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GENETIC DISSECTION OF NEURAL CIRCUITS  

UNDERLYING VALUE BASED DECISION MAKING 

Hirofumi Nakayama, Ph.D. 

The Rockefeller University 2016 

Decision making is the fundamental process that we utilize to accomplish objectives in 

everyday lives. To understand the neural substrates of this process, we developed a 

behavioral task for mice that required repetition of the processes of action initiation, 

action selection, and learning. The task is a two-option choice task with stochastic reward 

delivery and reversals. To map brain areas involved in this type of value-based learning, 

we inactivated neuronal activity in the prefrontal cortex (PFC) and the nucleus 

accumbens (NAc) while mice performed the task.  

Inactivation of the NAc resulted in altered action initiation and learning but had subtle 

effects on choice. To dissect underlying neural circuitry, specific cell types and inputs of 

the NAc were inactivated. Inactivation of two dominant cell types in the NAc, direct and 

indirect pathway medium spiny neurons (MSNs), showed partially overlapping but 

distinct behavioral effects. Inactivation of direct pathway MSNs showed the stronger 

effect on learning while inactivation of indirect pathway MSNs also showed the effect. In 

contrast, only inactivation of indirect pathway MSNs affected behavioral measures of 

action initiation. The contribution of specific inputs to the NAc, dopaminergic and 

glutamatergic inputs, were also studied. While both experiments affected behavioral 

measures of initiation of action, only the inactivation of dopaminergic inputs affected 



learning. The effect on learning was specific to trials after reward omissions, and the 

effect was more prominent in trials which animals spent less time to initiate. These 

results provided new insights into the function of the NAc in processing information 

about reward values. 

In contrast, inactivation of two subregions in the PFC, the anterior cingulate cortex 

(ACC) and the orbitofrontal cortex OFC, affected action initiation and action selection. 

The action initiation was affected by inactivation of both areas, but OFC inactivation 

affected more behavioral measures. In contrast, action selection was affected more 

prominently in ACC inactivation. These differential effects on action initiation and action 

selection suggested the functional distinction between these two areas. 

In this study, we have developed a behavioral assay that allowed us to dissect different 

aspects of cognitive functions for decisions in mice and revealed roles of distinct circuit 

elements in the NAc and the PFC. Utilizing temporally precise inactivation, we found 

that the same circuit element was used for different cognitive processes depending on the 

timing. Although this type of behavioral task has been used extensively in rats and 

primates to understand decision making, identification of cell types and circuits required 

for these behaviors has been difficult in these species due to the lack of the powerful 

genetic methodologies. The approach we have demonstrated here is important because it 

enables genetic dissection of complex behaviors in mice, allowing studies of circuit 

properties that are executed by specific cell types in the cerebral cortex and basal ganglia. 

Since the approach taken in this study can be expanded to other neural circuits and 

behavioral paradigms, this and future studies will reveal the neural basis of decision 

making and, perhaps, lead to new approaches to treatments for maladaptive behaviors. 
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Chapter 1: Introduction 

1.1 Cognitive functions required for decision making: Action Initiation, Action 

Selection, and Learning 

Natural environments and our daily lives are full of uncertainty. We and other animal 

species are always faced with decision making under uncertainty in order to obtain 

preferable outcomes and to avoid dangers. To achieve such adaptive decisions, animals 

need to exert two distinct cognitive processes. The first process is ‘Action selection’. 

Animals need to form predictions about possible outcomes to select an appropriate 

action. The second process is ‘Learning’. If the outcome of the action is different from 

the prediction, animals need to update the prediction so that they can make a better 

decision in the future. The process to achieve optimal decision through repeated action 

selection and learning is known as ‘Reinforcement Learning’. This concept was 

originally developed in the field of engineering (Sutton and Barto 1998), and it is now 

widely used to explain decision making in a variety of animal species (O’Doherty et al. 

2003; Samejima et al. 2005; Ito and Doya 2009; Figure1.1). 

During action selection, values of available options are estimated based on experiences. 

Consequently, animals select an action by comparing expected reward value of each 

action. This process is sufficient to achieve the optimal decisions in stable environments. 

However, in most natural situations, the contingency between choice and outcome is 

occasionally changed. As a consequence, decisions based on the current action values are 

no longer optimal. In order to address environmental changes, the learning process 

becomes critical. At learning, action values are modified using environmental feedback, 

which is the difference between the predicted value and the actual outcome value in case 
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of value-based decision. Subsequent decisions are made based on the modified action 

value.  These processes enable animals to behave adaptively even if the environment or 

the context frequently changes (Schultz et al. 1997, Daw and Doya 2006). 

In the mammalian brain, midbrain dopamine neurons encode a reward prediction error 

signal when the expected reward value and the actual reward values are different 

(Mirenowicz and Schultz 1994). This signal meets the requirement for teaching signal in 

learning as was theorized in psychology (Rescorla and Wagner 1972; Pearce and Hall 

1980), and it is supposed to contribute to learning by modifying neuronal activity and 

plasticity in the cortico-basal ganglia circuit (Montague et al. 1996). 

In addition to action selection and learning, a decision about whether or not to perform an 

action is also a key determinant of the outcome. This process, ‘Action initiation’, is not 

explained by above processes, but it is more critical in some situations than the decision 

about which actions to choose. In the case of animals foraging for food, refraining from 

food seeking in the presence of predators during the day is more advantageous than the 

decision of to where they look for food. This concept was formalized in the modified 

reinforcement learning model (Niv et al. 2007), and recent work has begun to study the 

neural substrates underlying this process (Wang et al. 2013). 

The decision about whether or not to perform and action, the process of action initiation, 

is associated with various cognitive processes in the mammalian brain. Abnormal 

impulsivity can be regarded as the state in which impaired action initiation is observed in 

pathological states, for example addiction and attention deficits hyperactivity disorder 

(ADHD) (Schachar et al. 1995; Fillmore and Rush 2001; Monterosso et al. 2005; Dalley 

et al. 2011). Another concept relevant for action initiation is motivation or response 
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vigor, which defines how hard animals will work to obtain an outcome (Niv et al. 2007; 

Wang et al. 2013). Action initiation is also involved in reward-seeking behavior (Nicola 

2010). Deficits in this process lead to an inability to initiate a movement to obtain a 

reward even if animals or humans have an intact ability to assess reward value and 

control movements (Schmidt et al. 2008). Thus, the control of action initiation, together 

with action selection, is important for cognitive control of learning.  

The mammalian brain, which performs the above behavioral processes, is a highly 

evolved organ composed of hundreds of different cell type (Gong et al. 2007, Nelson, 

Sugino et al. 2006). Precise manipulation of these circuit elements is crucial for 

understanding how neural circuits achieve decision making. Since action initiation, action 

selection, and learning are associated with each other and not easily dissociable, 

combining well designed behavioral paradigms and mouse genetics will provide new 

insights into the neural substrates of decision making. 
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Figure 1.1 Conceptual framework of value-based decision making. 

Multiple cognitive processes are necessary for adaptive decisions. (Red) Action 

initiation: Animals need to initiate movement (Green) Action selection: Animals need to 

choose one of the available actions based on outcome prediction (Action selection). 

(Blue) Learning: An outcomes are delivered, and that invigorate subsequent action 

selection and modify action selection. 

1.2 Neural substrates for decision making 

1.2.1 Anatomy 

The basal ganglia are composed of several subcortical nuclei, including the striatum and 

the pallidum, and they play key roles in a variety of motor, emotional, and cognitive 

behaviors (Alexander, DeLong et al. 1986; Albin et al. 1989; Graybiel 2008). The proper 
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functioning of the basal ganglia requires the interaction with the neuromodulatory 

systems and the neocortex, including the prefrontal cortex (PFC).  

The neocortex is both the primary input structure to the basal ganglia and the recipient of 

basal ganglia outputs (Parent and Hazrati 1995; Kravitz and Kreitzer 2012, Figure 1.2). 

The striatum, the largest basal ganglia nucleus, receives inputs from the neocortex (Eblen 

and Graybiel 1995; Kincaid et al. 1998). The projections from the neocortex to the 

striatum are organized in a topographic manner (McGeorge and Faull 1989; Berendse et 

al. 1992; Brown et al. 1998; Voorn et al. 2004). The striatum is roughly divided into three 

subregions: the dorsolateral striatum, the dorsomedial striatum, and the nucleus 

accumbens (NAc, also known as the ventral striatum). While the dorsal striatum receives 

inputs from a wide range of sensory and motor cortices, the majority of the cortical inputs 

to the NAc originate from the PFC (McGeorge and Faull 1989). The striatum projects to 

basal ganglia output structures, including the globus pallidus and the substantial nigra 

pars reticulata (Gimenez-Amaya and Graybiel 1990; Levesque and Parent 2005). Those 

output structures send information back to the neocortex via thalamic nuclei (Joel and 

Weiner 1994; Sakai et al. 1998).   

The cortico-basal ganglia circuit both send inputs to and receive outputs from 

neuromodulatory systems. (Graybiel 1990). Especially, the dopaminergic modulation of 

the cortico-basal ganglia circuit plays significant roles in motor and reward-related 

behaviors (Schultz 1998; Nieoullon 2002). Most of the dopaminergic projections to the 

cortico-basal ganglia circuits originate from the ventral tegmental area (VTA) and the 

substantia nigra pars compacta (SNc) (Jimenez-Castellanos and Graybiel 1987). These 
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midbrain dopaminergic neurons also receive inputs from the cortico-basal ganglia circuit 

including the PFC and the striatum (Watanabe-Uchida et al. 2012).  

For successful decision making, neural circuits need to receive the feedback of animals’ 

actions. Thus, the loop organization of the cortico-basal ganglia circuit and its reciprocal 

interaction with neuromodulators have attracted a great deal of interest. In the following 

sections, the contribution of the cortico-basal ganglia circuit to action initiation, action 

selection, and learning is reviewed. 

Figure 1.2 Anatomical organization of cortico-basal ganglia loop 

Adapted from (Kravitz and Kreitzer 2012) 



7 

1.2.2 Action initiation 

Both the cortex and the striatum are involved in the generation of voluntary actions. In 

both primate premotor cortex and rat secondary motor cortex, neuronal firing is coupled 

to the initiation of voluntary action (Tanji and Kurata 1985; Romo and Schultz 1992; 

Kurata and Tanji 1985; Mita et al. 2009, Murakami et al. 2014). In the primate pre-

supplementary motor area, preparatory activity of a movement is observed when 

monkeys are trained to respond based on internally generated time estimates (Mita et al. 

2009). These neural activities can be preparatory signals for specific actions (Romo and 

Schultz 1992; Erlich et al., 2011; Guo et al., 2014)  or more general signal for urgency or 

impulse to act (Reddi and Carpenter 2000; Churchland et al. 2008; Thura et al. 2012), 

involvement of those medial motor and prefrontal cortical areas in action initiation is 

suggested.  

On the other hand, the striatum, especially the nucleus accumbens is potentially involved 

in action initiation in the context of reward-seeking behavior. In rat nucleus accumbens, a 

pause in neuronal firing is observed preceding the onset of feeding behavior (Krause et 

al. 2010). This study also showed that the electrical stimulation of the NAc disrupted 

consummatory licking behavior. This observation indicates the causal involvement of the 

NAc in action initiation. In addition to consummatory behavior, the NAc is also 

important for reward associated sensory cues to invigorate instrumental behavior. NAc 

lesions in rats disrupt the performance in Pavlovian to Instrumental Transfer (PIT); the 

behavioral paradigm used to assess the ability of reward associated sensory cues to drive 

instrumental actions (Corbit and Balleine 2011).  In the context of addiction studies, drug 
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seeking behavior induced by drug-associated cues or priming injection of drugs is 

associated with the action initiation process and depends on the NAc (Parkinson et al., 

1999). These behavioral studies suggest that the NAc is also involved in the process of 

action initiation. While the cortical contribution to action initiation is often associated 

with specific motor responses, actions that the NAc drives are more related to specific 

outcomes. 

Another example of cognitive control involved in action initiation is impulse control. 

Impulsivity is defined as the inability to inhibit inappropriate actions and the inability to 

wait for the outcome (Robbins 2011). Human patients with damages in the PFC or 

attention deficit hyperactivity disorder (ADHD) patients become impulsive and unable to 

inhibit inappropriate responses (Schachar et al. 1995; Aron et al., 2003). In reward based 

decisions, those patients have deficits in discounting reward value-based on the temporal 

proximity (Scheres et al. 2008). Consequently, subjects tend to choose the smaller 

amount of reward that can be obtained immediately, compared to the larger amount of 

reward obtained after delay. Lesion of rat orbitofrontal cortex (OFC) lesion affected the 

degree to which rats discount reward value that is obtained after delay (Winstanley et al. 

2004, Rudebeck et al. 2006, Mar et al. 2011, Stopper et al. 2012) However, the increase 

or decrease of impulsivity by lesion varies across different studies. Impulsivity regarding 

response inhibition is modeled by the number of premature responses in a choice task 

such as 5-chocie serial reaction time task (5-CSRTT) (Chudasama et al. 2003).  In 5-

CSRTT, animals have to respond to a visual cues within a predetermined time window. 

Rats with infralimbic cortex lesion showed an increased number of premature responses 

(responses before stimulus onset) (Chudasama et al. 2003). OFC lesion also increased 
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premature responses under some task conditions. Although there is some inconsistency 

across studies, they strongly suggest a contribution of the PFC to the control of 

impulsivity. 

The process of action initiation has also been studied in the context of addiction. Those 

who are addicted to drugs or alcohol behave prematurely without assessing the long term 

consequences of drug or alcohol taking behavior (Jentsch and Taylor 1999, Robinson and 

Berridge 2003; Fillmore and Rush 2001; Monterosso et al. 2005). 

1.2.3 Action selection 

Multiple areas of the cortico-basal ganglia circuits are involved in the action selection 

process. In both rodent and primate, neurons that encode actions are present throughout 

the cortico-basal ganglia circuit (Feierstein et al. 2006; Samejima et al.2005; Sul et al. 

2010; Seo et al. 2014). Samejima et al. recorded caudate neurons in monkeys performing 

a choice task whose action values are dynamically changed. In their study, about one-

third of neurons dynamically tracked the value of each action, indicating that action value 

is estimated in the brain as in the reinforcement learning model (Samejima et al. 2005). 

Neurons in the primate rostral cingulate motor areas change activity preceding action 

selection when a monkey changes the action after observing a reduced reward for the 

previous action (Shima and Tanji 1998). However, the same neurons did not respond 

when a reward is constantly given to the action. The contextual modulation of neuronal 

activity indicates that such neuronal activity reflects a selection process rather than a 

motor command for the specific movement. 
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From perturbation studies in rodents, other prefrontal and areas such as the anterior 

cingulate cortex (ACC), the secondary motor cortex (M2), the medial prefrontal cortex 

(mPFC) and the orbitofrontal cortex (OFC) have also been implicated in goal-directed 

action selection (Tervo et al. 2014, Sul et al. 2011, Ostlund and Balleine 2005, Gremel 

and Costa 2013). The information about movements, action values and outcome values is 

also represented in the premotor areas and mPFC both in rodents and primates (Campos 

et al. 2005; Matsumoto et al. 2007; Sul et al. 2011, Murakami et al. 2014). Perturbations 

in the M2 and the ACC were reported to affect outcome dependence of choices in rats 

(Sul et al. 2011; Tervo et al. 2014). In the striatum, flexible goal-directed actions depend 

on the dorsomedial striatum (Yin et al. 2005) and inflexible habitual actions depend on 

the dorsolateral striatum (Yin et al. 2004). The optogenetic activation of the dorsomedial 

striatum in mice affected the choice probability of options that is associated with the 

different probability of reward (Tai, Lee et al. 2012). These studies suggest that a wide 

range of cortico-striatal areas are involved in action selection. 

Abnormal action selection is characteristic of the state of compulsivity that is often 

associated with prefrontal damage or pathological states such as obsessive-compulsive 

disorder (OCD). Compulsive individuals take actions that don’t lead to desired 

consequences. Perturbations of several cortical and subcortical regions were reported to 

affect the level of compulsivity. Chronic photostimulation of the medial OFC or axonal 

projection from the medial OFC to the ventromedial striatum increased the frequency of 

innate grooming that is a model of compulsive behavior in rodents (Ahmari et al. 2013). 

Acute photostimulation of the lateral OFC in Sapa3 mutant mice rescued maladaptive 

grooming behavior acquired as a conditioned response (Burguière et al. 2013). 
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Compulsivity has also been studied in the context of addiction. Various pharmacological 

agents are known to affect compulsive behavior (Vanderschuren and Everitt 2004; Mundt 

et al., 2009; Barker et al. 2014). Even without brain damage or pharmacological agents, 

behavior can become compulsive as is observed in feeding behavior (Johnson and Kenny 

2010; Smith et al., 2014). Deep brain stimulation or pharmacological treatment of the 

NAc shell reduces the compulsive eating (Halpern et al. 2013; Smith et al., 2014). These 

findings suggest the relevance of specific brain areas for action selection and 

compulsivity. 

1.2.4 Learning 

Because of the dense projection of midbrain dopaminergic neurons to the ventral 

striatum, the ventral striatum is supposed to play a key role in modifying action or 

stimulus value-based on reward prediction error signals. This view is supported by a 

human fMRI study showing that the ventral striatum displayed activity that is correlated 

with reward prediction error (O’Doherty et al. 2004). Learning through reward prediction 

error was directly tested by a Pavlovian value blocking procedure (Holland 1984). Lesion 

of rat ventral striatum abolished the value unblocking effect, indicating that Pavlovian 

learning through prediction error of value is disrupted (McDannald et al. 2011). Lesion of 

the NAc also impaired the acquisition of instrumental learning (Corbit et al. 2001; 

Atallah et al. 2006). 

 The cortical contribution of learning has also been studied, focusing on the mPFC. The 

sensitivity of instrumental actions to value is disrupted by pre-training lesion of the PL 

but not by the post-training lesion (Ostlund and Balleine 2005). This work suggests that 
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the contribution of the PL to the learning of value. In a reaction time task, in which 

subjects have to respond within a specific time window after sensory cue onset, post-error 

adjustment of the behavior is observed (Naranayan et al. 2013). A contribution of the 

mPFC to this aspect of behavior is suggested both in human and rodent studies 

(Narayanan and Laubach 2008, Narayanan et al. 2013). A reward prediction error signal 

observed in primate mPFC also suggests a contribution of this area to reward-based 

learning (Matsumoto et al. 2007). 

1.3 Decision making for uncertain outcomes 

Decisions that we face in our daily lives and animals’ decisions in natural environments 

are often accompanied by changes in the rules or contexts. Such uncertainty has not been 

addressed in paradigms such as classical instrumental conditioning or Pavlovian 

conditioning, which has been used for studying cortico-basal ganglia circuit.  

For decisions under uncertainty, different neural systems are recruited compared to 

decisions under stable conditions (Cools et al. 2002). Also, brain areas involved in 

decisions under stable conditions can behave differently in uncertain situations 

(Durstewitz, Vittoz et al. 2010; Karlsson et al. 2012). In the OFC and the posterior 

cingulate cortex of primates, a subset of neurons represents reward risk independent from 

reward values (McCoy and Platt 2005, O.Neill and Schultz 2010). The differential 

representation of reward values and risks indicates that an uncertain situation is not 

exactly same as the sequence of different deterministic events in terms of neuronal 

representation. Such decisions under uncertainty are more vulnerable in pathological 
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situations such as Schizophrenia and Parkinson’s disease compared to the same decisions 

under stable environment (Knowlton et al. 1996). 

In behavioral paradigms for value-based decision making, one approach to introducing 

uncertainty is to make outcome delivery stochastic and to change the action-outcome 

contingency within a behavioral session. If animals receive a reward only in part of the 

trials, they are required to learn from both positive and negative outcomes. The repeated 

reversal or contingency change of the action-outcome association creates uncertainty and 

is advantageous in making animals learn continuously without forming habitual 

responses. Thus, choice tasks for probabilistic reward are the useful approach to studying 

value-based decision making. 

Several studies have conducted electrophysiological recording studies in rats and 

primates during probabilistic choice tasks. These studies identified cortical and striatal 

neurons that represent different aspects of a decision such as movements, action values, 

and outcome values (Sul et al. 2009, Ito and Doya 2009, 2015, Samejima et al.2005). 

Inactivation of the NAc shell using GABA receptor agonist muscimol reduced the 

probability of staying in the same choice after receipt of reward (Dalton 2014).  Several 

studies addressed the contribution of the serotonergic system to similar tasks. However, 

there is inconsistency among different studies probably because of differences in 

experimental conditions (Bari et al. 2010, Fonseca et al. 2015). Risk-based decision 

making in which subjects have to choose between small certain reward and large 

uncertain reward is also used to study how subjects respond to stochastic outcomes. In 

rats, muscimol inactivation of the medial OFC caused an increased tendency to choose 

large uncertain reward along with the increased probability of choosing the same option 
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after rewarded trials (Stopper et al. 2012). Muscimol inactivation of the mPFC caused a 

similar effect while inactivation of the OFC did not affect risk preference (St Onge and 

Floresco 2010). However, another study reported opposite effect in OFC lesioned rats 

(Abela and Chudasama 2013). 

1.4 Approaches used in the current study 

The choice task for stochastic reward is not only useful for assessing the process of action 

selection and learning but also for studying action initiation. Since the task is composed 

of temporally distinct trials, behavioral measures such as time to initiate each trial or the 

frequency of responding prematurely before choices becoming available can be used to 

study the action initiation process. These behavioral measures are used to study 

impulsivity in rodent 5-choice serial reaction time task (Chudasama et al. 2003). In 

another study, the ability of rats to refrain from responding is used to study the 

mechanism for initiation of voluntary actions (Murakami et al., 2014). For these reasons, 

we employed the trial based probabilistic choice task in the current study to dissociate 

cognitive functions using different behavioral measures. 

 We chose mice as a model animal in this study rather than rats or primates which are 

more commonly used in studying value-based decision making. The following reasons 

factored into this decision. First, the availability of genetic tools such as transgenic mice 

and viruses, allows the manipulation of neuronal activity in the specific elements of 

neural circuits. Second, the smaller brain size is more suitable for perturbation 

experiments, especially silencing experiments to show the causal involvement of a 

specific brain area. Since the brain consists of numerous different cell types that form a 
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complex network, the selective manipulation of cell types or specific projections is 

critical to elucidate neural substrates for decision making. 

We utilized optogenetics, a method to alter neuronal activity using light-sensitive ion 

channels or pumps, to manipulate neuronal activity (Boyden et al. 2005; Han, Chow et al. 

2011). This approach provides better temporal resolution and accessibility to specific 

components of neuronal circuits compared to other methods such as excitotoxic lesion or 

pharmacological perturbation.  Perturbation of neuronal activity during a specific time 

window is necessary both to dissociate cognitive processes and to avoid compensatory 

changes in gene expression or synaptic plasticity in neural circuits that may occur during 

chronic perturbations. Although pharmacological methods have also been used for 

transient manipulation of neuronal activity, even 1 or 2 hours of manipulation of activity 

is enough to cause compensatory circuit changes (Goeshen et al. 2011). For these 

reasons, even if behavioral paradigms contain behavioral measures of different cognitive 

processes, manipulation of neuronal activity on a slower time scale can hamper 

interpretation of underlying mechanisms. Therefore, the temporal resolution available in 

optogenetics is critical for our purpose. 

1.5 Unanswered questions and aims of the current study 

As described in this introduction, the involvement of the PFC, the NAc, and areas 

connected with these areas in value-based decision making have been suggested. 

However, there are issues that are remained to be answered. 
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The contribution to action initiation has been suggested in the premotor cortex, the PFC 

and the NAc (Chudasama et al. 2003; Corbit and Balleine 2011; Murakami et al. 2014). 

However, behavioral changes observed in some behavioral paradigms such as PIT can 

also be induced by changes in action selection and learning. Therefore, clear dissociation 

of different cognitive processes needs to be performed under a single behavioral 

paradigm. Changes in neuronal activity during the period of action initiation were widely 

observed in the PFC and the NAc along with their input and output structures including 

the VTA (Mirenowicz and Schultz 1994; Narayanan et al. 2008; Ito and Doya 2015). 

However, the causal involvement of such neuronal activity has been understudied. 

Therefore, it is critical to perform transient perturbation of neuronal activity in the PFC 

and the NAc during specific time periods. Another question that is remained to be 

answered is how these areas interact each other. Since those areas have both direct and 

indirect interaction, it is crucial to investigate the involvement of specific projections or 

cell types in these areas. 

Although the contribution of the dorsal striatum to action selection is well established 

(Samejima et al. 2005; Tai and Lee et al. 2012), the contribution of input structures to the 

dorsal striatum has not been extensively studied. The PFC is one of the primary input 

structures to the dorsal striatum, and its contribution to action selection has been 

suggested from electrophysiological recording studies (Sul et al. 2010; Kennerly et al. 

2011). However, neuronal representations of task-related events in the PFC are 

heterogeneous and are often redundantly observed in different subregions in the PFC (Sul 

et al. 2010; Kennerly et al. 2011). Although the contribution of the NAc to action 

selection has been understudied, some neurons in the NAc did respond to specific choices 
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(Ito and Doya 2008; Ito and Doya 2015). Therefore, it is critical to investigate the causal 

involvement of different subregions of the PFC and the NAc. 

The existence of reward prediction error signals in the VTA and dense projection from 

the VTA to the NAc indicate the involvement of these structures in learning. However, 

the causal involvement of specific cell types, inputs, and outputs of these structures are 

remained to be understood. Therefore, it is essential to test the contribution of specific 

cell types or specific projections to learning under a single behavioral paradigm in mice. 

Utilizing approaches described in the previous section, we aimed to dissect the 

contribution of the PFC and the NAc to action initiation, action selection, and learning 

processes in value-based decision making. In Chapter 2, we established a behavioral 

paradigm in mice to study value-based decision making. In Chapter 3, we performed the 

inactivation of the different circuit elements in the NAc while mice performed the 

behavioral task. This chapter was intended to achieve anatomical and functional 

dissociation of action initiation, action selection and learning in the NAc. In Chapter 4, 

we performed inactivation of each of the OFC and the ACC using the same behavioral 

task as Chapter 3. This chapter was intended to reveal the functional distinction of PFC 

subregions. Through these experiments, we hoped to clarify the contribution of the PFC 

and the NAc to each of three cognitive steps. We also hoped to identify the circuit 

elements for these cognitive processes using area, projection and cell type specific 

manipulation of neural activity. 
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Chapter 2: Development of Probabilistic Reversal Task 

An appropriate behavioral paradigm to study value-based decision making needs to meet 

following criteria. (1) Animals must be required to change actions frequently based on 

choice and outcome history. (2) Different aspects of the decision must be dissociable 

using distinct behavioral measures. Therefore, we decided to develop a trial based choice 

task with stochastic reward and reversal. The trial based organization of the task enables 

dissociation of action initiation, action selection, and learning. The stochastic delivery of 

reward and within session reversal contribute to choice flexibility over long behavioral 

sessions so that a large amount of data can be collected from individual animals. 

2.1 Subjects and configuration of the operant chamber 

All training sessions and test session were performed in a sound and light attenuated 

operant chamber (Med Associates). The operant chamber was equipped with a fan for 

ventilation, and it provides background white noise. Inside the chamber were illuminated 

using house light. One nose-port was placed in the middle of one wall, and two food 

magazines were placed on the left and right sides (Figure 2.1). Two food magazines were 

connected with food pellet dispensers that deliver a 14mg food pellet (BioServe). Control 

of stimuli in the chamber and data acquisition were performed using programs written for 

MedState Notation (Med Associates). 
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Figure 2.1 Configuration of the operant chamber. 

(A) Snapshot of a mouse in the operant chamber. (B) Schematic of the operant chamber 

shown in A. One nose-port was placed in the center of one wall, and two food magazines 

were placed on the left and right sides. 

2.2 Experimental design of the probabilistic reversal task 

In order to test the ability of mice to learn appropriate actions through trial and error, a 

probabilistic reversal task was developed. In a probabilistic reversal task, mice have to 

choose either left or right food magazine at each trial.  These choices are associated with 

different reward probability (75% for one side and 0% for the other), and this 

arrangement was switched several times in a daily session. Mice were trained to obtain 

the maximal amount of reward through trials and errors. 

All of the behavior experiments were performed in the operant chamber. Trial start was 

signaled by the illumination of an LED inside the center nose-port and mice were 

required to make a nose-poke to the center nose-port to initiate each trial. After a center 
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nose-poke is made, LEDs inside left and right magazines are turned on to signal the time 

window of choice. Once mice break the infrared beam inside the magazine, a food pellet 

was delivered at the pre-determined probability. One of the two food magazines is 

assigned as the correct food magazine and the other side as the incorrect food magazine. 

Choices of the correct food magazine were rewarded at the probability of 75%, and 

choices of the incorrect food magazine were never rewarded. Once animals reached a 

performance criterion (80% correct choices over the last ten trials), the correct and 

incorrect sides were stochastically switched. This switch was called a ‘reversal’ and 

occurred with 15% probability at the beginning of each trial. After the reversal, the 

positions of the correct and incorrect sides were kept constant until animals reach the 

performance criterion again. The stochastic nature of reward delivery and block transition 

make animals explore the better options through trial and error. The absence of reward 

after incorrect choices or 25% of correct choices were signaled by a click sound. The left 

or right food magazine entry were recorded as a choice and followed by 4.5sec inter-trial 

interval (ITI). Left or right magazine entries after center LED onset in the next trial were 

recorded as ‘premature responses’ and punished by 3 seconds time out. Failure to make a 

center nose-poke within 20sec after the onset of center LED is recorded as ‘Trial 

omission’ and also punished with a 3-second time out. 
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Figure 2.2 Probabilistic reversal task 

The schematic shows the flow of a single trial. Trial start was signaled by the onset of a 

center LED, and a mouse can initiate trial by making center nose-poke. Then, LEDs in 

the left and right food magazine were turned on, and the mouse can choose either the left 

or right food magazine. Subsequently, a reward was delivered at predetermined 

probability, and the next trial started after an inter-trial interval. Reward probability was 

switched after mice reaching a performance criterion. 
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2.3 Training steps and learning efficiency 

Animals were food restricted until their body weights became stable at 80-90% of their 

normal body weights. Animals were first trained to collect food pellet from the left and 

right food magazines (Magazine training, Figure 2.3A). Animals were next trained to 

make center nose-pokes (Step 1, Figure 2.3B). In step 1, center nose-pokes trigger food 

pellet delivery from either the left or right food magazine. The position of food pellet 

delivery was randomly determined at each center nose-poke. The next step required 

animals to initiate trials by making a center-nose-poke and enter food one of the two food 

magazines (Step 2, Figure 2.3C). In this step, center nose-pokes turned on the LED in 

either left or right magazine but this didn’t lead to pellet delivery. Entries to the 

illuminated food magazine led to a food pellet delivery. Entries to the unilluminated food 

magazine were punished with a 3-second time-out (House light extinguished). The 

position of the illuminated and unilluminated food magazines were randomly determined 

at each center nose-poke. In the next step, behavioral requirements were the same as the 

probabilistic reversal task except that reward probability of correct choice was set to 90% 

(Step 3, Figure 2.3D). Once animals achieve three or more reversals in a single 

behavioral session, animals were moved to the final step. As the final step of training, 

animals were trained with the same condition as the final probabilistic reversal task (75% 

reward probability for correct choices). However, inactivation was not performed in this 

step (Step 4 Figure 2.4D). Once animals achieved three or reversals in a single behavioral 

session, animals were tested in optogenetic inactivation experiments described in Chapter 

3 and Chapter 4. 
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Most animals completed magazine training in one day (Figure2.4A), although some 

animals were anxious in a novel environment or had difficulty in collecting food pellets 

from food magazines, they learned to collect food pellets after additional magazine 

training. Although some animals spent more than 10 days to pass a single step, all 

animals completed training steps within 30 days (Figure 2.4 B-F). 
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Figure 2.3 Training steps of the probabilistic reversal task. 

(A) Magazine training: Food pellets were delivered to both food magazines every minute 

regardless of entries to food magazines. (B) Step 1: Food pellets were delivered when 

animals made nose-pokes to the illuminated center nose-port. The position of the food 

pellet delivery was randomly chosen for each center nose-poke. (C) Step 2: Center nose-

pokes turned on an LED in either the left or right food magazine. Food pellets were 

delivered after entries to the illuminated food magazine. (D) Step 3: Center nose-pokes 

turned on LEDs in both left and right food magazines. A food pellet was delivered after a 

magazine entries based on pre-determined probability (90% vs. 0%). The probability was 

switched once animals learn to choose the side with the higher reward probability. (E) 

Step 4: The same procedure as Step3 but reward probabilities were changed to 75% and 

0%. 
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Figure 2.4 Number of days spent on each training step. 

Number of days spent on each training step is displayed as histogram (A) Magazine 

training (B) Step 1 (C) Step 2 (D) Step 3 (E) Step 4 (F) Total training duration 

2.4 Baseline behavior performance and behavioral measures to be tested 

In the last session of training step 4, animals flexibly change their choices between two 

options based on choice and outcome history. Animals could respond to the reversal of 

the correct option. The probability of making a correct choice (choice with high reward 

probability) was high at trials preceding reversals. Since reversals were not signaled, the 

correct choice probability was decreased after reversal but it gradually increased over 

trials (Figure 2.5A). The contribution of choice and outcome history to the next choice 
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were investigated by the probability of making the same choice as the previous trial (Stay 

probability). The stay probability was higher after choice and outcome combination that 

predict the higher amount of reward (Figure 2.5B). Test sessions follow the last training 

session. The number of reversals, total number of trials of daily sessions, and the 

probability of correct choice were studied to see the stability of behavioral performance 

across test sessions. Although the number of reversal and probability of correct choice 

were slightly increased over sessions, these behavioral measures were relatively constant 

over sessions (Figure 2.5 C-E). 

In addition to behavioral measures of baseline performance, several behavioral measures 

obtained through the probabilistic reversal task can be used to study action initiation and 

action selection. These behavioral measures include premature response, trial omission, 

start reaction time, and choice reaction time. Although these behavioral measures had an 

increasing or decreasing trend in first few sessions, the performance in adjacent sessions 

were stable (Figure 2.6). 

These results showed that animals trained with the probabilistic reversal task made a 

choice based on choice and outcome history. In addition, their behavioral performance 

was stable across repeated behavioral sessions. These observations indicate that the 

probabilistic reversal task is an appropriate behavior paradigm for value-based decision 

making. In addition, the use of multiple behavioral measures obtained through the 

probabilistic reversal task enables functional dissociation of action initiation, action 

selection, and learning. In the following chapters, we selectively manipulate circuit 

elements in the PFC and the NAc to investigate their contribution to each cognitive 

process. 
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Figure 2.5 Baseline behavioral performance. 

(A) Percentage of correct performance around reversal (Last session of 75% vs. 0%) (B) 

Choice and outcome dependence of stay probability (Last session of 75% vs. 0%) (C) 

Number of total trials during test sessions (D) Number of reversals during test sessions 

(E) Performance changes over training sessions during test sessions (n=59 mice) 
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Figure 2.6 Across session changes of behavioral measures obtained from 

individual trials. 

Daily change in behavioral measures. These behavioral measures were obtained for a 

daily session of each animal and plotted in box plots (A) The frequency of premature 

responses (# of premature responses / # of total trials) (B) The frequency of trial 

omissions (# of trial omissions / # of total trials) (C) Median start reaction time (D) 

Median choice reaction time  (n=59 mice) 



30 

Chapter 3: The Nucleus Accumbens Is Required for Action Initiation and Learning 

The NAc is implicated in a wide range of reward dependent behaviors. However, 

inactivation of neuronal activity in the NAc at fine temporal resolution has not widely 

studied. Since neurons in the NAc respond to a wide range of task-related parameters, 

inactivation experiments are especially meaningful to understand what these neural 

correlates mean. Therefore, we conducted optogenetic inactivation of the NAc while 

mice were performing the probabilistic reversal task to understand causal roles of the 

NAc in decision making and to give new insights into its anatomical basis. 

3.1 Non-specific inactivation of the nucleus accumbens 

In the probabilistic reversal task, each trial was divided into three different time periods 

(pre-start, pre-choice and post-choice period). The pre-start period begins from the onset 

of the center LED and ends at center nose-poke. The pre-choice period follows the pre-

start periods and ends when either left or right food magazine is chosen. The post-choice 

period is 3 seconds following left or right choice. A 532nm laser was used to deliver 

green light through optical fibers during each of three time periods at 10% of trials in an 

interleaved manner. (Figure 3.1). 
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Figure 3.1 Timings of inactivation during each trial type. 

During pre-start inactivation trials, the laser was turned on at the onset of center LED and 

turned off when animals nose poke to the center port. During pre-choice inactivation 

trials, the laser was turned on at the center nose poke and turned off when animals choose 

either left or right food magazine. During post-choice inactivation trials, the laser was 

turned on at the choice of left or right food magazine and last for 3 seconds. Each 

inactivation condition consisted of 10% of entire trials and placed at randomly 

interleaved order. 

In the beginning, we tried to inactivate all cell types in the NAc together. In order to 

inactivate the NAc, we utilized archaerhodopsin (ArchT), a light gated proton pump 

driven by green and yellow light. Neurons in the NAc were transduced with Adeno-

associated virus (AAV) that expresses ArchT under ubiquitous CAG promoter so that 
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ArchT is expressed in the NAc regardless of cell types. For the delivery of light to drive 

ArchT, optical fibers were implanted bilaterally into the core subregion of the NAc 

(Figure 3.2 A, B).  

Inactivation of the NAc at these three time periods led to distinct behavioral changes. 

Pre-start inactivation affected a behavioral measure of action initiation. The frequency of 

premature responses was increased (Figure 3.2 C). However, the frequency of trial 

omissions and start reaction time were not significantly affected (Figure 3.2 D, E). The 

effect of pre-start and pre-choice inactivation on the following choice was quantified 

using stay probability as in Figure 2.5 B (Figure 3.2 F-H). First, stay probability was 

calculated for all trials, and pre-start inactivation showed the decreased tendency of stay 

probability (Figure 3.2 G). Since pre-start inactivation also increased the frequency of 

premature responses, this decrease can be the secondary effect of premature responses. 

To address this possibility, stay probability was calculated from the trials without 

premature responses in order to avoid the effect of time-outs given after premature 

responses. Stay probability was not decreased when trials with premature responses and 

trial omissions were excluded from the analysis (Figure 3.2 H). Pre-choice inactivation 

did not affect choice itself (Figure 3.2 G, H).  

In contrast, post-choice inactivation affected the choice of the following trial (Figure 3.2 

I, J). Stay probability was increased after unrewarded trials by post-choice inactivation 

(Figure 3.2 J) while same manipulation did not affect stay probability after rewarded 

trials. This effect was specific to post-choice inactivation. Pre-start inactivation or post-

choice inactivation did not increase stay probability after unrewarded trials (Figure 3.2 G, 

H). The effect of inactivation on premature response also depended on the timing of the 



33 

inactivation. While pre-start inactivation caused increased the frequency of premature 

responses, post-choice inactivation decreased the frequency of premature responses 

(Figure 3.2 G). 

In summary, non-specific inactivation of the NAc during pre-start and post-choice 

inactivation led to distinct behavioral changes. Increase in the frequency of premature 

responses induced by pre-start inactivation indicates the impact on action initiation. 

Increased stay probability after unrewarded trials with post-choice inactivation indicates 

the impact on learning in an outcome-specific manner. On the other hand, control animals 

that have fiber implanted into the NAc and received the same illumination of laser did not 

show changes in premature responses or stay probability (Figure 3.3) 
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Figure 3.2 Non-specific inactivation of the NAc. 

(A) The target of inactivation. (B) A coronal section of a representative mouse brain. 

Circles illustrate the position of the NAc. (C) Effect of pre-start inactivation on premature 

response. (D) Effect of pre-start inactivation on trial omission. (E) Effect of pre-start 

inactivation on start reaction time. (F-H) Effect of pre-start and pre-choice inactivation on 

stay probability of the current trial. (G) Stay probability calculated from the entire trials. 

(H) Stay probability calculated from trials without premature responses and trial 

omissions. (I-J) Effect of post-choice inactivation at the previous trial on stay probability 

of the current trial. (K) The frequency of premature responses measured after laser off or 

post-choice inactivation trials. 

*: p<0.05, **: p<0.01, ***: p<0.001, (C), (D), (E), (K) Wilcoxon signed-rank test. (G), 

(H), (J) Chi-squared test. (n=9 mice, 107 sessions) 
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Figure 3.3 Control animals with optical fiber implant only. 

(A) Effect of pre-start inactivation on premature response. (B) Effect of pre-start 

inactivation on trial omission. (C) Effect of pre-start inactivation on start reaction time. 

(D-F) Effect of pre-start and pre-choice inactivation on stay probability of the current 

trial. (E) Stay probability calculated from entire trials. (F) Stay probability calculated 

from trials without premature responses and trial omissions. (G-H)Effect of post-choice 

inactivation at the previous trial on stay probability of the current trial. (I) The frequency 

of premature responses measured after laser off or post-choice inactivation trials. 

p>0.05, (A), (B), (C), (I) Wilcoxon signed-rank test. (E), (F), (H) Chi-squared test. (n=5 

mice, 73 sessions) 
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3.2 Inactivation of specific cell types in the NAc 

Results of non-specific inactivation of the NAc motivated us to perform cell-type specific 

inactivation experiments. Since the direct pathway and indirect pathway medium spiny 

neurons (MSNs) are two dominant cell types in the striatum, those cell types were 

targeted.  

3.2.1 Inactivation of direct pathway MSNs 

Direct pathway MSNs were targeted using the Drd1-Cre (EY266) mouse line. Cre-

dependent AAV expressing ArchT was injected into the NAc (Figure 3.4 A, B). Contrary 

to non-specific inactivation of the NAc, inactivation pre-start inactivation did not cause 

significant changes in behavioral measures of action initiation (Figure 3.4 C-E). Both pre-

start and pre-choice inactivation did not cause significant changes in a choice of the 

current trial although there were increasing trends in stay probability after unrewarded 

trials (Figure 3.4 F-H). 

On the other hand, post-choice inactivation caused a similar behavioral change in choice 

of the following trial as was observed in non-specific inactivation experiments. Stay 

probability after unrewarded trials was increased by post-choice inactivation of the 

previous trial (Figure 3.4 I, J). Post-choice inactivation was also accompanied by the 

reduced premature response in the following trial (Figure 3.4K). 
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3.2.2 Inactivation of indirect pathway MSNs 

Indirect pathway MSNs were targeted using A2A-Cre mouse line. In order to cover large 

number of neurons, this mouse line was crossed with ArchT reporter mouse line (Ai40 

line, Allen Institute), and optical fibers were implanted into the NAc (Figure 3.5 A, B). 

Pre-start inactivation led to a large increase in the frequency of premature responses and 

trial omissions (Figure 3.5 C, D). Pre-start inactivation had differential effects on start 

reaction time depends on the previous outcome. Pre-start inactivation decreased start 

reaction time after rewarded trials while it increased start reaction time after unrewarded 

trials (Figure 3.5 E). Stay probability was decreased by pre-start inactivation (Figure 3.5 

F-G). Since stay probability of the trials without premature response and trial omission 

were affected less by pre-start inactivation, this effect was partly due to the increased 

number of premature response and trial omission rather than effect on choice itself 

(Figure 3.5 H). Stay probability was not affected by pre-choice inactivation, which were 

more proximate to the timing of choice (Figure 3.5 F-G). 

Post-choice inactivation increased stay probability after the unrewarded trials (Figure 3.5 

I-J). In contrast to post-choice inactivation of direct pathway MSNs, post-choice 

inactivation of indirect pathway MSNs did not affect premature responses on the next 

trial (Figure 3.5K). 

In summary, behavioral measures of action initiation were differentially affected by 

inactivation of the direct pathway and indirect pathway MSNs. During pre-start period, 

only the inactivation of indirect pathway MSNs affected premature response and trial 

omission (Figure 3.4C-E, 3.5 C-E) suggesting the differential role of the direct and 
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indirect pathway for action initiation. Although a similar trend was observed in stay 

probability change after post-choice inactivation, the inactivation of direct pathway 

MSNs caused a larger increase (Figure 3.4J, 3.5J). The larger effect of pre-start 

inactivation of indirect pathway MSNs and the larger effect of post-choice inactivation of 

direct pathway MSNs suggest functional segregation of these cell types in the NAc. 
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Figure 3.4 Inactivation of direct pathway MSNs in the NAc. 

(A) The target of inactivation. (B) A coronal section of a representative mouse brain. 

Circles illustrate the position of the NAc. (C) Effect of pre-start inactivation on premature 

inactivation on start reaction time. (F-H) Effect of pre-start and pre-choice inactivation on 

stay probability of the current trial. (G) Stay probability calculated from the entire trials. 

(H) Stay probability calculated from trials without premature responses and trial 

omissions. (I-J) Effect of post-choice inactivation at the previous trial on stay probability 

of the current trial. (K) The frequency of premature responses measured after laser off or 

post-choice inactivation trials. 

*: p<0.05, **: p<0.01, ***: p<0.001, (C), (D), (E), (K) Wilcoxon signed-rank test. (G), 

(H), (J) Chi-squared test. . (n=6 mice, 74 sessions) 
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Figure 3.5 Inactivation of indirect pathway MSNs in the NAc. 

(A) The target of inactivation. (B) A coronal section of a representative mouse brain. 

Circles illustrate the position of the NAc. (C) Effect of pre-start inactivation on premature 

response. (D) Effect of pre-start inactivation on trial omission. (E) Effect of pre-start 

inactivation on start reaction time. (F-H) Effect of pre-start and pre-choice inactivation on 

stay probability of the current trial. (G) Stay probability calculated from the entire trials. 

(H) Stay probability calculated from trials without premature responses and trial 

omissions. (I-J) Effect of post-choice inactivation at the previous trial on stay probability 

of the current trial. (K) The frequency of premature responses measured after laser off or 

post-choice inactivation trials. 

*: p<0.05, **: p<0.01, ***: p<0.001, (C), (D), (E), (K) Wilcoxon signed-rank test. (G), 

(H), (J) Chi-squared test. . (n=6 mice, 85 sessions) 
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3.3 Inactivation of specific inputs to the NAc 

Projections from multiple brain areas are also the determinant of function heterogeneity 

of the NAc. Therefore, we tested the effect of inactivation of distinct inputs to the NAc. 

Dopaminergic input and glutamatergic inputs were selectively inactivated in the NAc. 

The dopaminergic projection originates from midbrain dopaminergic neurons, and 

glutamatergic inputs are mainly from the neocortex and the hippocampus. 

3.3.1 Inactivation of dopaminergic input to the NAc 

In order to target dopaminergic projection, the Slc6a3-Cre (SG62) mouse line was used. 

Cre dependent AAV expressing ArchT was injected into the ventral tegmental area 

(VTA), and optical fibers were bilaterally implanted into the NAc (Figure 3.6 A, B). The 

localization of ArchT in axon terminals of dopaminergic neurons enabled inactivation of 

the dopaminergic input to the NAc. Pre-start inactivation increased the frequency of 

premature responses (Figure 3.6 C) while it did not affect start reaction time and the 

frequency of trial omissions (Figure 3.6 D-E). Pre-start and pre-choice inactivation did 

not cause significant changes in choice (Figure 3.6 F-H).  

On the other hand, post-choice inactivation increased the stay probability after 

unrewarded trials (Figure 3.6 I-J). In contrast to pre-start inactivation, post-choice 

inactivation did not affect the premature response in the following trial (Figure 3.6 K). 
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3.3.2 Inactivation of glutamatergic inputs to the NAc 

Glutamatergic inputs to the NAc were targeted using the Emx1-Cre mice line in which 

Cre recombinase is expressed in the majority of cortical pyramidal neurons and 

hippocampal neurons. The Emx1-Cre line was crossed with an Ai40 line so that all cre 

positive neurons express ArchT. Optical fibers were implanted bilaterally into the NAc to 

inactivate glutamatergic terminals in the NAc (Figure 3.7 A, B). Pre-start inactivation 

increased the frequency of premature responses as is observed in the inactivation of the 

dopaminergic input (Figure 3.7 C), and it did not affect start reaction time (Figure 3.7 E). 

Both pre-start and pre-choice inactivation did not affect choice (Figure 3.7 F-H).  

For other behavioral measures, inactivation of glutamatergic inputs to the NAc showed 

distinct behavioral changes compared to inactivation of dopaminergic inputs. Pre-start 

inactivation decreased the frequency of trial omissions (Figure 3.7 D). Contrary to other 

inactivation experiments described so far, post-choice inactivation of glutamatergic 

inputs to the NAc did not increase stay probability following both rewarded and 

unrewarded trials (Figure 3.7 I-J).  

In summary, selective inactivation of inputs to the NAc with different neurotransmitter 

caused differential behavioral changes in behavioral measures of action initiation and 

learning. Post-choice inactivation increased stay probability after unrewarded trials only 

in dopaminergic projection (Figure 3.6 J, 3.7J). Premature response was affected by pre-

start inactivation of both dopaminergic and glutamatergic inputs (Figure 3.6 C, 3.7 C) 

while only inactivation of glutamatergic inputs to the NAc affected trial omission (Figure 

3.6 D, 3.7 D). 
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Figure 3.6 Inactivation of dopaminergic inputs to the NAc. 

(A) The target of inactivation. (B) A coronal section of a representative mouse brain. 

Left: Circles illustrate the position of the NAc. Right: Injection sites in the VTA. Circles 

illustrate the position of the VTA. (C) Effect of pre-start inactivation on premature 

response. (D) Effect of pre-start inactivation on trial omission. (E) Effect of pre-start 

inactivation on start reaction time. (F-H) Effect of pre-start and pre-choice inactivation on 

stay probability of the current trial. (G) Stay probability calculated from the entire trials. 

(H) Stay probability calculated from trials without premature responses and trial 

omissions. (I-J) Effect of post-choice inactivation at the previous trial on stay probability 

of the current trial. (K) The frequency of premature responses measured after laser off or 

post-choice inactivation trials. *: p<0.05, **: p<0.01, ***: p<0.001, (C), (D), (E), (K) 

Wilcoxon signed-rank test. (G), (H), (J) Chi-squared test. (n=6 mice, 63 sessions) 



48 



49 

Figure 3.7 Inactivation of glutamatergic inputs to the NAc. 

(A) The target of inactivation. (B) Left: A coronal section of a representative mouse 

brain. Squares illustrate the position of the NAc. Right: A magnified picture shows 

increased axonal density in the NAc compared to the medial septal nucleus (MS) that is 

located in the more ventral and medial location. (C) Effect of pre-start inactivation on 

premature response. (D) Effect of pre-start inactivation on trial omission. (E) Effect of 

pre-start inactivation on start reaction time. (F-H) Effect of pre-start and pre-choice 

inactivation on stay probability of the current trial. (G) Stay probability calculated from 

the entire trials. (H) Stay probability calculated from trials without premature responses 

and trial omissions. (I-J) Effect of post-choice inactivation at the previous trial on stay 

probability of the current trial. (K) The frequency of premature responses measured after 

laser off or post-choice inactivation trials. *: p<0.05, **: p<0.01, ***: p<0.001, (C), (D), 

(E), (K) Wilcoxon signed-rank test. (G), (H), (J) Chi-squared test. (n=7 mice, 104 

sessions) 
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3.4 Reaction time dependence of stay probability change 

Post-choice inactivation increased stay probability specifically after unrewarded trials. 

This outcome-specific effect was not easily explained by general deficits in learning. In 

order to investigate the mechanisms that generated the outcome-specific effect, data from 

post-choice inactivation trials were analyzed more in detail.  

In reinforcement learning models, values of behavioral events such as sensory stimuli, 

actions and outcomes were discounted over the passage of time (Montague et al. 1996; 

Sutton and Burto 1998). The temporal discounting of values were introduced into the 

models so that recent events or events that would occur in the near future affected more 

on the future decisions..  

Since start reaction time after unrewarded trials was shorter than that after rewarded trials 

(Figure 3.2 E, 3.4 E, 3.5 E, 3.6 E, 3.7 E), we speculated that the difference in temporal 

discounting effects between these trial types were the cause of the outcome-specific 

effect of post-choice inactivation. To test this idea, trials with short start reaction time and 

long start reaction time were compared for laser off trials and post-choice inactivation 

traials. Therefore, in order to see the effect of temporal proximity of the timing of post-

choice inactivation and the timing of choice at the following trial, we compared the effect 

of post-choice inactivation between trials with short and long start reaction time.  

The median start reaction time of laser off trials was used as a threshold and trials with 

reaction time shorter than the threshold was classified as short reaction time trials. The 

rest of trials were classified as long start reaction time trials. When stay probability after 

unrewarded trials was calculated separately for short and long reaction time trials, only 

stay probability calculated from short reaction time trials showed significantly increased 
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by post-choice inactivation (Figure 3.8 A-D). Since some conditions showed as increased 

trend of stay probability even in long reaction time trials, the effect of inactivation on the 

stay probability was assessed using permutation test. Inactivation effect difference was 

quantified using the following formula. 

Inactivation effect difference = (StayP(ON, Short) - StayP(OFF, Short) ) - (StayP(ON, Long) - 

StayP(OFF, Long)) 

StayP : Stay probability after unrewarded trials 

ON/OFF : Laser ON/OFF of the previous trial 

Short/Long RT : Short or long reaction time of the current trial 

Probability distribution of the inactivation effect difference was generated using 

permuted behavioral data in which all choice and outcome conditions were kept the same, 

and only labeling of inactivation conditions were randomly assigned. In non-specific 

inactivation and inactivation of indirect pathway MSNs, the inactivation effect was 

significantly stronger in trials with short start reaction time. (Figure 3.8 E-H). The other 

two conditions also showed trends of increasing inactivation effect. These results suggest 

that post-choice inactivation tends to be more effective when the timing of inactivation 

and next trial is proximal. In contrast, such difference was not observed in stay 

probability after rewarded trials (Figure 3.8 I-L). 

One interpretation of this result is that inactivation of the NAc transiently change the 

behavioral state of mice, and the effect decayed over the passage of time. In order to test 

this possibility, trials in which mice receive pre-start inactivation after unrewarded trials 

were compared. Although the timing of the pre-start inactivation is more proximate to the 
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timing of choice compared to the timing of post-choice inactivation in the previous trials, 

pre-start inactivation did not increase stay probability after unrewarded trials (Figure 

3.2E, 3.4E, 3.5E, 3.6E). Therefore, both the temporal proximity of inactivation to the next 

trial and the coincidence of inactivation and outcome delivery (the absence of food pellet) 

were necessary for the effect of post-choice inactivation. 
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Figure 3.8 Start reaction time dependence of post-choice inactivation effect on stay 

probability after unrewarded trials 

(A-D) Stay probability after unrewarded trials was calculated separately from trials with 

short or long start reaction time. (E-H): Difference of inactivation effect (StayP(Laser 

ON)-StayP(Laser OFF)) between short and long start reaction time trials. Histograms 

were obtained by permutations (1000 times). Black vertical lines showed the threshold 

for p=0.05. Red vertical lines showed inactivation effect difference obtained from 

experimental data that was calculated from bars in (A-D). (I-J) Stay probability after 

rewarded trials were calculated separately from trials with short or long start reaction 

time.   

(E) Non-specific inactivation: p=0.004 (F) Direct pathway inactivation: p=0.229 (G) 

Indirect pathway inactivation: p=0.018 (H) Dopaminergic input inactivation: p=0.303, 

permutation test 

*: p<0.05, **: p<0.01, ***: p<0.001, (A-D), (I-L) Chi-squared test. (A, E, I) n=9 mice, 

107 sessions. (B, F, J) n=6 mice, 74 sessions. . (C, G, K) n=6 mice, 85 sessions. (D, H, L) 

n=6 mice, 63 sessions. 
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3.5 Summary 

Non-specific inactivation of the NAc showed its involvement in action initiation and 

learning. From cell type or input specific inactivation experiments, each circuit element 

contributes to either one or both processes. One notable finding was the preferential 

contribution of indirect pathway MSNs to action initiation (Figure 3.5). Such specific 

effect was not predicted from the functional dichotomy of direct and indirect pathway 

MSNs. The learning effect shown by the increase of stay probability in the following 

trials were observed by inactivation of different circuit elements in the NAc (Figure 3.4, 

3.5, 3.6). However, this effect was not observed in inactivation of glutamatergic inputs to 

the NAc (Figure 3.7). In contrast, inactivation of glutamatergic inputs to the NA only 

showed changes in action initiation (Figure 3.7). Another interesting observation was the 

outcome and reaction time dependent effects of post-choice inactivation on learning 

(Figure 3.8). Potential cause and underlying mechanisms will be discussed in Chapter 5. 
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Chapter 4: The Prefrontal Cortex Is Required for Action Initiation and Action 

Selection 

While inactivation of multiple circuit elements in the NAc revealed their roles in action 

initiation and learning, inactivation of the NAc during pre-choice period only had a subtle 

effect on choice. The prefrontal cortex (PFC) has been suggested to play important roles 

in a wide range of cognitive control, including action initiation and action selection 

(Miller and Cohen 2001; Rudebeck et al. 2008; Murakami et al. 2014). However, 

temporally precise inactivation to dissect underlying neural substrates and cognitive 

processes was not extensively studied in mice. To investigate the contribution of the PFC 

to action initiation and action selection, inactivation of two PFC subregions, the ACC and 

the OFC was performed. 

4.1 Inactivation of cortical neurons using VGAT-ChR2-EYFP mice 

In order to inactivate the activity of pyramidal neurons in the PFC, the VGAT-ChR2-

EYFP mouse line was used (Figure 4.1). In VGAT-ChR2-EYFP mice, the majority of 

cortical interneurons express Channelrhodopsin-2 (ChR2). Activation of ChR2 

expressing interneurons leads to suppression of pyramidal neuron activity in the same 

area. The efficiency of silencing is characterized in a previous study (Guo et al. 2014).  

The ACC and the OFC were inactivated at pre-start, pre-choice or post-choice period as 

in NAc inactivation experiments (Figure 4.2). Although the functional distinction of 

different prefrontal subregions has been studied, anatomical boundaries between different 

prefrontal subregions are not clear. Therefore, to obtain insights into anatomical location, 

the effect of inactivating different cortical volumes were compared. Inactivation of the 
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different size of areas was achieved using different laser powers as the previous study 

characterized the extent of inactivation in distant areas from the stimulation center (Guo 

et al. 2014). Three different laser powers (High:12-16mw, Medium: 4-5mW, Low:1.5-

2.5mW) were used in order inactivate either large portion of the PFC or more localized 

areas in the PFC. 

Figure 4.1 Inactivation of cortical pyramidal neurons using VGAT-ChR2-EYFP 

mouse line. 

(A) Schematics of inactivation of pyramidal neurons by inactivation of cortical 

interneurons. (B) Results of slice recording in response to photostimulation. (C) Expected 

area that was inactivated at different laser power 

(Adapted from Guo et al., 2014) 
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Figure 4.2 Location of inactivation and time windows of inactivation. 

(A) Horizontal view of mouse brain with targeted location of the fiber implant (B) Three 

inactivation conditions (pre-start, pre-choice, and post-choice inactivation) was given at 

interleaved trials 
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4.2 Inactivation of the ACC and the OFC at high laser power 

At highest laser power, inactivation aimed at the ACC and the OFC supposed to 

inactivate large overlapping areas in the PFC because of the size of the area receiving 

photoinhibition (Figure 4.1C-D). In order to see the effect of inactivation of the large 

portion of the PFC, inactivation at high laser power was performed. Consistent with the 

expected range of inactivation, inactivation of both the ACC and the OFC caused similar 

behavioral changes. 

Behavioral measures of action initiation were affected in both ACC inactivation and OFC 

inactivation. Pre-start inactivation increased the frequency of both premature responses 

and trial omissions (Figure 4.3 A, B, D, E). ACC inactivation also increased start reaction 

time specifically after unrewarded trials (Figure 4.3 C). Pre-choice inactivation of either 

the ACC or the OFC caused increased choice reaction time (Figure 4.4).  Although OFC 

control animals also showed increased reaction time probably due to strong laser power 

and proximity of implant sites and location of eyes, the OFC or the ACC inactivation 

group showed much larger increase in reaction time.  
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Figure 4.3 Impaired action initiation by inactivation of the ACC or the OFC at high 

laser power during pre-start period. 

(A) Effect of ACC inactivation on premature response. (B) Effect of ACC inactivation on 

trial omission. (C)Effect of ACC inactivation on start reaction time. (D) Effect of OFC 

inactivation on premature response. (E) Effect of OFC inactivation on trial omission. (F) 

Effect of OFC inactivation on start reaction time. *: p<0.05, **: p<0.01, ***: p<0.001, 

(A)-(F) Wilcoxon signed-rank test (ACC: n=5 mice, 38 sessions, OFC: n=5 mice, 42 

sessions). 
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Figure 4.4 Increase choice reaction time by pre-choice inactivation of the ACC or 

the OFC at high laser power 

(A) A schematic of choice reaction time. (B)-(D) Choice reaction time at laser off, pre-

start inactivation and post-choice inactivation trials. (B) ACC (C) Control for ACC (D) 

OFC (E) Control for OFC. *: p<0.05, **: p<0.01, ***: p<0.001, (B)-(E) Wilcoxon 

signed-rank test (ACC: n=5 mice, 38 sessions, OFC: n=5 mice, 42 sessions, Control 

(ACC): n=5 mice, 28 sessions, Control (OFC): n=5 mice, 41 sessions). 
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Contrary to NAc inactivation experiments, pre-choice inactivation of the ACC or the 

OFC affected the choice of the current trial. Pre-choice inactivation biased the current 

choice to either the left or right side regardless of previous choice or outcome 

(Figure4.5). The direction of bias varied across different animals. This bias was 

quantified by the difference in stay probability after left and right choice (Figure 4.5A). 

The bias index was calculated using following formula 

Bias index = | StayPL(+) - StayPR(+) + StayPL(-) - StayPR(-) | 

StayPL(+) denotes the stay probability after left choice rewarded trials, and StayPL(-) 

represents stay probability after left choice unrewarded trials. The same notation applies 

to the stay probability after the right choices. The absolute value was taken to calculate 

the bias index so that only biases occurred in the same direction between rewarded and 

rewarded trials gave higher values. The bias index was calculated for each inactivation 

condition. Both post-choice inactivation of the ACC and the OFC significantly increased 

bias index (Figure 4.5 B, C). Pre-start inactivation of the OFC also increased the bias 

index (Figure 4.5 C). Pre-start inactivation of the ACC did not cause significant increase 

but showed an increased trend for bias index (Figure 4.5 B). 
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Figure 4.5 Choice bias by pre-start or pre-choice inactivation. 

(A) Stay probability from an example session. The bias index was calculated by the 

difference of stay probability after left and right choice. The difference was calculated 

separately for rewarded and unrewarded trials and combined. (B) Choice bias index from 

ACC inactivation experiments (C) Choice bias index from OFC inactivation experiments. 

(D-E) Choice bias index from control experiments. *: p<0.05, **: p<0.01, ***: p<0.001, 

(B)-(E) Wilcoxon signed-rank test (ACC: n=5 mice, 38 sessions, OFC: n=5 mice, 42 

sessions) 
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4.3 Inactivation of the ACC at medium or low laser power 

Inactivation experiments using high laser power confirmed the contribution of the PFC in 

the probabilistic reversal task especially for action initiation and action selection. We 

inactivated the ACC using medium or low laser power in order to see the effect in more 

localized inactivation. 

Pre-start inactivation of the ACC increased the frequency of premature responses both at 

medium and low laser power (Figure 4.6 A, E) while trial omission was affected only at 

medium laser power (Figure 4.6 B, F). Pre-start inactivation did not affect reaction time 

except choice reaction time at low laser power (Figure 4.6 C, D, G, H). Pre-choice 

inactivation increased choice reaction time at both medium and low laser power (Figure 

4.6 H). In addition, pre-choice inactivation at medium power increased choice bias as is 

observed in inactivation at high laser power (Figure 4.6 I).   

4.4 Inactivation of the OFC at medium or low laser power 

At both medium and low laser power, pre-start inactivation of the OFC affected 

behavioral measures for action initiation. The frequency of premature responses was 

increased by inactivation at both medium and low laser power while the frequency of trial 

omissions was decreased at medium laser power (Figure 4.7 A, B, E, F). In contrast to 

inactivation at high laser power, pre-start inactivation at medium or low laser power 

decreased start reaction time after rewarded trials (Figure 4.7 C, G). 

 Contrary to the effect of pre-start inactivation of the ACC on choice bias, both pre-start 

inactivation and pre-choice inactivation of the OFC did not significantly increase choice 
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bias at medium or low laser power (Figure 4.7 I, J) while there is an increasing tendency 

of bias index in pre-start inactivation at medium laser power.  
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Figure 4.6 Inactivation of the ACC at medium or low laser power. 

(A-D), (I) Inactivation of the ACC at medium laser power. (E-H), (J) Inactivation of the 

ACC at low laser power. (A), (E) Premature response. (B), (F) Trial omission. (C), (G) 

Start reaction time. (D), (H) Choice reaction time. (I), (J) Bias index. *: p<0.05, **: 

p<0.01, ***: p<0.001, (A)-(J) Wilcoxon signed-rank test (n=5 mice, 41 sessions 

(Medium power), 39 sessions (Low power)) 



69 

Figure 4.7 Inactivation of the OFC at medium or low laser power. 

(A-D), (I) Inactivation of the OFC at medium laser power. (E-H), (J) Inactivation of the 

OFC at low laser power. (A), (E) Premature response. (B), (F) Trial omission. (C), (G) 

Start reaction time. (D), (H) Choice reaction time. (I), (J) Bias index. *: p<0.05, **: 

p<0.01, ***: p<0.001, (A)-(J) Wilcoxon signed-rank test (n=5 mice, 37 sessions 

(Medium power), 37 sessions (Low power)) 
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4.5 Unilateral inactivation during pre-choice period 

The strong choice bias observed in ACC inactivation can be caused by several different 

mechanisms. One possibility for the choice bias is a deficit in working memory. Inability 

to maintain information about a choice and an outcome of the previous trial may cause 

abnormal choice. However, this possibility is unlikely because pre-start inactivation 

showed no or weaker choice bias compared to pre-choice inactivation (Figure 4.5, 4.6,). 

Another possibility is that neurons in each hemisphere promote a choice to the 

contralateral side as was observed in the premotor cortex during the perceptual decision 

making tasks (Erlich et al., 2011, Guo et al., 2014). If the same argument applies to the 

probabilistic reversal task and the efficiency of inactivation in the left and right 

hemisphere is different, bilateral inactivation can also cause unilateral choice bias. To test 

the contribution of each hemisphere to the contralateral choice, unilateral inactivation 

experiments were performed using same animals. 

Only pre-choice inactivation was performed, and each hemisphere was inactivated at 

medium laser power in 15% of trials. Unilateral pre-choice inactivation of the ACC 

increased choice bias when the left hemisphere is inactivated while inactivation of the 

right hemisphere had no effect (Figure 4.8 A). Effect of inactivation on the bias index 

was quantified by subtracting the bias index of laser off trials from the bias index of laser 

on trials. The comparison between the effect of unilateral left hemisphere inactivation 

(Figure 4.8 A, red bar vs. gray bar) and bilateral inactivation (Figure 4.8 B, blue bar vs. 

gray bar) did not lead to a significant difference (Figure 4.8). However, there were 

differential trends between these conditions in individual animals. The condition that 

gave stronger choice bias varies across individual animals (Figure 4.9). Mouse #1 and 
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Mouse #2 showed stronger choice bias by bilateral inactivation (Figure 4.9 A, B, F, G). 

In contrast, Mouse #3 showed stronger choice by unilateral inactivation (Figure 4.9 C, 

H).In addition, inactivation of either hemisphere did not increase choice reaction time as 

was observed in bilateral inactivation experiments (Figure 4.8 C, D). These results 

indicate that there is an effect of unilateral inactivation of the ACC, but that doesn’t 

account for all behavioral changes in action selection observed by bilateral inactivation. 
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Figure 4.8 Effect of unilateral inactivation during pre-choice period. 

(A) Bias index from unilateral pre-choice inactivation experiments at medium laser 

power. (B) Bias index from bilateral pre-start or pre-choice inactivation experiments at 

medium laser power (Same plot as Figure 4.6 I). (C) Choice reaction time from unilateral 

pre-choice inactivation experiments at medium laser power. (D) Choice reaction time 

from bilateral pre-start or pre-choice inactivation experiments at medium laser power. (E) 

Daily difference of bias indices between laser off and laser on conditions. Blue: 

Calculated from data in (B). The difference between ‘Laser OFF’ and ‘Pre-choice’ 

conditions. Red: Calculated from data in (A). The difference between ‘Laser OFF’ and 

‘Pre-choice (L)’ conditions.  *: p<0.05, **: p<0.01, ***: p<0.001, (A)-(D) Wilcoxon 

signed-rank test, (E) Wilcoxon rank-sum test (n=5 mice, 39 sessions (Unilateral), 41 

sessions (Bilateral)) 
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Figure4.9 Stay probability change of individual animals by unilateral or bilateral 

inactivation. 

(A)-(E) Effect of bilateral inactivation on stay probability. (F) - (J) Effect of unilateral 

inactivation of the left hemisphere on stay probability. 
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4.6 Summary 

Inactivation of the ACC or the OFC showed behavioral changes in action initiation and 

action selection. At high laser power, both ACC and OFC inactivation affected 

behavioral measures of action initiation and action selection (Figure 4.3, 4.4, 4.5).  

Behavioral measures of action initiation were affected both by ACC inactivation and 

OFC inactivation. Both ACC and OFC inactivation increased the frequency of premature 

responses regardless of the laser powers tested while start reaction time after rewarded 

trial was reduced only by OFC inactivation (Figure 4.7). These results suggest the 

involvement of both the ACC and the OFC during action initiation period but in slightly 

different way.  

At medium or low laser power, action selection was affected more strongly by ACC 

inactivation. ACC inactivation increased choice bias and choice reaction time increased 

(Figure 4.6), but OFC inactivation only showed a subtle increase in choice reaction time 

at medium laser power (Figure 4.7). These observations suggests the preferential 

involvement of the ACC in action selection process. Increased choice bias was partly 

explained by lateralized involvement of neurons in each hemisphere in choice 

(Figure4.8). However, some animals showed stronger choice bias by bilateral inactivation 

(Figure 4.9), and choice reaction time was not affected by unilateral inactivation (Figure 

4.8). These results suggest that deficits in additional cognitive processes are necessary to 

explain the deficits in action selection. 
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Chapter 5: Discussion 

5.1 Baseline behavioral performance 

The behavioral performance of the probabilistic reversal task is constant over the long 

period of training sessions (Figure 2.5). The constant performance enabled us to collect 

data at different inactivation condition.  

One notable difference between a previous study conducted in the similar condition using 

mice (Tai, Lee et al. 2012) is the baseline stay probability. In their study, stay probability 

after two consecutive rewarded or unrewarded trials were almost 1 or 0 respectively. This 

condition corresponds to the left most bar and the rightmost bar of the middle panel of 

Figure 2.5B. Therefore, the choice in their study depends more on recent outcomes and 

the choice in our study is more affected by long term integration of past outcome. One 

possible cause for the difference is the use of different reinforcer. We use food pellets 

while they use a water reward. Animals in their study peformed more trials in a single 

session. Since the number of trials depends on the capacity of animals to consume a 

reinforcer, the value of a single pellet used in the current study may be higher than that of 

the amount of water used in their study. In addition, the difference between the stay 

probability after unrewarded trials were more prominent between ours and their studies. 

This difference raises the possibility that the behavior in the face of aversive outcomes 

can be affected by overall reward rate. The potential contribution of the average reward 

rate will be discussed further in chapter 5.2.3. 
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5.2 Interpretation of behavioral changes observed during each time period 

5.2.1 Trial initiation period 

Pre-start inactivation led to the change in behavioral measures of action initiation 

(Premature response, trial omission and start reaction time) both in the PFC and the NAc. 

Several interpretations are possible regarding these behavioral measures.  

From previous studies, the underlying cognitive processes responsible for the change in 

start reaction time are (1) Motivation (Wang et al. 2013), and (2) Impulsivity 

(Chudasama et al. 2003). Both increased motivation to perform the task and increased 

impulsivity can explain the observed reduction of start reaction time after rewarded trials. 

The premature responses have been used as the behavioral measure of impulsivity 

(Chudasama et al. 2003; Pattiji et al., 2007). Although low motivation to perform the task 

can lead to general immobility and decrease in the frequency of premature responses, the 

high motivational level is unlikely to lead to increased premature response. Rather, it will 

increase the number of successful trials.  

The trial omissions aer supposed to be affected in the opposite way as premature 

responses. Lower motivation or impulsivity will decrease the frequency of trial 

omissions, and higher motivation or impulsivity will decrease the frequency of trial 

omissions. In addition to these possibilities, trial omission can also be induced by 

disruption of preparatory activity observed in several premotor areas (Murakami et al., 

2014;). 
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5.2.2 Choice period 

The behavioral changes observed by pre-choice inactivation were the increased choice 

reaction time and choice bias. Change in the choice reaction time may come from 

perturbation in the motor system and change in subjective value estimates of choice. 

Since choice RT is less affected by the previous outcome, it is more likely that choice 

reaction time change was induced by perturbation in motor control.  

On the other hand, multiple interpretations are possible for the observed choice bias in 

the PFC inactivation experiments. The firs possibility is a deficit in working memory. 

Since the probabilistic reversal task required animals to learn through trial and error, 

animals need to maintain information about their previous choices and outcomes. If 

working memory is impaired, animals will behave randomly or follow their pre-existing 

preference to one of the two choices. The second possibility is the lateralized contribution 

of each hemisphere to choice. In motor systems, some neurons encode movements or 

action values to the contralateral side. This lateralized function is supported by the 

perturbation experiments in both perceptual and value-based decision making (Tai and 

Lee et al. 2012, Guo et al. 2014, Hanks et al. 2015). Therefore, if an area responsible for 

a decision is not uniformly inactivated between the left and the right hemisphere, 

unilateral choice bias can be observed by bilateral inactivation experiment. The third 

possibility is that the inactivation exposed innate or pre-existing choice bias. At the 

begging of training step 3 (choice between 90% vs. 0% reward probability), animals are 

not aware that reversals occasionally occur, and successive unrewarded trials indicate 

reward availability from the other side. Therefore, it is possible that animals keep 

choosing one food magazine even after a prolonged period of the absence of reward if 
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they had experienced reward only from the food magazine. Since mice eventually 

experience reward from both food magazines, and such bias is supposed to be corrected 

after training sessions, it is still possible that such bias appeared again by inactivation of 

some brain areas. 

5.2.3 Post-choice period 

Post-choice inactivation experiments in the NAc affected the probability for mice to 

choose same choice following the trials with post-choice inactivation. This effect was 

specific to the unrewarded trials and not observed after rewarded trials. The change in the 

stay probability can be induced by multiple cognitive processes. The first possibility is 

that inactivation affected evaluation of outcome values to update future behaviors. If 

animals become unable to perceive outcome value correctly, subsequent choices are 

affected because of inaccurate feedback. The second possibility is that inactivation 

affected evaluation of a value of the current behavioral context. When animals learn from 

an outcome, the outcome value needs to be compared with the predicted or expected 

value. This predicted value is calculated through a variety of information regarding 

behavioral context, including outcome history at longer time scale, motivation to perform 

the task, and costs animals have to spend to make a decision. Altered calculation of the 

predicted value will affect subsequent choices even if the animals have intact ability to 

evaluate the outcome of the previous trials. Change in behavioral states including 

compulsivity or persistence can be regarded as deficits in this process. Changes in either 

or both mechanisms can affect the choice of the next trial. 
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5.3 NAc contribution to action initiation and learning 

Behavioral changes observed by NAc inactivation experiments are summarized in Table 

5.1. Underlying cognitive processes and neural substrates of these observations will be 

discussed in the following sections. 

Table 5.1 Summary of behavioral phenotypes in NAc inactivation experiments. 

Premature: premature response, Omission: trial omission, Start RT (+): start reaction time 

after rewarded trials, Start RT (-): start reaction time after unrewarded trials, StayP (+): 

stay probability after unrewarded trials, StayP (-): stay probability after unrewarded trials 

5.3.1 The NAc for action initiation 

Among NAc inactivation experiments, non-specific NAc inactivation, indirect pathway 

MSNs inactivation, and inactivation of glutamatergic and dopaminergic inputs to the 

NAc increased the frequency of premature responses (Figure 3.2, 3.5, 3.6, 3.7). 

Inactivation of indirect pathway MSNs caused the largest effect on the frequency of 

premature responses and trial omission. One explanation for the increased frequency of 

premature responses is the increased level of general locomotion. However, this is 

Pre‐start inactivation Post‐choice inactivation

Inactivation Premature Omission Start RT (+) Start RT (‐) StayP (+) StayP (‐)

Non‐specific ↑ − − − − ↑

Direct pathway − − − − − ↑

Indirect pathway ↑ ↑ ↓ ↑ − ↑

Dopaminergic input ↑ − − − − ↑

Glutamatergic input ↑ ↓ − − − −
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unlikely in the current behavioral context. Increased locomotion can’t explain the 

increased frequency of trial omissions that were observed in inactivation of indirect 

pathway MSNs. Changes in premature response induced by pre-start inactivation reflect a 

change in impulsivity rather than a motivational change. 

The strongest effect on premature responses was obtained by inactivation of indirect 

pathway MSNs. In addition, inactivation of indirect pathway MSNs also caused the 

increased frequency of trial omissions. The increased frequency of trial omissions can not 

be explained by the decreased level of locomotion since the frequency of premature 

responses was increased, and start reaction time after rewarded trial was reduced. 

Therefore, neither decreased motivation nor impulsivity occurred in this situation. So, 

disruption of the preparatory activity of goal-directed behavior or neuronal activity to 

trial initiation cues could be the candidate mechanisms. Previous studies showed that 

some neuron in the NAc increased firing rate at the initiation of new trials (Ito & Doya 

2009; Atallah et al. 2014; Ito & Doya 2015). Although causal roles of such activities and 

underlying cell types have not been identified yet, the increased frequency of trial 

omissions can be the result of disruption of such activity. 

Increased premature responses by inactivation of glutamatergic and dopaminergic inputs 

to the NAc gave new insights about how voluntary actions are initiated. Both systemic 

injection and intra-NAc infusion of amphetamine is known to increase general 

locomotion and impulsivity, and this effect is at least partially dependent on the NAc 

(Parkinson et al. 1999; Murphy et al. 2008). Amphetamine increases the extracellular 

level of dopamine. Then, the changed dopamine level is supposed to modulate other 

inputs to the NAc. However, it has not been clear about which inputs to the NAc are 
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modulated by the increased level of dopamine. Results of inactivation of glutamatergic 

indicate that the cortical input is one candidate that is affected by pharmacological 

perturbation.  

5.3.2 The NAc for learning 

Among NAc inactivation experiments, non-specific NAc inactivation, direct pathway 

MSN inactivation, indirect pathway MSNs inactivation, and inactivation of the 

dopaminergic input to the NAc increased stay probability after unrewarded trials with 

post-choice inactivation (Figure 3.2, 3.4, 3.5, 3.6). This effect was observed across the 

inactivation of different circuit elements in the NAc except inactivation of glutamatergic 

inputs to the NAc. One previous study using rats (Dalton et al., 2014) also showed the 

change in choice following NAc inactivation. However, the results reported there were 

not consistent with the observed behavioral changes in the current study. They inactivate 

the NAc shell using muscimol and found that stay probability after rewarded trials was 

reduced. In addition to the difference in inactivation methods and the anatomical location 

targeted, the observed difference may come from species difference between mice and 

rats. Both our and their studies used food pellet as a reinforcer. We used 14mg food 

pellet, and they used 45mg food pellet. Considering the difference in body weights of 

mice (20-35g) and rats (280-350g), the value of one food pellet is much smaller in rat 

studies. This difference may cause the difference in average subjective value of reward 

obtained during unit time even if number of food pellets and duration of the behavioral 

session is similar. It is possible that the larger reward value of a single food pellet makes 
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the inactivation of the NAc alone insufficient to decrease stay probability after rewarded 

trials. 

In reinforcement learning models, values of actions are updated based on the difference 

between outcome values and the current prediction about action values (Montague et al. 

1996; Sutton and Burto 1998; Ito& Doya, 2009). The updated action values are used for 

future decisions. One possibility to explain the experimental data is that post-choice 

inactivation directly modified the outcome values without affecting predicted or expected 

values of actions. If this is the case, only the outcome value of a reward omission needs 

to be overestimated by inactivation without affecting the outcome value of a reward. 

However, it is unlikely that only unrewarded trials were affected by post-choice 

inactivation since delivery of a reward is the more salient event compared to a reward 

omission.  

One potential cause of the increased stay probability after unrewarded trial is that 

inactivation of the NAc reduced the expected or predicted action values rather than the 

actual outcome values they received.  One study (Ito and Doya 2015) showed that subset 

of rat NAc neurons represent a state value during ITI and trial initiation period. The state 

value is the value of the current behavioral context and is calculated from a long-term 

outcome history during a behavioral session. Expected or predicted action values is the 

current probabilistic reversal also requires long-term accumulation of outcome values 

from previous trials. Therefore, NAc inactivation can affect expected action values or 

state values.  

A potential mechanism for NAc inactivation to affect expected action values is to reduce 

‘opportunity cost’. Opportunity cost is defined as the value of unit time, or the value that 
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will be missed because of doing nothing during that time period (Niv et al. 2007). That is 

experimentally defined as the average reward value obtained during a certain time period. 

In the current probabilistic reversal task, animals that make random choices can still 

receive a reward at 37.5% of trials. Therefore, it is possible that animals perceived the 

passage of time during the task as a certain kind of costs, and that opportunity cost was 

also considered in calculation of action value. 

Both theoretical work (Niv et al. 2007) and experimental work (Wang et al. 2013) 

suggested that the change in the opportunity cost affect how hard animals work to obtain 

a reward. Niv et al. proposed a modified reinforcement learning model that incorporated 

opportunity cost into calculation of expected values of actions, stimuli and states. In their 

model, the opportunity cost was calculated as the product of the average reward rate for 

long time scale and the time to perform the next action. This opportunity cost was 

subtracted from the value calculated from recent reward history, and the resultant value 

was used as the expected value of action for decisions. They used this model to explain 

the observation that animals trained under high reward rate were more motivated to 

perform the task in addition to the tendency to choose the option with highest value. 

Since the opportunity cost in the model was used to calculate expected action values, 

transient change in the opportunity cost can not only affect response vigor but also affect 

learning through a reward prediction error signal. If inactivation of the NAc decreased the 

opportunity cost, expected action values become larger, and stay probability will increase 

even after unrewarded trials. In contrast, outcome value of a reward is always higher 

regardless of reduction of opportunity cost. In addition, animals had already showed high 
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stay probability after rewarded trials. Therefore, if the effect of increased prediction error 

saturated, post-choice inactivation will not increase stay probability any further.  

In summary, the interpretation of the increased stay probability after unrewarded trials is 

that the post-choice inactivation lowered the opportunity cost and led to the more 

persistent choice in the following trials. Situation of lower opportunity cost makes rats, 

pigeons, and humans behave more persistently even under aversive outcomes, such as the 

absence of reward (Arkes and Blumer 1985; Wikenheiser et al. 2013; Magalhães and 

White, 2014). This possibility can be studied more in detail by systematically modulating 

opportunity cost during the task by changing the duration of inter-trial interval or reward 

size.  

Incorrect calculation of opportunity cost can be the underlying mechanisms of persistent 

or compulsive behaviors in the face of aversive outcomes. The same argument is also 

applied to drug seeking behaviors that are hard to be suppressed (Pelloux et al. 2007). 

These behavioral changes can be the results of altered activity in the NAc. Rats treated 

with D2 and D3 receptor agonist quinpirole showed compulsive checking behavior 

(Dvorkin et al. 2010). This study is consistent with the increased stay probability 

observed by inactivation of indirect pathway MSNs. Therefore, neural circuits targeted in 

this study can be potential targets of treatment in maladaptive behaviors such as OCD and 

addiction to drug or gambling.  
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5.3.3 Reaction time dependence of learning effect by NAc inactivation 

The change in stay probability after unrewarded trials were stronger when trials with 

shorter start reaction time were analyzed (Figure 3.8). However, pre-start inactivation 

after unrewarded trials did not increase stay probability (Figure 3.2 – 3.7). Therefore, 

both temporal proximity to the next choice and the absence of reward are important for 

the increase in stay probability. The lack of effect in pre-start inactivation also implies 

that increased probability was not because of a change in locomotion or a change in 

behavioral states at longer time scale. 

Rather, the results are consistent with the idea of temporal discounting of value 

(Montague et al. 1996; Sutton and Burto 1998). When animals face reward whose 

delivery is delayed, they show reduced preference for the delayed reward (Cardinal et al. 

2000; Winstanley et al. 2004). This concept also applies when animals calculate value of 

future actions based on previous outcomes. The reinforcement learning model that 

incorporate temporal discounting of previously obtained reward values explains actual 

animal performance better than models without temporal discounting (Ito & Doya 2009). 

The impact of a reward is discounted if the reward was given before. Therefore, if post-

choice inactivation somehow affected calculation of values, the effect can also be 

temporally discounted. Therefore, the underlying mechanism will be post-choice 

inactivation modify values during the post-choice period, and the modified value is 

discounted by the passage of time. 

The concept of opportunity cost is also consistent with the reaction time dependence of 

stay probability. Since opportunity cost is the product of average reward rate and duration 

of time which animals spend without performing a task, shorter start reaction time means 
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smaller opportunity cost. This lead to higher expected action value of previously chosen 

action and it increased stay probability.  

5.3.4 Partially overlapped effect of direct pathway vs. indirect pathway MSNs 

inactivation in the NAc 

Inactivation of direct pathway MSNs and indirect pathway MSNs caused a similar 

change in stay probability (Figure 3.5 J, 3.6 J). On the other hand, several studies in the 

striatum reported opposing behavioral effects by inactivation of direct and indirect 

pathway MSNs. Kravitz et al.(2010) activated these two population in the dorsal striatum 

using optogenetics reported the opposite effect on locomotion. They observed increased 

locomotion by the activation of direct pathway MSNs and decreased locomotion by the 

activation of indirect pathway MSNs. Tai et al.(2012) activated the dorsal striatum while 

mice were a decision making task similar to ours. They reported that unilateral activation 

of direct pathway MSNs increased a choice probability of the contralateral side and the 

opposite effects by activation of indirect pathway MSNs. Along with the difference in 

areas studied, there are several explanations for the lack of opposing effects. First, 

activation experiments, not inactivation experiments, were conducted in above studies. 

Interpretation of activation experiments is often confounded by stimulation parameters 

and leads to undesirable side effects through the activation or inactivation of areas to 

which neurons project. Activation experiments are useful to model the situation in which 

a given area or cell type receive too much excitation as the results of Kravitz et al. 

mimicked behaviors observed during the parkinsonian state. However, in order to study 

the function of a circuit during natural behaviors, it is necessary to confirm the 
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endogenous activity during the stimulation context and need to confirm the absence of 

undesirable side effects. For these reasons, behavioral impacts of activation and 

inactivation experiments do not always become opposite or complementary. Supporting 

this view, both direct pathway and indirect pathway MSNs are active during natural 

movements according to in vivo calcium imaging of the dorsal striatum in mice (Cui and 

Jun et al., 2012). If concurrent activation of both direct and indirect pathway MSNs are 

important for the successful execution of a behavior, inactivation of either population can 

lead to similar behavioral changes. 

When dopaminergic and glutamatergic inputs were selectively inactivated, both 

manipulation caused increased premature response. The common behavioral effects is 

reasonable considering roles of these neurotransmitters. Dopamine is a neuromodulator 

that modulate inputs from other structure such as the neocortex to the NAc (Bamford et 

al. 2004). Therefore, the probable cause of increased premature response is the impaired 

information transmission from glutamatergic neurons either through direct perturbation 

of these neurons or abnormal modulation of glutamatergic inputs by abnormal 

dopaminergic transmission. 

5.3.5 Dual role of the NAc in learning and action initiation 

Two distinct models have been proposed to explain the function of the NAc in reward-

based behavior. One model proposes the involvement of the NAc in learning. This view 

is supported by the fact that the NAc is the primary recipient of VTA dopaminergic 

neurons in reward prediction error signal is observed (Corbit et al. 2001; Atallah et al. 

2006, McDannald et al. 2011). Another view is that the NAc is more involved in the 
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process of action initiation such that reward associated sensory cues drive behavior (Hall 

et al. 2001; Nicola 2010; Smith et al. 2011). This view describes the function of the NAc 

as mediating excitatory effects of reward associated sensory cues on reward-seeking 

behavior rather than learning.  

We got behavioral changes by both pre-start inactivation and post-choice inactivation. 

This finding raises the possibility that these two views are not mutually exclusive and 

rather reflect different functioning of the NAc at different timing during a behavioral 

task. Such dissociation has never been possible without combining the perturbation with 

fine temporal resolution and trial based behavioral paradigm. 

5.4 PFC contribution to action initiation and action selection 

Behavioral changes observed by PFC inactivation experiments are summarized in Table 

5.1. Underlying cognitive processes and neural substrates of these observations will be 

discussed in the following sections.  

Table 5.2 Summary of behavioral phenotypes in PFC inactivation experiments. 

Pre‐start inactivation Pre‐choice inactivation

Inactivation Premature Omission Start RT(+) Start RT (‐) Choice RT Bias index

ACC(High) ↑ ↑ − ↑ ↑ ↑

ACC(Medium) ↑ ↑ − − ↑ ↑

ACC(Low) ↑ − − ↑ ↑ −

ACC(Left) na na na na − ↑

ACC(Right) na na na na − −

OFC(High) ↑ ↑ − − ↑* ↑

OFC(Medium) ↑ ↓ ↓ − ↑ −

OFC(Low) ↑ − ↓ − − −
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Premature: premature response, Omission: trial omission, Start RT (+): start reaction time 

after rewarded trials, Start RT (-): start reaction time after unrewarded trials, Choice RT: 

choice reaction time. *: Same change was also observed in control animals although the 

effect was weaker. 

5.4.1 Cortical areas covered by the inactivation at medium to high laser power 

In the current study, the tip of the optical fiber was placed in the OFC or the ACC. 

Inactivation of these areas led to partially overlapped behavioral phenotypes, especially at 

medium or high laser power. The common effects were probably because of the overlap 

in the area that receive inactivation at higher laser power. Therefore, to understand the 

potential contribution of areas other than the ACC and the OFC, the cortical areas that are 

supposed to be inactivated along the OFC and the ACC need to be considered. 

The location of the ACC targeted in this study is next to the M2 with similar anterior-

posterior and dorso-ventral coordinates. The proximity to the M2 might be the reason 

unilateral inactivation caused choice bias. The ACC is also located close to the mPFC 

with similar anterior-posterior and medial-lateral coordinates.  Therefore, the contribution 

of those areas also need to be considered to interpret the results of inactivation 

experiments using medium or high laser power.  

The coordinates used for targeting the OFC more anterior, lateral and ventral to the ACC. 

The areas close to these coordinates include the insular cortex, the medial OFC, and the 

IL. The dorsal part of the OFC targeted in this study is the anterior lateral motor cortex 

(ALM), the putative premotor cortex (Komiyama et al. 2010; Guo et al. 2014). Therefore, 
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the potential contribution of these areas to behavioral phenotypes also need to be 

considered. 

5.4.2 PFC for action initiation 

At inactivation experiments using high laser power, both premature response and trial 

omission were increased by pre-start inactivation (Figure 4.3). In the prefrontal and 

premotor areas, neuronal activity that precedes specific motor responses has been 

identified (Romo and Schultz 1992; Narayanan et al. 2008; Mita et al. 2009; Erlich et al. 

2011; Guo et al. 2014; Murakami et al., 2014). Neuronal activity preceding motor 

response can be important for both action initiation and action selection. Some of them 

identified neuronal activity whose peak is tightly coupled to the movement onset (Mita et 

al., 2009; Murakami et al., 2014). This suggests the contribution of such activity to action 

initiation. An increased frequency of premature responses or trial omissions can be the 

result of disruption of such activity. 

Increased premature response and increased trial omission may look opposite effect in 

terms of locomotion. However, both can be originated from cognitive processes related to 

action initiation. Both initiating any movements and performing an appropriate action 

(center nose-poke not left or right magazine entries) are necessary for successful trial 

initiation. Deficits in the first process lead to trial omission and deficits in the second 

process lead to premature responses. Since animals were food restricted during the entire 

training and test sessions, they have a relatively strong drive to initiate movements to 

initiate trials, and this drive may be more difficult to be suppressed completely. But 

precise control to perform an appropriate action (center nose-poke) may need more 
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precise representation of activity and more vulnerable to perturbation. This may be why 

only premature response are increased in many conditions, and both premature response 

and trial omission were increased in some conditions that showed a large increase in 

premature responses.  

Increase premature response can also be interpreted as deficits to behavioral inhibition or 

the impulsive behavioral state. This is consistent with the previous studies showing that 

excitotoxic lesion or pharmacological inactivation of several PFC subregions, including 

the OFC, led to increased premature responses (Chudasama et al. 2003; Naranayan et al. 

2006), and that OFC lesioned rats showed altered preference to delayed reward 

(Winstanley et al. 2004, Rudebeck et al. 2006, Mar et al. 2011, Stopper et al. 2012). 

Increased premature responses by OFC inactivation at the current study is consistent with 

those previous studies. The impulsive behavioral state is also consistent with the 

combination of increased premature response and decreased trial omission as is observed 

in OFC inactivation at medium power and inactivation of glutamatergic inputs to the 

NAc. These manipulations probably induced relatively stronger deficits in conducting 

appropriate center nose-pokes with intact ability to initiate movements. 

Although both ACC inactivation and OFC inactivation increased the frequency of 

premature responses (Figure 4.6 A, E, 4.7 A, E), start reaction time was mostly affected 

by OFC inactivation. Premature responses can be induced by partial disruption of the 

motor system. This may be the case for inactivation of ACC and inactivation of OFC at 

high laser power because of spatial proximity with the motor system. This may also 

explain why OFC inactivation at high laser power did not significantly change start 

reaction time while inactivation of the OFC at low and medium power induced reduction 
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in start reaction time (Figure 4.3 F, 4.7 C, G). Since OFC inactivation at low or medium 

power did not affect choice, the deficits in action initiation observed in OFC inactivation 

reflect more cognitive aspects rather than disruption in the motor system. 

In addition, the reduction of start reaction time was observed only after unrewarded trials 

(Figure 4.7). The reduced start reaction time may reflect the altered evaluation of the 

previously obtained outcome as was observed in delay discounting tasks. This possibility 

can be easily tested using a modified version of the probabilistic reversal task with 

delayed delivery of food pellets. Interesting observation about the reduction of start 

reaction time is that an outcome-specific effect was induced by pre-start inactivation 

rather than post-choice inactivation in which animals received outcomes and consume 

them. It is possible that some of outcome or action-related activity observed at trial 

initiation period (Feierstein et al. 2006) is used to guide behavior. Since previous studies 

conducted inactivation with longer duration, it was not clear whether those behavioral 

deficits were because of the disruption of neuronal activity at the time of behavioral 

responses or a change in behavioral states induced by long duration inactivation of the 

PFC. Results of the current study support the first possibility, considering behavioral 

changes during specific time periods.  

The increased premature response was also observed in inactivation of glutamatergic 

inputs into the NAc and the NAc itself. This common effect raises the possibility PFC 

drives the NAc in terms of action initiation. Compared to the dorsal striatum that receive 

inputs from most cortical regions, the NAc receive inputs from more restricted areas such 

as the OFC, the insular cortex, and the IL. Although further study is necessary to define 
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the exact cortical area involved in the process, these results indicate that the direct input 

from the PFC to the NAc control action initiation and impulsivity. 

The increased frequency of premature responses is also observed in patients with ADHD, 

drug addiction, and prefrontal damage (Schachar et al. 1995; Fillmore and Rush 2001; 

Aron et al., 2003; Monterosso et al. 2005). In ADHD patients, decreased neuronal 

activity in the NAc was observed while they were anticipating rewards (Scheres et al. 

2007). These studies support our results in inactivation of glutamatergic and 

dopaminergic inputs to the NAc. Thus, these projections to the NAc can be potential 

targets for the treatment of impulsive behaviors. 

5.4.3 PFC for action selection 

Pre-choice inactivation of the PFC increased choice reaction time and choice bias. There 

are several mechanisms that can affect choice as observed in the current experiments. The 

first possibility is the working memory deficits. The second possibility is the lateralized 

contribution of each hemisphere. The third possibility is the transition between goal-

directed and habitual system. Each possibility is addressed in this section. 

Since animals have to maintain the information about past choices and outcomes, the 

perturbation to working memory system is also potential mechanisms that cause choice 

bias observed in the ACC or OFC inactivation. Several studies reported persistent activity 

during the delay period of working memory in the PFC (Funahashi et al. 1989). 

Perturbation of activity in the PFC during this period disrupt the performance of working 

memory task (Rossi et al. 2012; Liu et al. 2014). However, working memory deficits 



94 

can’t account for the choice bias observed in the current study. Although choice bias was 

observed in pre-choice inactivation of the ACC and the OFC, pre-start inactivation only 

showed increased trend of bias in some conditions. (Figure 4.5 B, C, 4.6 I, J, 4.7 I, J). If 

working memory deficits made mice unable to perform flexibly in the probabilistic 

reversal task, all of the three inactivation conditions should lead to similar changes in 

choice bias. The lack of contribution to working memory system is probably because of 

the difference in task requirements. Most working memory tasks in rodents and primates 

utilize sensory cues to dictate the direction of choice. On the other hand, in the 

probabilistic reversal task, visual cues (center LED for trial start and left or right LED for 

choice) only have a permissive role for action and did not contain information about 

correct choice direction. Since animals’ choice did depend on past choice and outcome, 

the result indicates that the information is stored outside of the PFC. 

In unilateral pre-choice inactivation of the ACC increased choice bias in one of two 

conditions (Figure 4.8 A). This result suggests that lateralized choice in the probability 

task is partially conducted through prefrontal, premotor or motor cortices. Because of the 

spatial proximity of the ACC and the secondary motor cortex, this result is consistent 

with the previous studies (Erlich et al. 2011; Guo et al. 2014) showing that inactivation of 

premotor or prefrontal areas in one hemisphere increased choice bias to the ipsilateral 

side. However, if this accounts for all the choice biases observed in the current 

experiments, the effect of unilateral inactivation should be stronger not weaker than that 

of bilateral inactivation since inactivation of each hemisphere supposed to counteract 

each other in bilateral inactivation. In addition, only bilateral inactivation of the ACC 

increased choice reaction time (Figure 4.8). In addition, data from individual animals 
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indicates that the relative strength of inactivation effects between unilateral and bilateral 

experiments varies across individual animals (Figure 4.9). These results suggest 

contribution by other systems to the process of action in addition to lateralized effect. 

One potential mechanism that accounts for the increased choice bias is the shift of 

relative dominance of goal-directed and habitual behavioral control (Daw et al., 2005, 

Smith et al., 2012). The goal-directed control system is more outcome dependent and 

flexible but needs more cognitive loads. On the other hand, the habitual control system is 

less outcome dependent and flexible but needs less cognitive loads. The gradual shift 

from the goal-directed system to the habit system has been used to explain the change of 

behavior over training in multiple behavioral paradigms and model animals (Yin et al. 

2004; Yin et al. 2005; Valentin et al. 2007; Balleine and O’Doherty 2011). 

Excitotoxic lesion of the PL and chemogenic or optogenetic inactivation of the OFC 

make reward dependent instrumental actions more habitual, insensitive to the change in 

outcome values (Ostulund and Balleine 2005, Gremel and Costa 2013). Although goal-

directed and habit systems appear at different training phase during instrumental 

conditioning, both theoretical and experimental work suggested these two systems work 

in parallel and one of them are dominant depending on the situation (Daw et al., 2005, 

Smith et al., 2012). Daw et al., proposed that prefrontal dependent tree-search (goal-

directed) system and dorsolateral striatum dependent cache (habit) system work in 

parallel. In case these two systems led to contradict output, one of these systems is 

chosen based on the reliability of the prediction that they generate. This model explains 

results of experimental works that studied instrumental conditioning in rats (Killcross and 

Coutureau 2003, Holland 2004). Smith et al., optogenetically inactivated the infralimbic 
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cortex (IL) after rats’ behavior becoming habitual. They showed that transient 

inactivation of the IL suppressed the habit and made rats’ behavior sensitive to outcome 

value again. Their results support two systems co-exist in the brain even after a long 

period of training. The increased choice bias observed in our experiments can be 

interpreted as the emergence of habit system, and this is the opposite change compared to 

what was observed in Smith et al. This is the first experimental support that the transient 

manipulation can switch behavioral control from a goal-directed manner to habitual 

manner. 

Although the switch between left and right choices in the probabilistic reversal task is not 

the acquisition of novel instrumental responses as is studied in the previous study, it is 

possible that suppression of goal-directed control of behavior led to choice bias induced 

by pre-choice inactivation of the ACC or the OFC. Considering the lack of flexibility in 

choice shown by insensitivity to the previous outcome support the view that the control 

of goal-directed choice is disrupted by inactivation of the ACC or the OFC. This idea is 

also supported by the recent study that conducted muscimol inactivation of the ACC 

(Tervo et al., 2014). Tervo et al., trained rats for matching pennies task in which rats are 

required to behave randomly regardless of previous choices and outcomes. Even under 

such requirement, control animals showed some dependency on the outcome. However, 

once the ACC is inactivated rats such outcome dependency disappeared. 

Thus, both lateralized control of choice and the emergence of habitual behavior can 

account for behavioral effects on action selection. Deficits in the lateralized control of 

choice are relevant to contralesional neglect in patients with unilateral damages in the 

PFC or premotor cortex (Kerkhoff 2001). The imbalance of activity between the left and 
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right hemisphere in these cortical areas can lead to similar behavioral deficits. The 

transition from goal-directed to habitual behavioral control can be the cause of 

pathological behaviors such as compulsion and drug addiction (Baline and Everitt 2007; 

Gillan and Robbins 2014). The possibility of rapid transition between goal-directed and 

habitual behavior raise the potential treatments for pathological behaviors by 

manipulating neuronal activity in prefrontal areas. 

5.5 Neural circuits for action initiation, action selection, and learning 

In the current study, we developed a behavioral paradigm in mice to investigate different 

cognitive processes required for value-based decision making. Through temporally 

precise inactivation of genetically defined populations, we could successfully dissociate 

action-initiation, action-selection, and learning components of value-based decision 

making. The underlying neural circuits of each process revealed in the current study were 

summarized in Figure 5.1.  

We revealed the contribution of multiple circuit elements in the PFC and the NAc to 

action initiation (Figure 5.1 A). In the PFC inactivation experiments, inactivation of each 

of the ACC and the OFC increased the frequency of premature responses regardless of 

the laser power. From the NAc inactivation experiments, indirect pathway MSNs, 

dopaminergic input to the NAc, and glutamatergic input to the NAc were shown to be 

involved in action initiation. Since the PFC is one of the primary source of glutamatergic 

input to the NAc, these results indicate the significance of the direct projection from the 

PFC to the NAc in action initiation. Inactivation of dopaminergic input to the NAc also 
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affected action initiation probably through altered dopaminergic modulation of neuronal 

activity or plasticity in corticostriatal synapses (Wang et al. 2006). 

Action selection was affected only by inactivation of the PFC, and inactivation of each of 

the ACC and the OFC increased the choice bias (Figure 5.1 B). However, OFC 

inactivation affected action selection only at high laser power while ACC inactivation 

was effective even at medium laser power. This result suggests more preferential 

contribution of the ACC to action selection. Since, the choice bias was not increased by 

NAc inactivation experiments, the projections from the PFC to other subcortical 

structures are the candidate projection targets involved in action selection. The potential 

targets include the dorsal striatum, superior colliculus, and brainstem motor areas. 

We also revealed the contribution of the NAc to learning specifically after the absence of 

a reward. This effect was observed in inactivation of direct pathway MSNs, indirect 

pathway MSNs or dopaminergic input to the NAc (Figure 5.1 C). Midbrain dopaminergic 

neurons not only project to the NAc but also receive inputs from the striatum both 

directly and indirectly (Watanabe-Uchida et al. 2012). This anatomical characteristic 

implies that the reciprocal interaction between the NAc and midbrain dopaminergic 

neurons is necessary for the outcome-specific learning effect observed in the current 

study.  
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Figure 5.1 Contribution of the NAc and the PFC to cognitive processes required for 

decision making. 

(A) Neural circuits for action initiation. PFC, two inputs to the NAc, and indirect 

pathway MSNs were implicated in action initiation process. (B) Neural circuits for action 

selection. Only the ACC (and the OFC at high power) are affected. In contrast NAc 

inactivation did not affect action selection. Projection from the ACC to subcortical 

structures other than the NAc may be involved in action selection. (C) Neural circuits for 

learning. Inactivation of both direct and indirect pathway MSNs and projection from the 

VTA to the NAc affected the learning. 
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5.6 Summary and Directions 

The significance of the current study lies in the fact that some of the genetic targeting 

conducted in the current study are so far not possible in other model animals such as rats 

and primates. Thus, results obtained from cell type specific and projection specific 

inactivation experiments provided new insights about neural substrates of value-based 

decision making.  The direction that further takes advantage of the strength of mouse 

genetics is to utilize other specific Cre mouse lines, especially in the PFC. Although PFC 

pyramidal neurons were non-specifically inactivated in the current study, use of Cre 

mouse lines that target specific subclasses of cortical neurons will further advance our 

understanding of neural circuits for decision making. The candidate cell types of the 

future studies include specific subpopulations of cortical interneurons and pyramidal 

neurons with distinct projection targets such as corticostriatal projection neurons. 

Activation of specific classes of interneurons can be used for inactivating subsets of 

pyramidal neurons. Corticostriatal neurons are not homogeneous populations and include 

subpopulations that project to different substructures of the striatum such as the patch and 

matrix compartments (Gerfen 1989, Gerfen et al. 2013). Cre mouse lines were 

indispensable to dissociate these populations, and inactivation experiments using distinct 

corticostriatal Cre mouse lines will contribute to define novel functional units in the basal 

ganglia circuit. Along with the investigation of roles of specific cell types, the 

probabilistic reversal with different size, probability and delay of reward will also assist 

further dissociate cognitive processes that were not tested in the current study. For 

example, insertion of delays to reward delivery will help us understand how premature 

responses or impulsivity was induced. The premature responses observed in the current 



101 

study can be induced by both the overrepresentation of past outcomes and the expectation 

of future outcomes. These possibilities can be dissociated by investigating the ability of 

animals to wait for delayed reward. If the expectation of future outcomes is disrupted, 

animals will have difficulties in waiting for the delayed reward while disruption of the 

representation of the past outcomes will not affect this process. Since the behavioral 

paradigms can be modified to see different cognitive components, further study will 

expand the findings in the current study to different behavioral paradigms, cell types, and 

brain areas. 
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Chapter 6: Materials and Methods 

6.1 Mice 

All procedures were approved by The Rockefeller University Institutional Animal Care 

and Use Committee (IACUC). All mice used in the current study had a C57BL/6J 

background. Drd1-Cre (EY266), Adora2a-Cre (A2A-Cre) (KG139), and Slc6a3-Cre 

(SG62) lines were generated at GENSAT project and maintained at The Rockefeller 

University. Emx1-Cre (Stock # 005628), VGAT-ChR2-EYFP (Stock # 014548), and 

Ai40D (Stock # 021188) lines were obtained from The Jackson Laboratory. For non-

specific inactivation and dopaminergic input specific inactivation of the NAc, only male 

mice were used. For other experimental conditions, both male and female mice were 

used. Mice were at least six weeks old at the time of surgery. The number of animals for 

each experiment and number of test sessions used for analyzes are described in Table 6.1 

and Table 6.2. 
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Table 6.1. Animals used for NAc inactivation experiments. 

Area Inactivation Mouse ID # of sessions Area Inactivation Mouse ID # of sessions

NAc Non‐specific 184 10 NAc Dopaminergic inputs 251 11

203 7 273 11

213 15 340 8

216 16 344 11

221 7 345 11

257 13 348 11

258 12 NAc Glutamatergic inputs 243 16

259 12 269 15

285 15 270 16

NAc Direct pathway 264 12 280 13

265 12 312 16

266 15 314 14

326 11 315 14

327 11 NAc Control 253 10

328 13 279 16

NAc Indirect pathway 323 15 286 16

324 12 320 16

331 17 332 15

330 15

333 13

334 16
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Table 6.2 Animals used for PFC inactivation experiments. 

Area Mouse ID Condition # of sessions Area Mouse ID Condition # of sessions

ACC 260 High 9 OFC 261 High 9

Medium 10 Medium 7

Low 8 Low 7

Unilateral 10 Unilateral 10

294 High 7 293 High 9

Medium 8 Medium 8

Low 7 Low 7

Unilateral 8 Unilateral 7

296 High 7 295 High 9

Medium 8 Medium 8

Low 7 Low 9

Unilateral 7 Unilateral 9

307 High 8 306 High 7

Medium 8 Medium 7

Low 10 Low 7

Unilateral 7 Unilateral 7

325 High 7 311 High 8

Medium 7 Medium 7

Low 7 Low 7

Unilateral 7 Unilateral 6

Control (ACC) 262 High 1 Control (OFC) 197 High 9

Medium 3 Medium 11

Low 1 Low 9

Unilateral 0 Unilateral 6

292 High 7 198 High 9

Medium 7 Medium 11

Low 7 Low 8

Unilateral 7 Unilateral 7

308 High 6 202 High 7

Medium 9 Medium 12

Low 7 Low 6

Unilateral 6 Unilateral 7

309 High 6 204 High 7

Medium 7 Medium 8

Low 8 Low 4

Unilateral 7 Unilateral 5

310 High 8 317 High 9

Medium 7 Medium 5

Low 7 Low 5

Unilateral 7 Unilateral 4
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6.2 Surgery and virus injection 

Adeno-associated viruses were obtained from the UNC Vector Core. On arrival, 10 ul 

aliquots were made and stored at -80°C until use. AAV2.9-CAG-ArchT virus was used 

for non-specific inactivation of the NAc, and AAV2.9-FLEX-ArchT virus was used for 

cell-type specific or input specific inactivation of the NAc. 

A mixture of ketamine (100 mg) and xylazine (1 mg) was used for anesthesia. After the 

animals were anesthetized, a bilateral craniotomy was performed, and viral solutions 

were delivered stereotaxically using a Hamilton syringe (7647-01, Hamilton Company) 

with a 33 gauge metal needle (7803-05, Hamilton Company). Viruses were injected into 

the NAc (AP: 1.3, ML: +/- 1.05, DV: -3.7 mm from bregma) or the VTA (AP: 3.2, ML: 

+/- 0.5, DV: -4.1 and -4.6 mm). Following virus injection, fiber optic cannulas 

(CFML12L05, Thorlab) were implanted bilaterally 0.3 mm above the injection sites in 

the NAc. For PFC inactivation experiments, fiber optic cannulas (CFML12L02, Thorlab) 

were implanted bilaterally in the ACC (AP: 1.2, ML: 0.4, DV: -0.85 mm)or the OFC 

(AP: 2.6, ML: 1.5, DV: -1.4 mm). Control animals received the same craniotomy and 

fiber optic cannula implant at each coordinate but did not receive an injection of viruses. 

6.3 Configuration of the operant chamber 

All behavioral experiments were performed in an operant chamber (ENV-307A, Med 

Associates). The four-sided operant chamber had a stainless steel grid floor and, the 

inside of the chamber was illuminated using house light. The operant chamber was put in 

a sound and light attenuating cubicle equipped with a fan for ventilation and providing 

background noise. A nose-port (ENV-313M, Med Associates) was placed in the center of 
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one wall, and two food magazines were placed on the left and right sides of the center 

nose-port. The food magazines were made using a 3D printer and equipped with an 

infrared sensor (ENV-303HDA, Med Associates) and a yellow LED (ENV-321DM, Med 

Associates). The food magazines were connected with a food pellet dispenser (ENV-203-

14P, Med Associates) that released 14mg food pellets (F05684 BioServ). A tone 

generator (ENV-323AM, Med Associates) and a click sound generator (ENV-135M, Med 

Associates) were used to provide auditory feedback for outcome delivery. 

6.4 Behavioral training procedures 

After recovery from surgery, animals were food restricted to gradually decrease body 

weight. During food restriction, about 2 g of home cage chow were provided. In addition, 

a small amount of food pellets that were used during behavior training were provided to 

familiarize animals with them. Once the body weights reach 80-90% of their free-feeding 

body weights, behavioral training started. 

Magazine training was 15 minutes long. One pellet was delivered to both left and right 

food magazines every minute (15 pellets total for each food magazine). If animals did not 

consume all pellets at the end of a session, they were left in the chamber for up to 1hr. If 

animals consumed more than half of pellets after 1 hour, they were moved to step 1. 

Otherwise, magazine training was repeated on the following day. 

In step 1, animals were trained to poke their noses into the center nose-port. At the start 

of a training session, an LED inside the center nose-port was turned on. Once animals 

nose-poked to the illuminated center nose-port, the LED was turned off, and one food 



107 

pellet was delivered into one of the two food magazines. Detection of a head entry to the 

magazine resulted in the onset of the center LED after 4 seconds interval. Once mice 

received 30 or more pellets in a 30 minutes daily session for two days, animals were 

moved to Step 2. If animals failed to nose-poke to the center nose-port within a 30 

minutes session, training duration was extended up to 3 hours. 

In step 2, animals were trained to choose either the left or right food magazine following 

the center nose-poke. At the start of each trial, the center LED was turned on as in step 1. 

Once a nose-poke was made, the center LED was extinguished, and an LED inside either 

the left or right food magazine was turned on. An entry to the illuminated food magazine 

resulted in food pellet delivery while an entry to the other food magazine resulted in a 

time-out (house light was turned off for 3 seconds). Four seconds after the magazine 

entry, the center LED was turned on again, and a new trial began. In step 2, entries to an 

unilluminated center nose-port or food magazines resulted in a 3-second time-out to 

prevent indiscriminative nose-pokes or magazine entries. Once animals received 30 or 

more food pellets in a 30 minutes session for two days, they were moved to step 3. If 

animals did not receive any food pellet in a 30 minutes session, training duration was 

extended up to 3 hours. 

In step 3, animals were required to initiate trials by making a center nose-poke as in the 

previous step. Left or right magazine entries during the illumination of the center LED 

were recorded as premature responses that was followed by a 3-second time-out and ITI. 

Failure to make a center nose-poke within 20 seconds from center LED onset was 

recorded as trial omission that is also followed by a 3-second time-out and ITI. After a 

center nose-poke, both left and right LEDs were turned on, and animals could freely 



108 

choose either the left or right food magazine. At the beginning of each behavioral session, 

one of the two magazines was assigned as the correct side, and the other food magazine 

was assigned as the incorrect side. The probability of food pellet delivery was set to 90% 

for the correct side and 0% for the incorrect side. Delivery or absence of a pellet was 

followed by distinct auditory feedback. Choice history of animals was recorded during a 

training session. Once animals reached a performance criterion (eight or more correct 

choices over the last ten trials), the correct and incorrect side were stochastically 

switched. This switch of reward probability was called a ‘reversal’, and the reversal can 

occur at the beginning of each trial. There was a 15% chance that the correct and 

incorrect sides would be switched. Once the reversal occurred, the position was kept 

constant until animals reach the performance criterion again. If animals achieved 3 or 

more reversals in a daily 60-minute session, they were moved to step 4. 

In step 4, reward probability of each food magazine was set to 75% and 0%. The rest of 

conditions were same as in step 3. Once animals achieved 3 or more reversals in a daily 

session, they were moved to testing sessions. 

6.5 Optogenetic inactivation procedures 

For inactivation of both the PFC and the NAc, animals were tested in the same condition 

as training step 4. 532 nm continuous green light (6-10mW) was used for NAc 

inactivation, and 473 nm light (1.5-2.5, 4-5, 12-15 mW) was used for PFC inactivation. 

The 473 nm light pulses were delivered in 5 ms, 40 Hz trains. In both NAc and PFC 

inactivation experiments, light was delivered at three different time periods including pre-

start period, pre-choice period and post-choice period, and the light was delivered at each 
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time period at 10% of trials. During pre-start inactivation trials, light was delivered from 

the center LED onset to the center nose-poke. If premature responses or trial omissions 

occurred during pre-start inactivation trials, the light was turned off during ITI, and the 

pre-start inactivation trial was repeated. During pre-choice inactivation trials, light was 

delivered from the center nose-poke to the either left or right magazine entry. During 

post-choice inactivation trials, light was delivered at left or right magazine entry and 

lasted for 3 seconds.  

6.6 Histology 

After behavioral experiments, animals were deeply anesthetized and transcardially 

perfused with 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS). Dissected 

brains were put in 4% PFA/PBS solutions overnight for post fixation and moved to 30% 

sucrose solution. Once brains sunk on the bottom of the tube, they were embedded in 

OCT compound, and 35 um free-floating coronal sections were made on a cryostat. 

For immunohistochemistry, free-floating sections were blocked with 5% normal goat 

serum and 0.25% TritonX-100 in PBS. Sections were incubated with an anti-GFP 

antibody (1:1000, Chicken polyclonal, ab13970, Abcam) overnight at room temperature. 

Next day, sections were rinsed with PBS three times with PBS for 5 minutes and 

incubated with a secondary antibody conjugated with Alexa Fluor® 488 dye (1:500, Goat 

anti-chicken IgG, A-11039, Invitrogen) for 90 minutes. After rinsing with PBS three 

times, sections were mounted on slides and coverslipped with mounting media (ProLong 

Gold Antifade Reagent with DAPI, P-36931, Invitrogen). Images were acquired with a 

confocal microscope. 
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6.7 Statistical analysis 

For statistical analysis of premature response, and trial omission, the frequency of each 

event was defined as the number of events divided by the number of trials performed. 

The frequency was calculated separately for laser off and inactivation conditions. From 

an individual animal, the pair of values was obtained for each daily session. Pairs of 

values from different animals were pooled, and the difference between the laser off 

condition and each inactivation condition was tested with Wilcoxon signed-rank test. 

Statistical analysis of reaction time was performed in a similar way. The median reaction 

time of each inactivation condition was used as the representative value of a daily 

session. The difference in performance between the laser off and each inactivation 

condition was tested with Wilcoxon signed-rank test. In case reaction time from multiple 

trial conditions (rewarded and unrewarded trials) or three inactivation conditions (Laser 

off, pre-start and pre-choice inactivation) were compared together, p-values were 

corrected with Bonferroni method.  

For stay probability, the number of stay choices and shift choices were counted for each 

inactivation condition. The number of events was summed over all behavioral events, and 

significance was tested using chi-squared test. The comparison was performed between 

laser off condition and each inactivation condition. In case, different trial types (rewarded 

and unrewarded trials) or three inactivation conditions (Laser off, pre-start and pre-choice 

inactivation) were compared together, p-values were corrected with Bonferroni method.  
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Choice biases observed in PFC inactivation experiments were quantified with bias index 

defined with the following formula. 

Bias index = |StayPL(+) - StayPR(+) + StayPL(-) - StayPR(-)| 

StayPL(+)  : Stay probability after left choice rewarded trials 

StayPL(-) : Stay probability after right choice rewarded trials 

StayPR(+) : Stay probability after left choice unrewarded trials 

StayPR(-)  : Stay probability after right choice unrewarded trials 

Bias index was calculated for each behavioral session. Since the absolute value was taken 

to calculate bias index and stay probability can have extreme values with small number of 

trials, the scaling of bias index tend to be larger with smaller number of trials. In order to 

avoid the effect of difference in the number of trials, the bias index of laser off condition 

was calculated using 1 / 7 of laser off trials randomly sampled from each behavioral 

session so that approximate trial number of each condition became same. To avoid the 

effect of the sampling bias of laser off trials, bias index of laser off was calculated 30 

times, and the median of them was used as the bias index of laser off trials. This sampling 

doesn’t affect the scaling of the bias index. The bias indices of each inactivation 

condition was calculated for daily behavioral sessions. The bias index of each 

inactivation condition was compared with that of the laser off condition using Wilcoxon 

signed-rank test. P-values were corrected with Bonferroni method. Laser effects shown in 

Figure 3.8 E were calculated using the following formula. 

Laser effect = Bias index (Laser on) – Bias index (Laser off) 
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(Laser on) in the above calculation means either pre-choice inactivation in bilateral 

inactivation experiments or pre-choice left inactivation in unilateral inactivation 

experiments. The value was calculated for each daily session. The values were pooled 

separately for unilateral or bilateral inactivation, and the difference was tested with 

Wilcoxon rank-sum test. 

To test whether inactivation effect on stay probability depends on start reaction time, 

inactivation effect difference was calculated using the following formula. 

Inactivation effect difference = (StayP(ON, Short) - StayP(OFF, Short) ) - (StayP(ON, Long) - 

StayP(OFF, Long)) 

StayP : Stay probability after unrewarded trials 

ON/OFF : Laser ON/OFF of the previous trial 

Short/Long RT : Short or long reaction time of the current trial 

The inactivation effect difference was compared with the distribution obtained by 

permuted data. For each behavioral session, number of trials with each inactivation 

condition was counted. Permuted data had the same sequence of choice, outcome, and 

reaction time, but labeling of inactivation condition was randomly assigned so that total 

number of trials with each inactivation condition matched with behavioral data. Using the 

permuted data, stay probability and inactivation effect difference were calculated. This 

process was repeated 1000 times to obtain the distribution of inactivation effect 

difference. Using the distribution, the rank order of inactivation effect difference 

calculated from the behavioral data was divided by the number of bootstrapping and used 

as a p-value. 
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