Asn 

GGC 
Gly 
AAG 
Lys 
CAG 
Gin 

ATG 
Met 
TTA 
Leu 
GCA 
Ala 

GTA 
val 
CCT 
Pro 
TTT 
Phe 

GTT 
Val 
GGT 
Gly 
TTG 
Leu 

ACA 
Thr 
GAA 
Glu 
GAA 
Glu 

GCC 
Ala 
GTG 
Val 
CTG 
Leu 

AAC 
Asn 
ACT 
Thr 
GCA 
Ala 

GGT 
Gly 
GAA 
Glu 
ACA 
Thr 

AAC 
Asn 
ACA 
Thr 
GAG 
Glu 

GAT 
Asp 
GAA 
Glu 
GAA 
Glu 

AGT 
Ser 
GTT 
Val 
GCA 
Ala 

AAG 
Lys 
ATT 
H e 
GCT 
Ala 

AAA 
Lys 
GCT 
Ala 
ATT 
H e 

TTT 
Phe 
TTA 
Leu 
ACT 
Thr 

AAA 
Lys 
GGT 
Gly 
ATG 
Met 

GGA 
Gly 
TTA 
Leu 
GTT 
Val 

AAT TAC TAT TCT GCT GTG ACA CCT CAT CTT CGT AAC CAA CCA ATT TAC ATC CAG TAC TCC AAT CAC AAA GAA CTA AAG ACA GAT AAT ACA TTA 
Asn Tyr Tyr Ser Ala Val Thr Pro His Leu Arg Asn Gin Pro H e Tyr H e Gin Tyr Ser Asn His Lys Glu Leu Lys Thr Asp Asn Thr Leu 
AAC CAA CGT GCG CAA GTA GTT CTT CAA GCT GTG ACA GCG GTC CAG ACA GCA AAT ACA CCT CTT AGT GGC ACC ACA GTC AGT GAG AGT GCG GTG 
Asn Gin Arg Ala Gin Val Val Leu Gin Ala Val Thr Ala Val Gin Thr Ala Asn Thr Pro Leu Ser Gly Thr Thr Val Ser Glu Ser Ala Val 
ACT 
Thr 

CCA 
Pro 

GCC 
Ala 

CAG 
Gin 

AGT 
Ser 

CCA 
Pro 

GTA 
Val 

CTT 
Leu 

AGA 
Arg 

ATA 
He 

ATT 
He 

ATT 
He 

GAC 
Asp 

AAT 
Asn 

ATG 
Met 

TAC 
Tyr 

TAC 
Tyr 

CCT 
Pro 

GTA 
Val 

ACA 
Thr 

CTT 
Leu 

GAT 
Asp 

GTC 
Val 

CTT 
Leu 

CAC 
His 

CAA 
Gin 

ATA 
He 

TTT 
Phe 

TCT 
Ser 

AAG 
Lys 

TTT 
Phe 

GGT 
Gly 

GCT 
Ala 

GTA 
Va] 

TTG 
Leu 

AAG 
Lys 

ATA 
He 

ATC 
He 

ACA 
Thr 

TTT 
Phe 

ACA 
Thr 

AAA 
Lys 

AAC 
Asn 

AAC 
Asn 

CAG 
Gin 

TTT 
Phe 

CAG 
Gin 

GCT 
Ala 

TTG 
Leu 

CTC 
Leu 

CAG 
Glr. 

TAT 
Tyr 

GGT 
Gly 

GAT 
Asp 

CCG 
Pro 

GTA 
Val 

AAC 
Asn 

GCT 
Ala 

CAA 
Gin 

CAA 
Gin 

GCC 
Ala 

AAG 
Lys 

CTA GCC CTA GAT GGT CAA AAT ATT TAT AAT GCT TGC TGT ACC CTA AGG ATT GAT TTT TCC AAA CTT GTG AAT TTG AAT GTA AAA TAC AAC AAT 
Leu Ala Leu Asp Gly Gin Asn H e Tyr Asn Ala Cys Cys Thr Leu Arg H e Asp Phe Ser Lys Leu Val Asn Leu Asn Val Lys Tyr Asn Asn 
GAT AAA AGT AGG GAT TAT ACT CGA CCT GAT CTG CCA TCT GGA GAC GGC CAG CCT GCG TTA GAC CCA GCC ATT GCT GCA GCA TTT GCC AAG GAG 
Asp Lys Ser Arg Asp Tyr Thr Arg Pro Asp Leu Pro Ser Gly Asp Gly Gin Pro Ala Leu Asp Pro Ala H e Ala Ala Ala Phe Ala Lys Glu 
ACA TCC CTA CTA GCT GTT CCA GGG GCT CTC AGT CCT TTG GCT ATT CCA AAT GCT GCT GCA GCA GCT GCT GCC GCT GCC GCT GGC CGA GTG GGC 
Thr Ser Leu Leu Ala Val Pro Gly Ala Leu Ser Pro Leu Ala H e Pro Asn Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Gly Arg Val Gly ATG 
Met 

CCT GGA GTC TCA GCT GGT GGC AAT ACA GTC CTG TTG GTT AGC AAT TTA AAT GAA GAG ATG GTT ACG CCC CAA AGT CTG TTT ACC CTC TTC 
Pro Gly Val Ser Ala Gly Gly Asn Thr Val Leu Leu Val Ser Asn Leu Asn Glu Glu Met Val Thr Pro Gin Ser Leu Phe Thr Leu Phe 

GGT GTT TAT GGA GAT GTG CAG CGC GTG AAG ATT CTG TAC AAT AAG AAA GAC AGT GCT CTG ATA CAG ATG GCT GAT GGG AAC CAG TCC CAG CTC 
Gly Val Tyr Gly Asp Val Gin Arg Val Lys H e Leu Tyr Asn Lys Lys Asp Ser Ala Leu H e Gin Met Ala Asp Gly Asn Gin Ser Gin Leu 

GCC ATG AAT CAT CTT AAT GGG CAG AAG ATG TAT GGA AAA ATT ATT CGT GTT ACT CTC TCT AAA CAT CAG ACT GTG CAA CTA CCT CGA GAG GGA 
Ala Met Asn His Leu Asn Gly Glr. Lys Met Tyr Gly Lys H e H e Arg Val Thr Leu Ser Lys His Gin Thr Val Gin Leu Pro Arg Glu Gly 
CTT GAT GAT CAA GGG CTA ACA AAA GAT TTT GGG AAT TCA CCA CTG CAC CGT TTT AAA AAA CCG GGA TCC AAA AAC 
Leu Asp Asp Gin Gly Leu Thr Lys Asp Phe Gly Asn Ser Pro Leu His Arg Phe Lys Lys Pro Gly Ser Lys Asn 

TTT CAG AAC ATT TTC CCT 
Phe Gin Asn H e Phe Pre 

CCT TCT GCT ACC CTT CAC CTG TCT AAC ATC CCC CCT TCT GTA GCA GAA GAG GAT CTG CGA ACT CTG TTT GCC AAC ACC GGG GGC ACT GTG AAA 
Pro Ser Ala Thr Leu His Leu Ser Asn H e Pro Pro Ser Val Ala Glu Glu Asp Leu Arg Thr Leu Phe Ala Asn Thr Gly Gly Thr Val Lys 
GCA TTT AAG TTT TTT CAA 
Ala Phe Lys Phe Phe Gin 

AGA 
Arg 

GAT CAC AAA ATG GCT CTT CTT CAG ATG GCA ACA GTG GAG GAA GCT ATT CAG GCT TTG ATT GAT CTT CAT AAT 
Asp His Lys Met Ala Leu Leu Gin Met Ala Thr Val Glu Glu Ala H e Gin Ala Leu H e Asp Leu His Asn 

TAT AAC CTT GGA GAA AAC CAT CAT CTG AGA GTG TCT TTC TCC AAG TCA ACA ATC TAA GCACGGGAGATGAAGATGGCGGGCAGATCCCATTGTTGGTGTCATCA 1695 
Tyr Asn Leu Gly Glu Asn His His Leu Arg Val Ser Phe Ser Lys Ser Thr H e *** 
CCTATTGACTGTTCAGAAAAGTGGGGGACCAGAGTTTGATTTTTTTCATGCTGTTATCATTCCTTGGTTATAAAA 1816 
GTTCAATAGGGAAGCCATTTTTGTCTGTTTAAATTTTTAGTTTAATTTTC 1941 
TACTAGG AAAAAGG AATTGGTTGTTTAGGGCAC ATCGTTATGTGGG AATTAAAATATGTTTGGGC AGGGGTGTC 2064 
TTGGCTTATCACATTTCTTTCTATTTAATCTAATAAGATACTTGATACTGAGAGTATAAAACAGC^ 2187 
CTCACAAATCTGGTCTAGATTCAGTTATGAATGTAGGCATTAGTTAAAATTAACAAGATGCA^ 2310 
TGGAACCTT-^CCTTTTTCTACACACTCTTGTGGGACGTCTCATATAAATGTCAGCA 24 33 
CATTTAAATATATATTGCCATCCTTAGTTTGTAATTAAGATTTGGAAAATGGTTGTGGA 2556 
AAGAAAGTCTACTGCGAAAACTTGCAGGAAGATTAATTTTGTGGCAGTTT^ 267 9 
AGTTT-^ET^^rTTCAAAATATTTTGTATTTAGGAATAGATCTG 2 B 0 2 
TGTTAAATGACCAATACTTTTTGAAATTGATGTACTTAGTTTCAAGATTCATAGATTCTC 292 5 
ATGTAAAATTGTATAGTTTGAAAGCGGCACA.^TTAAAJ^TTAATTTTCTAACAAAAAAAAAAAAAAAAAAAA 2999 



Figure 2. A sub-family of R R M - t y p e R B P s interacts with Nova. 

Alignment of the RRM motifs from mouse brPTB (Figure 1), mouse PTB (Bothwell et 

al, 1991), human hnRNPL (Pinol-Roma et al., 1989), and rat matrin3 Q3elgrader et al., 

1991) shows that these proteins comprise a distinct subset of RRM-containing proteins 

based on the presence of RNP motifs that do not conform to those present in the RRM 

consensus (Burd and Dreyfuss, 1994). Similar amino acids are color coded and dashes 

are inserted in the sequence for alignment purposes. 
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Table 2. Interactions of Noval and Nova2 with R R M - t y p e proteins. 

LD40 yeast host strains were transformed with the indicated bait (LexA fusion) and prey 

(GAD fusion) constructs and their interaction was scored by staining for LacZ expression 

and growth on His-media. Negative controls included unrelated proteins fused to GAD 

(TD1) and LexA (TRFI). +++, robust staining and growth; -, no staining or growth; 

GAD: Gal4 Activation Domain; ND: not determined. 
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Bait (LexA) 

Prey ( G A D ) 

T D 1 

b r P T B 

h n R N P I/PTB 

h n R N P L 

matrin 3 

T R F 1 

L a c Z 

Noval N o v a 2 

His" 

Noval N o v a 2 

+ + + 

N D 

N D 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

N D 

N D 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 



Figure 3. b r P T B m R N A levels are enriched in the brain. 

Northern blot of total RNA from the indicated mouse tissues and developmental stages 

(20 (ig/lane), probed with a 1.3 kb DNA probe from the coding sequence of brPTB (top 

panel). The blot was stripped and reprobed with a 1.2 kb probe from the coding sequence 

of PTB (bottom panel). The two messages were of approximately the same size (3.6 kb). 
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Figure 4. Production of a brPTB-specific polyclonal antibody. 

(A) Western blot of total rat cerebellum and brainstem tissue proteins (20 u.g/lane), 

probed with rabbit polyclonal anti-brPTB serum (left panel) or pre-immune serum (right 

panel, P.I.) from the same animal (see Materials and Methods). A band of approximately 

57 kDa is recognized only after the immunization with full length brPTB fusion protein. 

(B) Western blot of purified recombinant PTB and brPTB fusion proteins as indicated 

(50 ng/lane), probed with anti-brPTB serum (left panel, 1:5000 dilution). Polyclonal 

anti-brPTB serum specifically recognizes the brPTB fusion protein but not PTB. A 

duplicate blot was probed with PTB polyclonal antibody (right panel, 1:500 dilution) and 

served as a loading control. Molecular weight markers are indicated in the middle (kDa). 
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Figure 5. b r P T B protein levels are enriched in the brain. 

Western blot of the indicated mouse tissues (50 fig total protein/lane), probed with 

various primary antibodies. Molecular weight markers are indicated on the left (kDa). 

Polyclonal anti-brPTB antibody recognizes a 57 kDa band most prominent in brain 

tissues and the testis (top panel). POMA patient serum shows that Nova proteins are 

restricted in the brain (middle panel). A polyclonal anti-HuA antibody recognizes the 

ubiquitously expressed Hu isoform (Fan and Steitz, 1998a) and served as a loading 

control (bottom panel). 
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Figure 6. Immunoreactivity of b r P T B in rat and mouse tissues. 

(A) Sagittal section from E16 rat, stained with brPTB polyclonal antibody shows 

reactivity in most cells of the brain, including cerebellum (cb) and brain stem (bs). 

(B) brPTB immunoreactivity in rat spinal cord and dorsal root ganglia (arrows). 

(C, D) brPTB expression in the developing peripheral nervous system. Immunostaining 

of E16 rat sagittal sections indicate that brPTB expression is strong in embryonic dorsal 

root ganglia (C, arrow), trigeminal ganglia (D, arrow), developing adrenal medulla (C, 

arrowhead) and hypothalamus (D, ht) however very low in liver (C, lv) and adrenal 

primordium (C, ap). 

(E) brPTB staining in P5 mouse cochlea. Note the intensive staining in cochlear spiral 

ganglion cells (arrow). 

(F) brPTB expression in the ganglion cells of the small intestine (E16 rat embryo). 

(G) Confocal image of immunofluorescent double exposure for MAP2 (green) and 

brPTB (red) in a sagittal section of E16 rat cortex. 

(H) Confocal image of immunofluorescence double exposure for GFAP (green) and 

brPTB (red) in a sagittal section of adult rat cerebellum. 

Scale bars: 80 um in A-E; 160 u.m in F; 3.4 ium in G; 2.3 fim in H. 

Control sections stained with pre-immune serum or with brPTB antibody pre-adsorbed 

with brPTB fusion protein were negative (data not shown). 
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Figure 7. Nova and b r P T B proteins interact in vitro and in vivo. 

(A) In vitro GST pul-down assay. Five jug of purified recombinant GST, GST-Noval or 

GST-Nova2 fusion proteins as indicated, were incubated with 2 (xg of purified 

recombinant T7-tagged brPTB fusion protein. The T7-brPTB protein that was 

precipitated by Glutathione Sepharose beads was assayed by Western Blot using an anti-

T7 monoclonal antibody (top panel, a-T7). The presence of equal amounts of GST 

fusion proteins in each precipitation reaction was confirmed by probing the same blots 

with an anti-GST polyclonal antibody (middle panel, cc-GST). T7-brPTB runs at 59 kDa, 

GST at 27 kDa, GST-Noval at 82 kDa and GST-Nova2 at 80 kDa. To examine whether 

RNA was needed for the Nova-brPTB interaction, pull down assays were repeated in the 

presence (left column, +RNAse) or absence (right column, -RNAse) of 1 mg/ml RNAse 

A. To confirm the activity of the RNAse, reactions were spiked with 32P-labelled RNA 

and aliquots were run on denaturing urea/polyacrylamide gels and exposed by 

autoradiography (bottom panel). 

(B) In vivo GST pull-down assay. Equal amounts of GST, GST-Noval and GST-Nova2 

eukaryotic expression vectors were transfected into N2A cells as indicated. Cell lysates 

were incubated with glutathione sepharose beads and the amount of endogenous brPTB 

precipitated was assayed by Western Blot using the brPTB -specific polyclonal antibody 

(top panel, cc-brPTB). Lysate from untransfected N2A cells (cell lysate) identified the 

endogenous brPTB band. The same blot was also probed with a polyclonal GST 

antibody (bottom panel, a-GST) to confirm expression of the transfected GST proteins. 
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Figure 8. Yeast two-hybrid interactions between Nova and b r P T B . 

A number of bait constructs (LexA fusions) encoding for the indicated Noval or Nova2 

amino acids (rows) were co-transformed with different Noval, Nova2 or brPTB 

activation constructs (GAD fusions) as indicated (columns). Interaction was measured by 

P-galactosidase activity in a colony lift/X-gal assay (++, very strong staining; +, strong 

staining; +/-, weak staining or not all colonies positive; , no staining). Control bait 

(pVA3) and prey (pTDl) transformations exhibited no (3-galactosidase activity, as shown. 
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C h a p t e r 4 - b r P T B A n t a g o n i z e s t h e A c t i o n o f 

Nova in Alternative Splicing 

Introduction 

Alternative splicing is an important mechanism by which cells regulate gene expression 

and generate diversity (reviewed in Smith and Valcarcel, 2000). Neurons specifically, 

make great use of alternative splicing in order to regulate functional differences in 

proteins (reviewed in Dredge et al., 2001; Grabowski and Black, 2001). For example, a 

wide variety of neurotransmitter receptor activities are regulated by alternative splicing, 

including regulation of the NR1 NMDA receptor subcellular localization (Ehlers et al., 

1995) and its interaction with the neurofilament subunit NF-L (Ehlers et al., 1998), the 

physiology of the glutamate (Sommer et al., 1990) and NMDA (Hollmann et al., 1993) 

receptors, and the ability of agrin to induce clustering of acetylcholine receptors (Ferns et 

al., 1992; Tsim et al., 1992). Moreover, several neurologic diseases such as spinal 

muscular atrophy, amyotrophic lateral sclerosis and paraneoplastic opsoclonus-

myoclonus ataxia (POMA) have been associated with defects in proteins involved in 

generating the splicing machinery or in the accurate splicing of target RNAs (Fischer et 

al., 1997; Liu et al., 1997; Jensen et al., 2000a; for review see Dredge et al., 2001). 

Since the discovery of tissue-specific splicing of the calcitonin/CGRP transcript in 

neurons, there has been an extensive search for cis-acting RNA elements and trans-acting 

factors (RNA-binding proteins) that mediate neuron-specific splicing. The first example 

of cis-acting regulatory elements in neuronal pre-mRNAs was identified in the 
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calcitonin/CGRP pre-mRNA (Amara et al., 1982; Emeson et al., 1989) and a number of 

specific sequences have been identified that are responsible for calcitonin/CGRP tissue-

specific processing (Emeson, et al., 1989; Hedjran et al., 1997; Lou et al., 1999). 

Subsequent work identified regulatory sequences near other neuron-specific exons such 

as the Nl exon of src (Black, 1992) and a 24 nucleotide exon of the GABAA receptor y2 

subunit (Zhang et al., 1996). 

The identification of trans-acting factors that regulate neuronal splicing has been a 

greater challenge. Two general mechanisms might account for the way such factors 

could mediate regulation of neuronal splicing. Brain-specific variants in splicing patterns 

could be achieved by differing levels or modifications of ubiquitously expressed splicing 

factors. For example, antagonism between the hnRNP Al and ASF/SF2 proteins 

determines the selection of 5' splice site (Krainer et al., 1990; Ge et al., 1991; Mayeda 

and Krainer, 1992; Caceres et al., 1994; Horowitz and Krainer, 1994), and varying ratios 

of these proteins have been shown to affect neuron-specific splicing of clathrin exon EN 

in cell transfection studies (Caceres, et al., 1994). Additionally, post-translational 

modifications such as phosphorylation influence the activity of general splicing factors 

including ASF/SF2 (Colwill et al., 1996; Duncan et al., 1997; Misteli et al., 1997; Xiao 

and Manley, 1998; Petersen-Mahrt et al., 1999). Such variations might be difficult to 

detect if they are transient or localized to specific cell types and not reflected in the 

overall tissue distribution of the proteins. This may be particularly true in the brain 

where there is great complexity in cell type and number. 

A second and perhaps more direct way to regulate pre-mRNA splicing in neurons 

would be to utilize tissue-restricted regulatory proteins. But evidence for such trans-
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acting factors has been limited. Some examples of tissue-restricted splicing events 

concern the polypyrimidine tract binding protein (PTB; reviewed in Wagner and Garcia-

Blanco, 2001). PTB is thought to represses the neuron-specific splicing of calcitonin-

CGRP pre-mRNA in non-neuronal cells (Lou et al., 1996; Lou, et al., 1999). 

Furthermore, PTB has been implicated in tissue-specific alternative splicing events in the 

a-tropomyocin and a-actinin transcripts, where it is thought to repress exons in a cell-

specific manner (Gooding et al., 1998; Southby et al., 1999). Finally, data have emerged 

that support a model whereby PTB acts as a universal repressor of alternatively spliced 

exons. For example, in the fibroblast growth factor receptor 2 (FGFR2) transcript, 

splicing of exon Illb is actively repressed by PTB, and this inhibition has to be overcome 

for successful splicing in certain cell types (Carstens et al., 2000). 

Some reports have identified a brain-enriched protein recognized by PTB 

antibodies (Ashiya and Grabowski, 1997; Zhang et al., 1999). Neuron-specific splicing 

of c-src involves several generally expressed RNA binding proteins (Chan and Black, 

1997; Min et al., 1997; Chou et al., 1999), including KSRP which is enriched in brain 

(Min, et al., 1997). Also, there is data that the neuron-specific RNA binding protein Elav 

may regulate splice site selection in Drosophila neurons (Koushika et al., 1996; Koushika 

et al., 2000; Lisbin et al., 2001). 

Recently, there has been evidence that the neuron-specific RNA-binding protein 

Noval regulates alternative splicing in neurons (Jensen et al., 2000a). In vitro RNA 

selection experiments identified stem-loop RNAs harboring UCAU elements in the loop 

sequence to which Noval and Nova2 proteins bound with sequence-specificity and high 

affinity (Buckanovich and Darnell, 1997; Yang et al., 1998). The co-crystal structure of 
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Nova bound to an in vitro selected U C A Y element has been solved (Lewis et al., 2000), 

which confirms the specific nature of the Nova-RNA interaction. The Noval RNA 

selection consensus sequence matched an intronic UCAU repeat element in the glycine 

receptor a2 subunit (GlyRa2) pre-mRNA and identified it as a candidate Nova target. 

Co-precipitation and cross-linking experiments demonstrated that Nova in brain extracts 

specifically interacted with the GlyRa2 UCAU repeat element, and co-transfection assays 

demonstrated that Noval enhanced utilization of an adjacent 3' splice site of an 

alternatively spliced exon, E3A (Buckanovich and Darnell, 1997; Jensen et al., 2000a). 

Conversely, Noval-null mice have a specific defect in the utilization of GlyRa2 exon 

E3A demonstrating that Noval is necessary for accurate GlyRa2 exon selection in vivo 

(Jensen et al., 2000a). Furthermore, a second target of Noval splicing control, the 

GABAA receptor y2 subunit (GABAARy2) mRNA, exhibits specific splicing defects of an 

alternative exon in the absence of Noval in vivo. In light of these results, experiments 

were performed to address the effect of the brPTB-Nova interaction in the control of 

alternative exon selection in the GlyRa2 and GABAARy2 transcripts, and are presented 

below. 
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Results 

brPTB downregulates Nova-dependent splicing activation ofGlyRal 

It has been previously demonstrated that the Nova protein regulates the alternative 

splicing of glycine receptor a2 subunit (GlyRa2) pre-mRNA by specifically increasing 

the inclusion of exon 3A at the expense of exon 3B (Jensen et al., 2000a). Furthermore, 

this activation of splicing by Noval was shown to be dependent on binding of the 

GlyRoc2 RNA at Noval sites. To determine whether brPTB is able to affect the ability of 

Nova to activate GlyRa2 exon 3A inclusion, we co-transfected 293T cells with a GlyRa2 

minigene construct (Figure 9A) together with various concentrations of brPTB and Nova. 

The amount of protein expressed from the varying doses of transfected DNA was 

verified by Western blot analysis (Figure 10A). The ratio of exon 3A over 3B in the 

mRNA transcribed from the minigene was analyzed by an RT-PCR assay taking 

advantage of a unique Sspl restriction site in exon 3A (Jensen et al., 2000a; Figure 10B). 

The PCR product specifically depended on the presence of reverse transcriptase and the 

transfection with the minigene construct (Figure 10B; data not shown). 

Noval transfection alone stimulated exon 3A inclusion by approximately two­

fold, as previously reported (Jensen et al., 2000a; Figure 11). When co-transfected, 

brPTB suppressed the effect of Noval in a dose-dependent manner. When the maximum 

amount of brPTB is co-transfected (6ug), the ratio of exon 3A/3B returns to levels similar 

to those seen with no Noval activation at all. In control experiments, increasing amounts 

of transfected brPTB DNA in the absence of Noval did not alter the splicing pattern of 

GlyRa2 pre-mRNA (Figure 11). These results suggest that the interaction between 

brPTB and Noval is specific and functional in vivo. 
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Inhibition ofGlyRa.2 splicing by brPTB requires R N A binding 

Earlier work has shown that Noval specifically binds to a GlyRa2 UCAU-repeat RNA 

element located just upstream of exon 3A, the first of the two mutually exclusive exons 

(Figure 9B). Interestingly, a consensus sequence binding site for PTB, consisting of a 

UCUU element within a polypyrimidine tract, exists proximal to the Nova-binding 

element. Given the high degree of sequence identity between brPTB and PTB, it was 

proposed that brPTB binds to this PTB consensus site on the GlyRct2 intronic element. 

Filter binding assays were performed with brPTB and a radiolabeled 90 

nucleotide RNA that included the Noval and PTB binding sites (Figures 9B and 12). 

brPTB bound to this RNA, but with approximately a 12-fold reduced affinity (Kd = 559 

nM) relative to Noval (Kd = 46 nM). Nonetheless, this binding is specific since no 

detectable binding was observed to an unrelated piece of ribosomal RNA of similar 

length. Furthermore, when the putative brPTB binding site on this 90 nt RNA fragment 

was mutated (cytidine to thymidine; Figure 9B) its binding was reduced to the rRNA 

background levels (C->T mutant in Figure 12). 

When the co-transfection/splicing assays were repeated using a mutant GlyRa2 

minigene harboring the C->T mutation that abrogated brPTB binding to isolated RNA (as 

described above), brPTB was no longer able to block the ability of Nova to stimulate 

exon 3A inclusion (Figure 13). The ratios of exon 3A/3B stayed at the high, Noval-

induced levels and increasing amounts of co-transfected brPTB did not bring them down 

to baseline. Again, the presence of synthesized brPTB and Noval proteins in levels 

related to the amount of transfected DNA in these experiments was confirmed by 

Western blot analysis (data not shown). Taken together, these results suggest that brPTB 
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inhibits the Noval-dependent activation of exon 3A inclusion and that this action is 

mediated, at least in part, by brPTB binding to the GlyRa2 pre-mRNA upstream of the 

Noval binding site, since when binding of the brPTB protein is abolished, so is the 

inhibitory effect on splicing. 

brPTB and Noval form a complex on GlyRa2 intronic RNA 

In order to study the interaction between brPTB and Noval in relation to this RNA target, 

we performed electrophoretic mobility shift assays with the same radiolabeled GlyRcc2 

intronic RNA fragment and purified recombinant Noval and brPTB fusion proteins. 

When each protein was independently added to the GlyRcc2 RNA fragment to a final 

concentration of 100 nM the mobility of the RNA was shifted by Noval but not by 

brPTB (arrow in top panel of Figure 14, compare lanes 3 and 5). 

This was consistent with the results of the filter binding assays that showed 

Noval affinity for this RNA piece to be at least ten-fold higher than brPTB and was 

relatively equivalent in terms of binding constants. Noval protein had a Kd of 46 nM in 

filter binding assays and was able to band shift the RNA complex at concentrations of 

100 nM (and to a lesser degree at 50 nM). Conversely, brPTB protein with a Kd of 559 

nM in the filter binding assays did not result in a band shift at 50 or 100 nM, as expected. 

However, when concentrations of brPTB that did not bind RNA individually (50-

100 nM) were added to 100 nM of Noval, a supershifted complex was seen (arrowhead 

in top panel of Figure 14, compare lanes 8 and 9 with 4 and 5) suggesting that if Noval is 

already present on the RNA, brPTB can bind resulting in a brPTB-Nova-RNA complex. 
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As a control, the same concentration of an unrelated protein (TRF2) did not affect the 

mobility of the Nova-RNA complex (data not shown). 

To examine whether the ability of brPTB to mediate this change in mobility was 

dependent on Nova-RNA binding, we repeated these assays using a GlyRoc2 90 nt RNA 

fragment in which the Noval-binding UCAU repeat elements were mutated to UAAU 

(Figure 14 bottom panel). Using this mutant RNA, Noval binding was abolished and no 

supershifted complex was observed, consistent with previous data showing that Noval 

does not bind to this RNA (Buckanovich and Darnell. 1997; Jensen et al., 2000a). Taken 

together, these results suggest that Noval and brPTB form a complex on GlyRcc2 target 

RNA upstream of the alternatively spliced exon 3A and that this complex is crucially 

dependent on Noval binding the UCAU intronic RNA element. 

brPTB inhibits splicing activation of GABAARy2 

Similarly with the results obtained for the glycine receptor a2 subunit mRNA, Nova has 

been shown to regulate the alternative splicing of GABAA receptor y2 subunit (Jensen et 

al., 2000a). In this case, exon 9 is alternatively spliced and its inclusion depends on the 

presence of Noval as shown by splicing assays comparing RNA obtained from wild type 

and Noval knock-out mice. Furthermore, in splicing assays, the inclusion of exon 9 from 

a GABAARy2 minigene (Figure 15A) is directly proportional to the amount of Noval 

synthesized from a co-transfected construct (Dredge et al., work in progress; this work). 

In 293T cells co-transfected with the GABAARy2 minigene construct, Noval 

increased the inclusion of exon 9 by approximately four-fold (Figure 16). These assays 

were analogous to the ones performed with the GlyRa2 minigene and were based on RT-
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PCR analysis of R N A obtained from various transfected cell lines. The amount of 

protein synthesized from the transfected constructs was verified by Western blot (data not 

shown), and the relative ratios of long form (including exon 9) over short form 

(excluding exon 9) of the GABAARy2 mRNA were determined by Phosphorimager 

analysis. As can be seen in Figure 16, the increase in exon 9 inclusion obtained by co­

transfection of Noval is eliminated by simultaneous co-transfection of increasing 

amounts of br-PTB. When there is no Noval present, brPTB still has an inhibitory effect 

on the inclusion of exon 9, however much less than in the presence of Noval. This 

suggests that in this case, as opposed to GlyRoc2, brPTB plays a general repressive role in 

the inclusion of exon 9 that is not strictly dependent on the action of Noval. 

In contrast to GlyRa2, Noval binding sites in the GABAARy2 pre-mRNA have 

not been defined in detail (K. Dredge and R. Darnell, unpublished observations). 

However, given the results with GlyRa2, we examined the intronic sequence upstream of 

alternatively spliced exon 9 in the GABAARy2 transcript. An 85 nucleotide fragment 

immediately upstream of exon 9 contains three sites that seemed promising in terms of 

binding brPTB (Figure 15B). These included a total of three UCUU sequences in the 

context of polypyrimidine tracts. Two of them were closer to each other and were 

mutated together (RNA mutant GA2, Figure 15B). The other was mutated alone (RNA 

mutant GA1, Figure 15B). However, whether one (GA1) or two (GA2) of these putative 

brPTB sites were mutated, the net effect observed in binding assays was negligible 

(Figure 17). These experiments failed to identify binding sites for brPTB immediately 

upstream of the alternatively spliced exon in the GABAARy2 pre-mRNA. 
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Consistent with this data, when 293T cells were transfected with GABAARy2 

minigene constructs containing these mutations, the inhibitory effect of brPTB remained 

substantial (shown in Figure 18 for RNA mutant GA2; similar results obtained with 

mutant GA1 are not shown). Therefore, brPTB inhibits Noval in the inclusion of 

GABAARy2 exon 9, but this effect is not mediated by intronic UCUU RNA sequences 

present immediately upstream of the alternative spliced exon. 

brPTB has no effect on Nova-dependent alternative splicing in N2A cells 

To examine the interaction of Nova and brPTB in the control of alternative splicing in an 

environment that more closely resembles neurons in vivo, we performed the co-

transfection/splicing assays in cultured N2A cells, a neuroblastoma cell line. Since N2A 

cells contain endogenous Nova and brPTB (see below), the ratio of exon inclusion in 

untransfected cells was expected to be different than 293T cells which do not contain 

Noval. Indeed, the background level of the ratio of exon 3A over 3B with the GlyRa2 

minigene was higher in N2A cells than in 293T cells (Figure 19; compare to Figure 11). 

Expression of additional, transfected Noval increased the inclusion of exon 3A 

approximately two-fold. The 3A/3B exon ratios obtained in this experiment are slightly 

lower than the ones previously observed (Jensen et al., 2000a) and could be due to sub-

optimal splicing from this minigene. However, the two-fold increase in the ratio upon 

addition of Noval is consistent with previous results. Co-transfection of increasing 

amounts of brPTB, has no effect on the ratio of exon 3A over 3B that stays in the Noval-

induced levels (Figure 19). 
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Similarly, in assays with the G A B A A R y 2 minigene, there is a ten-fold increase in 

the inclusion of exon 9 compared to the ratio obtained with 293T cells (Figure 20; 

compare to Figure 16) and it was closer to the ratios obtained from wild type tissue RNA 

samples (Jensen et al., 2000a). The effect of Noval co-transfection is again striking, 

increasing the inclusion of exon 9 by four-fold. However, the transfection of brPTB 

expression vectors does not significantly inhibit the effect of Noval (Figure 20). 

PTB inhibits Nova-dependent splicing activation ofGlyRcd 

To test whether the original PTB homologue has a similar effect on the increase of exon 

inclusion mediated by Noval, co-transfection/splicing assays were performed in 293T 

cells with the wild type GlyRoc2 minigene. As shown in Figure 21, PTB has the same, if 

not a stronger effect than brPTB in inhibiting Noval-dependent exon 3 A inclusion. The 

transfection constructs for the two PTB homologues were based on the same vector with 

the same promoters and polyadenyation sites but containing different epitope tags. Thus, 

while Western blot analysis showed that both proteins were synthesized in increasing 

levels with more DNA transfected, as before, it was impossible to compare the relative 

levels of the two protein homologues as they were recognized by different primary 

antibodies. 
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Discussion 

The action of brPTB to inhibit Nova-dependent activation of exon inclusion is consistent 

with the general role described for PTB in suppressing exon inclusion in pre-mRNA 

splicing. This is believed to be mediated by PTB binding to polypyrimidine rich 

elements in intronic sequences and blocking the assembly of a splicing competent 

complex in a manner analogous to the action of Sxl in blocking U2AF65 binding of the 

polypyrimidine tract (Valcarcel et al., 1993). For example, PTB acts to repress smooth 

muscle-specific inclusion of alternatively spliced exons in the a-tropomyosin and a-

actinin pre-mRNAs, by binding to regulatory elements upstream of the 3' splice site (Lin 

and Patton, 1995; Perez et al., 1997; Southby et al, 1999). 

In neuronal cells, PTB inhibits inclusion of the c-src exon, in part by an action on 

3' splice-site selection that can be competed by U2AF65 (Chan and Black, 1997). 

Similarly, previous studies with p59/nPTB as well as current studies on brPTB, all point 

to an inhibitory action on splice site selection. Even in the single instance where PTB 

enhances exon inclusion in the alternative splicing of the calcitonin-CGRP pre-mRNA, it 

is believed to act by disrupting U2AF recognition of an enhancer pseudo-exon. thereby 

indirectly promoting correct exon utilization (Lou et al., 1999). 

Given several instances in which PTB acts on alternatively spliced pre-mRNAs 

to inhibit the inclusion of neuronal exons, it has been suggested that a general action of 

PTB might be to inhibit neuron-specific exon utilization (Valcarcel and Gebauer, 1997; 

Grabowski, 1998). In previous reports, the presence of the brain enriched form of PTB 

was correlated with the presence of neuron-specific splicing in vitro, while the addition of 

the general form of PTB inhibited neuron-specific exon utilization (Ashiya and 
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Grabowski, 1997; Zhang et al., 1999). These results had suggested the possibility that the 

inhibitory action of PTB is replaced in the brain by a permissive or stimulatory action of 

the brain-PTB isoform (Grabowski, 1998; Wagner and Garcia-Blanco, 2001). However, 

the proposal that brPTB promotes neuron-specific splicing is not supported by the 

experiments presented here, where brPTB antagonizes Noval action in promoting 

neuron-specific exon inclusion. 

There are several possible mechanisms by which brPTB could regulate Nova 

activity in splicing. One model is that brPTB competes with the ability of Nova to bind 

the GlyRa2 UCAU element, in a manner reminiscent of the action of PTB to compete out 

U2AF binding. However, we find that brPTB binds to the isolated GlyR 90nt RNA with 

a 12-fold weaker affinity than Noval. Moreover, brPTB appears to supershift a Nova-

RNA complex, suggesting that it does not interfere with the ability of Nova to bind the 

RNA. Therefore, it is unlikely that brPTB and Nova compete for the same site on the 

RNA and that this competition inhibits the ability of Nova to enhance exon inclusion. 

Notably, immediately upstream of the GlyRa2 UCAU repeat element exists a 

potential PTB consensus binding element, as defined by Patton and colleagues (Perez et 

al., 1997): a UCUU motif in the context of a pyrimidine rich element. Although this 

sequence does not clearly define a PTB binding site (for example see Singh et al., 1995), 

and brPTB and PTB binding specificities may differ, our results suggest that Nova and 

brPTB may bind adjacent intronic sequence elements. However, based on this data, we 

cannot rule out the possibility that brPTB binds exclusively to the RNA target. We find 

that brPTB and Nova proteins interact and that brPTB binds the GlyRa2 RNA weakly 

but with sequence specificity. Furthermore, binding of the RNA is necessary for the 
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inhibitory action of brPTB on Noval function. The simplest model consistent with this 

data is that brPTB binds the GlyRa2 pre-mRNA at a site adjacent to Nova and mediates 

an inhibitory effect on Nova-dependent exon inclusion through protein-protein 

interactions, perhaps by preventing assembly of a multiprotein complex necessary to 

activate splicing. 

A core sequence termed the Downstream Control Sequence (DCS) is necessary 

for enhancement of c-src splicing in vitro (Modafferi and Black, 1997; Modafferi and 

Black, 1999). Repression of c-src splicing in non-neuronal cells requires both the 

upstream element and sequences within and adjacent to the DCS. The DCS RNA 

element has been used to clone trans-acting factors that may bind to brPTB in a manner 

analogous to the proposed Nova-brPTB interaction to regulate neuronal splicing. For 

example, a complex of at least six proteins cross links to DCS RNA, including a positive 

acting factor related to Nova by the presence of multiple KH type RNA binding domains, 

termed KSRP (Min et al., 1997). In addition, the same brPTB protein identified here was 

recently shown to bind DCS RNA as part of a larger complex including KSRP and 

hnRNP H, and to exhibit weak repression of c-src splicing (Markovtsov et al., 2000). 

These observations and our observations on Nova and brPTB suggest that protein-RNA 

complexes acting to regulate splice site selection may include brPTB, and that brPTB acts 

as an antagonist of neuron-specific splicing mediated by positive acting factors. 

In the case of the GABAARy2 mRNA, the situation appears to be slightly more 

complicated. Noval increases the inclusion of alternative exon 9 by a margin that is 

larger than the effect on GlyRa2 (Jensen et al, 2000a; this work). However, the 

contribution of brPTB in inhibiting this effect seems less specific. First, there is a slight 
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inhibition of exon 9 inclusion even in cells that express no Nova (i.e. 293Ts; Figure 16). 

While this result is consistent with the role of PTB as a splicing inhibitor, it also 

contradicts previous work that has suggested that the neural isoform of PTB (i.e. brPTB) 

plays a permissive role in the splicing of neuronal transcripts (Ashiya and Grabowski, 

1997; Zhang et al., 1999). Significantly, the inhibition of brPTB on GABAARy2 splicing 

in the absence of Nova in neuronal N2A cells is less pronounced, indicating that the 

behavior of brPTB in neuronal cells can be different, perhaps depending on the presence 

of other factors. 

Mutations in what ostensibly appeared to be brPTB sites upstream of alternative 

exon 9 in GABAARy2 mRNA, had no effect on binding or on the inhibition of splicing. 

Preliminary data suggests that the Noval binding site controlling the splicing increase in 

this exon is located within a downstream intron and work is currently being done to 

establish whether brPTB also affects GABAARy2 splicing through other sites nearby 

(Dredge et al., work in progress). So, while the location for the Nova and brPTB sites 

might be different than GlyRa2, the mechanism of exon selection regulation could be 

similar (i.e. competition for the recruitment of splicing factors) only occurring at the 

downstream intron as has been proposed for the c-src transcript (see below). 

Splicing inhibition by brPTB in cell lines that more closely resemble neurons 

(N2A cells) is significantly reduced, suggesting that other cell type-specific factors 

required for this effect might be interacting with and negatively regulating Nova and/or 

brPTB proteins. brPTB is not a strictly neuron-specific protein, as its presence has been 

detected in tissues other than the brain, such as the heart and testis (Polydorides et al., 

2000; Markovtsov et al., 2000; Lillevali et al., 2001). Thus, it is hard to imagine that 
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brPTB independently acts to derepress neuron-specific splicing patterns, as it has been 

suggested (Ashiya and Grabowski, 1997; Zhang et al., 1999). Instead, it is more likely 

that brPTB participates in the control of splicing in a complex with other factors some of 

which can be cell-specific, such as Nova, and might explain the variation in the results 

obtained here in the splicing assay with different cell types. 

In light of these results, the model proposed for the tissue-specific regulation of 

splicing in Drosophila should probably be replaced in the case of mammalian cells with a 

more dynamic model where proteins with antagonistic effects in splicing are in a constant 

battle. The final outcome of this battle is one that depends on the relative levels of the 

factors involved as well the specific circumstances that could be influenced by a 

multitude of other factors that are temporally and spatially regulated. 

In support of this model, recent data has furthered the idea that different isoforms 

of PTB can have distinct activities in splicing inhibition (Markovtsov et al., 2000; 

Wollerton et al., 2001). Alternatively spliced isoforms of the PTB transcript itself result 

from the insertion of short amino acid stretches between RRM2 and RRM3 (Gil et al. 

1991; Patton et al., 1991). The various PTB isoforms have different effects in the 

splicing repression of the alternative exon in the oc-tropomyosin mRNA in vitro and in 

vivo (Wollerton et al., 2001). However this effect was not observed in the repression of 

the a-actinin transcript where all PTB isoforms were equally effective in splicing 

repression. Together with the result that the nPTB homologue is less repressive than 

PTB in c-src splicing (Markovtsov et al., 2000) this suggests that tissue-specific splicing 

regulation can be achieved by variations in the levels of homologues or otherwise 

processed isoforms of splicing factors. 
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In conclusion, the work presented here extends our understanding of the 

mechanism by which neurons differentially regulate alternative splicing. It is suggested 

that the function of the neuron-specific protein Nova to promote exon inclusion can be 

modulated by interaction with additional proteins. The brPTB protein is not strictly 

neuron-specific as is the Nova protein: brPTB is also expressed in glial cells, and to a 

lesser but significant extent, in cells outside of the nervous system, particularly the heart 

and testis. Nonetheless, the existence of a brain-enriched protein interacting with a 

strictly neuron-specific protein suggests a layer of neuronal regulation different from a 

model in which tissue-specific alternative splicing is regulated by varying levels or 

modifications of general splicing factors (such ASF/SF2). 
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Figure 9. Schematic of the glycine receptor oc2 subunit minigene. 

(A) The glycine receptor oc2 subunit (GlyRa2) minigene construct used in the in vivo 

splicing assays. It contains alternative exons 3A and 3B flanked by exons 2 and 4 and 

most of the intronic sequence in between, under the control of an SV40 promoter (SV40 

Pro) and with the addition of an SV40 polyadenylation sequence (SV40 polyA). 

(B) DNA sequence of a 90 nt fragment of intronic GlyRa2 RNA upstream of exon 3A 

that contains Nova binding sites (UCAU; solid underline) and a candidate binding site for 

brPTB (UCUU in pyrimidine context; dashed overline). The C->T mutation in the 

brPTB binding site is indicated. RNA contains U instead of T. Numbering of base pairs 

in intron 2 starts at the junction with exon 3A, upstream is negative. 

104 



A . 

G l y R a 2 m i n i g e n e 

S V 4 0 Pro S V 4 0 polyA 

B . 

INTRON 2 

140 -50 

E X O N 3A 

Nova binding sites 

.. A I I I I I ITTCTTTGCAGTCTCATCATCATTTTCAT. 

T 

brPTB binding site? 



Figure 10. Altered splicing patterns in G l y R a 2 minigene assays. 

(A) Western Blot analysis of cell extracts. One twentieth the amount of protein in each 

transfection was separated on SDS-PAGE, followed by immunoblotting with anti-flag 

monoclonal antibody (brPTB) or POMA patient serum (Noval) to confirm that 

increasing amounts of transfected DNA correlated with proportionally increasing amount 

of protein synthesized by the cells. 

(B) Sample autoradiogram of RT-PCR assay in brPTB/Noval co-transfections in 293T 

cells. Digestion with Sspl only cuts the 2->3A->4 splice product, leaving the 2->3B->4 

band intact within the same lane. The relative intensity of the bands (ratio 3A/3B) was 

quantified using a Phosphorimager (Molecular Dynamics) and calculated with 

ImageQuant software (as described in Jensen et al., 2000a; see Materials and Methods). 

This data represents a single experiment with the C->T mutant GlyRa2 minigene as 

presented in Figure 13. 
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Figure 11. b r P T B antagonizes Noval in GlyRcc2 splicing. 

Bar graph of the ratio of exon 3A to exon 3B in 293T cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the GlyRa2 minigene containing 

exons 2 to 4 (Jensen et al 2000a; see Figure 10). Ratios of included exon 3A over 3B 

were determined by RT-PCR, followed by Sspl digestion (which only cuts within exon 

3A; see Figure 10) and quantified using a Phosphorimager (see Materials and Methods). 

Each point represents the average of four transfections, and error bars indicate the 

standard deviation. For a representative data set, see the Appendix. 
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Figure 12. C->T mutation in GlyRot2 R N A diminishes b r P T B binding. 

Filter binding assays of purified recombinant fusion proteins Noval and brPTB, as 

indicated, with wild type (WT) and C->T mutant (C->T) GlyRa2 RNA and an unrelated 

fragment of ribosomal RNA (rRNA) of equal length. Mutating the brPTB binding site 

(as shown in Figure 9) reduced its binding to background levels (compare with rRNA 

curve) while it had no effect on Noval binding (data not shown). 
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Figure 13. G l y R a 2 binding is necessary for b r P T B splicing inhibition. 

Bar graph of the ratio of exon 3A to exon 3B in 293T cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the GlyRa2 minigene carrying the 

C->T mutation (C->T) that prevented brPTB binding in vitro (Figure 12). Each point 

represents the average of four different transfections and error bars indicate the standard 

deviation (purple bars). The results obtained with the original minigene construct (WT) 

are included here for comparison (blue bars; Figure 11). For a representative data set, see 

the Appendix. 
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Figure 14. b r P T B and Noval form a complex on G l y R a 2 intronic R N A . 

Electrophoretic mobility shift assays of brPTB and Noval proteins on GlyRa2 RNA. 

Purified, recombinant fusion proteins in the concentrations indicated (nM) were 

incubated with a radioactively labeled wild type or mutant GlyRoc2 RNA that does not 

bind Noval in filter binding assays (data not shown). Noval is able to band-shift the 

wild type GlyRoc2 RNA (top panel, arrow) while brPTB does not. When both proteins 

are present, the RNA is super-shifted (top panel, arrowhead). Noval does not mediate a 

gel-shift with the mutant GlyRa2 RNA (bottom panel), and neither does brPTB. The 

presence of an unrelated protein (TRF2) at the same concentration (100 nM) did not 

affect the binding of either Noval or brPTB (data not shown). 
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Figure 15. Schematic of the G A B A A receptor yl subunit minigene. 

(A) The GABAA receptor y2 subunit (GABAAy2) minigene construct used in co-

transfection/splicing assays. It contains alternatively spliced exon 9 flanked by exons 8 

and 10 and most of the intronic sequence in between, under the control of a CMV 

promoter (CMV Pro) and with the addition of a polyadenylation sequence from Bovine 

Growth Hormone (BGH polyA). 

(B) In the 85 nucleotide intronic sequence upstream of alternative exon 9, there are 3 

candidate binding sites for brPTB (UCUU in a pyrimidine context; dashed underline). 

The UC->GA mutations in the putative binding sites (two in Mutant RNA GA2 and one 

in Mutant RNA GA1) of brPTB on GABAAy2 are shown. Numbering of base pairs in 

intron 8 starts at junction with exon 9, upstream is negative. 
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Figure 16. b r P T B antagonizes Noval in G A B A A R y 2 splicing. 

Bar graph of the ratio of exon 3A to exon 3B in 293T cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the GABAAy2 minigene containing 

exons 8 to 10 (Figure 15). Ratios (L/S) of RNAs including alternative exon 9 (long form, 

L) over those excluding exon 9 (short form, S) were determined by RT-PCR, quantified 

with a Phosphorimager (Molecular Dynamics) and calculated using ImageQuant software 

(see Materials and Methods). Each point represents the average of eight transfections and 

error bars indicate the standard deviation. The amount of protein expressed in each 

transfection was verified by Western Blot (data not shown). For a representative data set, 

see the Appendix. 
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Figure 17. Mutations in G A B A A y 2 R N A do not affect b r P T B binding. 

Filter binding assays of purified recombinant brPTB fusion protein with wild type (WT 

GABA) and two mutant (GABA GA2 and GA1; Figure 15) GABAAy2 RNAs and an 

unrelated fragment of ribosomal RNA (rRNA). As shown, mutating the putative brPTB 

binding sites did not substantially reduce its binding. 
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Figure 18. Mutations in G A B A A R y 2 R N A do not affect b r P T B splicing. 

Bar graph of the ratio of exon 3A to exon 3B in 293T cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the Mutant GA2 GABAAy2 

minigene (as shown in Figure 15). Ratios (L/S) were calculated as before (Figure 16). 

Each point represents the average of four transfections and error bars indicate the 

standard deviation. The amount of protein expressed in each transfection was verified by 

Western blot (data not shown). For a representative data set, see the Appendix. 
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Figure 19. b r P T B has no effect on the splicing of GlyRcc2 in N2As. 

Bar graph of the ratio of exon 3A to exon 3B in N2A cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the wild type GlyRa2 minigene. 

Ratios of included exon 3A over exon 3B were calculated as before (Figure 10). Each 

point represents the average of four transfections and error bars indicate the standard 

deviation. The amount of protein expressed in each transfection was verified by Western 

blot (data not shown). For a representative data set, see the Appendix. 
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Figure 20. b r P T B has no effect on the splicing of G A B A A R y 2 in N2As. 

Bar graph of the ratio of exon 3A to exon 3B in N2A cells transfected with the indicated 

amounts of Noval and brPTB expression vectors plus the wild type GABAARy2 

minigene. Ratios of included exon 9 were calculated as before (Figure 16). Each point 

represents the average of four transfections and error bars indicate the standard deviation. 

The amount of protein expressed in each transfection was verified by Western blot (data 

not shown). For a representative data set, see the Appendix. 
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Figure 21. P T B and b r P T B have similar effects on N o v a inhibition. 

Bar graph of the ratio of exon 3A to exon 3B in 293T cells transfected with the indicated 

amounts of Noval, PTB and brPTB expression vectors and the wild type GlyRa2 

minigene. Ratios of included exon 3A over 3B were determined as before (Figure 10). 

Each point represents the average of four transfections and error bars indicate the 

standard deviation. The amount of protein expressed in each transfection was verified by 

Western blot (data not shown). For a representative data set, see the Appendix. 
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C h a p t e r 5 - b r P T B a n d N o v a p r o t e i n s c o - l o c a l i z e 

in the nuclei of neuronal cells 

Introduction 

The coupling of biochemical steps in RNA metabolism is a common and useful method 

to achieve multi-step control and regulation of various processes in tandem. RNA-

binding proteins are uniquely positioned to play an important role in this coupling by 

virtue of their specific association with target RNAs and their localization in particular 

sub-compartments of the cell where such events are taking place. Thus, examining the 

localization of RBPs is necessary in order to understand their function and to study the 

possible causes of dysfunction in human disease. 

Initially, it was hypothesized that the spatial organization of the nucleus occurred 

in static, morphologically distinct areas that functioned to compartmentalize nuclear 

processes in a manner analogous to cytoplasmic organelles (reviewed in Misteli and 

Spector, 1998; Sleeman and Lamond, 1999; Lewis and Tollervey, 2000). However, 

while most cytoplasmic organelles are membrane-bound, sub-nuclear structures involved 

in RNA metabolism are lacking a membrane suggesting that the nucleus is a more fluid 

structure allowing for greater movement and communication between its compartments. 

In fact, recent studies have shown that, when visualized in living cells, these 

compartments are highly dynamic and subject to reorganization upon changes in 

transcriptional activity (Huang and Spector, 1996; Misteli et al., 1997; Sleeman et al., 

1998). Thus, it is more likely that the spatial organization of the nucleus in vivo (and not 
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when fixed for observation) reflects an intricate pattern of interactions with functional 

significance and consequences. 

It may seem obvious that the cellular location of each protein is dependent on its 

functional activity and vice versa. However, information is still lacking on many fronts 

in deciphering the dynamics and regulation of this connection between localization and 

function. In the nucleus, there is still debate whether some structures represent inactive 

storage sites or the settings of active RNA processing. For example, alteration in staining 

techniques results in the redistribution of splicing factors from previously considered 

storage sites to sites of active RNA transcription suggesting that functional requirements 

guide localization rather than the need for compartmentalization (Neugebauer and Roth, 

1997; Mintz and Spector, 2000). The situation is further complicated by the existence of 

the nuclear matrix whose composition and function are not completely understood and it 

is not known whether its role in the localization and movement of nuclear proteins is one 

of hindrance or assistance. The advantages of concentrating protein factors to specific 

areas of functional significance are many and include conservation of energy, increased 

efficiency and ease of regulation. Finally, the question remains whether the existence of 

distinct sub-nuclear domains and the distribution of nuclear factors is the cause or the 

consequence of specific biological processes and changes in the cellular steady state. 

The eukaryotic nucleus contains an array of morphologically distinct 

substructures (reviewed in Lamond and Earnshaw, 1998; Misteli and Spector, 1998). 

While the function of many of these nuclear bodies remains unclear, their organization 

and constitution is thought to be in a dynamic state and to even depend on a range of 

pathological cellular conditions including viral infection, oncogene expression and 
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disease phenotype. Rather than providing purely structural roles, many of these domains 

contain factors that are required in the cellular processes that take place in the nucleus, 

namely chromosomal organization, DNA replication, transcription, RNA processing and 

transport. Therefore, as morphological observations on the appearance and biochemical 

evidence on the composition of these bodies grow more prevalent, it becomes evident 

that the localization and function of cellular macromolecules are inexorably linked. 

Perhaps the most prominent of nuclear structures, chromosomal DNA assumes 

varied function-dependent states during the cell cycle. For example, the interplay 

between heterochromatin and euchromatin has profound effects on gene expression and 

is possibly regulated by proteins localized in either structure (e.g. the polycomb-group 

proteins). The remainder of the nucleus, loosely defined as interchromatin space, 

contains various nuclear bodies that are better studied during interphase, the relatively 

steady state of the cell cycle (Table 3). The largest structure among those is the 

nucleolus, where ribosomal RNA (rRNA) is synthesized, processed and assembled into 

ribosomes. The nucleolus is a dynamic structure that is transcription- and cell cycle-

dependent and also interacts with other sub-nuclear structures that it is in close contact 

with, such as coiled bodies and the perinucleolar compartment (PNC; see below). 

One of the very first nuclear organelles to be described, coiled bodies (also called 

Cajal bodies) are thought to be involved in the assembly of the nuclear transcription 

machinery and are best characterized by the marker protein p80-coilin (Gall et al., 1999; 

reviewed in Gall, 2000; Gall, 2001). The capacity of p80-coilin for self-association, 

phosphorylation and shuttling are believed to be key factors in the formation and function 

of coiled bodies, including the proposition that they play a role in a nucleo-cytoplasmic 
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transport system (Alliegro and Alliegro, 1998; Bellini and Gall, 1999; Hebert and Matera, 

2000). Among the proteins that localize to coiled bodies besides p80-coilin are Noppl40 

(a nucleolar shuttling protein) and snRNPs (key components of the splicing apparatus). 

Related to but not coinciding with coiled bodies are structures called Gemini of 

coiled bodies (or gems) that contain the SMN protein and its interacting partner SIP1 (Liu 

and Dreyfuss, 1996; Liu et al., 1997). Gems are thought to participate in snRNP 

biogenesis, maturation and trafficking, perhaps through their association with coiled 

bodies (Fischer et al., 1997). Importantly, the disease spinal muscular atrophy (SMA) 

which is caused by mutations in the SMN gene, is manifested on a cellular level by the 

disruption of a critical protein interaction of SMN and its lack of localization to gems 

(Gangwani et al., 2001; Matera and Hebert, 2001). Specifically, the localization of SMN 

to nuclear bodies depends on its interaction with the zinc-finger protein ZRP1 and this 

interaction is disrupted by mutations of SMN in SMA patients. This data is in concert 

with the hypothesis that the localization of SMN in gems is one of functional 

significance. Furthermore, and possibly because of improper SMN localization, snRNP 

biogenesis is disrupted and pre-mRNA splicing is affected when SMN is mutated 

(Pellizzoni et al., 1998). 

While the biochemical steps of RNA processing from DNA to protein have been 

extensively characterized, the localization of these processes lacks critical evidence and is 

plagued by the problem of identifying and separating active sites from inactive storage 

areas (reviewed in Lewis and Tollervey, 2000). Active transcription and perhaps splicing 

as well are thought to take place in perichromatin fibrils (Zhang et al., 1994). Consistent 

with the idea of coupling between pre-mRNA processing and transcription, the staining 
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of spliceosomal components (general splicing factors) matches the distribution of nascent 

transcripts. In addition, PML bodies are nuclear domains where the protein involved in 

pro-myelocytic leukaemia is localized and may play a role in transcription regulation and, 

since they are targets of viral transformation, in oncogenesis (Zhong et al., 2000). 

One of the first splicing factors found to localize in discrete regions within the 

nucleus was SC35, whose staining pattern was found to be distinct from that of snRNPs 

(Fu and Maniatis, 1990). It was hypothesized that SC35 plays an active role in splicing 

and is thus localized in perichromatin fibrils, whereas snRNPs and SR proteins are mostly 

localized in so-called nuclear speckles. Speckles are concentrations of proteins that 

produce a punctate pattern when analyzed by immunofluorescence and are also called 

interchromatin granule clusters when visualized by electron microscopy (reviewed in 

Huang and Spector, 1992; Sleeman and Lamond, 1999). Speckles do not co-localize with 

sites of active transcription (nascent transcripts) or splicing (snRNAs, SC35 protein) and 

were thus thought to be areas of assembly and storage of inactive components of the 

splicing machinery (Pombo and Cook, 1996; Mintz and Spector, 2000). However, the 

localization of spicing factors in nuclear speckles is thought to be a highly dynamic 

process and depends on gene activation, RNA transcription and pre-mRNA splicing 

(Spector, 1996; Misteli et al., 1997; Phair and Misteli, 2000). 

Another nuclear structure that has been recently characterized is the perinucleolar 

compartment (PNC). As the name suggests, it is localized in the periphery of the 

nucleolus, and contains small RNAs transcribed by RNA polymerase III (e.g. Y RNAs), 

and PTB/hnRNP I (Ghetti et al., 1992; Matera et al., 1995; Huang et al., 1997). The PNC 

does not coincide with any of the known nuclear sub-domains and a functional role for it 
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has not been suggested. A protein named PTB-Associated Splicing Factor (PSF) has 

been found to interact with PTB and to be an essential splicing factor participating early 

in spliceosome formation (Patton et el., 1993; Gozani et al., 1994). PSF localization in 

the nucleus occurs in a punctate pattern that coincides with PTB staining only when the 

salt-soluble PTB fraction is removed, suggesting that the remaining, more stable fraction 

interacts with PSF, possibly as part of a larger spliceosomal complex (Meissner et al., 

2000). Interestingly, PSF localizes to the PNC in a manner that is dependent on its 

second RRM and redistributes from speckles to the PNC upon inhibition of transcription 

(Dye and Patton, 2001). This is in contrast to other splicing factors, which upon 

transcription inhibition generally accumulate in speckles that presumably function as 

storage depots. This provides evidence for the functional link between splicing and 

transcription and suggests that the role of PSF in the PNC is not one of active splicing. 

The localization of matrin3, which is also a member of the PTB sub-family of RRM-type 

RNA-binding proteins, has not been extensively studied other than the observation that it 

co-fractionates with the nuclear matrix (Nakayasu and Berezney, 1991). 

Earlier experiments have identified the Nova proteins as mostly nuclear. In order 

to examine the sub-nuclear localization of Nova in more detail and get insight into the 

specific protein interactions that might be guiding this pattern, immunofluorescence 

studies were undertaken in cell lines and tissue sections. Additionally, the localization 

pattern of brPTB was studied since it has been shown to interact with Nova in vitro and 

in vivo, and in light of the discrete nuclear structures occupied by PTB in the PNC. The 

functional aspect of the brPTB-Nova interaction in the regulation of alternative splicing 

prompted the examination of the nuclear staining pattern of the two proteins. 
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Results 

Nova proteins localize in distinct sub-nuclear structures 

In order to examine the sub-cellular distribution pattern of Nova proteins, N2A cells were 

stained with POMA patient serum. This serum has been previously shown to recognize 

both Noval and Nova2 (Buckanovich et al., 1993; Yang et al., 1998). N2A cells are a 

mouse neuroblastoma cell line that expresses endogenous Nova (Jensen et el., 2000a; 

data not shown). Approximately 4 to 5 distinct structures can be seen in the cell nuclei 

that are specific to the anti-Nova serum (Figure 22A). These foci do not appear with 

secondary antibody alone, or in other cells that do not express Nova (data not shown). 

When N2A cells were stained with an affinity-purified Nova2-specific antibody (Yang, 

1997), a similar staining pattern emerged (Figure 22B). Since the anti-Nova patient 

serum recognizes both Nova proteins, the possibility that Nova2 is responsible for the 

signal in both of these experiments cannot be excluded. However, the slight difference in 

the staining pattern obtained with the two antibodies and the larger size of the structures 

visualized with the anti-Nova serum suggest that both Noval and Nova2 proteins localize 

in distinct nuclear foci. When mouse brain sections were stained with anti-Nova serum, 

neuronal cells in the cerebellum (most likely Purkinje cells) exhibited a similar, albeit not 

as sharp, staining pattern (Figure 22C). The localization of endogenous Nova proteins in 

neurons consists of concentrations in approximately four to five discrete foci per nucleus. 

Nova proteins do not co-localize with any known sub-nuclear domains 

Nova proteins play a role in pre-mRNA splicing and quite possibly in other aspects of 

RNA metabolism (Jensen et al., 2000). Since these functions of Nova could be mediated 
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by interactions with other proteins and could occur in these nuclear foci, it was important 

to test whether the localization of Nova coincided with any of the known nuclear 

structural domains many of which are defined by RNA-binding proteins (see Table 3). 

To that end, a series of monoclonal and polyclonal antibodies that identified most of 

these sub-nuclear structures were used to examine possible co-localization with Nova. 

As seen in Figure 23, N2A cells were doubly stained with anti-Nova serum 

(green, second column) and the indicated antibodies (red, first column; see Materials and 

Methods). Panels demonstrating the staining pattern of each antibody are shown and 

correlate with the staining previously observed for these proteins (see this Introduction 

for references). In the third column, the merged panels clearly show that Nova does not 

co-localize with any of these proteins as the green and red foci remain distinct. From 

these results it can be concluded that the concentrations of Nova in neuronal nuclei do not 

coincide with coiled bodies (p80-coilin and Noppl40 protein), gems (SIP-1 protein), 

speckles (Sm and SR proteins), or perichromatin fibrils (SC35, RNA polymerase II). 

Nova proteins co-localize with brPTB in N2A nuclei 

Since a functional interaction of Nova with brPTB has been suggested by the work 

presented this far, it was of importance to examine whether the two proteins co-localize, 

especially since both proteins stain mostly neuronal nuclei (Buckanovich et al., 1996; 

Polydorides et al., 2000; this work). N2A cells contain both proteins endogenously and 

were doubly stained with anti-Nova patient serum and the brPTB-specific polyclonal 

antibody (see above). Figure 24A shows that the two proteins display a similar pattern of 

punctate staining in the nucleus, consisting of approximately five distinct foci (brPTB in 
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red, Nova in green). Importantly, when the panels are merged, the foci co-localize, as 

manifested by the yellow color. 

To verify that this co-localization is real and not the result of bleed-through 

between the two filters used to detect the Cy2- and Cy3-conjugated secondary antibodies, 

single staining with Nova or brPTB was performed in N2A cells. As shown in Figure 

24B, there is no signal when the red filter is used to excite cells that have been stained 

with anti-Nova serum and a Cy2-conjugated anti-human secondary antibody (which is 

normally excited by the green filter). Correspondingly, there is no signal when the green 

filter is used to excite cells stained with anti-brPTB polyclonal serum and a Cy3-

conjugated anti-rabbit secondary antibody. Furthermore, there is no cross-reactivity 

between the two antibodies in Western blot assays (data not shown). Thus, the staining 

observed and the co-localization between Nova and brPTB is not the result of aberrant 

excitation but rather the coincidence of two antibodies staining for two different proteins. 

To clarify the issue of whether the staining pattern observed so far with the anti-

Nova patient serum is the result of Noval localization, Nova2 or both, N2A cells were 

transfected with eukaryotic GFP-fusion expression constructs of full length Noval and 

Nova2 proteins and in addition stained the cells with anti-brPTB (Figure 25A). Both 

GFP-Noval and GFP-Nova2 exhibit the same localization pattern observed with 

endogenous Nova, namely four to five foci per nucleus. Furthermore, these foci co-

localize with endogenous brPTB when the panels are merged (third row, Figure 25A). 

Thus, both endogenous and transfected Nova proteins, and both Noval and Nova2 co-

localize with endogenous brPTB in N2A nuclei. 
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In order to confirm that brPTB is indeed the protein that co-localizes with Nova 

and to control for background immunoreactivity with the anti-brPTB antibody, N2A cells 

were transfected with a flag-tagged brPTB expression construct. These cells were then 

stained with a monoclonal anti-flag antibody as well as anti-Nova patient serum and the 

appropriate secondary antibodies in order to visualize the proteins. As can be seen in the 

left column of Figure 25B, transfected brPTB co-localizes with endogenous Nova, 

witnessed by the yellow color when the panels are merged. Again, the pattern of brPTB 

expression seems to be broader than that of Nova but there still exist foci of increased 

protein concentration and those co-localize with Nova. Appropriately, in the case of 

some multi-nucleated cells in the left column of Figure 25B, more foci are present. 

Nova proteins co-localize with PTB in N2A nuclei 

N2A cells were transfected with a myc-tagged PTB expression construct and stained with 

a monoclonal anti-myc antibody and anti-Nova serum. In cells that expressed PTB, it co-

localized with endogenous Nova in a pattern similar to that of transfected brPTB (middle 

column in Figure 25B). Thus, while the endogenous PTB family member that is 

recognized by the anti-brPTB antibody in N2A cells is most likely brPTB (in Figures 

24A and 25A), transfected PTB in N2A cells behaves in the same way by co-localizing 

with Nova proteins in a specific nuclear punctate pattern. 

However, when N2A cells were stained with a polyclonal anti-matrin3 antibody, 

the result was unexpected. Even though matrin3 is one of the proteins isolated in the 

yeast-two-hybrid screen with both Noval and Nova2 (Tablel), and its interaction with 

the Nova proteins is as robust as the other members of the PTB sub-family (Table 2), it 
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did not co-localize with endogenous Nova in N2A cells (Figure 25B, right column). This 

observation could be due to the pattern obtained with this matrin3 antibody that did not 

result in a clear, punctate staining in the nucleus and was instead more diffuse. 

Nova proteins do not co-localize with brPTB in non-neuronal cell lines 

Since the functional interaction between Noval and brPTB varied among different cell 

lines in the splicing assay presented in Chapter 4, it was important to examine their 

localization pattern in cell lines other than neuronal N2As. For that purpose, 293T cells 

(derived from human kidney epithelium), that do not express brPTB or Nova proteins 

endogenously (data not shown), were transfected with a GFP-brPTB expression construct 

and either a Noval or a Nova2 expression construct (Figure 26A). In either case, when 

the panels were merged, it became obvious that Nova proteins do not co-localize with 

brPTB in this cell line. The same result was obtained when GFP-Noval or GFP-Nova2 

were co-transfected with a flag-tagged brPTB construct and then stained with an anti-flag 

monoclonal antibody (Figure 26B). 

Nova proteins do not co-localize with PTB in non-neuronal cell lines 

When GFP-Noval and GFP-Nova2 expression constructs were transfected into 293T 

cells that were stained with anti-brPTB antibody, there was no co-localization (Figure 

27A). Since PTB is most likely recognized by this antibody (now used at a higher 

concentration it cross-reacts with PTB), and because there is no brPTB protein present in 

293T cells data not shown), the slightly lower level of staining of PTB can be explained. 
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To verify this result, and to make sure that P T B did not co-localize with Nova 

proteins in 293T cells, a myc-tagged PTB construct was co-transfected with either GFP-

Noval or GFP-Nova2 (Figure 27B). Again, no co-localization is observed. Finally, the 

same result was obtained in HeLa cells transfected with either GFP-Noval or GFP-

Nova2 and stained with anti-brPTB antibody (again presumably staining the endogenous 

PTB protein): no co-localization was evident (Figure 28). Given that the localization of 

brPTB and PTB proteins in cell nuclei is diffusely nucleoplasmic, the co-localization 

with Nova proteins could be the result of this widespread nuclear staining. However, as 

seen in Figure 24A, brPTB is concentrated in distinct foci and these coincide with the 

Nova concentrations. 

Nova proteins co-localize with brPTB in tissue sections 

To examine the localization pattern of Nova and brPTB in tissues, immunohistochemistry 

was performed in rat and mouse spinal cords (Figure 29A). Sagital sections of formalin-

perfused tissues were stained with Nova and brPTB sera and the appropriate secondary 

antibodies and were observed under confocal microscopy. The results demonstrate that 

the co-localization observed in cell cultures corresponds to a biologically significant 

process observable in the context of the whole brain. Both mouse and rat tissues stained 

for Nova and brPTB and the localization pattern was similar to that obtained in cell 

culture, but with higher background staining. Even though this background staining 

made it more difficult to pinpoint the nuclear inclusions of Nova and brPTB, the merged 

planes demonstrated the existence of co-localization in neuronal nuclei. 
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To examine the co-localization pattern of Nova2 with brPTB, Noval knock out 

mice were used (described in Jensen et al., 2000a). When stained with anti-Nova human 

serum (now only recognizing the Nova2 protein) and brPTB polyclonal antibody, 

cerebellar sections of null mice and their wild type litter mates both showed similar 

staining patterns. While the staining was slightly reduced in the case of the knock out 

mice (in wild type animals both Nova proteins are present and the staining should be 

stronger), co-localization of Nova2 with brPTB was nevertheless still observed in the 

mouse cerebellum (Figure 29B). 

Identifying localization domains in Noval 

The multiple peptide domains present in Nova proteins have been studied in terms of 

their contribution to overall function as examined for protein interactions, RNA binding, 

structural considerations and splicing activity (Lewis et al., 2000; Jensen et al., 2000b; 

this work; Dredge and Darnell, personal communication). To test whether different Nova 

elements are responsible for its nuclear localization and to identify what those may be, 

fusion constructs of Noval deletions with the green fluorescent protein (GFP) were 

transfected into N2A cells and their localization was examined under live conditions (for 

complete amino acid listings of these constructs see Chapter 2, Materials and Methods). 

Full-length Noval and Nova2 proteins, when fused to GFP, exhibit an expression pattern 

similar to that observed for endogenous proteins or otherwise tagged and transfected 

constructs in various cell lines (N2A, 293T and HeLa cells; see above). In live N2A cells 

too, this pattern consists of four to five concentrated domains per nucleus, clearly visible 

even when GFP-fusion proteins are overexpressed (Figure 30). 
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Nova proteins contain near their amino terminus a sequence that matches the 

consensus bipartite NLS element (amino acids 25-41), similar to that identified in the 

Nucleoplasm^ and hnRNP K proteins (Pinol-Roma and Dreyfuss, 1992; Siomi et al., 

1993; Michael et al., 1997). This element consists of approximately 16 amino acids with 

basic residues (arginines and lysines) on both ends. Moreover, it is highly conserved 

between Noval and Nova2, suggesting that it is a functional domain. To test the capacity 

of this domain in mediating the nuclear localization of Nova, a GFP fusion construct of 

the putative Noval NLS sequence was transfected into N2A cells. The localization of 

this construct was decidedly nuclear, but not punctate (GFP-NLS, Figure 30) as opposed 

to GFP alone which was diffusely observed throughout the cell (GFP vector). 

When two of the basic residues in this NLS (lysines in positions 27 and 40) were 

mutated, first individually and then in concert, to negatively charged glutamates, 

effectively destroying the basic nature of the signal, the GFP-NLS fusion constructs 

failed to localize to N2A nuclei (GFP-NLS K27E, K40E, and K27,40E). This result 

implies that amino acids 25-41 of the Noval protein are sufficient for nuclear 

localization, functioning as an NLS, and that, furthermore, substituting lysine in position 

27 or 40 of this sequence with glutamate successfully eliminates this signal. 

However, when GFP construct of full-length Noval protein containing these 

mutations were transfected into N2A cells, they were able to partly localize to the nucleus 

and, furthermore, exhibited the punctate staining pattern seen with the wild type protein 

(GFP-Noval K27E, K40E, and K27,40E in Figure 30). This suggests that the NLS of 

Noval, while sufficient, is not necessary for nuclear localization and, more importantly, it 

does not mediate the distinct, punctate nuclear staining pattern of Nova. Consistent with 
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this data, a G F P construct completely lacking the entire N L S sequence of Noval (GFP-

Noval ANLS, Figure 30) was still able to partly localize in nuclear foci. Thus, it can be 

concluded from these results that other domains in the Nova protein are responsible for 

its punctate staining pattern. 

In order to identify these domains, more Noval deletion constructs were made 

and tested for their contribution to its localization pattern. A GFP fusion construct of the 

first and second KH domains (GFP-Noval KH1/2, Figure 30) was completely nuclear as 

expected, since it contains the NLS sequence. Nevertheless, it did not exhibit a punctate 

pattern within the nucleus, suggesting that the domain responsible for this may be located 

in the carboxy terminal half of the protein. 

Indeed, when a construct containing the spacer and KH3 domains of Noval was 

tested (GFP-Noval sp/KH3, Figure 30), the staining observed was mostly nuclear and 

appeared to be forming discrete concentrations suggestive of the foci described thus far. 

Therefore, a domain guiding the localization of Nova to the nucleus is present in the 

second half of the protein and it could be responsible for its concentration in the sub-

nuclear structures observed. An attempt to pinpoint this domain by examining the 

localization of a full-length and a truncated form of the spacer (GFP-Noval spacer and 

GFP-Noval t.spacer, respectively, Figure 30) was not successful as these constructs did 

not differ appreciably from the diffuse cellular staining obtained with the empty vector. 
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Discussion 

The study of a protein's cellular localization can provide valuable clues as to other 

proteins it may interact and co-localize with ultimately leading to an understanding of its 

function. The paraneoplastic disease antigen Nova is an RNA-binding protein that has 

been shown to be essential for the development and survival of neurons, possibly through 

its role in regulating alternative splicing (Jensen et al., 2000a). Many RBPs and 

specifically splicing factors have been shown to localize to distinct sub-nuclear structures 

(reviewed in Sleeman and Lamond, 1999; Lewis and Tollervey, 2000). In this study, the 

nuclear localization of Nova was examined, both in cell lines and tissue sections with the 

purpose of gathering more information about its function in neuronal RNA processing. 

The results presented identify discrete foci where both Noval and Nova2 

concentrate in neuronal nuclei and where none of the other RBPs whose nuclear 

localization has been described in some detail can be found. These Nova foci amount to 

between four and five structures per nucleus which would place them in a similar 

category with coiled bodies and gems, based on size and number (see Table 3). 

Importantly, brPTB, a protein identified by virtue of its interaction with Nova, co-

localizes with it in these foci (Polydorides et al., 2000; this work). 

The absence of co-localization of Nova with proteins that occupy speckles (Sm 

and SR proteins) or perichromatin fibrils (SC35, RNA polymerase II) is perhaps 

surprising, given its role as a splicing activator. However, not all splicing factors localize 

in speckles. Furthermore, speckles have been described as storage sites for splicing 

factors, while the functional role of the nuclear concentrations of Nova has not been 

elucidated yet and might not be one of inactive storage. Many of the active sites of 
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transcription that have been loosely described as perichromatin fibrils, are hard to detect, 

only appear after special treatment, and do not necessarily conform to a given pattern 

(Huang and Spector, 1992; Misteli and Spector, 1998). Thus, if Nova played a role in 

splicing regulation, and this was coupled to active transcription, it could still be possible 

that the Nova nuclear foci are sites of active splicing and do no co-localize with the 

proteins tested here. In that respect, the Nova sites could be the setting of splicing for 

specific target RNAs (hence their small number in the nucleus) and not sites where the 

general splicing machinery (e.g. RNA polymerase II, SC35, etc.) is localized. 

The co-localization of Nova with brPTB was observed with endogenous and 

transfected proteins in N2A cells but not in other cell lines, suggesting that this 

interaction is neuron-specific. The simple in vitro protein-protein interaction between 

Nova and brPTB did not require the presence of other protein or RNA co-factors (see 

Chapter 3). When transfected in 293T or HeLa cells, both brPTB and Nova proteins can 

individually localize in a pattern similar to the endogenous pattern seen in N2A cells, but 

they do not co-localize (Figures 26, 27, and 28). This result insinuates that another 

neuronal-specific co-factor is required for this co-localization while no such factor is 

necessary for their in vitro GST pull-down interaction. Importantly, the in vivo GST pull­

down was performed with N2A cell extracts and was not attempted in 293T or HeLa 

cells. Alternatively, factors that restrict this interaction could exist in 293T or HeLa cells 

only and not in N2As, thereby forbidding co-localization in these cells. 

It is important to note the apparent contradiction between the results presented 

here (i.e. the absence of co-localization between brPTB and Nova proteins in 293T cells) 

and the effect of brPTB on Noval-dependent exon selection discussed in Chapter 4. The 
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gross pattern observed in these co-localization studies depends on antibody recognition of 

large amounts of proteins in fixed, permeabilized cells. In contrast, the splicing assays 

presented in Chapter 4 concern individual proteins on a molecular level and their 

functional interaction over a single RNA molecule. While a significant amount of 

splicing events would be required to explain the differences observed in exon selection, 

the RT-PCR assay is much more sensitive than immunofluorescent techniques. 

Similarly, while Nova and brPTB co-localize in N2A cells, there seem to be no brPTB-

mediated inhibition of Noval splicing activation. The implications of these results for 

the proposed functional significance of the interaction between brPTB and Nova proteins 

will be discussed in more detail in Chapter 6. 

It is not clear from these results whether the localization of one of the two 

proteins is required first, in order to serve as an anchor for the localization of the second. 

brPTB contains a putative NLS as well, and it has not been possible to map the 

interaction between Nova and brPTB to specific domains. While an RNA factor is not 

required for the in vitro interaction, it is entirely possible that the co-localization, which 

would probably require larger amounts of proteins in order to be detectable by 

immunoreactive methods, occurs over an RNA target that both proteins bind to. For 

example, in the case of the GlyRa2 mRNA, the binding sites that have been identified for 

Nova and brPTB are not overlapping and could serve as the anchor for bringing these 

proteins together in the nucleus (see Chapter 4). 

As previously discussed, the perinucleolar compartment is a newly recognized 

structural entity in the nucleus that contains the PTB, PSF, RNA polymerase II and KSRP 

proteins (Matera et al., 1995; Huang et al., 1997; Black et al., RNA 2001 meeting poster 
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presentation). N o information is available on the differential composition of the P N C 

between various tissues. In the results described here, PTB co-localized with Nova only 

in N2A cells, yet when examined in other cells lines, it displayed a pattern that could very 

well be described as perinucleolar (for example, see Figure 28). Nova also seemed to be 

perinucleolar in those cases but it did not coincide with PTB. However, Nova did not co-

localize with RNA pol II which has been detected in the PNC (Huang et al., 1997), while 

its co-localization with KSRP and PSF was not tested. It remains to be seen whether the 

co-localization of Nova with brPTB in neuronal nuclei occurs within the context of the 

PNC and whether this structure contains different proteins among various cell types. 

It is evident that the staining pattern of brPTB is not as punctate as the one for 

Nova. Besides staining the cytoplasm, brPTB stains the nucleus more broadly than Nova 

does, yet can still be seen in distinct concentrations of higher intensity that coincide with 

Nova staining. The broader staining of brPTB could be the result of background 

reactivity due to the polyclonal antibody and not due to more widespread expression of 

the protein. However, this is unlikely as transfection of GFP- or flag-tagged brPTB 

constructs result in a similar staining pattern. Moreover, a general caveat of experiments 

such as these, involves the problem of proteins being over-expressed from transfected 

constructs. Nevertheless, since the localization pattern of Nova and brPTB was also 

examined in the case of endogenous proteins with immunostaining techniques, this is 

unlikely to account for the data presented. 

Some of the domains of Noval that could mediate nuclear and sub-nuclear 

localization involve regions of sequence homology with domains of known function from 

other proteins. These include a classic NLS signal similar to the one present in the 
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hnRNP K protein, and an NES sequence, homologous to the one present in the HIV 

protein Rev. As the experiments presented here show, the Noval NLS is sufficient but 

not necessary for nuclear localization. Once deleted, Noval is still able to be imported 

into the nucleus and, once there, it can localize in a punctate pattern. Save the possibility 

of diffusion of this construct into the nucleus, this would suggest that another domain 

exists in Noval that is able to guide it into the nucleus where it can localize in the distinct 

pattern observed (see below). 

Similar results have been observed with the localization pattern of the closest, 

evolutionary, protein to Nova, hnRNP K. Deletion of the classical NLS in hnRNP K still 

allows it to localize to the nucleus (Michael et al., 1997). However, in that case, nuclear 

import becomes transcription-dependent, supporting the evidence that shuttling and 

nuclear localization of these RBPs is contingent on their function. This line of evidence 

led to the discovery of KNS, a novel shuttling domain that can carry hnRNP K in and out 

of the nucleus even when the classical NLS is absent. While Nova has not been shown to 

shuttle yet, insight from the results with hnRNP K can prove helpful in elucidating the 

mechanism by which, even in the absence of a functional NLS, Nova can localize in the 

foci observed with full-length protein. 

As implied by the above, the sub-nuclear localization of Nova proteins could be 

the result of actual RNA binding, as is the case for other RBPs. This would entail the 

function of its three KH domains. However, when constructs containing the first two KH 

domains of Noval were tested, no discernible sub-nuclear localization pattern emerged 

(Figure 30). When the spacer/KH3 construct was tested some foci materialized, but none 

as pronounced as in the case of the full-length protein. The spacer domain has been 
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hypothesized to play a role in homotypic or heterotypic dimer formation that could 

facilitate RNA binding. Some preliminary evidence has hinted that the third KH domain 

of Nova plays an important role in RNA binding and perhaps could be the main RNA 

binding motif (Lewis et al., 2000; Jensen et al., 2000b; Dredge et al., work in progress). 

This would suggest that the sub-nuclear structural formations of Nova are sites of 

active RNA-binding and perhaps of functional activity (i.e. splicing regulation) as well. 

In concert with this hypothesis, experiments with actinomycin D (a drug that inhibits 

transcription) reduce the appearance of Nova foci suggesting that those are active sites 

related to ongoing gene expression and not storage facilities of inactive proteins as has 

been proposed for splicing factors and speckles which get bigger with such treatment 

(Jensen, Dredge and Darnell, personal communication). However, Nova does not 

localize in sites where presumably transcription and splicing are taking place (i.e. 

perichromatin fibrils). 

It would be interesting to repeat the actinomycin D experiment with the Nova 

construct lacking the NLS sequence, which has been shown here to still be able to 

localize to the nucleus and, furthermore, concentrate in sub-nuclear foci. If in fact the 

Nova ANLS constructs are still responsive to actinomycin D treatment, as they are in the 

case of hnRNP K, it would suggest that other domains in Nova are responsible for its 

ability to enter the nucleus and that the classical NLS identified here is not part of a 

possible shuttling domain in Nova, but rather exists in addition to it. 

It will be instructive to ascertain whether Nova proteins shuttle between the 

nucleus and the cytoplasm and delineate the requirements for this shuttling (e.g. 

transcription dependence, domains, receptors, etc.). Along these lines, it will also be 
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important to examine the function of the Rev-like NES sequence present in Noval and 

Nova2. Importantly, the NES present in Nova2 contains one less leucine residue and 

preliminary evidence suggests that the localization of Nova2 is predominantly nuclear 

whereas Noval can also be found in the cytoplasm (Yang, 1997). Together with some 

evidence suggesting that Noval and Nova2 form dimers (Yang, 1997; this work), the 

hypothesis that Noval helps guide Nova2 out of the nucleus can be tested in hetero-

karyon assays and transgenic mice. 

The actual functional implication of these Nova/brPTB bodies remains to be seen. 

Important experiments that will help elucidate this, involve in situ hybridization with 

Nova RNA targets (genes whose splicing is regulated by Nova, such as GlyRoc2 and 

GABAARy2) and concomitant visualization of the Nova and brPTB proteins. These 

studies will determine whether Nova foci contain RNA and furthermore whether this 

interaction (RNA binding in the sub-nuclear localizations) reflects the role of Nova in 

splicing activation. 

The interaction between Nova and brPTB and its importance in their nuclear co-

localization can be further studied with the generation of dominant negative constructs. 

For example, Nova mutants that do not bind RNA but can mediate protein-protein 

interactions or conversely, that still bind RNA targets but do not interact with brPTB in 

vitro, can be used to determine whether the co-localization in the nucleus depends on 

RNA binding or protein interaction with brPTB. Finally, the generation of a brPTB 

knock out mouse will also shed light on its requirement for the nuclear localization of 

Nova as well as determine whether brPTB (and by extension hnRNP I/PTB) is an 

essential splicing factor and/or necessary for the development of the nervous systems. 
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Table 3. S u m m a r y of structural domains in the interphase nucleus. 

Summary table of the most prominent and best-characterized structural features in the 

nucleus during interphase. Included are the name of the structure, the number of bodies 

per nucleus (No.), the proposed function, and some of the proteins known to localize 

within these bodies. For references, see text. NK: not known. 

139 



3 

3 

C/5 

e
r
p
h
a
 

a 

QJ 

s i 

i
n
t
 

fl 

#S3 

© 

Q 

' a 

s 
•+«i 

S
t
r
u
c
 

V3 
c 
"3 
-̂< 
o 
u 

S3 
#© 
"*-
u G 

= 
fa 

• 
© 
Z 

u 

2 

= 
Sh 
!/2 

i—i 
HH 

HH 

'o 
Oh 
< 
Z 

t>o 
c 
00 
00 
CU 
o 

C 
o • H 
•4—> 

cj 
C/3 c 
Cj 
Hi 
rt» < 
Z 
CC 
1__ 

i 

00 

"o 

3 
Z 

c e 
« -C 
Cu cj 
'Sh 'C 

,
 N
o
p
p
l
4
0
,
 E
L
A
V
 

2)
,
 s
n
R
N
P
s
 
(S
m)
,
 

5,
 c
d
k
2
-
c
y
c
l
i
n
E
,
 f
i
 

c Z pu 
T3 ̂  < 

T3 
C 

bO CJ) 

_3 oo 
2 oj 
5+: o 
Cj i_i 

oo" <! 
'oo Z 
g Oh 

2 -2 
X> cj 
Oh <u 
Z c 
K do 
C <u 
00 i— 

O 
i 

o
i
l
e
d
 (
C
a
j
a
l
)
 

a
d
i
e
s
 
(
C
B
)
 

U £> 

Ph 
CO 

Z 

CO 

&o 
'oo 
CU 
c 
qj 
DC o 
• i-H 
Cu 
Z 
D< 

00 
o 

e 
OO 

o 
-4—" 
u 

o 
i 

CO 

00 
CQ 
U 
<+H 
o 
'S 

fi 
(U 
O 

/ s 
m 
m 

00 
C 
cu 
-4—* 
O 
Hi 
a, 
Di 
CO 
<u 
fi 
o 
00 
i—T 

Ch 

< 
z 

00 

..—i 
00 
W> 
C 
• H 
.2 
"cl 
00 

a 
•c 
o 00 
C 
cj 

o 
o 

A 

00 

HI 
X) 
«a 
c 
J—1 
Cj 
fi 
O 
v. 
Xi 
o 
. rt 
rt 

CU 

00 
C 
<u 
-rt» 
o 
HI 
Ch 

co 

? 
CO 

00 
CU 
Z 
Di 
c 
00 

00 

• rt 
00 
(U 
cj 
rt 
O 00 
rt 
O 
rtl 
o 
I?3 
<+H 

' o 
• t—I 

CO 

o 
in 
i 

o 
CN 

i 
HI 
<D 
-rt* 
t—l 
00 

o 
CJ 
a . CO 

_, 

< 
Z 
Di 
fi 
<u 
HI 
Ch 
O 

< 
Z 
Di 

< 

a, 
(U 

1 
rt» 
00 

00 
QJ 
3 
c 
Cj 
rt 
a 
c 
• tH 
fi 
o 
rt o 

o 
o 
« 
CO 

1 
o 
£ 

CO 

xT 
Di 

Dm 

OO 

00 
O 
4-» Ch O 
Ch 
Cj 

o 

"cj 
3 

rt 
c 
O 
"-4—» 
.Br 
o 
oo 
C 
Cj 
rt 

o 
>n 
i 

o 

00 
<U 

•t-H 
id 
o 
X) 
Cu 

hJ 

Cu 
Z 
c* 
c 
ob 
<u 

Z 

Ni 
z 

00 
rt 
OJ 
00 

Cu 
Z 
iDi 
c X 

p_ 
Di 
CO 
H^ 

PU 
CO 
cu 

CQ 

Cu 

"o 
Ch 
< 
z 
C4 

Z 

Z 

OJ 
"o 
3 
C 
• p-, 
h. 
OJ 

CU 

u 
z 

c 
OJ 
fi 
cj 
Ch 
fi 
O 
U 

i 
< 

< 
a 

00 
rt 
OJ 
•rt" 
00 
rt 
o 
4—1 
o 
«4H 

- 2 

o C 
00 CJ 
C oo cj C 
.« cj 

O hC 

5i cu 

00 .rtT 
•3 CJ 
OJ f-N 

F
l
)
,
 P
o
l
y
 c
o
m
b
-
g
r
o
u
p
 p
r
 

o
n
 b
o
d
i
e
s
,
 O
P
T
 
d
o
m
a
i
n
 

CO 'ZZ 
hC iH 
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Figure 22. Nova localizes in distinct sub-nuclear structures. 

(A) N2A cells were fixed and stained with anti-Nova human serum and visualized with 

Cy2-conjugated anti-human secondary antibody (green). Notice the four to five distinct, 

bright-staining foci per cell nucleus. 

(B) N2A cells were stained with Nova2-specific affinity-purified polyclonal antibody 

(Yang, 1997) and Cy3-conjugated anti-rabbit secondary antibody (red). Similar staining 

to Noval was observed. 

(C) Mouse brain sagital sections were stained with anti-Nova human serum and 

visualized with Cy2-conjugated anti-human secondary antibody (green, see Materials and 

Methods). 

DAPI stain was used in all slides to visualize cell nuclei. 

140 





Figure 23. Nova does not colocalize with k n o w n sub-nuclear structures. 

N2A cells were fixed and stained with the indicated primary antibodies and human anti-

Nova serum. The appropriate Cy3-conjugated secondary antibody was used to visualize 

each protein (red, first column). Cy2-conjugated anti-human secondary antibody was 

used to visualize Nova (green, second column). The two planes were then merged to 

examine co-localization (third column). The cells were also stained for DAPI to visualize 

cell nuclei (blue, fourth column). For the antibodies used and the specific proteins 

recognized by each, see Materials and Methods. 
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Figure 24. Endogenous Nova and b r P T B co-localize in N 2 A cell nuclei. 

(A) N2A cells were fixed and stained with rabbit polyclonal anti-brPTB serum (top left 

panel) and human anti-Nova patient serum (top right panel). Cy2-conjugated anti-human 

(green) and Cy3-conjugated anti-rabbit (red) secondary antibodies were used to visualize 

the proteins, respectively. The panels were merged to examine co-localization, evident 

by the yellow color (bottom left panel). Cells were also stained with DAPI to delineate 

the nuclei (blue, bottom right panel). 

(B) Bleedthrough Controls. N2A cells were stained individually for Nova (top row) or 

brPTB (bottom row) as before, the indicated secondary antibodies, and DAPI. When 

observed with the red filter, Cy-3 conjugated anti-human antibody did not cause any 

bleed-through (top row, middle panel). Similarly, the Cy2-conjugated anti-rabbit 

antibody used to visualize brPTB protein did not light up with the green filter (bottom 

row, left panel) demonstrating that the co-localization patterns observed were not due to 

secondary antibodies emitting signal with the wrong filter. 
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Figure 25. Transfected b r P T B and P T B co-localize with N o v a in N 2 A s . 

(A) GFP-Noval (left) and GFP-Nova2 (right) eukaryotic expression constructs were 

transfected into N2A cells. After fixation, cells were stained with anti-brPTB serum and 

Cy2-conjugated secondary antibody (red, first row panels). GFP-Noval (left column, 

second row) and GFP-Nova2 (right column, second row) were visualized with the green 

filter. The merged images (third row) demonstrate co-localization, as seen by the yellow-

colored foci. DAPI stain was used to delineate cell nuclei (blue, fourth row). 

(B) Eukaryotic expression constructs for flag-tagged brPTB (left column) and myc-

tagged PTB (middle column) were transfected into N2A cells that were subsequently 

fixed and stained with anti-Nova serum and anti-flag or anti-myc monoclonal antibodies, 

respectively. Alternatively, anti-matrin3 polyclonal chicken antibody was used together 

with anti-Nova serum (right column). Cy2-conjugated anti-human secondary antibody 

was used to visualize Nova proteins (green, second row) and Cy3-conjugated anti-mouse 

or anti-chicken secondary antibodies were used to visualize brPTB, PTB and matrin3 

(red, first row). Merged panels (third row) show that both transfected brPTB and PTB 

are able to co-localize with endogenous Nova proteins in N2A cells. In contrast, 

endogenous matrin3 protein, perhaps because its staining is more diffuse, does not co-

localize with Nova. DAPI was used to stain cell nuclei (blue, fourth row). 
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Figure 26. Transfected b r P T B does not co-localize with N o v a in 293Ts. 

(A) 293T cells were transfected with T7-tagged Noval (left column) and GST-tagged 

Nova2 (right column) as well as brPTB eukaryotic expression constructs. The cells were 

fixed and stained with the appropriate primary monoclonal antibodies. GFP-brPTB 

protein was visualized with the green filter (first row) and Nova proteins were visualized 

with Cy3-conjugated anti-mouse secondary antibodies (red, second row). Merged images 

(third row) show no co-localization. DAPI was used to delineate cell nuclei (blue, fourth 

row). 

(B) 293T cells were transfected with GFP-Noval (left column) or GFP-Nova2 (right 

column) and flag-tagged brPTB. brPTB was visualized with anti-flag primary antibody 

and Cy3-conjugated anti-mouse secondary antibody (red, first row) while Nova proteins 

were visualized with the green filter (second row). No co-localization is observed when 

the panels are merged (third row). DAPI was used to stain cell nuclei (blue, fourth row). 
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Figure 27. P T B does not co-localize with N o v a in 293T cells. 

(A) 293T cells were transfected with GFP-Noval (left column) or GFP-Nova2 (right 

column), visualized with the green filter (second row). Anti-brPTB antibody was used to 

stain PTB proteins present in 293T cells and was visualized with Cy3-conjugated anti-

rabbit secondary antibody (red, first row). Merged images (third row) show no co-

localization. DAPI was used to delineate cell nuclei (blue, fourth row). 

(B) 293T cells were transfected with myc-tagged PTB constructs and again GFP-Noval 

(left column) or GFP-Nova2 (right column). PTB was visualized with anti-myc primary 

antibody and Cy3-conjugated anti-mouse secondary antibody (red, first row) and Nova 

proteins were visualized with the green filter (second row). No co-localization is 

observed when the panels are merged (third row). DAPI was used to stain cell nuclei 

(blue, fourth row). 

145 



A . 1 

a-brPTB 

Nova 1/2 

merge 

DAPI 

| 

| 



B . 

m y c - P T B 

Nova 1/2 

merge 

DAPI 

| 

| 

| 

• 



Figure 28. P T B proteins do not co-localize with Nova in H e L a cells. 

HeLa cells were transfected with GFP-Noval (left column) or GFP-Nova2 (right 

column). After fixation, cells were incubated with anti-brPTB antibody. PTB was 

visualized with Cy3-conjugated anti-rabbit secondary antibody (red, first row) and Nova 

proteins were visualized with the green filter (second row). Merged images (third row) 

show no co-localization. DAPI was used to stain cell nuclei (blue, fourth row). 
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Figure 29. Nova and b r P T B proteins co-localize in tissue sections. 

(A) Confocal laser images of Nova and brPTB expression patterns in P5 mouse spinal 

cord horizontal sections (top row) and adult rat spinal cord horizontal sections (bottom 

row). Nova proteins (green, left column) were visualized with patient serum and Cy-5-

conjugated anti-human secondary antibody. In the same optical section, brPTB protein 

(red, middle column) was visualized with anti-brPTB antibody and Cy-2-conjugated anti-

rabbit secondary antibody. Merged panels (right column) show co-localization of brPTB 

and Nova proteins within nuclei of motor neurons. Some cells (presumably glia) stain 

only with anti-brPTB antibody and not with anti-Nova serum. 

(B) Immunohistochemical studies of cerebellar sections of P5 Noval knockout mice 

(KO, bottom row) and their wild type litter mates (WT, top row). Sections were stained 

with anti-Nova serum (green, left column) and anti-brPTB antibody (red, middle column) 

as well as Cy2-conjugated anti-human and Cy3-conjugated anti-rabbit secondary 

antibodies. Merged panels (right column) show co-localization. 
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Figure 30. Localization of Noval deletion mutants in live N 2 A cells. 

N2A cells were transfected with the indicated GFP fusion eukaryotic expression 

constructs and were observed live in an inverted microscope under a mercury lamp. All 

deletion constructs (except for the indicated full-length Nova2) were of the Noval protein 

(see Materials and Methods for an analytical description of the constructs). 

148 



G F P vector 

GFP-Nova1 GFP-Nova2 

G F P - N L S G F P - N L S K 2 7 E 

G F P - N L S K 4 0 E G F P - N L S K27,40E 



GFP-Nova1 K 2 7 E GFP-Nova1 K40E 

GFP-Nova1 K27,40E GFP-Nova1 A N L S 

GFP-Nova1 KH1/2 GFP-Nova1 sp/KH3 

GFP-Nova1 spacer GFP-Nova1 t.spacer 



C h a p t e r 6 - G e n e r a l D i s c u s s i o n 

R N A - b i n d i n g proteins a n d neuron-specific alternative splicing 

Approaches to examine the regulation of transcripts that are differentially spliced in the 

nervous system have made significant contributions to our basic understanding of the 

mechanisms by which neuron- and, by extension, cell-specific splicing, is achieved. 

Collective data from the study of genes implicated in neuronal diseases suggest that 

efficient regulation of such a tissue-specific cellular process requires several levels of 

control (reviewed in Dredge et al., 2001). First, specific cis-acting regulatory sequences 

are likely to be present near differentially spliced exons, as has been demonstrated for the 

c-src and GABAARy2 transcripts. In general, splice sites in alternatively regulated exons 

are weak compared to the consensus and are poorly recognized by the basal splicing 

machinery. Second, trans-acting RNA-binding proteins, such as Nova, hnRNP Al and 

hnRNP I/PTB need to recognize and interact with these sequences. In the case of weak 

splice sites in regulated exons, binding by hnRNPs and other factors could help 

"strengthen" them by recruiting components of the splicing machinery. Finally, there 

must be key protein-protein interactions whether positive or negative, direct or indirect. 

When these interactions occur between sequence- and gene-specific RBPs recognizing 

individual binding sites in exons or introns, they set the stage for "exon definition". On 

the other hand, when these RBPs interact with and recruit components of the general 

splicing machinery in the recognition of splice sites, they help form the spliceosomal 

"commitment complex" and provide for an additional level of splicing regulation. 
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The search for transcripts that undergo neuron-specific splicing has generated an 

important set of pre-mRNAs and splice variants (reviewed in Dredge et al., 2001; 

Grabowski and Black, 2001). Studies of the neuron-specific splicing of the c-src, 

GABAARy2 subunit, NMDA receptor NR1 subunit and clathrin light chain B mRNAs 

have identified cis-acting repressor elements that mediate the exclusion of the neuron-

specific exon in other tissues (Chan and Black, 1997; Ashiya and Grabowski, 1997; 

Zhang et al., 1999). These repressor elements were mostly pyrimidine-rich and, when 

present as competitors in vitro, were able to derepress splicing back to the neural pattern. 

At the same time, a variety of biochemical approaches including UV cross-linking 

and immunoprecipitation experiments identified the polypyrimidine tract-binding protein 

(PTB) as an RBP that binds many of these repressor elements. (Chan and Black, 1997; 

Ashiya and Grabowski, 1997; reviewed in Wagner and Garcia-Blanco, 2001). In vitro 

splicing assays after immunodepletion and adding-back of recombinant protein have 

established that PTB protein is able to repress neuron-specific exon inclusion. In 

contrast, several splicing enhancers have been found to bind a regulatory sequence 

downstream of the neuron-specific exon in c-src, including hnRNP H, hnRNP F, and a 

protein named KSRP, a new splicing regulator that may be enriched in neuronal cell lines 

(Min et al., 1997; Chou et al., 1999). 

One interpretation of such results is to view neuron-specific splicing as a default 

process, selectively repressed in non-neuronal tissues by trans-acting RNA-binding 

proteins such as the ubiquitous factor PTB. In neural cells, this repression is proposed to 

be relieved by the presence of positive regulators that would compete by simple mass 

action for the same or overlapping binding sites on the mRNA (Zhang et al., 1999; 
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reviewed in Grabowski, 1998). In support of a role for PTB in splicing repression, an 

antagonism between PTB and the U2AF splicing factor has been implied (Lin and Patton, 

1995; Singh et al., 1995; Lou et al., 1999), that is mechanistically similar to the 

antagonistic binding of Sxl protein and U2AF on the transformer mRNA in Drosophila 

(Valcarcel et al., 1993). Due to the proximity of poly-pyrimidine tracts to the branch 

point intronic sequence, an interference by PTB in spliceosome assembly at the U2 

snRNP step has also been suggested, in a manner parallel to the antagonism between 

ASF/SF2 and hnRNP Al at the 5' splice site (Caceres et al., 1994). However, the 

ubiquitous expression of these factors (PTB, U2AF) has precluded any conclusions about 

their role in tissue-specific splicing regulation. 

As mentioned above, the study of neurologic disease has been particularly 

powerful in terms of identifying key players in the regulation of neuron-specific splicing. 

The regulation of splicing in GlyRa2 by Nova has emerged as a clear example of the 

interplay between different RNA-binding proteins in the control of splicing. In this 

study, a brain enriched form of PTB named brPTB was cloned by virtue of its interaction 

with Nova and was shown to specifically antagonize the neuron-specific increase in 

GlyRrxZ and GABAaRy2 exon inclusion mediated by Nova. 

The presence of a neuronal form of PTB had been hinted at by UV crosslinking 

studies of both the GABAARy2 subunit and the c-src m-RNAs, and a possible permissive 

role in splicing had been proposed to replace the repressive action of ubiquitous PTB 

(Chan and Black, 1997; Ashiya and Grabowski, 1997). However, brPTB does not de-

repress splicing in neurons as had been suggested, and also does not appear to antagonize 

the positive effect of Nova in splicing by a simple displacement mechanism, since it has a 
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lower affinity for the target R N A than did Nova (Polydorides et al., 2000; this work). 

Furthermore, in the experiments presented here, PTB had a similar, if not more 

pronounced, effect in antagonizing the Noval-dependent splicing increase. 

More recently, it was shown that in neurons, ATP, most likely via another 

unidentified factor, removes PTB from repressor sequence elements present in the c-src 

transcript and thus allows for neural splicing to occur (Chou et al., 2000). Moreover, it 

was suggested that the behavior of brPTB was different than PTB in terms of RNA 

binding and splicing repression. While this model would still require the presence of a 

neuron-specific factor to mediate the effect of ATP, it provides insight as to the 

regulatory mechanisms of such a process. PTB may prevent the assembly of U2 snRNP 

on the RNA in non-neuronal cells and removal of PTB from the RNA in an ATP-

dependent fashion leads to derepression of splicing in neurons. In this model, brPTB 

may add an additional level of splicing repression in neuronal cells. 

Post-translational modifications of RNA-binding factors have also been described 

as a means of regulating their function. Specifically, phosphorylation of SR proteins has 

been shown to be required for their splicing enhancer or repressor function and additional 

proteins that regulate this modification have been identified (Cao, et al., 1997; Xiao et al., 

1997; Kanopka et al., 1998; Petersen-Mahrt et al., 1999). However, there has been no 

evidence that any of these modifications, or the proteins that mediate them, are tissue or 

cell-type specific. Therefore, until such data emerges, the effect of phosphorylation and 

other post-translational modifications in the regulation of neuron-specific splicing will 

remain unclear. The interaction of Nova with p32/YL2 in the yeast-two-hybrid screen 

presented here and the suggestion that p32 negatively regulates ASF/SF2 by inhibiting its 
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phosphorylation (Petersen-Mahrt et al., 1999), suggest that the Nova splicing factor may 

also be regulated in such a manner. In support of this, Noval is phosphorylated in vitro 

and in vivo (Stefani et al., work in progress). 

Neuron-specific splicing is likely to have many layers of control that will 

undoubtedly involve the regulated interplay between various tissue-specific and 

ubiquitous factors. In addition, the unique physiology of neurons allows them to modify 

these cellular processes even further. There have been reports that neuronal activity can 

alter the splicing pattern of various transcripts. For example, depolarization of pituitary 

neurons represses the inclusion of an exon in the BK potassium channel mRNA through 

the action of CaMKIV on an RNA element that is sufficient to confer repression control 

to a heterologous, constitutive exon (Xie and Black, 2001). Other transcripts that are 

regulated by activity-dependent splicing in the brain include the human tra-2 gene 

(Daoud et al., 1999) and the NMDA receptor NR1 subunit (Vezzani et al., 1995). To get 

a better understanding of how splicing works in mammalian cells (and specifically in 

neurons), and identify the role of the different cis- and trans-acting factors involved, there 

will need to be a concerted effort to identify these factors, examine their relative levels in 

different cell types, and analyze their function. Then, it will be feasible to elucidate the 

ways with which splicing is regulated, and how it is interconnected with other cellular 

processes such as signal transduction, transcription regulation and cell cycle control. 

In summary, many regulatory processes such as signal transduction, neuronal 

synaptic activity and protein-protein interactions can control alternative splicing which in 

turn can result in the differential RNA processing of other, downstream RNA targets. 

This can be achieved if the alternative isoforms of the regulated gene product exhibit 
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different patterns of association and co-localization with other RBPs (including splicing 

factors) or other regulatory proteins (inclusing kinases). Examples include the recent 

description of different functional activities for the alternative spliced isoforms of the 

cyclin Ania-6 (Berke et al., 2001) and PTB (Wollerton et al., 2001) and have sparked 

interest in the co-localization patterns of splicing factors as a means for identifying 

functional interactions. The splicing of Ania-6 depends on the stimulation by various 

neurotransmitters and exhibits functional consequences in vivo, as the longer isoform of 

the transcript co-localizes, when translated, with nuclear speckles, the splicing factor 

SC35 and RNA pol II and could, thus, affect RNA processing in turn (Berke et al., 2001). 

Since alternative splicing occurs in the nucleus, the search for trans-acting factors 

that might regulate it has focused on nuclear RNA-binding proteins. Reports that nuclear 

events have further consequences in the cytoplasmic regulation of the transcript have 

expanded this model and have refocused attention on the localization of splicing factors 

as a means of identifying protein-protein interactions and regulatory associations. 

Nuclear localization patterns of RNA-binding proteins 

As more RBPs are found to have multiple roles in the regulation of RNA metabolism and 

are believed to contribute to the coupling of sequential steps in the life of the mRNA 

transcript, it becomes increasingly important to examine their specific localization within 

the cell and its regulation thereof. Additionally, as the model of nuclear organization 

switches from a rigid compartmentalization to one of dynamic fluctuation, the processes 

that regulate this architecture are likely to be of major significance to the functionality of 

these proteins (Phair and Misteli, 2000). The mechanisms controlling protein localization 
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include specific interactions with other macromolecules, post-translational modification 

and processing of the actual RNA-binding protein and, lastly, methods based on cellular 

activity and protein function. 

The nuclear localization of RBPs can be affected by their interactions with other 

macromolecules, including themselves (dimerization), other proteins, and RNA targets. 

Self-association has been described as a method for the regulation of nuclear localization 

in the case of p80-coilin (Hebert and Matera, 2000), PML (Ishov et al., 1999), SMN 

(Lorson et al., 1998), and Sam68 (Chen et al., 1999) proteins. Protein-protein 

interactions that affect the nuclear localization of RBPs have been described for many 

proteins that localize to specific sub-nuclear structures. For example, the interaction 

between p80-coilin and Nopp 140 is crucial to the proper formation of coiled bodies 

(Isaac et al., 1998). The CTD domain of RNA pol II interacts with and targets SR 

proteins and snRNP splicing factors to sites of active transcription in the nucleus (Misteli 

and Spector, 1999). While both RNA polymerase II and splicing factors have distinct 

and not always overlapping localization patterns, their interaction suggests that splicing is 

dependent on transcription (perhaps occurring at the same location) and that a peptide 

domain is responsible for that connection. 

The RS domains of SR proteins, which are thought to mediate interactions with 

other proteins (e.g. splicing factors), are sufficient for guiding proper sub-nuclear 

localization (Li and Bingham, 1991; Gama-Carvalho, 1997) and their overexpression can 

prove deleterious to it (Romac and Keene, 1995). Phosphorylation of the RS domain also 

promotes protein shuttling and can regulate the proper transport of bound mRNAs 

(Gilbert et al., 2001). Furthermore, interactions of SR proteins with other proteins 
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lacking RS domains are capable of targeting them to nuclear speckles (Patton et al., 1993; 

Hedley et al., 1995). Other domains implicated in targeting certain proteins to the 

nucleus have been shown to mediate an interaction with U2snRNP (Eilbracht and 

Schmidt-Zachmann, 2001). 

Other functional domains of RBPs, including the RNA binding motifs, have been 

shown to be required for their specific staining pattern, again linking functional capacity 

to nuclear localization. For example, the localization of poly(A)-binding protein 2 

(PABP2) and PTB-associated splicing factor (PSF) to sub-nuclear speckles depends on 

their capacity to bind RNA and is in contrast to other splicing factors whose localization 

in speckles increases in the absence of transcription (Calado and Carmo-Fonseca, 2000; 

Dye and Patton, 2001). In some human SR proteins, the RRM domains mediate nuclear 

localization, at least partly (Caceres et al., 1997). Finally, multiple RRM domains of the 

PTB protein are required for its localization to the PNC, suggesting that RNA-binding is 

necessary (Huang et al., 1997). 

Post-translational modifications that influence protein localization mostly focus 

on the regulation of the phosphorylation state of the protein by kinases and phosphatases, 

perhaps as a result of cell cycle regulation. The nuclear localization of snRNP splicing 

factors and SR proteins has been shown to be influenced by phosphorylation (Gui et al., 

1994; Colwill, et al., 1996; Misteli and Spector, 1996; Sleeman et al., 1998). The sub-

nuclear localization of Sam68, a protein that mediates a connection between signal 

transduction pathways and RNA metabolism, also depends on phosphorylation 

(Hartmann et al., 1999). Coiled body formation has been suggested to be dependent on 

the phosphorylation level of p80-coilin (Lyon et al., 1997; Sleeman et al., 1998; Hebert 
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and Matera, 2000). Finally, the association of nuclear matrix components with active 

splicing complexes may also be regulated by phosphorylation (Chabot et al., 1995). The 

cytoplasmic accumulation of hnRNP K, depends on its phosphorylation and is necessary 

for its function in silencing mRNA translation (Habelhah et al., 2001). Another 

modification that has recently generated interest concerns the ubiquitin-like protein 

Sumo-1, as sumoylation of the PML protein has been hypothesized to regulate its 

localization in nuclear bodies (Muller et al, 1998, Zhong et al., 2000) 

The effect of phosphorylation on the nuclear localization of RBPs suggests that 

the cellular machinery that achieves and regulates the localization pattern of a given 

protein is likely to have some universal features and can thus be highjacked by viral 

proteins. Indeed, the HIV protein Rev contains NLS and NES domains that allow it to 

shuttle, as well as a loop domain, located between two helices, that is required for proper 

phosphorylation of the protein by a cellular kinase (D'Agostino et al., 2000). The loop 

structure, together with the NES, is required for the proper sub-nuclear localization and 

association with splicing factors and hence for the functional activity of Rev in binding 

and trans-activating target viral RNAs. 

The localization of RBPs can also be controlled by changes in cellular activity or 

as required by alterations in their function. For example, as nuclear RNA export is 

mostly mediated by RBPs, their localization in both the nucleus and the cytoplasm and 

their capacity to shuttle between the two becomes a requirement for proper function. In 

neurons, it has been reported that the dendritic targeting of certain messages (e.g. the 

CaMKIIa mRNA) depends on cis-acting elements in their 3' UTRs and is regulated by 

functional activity, namely neuronal depolarization (Mayford et al., 1996a; Mayford et 
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al., 1996b ; Mori et al, 2000). Furthermore, neurotrophin release induces the formation 

of an mRNP complex between (3-actin mRNA and Zipcode-binding protein 1 (ZBP1). 

Transport of this complex to neurites is dependent on the 3' UTR of the mRNA and 

results in localized P-actin protein synthesis, which eventually affects growth cone 

motility (Zhang et al., 2001). 

Localization-function coupling and RNA-binding proteins 

By virtue of their diverse functions, varied localization patterns and ability to bind 

assorted RNA targets, RNA-binding proteins have the capacity to be in the center of the 

machinery that controls gene expression. This capability is manifested by the role of 

RBPs in linking the different stages of RNA metabolism in a manner that is efficient, 

economical and advantageous to the cell. 

Transcription has been linked to splicing which, in some cases, is thought to occur 

concurrently (Misteli and Spector, 1999), and to the nucleocytoplasmic transport of 

RNAs (Pinol-Roma and Dreyfuss, 1991; Pinol-Roma and Dreyfuss, 1992). Splicing has 

also been shown to influence the nuclear export process (Kataoka et al, 2000; Le Hir et 

al, 2000a; Huang and Steitz, 2001) and the mRNA surveillance/non-sense mediated 

decay pathways (Kim et al., 2001a; Lykke-Andersen et al., 2001). In turn, nuclear export 

of RNA is linked, through the function of common RBPs, to mRNA processing, i.e. 

capping, 3' end cleavage and polyadenylation (Brodsky and Silver, 2000; Daneholt, 

2001). Finally, the nuclear export process influences subsequent cytoplasmic localization 

and efficient translation (Choi et al., 2000; McKendrick et al., 2001). 
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A requirement for the ability of RBPs to efficiently serve as linkage factors 

between different steps in RNA metabolism and thus become crucial regulators of gene 

expression and cellular activity, is that they perform more than one function on target 

RNA molecules. This is underscored by the presence of multiple domains within the 

structure of RBPs and by the versatility of specific domains in mediating more than one 

biochemical reaction. For example, different regions of the carboxy-terminal domain of 

RNA polymerase II can independently regulate capping, splicing, 3' end cleavage, and 

polyadenylation (Fong and Bentley, 2001). The members of the Hu/Elav family have 

been suggested to play a role in mRNA splicing (Koushika et al., 1996; Koushika et al., 

2000; Lisbin et al., 2001), stability (Myer et al., 1997; reviewed in Brennan and Steitz, 

2001), and translation control (Jain et al., 1997) and could possibly mediate all of the 

above on a single RNA target. 

Reports show that commitment to a particular splicing pattern occurs very rapidly 

after transcription and might even be functionally coupled to it (Roberts et al., 1998). 

This is also supported by data that the perinucleolar compartment (PNC), where the PTB 

splicing repressor has been shown to localize, may be an active site of transcription 

(Matera et al., 1995; Huang, et al., 1998). Besides its role in splicing repression, hnRNP 

I/PTB has been implicated in the regulation of cap-independent translation (Gosert etal., 

2000), cytoplasmic mRNA localization (Cote et al, 1999), stability (Irwin et al., 1997) 

and efficient polyadenylation (Lou et al., 1996; Moreira et al., 1998). In any case, 

specific multifunctional RBPs, such as PTB, are at the forefront of coupling events in the 

lifecycle of RNA molecules in a way that allows for effective regulation and firm control. 
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The RS domain of two Drosophila SR proteins is necessary for splicing function 

and sufficient for nuclear localization, suggesting that these two processes are intricately 

linked (Li and Bingham, 1991; Hedley et al., 1995). The situation in humans is thought 

to be more complex however, as reports have demonstrated that domains of the SR 

proteins (including the RS and RRM domains) can have additive and redundant functions 

in guiding sub-nuclear localization and targeting to sites of active splicing (Caceres et al., 

1997; Gama-Carvalho et al., 1997). Even components of the nuclear matrix that have 

been hypothesized to belong to the SR family of RBPs can be associated with active 

splicing complexes (Blencowe et al., 1994). 

The importance of the proper cellular localization of RBPs for their function is 

highlighted by the phenotype exhibited when this process is perturbed. For example, 

spinal muscular atrophy is a disease that is thought to disrupt the interaction of SMN, the 

gene affected by the disorder, with another protein, resulting in the absence of SMN 

localization from nuclear bodies and, presumably, defective function in snRNP 

biogenesis (Gangwani et al., 2001). The incorrect accumulation of the CUG-Binding 

protein (perhaps due to altered phosphorylation patterns) and the resulting aberrant 

processing of target RNA transcripts in the nucleus has been hypothesized to be a culprit 

in the pathophysiology of myotonic dystrophy (Roberts et al., 1997; Philips et al., 1998). 

Nova-brPTB protein interactions in alternative splicing and 

nuclear localization 

The results presented in this thesis concern the functional interactions between two 

neuronal RNA-binding proteins, Nova and brPTB. The brPTB protein, a member of the 
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P T B sub-family of R B P s that includes P T B , matrin3 and h n R N P L, is specifically 

enriched in the brain at the RNA and protein level. It was identified and cloned by virtue 

of its interaction with the paraneoplastic onconeural antigen Nova, through a yeast-two-

hybrid screen. This interaction was confirmed both in vitro and in vivo and was shown to 

play an important role in the regulation of alternative splicing of a couple of neuronal 

transcripts. Furthermore, brPTB and Nova were shown to co-localize in distinct sub-

nuclear structures in neuronal nuclei. 

Placed in the context of the function of RBPs in the control of RNA metabolism, 

as discussed in Chapter 1, the interaction between brPTB and Nova has numerous 

implications. It is important to note that these two RBPs contain different types of RNA-

binding motifs and yet can interact on the protein level. While the exact domains 

responsible for this interaction were not identified, and the question of whether an RNA 

molecule intermediates this interaction in vivo was not completely resolved, it is 

nevertheless apparent from the assays measuring the effect on splicing regulation, that 

this interaction has biological significance. The brPTB protein inhibits the Nova-specific 

increase in alternative exon utilization in a manner that is contingent on its binding to the 

RNA transcript. This would imply that the act of RNA-binding is necessary for the effect 

of brPTB in splicing inhibition, as it has been shown for the effect of Nova in splicing 

activation (Jensen et al., 2000a). 

The possible means by which brPTB could inhibit the action of Nova, have 

already been discussed (see Chapter 4, Discussion). However, in light of the localization 

studies presented earlier, it is feasible that the effect of the brPTB-Nova protein 

interaction in splicing regulation is related to the nuclear setting of the two proteins. A 
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model that could tie these results together is presented in Figure 31. Three functional 

states of the Nova protein have been described in this work. One concerns the splicing 

activation of certain exons by Nova proteins in both neuronal and non-neuronal cell lines 

as evident by previous work and experiments presented here (Jensen et al., 2000a; this 

work). In some cases, when brPTB is also present, the result of its inhibitory action on 

Nova is splicing inhibition (Polydorides et al., 2000; this work). Finally, brPTB and 

Nova co-localize in distinct nuclear bodies (this work). 

It is proposed in this model that the three functional states of Nova protein are in 

an equilibrium relationship with each other, the relative balance of which depends on the 

particular cell type and possible co-factors. In neuronal cells, specific co-factors may 

exist that could enhance the co-localization of brPTB and Nova proteins in nuclear 

bodies, thus shifting the equilibrium from the splicing inhibition state. This would 

explain both the presence of nuclear bodies in N2As and the absence of inhibitory action 

by brPTB in the splicing assays performed in these cells (see Chapters 4 and 5, Results). 

In non-neuronal cells, the absence of co-localization between brPTB and Nova 

(possibly due to the lack of the required co-factor) allows the equilibrium to be switched 

to the splicing inhibition state and explains the observed effect of brPTB in bringing the 

level of exon inclusion back to the pre-Nova baseline (see Chapter 4). Since Nova and, 

most likely brPTB as well, do not exist in 293T cells these results concern transfected 

proteins. This poses a problem, as the interaction between brPTB and Nova proteins in 

these non-neuronal cells still occurs yet no co-localization is observed. One explanation 

could be that the localization interaction would require many more molecules co-

localizing to become evident by immunostaining methods, while perhaps the splicing 
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inhibition on an R N A target transcript, where single molecules of Nova and brPTB could 

be interacting, is easily observable by the more sensitive RT-PCR assay. 

Hence, the debate whether the nuclear bodies occupied by co-localizing brPTB 

and Nova proteins in neurons are indeed active splicing sites or inactive storage areas can 

be somewhat resolved. The mechanism by which brPTB inhibits Nova in splicing could 

involve blocking the recruitment of general splicing activators (such as SR proteins) to 

the exon. Alternatively, the nuclear bodies observed in neuronal cells could be the 

manifestation of sequestration of Nova by brPTB away from the RNA, thus inhibiting 

splicing. However, this would be contrary to the result presented here that brPTB 

inhibition of splicing requires its RNA binding and the observation that transcription 

inhibition reduces the appearance of the Nova nuclear concentrations. 

Summary 

RNA-binding proteins play a significant part in the regulation of neuron-specific 

alternatively splicing. This function is intricately linked to their sub-nuclear localization, 

which can, in turn, influence their regulation. RBPs also couple splicing events to other 

steps in the metabolism of RNA molecules. A model where this hypothesis can be 

applied, involves the interaction between Nova and brPTB in terms of their roles in 

alternative splicing and nuclear localization in specific cell types. brPTB and Nova co-

localize in neuronal cell nuclei where splicing assays fail to detect a repressive effect for 

brPTB in Nova-dependent alternative splicing. It is proposed that the explanation for this 

discrepancy lies in an intricate balance in the equilibrium between functional states for 

brPTB and Nova in the nucleus. 
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Figure 31. Schematic model of the Nova-brPTB functional interaction. 

Model depicting the functional interactions between brPTB and Nova proteins. In 

neuronal cells, the equilibrium leans towards the formation of nuclear bodies, perhaps 

aided by a third, neuron-specific co-factor, and visible by immunocytochemical methods. 

This equilibrium state allows Nova to act in splicing activation as the addition of brPTB 

does not inhibit splicing in N2A cells. In non-neuronal cells, perhaps due to the absence 

of a co-factor, transfected Nova and brPTB proteins do not co-localize and the 

equilibrium is shifted, allowing brPTB to inhibit the action of Nova in splicing activation 

as seen in assays with 293T cells. 
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Y E A S T T W O H Y B R I D S C R E E N O F A M O U S E Ell T O T A L c D N A L I B R A R Y 
W I T H T H E N O V A 2 S P A C E R R E G I O N 

N2 401 
N2 402/422 
N2 406 
N2 407 
N2 409 
N2 411 
N2 412 
N2 413 
N2 414 
N2 416 
N2 417 
N2 418 
N2 421 
N2 423 
N2 426/473/484 
N2 428 
N2 429 
N2 430 
N3 434 
N2 435 
N2 436 
N2 442 
N2 443 
N2 444 
N2 447 
N2 449 
N2 452 
N2 455 
N2 456 
N2 460 
N2 462 
N2 464 
N2 465 
N2 466 
N2 469 
N2 474 
N2 475 
N2 476 
N2 477/505 
N2 482 
N2 483 
N2 485 
N2 489 
N2 493 
N2 496 
N2 503 
N2 506 
N2 507 

unknown 
novel, neuronal(?) R R M (=dbest clone on chr. 22) 
unknown 
KIAA 0127 gene 
AICAR formyltransferase / IMP cyclohydrolase (similar to rat; mouse homolog?) 
Human HLA-B-associated transcript 3 (BAT3) m R N A 
unknown 
tenascin 
M 2 type pyruvate kinase 
unknown - domains homologous to desmoplakin/U2AFl-RS2/troponin 
T-cell tyrosine kinase 
beta-catenin 
beta-actin 
unknown 
YL2 / TAP / p32(SF2) / ClqBP 
Zacl zinc finger protein 
elavG/elrA/HuA 
Kryn (SH3 domain binding protein) 
unknown (clone too short?) 
chicken p52/mouse h74 (SH3 domain containing protein) 
N A D H Ubiquinone Oxidoreductase 
unknown 
unknown 
murine retrovirus ERV-L (gag, pol, dUTPase genes) 
unknown (62 bp insert) 
agrin precursor 
KIAA01812 gene m R N A , uncharacterized 
unknown 
unknown 
unknown 
laminin receptor 
delta proteasome subunit 
unknown 
unknown 
human brain cDNA KIAA0426 
cdc25A 
tRNA-His gene / PI transfer protein 
unknown 
tankyrase 
laminin B1 
novel, contains domains similar to keratin, general vesicular transport protein. 
H N R N P arginine N-methyl transferase (similar to human, rat, mouse homolog?) 
cyclophilin (cyclosporin A binding protein) 
unknown 
unknown 
NEFA protein (leucine zipper D N A binding, EF hand homology) 
unknown 
stathmin (phosphoprotein-cell regulation) 

N2 425 = 412 
N2 437 = 490 = 499 = 426 
N2 439 = 440 = 481 =402 
N2 448 = 442 
N2 470 = 485 
N2 487 = 409 
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Representative data set of GlyR 3A/3B splicing in 293T eels after Nova and brPTB transfections 

Imagequant 

transfe 

2A 
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6A 

7A 

8A 
9A 

2B 

3B 

4B 
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6B 

7B 

8B 

9B 

;ction 

data 

3A/3B 

2.47218696 

2.6790851 

2.26062506 

1.93808412 

6.47917793 

4.97800629 

4.52765968 

2.748543 

2.62031864 

2.30816183 

2.17085283 

2.76023519 

5.36348234 

5.60872296 

4.67037842 

3.0444791 

Amount transfected Ratios 

Nova brPTB 3A/3B st. dev 

2.5462528 0.10474492 

2 2.49362346 0.26228236 

4 2.21573894 0.06347855 

6 2.34915965 0.5813486 

0.5 5.92133014 0.78891592 

0.5 2 5.29336462 0.44598404 

0.5 4 4.59901905 0.10091739 

0.5 6 2.89651105 0.20925842 



Representative data set of GlyR CT Mutant 3A/3B splicing in 293T eels after Nova and brPTB transfec 
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data 

3A/3B 

3.00483025 

2.9125848 
2.97134264 

2.75875291 

4.98263266 

4.91065806 
5.28530484 

6.90792117 

2.5680186 
2.86706353 
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2.39978879 

4.99776777 

5.01396715 

5.21756318 
3.70011208 

Amount transfected Ratios 
Nova brPTB 3A/3B st. dev 

2.78642443 0.30887248 
2 2.88982416 0.0321884 

4 2.88621701 0.12038581 

6 2.57927085 0.25382596 
0.5 4.99020021 0.01070214 

0.5 2 4.96231261 0.07305056 

0.5 4 5.25143401 0.04790059 

0.5 6 5.30401663 2.26826356 



Representative data set of GABA L/S splicing in 293T eels after Nova and brPTB transfections 

Imagequant data 
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ratio L/S 

0.07018442 

0.07679634 

0.04589118 
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0.03785201 
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0.02776304 
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0.26571511 
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Amount transfected 
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ratio L/S 
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0.02794043 

0.02497307 

0.03322085 

0.20089416 

0.19034669 

0.12331486 

0.10747677 

0.09152576 

0.08589394 

0.06896707 

0.06541665 

L/S 
0.07788729 

0.04836182 

0.03887875 

0.05277609 

0.21734809 

0.14566562 

0.10984154 

0.08428605 

Average ratio 

0.09247174 

0.08211882 

0.06148131 

0.06936156 

0.05112468 

0.05057753 

0.12632509 

0.06231841 

0.15713952 

0.1929067 

0.13945502 

0.13136766 

0.12114288 

0.1207896 

0.09309652 

0.08655169 

st. dev 

0.00969303 

0.01405035 

0.01025274 

0.06570757 

0.05276328 

0.03312425 

0.01663161 

0.01371855 



Representative data set of GABA GA2 Mutant L/S splicing in 293T eels after Nova and brPTB transfec 
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3B 

4B 
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7B 

8B 

9B 

data 

ratio L/S 

0.04827491 

0.04284727 

0.02864832 

0.02707616 
0.02449787 

0.0249269 

0.02855375 
0.03288998 
0.11777077 
0.12823414 

0.08082518 
0.07634674 

0.0677589 
0.06399482 

0.05385417 

0.04747199 

Amount transfected 

Nova i 

0.5 

0.5 

0.5 

0.5 

brPTB 
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L/S 
0.04556109 
0.02786224 

0.02471239 
0.03072187 

0.12300246 

0.07858596 

0.06587686 
0.05066308 

st. dev 
0.00383792 

0.00111169 
0.00030337 

0.00306618 
0.00739872 
0.00316674 

0.00266161 
0.00451288 



Representative data set of GlyR 3A/3B splicing in N2A eels after Nova and brPTB transfections 

Imagequant data 
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3A/3B 

3.6877927 

4.302909 
5.42919164 

5.67742295 
6.48093565 
6.37372371 

5.99337766 

5.86104886 
7.97082414 
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8.25060437 
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Amount transfected 
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0.5 

0.5 

0.5 

0.5 

brPTB 
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-
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5.61386356 
5.60354741 
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6.23304603 
6.41826742 
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7.02109044 

6.4638677 

6.80258716 

6.30757323 
6.44061215 

Ratios 

3A/3B 
3.82619292 

5.36502509 

6.09602873 

5.67074169 
7.18988211 
7.54511204 

7.66094313 

7.32515413 

st. dev 

0.50335096 
0.26041966 

0.40427239 
0.33838731 

1.00308986 
0.66124924 

1.19575815 
1.09994527 



Representative data set of GABA L/S splicing in N2A eels after Nova and brPTB transfections 
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lata 

ratio L/S 

0.81638181 

0.80348118 

0.59795864 

0.57122484 

0.50078961 

0.70576492 

0.49093681 

0.61369694 

2.04846909 
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Amount transfected 
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ratio L/S 

0.76935679 

0.77464409 
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0.6949757 
0.69464224 

0.52147169 

3.19284373 
3.15108504 

3.00035425 
2.72062352 

2.28523589 

2.61842648 
2.31050789 

L/S 
0.79096597 

0.66855088 
0.64904312 

0.54203515 
2.51007907 

2.58680699 
2.31079652 

2.25947439 

st. dev 
0.02262709 
0.12686149 

0.09897061 
0.0639113 

0.78176318 
0.58484414 

0.29277408 
0.26894215 
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