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Abstract
Recent advances in electrophysiological recording technology have allowed for the collection of data from large
populations of neurons simultaneously. Yet despite these advances, methods for the estimation of the amount of
information conveyed by multiple neurons have been stymied by the “curse of dimensionality”–as the number of
included neurons increases, so too does the dimensionality of the data necessary for such measurements, leading
to an exponential and, therefore, intractible increase in the amounts of data required for valid measurements.
Here we put forth a novel method for the estimation of the amount of information transmitted by the discharge
of a large population of neurons, a method which exploits the little-known fact that (under certain constraints)
the Fourier coefficients of variables such as neural spike trains follow a Gaussian distribution. This fact enables
an accurate measure of information even with limited data. The method, which we call the Fourier Method, is
presented in detail, tested for robustness, and its application is demonstrated with both simulated and real spike
trains.
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Foreward
The field of neuroscience comprises several disciplines. Some of these disciplines are heavily grounded in the
biological substrate of the brain, and pursue knowledge governing the physical material which forms the basis of
all neural activity— neurons, synapses, and the swath of complex machinery that enables our brains to function.
Others seek to shed light on the biological underpinnings of the more macroscopic, emergent properties of
the brain: how our genetic makeup influences brain structure, and how this structure correlates with disease,
behavior, and perception.

This dissertation focuses on yet another area: how neurons in the brain work together to process and
encode information. This filed is grounded in experimental data and theory generated from electrophysiological
recordings— recordings that measure the spiking activity of individual neurons, often in response to an external,
driving stimulus. Such experiments allow us to learn the functional properties of neurons, how their activity is
influenced by the outside world, how neurons influence each other and, in turn, addresses a critical question:
how does the brain encode information?

This thesis focuses on the measurement of information in the brain, using the visual system as a convenient
model. The findings presented in this dissertation fill a gaping hole in the field of neuroscience: how to
measure the amount of information in populations of simultanenously recorded neurons. Previous efforts of
such measurement have been consistently thwarted by the combinatorial explosion of possible spike patterns
found even in small populations of neurons; it presents an new method that elegantly bypasses this obstacle,
and provides a computationally efficient solution to the problem of measuring multi-neuronal information.
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1 Introduction

1.1 Neural Coding
The establishment of the ways by which neurons receive, encode, and transmit information is a primary goal in
neuroscience. The common metaphor of the brain as a computer describes the brain primarily as an information
processor (Pinker, 1999; von Neumann, 2000): our behavior and actions, both conscious and subconscious,
are governed by the brain, and result from the coordinated effort of many neurons intercepting signals from
the external world, storing these signals, and applying computation– the rearrangement of patterns of neural
activity– to generate predictions and behavior that influence our survival. Defining how these patterns of activity
represent information is prerequisite to understanding brain function, and is referred to as the coding problem.

Deciphering the transformation from stimulus, which encompasses not only the range of modalities forming
our senses, but also of the output from other neurons, into a neural pattern of activity is a problem shrouded
in complexity attributable to many biophysical, evolutionary, and circuit-level phenomena in the brain. The
high metabolic demand of the brain, approaching 25% of the body’s entire metabolism in humans (Mink et al.,
1981), places immense evolutionary constraints on the brain’s design (Niven and Laughlin, 2008), requiring
a minimization of energy consumption while maximizing the ability to respond to a wide variety of stimuli.
This necessity for an economical approach to coding favors compression schemes that further obscure the
transformation of the original signal into the resulting patterns of neural activity. Furthermore, the fundamental
unit of computation– the neuron (according to the Neuron Doctrine)– is itself stochastic: the timing of individual
spikes often follow probabilistic, rather than deterministic, rules of activity. Whether this variability itself is critical
to the encoding process (Eyherabide and Samengo, 2013; Levine et al., 2002; Averbeck and Lee, 2003, 2006;
Masuda and Aihara, 2002) or it is the inevitable result of simple neurobiomechanics (Softky and Koch, 1993)
remains a matter of debate. Furthermore, the fact that computation is carried out at the level of the synapse in
both the retina (Sivyer and Williams, 2013) and cortex (Smith SL and M, 2013) continues to obscure the level
of precision at which information is stored and processed.

1.1.1 Computational Methods

The field of computational neuroscience began perhaps with the introduction of the integrate-and-fire model
neuron of Lapicque in 1907 (Abbott, 1999), with critical contributions by K. Hartline and Hogkin & Huxley
paving the way for the application of mathematical descriptors to biological phenomena. In 1943, Warren
McCulloch and Walter Pitts introduced concept of the mathematically manipulable artificial neuron. The notion
that thought and behavior are modified through the reorganization and alteration of synapses was inspired by The
Organization of Behavior of Hebb (1949), bringing about a circuit-level view of memory and learning through
activity-dependent plasticity in the brain (see Markram et al. (2011) for a thorough review of its impact).
Neurons relay information through the timing of their action potentials, which is a point-process of discrete
events (Daley and Vere-Jones, 2007). The goal of computational neuroscience is to describe the coding strategy
that maps external events to series of discrete spiking patterns found in the brain. Such maps undoubtedly come
in many forms, dependent on the evolutionary pressures that guided their development, and on the nature of
the computation to be performed. Our various sensory modalities each involve machinery designed to compute
specific tasks; sensory organs that feed input into specialized subpopulations of cells that process the information
in some manner presumed to be useful for the modality. Even within sensory modalities, for example within
the visual system, we find a diversity of coding schemes, a major example being the progressive decrease in the
precision of topographic mapping that accompanies the progression through higher visual areas. Understanding
how a particular population of cells in the brain encodes information requires specialized analyses, which means
that assumptions concerning the nature of the code must be made.
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1.1.2 Rate coding versus Timing coding?

Given the stochastic nature of neurons, much debate has ensued regarding the nature of information transmission:
does a neuron convey information through its firing rate, or through the precise timings of its spikes? This
question was defined rigorously by Theunissen and Miller (1995), who distinguished temporal coding, based on
precise spike times, from those based on windowed-average measures. Studies showing that neurons can integrate
and react to stimuli with millisecond (deCharms and Merzenich, 1996) and even sub-millisecond (Carr, 1993;
Softky, 1994; Bullock, 1970; Vardi et al., 2013) precision indicate that the machinery is available for specifically
timed spikes, and the sparsity and high precision of spiking events in the retina, for example as shown by Berry
et al. (1997), demonstrates that some areas of the brain may benefit more greatly from using codes in which the
timing of a spike is more important than its probability of occurring (Van Rullen and Thorpe, 2001; Gawne, 2000).
However, the higher variability of neural responses in the cortex to identical stimuli (Richmond and Optican,
1987; Victor and Purpura, 1996; Tolhurst et al., 1983) precludes such reliance on precise timing, with in vivo
evidence suggesting that rate coding takes precedence in higher cortical areas (London et al., 2010; Shadlen
and Newsome, 1998; Georgopoulos et al., 1992, 1986, 1988). The apparent use of both coding schemes in the
rat barrel cortex (Ahissar et al., 2000; Panzeri and Schultz, 2001) suggests that coding schemes may be chosen
appropriately, according to the encoding task at hand. Finally, the increasing evidence for the importance of
neuronal oscillations and cross-frequency interactions in the temporal coordination of neuronal firing in learning
and memory (Buzsáki and Draguhn, 2004; Shirvalkar et al., 2010; Trimper et al., 2013; Vaidya and Johnston,
2013), and the implication that the deterioration of such mechanisms contribute to diseased states of mind
such as schizophrenia (Tan et al., 2013; Uhlhaas and Singer, 2013), imply that the dynamic configuration of
large-scale functional coding networks may rely on the integration of multiple coding methods across and within
brain regions.

1.2 Population codes
1.2.1 Neurons work together

Our discussion above of the somewhat abstract questions surrounding possible coding methods leads to a
critically important point in our discussion: that no single neuron performs its action alone, but rather always
works in concert with populations of others cells (Pouget et al., 2000). Examples of population coding are
numerous: pyramidal cells in the rat hippocampus generate a geographic mental map of the local environment,
where the firing rates of individual neurons are tightly correlated with a specific location, and firing oscillation
frequency is correlated with the animal’s velocity. Some interesting features of these “place cells” highlight the
importance of understanding a neuron’s function in the context of its population. Populations of place cells
generate a local theta rhythm, on the order of 6 − 10 Hz. Individual place cells oscillate slightly faster than
the population rhythm; the geographic separation between the place fields represented by the neurons, and the
motion of the rat through those fields, creates a temporal disparity between the individual neurons’ oscillations.
This slight delay in activation of sequential neurons as the rat progresses through overlapping place fields creates
a sequence of delayed oscillations which, taken together, produce slightly slower population oscillations(O’Keefe
and Recce, 1993; Dragoi and Buzsáki, 2006). One of the interesting consequences of these time compressed
sequences is the resulting phase precession (O’Keefe and Recce, 1993) that occurs, whereby the position of the
rat within the place field can be inferred based on the relation (phase) between the field neuron’s spike timing
and the population theta rhythm.

Similar examples of population coding can be found elsewhere in the brain: Georgopoulos and colleagues
(1986) found broadly-tuned neurons in the primate motor cortex, each with a preferred axis of arm movement.
These neurons fire with an intensity dependent on the similarity of the arm movement direction to the preferred
direction. Prediction of the actual direction of arm movement from the joint output of a population of these
cells is performed by a weighted summation of each individual neuron’s movement vector contribution. In this
particular study, a selection of 224 neurons provided, in general, 95% confidence in the accuracy of the prediction.
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A follow-up study by Tanaka (1994), using simulations, estimated that accuracy of 1 degree root mean square
error requires on the order of 10,000 neurons. Yet, despite the assertion that neurons in the brain operate
exclusively in large numbers, the conceptual and mathematical tools for the analysis of neurophysiological data
have lagged behind the rapidly improving technology of recording or imaging large neuronal populations. Popular
methods, for example the Gravity Method of Gerstein et al. (1989), deal with neurons in an exclusively pairwise
fashion, and fail to properly provide insight into neural coding at the population level.

1.2.2 Electrophysiology and the advent of multi-neuronal recordings

Despite the necessity for methodologies that deal with population codes as outlined above, technological con-
straints have by and large limited neuroscience until recently to the study of individual neurons and their biophys-
ical and electrophysiological response properties, despite a general awareness for the need for methods dealing
with multiple neurons (Krüger, 1983). The technological requirements for measuring the output of neurons,
given their high temporal precision and small physical size, did not exist until the last few years, and depends
heavily on electrode fabrication and data acquisition methods. As hardware and software technologies have
progressed, however, multi-channel electrophysiological recording is rapidly becoming the norm, and scientists
shift to experiments involving neural ensemble recordings of diverse nature, including massive multi-neuronal
recordings of the retina (Doi et al., 2012; Vidne et al., 2011; Field et al., 2010), two-photon calcium imaging
of thousands of neurons simultaneously (Bock et al., 2011; Andermann et al., 2010; Ch’ng and Reid, 2010;
Ziv et al., 2013; Deisseroth and Schnitzer, 2013; Marshall and Schnitzer, 2013; Sinha et al., 2013), chronic
non-human primate, and even human, awake recordings (Nicolelis and Ribeiro, 2002).

1.2.3 The Need for multi-neuronal mathematical tools

The theoretical and mathematical tools designed to deal with multineuronal data sets have necessarily followed
the prerequisite technologies for acquiring such data. Some of the recent developments in multineuronal coding
indicate a promising future in neuroscience, including the ability to directly encode visual images into retinal
ganglion cells (Nirenberg and Pandarinath, 2012). However, these methods rely on a limited knowledge of the
interactions between neurons on a population level: how do the neurons work together to produce an outgoing
retinal code? The importance of interactions between neurons and the extent to which knowledge of correlations
and interactions between cells influence the brain’s coding system is still a matter of debate (Nirenberg et al.,
2001; Levine et al., 2002; Golledge et al., 2003), a debate that depends in large part on our ability to measure
such interactions. As is shown in the following section, this ability has been obstructed by our inability to
adequately measure the extent of overlap in the amounts of information conveyed by a population of neurons.
This thesis provides such a measure, and thus fills a much-needed hole in the arsenal of multineuronal analysis
methods.

1.3 Information
A thriving area of mathematics directly applicable to neural processing in the brain is Information theory, which
quantifies the degree of novelty transmitted in a particular message. While the idea of novelty associated with
a message may be difficult to intuit or describe colloquially, Shannon and Weaver (1949) provided an explicit
method of mathematically defining this measure in their seminal paper on information theory. Information
theory is an important foundation for the study of neural systems because it establishes limits on the processing
capabilities of these systems, describes their behavior, and allows the scientist to gauge the efficiency of the
system in processing its input and conveying its output. As an example, consider the mammalian visual system.
After light enters the eye and is absorbed by photoreceptors in the retina, neural mechanisms encode a view of the
outside world into a sequence of action potentials that are transmitted, via retinal ganglion cells, to the lateral
geniculate nucleus (LGN). The encoding varies from cell to cell and, through a combination of different inputs,
encoding schemes, and transmission rates, provides the LGN with a signal that appears remarkably different
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from the initial electromagnetic stimulus. How, then, does one meaningfully quantify the rate of information
transmission of a given input? We note that neural action potentials, being “all-or-none” events, lend themselves
to the view of a binary code, in which a spike may be considered a “1,” and the absence of a spike a “0.” As a
result, the application of digital information theory is a natural next step.

1.3.1 Definition

We wish to understand how the outside world is represented by the neural code of neuronal ensembles, and more
generally, how neuronal groups process and transmit information in the brain. Shannon’s Information Theory
(Shannon and Weaver, 1949) provides a quantitative approach to this problem. By noting that any given input
signal comes from a distribution of all possible input signals, we can derive a measure of likelihood for the output
signal. The net likelihood of all possible signals— which depends on the system’s ability to produce different
signals given the input— is commonly referred to as the entropy : the amount of available information in a
given information channel. If the input probability distribution is, say, a delta function— i.e. it can only receive
one specific input— no information can be transmitted, since the input can be trivially inferred. Similarly, if an
output is limited to only one pattern, then inference of the input is impossible, as all inputs produce identical
outputs. Information is thus a measure of uncertainty of a random variable x, with various constraints, such as
additivity of independent variables, that can be expressed as a continuous function of its probability distribution
P (x):

S = −
ˆ
dxP (x)log(P (x))

Intuitively, therefore, the entropy is the number of questions required to determine the value of a variable;
it is the logarithm of the number of possible values for x. Several methods exist for calculating the entropy
of a single spike train from a given neuron: the entropy is derived from both the variability of the neuron’s
spike patterns and the set of possible outputs. In a sense, if we were given one particular encoded input, the
information is the number of bits required to accurately point to the address in our index of possible inputs. A
major current hurdle in the field of information neuroscience, however, has been the inability to calculate the
amount of information delivered by multiple neurons simultaneously, and with the recent advent of simultaneous
multi-neuronal recordings, information neuroscience acutely needs such a method. We have recently devised
and published such an approach for calculating the information conveyed by a population of cells; this thesis
will apply this method to the visual system to gain further insights into the networking processing and function
dynamics of its constituent cells.

The application of information theory to neural systems has been mostly focused on the visual system, with
rather few exceptions (DiCaprio, 2004; Belitski et al., 2010; Marsat and Pollack, 2010). The visual system is
accessible: it has controllable inputs (i.e. stimulus presented to the eye), and its outputs are readable from
several points along the visual pathway, from the retina to the LGN to the visual cortex and extrastriate areas.
The ability to control the stimulus is appealing, and a range of visually-driven areas have been studied for
information, including: the fly visual H1 cells (Brenner et al., 2000), the salamander retina (Puchalla et al.,
2005; Pillow and Latham, 2008), the cat LGN (Reinagel and Reid, 2000; Sincich et al., 2009), and areas V1,
IT and MT in the macaque (Optican and Richmond, 1987; Gawne and Richmond, 1993; Brown et al., 2004).

1.3.2 Redundancy and Synergy

Given that a cell is capable of transmitting information about particular aspects of a stimulus, what can we
say about a group of cells working together? It is likely that different cells might transmit some of the same
information, for a variety of reasons: to ensure fidelity in the face of injury, to emphasize certain aspects of the
stimulus deemed more important by the system; to allow for increased multiplexing in later visual areas (Victor
and Purpura, 1996). This redundancy— duplicated information— can be measured only if some measure of total
group information is available, and is compared to the information provided by each cell individually. Conversely,
if the information conveyed by all cells together exceeds the sum of the individual cells’ information, we have
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synergy— information that is only conveyed when the outputs of all cells are taken into account. Redundancy
can be mathematically expressed:

R = 1− I(G)
I(C)

Crumiller et al. (2013), where I(G) is the total group information, taking correlations into account, and I(C)
is the sum of the individual information contributions of the constituent cell when correlations are ignored. The
largest potential source of redundancy for a group of cells is the input that each cell receives; presumably, cells
with identical properties and inputs should exhibit high redundancy. The number of studies of redundancy among
visual neurons is limited. Puchalla et al. (2005) found that approximately 40% of retinal ganglion cells located
within 500µm of each other showed redundancy values greater than 0.05, and of those, the average redundancy
for nearby cells was ~0.14, in close agreement with our surrogate simulations (Yu et al., 2010). Reich et al.
(2001) found redundancy in the macaque primary visual cortex ranging up to 0.5. Until now, however, measures
of redundancy have been limited to pairwise measurements and, as demonstrated in the simulated results of
Crumiller et al. (2013), the application of such pairwise measurements of redundancy to large populations of
neurons may grossly misrepresent the true rate of information processed by the population.

1.3.3 A Brief History of Information Theory

The roots of information theory can be traced back to the introduction by Ludwig Boltzmann in 1872 of the
quantity H, now better known as entropy, first used to describe the distribution of energy of an ideal gas in
thermodynamic equilibrium, and demonstrate the logarithmic relationship between entropy and the number
of microstates of the system. The H-Theorem describing this quantity was founded in statistical mechanics,
and describes the tendency of H, determined by the gas’s energy distribution function, to decrease with time
(Boltzmann, 1872). Working from this notion, and founded on developments by J. Willard Gibbs (1878), James
Clerk Maxwell (Leff and Rex, 1990; Maxwell, 2001), Max Planck (1945), Harry Nyquist (1924), Ralph Hartley
(1928), and others, Shannon extended the notion of statistical entropy describing the motion of particles to that
of the uncertainty in any random variable (Shannon, 1945, 1948).

The application of information theory to the nervous system began with MacKay and McCulloch (1952),
in which various aspects of neural coding, including noise and coding method, were considered in generating
estimates of the limits of information bandwidths within the nervous system, and thus began the field of inquiry
seeking to relate information processing capabilities of a neural system to the outside word. Fred Attneave
(1954) provided an initial taste of the application of information theory to the visual system, relating various
aspects of the statistics of the natural visual world to the coding requirements of the retina, with special
emphasis on the high levels of redundancy found in natural scenes. Horace Barlow (1961), in a celebrated
article in Sensory Communication, further emphasized the notion that the visual system, in order to maximize
information transmission, is designed to deal with, and discard, redundancy in the natural scene, and the emphasis
on measuring information in the presence of noise was advanced by Shannon and McCarthy (1956) and Winograd
and Cowan (1963). A more detailed view of some of the more modern the applications of information theory in
the neurosciences can be found in Dimitrov et al. (2011),Victor (2006),Cover and Thomas (2006), and Dayan
and Abbott (2001).

1.3.4 Modern Approaches

The Direct Method (Strong et al., 1998) is perhaps the best-known method of estimating information in neural
spike trains, due in large part to its simplicity and rather close adherence to Shannon’s definition. In the Direct
Method, a set of spike trains are discretized into bins of width ∆t, where each bin contains a number indicating
the number of spikes contained within the range of the bin. As ∆t decreases in length, this sequence of values
approaches a binary code, such that at most a single spike occupies each bin. A length L is chosen, and all
patterns of length L are indexed and accounted for; the unique entropy is then directly calculated for the set of
patterns, where each pi in the distribution is the probability of occurrence of a particular pattern. The value of
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L is successively increased until the method breaks down due to insufficient data, and an extrapolation is made
as L→∞. The main limitation of this method is the large quantity of data required to generate a reasonable
estimate of entropy: the number of possible neural patterns of length L using a binary binning procedure (∆t
is generally set to 1 ms) is 2L; thus, as word length increases, the number of possible patterns, and therefore
the data required to generate good estimates of the underlying pattern distribution, increases exponentially.
Other methods make use of the discretization procedure, such as the Context Tree Method of London et al.
(2002) and Kennel et al. (2005), which is less dependent on a large amount of data, and attempts to use a
measure of the complexity of coding to generate estimates of entropy, similar to that found in Compression
Methods that use compression algorithms, such as the Lempel-Ziv-Welch algorithm (Ziv and Lempel, 1978; Ziv
and A, 1978; Welch, 1984) used in compress, the Unix file compression utility, or in the widely-used Graphics
Interchange Format, more commonly known as the GIF image format. Other methods attempt to improve on
the stringent requirements imposed on the data by the Direct Method. The Metric Space Method (Victor and
Purpura, 1997; Victor, 2005; Victor and Purpura, 1996) uses the similarity between spike trains to measure
entropy, dispensing with the binning procedure which necessarily introduces a free parameter (∆t) that destroys
some of the information contained within the spike train and increases the problems associated with the number
of possible patterns, and therefore the length of data, required. The Metric Space method relies heavily on the
assumption that spike trains carry information in the precise timing of their spikes, and remains limited in the
face of longer-duration, rich stimuli (Victor, 2006). Other approaches, such as the Reconstruction Method of
Bialek et al. (1991), estimate entropy via a transformation from neural code to stimulus.
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2 The Fourier Method
One of the greatest obstacles in the field of information theory has been the exponential relationship between
the number of neurons and the amount of data required to accurately measure the information conveyed by
those neurons. The most straightforward application of information theory to spike trains, the Direct Method
by Strong et al. (1998), directly measures information by the distribution of patterns of spikes from a group
of neurons. The relationship in this case is exponential in that each additional neuron doubles the number of
possible spike patterns in a population; as a result, populations of even modest size quickly become intractable.
In the following three papers, we present a new method of estimating informatino, which we call the Fourier
method; for the core of the method relies heavily on the extraction and entropy of the Fourier coefficients of
the data.

The first two papers, Yu et al. (2010) and Crumiller et al. (2011), introduce the Fourier method and describe
in detail its construction and application to neural spike trains, including the representation of spike trains in the
frequency domain, the extraction of Fourier coefficients, the measuring of entropy from both unique and repeated
stimuli, and the estimation of information from the subtraction of the two entropies. In addition, it provides
a measure of population information, whereby information resulting from neuronal correlations is discarded as
redundant information. This critical step allows for the measurement of redundancy in large population of
neurons. The third paper, Crumiller et al. (2013), tests the robustness of the Fourier Method in the face of
limited and unwieldy data. It provides estimates of a lower bound for the quantity of data required to generate
accurate measurements, and further demonstrates the feasibility of using the method on large data sets.
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MATERIALS AND METHODS
SURGICAL PREPARATION
The experimental methods were similar to those used in our lab 
in the past (Uglesich et al., 2009). Housing, surgical and record-
ing procedures were in accordance with the National Institutes 
of Health guidelines and the Mount Sinai School of Medicine 
Institutional Animal Care and Use Committee. Adult macaque 
monkeys were anesthetized initially with an intramuscular injec-
tion of xylazine (Rompun, 2 mg/kg) followed by ketamine hydro-
chloride (Ketaset, 10 mg/kg), and then given propofol (Diprivan) 
as needed during surgery. Local anesthetic (xylocaine) was used 
profusely during surgery, and was used to infi ltrate the areas around 
the ears. Anesthesia was maintained with a mixture of propofol 
(4 mg/kg-hr) and sufentanil (0.05 µg/kg-hr), which was given 
intravenously (IV) during the experiment. Propofol anesthesia has 
been shown to cause no changes in blood fl ow in the occipital cor-
tex (Fiset et al., 1999), and appears to be optimal for brain studies. 
Cannulae were inserted into the femoral veins, the right femoral 
artery, the bladder, and the trachea. The animal was mounted in 
a stereotaxic apparatus. Phenylephrine hydrochloride (10%) and 
atropine sulfate (1%) were applied to the eyes. The corneas were 
protected with plastic gas-permeable contact lenses, and a 3-mm 
diameter artifi cial pupil was placed in front of each eye. The blood 
pressure, electrocardiogram, and body temperature were measured 
and kept within the physiological range. Paralysis was produced by 
an infusion of pancuronium bromide (Norcuron, 0.25 mg/kg-hr), 
and the animal was artifi cially respired. The respiration rate and 
stroke volume were adjusted to produce an end-expiratory value of 
3.5–4% CO

2
 at the exit of the tracheal cannula. Penicillin (750,000 

units) and gentamicin sulfate (4 mg) were administered IM to 
provide antibacterial coverage, and dexamethasone was injected 
IV to prevent cerebral edema. A continuous IV fl ow (3–5 ml/kg-
hr) of lactated Ringer’s solution with 5% dextrose was maintained 
throughout the experiment to keep the animal properly hydrated, 

INTRODUCTION
The brain processes information, and it is therefore natural to 
estimate the amount of information that a neuron transmits to 
its targets. In the past, several methods that derive such estimates 
from the fi ring pattern (Optican and Richmond, 1987; Richmond 
and Optican, 1987; Richmond et al., 1987; Bialek et al., 1991; Rieke 
et al., 1997; Strong et al., 1998; Brenner et al., 2000) or membrane 
potential (Borst and Theunissen, 1999; DiCaprio, 2004) of indi-
vidual neurons have been used. The information from spike trains 
was estimated by calculating the entropy associated with the vari-
ous temporal patterns of spike discharge, using Shannon’s formula 
(Shannon and Weaver, 1949).

Since all brain functions involve many neurons, it is desirable 
to provide similar information estimates for a neuronal popula-
tion (Knight, 1972). To simply add up the information amounts 
from individual neurons in the population would be valid only if 
the neurons were all independent of one another, an assumption 
that usually is incorrect (see, for example, Zohary et al., 1994; Bair 
et al., 2001; Pillow et al., 2008). Approaches like the Direct Method 
(Strong et al., 1998) are impractical for a population, because the 
multi-dimensional space occupied by many spike trains can be 
sampled only sparsely by most neurophysiological experiments. 
Calculating the information carried by a population of many neu-
rons thus has remained a challenge (Brown et al., 2004; Quiroga 
and Panzeri, 2009). At the same time, the need for such estimates 
has become increasingly urgent, since the technology of record-
ing simultaneously from many neurons has become much more 
affordable and wide-spread, and data from such recordings are 
becoming common.

We describe here a method that estimates the amount of infor-
mation carried by a population of spiking neurons, and demon-
strate its use, fi rst with simulated data and then with data recorded 
from the lateral geniculate nucleus (LGN) of an anesthetized 
macaque monkey.
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and the urinary catheter monitored the overall fl uid balance. Such 
preparations are usually stable in our laboratory for more than 
96 h. The animal’s heart rate and blood pressure monitored the 
depth of anesthesia, and signs of distress, such as salivation or 
increased heart rate, were watched for. If such signs appeared, 
additional anesthetics were administered immediately.

VISUAL STIMULATION
The eyes were refracted, and correcting lenses focused the eyes 
for the usual viewing distance of 57 cm. Stimuli were presented 
monocularly on a video monitor (luminance: 10–50 cd/m2) driven 
by a VSG 2/5 stimulator (CRS, Cambridge, UK). The monitor 
was calibrated according to Brainard (1989) and Wandell (1995). 
Gamma corrections were made with the VSG software and pho-
tometer (OptiCal). Visual stimuli consisted of homogeneous fi eld 
modulated in luminance according to a pseudo-random natu-
ralistic sequence (van Hateren, 1997). Eight second segments of 
the luminance sequences were presented repeatedly 128 times 
(‘repeats’), alternating with 8 s non-repeating (‘uniques’) segments 
of the sequence (Reinagel and Reid, 2000). In addition, we used 
steady (unmodulated) light screens and dark screens, during which 
spontaneous activity was recorded.

ELECTROPHYSIOLOGICAL RECORDING
A bundle of 16 stainless steel microwires (25 µ) was inserted into a 
22 gauge guard tube, which was inserted into the brain to a depth 
of 5 mm above the LGN. The microwire electrodes were then 
advanced slowly (in 1 µ steps) into the LGN, until visual responses 
to a fl ashing full fi eld screen were detected. The brain over the LGN 
was then covered with silicone gel, to stabilize the electrode bun-
dle. Based on the electrode depth, dominant eye sequence and cell 
properties (Kaplan, 2007), we are confi dent that all the electrodes 
were within the parvocellular layers of the LGN. The receptive fi elds 
of the recorded cells covered a relatively small area (∼4° in diam-
eter), which suggests that the electrodes bundle remained relatively 
compact inside the LGN.

The output of each electrode was amplifi ed, band-pass fi ltered 
(0.75–10 kHz), sampled at 40 kHz and stored in a Plexon MAP 
computer for further analysis.

DATA ANALYSIS
Spike sorting
Sorting procedures. The spike trains were fi rst thresholded (SNR 
≥5) and sorted using a template-matching algorithm under visual 
inspection (Offl ine Sorter, Plexon Inc., Dallas, TX, USA). In most 
cases, spikes from several neurons recorded by a given electrode 
could be well-separated by this simple procedure. In more diffi cult 
cases, additional procedures (peak- or valley- seeking, or multi-

 variate t-distributions) (Shoham et al., 2003) were employed. 
Once the spikes were sorted, a fi ring times list was generated for 
each neuron and used for further data analysis.

Quality assurance. To ensure that all the spikes in a given train 
were fi red by the same neuron, we calculated for each train the 
interspike interval (ISI) histogram. If we found intervals that were 
shorter than the refractory period of 2 ms, the spike sorting was 
repeated to eliminate the misclassifi ed spikes. We ascertained that 
all the analyzed data came from responsive cells by calculating the 
coeffi cients of variation of the peristimulus time histogram bin 
counts for the responses to the repeated and unique stimuli, and 
taking the ratio of these two coeffi cients. Only cells for which that 
ratio exceeded 1.5 were included in our analysis.

Generation of surrogate data
To test our method we generated synthetic spike trains from a 
Poisson renewal process, in which the irregularities of neuronal 
spike times are modeled by a stochastic process whose mathematical 
properties are well defi ned. Recent interest and success in mod-
eling a neuron spike-train as an inhomogeneous Poisson process 
(Pillow et al., 2005, 2008; Pillow and Simoncelli, 2006) led us to 
that choice.

Firing rates and input. Our modeling necessarily addressed two 
major features of the laboratory data. The nine real neurons show 
a range of mean fi ring rates, from 3.04 impulses per second (ips) 
to 28.72 ips, which span an order of magnitude. To mimic this, we 
gave our 12 model cells 12 inputs which consecutively incremented 
by a factor of 10(1/11), to give fi ring rates spanning an order of mag-
nitude. The second major feature was that our laboratory neurons 
evidently received inputs processed in several ways following the 
original retinal stimulus. To make a simple caricature of this, we 
drove each of our Poisson model neurons with a separate input that 
was a weighted mean admixture of two van Hateren-type stimuli. 
The fi rst was that which we used in the laboratory and the second 
was the time-reversal of that stimulus. Calling these A and B, the 
stimuli were of the form S = (1 − x)·A + x · B, where the admixture 
variable x took on 12 equally spaced values starting with 0 and end-
ing with 1. As shown in Table 1, the pairs (admixture, mean rate) 
were chosen in a manner that allowed the whole grouping of model 
cells to be divided into smoothly changing subsets in different ways, 
and evenly distributed the range of properties across all cells.

Estimation of the information delivered by a subset of neurons
If we have data from numerous parallel spike trains, the familiar 
Direct method (Strong et al., 1998) for computing signal infor-
mation delivered requires an impractical time span of data. As a 

Table 1 | Parameters for stimulating the surrogate neurons. Each surrogate neuron was driven by a mixture of two van Hateren inputs, chosen to cover 

uniformly the range of fi ring rates and mixture ratios.

Cell #  1 2 3 4 5 6 7 8 9 10 11 12

Firing rate 4.98 6.18 7.58 9.38 11.42 14.13 17.47 21.64 26.79 32.74 40.60 50.09

Admixture 0 0.27 0.55 0.82 0.09 0.36 0.64 0.91 0.18 0.45 0.73 1
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practical alternative we advance a straightforward multi-cell gen-
eralization of a method of information computation from basis-
function coeffi cients.

Shannon has observed (Shannon and Weaver, 1949, Chapter 4; 
see also Shannon, 1949) that the probability structure of a stochastic 
signal over time may be well approximated in many different ways 
by various equivalent multivariate distribution density functions 
of high but fi nite dimension. He further observed that when some 
specifi c scheme is used to characterize both the distribution of 
 signal-plus-noise and the distribution of noise alone, the infor-
mation quantity one obtains for the signal alone, by taking the 
difference of the information quantities (commonly called ‘entro-
pies’) evaluated from the two distributions, has a striking invari-
ance property: the value of the signal information is universal, and 
does not depend on which of numerous possible coordinate systems 
one has chosen in which to express the multivariate probability 
density (see extensive bibliography, and discussion, in Rieke et al., 
1997, chapter 3). We will follow Shannon (1949), whose choice of 
orthonormal functions was Fourier normalized sines and cosines, 
over a fi xed, but long, time span T. This choice has the added virtue 
of lending insight into the frequency structure of the information 
transfer under study.

Here we outline our approach for obtaining the signal-
 information rate, or ‘mutual information rate’, transmitted by the 
simultaneously recorded spikes of a collection of neurons. The 
mathematical particulars are further elaborated in the Appendix. 
Following Shannon (1949), if one has a data record that spans a 
time T, it is natural to use the classical method of Fourier analysis 
to resolve that signal into frequency components, each of which 
speaks of the information carried by frequencies within a frequency 
bandwidth of 1/T. If this is repeated for many samples of output, 
one obtains a distribution of amplitudes within that frequency 
band. In principle, that probability distribution can be exploited 
to calculate how many bits would have to be generated per second 
(the information rate) to describe the information that is being 
transmitted within that frequency band.

However, part of that information rate represents not useful 
information but the intrusion of noise. To quantify our overesti-
mate we may repeat the experiment many times without variation 
of input stimulus, and in principle may employ the same hypo-
thetical means as before to extract the ‘information’, which now 
more properly may be called ‘noise entropy’. When this number is 
subtracted from the previous, we obtain the mutual information 
rate, in bits per second, carried by the spikes recorded from that 
collection of neurons.

In order to reduce the above idea to practice, we have exploited 
the following fact (which apparently is not well known nor eas-
ily found in the literature): if our response forgets its past his-
tory over a correlation time span that is brief compared to the 
experiment time span, T, then the central limit theorem applies, 
and our distribution of signal measurements within that nar-
row bandwidth will follow a Gaussian distribution. If we are 
making simultaneous recordings from a collection of neurons, 
their joint probability distribution within that bandwidth will be 
multivariate Gaussian. A Gaussian with known center of gravity 
is fully characterized by its variance, and similarly a multivariate 
Gaussian by its covariance matrix. Such a covariance matrix, 
which can be estimated directly from the data, carries with it 
a certain entropy. By calculating the covariance matrices for 
responses to both unique and repeated stimuli, one can deter-
mine the total signal information fl owing through each frequency 
channel for a population of neurons.

To verify that our Gaussian assumption is valid, we have applied 
to our Fourier-coeffi cient sample sets two standard statistical tests 
that correctly identify a sample as Gaussian with 95% accuracy. 
For our 12 surrogate cells and 9 laboratory LGN cells, the degree 
of verifi cation across the frequency range for 2560 distribution 
samples (160 Hz × 8 bins/Hz × 2, with each sine and cosine term 
sampled 128 times) is shown in Table 2. Because of its importance, 
we return to this issue in the Discussion, where further evidence is 
provided for the Gaussian nature of the underlying distributions.

RESULTS
ANALYSIS OF SIMULATED SPIKE TRAINS
Entropy vs temporal frequency
In anticipation of analyzing simultaneous laboratory records of 
actual neurons, we have created 12 Poisson model neurons with 
fi ring rates that overlap those of our laboratory neurons and with 
inputs as discussed above in Section ‘Materials and Methods’, pre-
sented at the same rate (160 Hz) used in the laboratory experi-
ments. Figure 1 shows, for a single simulated cell, the entropy rate 
per frequency, for responses to unique and repeat stimuli. The 
entropy from the responses to the unique stimulus (signal plus 
noise) exceeds that of the responses to the repeated stimulus (noise 
alone) at low frequencies, and the two curves converge near the 
monitor’s frame-rate of 160 Hz, beyond which signal-plus-noise is 
entirely noise. Hence we will terminate the sum in (Eq. A26) at that 
frequency. The difference between the two curves at any temporal 
frequency is the mutual information rate at that frequency.

Table 2 | The Fourier coeffi cients for the surrogate and LGN data follow a Gaussian distribution. We sampled the Fourier coeffi cients 128 times for each 

of the 2560 sine and cosine terms that we tested for each cell. Each distribution was tested with two standard tests for normality: the Shapiro–Wilk’s test and 

the Lilliefors test. The percentage of distributions that passed each test at the p < 0.05 signifi cance level was calculated for each cell, and the table gives the 

mean and standard deviation for the test results.

 Repeats (% passed) Uniques (% passed)

TEST SHAPIRO–WILK LILLIEFORS SHAPIRO–WILK LILLIEFORS

Surrogate data (12 cells) 95.3 ± 0.31 95.2 ± 0.34 95.3 ± 0.41 95.1 ± 0.3

LGN cells (9 cells)  94.9 ± 1.62 94.6 ± 0.35 93.9 ± 1.31 94.6 ± 0.45
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Single cell information
For the 12 model cells, the cumulative sum of information over fre-
quency (Eq. A26) is given in Figure 2 (left frame). We note that all 
the curves indeed fi nish their ascent as they approach 160 Hz. More 
detailed examination shows a feature that is not obvious: the output 
information rate of a cell refl ects its input information rate, and the 
input information rate of a mixed, weighted mean input is less than 
that of a pure, unmixed input. This accounts for the observation that 
the second-fastest cell (cell 11, with a near even mixture) delivers 
information at only about half the rate of the fastest (cell 12).

Group information
We turn now to the information rate of a group of cells, fi ring in 
parallel in response to related stimuli. We proceed similarly to what 
is above, but use the multi-cell equation (Eq. A25) and its cumulative 
sum over frequencies. As a fi rst exercise we start with the slowest-fi r-
ing surrogate cell and then group it with the next-slowest, next the 
slowest 3 and so on up to the fastest; the set of cumulative curves we 
obtain from these groupings are shown in the left frame of Figure 3. 
Again we see that the accumulation of information appears to be 
complete earlier than the frame-rate frequency of 160 Hz.

REDUNDANCY AND SYNERGY AMONG NEURONS IN A POPULATION
Redundancy
The mutual information communicated by a group of cells typically 
falls below the sum of the mutual information amounts of its con-
stituent members. This leads us to defi ne a measure of information 
redundancy. The redundancy of a cell with respect to a group of 
cells can be intuitively described as the proportion of its information 
already conveyed by other members of the group. For example, if a 
cell is added to a group of cells and 100% of its information is novel, 
then it has 0 redundancy. If, on the other hand, the cell brings no new 
information to the group, then it contains only redundant informa-
tion, and it therefore has redundancy 1. With this in mind, we defi ne 
the redundancy of a cell C, after being added to a group G, as:

r I c I g c I g I cc g, / .= ( ) − +( ) − ( )( )( ) ( )

According to this formula, if all the information of the additional 
cell appears as added information in the new group, then that cell’s 
redundancy is zero.

The procedure of information redundancy evaluation is gen-
eral, and can be applied to the addition of any cell to any group 
of cells. Thus for the cell groups of Figure 3, we can evaluate the 
redundancy of each newly added cell not only upon its addition 
to the group but also thereafter. This is shown for the 70 resulting 
redundancies, in Figure 4 (Left).

Synergy
When the total information conveyed by several neurons exceeds 
the sum of the individual ones, the neurons are synergistic (Gawne 
and Richmond, 1993; Schneidman et al., 2003; Montani et al., 
2007). When this happens, our formula yields a negative redun-
dancy value.

ANALYSIS OF MONKEY LGN SPIKE TRAINS
We now apply the same techniques to simultaneous laboratory 
recordings of 9 parvocellular cells from the LGN of a macaque 
monkey, responding to a common full-fi eld naturalistic stimulus 
(van Hateren, 1997; Reinagel and Reid, 2000).

Figure 2 (right frame) shows the single cell cumulative informa-
tion of these neurons as frequency increases. In two obvious ways 
their behavior differs from that of the Poisson model neurons. 
First, at low frequency there is a qualitative difference indicative 
of initially very small increment, which differs from the Poisson 
model’s initial linear rise. Second, the real geniculate neurons show 
a substantial heterogeneity in the shape of their rise curves. For 
example, the second most informative cell (cell 8), has obtained 
half its information from frequencies below 40 Hz, while the most 
informative cell (cell 9) has obtained only 11% of its information 
from below that frequency.

The right frame of Figure 3 shows for LGN cells the accumulat-
ing multineuron group information, while the left frame shows it 
for the surrogate data.
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FIGURE 1 | Entropy per frequency conveyed by a single surrogate neuron. The signal-plus-noise entropy (derived from the unique stimuli) is shown in blue, and 
the noise entropy (from the repeated stimulus) is shown in red. The data shown are typical of data from other cells.
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FIGURE 2 | Cumulative information rate vs frequency for 12 surrogate Poisson model neurons and 9 LGN cells. The fi ring rates of the various neurons in the 
two groups were similar.

FIGURE 3 | Group information vs frequency for our Poisson model surrogate neurons and 9 LGN cells. The group size is indicated to the right of the cumulative 
curve for each group. The neurons were ranked according to their fi ring rate. The fi rst group contained only the slowest fi ring neuron, and each new group was 
formed by adding the next ranking cell.

FIGURE 4 | Accumulating redundancy as more cells are added to a population. The cells are added in order of their mean fi ring rates, starting with the slowest 
fi ring cells, with each cell taking its turn as a starting point for a new population.
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Redundancy in surrogate and real LGN neurons
Figure 4 (right frame) compares the redundancy over the 9 LGN 
cells with what was shown for the fi rst 9 Poisson model neurons 
in Figure 4 (left frame). The pair of sharp features at cells 4 and 7 
might be attributed to diffi culties in spike separation. Note that the 
redundancy of real neurons appears to be quite different from that 
of their Poisson model counterparts: as cluster size increases, real 
cells manifest a stronger tendency than our simulated neurons to 
remain non-redundant. This implies that the different LGN neu-
rons are reporting with differences in emphasis on the various 
temporal features of their common stimulus.

DISCUSSION
THE VALIDITY OF THE GAUSSIAN ASSUMPTION
Our method exploits the theoretical prediction that the distribu-
tion of each stochastic Fourier coeffi cient of our data should be 
Gaussian. Our evidence supports this prediction. A standard visual 
check is to normalize a distribution by a Z-score transformation and 
plot its quantiles against those of a standard Gaussian. If the dis-
tribution is likewise Gaussian, the points will fall near a unit-slope 

straight line through the origin. Figure 5 shows two typical cases, 
each with 128 points: surrogate data in the left frame and LGN cell 
data on the right. Both show good qualitative confi rmation of the 
Gaussian assumption.

We have proceeded to apply to our numerous Fourier coef-
fi cient distributions two standard statistical tests for Gaussian 
distribution: the Shapiro–Wilk test and the Lilliefors test. Both 
are designed to confi rm that a sample was drawn from a true 
Gaussian distribution in 95% of cases. Table 2 shows that in almost 
all cases for both unique and repeat responses of our 12 surrogate 
and 9 LGN cells our distributions passed both tests at the 95% 
signifi cance level.

SMALL SAMPLE BIAS
In the extraction of mutual information from spike data, traditional 
methods suffer from a bias due to the small size of the sample. We 
checked the Fourier method for such bias by dividing our sets of 
128 runs into subsets of 64, 32 and 16 runs. The results for one sur-
rogate cell (number 12) and one LGN cell (number 8) are shown in 
Figure 6. These results are typical, and show no clear small- sample 

FIGURE 5 | Q–Q plots for the Fourier coeffi cients of one surrogate cell (#6) and one LGN cell (#4). The data are typical of data from other cells. The fact that the 
data points hug the y = x line demonstrates the Gaussian nature of the distributions of the Fourier coeffi cients.

FIGURE 6 | The effect of the number of trials on information calculation. Data are from surrogate cell #12 and LGN cell #8, which were typical of other cells. Solid 
symbols show the information calculated from individual segments of the record. The solid line connects the medians of the samples. Note the rapid convergence of 
the information estimates as the number of trials increases.
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bias. We also notice that, for these data, a sample of 64 runs gives a 
mutual information estimate reliable to better than ±10%. A sum-
mary of small-sample bias and estimated reliability for several recent 
techniques for calculating spike-train mutual information is given 
by Ince et al. (2009) (their Figure 1).

In addition to the number of data segments, the number 
of spikes used in estimating the mutual information is also 
an important factor, and we discus it further at the end of 
the Appendix.

SUMMARY AND CONCLUSIONS
We have presented a new method for calculating the amount 
of information transmitted by a neuronal population, and have 
applied it to populations of simulated neurons and of monkey LGN 
neurons. Since the method can be used also to calculate the infor-
mation transmitted by individual cells, it provides an estimate of the 
redundancy of information among the members of the population. 
In addition, the method reveals the temporal frequency bands at 
which the communicated information resides.

The new method fi lls a gap in the toolbox of the modern neu-
rophysiologist, who now has the ability to record simultaneously 
from many neurons. The methodology presented here might per-
mit insights regarding the mutual interactions of neuronal clusters, 
an area that has been explored less than the behavior of single 
neurons or whole organisms.

APPENDIX
Suppose we have a stochastic numerical data-stream that we will 
call u(t), and which becomes uncorrelated for two values of t that 
are separated by a time interval greater than a maximum correlation 
time-interval t*. That is to say, if t

2
 − t

1
 > t*, then u(t

2
) and u(t

1
) are 

independent random variables in the probability sense. Suppose 
now that in the laboratory, by running the probabilistically identical 
experiment repeatedly, we gather N realizations (samples) of u(t), 
the nth of which we will call u(n) (t). Suppose further that we collect 
each data sample over a time-span T that is large compared to the 
correlation time interval t*.

We can represent each sample u(n) (t) to whatever accuracy we 
desire, as a discrete sequence of numbers in the following way. Over 
the time interval t = 0 to t = T, we choose a set of functions ϕ

m
(t) 

that are orthonormal in the sense that they have the property:

dt t t q r
T

q r qr

0

1 0∫ = = = =ϕ ϕ δ( ) ( ) ( , ).if else  (A1)

Then u(n) (t) may be represented as a weighted sum of these 
basis functions:

u t u tn
q
n

q
q

( ) ( )( ) ( )= ∑ ϕ  (A2)

where the weighting coeffi cients um
n( ) may be evaluated from the 

data by,

u dt t u tm
n

m

T
n( ) ( )( ) ( ).= ∫ ϕ

0

 (A3)

This claim can be verifi ed if we substitute (Eq. A2) into (Eq. A3) 
and then use (Eq. A1) to evaluate the integral. Here our choice of 
the ϕ

m
 (t) will be the conventional normalized sinusoids:

ϕm t
T m t T m

T m t T m
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 (A4)

It is a straightforward exercise to show that these functions have 
the property required by (Eq. A1).

Now let us see what follows from T >> t*. Divide the full time-
span T into K sub-intervals by defi ning the division times:

t k K Tk = ( )/  (A5)

and defi ne the integrals over shorter sub-intervals:
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from which (Eq. A3) tells us that the Fourier coeffi cient um
n( ) is given 

by,

u A Bm
n

m k
n

k
m k
n

k

( )
,

( )
,

( ) .= +∑ ∑  (A8)

But we note that the measure of the support of the integral 
(Eq. A7) is smaller than that of (Eq. A6) by the ratio t*/((T/K) − t*) , 
and if we can pick T long enough, we can make that ratio as close to 
zero as we choose. So the second sum in (Eq. A8) is negligible in the 
limit. But now note that, because they are all separated from each 
other by a correlation time, the individual terms in the fi rst sum are 
realizations of independent random variables. If the distribution of 
an individual term in the sum is constrained in any one of a number 
of non-pathological ways, and if there are a suffi cient number of 
members in the sum, then the central limit theorem states that the 
distribution of the sum approaches a Gaussian.

In the more general case, where we have several simultaneous 
correlated numerical data-streams, the argument runs exactly the 
same way. If, for many repeated samples, at a particular frequency 
we compute the Fourier coeffi cient for each, to estimate a multi-
variate probability density, then from a long enough time span, by 
the multivariate central limit theorem that density will approach 
a multivariate Gaussian. Simply because the notation is easier, we 
elaborate the univariate case fi rst.

Specializing, for cell response we use the spike train itself, 
expressed as a sequence of δ-functions, so for the r th realization 
u(r) (t) of the stochastic spike-train variable u(t), we have:

u t t tr
r n

n

Nr
( )

( )( ) ( )= −
=

∑δ
1

 (A9)

where t
(r)n

 is the time of the nth spike of the r th realization, and N
r
 

is the total number of spikes that the cell under discussion fi res in 
that realization.
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Substituting this and also (Eq. A4) into (Eq. A3) we see that 
the integral may be performed at once. In the cosine case of 
(Eq. A4) it is,

u T m t Tm
r

n

N

r n

r
( )

( )/ cos ( / )=
=

∑2
1

π  (A10)

Before proceeding further we look back at Eq. A8 and note that, 
because a cosine is bounded between +1 and −1, every term in the 
sums of (Eq. A8) is bounded in absolute value by 2/T  times 
the number of spikes in that sub-interval. As real biology will not 
deliver a cluster of spikes overwhelmingly more numerous than 
the local mean rate would estimate, the distribution of each term 
in the stochastic sum cannot be heavy-tailed, and we may trust the 
central limit theorem.

Thus we may estimate that the probability density function for 
the stochastic Fourier coeffi cient variable u

m
 is of the form,

p u V u u Vm m m m m m( ) ( ) ( ( ) / )./= − −−2 21 2 2π exp  (A11)

where,

u u
R

um m p m
r

r

R

m
= ≅

=
∑1

1

( ),( )  (A12)

V u u
R

u um m
r

m p m
r

m
r

R

m
= 〈 − 〉 ≅

−
−

=
∑( ) ( ) .( ) ( )2 2

1

1

1
 (A13)

The right-hand-most expressions in (Eq. A12), (Eq. A13) tes-
tify that um and V

m
 can be estimated directly from the available 

laboratory data.
What is the information content carried by the Gaussian 

(Eq. A11)? The relevant integral may be performed analytically:

I p du p u p u e Vm m m m m m m( ) ( ( )) ( ) (( ) ).= − =∫ ln ln
1

2
2π  (A14)

For a signal with fi nite forgetting-time the stochastic Fourier 
coeffi cients (Eq. A10) at different frequencies are statistically 
independent of one another, so that the signal’s full multivari-
ate probability distribution in terms of Fourier coeffi cients is 
given by,

p u u p um
m

m( , , ) ( ).1 2 … = ∏  (A15)

It is easily shown that if a multivariate distribution is the prod-
uct of underlying univariate building blocks, then its information 
content is the sum of the information of its components, whence

I p I p e Vm
m

M

m

M

m( ) ( ) ln(( ) ).= =
=

−

=

−

∑ ∑
0

1

0

11

2
2π  (A16)

Observing (Eq. A13) we note that this can be evaluated from 
available laboratory data.

Generalization of the information rate calculation to the case of 
multiple neurons is conceptually straightforward but notationally 
messy due to additional subscripts. The rth realization’s spike train 
from the qth neuron (out of a total of Q neurons) may be defi ned 
as a function of time u tq

r
( )
( )( ) just as in (Eq. A9) above, and from our 

orthonormal set of sines and cosines we may fi nd the Fourier coef-
fi cient u q m

r
( )
( ) . This number is a realization drawn from an ensemble 

whose multivariate probability density function we may call:

p u u um m m Q m( , ,.., ).( ) ( ) ( )1 2  (A17)

This density defi nes a vector center of gravity um  whose Q com-
ponents are of the form:

u u
R

uq m q m p q m
r

r

R

m( ) ( ) ( )
( ) ,= 〈 〉 ≅

=
∑1

1

 (A18)

and similarly it defi nes a covariance matrix V
m
 whose (q,s)th matrix 

element is given by,

V u u u u

R
u u u

q s m q m q m s m s m p

q m
r

q m
r

m
( , ) ( ) ( ) ( ) ( )

( ) ( )

( )( )

( )(

= − −

≅
−

−1

1 (( ) ( ) ).s m
r

s m
r

r

R

u−
=

∑
1  

(A19)

This covariance matrix has a matrix inverse A
m
:

A Vm m= −1.  (A20)

Clearly (Eq. A18) and (Eq. A19) are the multivariate generaliza-
tions of (Eq. A12) and (Eq. A13) above. The central limit theorem’s 
multivariate Gaussian generalization of (Eq. A11) is,

p u u

V u u A

m m Q m

Q
m q m q m

( ,.., )

(( ) ) exp ( )

( ) ( )

( / )
( ) ( ) (

1

1 22
1

2

=

− −−π det qq s m s m s m
q s

u u, ) ( ) ( )
,

( ) .−
⎛

⎝⎜
⎞

⎠⎟
∑

 (A21)

This expression becomes less intimidating in new coordinates 
Z

(q)
 with new origin located at the center of gravity and orthogo-

nally turned to diagonalize the covariance matrix (Eq. A19). We 
need not actually undertake this task. Call the eigenvalues of the 
covariance matrix

λ λ( ) ( ),.., .1 m Q m  (A22)

Under the contemplated diagonalizing transformation, the dou-
ble sum in the exponent collapses to a single sum of squared terms, 
and in the new coordinates p

m
 becomes,

ˆ ( ,.., ) ( ) exp ( / ),( )
/

( )p Z Z Zm Q q m q q m
q

Q

1
1 2 2

1

2 2= −−

=
∏ πλ λ  (A23)

a form that is familiar from (Eq. A15) above. Its corresponding 
information is the sum of those of the individual terms of the 
product and is

I p em
q

Q

q m( ) ln(( ) ).( )=
=

∑1

2
2

1

π λ  (A24)

Shannon (1949, chapter 4), in a formally rather analogous con-
text, has noted that much care is needed in the evaluation of expres-
sions similar to (Eq. A24) from laboratory data. The problem arises 
here if the eigenvalues approach zero (and their logarithms tend 
to −∞) before the sum is completed. However, the information in 
signal-plus-noise in the mth coeffi cient, expressed by (Eq. A24) is 
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not of comparable interest to the information from signal alone. 
With some caution, this signal-alone information contribution may 
be obtained by subtracting from (Eq. A24) a similar expression for 
noise alone, taken from additional laboratory data in which the 
same stimulus was presented repeatedly. If we use ‘µ’ to annotate 
the eigenvalues of the covariance matrix which emerges from these 
runs, then the information difference of interest, following from 
(Eq. A24) is

I e em q m q m
q

Q

( ) ln(( ) ) ln(( ) )( ) ( )signal alone

l

= −{ }

=

=
∑1

2
2 2

1

2

1

π πλ μ

nn ( )λ
μ

q m

q mq

Q

( )

.
⎛

⎝
⎜

⎞

⎠
⎟

=
∑

1

 (A25)

Equation A25 expresses the multi-cell information contributed 
by the mth frequency component. To obtain the total multi-cell 
information, it is to be summed over increasing m until further 
contributions become inappreciable.

An entirely analogous procedure applies to obtain the informa-
tion of signal alone for an individual cell. Call the variance of the 
mth frequency component of the unique runs V

mu
, and that of the 

repeat runs V
mr

. Each will yield a total information rate expressed 
by (Eq. A16) above, and their difference, the information rate from 
signal alone, consequently will be:

I
V

Vm

M
mu

mr

cell signal alone, ln .( ) =
⎛
⎝⎜

⎞
⎠⎟=

−

∑1

2 0

1

 (A26)

In the data analysis in the main text, the single-cell sums 
(Eq. A16), for both uniques and repeats, approached a common, 
linearly advancing value which they achieved near 160 Hz, which 

is the stimulus frame-rate. Consequently, the summation over fre-
quency of signal only information was cut off at that frequency, 
both for single cells (see Eq. A26) and for combinations of cells.

In both the simulations and the experiments, each run was of 
T = 8 s duration. In consequence the orthonormalized sines and 
cosines of (Eq. A4) advanced by steps of 1/8 Hz.

EFFECT OF THE NUMBER OF RESPONSE SPIKES
With reference to small-sample bias, a further word is appropri-
ate here regarding our methodology. If the number of runs is 
modest, the total number of spikes in response to the repeated 
stimulus may show a signifi cant statistical fl uctuation away from 
the total number of spikes in response to the unique runs. In 
this case, the asymptotic high-frequency entropy values, as seen 
in our Figure 1, will not quite coincide, and consequently the 
accumulated mutual information will show an artifactual small 
linear drift with increasing frequency. This introduces a bit of 
uncertainty in the cut-off frequency and in the total mutual 
information. This asymptotic drift may be turned into a more 
objective way to evaluate the total mutual information. In cases 
where the problem arises, we divide our repeat runs into two 
subsets: the half with the most spikes and the half with the least. 
Accumulating both mutual information estimates at high fre-
quency, we linearly extrapolate both asymptotic linear drifts back 
to zero frequency, where they intersect at the proper value of 
mutual information.
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Recent technological advances have made the simultaneous recording of the activity of many 
neurons common. However, estimating the amount of information conveyed by the discharge 
of a neural population remains a significant challenge. Here we describe our recently published 
analysis method that assists in such estimates. We describe the key concepts and assumptions 
on which the method is based, illustrate its use with data from both simulated and real neurons 
recorded from the lateral geniculate nucleus of a monkey, and show how it can be used to 
calculate redundancy and synergy among neuronal groups.

Keywords: information, neural population, redundancy, frequency analysis

1 Introduction
The brain processes information by the coordi-
nated activity of many neurons, and it is there-
fore natural to ask: How much information does 
a given set of neurons transmit? In the past, sev-
eral methods that estimated information rates 
from the firing pattern (Optican and Richmond, 
1987; Richmond and Optican, 1987; Richmond 
et al., 1987; Bialek et al., 1991; Rieke et al., 1997; 
Strong et al., 1998; Brenner et al., 2000) or mem-
brane potential (Borst and Theunissen, 1999; 
DiCaprio, 2004) of single neurons have been 
used. The information contained in spike trains 
was estimated by calculating the entropy associ-
ated with the various temporal patterns of spike 
discharge, using Shannon’s formula (Shannon, 
1949; Shannon and Weaver, 1949; Victor, 2006). 
For a thorough review of existing approaches, see 
Quiroga and Panzeri (2009).

Such calculations become impractical when we 
are dealing with a substantial number of neurons, 
and since all brain functions involve many inter-
acting neurons, it is important to provide similar 
information estimates for a neuronal population. 
Simply adding up the information delivered by 

individual neurons in the population is not a 
valid procedure because of these interactions 
(see, for example, Zohary et al., 1994; Bair et al., 
2001; Latham and Nirenberg, 2005; Pillow et al., 
2008). Methods adequate for single neuron data, 
such as the Reconstruction Method (Bialek et al., 
1991) or the Direct Method (Strong et al., 1998), 
become impractical for a substantial population 
of neurons because of the “curse of dimensional-
ity”: the huge multi-dimensional space inhabited 
by many diverse spike trains can only be sampled 
rather sparsely by most real-life neurophysiologi-
cal experiments.

Calculating the information carried by a popu-
lation of many neurons thus has remained a sig-
nificant challenge (Brown et al., 2004; Quiroga and 
Panzeri, 2009), while the need for such estimates 
has become increasingly urgent: the technology 
of recording simultaneously from many neurons 
has become affordable and wide-spread, and data 
from such recordings are becoming common.

A quantitative measure of the information 
transmitted by a neural population should make it 
possible to investigate synergy (population codes; 
for example, Gat and Tishby, 1999; Brenner et al., 
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2000; Latham and Nirenberg, 2005) and redun-
dancy (less than additive combination of informa-
tion) among interacting neurons, and thus provide 
new insights into the computational principles 
employed by the brain. Here we describe a method 
that estimates the amount of information trans-
mitted by a population of spiking neurons, and 
demonstrate its use with both simulated data and 
data recorded from the lateral geniculate nucleus 
(LGN) of an anesthetized macaque monkey. To 
make the method accessible to a broader audience 
of interested neuroscientists, we minimize here the 
explicit use of mathematics. Interested readers can 
find details in the appendix of our original paper 
(Yu et al., 2010), where the details of the experi-
mental procedures used to obtain the laboratory 
recordings can also be found.

2 Estimation of the rate at which a 
neural ensemble delivers information
2.1 Information
In everyday usage, the word “information” 
refers to the amount of novelty transmitted in a 
message – data that enable us to choose among 
alternatives. In its quantitative, technical mean-
ing, the information in a message refers to the 
reduction in uncertainty associated with a pre-
supposed probability distribution of possible 
events. In this sense, information is a function of 
both the contents of the message and of an a priori 
assumption concerning the relative likelihood of 
possible events. Consider, for example, a mes-
sage sent as ASCII characters, which is received 
as a string of 0’s and 1’s. This bitstream of 0’s 
and 1’s contains several levels of information that 
we might decompose. On a per-character basis, 
every group of eight bits corresponds to a single 
ASCII character. Given that each bit is either a 0 
or a 1, we have 28, or 256, total possible characters 
for every eight bits. Each additional bit of infor-
mation reduces the remaining uncertainty of the 
sequence by half. Conversely, we might say that 
each bit doubles the number of potential choices: 
the number of possible sequences is 2N, where N 
is the number of bits.

Does each bit carry the same amount of infor-
mation? Usually not. For example, all 36 alpha-
numeric characters in English begin with one 
of only five unique 4-bit sequences: 0011, 0100, 
0101, 0110, and 0111. Note that the first bit of 
every character is a 0. Since this 0 occurs with 
100% probability, it carries zero information 
with respect to the alphabet. In a similar vein, 
the character e occurs almost 172 times as often 
as the letter z (Lewand, 2000), and so it is waste-
ful to use the same number of bits for both: an 
efficient encoding scheme would require fewer 

bits for common characters than for rare ones. 
To encode otherwise introduces redundancy into 
the system – informally defined as the number of 
“wasted” bits used in transmitting the message. 
Because an e will appear in English with higher 
probability than a z, our uncertainty is reduced 
to a lesser extent when it occurs. Our total uncer-
tainty, therefore, is a function of the probability of 
occurrence of the characters. It is this uncertainty, 
dubbed entropy, that Claude Shannon quantified 
in his seminal paper A Mathematical Theory of 
Communication (1948).

In a similar manner, a neuron in the nervous 
system encodes information about a stimulus via 
a sequence of action potentials. How might we 
calculate the entropy from such a sequence? As 
just discussed, at the heart of Shannon’s entropy 
lies the probability distribution – a description 
of the likelihood of different messages. With this 
in mind, to calculate entropy we must do two 
things: (1) define what a neuronal “message” is, 
and (2) calculate the probability distribution of 
the various messages. Several methods have been 
proposed for accomplishing these tasks, yet deal-
ing with more than a few neurons recorded simul-
taneously has remained beyond reach.

2.2 Features of the Formulation
The methodology of information theory may be 
addressed not only to the example of messages in 
ASCII code, but also to situations that are more 
general in several different respects (Cover and 
Thomas, 2006). In a rather remarkable way, a use-
ful theory emerges which has several unexpected 
features.

Suppose we had a very large collection of 
signals of a specified duration, each occurring 
numerous times. From that ensemble we could 
derive a list of the probability of occurrence of 
each distinct signal. The first step of information 
theory is to observe that any such list of prob-
abilities gives rise to an essentially unique number 
– its entropy – which states, in bits, the potential 
capability of an average member of that ensemble 
to convey a message. Entropy is the central concept 
and central building-block of information theory 
and is constructed from the list of probabilities 
by the formula

	 H p pr r
r

= −∑ log2 � (1)

where p
r
 indicates the probability of a specific 

signal r.
Equation 1 has the following property: if we 

regard two separate signals as two consecutive 
“chapters” of a longer signal, then the entropy 
of a set of these longer signals is the sum of the 

Entropy
In information theory, entropy is a 
measure of the uncertainty associated 
with a random variable. It quantifies the 
disorder, or unpredictability, of a 
collection of signals. Entropy is the 
expected value of the information 
contained in a message, and is 
measured in bits. The concept was 
introduced in this context by  
C. Shannon’s 1948 paper “A 
Mathematical Theory of 
Communication.”

Synergy/Redundancy
If all the neurons in a population were 
independent, their group information 
would equal the sum over the 
information each of them carries. If their 
group information is less than that sum, 
we have redundancy: some of the 
information delivered by some neurons 
is also delivered by others. If their group 
information has more than that sum, we 
have synergy, providing information that 
depends on the coordinated firing of 
some neurons, and cannot be extracted 
by examining individual neurons.
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of repeated presentations of a chosen stimulus 
(referred to as repeats), which are interleaved with 
presentations of non-repeating stimuli (referred 
to as uniques).

2.2.2 Continuous signals
So far we have dealt with signals composed of 
sequential, well-defined markers. Information 
theory generalizes to signals that are continu-
ous in time and to parallel multiples of such 
signals.

A natural way to approach such an extension 
is to study a sequence of approximations, in each 
of which a continuous signal in time is discretized 
into progressively shorter time-steps. At each suc-
cessive level of approximation, the situation may 
be represented (as discussed above) as a sequence 
of discrete symbols. In doing so, however, dif-
ficulties arise, some with a surprising resolution.

2.2.2.1 The timestep problem.  The probability 
of a continuous variable is characterized by its 
probability density function. When this density 
function is divided into very small intervals, 
the probability associated with each interval 
approaches zero; as these divisions are further 
refined, the total entropy and noise entropy 
diverge to infinity. However, these two entropies 
diverge together, and the offending divergence is 
thus canceled by taking the difference of the two 
entropies, and the resulting signal information 
(equation 2) approaches a well-defined limiting 
value. In this sense, the signal information is more 
fundamental than is either of the two entropies 
from which it is calculated.

2.2.2.2 The finite-sampling problem.  There is 
a second problem that arises from dividing time 
into brief intervals. As we saw in the early discus-
sion, the number of alternative code-word pos-
sibilities increases exponentially with the number 
of intervals. Straightforward evaluation of their 
probabilities for use in equation 1 demands many 
repeated presentations of each stimulus, and 
eventually becomes experimentally unfeasible. 
In consequence, the deep theoretical structure of 
this problem has received a great deal of attention, 
and insightful methods have been advanced for 
extrapolation from more modest and feasible data 
sets (for example, Panzeri et al., 2007). When one 
considers a response composed of several paral-
lel signals, the difficulty is severely compounded, 
since the number of possible messages increases 
greatly. These extrapolation procedures (which 
continue to be refined) have so far successfully 
addressed the challenge of eight simultaneously 
recorded neurons.

entropies calculated for its two consecutive chap-
ters. The distribution p of all n signals is maxi-
mized when p is the uniform distribution (that is, 
all signals are equally likely, with probability 1/n). 
When this occurs, the formula reduces to log

2
 n.

Equation 1 is the only way to satisfy two 
requirements: (1) in the case of equal probabili-
ties, as above it reduces to a simple logarithm, and 
(2) as in the “chapter” example above, the sum of 
the entropies of two signals is equal to the entropy 
of the signals taken together.

2.2.1 Noise and signal entropies
Experimental data typically contain noise: the 
accuracy and precision of any measurement are 
limited by noise in both the production of the 
stimulus signal, the transduction of the signal 
through the inherently noisy nervous system, and 
the recording of the output signal through the 
measurement devices. In the complete absence of 
noise, any differential response of the nervous sys-
tem would indicate its ability to discriminate dif-
ferent stimuli. With noise, however, our system’s 
ability to discriminate between stimuli is greatly 
reduced: the signal is muddied, and the reduc-
tion in uncertainty accompanying any measured 
output signal – the information in the signal – is 
itself diminished. Variations in the measured out-
put signal still exist, but we can no longer reliably 
ascribe such variations to changes in the input. 
Some of the variability in the signal, therefore, 
contains not signal entropy (which would allow 
us to discriminate stimuli), but noise entropy – 
entropy that is due entirely to noise.

To properly calculate the actual signal infor-
mation of the system, we must remove from the 
entropy calculation the contribution of noise. By 
analogy with the calculation of the total entropy 
(denoted by H

T
), the noise entropy (H

N
) is calcu-

lated from observing the variability of responses 
to repeated presentations of a (typical) stimulus, 
with a formula similar to equation 1; The dis-
tribution of these responses provides the prob-
abilities that the entropy formula requires. The 
(noiseless) information available in our signal 
(often called Mutual Information) is thus

	 I H HT N= − � (2)

This equation describes the process of measuring 
and removing the amount of variability in the 
signal that is due to noise. Details of the deri-
vation of this equation can be found in Rieke 
et al. (1997, see Section 3.1.3) and in Cover and 
Thomas (2006, chap. 7). We note that the need to 
estimate the noise entropy together with the total 
entropy over a long experiment requires the use 

Mutual Information
Mutual information between stimulus 
and response quantifies (in bits) the 
reduction in stimulus uncertainty 
gained from analyzing the response. It is 
calculated by subtracting from the total 
entropy the noise entropy, which is 
estimated from the variability of 
responses to repeated presentations of a 
stimulus.
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coefficients of this resulting smooth function of 
time may be directly evaluated (Figure  1, top). 
This procedure may be applied to the laboratory 
data of the experiment discussed above, where 
spike trains driven by unique and repeat stimuli 
were interleaved. From the responses to each of 
the two kinds of stimuli we can estimate a mul-
tivariate probability distribution for the Fourier 
coefficients and, by Shannon’s observation above, 
evaluate the signal information. Several further 
features simplify this approach.

2.2.4 Features of the frequency representation
Our signal technically constitutes a time-station-
ary random process with finite memory, and from 
this it can be shown that Fourier components at 
different frequencies are uncorrelated. Thus, the 
multi-frequency probability distribution can be 
parceled into independent distributions at the 
separate frequencies.

We discussed above an ambiguous width in the 
representation of spikes as tall, narrow pedestals 
with unit area. In fact, one might have represented 
the spikes with tall, narrow positive functions of 
any shape. On closer inspection the Fourier coef-
ficients separate into two natural frequency sets. 
At low frequencies, the coefficients essentially 
depend only on the pattern of the spikes and not 
on their shapes. Once the period of the sine wave 
becomes briefer than most spike separation times, 
the Fourier coefficients become dependent only 
on the spike shape, and not on their firing pattern. 
In this regime the probability distribution is the 
same for the repeat stimuli and for the non-repeat 
set. Fourier coefficients at these higher frequen-
cies do not contribute to the signal information. 
The remaining influences of spike shape may be 
removed by taking the narrow unit-area spikes 
toward the limit of zero width, which assigns well-
defined limiting values to the Fourier coefficients, 
and leaves the features above intact.

This approach greatly simplifies the calcula-
tion of Fourier coefficients from laboratory data: 
each Fourier coefficient is simply the sum, over all 
spike times, of the values of the relevant sinusoid 
at those times.

A further great simplification takes place: that 
sum of values may be broken up across time as a 
sum of sub-sums that are, in the ensemble, sta-
tistically independent of one another, because the 
signal has finite memory. Here the central limit 
theorem applies, and we conclude that the coef-
ficient’s distribution is Gaussian, which we have 
verified for both simulated and laboratory data 
(See Yu et al., 2010, Figure 5). The entropy of a 
Gaussian depends only upon its variance (equa-
tion 3), and a modest sample from a distribution 

In the following section, we advance an 
alternative approach that avoids the difficult 
step of dividing continuous time into brief dis-
crete segments. If the specific probability density 
function is known analytically, one may proceed 
as above to evaluate its entropy directly, follow-
ing equation 1. For example, the entropy of a 
Gaussian with variance s2 is

	 H eG ( ) ( )s p s2
2

21

2
2= log bits � (3)

Our method exploits the a priori knowledge 
of the statistical distribution of the data to over-
come the finite-sampling problem, and thus has 
allowed us to compute the entropy of 1024 paral-
lel simulated signals on a desktop computer in a 
matter of minutes.

Shannon has observed (Shannon, 1948; 
Shannon and Weaver, 1949, chap. 3) that, in 
the continuous-time limit, the underlying ran-
dom variables of the signal information may 
be expressed in numerous ways. In fact, any 
smooth transformation of variables leads to a 
new expression for signal information. Shannon 
then made the remarkable observation (Shannon 
and Weaver, 1949, chap. 4) that such transforma-
tions leave the bit-value of the signal informa-
tion (but not the values of its two component 
entropies) unchanged. Following Shannon, the 
electronic communication community has used 
this observation to express the bit-rate of a time-
varying continuous signal in terms of required 
frequency bandwidth. We observe here that simi-
lar treatment is applicable to spike trains.

2.2.3 Frequency representation (Fourier Analysis) 
and spike trains
Under diverse circumstances, a signal defined at 
every moment of time and over a fixed span of time 
can be approximated indefinitely well by a constant 
plus a sum of weighted sines and cosines that oscil-
late with frequencies that are integer multiples of a 
single fundamental frequency. Such a representation 
as a weighted sum of sines and cosines is technically a 
Fourier series representation, and its list of weighting 
coefficients (technically Fourier coefficients) fully 
characterizes the signal (Bendat and Piersol, 2010).

The weighting coefficients of each sinusoid 
may be calculated for a large ensemble of signals, 
and may thus be characterized by a probability dis-
tribution. From this distribution one can calculate, 
using equation 1, the associated entropy. A signal 
representing a spike train may be expressed as a 
series of delta functions (smooth “spikes” of infini-
tesimal width, infinite height, and area 1), with 
each spike representing an action potential fired 
by the neuron at that moment in time. The Fourier 

Fourier Analysis
We are interested here in a neuron’s rate 
of transmitting information, rather 
than in the development of the 
neuronal signal over time. Since Fourier 
analysis decomposes a set of neuronal 
outputs into a sum of sine and cosine 
coefficients at various frequencies, it 
provides insight into the underlying 
processes that gave rise to the signal.
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2.3 Information in multiple-neuron spike 
trains
In the previous section we described how the 
entropy of a single neuron may be calculated 
from the variances of its Fourier coefficients over 
a range of frequencies. In the more general situa-
tion, in which several neurons are recorded simul-
taneously, a common input may lead to features 
in common in those neurons’ outputs. This would 
imply that the response of a given neuron was, 
in part, predictable from the responses of oth-
ers, and consequently the amount of information 

known to be Gaussian is sufficient to reasonably 
determine its variance (Figure  1, middle left). 
Since any empirical sample is finite, the variance 
estimation is still slightly biased, but the bias is 
small compared to the bias encountered in more 
direct approaches that attempt to fully character-
ize a distribution of unknown form from a limited 
sample. Thus we may evaluate the signal informa-
tion by summing the Gaussian entropies of equa-
tion 3 over the range of frequencies for which the 
entropies for responses to the two different types 
of stimuli (unique and repeated) are unequal.

Figure 1 | The three steps that are required for calculating the information carried by a neural population: Fourier 
representation of each spike train; variance estimation, and entropy-information calculation.
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property that by rotation one can always find a 
new set of coordinates, in which the distribution 
becomes the product of univariate Gaussians, 
and one can then proceed as before. Technically, a 
multivariate Gaussian is characterized by a covari-
ance matrix whose principal component vectors 
define the special choice of the new coordinates. 
For the case of two cells this is shown by the red 
axes in the right frame of Figure 2. Performing 
this at many frequencies (Figure 1, middle right) 
on both Repeat and Unique trial sets allows the 
direct calculation of the signal entropy (Figure 1, 
bottom).

2.4 Estimating Redundancy and Synergy
We have seen above how the simple summation 
of information from individual cells can easily 
overestimate the actual amount of information 
conveyed by the group. This overestimation arises 
from the fact that the information content of the 
cells’ outputs overlaps, and is thus redundant. 
In some systems, the converse may be true: the 
communal output of cells might exceed the sum 
total information of the individuals, and we have 
synergy. The circumstances in a complex system 
from which redundancy or synergy may arise have 
been the subject of much interest and theoreti-
cal discussion (Gawne and Richmond, 1993; Gat 
and Tishby, 1999; Panzeri et  al., 1999; Brenner 
et al., 2000; Panzeri and Schultz, 2001; Petersen 
et al., 2001; Bezzi et al., 2002; Pola et al., 2003; 
Schneidman et al., 2003; Latham and Nirenberg, 
2005; Montani et  al., 2007).To quantify redun-
dancy (we refer here to redundancy, but the 
discussion applies to synergy as well), we must 
quantify the amount of entropy overlap in a 
group and compare this amount to the total 

delivered by the group would be less than the sum 
of what was calculated for the individual neurons. 
The way this situation can be addressed quan-
titatively may be illustrated by the case of two 
neurons, as presented in Figure 2.

We choose a Fourier coefficient at one par-
ticular frequency, and for each of a sequence of 
trials we plot its value for cell A horizontally and 
its value for cell B vertically. In the left frame we 
consider the case where the cells are firing inde-
pendently. The points are thus drawn from a two-
dimensional distribution that is the product of the 
horizontal distribution and the vertical distribu-
tion that are both Gaussian. The two-dimensional 
distribution is thus the product of two univariate 
Gaussians. We have chosen for the vertical cell B a 
Gaussian with a smaller variance than that of cell 
A. The entropy of the distribution is the sum of 
the two entropies, each obtained from its variance 
as in equation 3.

The right frame of Figure 2 shows what hap-
pens when the firings of the two cells are cor-
related, as in response to some common input. 
It is evident in the figure that a positive Fourier 
coefficient for one cell predisposes the Fourier 
coefficient of the other cell to be positive, and 
similarly for negatives.

But here, again, there is a simple calculation 
for the distribution’s entropy. The single-cell 
argument above, that the central limit theorem 
applied and that therefore the distribution must 
be Gaussian, generalizes to the present case. By 
the same argument the multivariate distribution 
of the Fourier coefficients across cells is governed 
by the multivariate central limit theorem, and so 
must be a multivariate Gaussian distribution. A 
multivariate Gaussian distribution has the special 

Cell A

C
el

l B

Cell C

C
el

l D

Figure 2 | Left: the two cells (A and B) fire independently; a two-dimensional distribution is the product of two 
one-dimensional distributions. Right: the two cells (C and D) are correlated in this bi-variate Gaussian distribution; when 
new coordinates (red axes) are chosen, the distribution becomes a product of two one-dimensional Gaussian distributions.
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result, the model Poisson neurons and the real 
laboratory neurons were driven by experiments 
with equal number of trials and, therefore, the 
number of samples from the two sets was iden-
tical. The mean rates of these 8 neurons were 
set at the mean rates of 8 the actual neurons we 
recorded in our monkey LGN. The lower lines 
show the cumulative information, with advancing 
frequency, of those individual simulated neurons. 
The upper line in red shows the sum of those 
eight cumulative information plots. The dashed 
blue line below it shows the cumulative informa-
tion calculated for the merged group of 8. The 
difference between the two curves is a measure 
of the redundancy of the information that those 
neurons carry individually.

The right frame of Figure  3 shows the cor-
responding calculation for real neurons recorded 
in our laboratory from the monkey LGN. We see 
several new features. The individual neurons, not 
surprisingly, show a low-frequency cutoff, and as 
expected, the details of that cutoff are somewhat 
different for different neurons. When we compare 
the cumulative information of the merged group 
to the summed information of the individuals, we 
see that redundancy at lower frequencies crosses 
over to synergy at higher frequencies. This recur-
ring observation, which is absent in the simulated 
neurons, merits further study.

2.4.1.2 Merging information from smaller 
groups of neurons.  In Figure 4 we examine the 
effect of merging groups of neurons into a single, 
larger group. For both the simulated neurons and 

information being transmitted. Using our 2-cell 
example, we represent each neuron’s information 
output by the two circles in the bottom right of 
each panel (Figure 2). In this way we can visual-
ize the amount of information redundantly con-
veyed by both neurons: it is the overlapping area. 
Quantifying these two values with the Fourier 
method is straightforward – the overlap is equal 
to the difference between the sum total and the 
group entropy. Calculation of redundancy with 
any number of cells proceeds exactly in the same 
manner. When each cell conveys unique informa-
tion there is no overlap between the information 
from the various cells, and redundancy is zero.

In the case of synergy, the information con-
veyed by the group is greater than the sum total of 
information; cells work synergistically to convey 
more information than the algebraic sum of the 
contributions of each one alone. Here the notion 
of overlap does not apply. However, one may 
regard the extra information as “negative over-
lap,” still defined by the difference between sum 
total entropy and group entropy, and proceed in 
the same manner as above.

2.4.1 Examples
2.4.1.1 Information from individual neu-
rons.  Figure  3 shows, in its left frame, simu-
lated results from eight model neurons. These 
were of the currently much-used Poisson type: 
each produced an inhomogeneous Poisson point 
process at a time-dependent rate that was directly 
proportional to the fluctuating luminance levels 
used as a visual stimulus in the laboratory; as a 
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Figure 3 | Cumulative information rates as a function of frequency for single cells and for a neural population. 
Colored lines near the bottom indicate the cumulative information for each of the eight simulated cells (A) and eight LGN 
cells (B). In simulated cells, the sum total information of all individual cells exceeds the information conveyed by the group 
together, indicating redundancy. In the monkey LGN cells, the sum total exceeds the group information until 
approximately half the stimulus frequency, after which synergy dominates.
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as a point in a space of 2  ×  8  ×  160  =  2,560  
dimensions: sine and cosine Fourier coefficients 
at evenly spaced frequencies from 1/8 to 160 Hz. 
The challenge becomes tractable when we note 
that the central limit theorem tells us a great deal 
about how these points must be distributed in that 
large space, and, in particular, that correlations 
across dimensions are confined to two-dimen-
sional sub-spaces defined by a sine–cosine pair 
at each frequency. The needed computations may 
be performed one pair at a time, and the central 
limit theorem further tells us that the final result 
may be derived from a simple analytic expression.

However, the laboratory data consist of 
only finite samples, while the theory addresses 
an ensemble of indefinite size. For example, 
the third panel in Figure  1 illustrates how an 
atypical sample may lead to a challenge in data 
analysis. In that figure we see that total entropy 
and noise entropy converge at high frequencies, 
which furnishes a cutoff for the sum in equa-
tion 26 of Yu et al. (2010). This convergence is 
predicted by the theory. But in the laboratory, 
the noise entropy is estimated from responses 
to repetitions of one sampled “repeat” stimulus, 
and if that sample is atypical, the computed noise 
entropy may converge to a slightly different value 
than the corresponding total entropy. Knowing 
the origin of the problem, one can apply a small 
common sense adjustment to remove it. But cur-
rently there is no overall theory to point the way 
that such small-sample adjustments should be 
made. We look forward to future developments 

the LGN neurons we divided the neurons into 
two groups: we ranked the neurons in order of 
increasing mean firing rate, and placed the even 
and odd numbered neurons in separate groups. 
From Figure 3 for simulated neurons we recall 
that this merger removed redundant informa-
tion, so the information of the two groups should 
already be reduced from the total single neuron 
information, which is confirmed in the left frame. 
Similarly for the laboratory data (right frame) 
the gap is reduced from what the previous figure 
showed. Again, for the two groups of LGN cells we 
see that as frequency increases there is a transition 
from redundancy to synergy.

3 DISCUSSION
We have described a new method (Yu et al., 2010) 
for the estimation of the amount of information 
delivered by the discharges of a neuronal popula-
tion. The method fills a gap in the armamentar-
ium of the neuroscientist who is interested in the 
information processing aspects of the brain, and is 
timely in view of the abundance of multi-neuron 
recordings appearing in the literature. We now 
mention a few caveats, and comment on other 
recent approaches.

3.1 Caveats and challenges
3.1.1 Differences between responses to unique and 
repeat stimuli
The methodology presented here confronts 
the “curse of dimensionality” head-on. In our 
application, every 8-s spike train is represented 
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Figure 4 | Redundancy and Synergy among groups of neurons in a population. Information rates from simulated 
Poisson spike trains (A), created to match the firing rates of monkey LGN neurons (B). In both panels the eight cells were 
split into two groups, matched approximately for firing rates. The total group information is shown in a dashed blue line, 
and the summed information from two groups is shown in a solid red line. For the LGN cells, but not for the simulated 
cells, the curves cross around 30 Hz: below 30 Hz we see redundancy, while above it we see synergy.
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3.1.6 Available software
The software used in the analysis discussed in this 
review is freely available at http://camelot.mssm.
edu/~kaplane/Fourier_information.zip

3.2 Other approaches
To calculate Shannon information, one needs to 
know the distribution of the underlying variables. 
This can be rather challenging with experimental 
data, which are finite and usually provide only 
biased estimates of the underlying distribution 
(Panzeri et al., 2007). On the other hand, if one 
has a credible model of the process that is being 
investigated, the model’s parameters can be opti-
mized to bring the model’s output close to the 
experimental data. The model now can provide 
robust and accurate estimates of the distribution, 
and that distribution can be sampled to yield 
entropy estimates, using equation 1.

Model-based approaches to spike encod-
ing seek to define an optimal set of parameters 
for a given model from which the observed 
spike trains are most likely to have been gener-
ated. Such models are useful in that providing a 
stimulus-response paradigm allows for testable 
criteria concerning the nature of the encoding 
process, including statistical measures of accuracy 
and confidence, and also lends itself well to the 
application of Shannon Information. Paninski 
et  al. (2007) suggested three criteria for the 
development of such models: the model must be 
powerful enough to properly describe the data, 
it must be both computationally tractable and 
simple enough to understand, and finally it must 
fit well with current physiological and anatomi-
cal knowledge of the system being studied. The 
maximum entropy principle, put forth by Jaynes 
(1957), states that given a set of constraints, the 
current state of knowledge is best described by the 
probability distribution with the greatest entropy.

The application of the maximum entropy 
principle to model-based approaches represent-
ing neural systems has garnered much attention 
among neuroscientists seeking to describe spike 
encoding. Some recent models (Schneidman 
et  al., 2006; Shlens et  al., 2006; Nirenberg and 
Victor, 2007) have explored the ability to account 
for the firing patterns of groups of neurons using 
only parameters that describe single neurons 
and the interactions between pairs of neurons, 
since the nature and consequences of the inter-
actions among neurons in the population are at 
the heart of the issue of population codes and 
synergy. Whether applications of this type of 
model will be valid for much larger populations 
of cells, as found in the nervous system, remains a 
subject of future exploration (Roudi et al., 2009). 

that would help bring this approach to a more 
mature usefulness.

3.1.2 Do we need repeated stimuli?
Our method requires repeated presentations of a 
stimulus in order to calculate the noise entropy. 
This requirement is shared by other methods, 
such as the Direct Method of Strong et al. (1998). 
It would be beneficial to have a method that did 
not require repeated presentations of a stimulus, 
and which offered some other way of estimat-
ing the noise entropy. This might require differ-
ent approaches to the estimation of complexity, 
entropy, and information. Steps in that direc-
tions have begun to appear in the past few years 
with the emergence of methods that sidestep the 
requirement for repeated stimuli. For example, 
entropy can be estimated with the Lempel and Ziv 
(1976) complexity measure, as was done recently 
by Szczepanski et al. (2003), Amigó et al. (2004), 
and Szczepanski et al. (2011). The complexity and 
entropy of spike trains can also be estimated by 
deducing the (hidden) computational structure 
of a system that could generate the observed spike 
train (Shalizi et al., 2002; Haslinger et al., 2010).

3.1.3 Non-sensory systems
Most of the information-theory applications to 
neuroscience have been to data from sensory neu-
rons, where a well-defined stimulus is used, often 
repeatedly. However, studies of other parts of the 
brain, such as the hippocampus, the pre-frontal 
cortex, or the nucleus accumbens, which often 
involve recordings without any specific experi-
menter-controlled stimulus, could also benefit 
from estimates of how much information is car-
ried by the recorded neurons. The methods used 
by (Amigó et al., 2004) are a step in this direction, 
but additional methods to provide such estimates 
would be highly desirable.

3.1.4 Robustness against errors in spike sorting
In our experience, the method is reasonably 
robust against errors in spike sorting, such as 
missed spikes, mis-assigned spikes, etc. However, 
its robustness has limits: if many spikes are erro-
neously assigned to more than one neuron, 
this is bound to affect the redundancy/synergy 
calculation.

3.1.5 Computational efficiency
The information calculations illustrated here may 
be performed on a desktop computer in a few 
seconds. Computing time scales roughly with the 
number of spikes fired by the neuronal popula-
tion, and our approach can easily handle hun-
dreds of neurons.
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Abstract: All brain functions require the coordinated activity of many neurons, and therefore
there is considerable interest in estimating the amount of information that the discharge
of a neural population transmits to its targets. In the past, such estimates had presented
a significant challenge for populations of more than a few neurons, but we have recently
described a novel method for providing such estimates for populations of essentially arbitrary
size. Here, we explore the influence of some important aspects of the neuronal population
discharge on such estimates. In particular, we investigate the roles of mean firing rate and of
the degree and nature of correlations among neurons. The results provide constraints on the
applicability of our new method and should help neuroscientists determine whether such an
application is appropriate for their data.

Keywords: information; neural population; spike trains; dynamics

1. Introduction

1.1. Methods for Estimating Information Content in Single Spike Trains

In the past twenty years, rapid advancements in multi-unit recording technology have created a need
for analyses applicable to many neurons. While all brain functions require the coordinated activity of
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many neurons, neuroscience thus far has been focused primarily on the activity of single neurons [1].
These continuing advancements in both recording and imaging technologies allow the scientist to
monitor an increasingly large number of neurons, and it has become desirable to estimate quantitatively
the amount of information that a neural population delivers to its targets. However, the application of
Shannon’s information theory [2] to neuronal discharge from more than one neuron has encountered
great difficulties. At the root of the problem is the need to estimate the entropy of the discharge of many
neurons from laboratory data, an estimate that is thwarted by the combinatorial explosion of the possible
activity patterns. This explosion, which is severe, even for a handful of neurons, prevents the direct
application of Shannon’s approach, in which entropy is defined as:

H = −
∑

i

pi log(pi) (1)

where each pi is the probability of a particular pattern of spike-events. The reason for this failure
is that laboratory data sample the space of possible activity patterns rather sparsely, and this sparsity
undermines our confidence in the knowledge of the underlying distribution, a knowledge that is critical
for the determination of the probabilities in Equation (1). This difficulty is referred to in the literature
as the small sample bias, and several ad hoc counter-measures have been proposed, although those have
been limited to a small handful of neurons [3–5].

The primary purpose of this paper is to test the robustness of our recently developed Fourier-based
method [6,7] that in common, reasonable circumstances bypasses the small sample bias when applied
to simulated or real data. We first describe a general linear modeling simulation [8,9] that we used to
generate simulated data, and, then, present a series of tests, each of which is designed to pit the method
against a specific set of parameters; we present the tests sequentially along with their results.

1.2. The Fourier Method

In general, and particularly for signals as complex as those found in the brain, far fewer data points
are required to describe a probability distribution whose shape is known a priori, as in the case of a
Gaussian distribution, than for distributions of arbitrary shape. Well-established methods, such as the
Direct Method [10], require large data sets, because those arbitrary distributions must be well-described
before information can be estimated. The Fourier Method exploits the fact that the entropy of a Gaussian-
distributed process can be analytically calculated from its variance:

H(x) =
1

2
log (2πeσ2). (2)

Our method further exploits the fact that stochastic variables that lose correlation with their past
history yield Fourier coefficients that follow a Gaussian distribution [6], allowing us to directly apply
this analytic measure of entropy.

1.2.1. Representing Neural Signals in the Frequency Domain

Visual neuroscientists are concerned with the mapping of visual scenes to patterns of neural activity.
Since the primary mechanism by which many neurons communicate information is the action potential,
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a neural activity pattern can be described as a list of spike times, tn, which we call a spike train, and is
commonly expressed as a sequence of δ-functions:

u(t) =
N∑

n=1

δ(t− tn) (3)

where tn is the time of the nth spike. We may now represent this signal as the weighted sum of a set of
conventional orthonormal basis functions consisting of cosines and sines:

u(t) =
1

2
a0 +

∞∑

m=1

am cos
2πm

T
t+ bm sin

2πm

T
t (4)

with the weighting coefficients evaluated directly from the data by:

am =
2

T

∫ T

0

u(t) cos
2πm

T
t dt and

bm =
2

T

∫ T

0

u(t) sin
2πm

T
t dt

(5)

When the statistics of a neuron are stationary, as required for this method, the variance of the mean rate
across trials is small, and therefore, spike trains of sufficiently long duration carry very little information
in the mean value of the signal. The initial term, a0, can thus be discarded. Additionally, when the input
signal, u(t), is represented by a series of δ functions at times tn, u(t) is zero for all t 6= {tn}, and the
weighting coefficients in Equation (5) can be directly expressed in terms of the spike times, e.g.:

am =
2

T

N∑

n=1

cos (
2πm

T
tn) (6)

Through this process, we convert a spike train to a series of cosine and sine coefficient pairs that
advance in frequency in increments of 1/T . While a full description of the original signal requires
that we measure these coefficients to infinite frequencies, in practice, we can determine a natural cutoff
frequency above which no further information is carried. The determination of this cutoff is described
in Section 1.2.4. .

1.2.2. The Fast Fourier Transform

An alternative representation, in which spike trains are discretized into bins of length δt, such that
a one represents a spike and a zero represents the absence of a spike, allows for the application of the
Fast Fourier Transform, which in modern computer systems, is highly optimized and provides significant
speed improvements over implementations of the classical Fourier system described above.

1.2.3. Entropy in the Neural Signal

If we generate multiple realizations (trials) of the neural signal in response to a particular class of
stimuli, we build, at each frequency bandwidth, ω, distributions of cosine and sine coefficients, Pcos(ω)

and Psin(ω). As is discussed in [6], these distributions are Gaussian, and their respective variances,
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σ2
cos(ω) and σ2

sin(ω), are used as in Equation (2) to evaluate the entropy of each distribution; the
entropies of the cosine and sine coefficients together sum to form the entropy of the process at a given
frequency bandwidth, with the entropy of the complete signal being the sum of the entropies contained
in all bandwidths:

H =
∑

ω

H(Pcos(ω)) +H(Psin(ω)). (7)

The entropies, H(Pcos) and H(Psin), are calculated from the Gaussian-distributed Fourier coefficients
across trials, using Equation (1):

H =
∑

ω

(
1

2
log2 eσ

2
cos(ω)) + (

1

2
log2 eσ

2
sin(ω)) (8)

Figure 1A shows histograms of several cosine component distributions from data taken from the
lateral geniculate nucleus (LGN) of Macaca fascicularis using 128 trials. Q-Qplots at three select
frequencies (indicated by red, green and blue) are displayed in the inset; the linearity of these plots
demonstrates that typical electrophysiological data do indeed follow a Gaussian distribution. The
robustness of this Gaussian assumption is further tested in Section 3.3.1. .

Figure 1. Fourier coefficient variance and covariance. (A) Fourier cosine coefficients from
the monkey lateral geniculate nucleus (LGN) are collected and form Gaussian distributions
at each frequency, represented by histograms. The inset shows Q-Q plots of the three
highlighted distributions; the linearity of the sample points indicates Gaussianity. The
variance of each of these distributions is used to calculate the entropy at each frequency.
(B) Simulated data to illustrate the multivariate case. The variance along the principal axes
(black) is determined by the covariance matrix of the coefficients and informs us of the
information conveyed by the population.

The process of extending the Fourier entropy calculation to multiple neurons becomes intuitive from
inspection of the two-neuron example in Figure 1B, which shows a two-dimensional plot of the cosine
coefficients of each neuron at a chosen frequency, with one (simulated) data sample per trial. Each
neuron’s coefficients form a one-dimensional Gaussian distribution, whose variance provides us with an
estimate of that neuron’s entropy alone at that particular frequency (Equation (2)). When the coefficients
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for the two neurons are plotted against each other, correlations between neurons induce correlations in
their respective coefficients. In this case, the output from one neuron informs us to some degree of
the output of the other, the result being a reduction in entropy associated with their joint distribution.
This reduction is taken into account when the coefficients are expressed along their more compact
Principal Component axes, shown in black; in this new coordinate system, information conveyed about
the structure of the correlations between the neurons, rather than information about the stimulus, is
discarded, and the joint distribution entropy, which we call the group entropy, H(G), is revealed [11].
The entropy of this multivariate Gaussian distribution is readily calculated by replacing the variance, σ2,
in the single-neuron case with the covariance matrix of the multiple neurons’ coefficients and is the sum
of the entropies along these principal axes. We call the difference between the group entropy and the
sum total of the individual neurons’ entropies the redundancy, which we express as a proportion of the
total entropy, summed over all frequencies:

R = 1− H(G)

H(C)
(9)

where:

H(C) =
∑

c∈C
H(c) (10)

where H(G) is the group entropy rate that conveys the signal entropy, taking correlations into account,
and H(C) is the sum of the individual entropy contributions of each neuron, which ignores correlations.
In the special case in which H(G) > H(C), R becomes negative, and we have synergy; a population
code. This method generalizes to a large number of neurons and is described in detail in our
previous publications [6,7].

1.2.4. Noise and Signal Entropies

Fluctuations in spike times due to noise produce additional entropy, the magnitude of which is limited
only by the precision at which spike times are measured. This entropy due to noise, HN , must be
subtracted from the total entropy, HT , in order to measure the information in the signal:

I = HT −HN . (11)

Experimentally, one may measure the imprecision of a system by observing the variability of its
responses to repeated, identical inputs. Our simulations and experiments apply this technique through
the use of a repeat-unique paradigm. In such a paradigm, the total entropy is calculated from a rich
variety of unique signals to which the neuron responds noisily, while the entropy due to this noise
alone is calculated from responses to identical, repeated patterns of input. Thus, the variation in the
response of a neuron to a repeated stimulus provides a measure of its noise. Example stimuli are shown
in Figure 2B, first with the repeated stimuli, all identical, plotted in red, and, then, followed by unique
stimuli, plotted in blue. The responses of a neuron (simulated or real) to unique and repeat trials are
represented with a raster plot, with each row representing a separate trial and hash-marks indicating spike
times (Figure 2C).
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Figure 2. Simulated neuronal response to the repeat-unique stimulation paradigm. (A)
General linear modeling (GLM) flow diagram, adapted with permission from Macmillan
Publishers Ltd: Nature [12], c©2008. (B) A subset of the trials of a typical stimulus are
displayed. Repeat stimuli (red) are all identical, whereas unique stimuli (blue) are each
different from all others. (C) Raster plot of the responses of a simulated neuron to repeat
and unique stimuli. Each row of the raster corresponds to a single trial, seen on the left.
Responses to 128 trials are displayed in the raster; because repeat stimuli are all identical,
the neuron produces similar spike trains (red spikes), evidenced by the appearance of vertical
stripes. The response of the neuron to unique stimuli is different with each trial, and
therefore, no stripes appear. (D, top) The entropy rate calculated in response to the repeated
stimuli (red) is subtracted from the entropy rate calculated in response to the unique stimuli
(blue); the difference between the entropies (shaded area) is the signal information rate. The
integral of this entropy difference over frequency is dimensional information times frequency
or equivalently bits per second. (D, bottom) The information rate is plotted as a cumulative
sum across frequencies; the plot levels off with a near-zero slope at frequencies above which
signal information is zero.

1.3. Overview

In simulation, we are not subjected to the limitations of experiment. Consequently, the accuracy of our
calculation increases with the amount and quality of available data, over which we have direct control.
Here, we explore the performance of the Fourier Method when applied to various kinds of neuronal
populations and discharge patterns. In particular, we wish to establish the constraints imposed on the
method by some important aspects of the neuronal discharge, such as the mean rate and variability of
the discharge, as well as the degree and nature of the interactions (correlations) among the neurons in
the population.

We begin with simple information profiles of neurons with a wide range of firing rates in
response to a stimulus of increasing frequency. We then address the basic question of data
quantity—what is the minimum recording length required to generate valid information estimates,
and how does this requirement depend on the firing rates of the neurons? Following this, a
series of potentially confounding experimental factors are introduced: firing rate non-stationarity,
spike-to-neuron assignment errors and biased estimates of noise entropy. We conclude with a study
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of the effects of scaling the method to multiple neurons and demonstrate its strength in dealing with very
large populations of cells.

2. Methods

2.1. The GLM Simulation

To explore the performance of our method, it is appropriate to use simulated data sets, where we
have control over the relevant parameters. Among many possible simulation frameworks, we chose
the general linear modeling (GLM) approach described by [8,9], which was effectively used by these
authors to model populations of primate retinal ganglion cells [12]. This framework allows us to control
important features of the dynamics of individual neurons, as well as to control the strength and dynamics
of the interactions among the simulated neurons in the population. A detailed description of the model
can be found in [8,9,12] and is illustrated in Figure 2A [12]. An input stimulus is first passed through
the stimulus filter, designed to mimic ON retinal ganglion cells that maximally respond to increases in
light intensity. A nonlinearity is applied to the filtered output, and a stochastic spiking model produces
stimulus-dependent spikes. Following a spike, a post-spike filter is applied to the input, generating a
refractory period. If multiple neurons are simulated, additional post-spike coupling filters are applied,
which allow neurons to influence each other. The coupling filters can be unique for each pair of neurons,
allowing for a variety of connection types and strengths within a single network.

2.2. Stimulus

Figure 2A includes a stimulus filter designed to selectively emphasize stimuli of a particular spatial
pattern, and while the GLM simulation is capable of handling a variety of complex, spatially-rich stimuli,
we first chose to drive each neuron with a one-dimensional stimulus, in order to reduce the number of
input parameters. The stimulus filter carries a time-component, as well, allowing one to mimic some of
the properties of neurons found in the brain. Our choice of one-dimensional stimulus and a spatial filter
effectively models a full-field stimulus driving a retinal ganglion cell whose maximal response arises
from a sharp increase in stimulus intensity. The stimulus provided to our simulated neurons consists
of Gaussian-distributed random intensity values, each lasting for a brief interval, whose mean value
determines the mean firing rate of the cell. An offset is applied to simulate neurons of any desired mean
firing rate. The interval during which each stimulus value is shown determines the stimulus sampling
rate, which is a parameter in our simulation. Figure 2B shows the inputs of ten sample trials of Gaussian
inputs presented at 25 Hz.

2.3. Frequency vs. Information Plots

Typical plots of entropy and information as a function of temporal frequency are displayed in
Figure 2D. The difference between the entropy calculated from the unique runs (blue) and repeated
runs (red) is the signal information (shaded gray area). The bottom panel in Figure 2D displays a
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cumulative plot of signal information, which levels off at frequencies above which no signal information
is transmitted.

2.4. Measurement of Error and Confidence

Many of the simulations that follow require a measure of the relative quality of the information
estimation. Given that the sources of our data here are (simulated) neurons, a calculation of error requires
a comparison between a measured and a “true” information rate. Our calculations provide estimates with
units of bits per second, and in situations where the estimation may be improved by simply increasing the
quantity of data, we can declare our true information rate to be that rate estimated from a large quantity
of data. Our error is thus defined to be the absolute value of the difference between the measured rate
and the true rate, divided by the true rate and represented as a percentage. Thus, our error is bounded
by zero below and is unbounded above. We calculate this confidence interval by generating multiple
instances of the true rate and determining the standard deviation of such results.

Figure 3 displays the intrinsic variability of neurons with various firing rates responding to a 25 Hz

stimulus, as described in Section 2.2. Panel A displays the spread of information for neurons of three
different firing rates, with mean values plotted as solid lines. The resulting spread is used to define
the 95% confidence interval (1.96 standard deviations), which is shown in Panel B for a more densely
sampled choice of firing rates, and fit with a function of the form, axb. Notably, the reliability of the
information estimate increases with the firing rate.

Figure 3. Intrinsic variability of neural responses. (A) Twenty instances of cumulative
information rates from three single neurons, with firing rates of 21, 7 and 2 spikes/s. (B)
Standard deviations of information rates from twenty neurons, three of which are derived
from the neurons in the left panel, fitted with the function, (y = 1.29x−0.497). The fitted
curve is used to describe the 95% confidence interval of the information estimation.

3. Results

3.1. Comparison with the Direct Method

We begin with a brief comparison of our method with a well-known standard of information
estimation: the Direct Method [10]. The Direct Method is named for its simplistic approach: spike
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trains are discretized into binary vectors of length ∆τ and subdivided into words of window length L,
with the resulting distribution of words subjected to Shannon’s formula in Equation (1); the entropy of
the words of window length T and bin width ∆τ is thus:

H(T ; ∆τ) = −
∑

i

pi log2(pi). (12)

Calculation of the true information rate requires that we calculate this sum to the limit as L→∞ and
∆τ → 0. The small sample bias precludes estimation of even modest word length L, and therefore, an
extrapolation towards the infinite data limit is required [10].

Figure 4A compares the Direct Method with the Fourier Method. We applied both methods to the
discharge of 25 simulated neurons with firing rates ranging from 5 spikes/s to 30 spikes/s, ensuring
a range of information rates. For this comparison, we provided 4,096 trials of 30 s each in order to
ensure that the Direct Method was not limited by the sample size; this corresponds to approximately 68
hours of recording for each choice of firing rate and sensitivity. The results show that the two methods
produce similar results. Figure 4B demonstrates the increase in information rate errors as the number
of trials decreases, with the inverse of the number of trials shown on the abscissa. While the rate error
resulting from use of the Direct Method increases drastically as the number of trials decreases, the
Fourier Method remains robust even in the face of a small sample size. Approximately one tenth of the
quantity of data required by the Direct Method is needed for the Fourier method to achieve a comparably
reliable estimate. Because of the far smaller response to noise in the Fourier method, the vertical scatter
in Figure 4A can be regarded as an indication of the accuracy limitations in the Direct Method.

Figure 4. Comparison with the Direct Method. (A) Spike trains from 25 simulated neurons
of varying firing rates and input sensitivities were subjected to both the Fourier and Direct
methods of information measurement, using 4,096 trials of 30 s each to ensure enough data.
(B) Rate errors expressed as a function of the inverse of the number of trials. The rate errors
produced by the Fourier method remain small compared to those produced by the Direct
Method as the number of trials decreases.

3.2. Experimental Requirements

A data set extracted from an experiment is but a small sample of the total neural activity, acquired
during a limited time period. An important question arises, therefore: how much data does one need
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to properly estimate information rates? Statistical inference relies on the ability of a limited sample to
represent features of a population; the sample must therefore be a faithful representative of the population
and be sufficiently informative for the scientist to extract the relevant features. How much data do we
need to measure information in the discharge of a neuronal population?

The range of properties of individual neurons encountered in the brain is large, even among neurons
confined to individual nuclei. In our simulation, we chose a set of model parameters that covers a
typical range of neuronal properties encountered in the laboratory. We address the issue of experimental
requirements—how much data one needs to measure information—by an iterative process of the
reduction of sample size until the error renders the method unusable. We have explored three independent
parameters (Figure 5) in this investigation: mean firing rate, trial length and number of trials, all of which
contribute to the total number of spikes recorded. For each input firing rate, we generated a reference
measurement using 2,048 trials, each of them 10 s in length, which we deemed sufficient as a basis
for comparison. While the information rate of a neuron is not simply tied to its mean firing rate, our
wish to gain valid statistical measures requires that we have enough spikes to accurately characterize the
distribution of Fourier coefficients at any relevant frequency.

Figure 5. Experimental requirements for information calculation. In this simulation, trial
length and number of trials were altered independently. Information rates were calculated
and compared to a reference information rate, with the difference expressed as a percentage
deviation from the true (reference) rate. (A) Rate errors are displayed as a function of both
the number of trials and trial length, with red indicating parameter choices that produced
high rate errors. Slices represent the choice of input firing rate into the model. (B) Rate
error plotted as a function of the total spike count, which is itself dependent on trial length,
number of trials and firing rate. Rate errors in the right panel were fitted with a function of
the form, E = axb.

The results of the simulation can be seen in Figure 5. The error is represented as a percentage deviation
of the reference simulation from the 95% confidence interval of the information rate measurement. The
independent contributions of trial number and trial length can be seen along the columns and rows of
Figure 5A. Not surprisingly, rate errors increase significantly as the amount of data is reduced. Slices
indicate the three input firing rates of one, nine and 17 spikes/s, and each data point represents the mean
rate error of five runs with identical input. As firing rate increases, the restrictions on trial length and
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number of trials decrease. Figure 5B shows the error in information rate purely as a function of the
inverse of the number of spikes. The total spike count itself, while not entirely indicative of the ability
of the method to accurately estimate information, provides a good rough estimate for the amount of
data required to produce low-error estimates. The dotted red line was fitted to the data by the function,
y = 1063x0.609; the 5% error level occurs at approximately 6,636 spikes; for a typical cortical neuron
that fires at five spikes/s, an experimentalist would thus require approximately 22 minutes of data.

3.3. Recording Pitfalls

Recording stability is often imperfect in the laboratory: varying levels of anesthesia, electrode drift,
attentional effects and interference all affect the recording. These effects can manifest themselves in
several ways, including:

• Firing non-stationarity
• Spike-to-neuron assignment errors during spike sorting
• Biased estimation of noise entropy

To assess the impact of these pitfalls, we have created the three simulations described below.

3.3.1. Firing Rate Non-Stationarity

Electrophysiological experiments are often performed on animals under anesthesia, during which
brain activity assumes a state of slow-wave oscillatory behavior, commonly associated with sleep. In
unanesthetized animals, the high-conductance neuronal states found in thalamocortical and cortical
systems during wakefulness give rise to increased neuronal activation, accompanied by increased
sensitivity to stimuli, more variable spiking patterns, greater desynchronization [13] and a shortened
membrane time constant, a consequence of which is higher temporal precision [14]. The phasic activity
observed during anesthesia and the transitions between wakefulness and sleep due to fluctuations in
the metabolism of anesthetics can both contribute to changes in the firing rates of neurons that are
not necessarily stimulus-induced. In addition, many neurons in the brain have been found to exhibit
discharge patterns indicative of high and low firing states. These Up and Down states can result from
either intrinsic properties of the membrane or from network-related activity and have been observed most
prominently in cortical pyramidal cells and striatal spiny neurons, with stable Down states consisting of
periods of low activity, and either stable or meta-stable Up states, where the neuron enters a heightened
state of activity (see [15] for a review of the subject). Similarly, neurons of the lateral geniculate nucleus
are known to display tonic and burst firing patterns [16] that may play a role in the transmission of visual
information [17]. Regardless of the mechanism, it is important to determine the effect of such instability
on the calculation of information.

A primary concern is that a neuron exhibiting multiple modes of activity might violate the
requirements of the Central Limit Theorem and produce non-Gaussian Fourier coefficient distributions.
We address this potential concern by simulating Up and Down states in neurons, with two variable
parameters: the difference between firing rates in the two states (reversal amplitude) and the average rate
of fluctuation between the two states (reversal rate). All neurons in this simulation had a mean firing
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rate of 15 spikes/s; two sample neurons can be seen in Figure 6A with different reversal amplitudes and
rates. To test the possibility that the normality assumption of Fourier coefficients is violated in neurons
exhibiting multiple modes of firing, we subjected the coefficient distributions at each frequency used
in the information calculation to the Shapiro-Wilk test for non-normality (N = 4, 000 distributions;
α = 0.05) and display the results as a percentage of the number of distributions that did not violate the
Gaussian property at the 5% significance level.

Figure 6. Effects of firing rate instability. Neurons with bimodal firing statistics were
simulated, switching between Up and Down states throughout each trial. The firing rate
difference between Up and Down states is represented as a proportion of the mean firing
rate and the average duration of each state by its reciprocal in Hz. (A) Firing rates of
two sample neurons are plotted in red, each with a mean firing of 10 spikes/s. The top
neuron oscillates between five and 15 spikes/s (reversal amplitude = 0.5), with a mean
fluctuation rate of 0.5 Hz. The bottom neuron oscillates between zero and 20 spikes/s
(reversal amplitude = 1.0), with a mean fluctuation rate of 3 Hz. (B) Heat map illustrating
the effect of state fluctuation on information rates. All neurons had mean firing rates of 15
spikes/s; information decreased with reversal amplitude, with the effects of the decrease
being partially mitigated by increases in reversal rate. (C) The fraction of of Fourier
coefficients distributions that were Gaussian plotted against reversal amplitude and reversal
rate. Fourier coefficient distributions at each frequency were subjected to the Shapiro-Wilk
test for non-normality at the 5% significance level (dashed red line).

Figure 6B shows the dependence of the information estimation on both the state reversal rate and
the reversal amplitude. Reversal amplitude had a largely negative effect on information rates, whereas
reversal rate had the opposite effect. This mitigating effect results from a trend toward homogeneity
of the firing rate as the reversal rate increases. Note that values are not reported as rate errors, but as
information rate reductions; this is because the observed decreases in information are due not to failure
of the method, but because properties of the simulated neuron itself affect the information rates. Indeed,
Figure 6C shows that the distributions remained Gaussian, even in the case of prominent changes in
a neuron’s firing state and pattern. Clearly, the non-stationarity of firing patterns did not violate the
Gaussian requirement, and our method is applicable under such circumstances. We do, however, stress
the importance of testing for Gaussianity. While the data provided in our experimental paradigm generate
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signals with necessarily short autocorrelation times, other experiments may result in violation of the
Gaussianity assumption.

3.3.2. Spike-Neuron Misassignment

Electrophysiologists are familiar with the challenging process of spike sorting that is routinely
encountered in the context of multi-electrode recordings, in which the activity of many neurons is
recorded. Voltage recordings from such experiments provide estimations of the number of neurons and
the timing of spikes associated with each neuron. While the probabilistic methods that are utilized in
spike sorting often result in reliable assignments of spikes to their respective neurons, they still rely on
incomplete knowledge of the environment; the misassignment, over-assignment or under-assignment of
spikes to neurons is sometimes unavoidable. In sub-optimal recordings, spike sorting is limited by the
signal-to-noise ratio, and unidentified action potentials muddle the knowledge of the true time course of
a neuron’s activity. To study the impact of spike misassignment on information rate, we ran a simulation
in which a percentage of spikes from each neuron were distributed equally and at random to the other
neurons (Figure 7A). Rate errors were represented as the percent deviation from the true rate, in which
no spikes were misassigned; a value of 0% thus indicates no misassignment and a value of 100% means
that every spike from each neuron is evenly assigned to the other neurons. In this simulation, neurons
were driven by separate, uncorrelated stimuli to remove correlations between neurons induced by the
stimulus. We progressively increased the group size to determine whether the problem of misidentified
spikes is exacerbated by a greater number of neurons. Twenty four group sizes and nine misassignment
percentages were chosen, both along a logarithmic scale, and information rate errors calculated for these
24× 9 conditions and linearly interpolated along both dimensions.

Figure 7. Effect of spike-neuron misassignment on information rate. (A) The spike neuron
misassignment procedure follows three steps: (1) spike rasters for individual neurons are
generated; (2) a percentage of spikes from each neuron, highlighted in red, are selected at
random; (3) the selected spikes are evenly distributed to the other neurons. (B) Average rate
errors are expressed as a function of both the number of neurons and of the misassignment
percentage. Sampled points are displayed as black dots, and the values are interpolated to
create a smooth heat map. (C) Average rate errors, averaged across group sizes, with the
special case of two neurons excluded.
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Figure 7B demonstrates the impact of spike misassignment on information rate. The 24× 9 conditions
in which the impact of spike misassignment was calculated can be seen in Figure 7C, and the sampled
values are indicated by the black dots; these data were interpolated to produce the smooth heat map.
As expected, complete misassignment results in a nearly complete destruction of signal information,
with the exception of the two-cell case, in which a full 100% misassignment of spikes is equivalent to
swapping the two neurons and can be observed by the vertical blue line centered at group size = 2.

Group size plays little role in calculating the impact of misassignment, and the values averaged across
group sizes, with the two-neuron cases excluded, are shown in Figure 7C. A misassignment of as little as
10% of spikes can degrade information calculations by up to 30%, underlining the importance of careful
and proper spike sorting.

It is important to note that the neurons used in this simulation have identical tuning properties, and
therefore, the stimulus patterns about which the neurons are reporting will be correlated to some extent.
The result is that these neurons will report on similar features of the stimulus and, therefore, will be
redundant. Consequently, a complete misassignment of spikes to neurons still yields a low information
rate, and therefore, the rate error approaches, but does not quite reach, complete error.

3.3.3. Biased Estimate of Noise Entropy

For a proper measure of signal information, it is crucial to estimate accurately the noise entropy of
the system. Because signal information is the difference between the unique and repeat entropies, any
situation in which the noise (repeat) entropy is miscalculated will lead to an invalid estimate of signal
information. It is therefore important that the repeated stimulus be a faithful representative of the unique
stimulus ensemble. An atypical repeat stimulus can be detected from the resulting spike trains and the
bias corrected to the extent possible, but it is clearly in the interest of the experimenter to reduce the level
of post-hoc statistical adjustments to a minimum.

A simple, but crude, indication of a statistically atypical repeat stimulus is the difference in the
number of spikes produced in response to the unique and repeat stimulus sets. An atypical repeat
stimulus may generate a neuronal response that contains fewer or more spikes than those produced
on average by the unique stimuli. The resulting effect on the cumulative information plot is easily
recognizable: as one proceeds toward high frequency, information accumulates at a constant rate, with
a steady increase or decrease in the cumulative plot at frequencies past the signal frequency cutoff.
The cosine and sine terms of a Fourier coefficient together define a vector on the unit circle of the
complex plane. At sufficiently high frequencies, at which no two consecutive impulses are correlated,
the phase becomes a uniformly distributed random variable, and the complex Fourier coefficient is the
result of a two-dimensional random walk of unit-length steps, corresponding to each spike, in random
directions. The two-dimensional variance of these coefficients across trials at these high frequencies
therefore depends only on the number of spikes. Ideally, a collection of coefficients at such frequencies
from repeats should have the same variance as coefficients from uniques, yet differences in the number
of spikes create an inequality in these variances. The two entropies, which depend on these variances, are
consequently unequal, and a resulting negative or positive information content accumulates. A simple
and effective method of resolving the spike-count discrepancy error is the random deletion of spikes,
until the repeat and unique sets contain an equal number of spikes (Figure 8A). The extent to which this
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affects the information calculation is dependent on the number of spikes deleted, but in most cases, the
result is a minimal change at the relevant frequencies. The concern is the accumulation of information
at frequencies beyond the signal cutoff frequency, which, in the case where responses to repeats and
uniques have unequal spike counts, is determined entirely by the arbitrary frequency at which one stops
the calculation.

Figure 8. Spike Deletion Procedure. (A) Deletion of randomly selected spikes (shown
in red) from the spike train with more spikes abolishes high-frequency information
miscalculation. (B, top) Information accumulates (cool colors) at high frequencies in the
case where the number of unique spikes exceeds the number of repeat spikes, and declines
(warm colors) when the repeat set is larger. (bottom) After the spike deletion procedure,
information accumulation trends are abolished. (C) The percentage of information reduced
as a function of the percentage of spikes deleted in both the repeat and unique sets.

Figure 8B shows results from ten sample simulated neurons, whose firing rates in response to the
unique stimuli were systematically adjusted from 14–16 spikes/s and paired with a repeat stimulus rate
of 15 spikes/s. When the repeat spike count exceeds the unique spike count, a negative trend occurs
(warm-color curves), with positive trends (cool-color curves) occurring when responses to the uniques
exceed those elicited by the repeats. Application of the spike deletion procedure effectively abolishes
the information accumulation problem (Figure 8B). The resulting information rates form a distribution
around the true information rates with a standard deviation of 0.2 bits/s, which corresponds to a spread
of approximately 3%.

To gauge the extent to which information is affected by spike deletion, we ran a simulation (Figure 8C)
that illustrates the relationship between the number of spikes and the percentage reduction in information.
Note, however, that the right panel of Figure 8 does not indicate spike-count discrepancies, but rather,
percentage deletion from both uniques and repeats in tandem; in the case where discrepancies between
unique and repeat spike counts exist in the laboratory, the number of spikes deleted will be roughly half
of those deleted in our simulation, because such a discrepancy necessitates deletion from only one of
the two (unique or repeat) sets. To get a sense of the number of spikes that must be deleted on average,
we turned to a recent recording of neurons in the lateral geniculate nucleus of Macaca fascicularis.
The spikes from these LGN cells were sorted using in-house software, and neurons with firing rates
less than 0.5 spikes/s were discarded. Of the 25 resulting neurons, the average spike count discrepancy
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between unique and repeat sets was 1.9% with a standard deviation of±1.4%; these values correspond to
0.95% ± 0.7% of the total spikes that must be deleted to equalize the two spike counts. Following the
trends in Figure 8C, one would expect an information reduction of approximately 1%.

3.4. Multi-Neuron Information and Redundancy

3.4.1. Signal and Intrinsic Correlations

The role of correlations between neurons has been of great interest with respect to population coding.
The millisecond [18] and even sub-millisecond [19] precision at which the brain operates in response to
external stimuli, in addition to the complexity of features encoded by the brain, necessitates an ensemble
of many neurons in the processing of information [20,21]. Historically, the study of multineuronal
coding has been limited to methods employing measures of correlation between pairs of neurons. While
there is little doubt that the “signal correlations” [22] induced by stimulus alone do not sufficiently
account for the levels of correlation found in the brain [23,24] and that the levels of correlation
between neurons dynamically adjust in a stimulus-specific manner [25–29], the importance of these
correlations in the transmission of information has been debated [30–33]. More recent measures utilizing
information-theoretic approaches [34–36] rely on assumptions imposed by a decoder model, in which
the amount of information conveyed through pairwise correlations is estimated from the loss or gain
of information after correlation assumptions are relaxed (see [36] for further discussion). The lack of
tools capable of measuring information carried in neuronal correlations has hindered efforts to measure
coding at the population level, despite evidence that encoding procedures require the concerted effort of
many neurons [37–40].

To measure the effects of stimulus correlation on information redundancy, we independently altered
the stimulus and the coupling strength between neurons. We first progressively increased the correlation
between the stimuli provided to each neuron separately. Adjusting the stimulus correlation was
accomplished by generating two uncorrelated stimuli and a third reference stimulus; each neuron was
presented with a weighted average between one of the two uncorrelated stimuli and the reference
stimulus; the weights thus determined the strength of the correlation with the stimuli driving the two
neurons. The resulting stimuli, by virtue of being the sum of two Gaussian distributions with standard
deviations, whose sum is less than unity, must be multiplied by an adjustment factor to restore the
standard deviation back to a value of one, which in the GLM simulation, is analogous to stimulus
contrast. We then increased the coupling strength between neurons, which was determined by a scaling
factor applied to the post-spike coupling filter of the GLM simulation (Figure 2A). For this simulation,
we used mutually excitatory coupling measures, compensating for the firing rate increases that occur due
to the additional excitational input, and measured the effects of these parameters on information rates
and redundancy. While the GLM model places no upper limit on the strength of the coupling kernel, we
restricted its influence to a reasonable range and report the maximum coupling strength with one and the
minimum strength of zero, indicating that the two neurons are uncoupled.

Figure 9A shows the changes in information rates and redundancy as a function of stimulus
correlation. The upper panels show typical cumulative information plots when stimuli are nearly
completely decorrelated (r = −0.0019) and when completely correlated (r = 1; the neurons are driven
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by identical stimuli), with the shaded gray area corresponding to the redundant information. Firing rates
did not appreciably change across parameter choices (maximum deviation: 2.8%). As one would predict,
increases in redundancy accompany increases in stimulus correlation; neuronal noise prevents complete
redundancy. The solid and dotted black lines in Figure 9B show redundancy expressed as a proportion
of total information conveyed by the two neurons and demonstrates the effects that increases in stimulus
correlation and neuronal coupling strength have on redundancy. Figure 9C shows the reduction in group
information that accompanies neuronal coupling.

Figure 9. Signal- and coupling-induced correlations. (A) Effects of signal correlation on
redundancy. Responses of two uncoupled neurons to stimuli of increasing correlation are
compared. Cumulative information plots of the two extreme cases of low and high stimulus
correlation are displayed on top. For low correlation (r ≈ 0), group information (red curve)
and the sum of information from all the individual cells (blue curve) are nearly identical, due
to the lack of correlation in the neural responses; high correlation (r = 1) in the stimulus
induces correlation in the neural responses, and the amount of redundant information (shaded
gray area) increases. (Bottom) The relationship between stimulus correlation and both
group (red) and summed individual total information (blue). (B) Redundancy calculated
as a function of stimulus correlation (solid black line) and coupling strength (dotted black
line). (C) Effects of neuronal coupling on redundancy. In the upper left panel, neuronal
coupling is weak (coupling strength = 0), and the neurons transmit the same (independent)
information. In the upper right panel, the coupling is strong (coupling strength = 1), resulting
in redundant information (grey area between the group information, shown in red, and total
information, shown in blue).

3.4.2. Application to Large Populations

An important benefit of using the Fourier Method to display neuronal signals in the frequency
domain is that the temporal distribution of spiking activity, which is difficult to describe (and becomes
prohibitively so as the number of neurons is increased), is transformed into a collection of simple
Gaussian distributions, for which the calculation of entropy is straightforward. While the length of
the description of spike patterns in the time domain increases as an exponential of the number of
neurons (O

(
2N
)

for an N-neuron bit pattern), in the frequency domain, the corresponding calculation is
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constrained by the speed of diagonalization of the Fourier component covariance matrix; algorithms
for this computation, such as the Cholesky decomposition method, have order O (N3) (see, for
example, [41]). As a result, the information rates and levels of redundancy for populations of neurons
numbering in the hundreds can be calculated on an ordinary desktop computer in a matter of minutes.

An example provided in Figure 10A demonstrates the increase in redundancy as the number of
uncoupled neurons responding to the same stimulus progressively increases. Despite the lack of synaptic
influence within the network, correlations induced by the stimulus alone are of sufficient magnitude to
drastically increase the amount of redundant information (shaded gray area) as the number of neurons
increases. The contribution of each successive neuron added to the group decreases, as a fraction of its
signal information is inferable from other neurons. It becomes immediately apparent that extrapolation
of pairwise redundancy to larger populations can result in egregious misrepresentations of the true signal
information rate.

Figure 10B provides information calculation times for groups of up to 500 neurons, calculating up to
100 Hz for 128 trials each. Clearly, the method can easily handle larger neural populations than can be
recorded with current technologies. This figure demonstrates the capability of the Fourier information
method to scale with large populations of neurons and shows how the influence of both signal and
intrinsic correlations affect levels of information and redundancy.

Figure 10. Information in large neural populations. (A) Group size versus sum
total and group information using the GLM model. The sum total information,
which does not take into account correlations between cells, increases linearly with
the number of cells (blue), whereas the group information rate (red) climbs sub-
linearly, due to the progressive increase in redundant information (shaded gray area).
(B) Processing times on a desktop computer for group sizes of up to 500 neurons.
Calculations were performed on an Intel R© CoreTM i7-3770K running at 3.9 GHz with
32 GB RAM.

4. Summary and Conclusions

We used the GLM framework to simulate single neurons and populations of neurons and explored
the influence that various aspects of the discharge and of the interactions between neurons have on our
estimate of the amount of information transmitted by the population discharge.
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We found that our method is applicable over a wide range of mean firing rates and is robust against
both the non-stationarity of the firing rate and errors in the assignment of spikes to neurons in the
recorded population. We also described ways to correct for potential inaccuracies in the estimation
of information rates from a neural population. Finally, we showed that our method scales to population
sizes that exceed the capabilities of current technology and that information in such large groups can be
calculated quickly and efficiently.
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13. Destexhe, A.; Rudolph, M.; Paré, D. The high-conductance state of neocortical neurons in vivo.
Nat. Rev. Neurosci. 2003, 4, 739–751.
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3 Application to the Visual System
Our primary motivation thus far has been to develop a useful tool for dealing with measurements recorded from
many neurons in the brain. As we have emphasized, the brain is composed of many neurons working in tandem,
and electrophysiologists have hastened to make use of the burgeoning multi-channel technology that allows for
a more precise monitoring of brain activity at the cellular level. The three published papers prior to this chapter
have described a method that makes use of such signals in a practical manner, allowing for the estimation of
information in much larger populations of neurons than was previously possible. In this chapter, we provide a
few examples of how the application of the Fourier method may be useful in answering questions concerning
the nature of information processing in real brains. We begin with a brief description of the process by which
neurophysiological signals are acquired and prepared for analysis, and then proceed with real data recorded from
the Lateral Geniculate Nucleus and V1 of the macaque.

3.1 Materials and Methods
3.1.1 Surgery & Setup

The data used in this chapter were acquired from four recordings in three separate monkeys, using the techniques
described in Yu et al. (2010) and Crumiller et al. (2011). All surgical procedures were performed in accordance
with the National Institute of Health and guidelines and approved by the Icahn School of Medicine at Mount Sinai
Institutional Animal Care and Use Committee. Adult macaque monkeys (macaca fascicularis) were anesthetized
with an IM injection of ketamine hydrochloride (Ketaset, 10 mg/kg), followed by propofol (Diprivan) and local
anesthetic (xylocain) as needed during surgery. Anesthesia was maintained with sufentanil (0.05µg/kg − hr),
which was given intravenously (IV) throughout the experiment. Cannulae were inserted into the femoral veins
for IV infusion, the right femoral artery for the monitoring of blood pressure, the bladder for urine relief and
measurement, and the trachea for respiration. Phenylephrine hydrochloride (10%) and atropine sulfate (1%)
were applied to the eyes, and the corneas covered with gas-permeable contact lenses to prevent drying.

Blood pressure, electrocardiogram, and body temperature were measured and kept within physiological range.
An infusion of vecuronium bromide (.02 − .06 mg/kg − hr) induced paralysis, and the animal was artificially
respired; the respiration rate and stroke volume were adjusted to produce an end-expiratory value of 3.4-4% CO2
at the exit of the trachea cannula. A continuous IV flow of Ringer’s solution with 5% dextrose was maintained
to keep the animal hydrated throughout the experiment. The eyes were refracted and focused with correcting
lenses at a distance of 57 cm.

3.1.2 Stimuli & Data Acquisition

Stimuli were presented monocularly on a video monitor (luminance: 10 − 50 cd/m2) and driven by software
developed using the Psychtoolbox in MATLAB (Brainard, 1989; Pelli, 1997; Kleiner et al., 2007). Electrophysi-
ological recordings were made using electrodes developed by Neuronexus: a 32-channel electrode beta PTRODE
for the LGN, and an 8-shank, 64-channel Buzsaki-type 64-64A electrode for V1. The output of each electrode
was amplified, band-pass filtered, and sampled at 20 or 40 kHz and stored in a Plexon MAP computer for further
analysis.

3.1.3 Spike Sorting: Msort

Spike sorting, the process of identifying action potentials and the neurons from which they are derived, is fraught
with difficulties (Brown et al., 2004; Buzsáki, 2004; Lewicki, 1998). The large, spatio-temporal recordings that
result from multi-channel recordings generate time- and location-dependent voltage traces influenced by the
firing of many neurons. The large amount of digitized voltage data generated from a high sampling frequency,
multi-channel setup, compounded with both cortical and electrical noise, poses a difficult problem for the
neurophysiologist. Some of the recordings performed in our experiments span periods of hours, and the gigabytes
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Figure 1: Msort spike-sorting software. In-house software developed for the use in sorting multi-channel,
continuous data acquired from the Plexon data acquisition system. (Left) 4-channel voltage trace of an LGN
recording; the spikes from two select neurons are highlighted in yellow and pink. (Right) 3D histogram of pro-
jection coefficients of the waveforms from the same two neurons, projected onto the first Principal Components
of the two channels on which those waveforms show the highest amplitude. The histogram of the projected
coefficients shows two obvious peaks, indicating that these waveforms are highly separable.

of data generated were found to be either computationally intractable using multi-channel sorting software or
insufficiently robust using single-channel analysis procedures. To better address this issue, we have developed
our own spike-sorting software, tailored specifically to lengthy multi-channel recordings. This software is known
as Msort, and was developed in Matlab.

Msort is fully capable of importing raw voltage data from both Plexon and Axon Instruments, and implements
filtering, waveform thresholding, arbitrary electrode configurations, both automatic and manually clustering pro-
cedures, displays cell statistics, and contains an intuitive graphical user interface that allows flexible manipulation
of the data and its resulting clusters. Automatic sorting can be performed using various clustering algorithms,
most notably the Gaussian-mixture algorithm developed by Ken Harris and described in Harris et al. (2000).
Two sample views of the Msort screen can be seen in Figure 1. Figure 1 (left) shows a typical 4-channel voltage
trace from an LGN recording, with spikes from two neurons highlighted in pink and yellow. Figure 1 (right)
shows a histogram derived from the projections of the waveforms from those same two neurons onto the first
Principal Components of two channels, and histogrammed along the third dimension in the top of the view; the
waveforms themselves from the four channels can be seen on the bottom. Msort was used in the spike-sorting
of all data acquired in the experiments described.

3.1.4 Natural Movies

The use of natural scenes in visual neurophysiological experiments has seen a resurgence in recent years. The
efficient coding hypothesis proposes that the brain seeks to minimize energy usage while maximizing its ability to
process information. With respect to the visual world, one would expect that our visual system is optimized to
detect incoming signals that are representative of the world we see, and that the types of signals that maximize
its information throughput while minimizing energy usage will have the statistics of natural scenes. Indeed,
both psychophysical and electrophysiological experiments consistently demonstrate that the visual system is
well-adapted to, and appears to be designed for, natural scenes. Beginning even at the level of the retina,
both color information (Vasserman et al., 2013; Kellner and Wachtler, 2013) and contrast information (Mante
et al., 2005; Tadmor and Tolhurst, 2000; Pamplona et al., 2013) closely match the statistics of the natural
environment. The progression of the signal to the lateral geniculate nucleus involves compression and temporal
decorrelation most optimized for natural scenes (Dan et al., 1996). A slew of recent studies by both psychologist
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Figure 2: Repeat-Unique Paradigm. Repeated trials (labeled “A”) are interleaved with unique trials (labeled
“B” and “C”). The process of interleaving allows for a capture of unique and repeat entropy in a manner such
that long-term effects of the recording, such as increases or decreases in firing rate due to levels of anesthesia,
affect both entropies equally.

and neuroscientists alike demonstrate unequivocally stronger response by the brain to natural scene stimuli (Zhu
et al., 2013; Groen et al., 2013; Zylberberg and DeWeese, 2013; Fradcourt et al., 2013; Stansbury et al., 2013;
Betti et al., 2013; De Cesarei et al., 2013) regardless of the mode of assessment. Ma and Wu (2011) provides
a thorough discussion of the close relationship between natural scene statistics and the parallel evolution of the
visual system.

For this reason, we have chosen to use natural scene movies to maximally elicit informative responses from
our recorded cells. The visual stimulation used in this section follows the repeat-unique paradigm outlined
previously: a continuous movie, shot at 30 frames per second, was recorded of a walk through a wooded area
in Princeton, New Jersey. The movie was subsequently subdivided into approximately eight-second sections. A
single eight-second section, dubbed the “repeat” section, was interleaved with the remaining sections, which
were shuffled. The resulting sequence of Repeat–Unique (Figure 2) movies allows for the estimation of noise
entropy in response to the Repeats, and total entropy in response to the Uniques.

3.2 LGN responses to Natural Scenes
3.2.1 Information streams in the visual system

The extent to which the primate visual system works in a functionally hierarchical, manner (as originally proposed
by Hubel and Wiesel (1962)) has become a source of contention for visual neuroscientists. The primary visual
pathways in humans and monkeys consist of anatomically distinct cells and connectivity networks that lend
support to the notion that the visual signal is parsed into separate information streams. Early evidence supporting
this notion included the discovery of ON- and OFF center-surround retinal ganglion cells (Hartline, 1940), linearly-
and nonlinearly-responding ganglion cells in the cat, and further morphological studies (Rodieck and Brening,
1983) that suggested three basic retinal ganglion cell subtypes whose morphology and connectivity suggest
a functional divergence (Livingstone and Hubel, 1984b; Shipp and Zeki, 1985; Livingstone and Hubel, 1988;
Ungerleider and Mishkin, 1982) along the color and luminance axes. The majority of retinal ganglion cells (80%)
are midget cells (also known as P cells), which are small-bodied and densely distributed across the retina, and
project to the parvocellular layers, layers 3-6, of the lateral geniculate nucleus (LGN; hence P cells) (Goodchild
et al., 1996). The small diameter dendritic trees, with small receptive fields of P cells allow for greater spatial
resolution, especially in the fovea, where each midget RGC receives input from a single bipolar cell driven by
a single cone. In contrast, parasol cells, also known as M cells, are sparsely distributed across the retina with
much larger cell bodies and therefore greater contrast sensitivity (Kaplan and Shapley, 1986; Croner and Kaplan,
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1995) and larger receptive fields. These cells project to the magnocellular layers of the LGN (layers 1-2) and
receive larger, diffuse input from multiple bipolar cells (Boycott and Wässle, 1991). Finally, consisting of ~9%
of all retinal ganglion cells, are the bi-stratified on-center ganglion cells, which project to the small koniocellular
(Hendry and Yoshioka, 1994; Dacey and Lee, 1994) cells located in-between the layers of the LGN.

These retina-LGN projections from distinct cell types maintain their segregation at the primary visual cortex
(V1) (Livingstone and Hubel, 1984a,b), and are implicated in even further functional segregation past V1 to
other areas of the brain via two heavily interconnected pathways called the dorsal and the ventral pathways
(Ungerleider and Mishkin, 1982; Goodale and Milner, 1992), commonly referred to as the "what" and "where"
pathways due to the apparent functional differences of each (DeYoe et al., 1994). The two magnocellular layers
of the LGN project to layer 4Ca of V1, and are thought to compose the origin of the dorsal stream due not only
to anatomical connectivity but also the superior ability of M cells to react to time-varying stimuli. The dorsal
stream projects from V1 to the parietal lobe, which is known to be heavily involved in activation of gaze and
attention Ohlendorf et al. (2007), oculomotor preplanning (Rizzolatti et al., 1988), saccades, and generate spatial
awareness. Lesions to the posterior parietal cortex cause visually-related deficits such as simultanagnosia, optic
ataxia, and akinetopsia. In addition, studies have shown (Orban et al., 1984; McKee, 1981) that cell responses in
VT/MT are correlated with performance in speed-discrimination tasks. The ventral stream, in contrast, projects
from the four parvocellular layers of the LGN to layer 4Cb, through layers 4A, 3B, and 3/2a, successively, through
V2 and V4 and out diffusely to the areas of the medial temporal lobe and limbic system—areas heavily involved
in object recognition, memory, and emotional affect—with strong interconnections to the dorsal stream (Lamme
et al., 1998; Baird et al., 2002). Despite the appealing suggestion that these two streams of visual processing
subserve different functions, the evidence for the level of interconnectivity between the two has only become
greater with time (Farivar, 2009), and it has been suggested (Goodale and Milner, 1992) that the two streams
are not based on the visual information itself, but more so for what purpose the information itself is used.

While the morphology and anatomical connectivity of the P-parvo-ventral and M-magno-dorsal streams pro-
vide some evidence for a separation of function, the extent of overlap and ability of each to extract specific
features of a visual stimulus remains to be established. In addition, all evidence for separate streams of infor-
mation flow has been derived from the properties of individual cells, and a proper investigation must account
for the activity of groups of neurons contributing primarily to one function or the other before a dichotomy of
streams is asserted, and scientists therefore require methods capable of analyzing both quantity and type of
information a group of cells preferentially process. A thorough study of information in separate visual streams
is necessary in order to fill some of the gaps in the evidence concerning the relevance of specific features of a
stimulus to the function of these processing streams.

A preliminary view of the LGN response in Figure 3 shows the response of neurons to natural scenes. The
raster plot seen in Figure 3A shows the response of a particularly highly responsive neuron to repeats (red, left)
and uniques (blue, right); the precision of the response time is manifested by vertical raster lines in the repeats
that arise when the neuron responds to the same feature upon each occurrence of a repeated trial. Figure 3B
shows the individual cumulative information rates of the neurons in color; the thick black lines represent the sum
total information (dotted) when correlations between neurons are ignored, and the actual information conveyed
by the population (solid) when correlations between neurons are taken into account. The shaded gray area
shows the redundant (shared among neurons) information, and the redundancy of the population is measured
as the proportion of redundant information to the sum total, which in this case is just over 0.5.

The use of information measurement can assist in the detection of specific functional groups of neurons.
The Functional Clustering Algorithm (FCA) of Feldt et al. (2009) uses a parameter-free method to functionally
cluster neurons whose responses have been deemed similar in a statistically significant manner. We applied a
modified version of the FCA, whereby the clustering results from application of the FCA to each natural-scene
trial are averaged. We first tested our method on a simulated set of twenty neurons, using the simulation
methods described in Crumiller et al. (2013). All twenty neurons were stimulated with the same stimulus, yet
were subdivided into four groups of five neurons each, such that neurons within a group were mutually excitatory.
Our motivation was not to mimic a naturally-occuring functional cluster, but rather to generate spike trains in
which the responses of neurons within a functional group are dependent not on the stimulus, but rather on the
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Figure 3: LGN response to natural scenes. (A) A raster plot of a highly responsive LGN neuron. Repeat
trials are shown in red (left) and unique trials in blue (right). The vertical raster lines during the repeat trials
indicate that the neuron responded similarly during each repeated presentation of the stimulus, with a high
degree of temporal precision. (B) Cumulative information plots. The individual neurons (colored lines; bottom)
appear to form two separate groups with respect to the amount of information conveyed about the stimulus.
Their sum total (dotted black line) far exceeds the actual amount of information conveyed by the population
(solid black line), indicating a high proportion of redundant information exceeding 0.5.

influence of the other neurons within the cluster. Furthermore, we wished to observe the ramifications of such
connectedness on measures of information and redundancy within and between clusters.

Figure 4A shows the results from the simulation. The (i, j)th location in the coincidence matrix, observed
in the top left, shows the proportion of trials in which each cell i was functionally clustered together with
cell j. The four separate clusters are easily identified as the four red squares, indicated that the FCA method
consistently detected functional groupings between mutually excitatory neurons. The coincidence values found
in the coincidence matrix were used to generate a dendrogram (right), which further displays the prominent
separation between the four functional groups.

To measure the level of influence that functional interconnectivity has on the measurements of information
and on redundancy, we generated a probability distribution of information rates and redundancy proportions
taken from 10,000 randomly-chosen groups of five cells from the twenty simulated neurons. The resulting
distributions of information rates and redundancy proportions can be seen in the lower panels of A, represented
by the gray histogram and shown in units of standard deviations from the mean. The within-group information
and redundancy rates from all four groups are indicated by their color-coded lines on the plot. Each group’s
information and redundancy values exceeded 3.5 standard deviations away from the mean, indicating that the
effects of functional clustering on both information and redundancy are highly statistically significant.

The apparent lack of functional clustering upon application of the averaged FCA to the LGN, seen in Figure
4B is unsurprising; all cells were recorded using an electrode spanning 800 microns, found in the same geniculate
layer, and had similar receptive fields. Whether the lack of functional clustering is due to insufficient sensitivity
of the method, or to a lack of functional clustering in the recorded population, remains to be determined.
However, it should be noted that geniculate neurons receive independent signals pre-filtered by their respective
input retinal ganglion cells, each of which are informed by potentially unique micro-circuitry formed by the earlier
layers of the retina, and the similarity of these signals are governed by LGN cell type, input retinal cell type, and
receptive field location. A complete picture of the anatomical situation would greatly inform our understanding
of how the neural circuitry can influence the existence or non-existence of functional groupings, and the use of
information theory in the manner applied to the simulated data allows us to verify that a cluster of neurons
operate together in a statistically significant manner, as determined by their information rate and/or redundancy
proportion.
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Figure 4: Simulated and LGN functional clustering. (A) Simulation of 20 neurons, subdivided into four
functional groups of five neurons each. The results from repeated applications of the Functional Clustering
Algorithm of Feldt et al. (2009) to natural-scene movie trials were averaged to produce a coincidence matrix.
The (i, j)th position in the matrix represents the proportion of trials in which neuron i was positioned in the
same cluster as neuron j by the FCA algorithm. The four distinct clusters can be easily discerned from both
the coincidence matrix (left) and the dendrogram (right). (bottom) Permutation tests of random groups of
five neurons were used to generate distributions of group information rates (left) and redundancy proportions
(left), z-scored to produce normal distributions. The (normalized) information and redundancy of the color-
coded groups as determined by the FCA are displayed as vertical lines superimposed over the between-group
distributions. Each of the four groups had both information and redundancy rates exceeding 3.5 standard
deviations from the mean (p < .005). (B) Dendrogram of averaged FCA results from the LGN. No significant
clustering of functional groups was observed.

A determination of the actual function of a statistically significant cluster of neurons would require manip-
ulation of the stimulus. As we see in the next section, natural scene movies continue to provide a beneficial
stimulus environment for extracting information concerning the nature of a neuron’s role in the deciphering of
incoming visual signals.

3.3 V1
The parallel streams hypothesis proposes that information propagates through the visual system along functional
streams that preferentially process different aspects of the stimulus. The ventral and dorsal streams, purported to
specialize in object definition and location, respectively, should therefore extract aspects of the stimulus for which
their underlying circuits are optimized. A straightforward test of this hypothesis thus involves the presentation
of stimuli containing information skewed towards the preference of one stream or the other; a comparison of
population information rates between neurons located in these respective visual streams should show statistically
significant preferences toward one stimulus set or the other. In other words, a population of neurons in the dorsal
stream should convey a greater preference, manifest as an increase in information conveyed, towards stimuli
containing high temporal frequency, low spatial frequency, and decreased color information; populations in the
ventral stream should out-perform those in the dorsal stream when presented with low temporal frequency, high
spatial frequency, and color-rich stimuli.
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Figure 5: Processed natural scene stimuli. A full-color movie (A) is processed using two filters: a grayscale
filter (B), in which color information is removed but luminance information retained, and an isoluminant filter
(C), in which luminance information is removed but color information retained.

3.3.1 Processed Natural Scenes

To create a stimulus to directly test this hypothesis, we processed our original, full-color natural scene movie
(Figure 5A)) using two filters. The first filter, designed to preferentially stimulate the dorsal stream, produces
a grayscale image retaining only luminance information (Figure 5B) and ignores color information. We first
measured the luminance levels LR, LG, and LB of the red, green, and blue guns of the stimulus monitor
using an OptiCAL photometer . The luminance of each pixel at position (x, y) from the original Full Color
natural movie was then calculated from these measurements, and the corresponding grayscale luminance values
generated using a weighted sum of the LR, LG, and LB components:

Lx,y =
(

LR

LR + LG + LB

Rx,y + LG

LR + LG + LB

Gx,y + LB

LR + LG + LB

Bx,y

)
(1)

where R, G, and B are the pixel values for the three red, green, and blue guns. The second filter, designed
to preferentially stimulate the ventral stream, produces an image whereby each pixel emits the same luminance,
while retaining the same color proportions of the original RGB signal (Figure 5C). This filter first chooses, for
the entire duration of the stimulus, a luminance value Liso to which each pixel is matched. The luminosity
Lx,y of each pixel is calculated using the monitor luminosities via Equation 1, and the scaling factor required to
bring the pixel luminance to Liso applied to the original full-color image to one in which each pixel has the same
luminance Liso:

Ix,y = Liso

Lx,y

(Rx,y, Gx,y, Bx,y)

The resulting 8-second trials were presented using the repeat-unique paradigm similar to that shown in Figure
2, the only difference being that each trial applied either the two filtered versions or the original full-color with
equal probabilities of 1/3, resulting in 256 trials (128 uniques/128 repeats) of each type of filtered stimulus.
The random presentation of each trial avoids adaptation artifacts that might arise should one particular type of
filtered stimulus always precede another. Data were acquired using the Plexon data acquisition system, and the
spikes were sorted, as described above.

3.3.2 V1 responses

The neural responses to the three different stimulus classes (Full color/no filter; grayscale/luminance-only;
isoluminant/color-only) can be separately observed when responses to each trial are parsed and combined. Each
neuron can be represented by the proportion of its response to the three classes of stimuli. In Figure 6A (top),
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we represent the neuronal response to each stimulus as a bar plot, with each color representing the proportion of
spikes elicited by each stimulus class. Figure 6B (top) shows the same data plotted geometrically: the location
of each dot represents the weighted spike response to each stimulus, with the three stimulus classes shown
at the three corners of an equilateral triangle. The number of spikes elicited by each stimulus were generally
consistent and equal, as evidenced by clustering near the center of the triangle. However, when firing rate
response is replaced by the amount of information conveyed, the story is a bit different. Figure 6A (bottom)
and 6B (bottom) shows the information-proportion bar plot, analogous to Figure 6A (top) and 6B (top). The
information rate plots in response to each stimulus are clearly more complex: individual neurons show a marked
preference for some stimulus classes over others. Clearly, simple spike-count measures are too insensitive to
adequately express the types of processing occurring in primary visual cortex.

Figure 6C provides a sample measure of group redundancy of all neurons from one recording in response
to the three stimulus classes. In this plot, redundancy is expressed as a function of frequency. Interesting
to note is that, despite similar firing rates from all neurons for each of the three stimulus classes, the levels
of redundancy for each type of stimulus are similar for high frequencies, yet display a marked redundancy
signature for low frequencies, indicating that perhaps the different types of information propagating through this
particular population of neurons is shared in a frequency-dependent manner. Such claims, however, require that
the frequency-dependent information content of the stimulus first be properly indexed. Future studies may find
the measure of redundancy in populations of neurons from different anatomical regions invaluable in determining
how information in different stimulus classes are shared between neurons in a frequency-dependent manner.

Figure 6: V1 responses to Full color, grayscale, and isoluminant-color natural movies. (A) Neural
response to three stimulus classes as determined by spike count (top) and information (bottom). Rate responses
were homogenous, with nearly equal contributions of spikes to all three stimulus types; information rates were
more greatly skewed. (B) Neural responses represented geometrically. Responses represented by spike count
(top) cluster near the center of gravity; responses represented as information (bottom) are more spread out,
demonstrating increased neuronal specialization. (C) Group redundancy as a function of frequency for one
recording. The three classes of stimuli elicit different redundancy profiles from the same population of neurons.
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3.4 Single-cell Retina/LGN Information Transfer
3.4.1 The S-Potential

The function of the LGN, previously labeled as a simple relay between the retina and the visual cortex, has long
been obfuscated by a multitude of inputs, recurrent connections, and feedback connections that modulate its
spiking activity. Figure 7A shows a simulated spike train including spikes from both the LGN and the retina.
While each LGN spike (shown in green) is driven by a retinal ganglion spike (Kaplan and Shapley, 1984), not all
RGC spikes elicit an LGN response. RGC input spikes can be detected by LGN electrophysiological recordings as
large sub-threshold EPSPs, which occasionally (about 40% of the time) result in a concomitant LGN relay spike
(Kaplan et al., 1987; Bishop, 1953; Cleland et al., 1971; Sincich et al., 2007; Weyand, 2007). The 40% of spikes
from the retina which do succeed in eliciting LGN spikes appear to contain more information than the deleted
spikes, and this discrepancy increases as stimulus spot size decreases and the effect of the inhibitory surround
decreases (Uglesich et al., 2009). The mechanisms by which the LGN chooses the more informative retinal spikes
has been an active area of research (Carandini et al., 2005; Mante et al., 2008; Sherman, 2005; Andolina et al.,
2007; Sherman and Guillery, 1998; McAlonan et al., 2006, 2008), although a distinguishing functional difference
between the LGN and retinal receptive field is the extension and enhancement of the antagonistic surround in
the LGN (Hubel and Wiesel, 1961; Blitz and Regehr, 2005; Dubin and Cleland, 1977). The application of the
Fourier method to the retina-to-LGN transmission of information is therefore appealing, because of its ability to
measure information using limited data sets.

We applied our Fourier method to single-unit recordings of the cat LGN, taken from thirteen cells recorded
in eight different cats from 2005 until 2009. Recording procedures were similar to those described above for
the macaque; details of the experimental preparation and recording can be found in Uglesich et al. (2009). For
each cell, we recorded the spiking response of LGN neurons, and their input RGC neurons as determined by the
signature S-potentials, in response to a fixed-size spot whose luminance fluctuated according to a pseudorandom
distribution (van Hateren, 1997). As in the natural scenes case, 8 s trials were presented in a repeat-unique
paradigm, in which the sequence of luminance values was the same for every repeated trial. Each cell provided
multiple recordings, between which the spot size was altered to include or exclude the antagonistic surround to
varying extents.
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Figure 7: Information transfer between retina and LGN. (A) Approximately 40% of the simulated retinal
input spikes (black) succeed in eliciting LGN spikes (green). Spikes from the retinal ganglion driver cell can be
picked up from LGN voltage traces, appearing as an “S-potential” embedded in the initial rise of the elicited
LGN spike. (B) A possible deletion efficiency between RGC and LGN spikes. The reduction in firing rate divided
by a reduction in information allows us to determine whether or not spikes transmitted by the LGN to V1
contain more information. (C) Deletion efficiency as a function of spot size. As spot size increases, the deletion
efficiency the LGN decreases, indicating that the inhibitory surround inputs located in the retina may play a vital
role in determining how much information is conveyed by the retina.

3.4.2 Deletion Efficiency

A simple measure of deletion efficiency can be seen in Figure 7B. The LGN spike train may be thought of as
a sequence of successful retinal ganglion spikes selected for throughput. We thus can compare both the firing
rate of the LGN to the RGC in addition to its information content. If the proportion of spikes deleted by the
LGN exceeds proportion of information loss that results from the deletion, then the deleted spikes contain less
information. We can measure the efficacy of the deletion by dividing the proportion of spikes deleted to the
proportion of information deleted, which we call the “deletion efficiency.” In the example schematic shown in
Figure 7B, a 40% reduction in spike count is accompanied by only a 15% reduction in information, resulting in a
deletion efficiency of 2.7. Figure 7C shows deletion efficiency as a function of spot size, using the Fourier method
to supply the information measurements. Each neuron is displayed with a unique color and symbol; different
neurons provided different numbers of recordings and spot sizes, yet the emergent pattern is nonetheless in
agreement with Uglesich et al. (2009): an increase in spot size is accompanied by a reduction in the efficiency
of spike deletion by the LGN. Simultaneous measures of multiple neurons in the retina and LGN may provide
insight into whether or not spikes are specifically chosen from each neuron in a manner, aiming, perhaps, to
decorrelate input signals and reduce redundancy. A compression scheme that included the incoming signals
from multiple neurons would be an expected result of the efficient coding hypothesis, and the deletion efficiency
measure used here may be easily extended to measure the proportion of deletion of redundant information in a
large population of retina-LGN pairs.
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4 Conclusion
The work presented in this thesis addresses a longstanding problem in the field of neuroscience: how can one
estimate the amount of information conveyed by the discharge of a population of neurons. The brain, composed
of billions of neurons, processes information in massively parallel networks that are necessarily redundant, and
as technology improves, the electrophysiologist is becoming rapidly overwhelmed with large quantities of data
recorded from many neurons simultaneously. In this thesis, I have reiterated the urgent need for a large new
body of research, capable of adequately processing such data, generating hypotheses, and shining light on the
complex multi-neuronal activity that generates all of our perception, actions and thoughts, both conscious and
subconscious. In the past, methods have existed for measuring information in groups of neurons, yet the curse
of dimensionality has prevented measurements in populations larger than a small handful. The Fourier Method
of estimating information exploits the fact that– under certain realistic constraints– the Fourier coefficients of
uncorrelated segments of a signal are Gaussian distributed; knowledge of the underlying distribution of coefficients
allows the entropy of the signal, represented in the frequency domain, to be estimated using a relatively small
amount of laboratory data. As technological advancements continue to increase our ability to measure signals in
the brain, tools such as the Fourier Method, capable of dealing with a large population of neurons, will become
even more important.

We have outlined in detail three important facets of the method. We first introduced the motivation for
developing a new measure of information, and subsequently described in detail the specific construction of the
method, in both Yu et al. (2010) and Crumiller et al. (2011). The representation of neural spike trains in the
frequency domain allows us not only to exploit the Gaussian distribution of Fourier coefficients, as previously
discussed, but also to view the information conveyed as a function of temporal frequency. In the past, the firing
rate of a neuron has heavily scrutinized, and the importance of both precise spike timing and firing rate as a
function of time have propelled forth theories concerning the nature of information transfer in the brain. A view
of information processing in the temporal frequency domain, as opposed to that of time, provides insight into
the time scales on which a neuron communicates with its neighbors, and will doubtless yield new findings on
the relationship between neural firing rate, spike time precision, and information rates.

Next, we tested the robustness of the Fourier method, as described in Crumiller et al. (2013). The somewhat
boastful nature by which we espouse the virtues of the Fourier method is justified in that text. Most notably, we
provided a lower bound on the quantity of data required for the Fourier method to provide reasonable estimates
of information, we demonstrated that the Gaussianity assumption remains relevant in the face of strong local
perturbations of the firing rate, we corroborated the results of the method with the popular Direct Method of
Strong et al. (1998), and finally we demonstrated the computational efficiency of our method, using a modest
desktop computer to calculate information rates, in minutes, of the discharge of hundreds of simultaneously
firing neurons.

Our concluding chapter, Application to the Visual System, provides a brief sampling of the types of questions
which may be addressed by the Fourier Method. This chapter is not intended to answer any scientific questions
per se, but rather to lend insight into the diversity of applications for measures of information. Whether used
for assistance in conjunction with functional clustering measures, such as the Functional Clustering Algorithm
of Feldt et al. (2009), or to better hypothesize about the nature of stimuli preferred by a network of cells, or
even to measure specifically the nature of spiking in systems of which the role is still poorly understood, as in
the case of the lateral geniculate nucleus, the Fourier Method is a tool whose usefulness in answering future
scientific questions should prove profitable for years to come.
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