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Cell cycle transitions are driven by oscillations of cyclin-cyclin dependent kinase 

(CDK) activity and associated cyclin degradation, mediated by ubiquitylation by 

the anaphase-promoting complex (APC). In this work, I analyzed the regulation of 

the APC by its activator Cdh1 in budding yeast in single cells. Inactivation of 

APC-Cdh1 is an important regulatory transition leading to mitotic entry. I 

developed and characterized a fluorescent biosensor to measure the dynamics of 

APC-Cdh1 activity in single cells by quantitative time-lapse microscopy. I found 

that APC-Cdh1 is inactivated with very reliable timing, in contrast with other cell 

cycle events that occur with considerable variability in timing. The activity of APC-

Cdh1 is restrained by multisite phosphorylation by early cyclin-CDKs. Complete 

removal of phosphorylation control of Cdh1 results in cell cycle arrest before 

mitotic entry, because persistent APC-Cdh1 activity prevents mitotic cyclin gene 

expression and accumulation of mitotic cyclins. I show that partial 

phosphorylation of Cdh1 allows for partial inactivation of APC-Cdh1. Interestingly, 

incompletely restrained APC-Cdh1 activity causes a variable phenotype in cell 

cycle progression on the single cell level. This partially penetrant phenotype, 

caused by incomplete inactivation of APC-Cdh1, is highly complex; even though 
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In the last part of the thesis, I examine the global cell cycle-associated 

transcriptional program and its regulation by cyclin-dependent kinase activity. 

phosphorylated by multiple cyclin-CDKs, and that additional mechanisms of APC-

Cdh1 inactivation besides phosphorylation also contribute to robust inactivation. 

some of the cells arrest in the cell cycle, they occasionally complete later cell 

cycle events with delay and in incorrect order. I show that Cdh1 can be 
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Chapter 1: Introduction 

1.1. Regulation of the eukaryotic cell cycle by cyclin-dependent kinases 

and the anaphase-promoting complex 

The main driver of cell cycle progression is periodic activity of cyclin-dependent 

kinases (CDKs) (Morgan, 2007). CDK activity is dependent on its binding 

partners, cyclins. Periodic CDK activity is achieved by regulated expression and 

degradation of cyclins (Murray, 2004). 

In budding yeast Saccharomyces cerevisiae, a well-studied unicellular 

eukaryote, a single CDK, named Cdc28, is involved in cell cycle regulation, and 

is activated at different cell cycle stages by different cyclins. These cyclin-CDK 

complexes promote the events of G1, S-phase and mitosis (figure 1.1) New cells 

are born with low CDK activity. Later in the G1, the commitment point, called 

Start in budding yeast, signals the decision to commit to a new cell cycle, and is 

marked by expression of G1 cyclins Cln1 and 2 (Cross and Tinkelenberg, 1991; 

Dirick and Nasmyth, 1991; Richardson et al, 1989; Skotheim et al, 2008). A third 

G1 cyclin, Cln3, is present already earlier and has a role in sensing cell size 

(Richardson et al, 1989; Wang et al, 2009). Cln-CDK activity promotes 

irreversible passage through START and promotes bud emergence. Cln-CDKs 



2 

Figure 1.1: Regulation of cell cycle events in budding yeast. 
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are also responsible for phosphorylation of Sic1, a DNA replication inhibitor 

(Tyers, 1996). G1 cyclins are highly unstable and Cln-CDK activity drops rapidly 

upon transcriptional shutoff of the CLN genes (Schneider et al, 1998). The 

second cyclin wave consists of S-phase cyclins, Clb5 and 6, which promote 

initiation of DNA replication (Epstein and Cross, 1992; Schwob and Nasmyth, 

1993). Onset of mitosis is regulated by yet another set of cyclins, Clb1-4, which 

induce a switch from polarized to isotropic bud growth, duplication of the spindle 

pole body and formation of mitotic spindle (Amon et al, 1993). 

However, in order to complete mitosis, the cyclin-CDK activity must drop, and 

the drop in CDK activity is mostly ensured by degradation of cyclins. This is 

achieved by ubiquitylation of cyclins by the anaphase-promoting complex (APC; 

King et al, 1995; Sudakin et al, 1995). The APC is a multi-subunit protein 

complex that requires binding of an activator. There are two homologous 

activators, Cdc20 and Cdh1 (also called Hcm1), which provide timing and 

specificity (figure 1.2). APC-Cdc20 is active at the metaphase-anaphase 

transition. Its targets are Clb5, mitotic cyclins, and importantly also securin 

(Pds1), degradation of which is the first step in the cascade leading to cleavage 

of cohesin and sister chromatid separation (Cohen-Fix et al, 1996; Shirayama et 

al, 1999). APC-Cdh1 is activated later, and its main role is stabilizing the G1 

phase and ensuring no premature accumulation of mitotic cyclins. Although it is 

not essential for mitotic exit, its targets also include polo kinase Cdc5, various 
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components of the mitotic spindle, as well as Cdc20 itself (Hildebrant and Hoyt, 

2001; Huang et al, 2001, Schwab et al, 1997). 

Another important factor in mitotic exit is phosphatase Cdc14 (Lu and Cross, 

2010). Degradation of Clb2 by APC-Cdc20 (Wasch and Cross, 2002) and 

release of Cdc14 from the nucleolus (Visintin et al, 1999) causes the kinase-

phosphatase balance to shift in favor of phosphatase, which drives the mitotic 

exit (Drapkin et al, 2009). 

The difference in timing of these two activators is ensured by cyclin-CDK activity 

(figure 1.2); Cdc20 preferentially binds to CDK-phosphorylated APC and is 

therefore active when CDK activity is still high (Rudner and Murray, 2000). In 

contrast, activity of APC-Cdh1 is activated by the phosphatase Cdc14 

(Zachariae et al, 1998) after the balance between phosphatase and kinase 

activity is shifted in favor of phosphatase. 

The regulation of the cell cycle by cyclins, cyclin-dependent kinases, as well as 

the anaphase-promoting complex and its activators Cdc20 and Cdh1 is 

conserved among many eukaryotic lineages, including animals and plants. 

However, a recent study of cell cycle regulation in a highly divergent eukaryote, 

a human pathogen Giardia intestinalis, has revealed that its genome lacks any 

of the APC components. Furthermore, the only B-type cyclin, while degraded 
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Figure 1.2: Regulation and targets of the anaphase-promoting complex. 
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during mitosis, is not subjected to ubiquitylation (Gourguechon et al, 2013). 

Besides this exception, regulation of the cell cycle by cyclin-CDK and the APC is 

common to eukaryotes. 

1.2. Regulation of APC-Cdh1 in budding yeast 

In order to allow for accumulation of APC targets that drive the progression 

through the S-phase and entry into mitosis, it is crucial that the APC activity is 

restrained after G1-phase. Inactivation of APC-Cdc20 is ensured by its 

degradation; its degradation is mediated by both APC-Cdh1, as well as other 

mechanisms (Robbins and Cross, 2010b) to ensure that APC-Cdc20 is not 

active after the metaphase-anaphase transition. In contrast, activity of APC-

Cdh1 is allowed to persist throughout the G1 phase of the next cell cycle and is 

only inactivated upon cell cycle progression through the G1/S transition (Huang 

et al, 2001). 

The main mechanism of restraining the APC-Cdh1 activity is phosphorylation of 

Cdh1 at 11 putative CDK consensus sites. Phosphorylation of Cdh1 reduces the 

ability to bind to the APC, as mutation of phosphorylation sites caused 

constitutive association of Cdh1 with APC (Zachariae et al, 1998). In addition, it 

was also suggested that phosphorylation promotes export of Cdh1 out of the 
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nucleus and sequestration from the APC and its substrates. The export is 

mediated by a karyopherin Msn5 (Jaquenoud et al, 2002). 

It is presently unclear which kinases are responsible for inactivation of APC-

Cdh1. An initial study has suggested that G1 cyclins are responsible for 

inactivation of APC-Cdh1 activity (Amon et al, 1993). Later, it was suggested 

that Cln-CDKs are not sufficient for APC-Cdh1 inactivation, and Clb3,4,5-CDK 

are required (Yeong et al, 2001). However, the results of both of these studies 

were based on stability of ectopically expressed mitotic cyclin Clb2, which is also 

a negative regulator of APC-Cdh1 in addition to being an APC-Cdh1 substrate. 

A subsequent study used an inert reporter for APC-Cdh1 activity and found that 

Clb5 and 6-CDK are responsible for proper timing of APC-Cdh1 inactivation, 

although APC-Cdh1 inactivation still occurred in absence of Clb5 and 6 (Huang 

et al, 2001). 

Other mechanisms might contribute to APC-Cdh1 inactivation. It was found by 

mass spectrometry that Cdh1 is phosphorylated at many other residues, which 

might have regulatory effects (Hall et al, 2004). It was suggested that 

phosphorylation of Cdh1 by both CDK as well as polo kinase Cdc5 is required 

for mitotic spindle assembly (Crasta et al, 2008), although mutation of Cdc5 

binding sites on Cdh1 was later shown to have no regulatory effects (Robbins 

and Cross, 2010a). In addition, recognition of substrates by APC-Cdh1 is 
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blocked by a pseudosubstrate inhibitor Acm1 (Martinez et al, 2006), however, 

deletion of ACM1 does not have any major effects and inhibition by Acm1 

probably plays a relatively minor role. Remarkably, Cdh1 abundance is not 

significantly regulated by cell cycle-specific expression or degradation and is 

constant throughout the cell cycle. 

Regulation of Cdh1 by multisite phosphorylation is conserved in vertebrates, 

although the precise localization of phosphorylation sites varies. A stoichiometric 

inhibitor Emi1 also exists and is regulated in a similar fashion to stabilize mitotic 

cyclins in interphase and couple DNA replication with mitosis (Di Fiore and 

Pines, 2007). However, unlike yeast where Cdh1 is stable (Zachariae et al, 

1998), Cdh1 is degraded in S-phase by the SCF ubiquitin ligase in mammalian 

cells (Benmaamar and Pagano, 2005). 

A careful study by using exact gene replacements found that 

unphosphorylatable CDH1-m11 allele is incompatible with viability (Robbins and 

Cross, 2010a). Phosphorylation of Cdh1 by CDK is therefore essential for cell 

cycle progression. Specifically, CDH1-m11 cells arrest at the G2/M border, with 

replicated DNA, but before switching to depolarized bud growth and formation of 

the mitotic spindle. Introducing non-degradable mitotic cyclin Clb2-kd in CDH1-

m11 cells restored the ability to form spindles and depolarize growth, which 

indicates that in particular restraining the degradation of mitotic cyclins, but not 
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necessarily other APC-Cdh1 targets, is the main requirement for APC-Cdh1 

inactivation (Robbins and Cross, 2010a). 

1.3. Multisite phosphorylation in regulation of CDK substrates 

Global mapping of CDK substrates in budding yeast has revealed that a large 

fraction of CDK phosphoproteome consists of substrates that contain multiple 

CDK phosphorylation sites per protein (Holt et al, 2009). Interestingly, the 

precise position of these phosphorylation sites is poorly conserved in orthologs 

in related fungal species. The majority of these sites are found in unstructured 

regions of proteins and loops. This implies that regulation of these substrates by 

multisite phosphorylation might often depends on rather non-specific 

mechanisms that disrupt or enhance protein interactions by adding bulk negative 

charge on the protein surface (Holt et al, 2009). 

Regulation of proteins by multisite phosphorylation has been studied on multiple 

substrates. An example of regulation by bulk negative charge is Ste5, a scaffold 

protein involved in MAP kinase signaling in response to mating pheromone. 

Ste5 is inactivated by Cln-CDK by disrupting its membrane localization 

(Strickfaden et al, 2007). This is achieved by phosphorylation on a cluster of 

sites in a basic motif that can bind the plasma membrane. Disruption of 
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membrane binding requires a large number of negative charges, which is 

achieved by 8 phosphorylation sites in the plasma membrane binding domain of 

Ste5 (Strickfaden et al, 2007). 

The mechanistically best-understood example of multisite phosphorylation is 

Sic1, the stoichiometric inhibitor of mitotic cyclin-CDK. Upon phosphorylation, 

Sic1 is recognized by the SCF ubiquitin ligase and targeted for degradation. An 

initial study has proposed a “counting mechanism”, in which recognition of the 

phosphodegron on Sic1 by the SCF ubiquitin ligase is dependent on exactly 6 

phosphate groups (Nash et al, 2001). Such mechanism can ensure both a delay 

as well as a sharp transition, as shown experimentally as well as by a 

mathematical model (Deshaies and Ferrell, 2001). However, the requirement for 

six phosphorylation sites was difficult to reconcile with the structure of the 

human homolog of the SCF bound to cyclin E peptides, where a tight interaction 

was observed with just a doubly phosphorylated degron (Hao et al, 2007). 

Subsequently, in sharp contrast to the counting mechanism, a careful 

biochemical analysis of multisite phosphorylation of Sic1 has revealed an 

ordered cascade of processive phosphorylation events, initiated by G1 cyclins 

and then carried out mostly by S-phase cyclin-CDKs (Koivomagi et al, 2011). 

Multisite phosphorylation can in principle generate nonlinearity by multiple 

mechanisms, and such nonlinearity can contribute to generating sharp 
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transitions between cell cycle stages. Experimentally, nonlinearity was observed 

and characterized in Xenopus Wee1 (Kim and Ferrell, 2007). Nonlinear 

response to kinase levels in Wee1 arises through a substrate competition 

mechanism. Phosphorylation of one critical residue, T150, in Wee1 is highly 

ultransensitive with response to cyclin B-Cdk1. This nonlinearity arises due to 

competition with phosphorylation at other inessential kinase sites on Wee1, as 

well as other high affinity Cdk1 targets (Kim and Ferrell, 2007). 

Different phosphorylation sites on the same protein can in principle have 

different functions. Such a mechanism was described in a budding yeast 

transcription Pho4, which is phosphorylated by another cyclin-cyclin dependent 

kinase Pho80/Pho85. Of four phosphorylation sites located on Pho4, 

phosphorylation at two of the sites promotes nuclear export; phosphorylation at 

the third site inhibits nuclear import; and phosphorylation at the fourth site 

prevents association with a binding partner Pho2 (Komeili and OʼShea, 1999). It 

is an intriguing possibility that such separable roles of different phosphorylation 

sites might also exist in CDK substrates. 
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1.4. Cell cycle-regulated gene expression 

In parallel to the biochemical oscillator, driven by CDK activity and ubiquitylation, 

periodic gene transcription also contributes significantly to the cell cycle control. 

A pioneering study in the late 1990s using the emerging microarray technology 

has revealed that a significant fraction of yeast genome undergoes cell cycle 

regulated transcription (Spellman et al, 1998). Overall, about 800-1200 genes 

(out of ~6400 total) are thought to be statistically significantly upregulated at a 

certain cell cycle stage (Spellman et al, 1998; Orlando et al, 2008; Pramila et al, 

2006; de Lichtenberg et al, 2005). This periodic gene expression is ensured by 

activity of particular transcriptional factors at different cell cycle stages. 

There are three main clusters of gene expression. Transcriptional factors SBF 

and MBF activate transcription of genes at the G1/S border (Dirick et al, 1992). 

Among genes in this regulon are G1 cyclins and S-phase cyclins. The second 

cluster, regulated by transcription factors Mcm1, Fkh1/2 and Ndd1, activates 

expression of genes at the G2/M border (Koranda et al, 2000). These genes 

include mitotic cyclins, as well as Cdc20. The third cluster is activated at the 

mitotic exit, and is regulated by transcription factors Swi5 and Ace2 (Colman-

Lerner et al, 2001; Knapp et al, 1996). A few other clusters that contain a 

smaller number of genes, such as the S-phase cluster regulated by Hcm1 
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(Pramila et al, 2006), and the histone cluster (Dollard et al, 1994), also contain 

cell cycle-regulated genes. 

It was generally assumed that the activity of these transcription factors is 

regulated by CDK phosphorylation (or dephosphorylation) and that periodic 

transcription is therefore downstream of the CDK oscillator. However, a 

genome-wide study has found that upon depletion of B-type cyclins, cells enter a 

cell cycle arrest, but the majority of the periodic transcriptome continues to 

oscillate (Orlando et al, 2008). This hinted that an oscillatory mechanism that is 

independent of B-type cyclin-CDK activity could sustain periodic transcription. 

Further study has suggested that even in complete absence of CDK activity, 

periodic transcription is still present (Simmons-Kovacs et al, 2012). The authors 

have proposed a model of a transcriptional oscillator, based on sequential 

activation of transcription factors (Orlando et al, 2008, Simmons-Kovacs et al, 

2012). A recent study has proposed that the transcriptional oscillator is stalled 

when checkpoints are activated (Bristow et al, 2014). It remains unresolved if, 

and to what extent, periodic gene expression is in fact regulated by periodic 

cyclin-CDK activity, and to what extent other CDK-independent mechanisms can 

drive periodic regulation of cell cycle-regulated genes. 
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1.5. Cell-to-cell variability and effects of molecular noise 

Clonal populations of cells can exhibit striking cell-to-cell variability. Expression 

levels of a gene can vary greatly between genetically identical cells grown in 

identical environment (Elowitz et al, 2002). Single cell methods to measure 

protein abundance in single budding yeast cells have showed great variability in 

abundance of the proteome in budding yeast (Newman et al, 2006). On the level 

of mRNA, counting single mRNA molecules has revealed substantial variation in 

number of mRNA molecules per cell (Zenklusen et al, 2008). 

This heterogeneity is generally assumed to have no functional significance 

(reviewed in Altschuler and Wu, 2010). In fact, mechanisms specifically aimed to 

suppress noise have evolved. For example, in budding yeast cell cycle, an 

active mechanism of noise suppression was found in the Start transition, where 

coherence regulatory program was carefully measured in single cells (Bean et 

al, 2006). Deletion of SWI4, the component of the transcription factor SBF, 

greatly reduced specifically the cell-to-cell variability in coherence of Start events 

(time budding and CLN2 expression peak), but not the mean duration of the 

interval, consistent with existence of complex mechanisms for noise 

suppression. The remaining cell-to-cell variability observed in budding yeast 

Start is perhaps represents a compromise between high coherence of events 

and high regularity in timing (Bean et al, 2006). 
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However, in some cases, cells can exploit molecular noise to stochastically 

generate different transient phenotypic states. So far, these phenomena have 

mostly been studied in bacteria. For instance, in Bacillus subtilis, a fraction of 

cells can transiently switch to a competent state, during which they can 

potentially take up foreign DNA from the environment, at the expense of slowing 

the growth rate. The switching is driven by molecular noise in expression of the 

regulator (Maamar et al, 2007; Cagatay et al, 2009). A similar phenomenon is 

seen in Escherichia coli, where a small fraction of cells transiently enters a slow 

growing “persister” state, in which they are less sensitive to lethal doses of 

antibiotics (Balaban et al, 2004). Such phenomena are seen as bet hedging; the 

population sacrifices its fitness to gain phenotypic diversity, which increases the 

chance of survival in unpredictable environments. Bet hedging can provide an 

advantageous strategy for survival to simple sensing and responding to changes 

in environment (Kussell and Leibler, 2007). 

A possibly related phenomenon was recently also observed in budding yeast. 

High throughput imaging has revealed that clonal populations of yeast cells 

exhibit a range of growth rates (Levy et al, 2012) in a heritable manner. It was 

found that slower growth correlates with resistance to heat killing and correlates 

with age. While the significance of this phenomenon is not yet fully understood, 

it might be another example of a similar bet-hedging strategy that could ensure 

population survival in unpredictable environments (Levy et al, 2012). 
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In the budding yeast cell cycle, duration of various events of cell cycle differs 

substantially between cells. Much of this variability is accounted for by the 

duration of G1 phase (Lord and Wheals, 1981). The variability of G1 phase can 

be partially attributed to molecular noise; coefficient of variation of the duration of 

the unbudded period of the cell cycle (cytokinesis to bud emergence) scales with 

the square root of ploidy, suggesting that molecular noise in gene expression is 

an important source of variability in G1 phase (Di Talia et al, 2007). However, 

additional element controlling the variability of the duration of G1 is cell size at 

birth in daughter cells. Due to asymmetric cell division, daughter cells are born 

smaller and more variable in size. Since cell size control is executed in G1, the 

duration of the G1 phase in daughters is also highly dependent on cell size at 

birth (Di Talia et al, 2007). In contrast, little is understood about variability of the 

duration of the budded period of the cell cycle, which is also significantly 

variable. 

1.6. Rationale for the present study and organization of the thesis 

The aim of the present study was to gain understanding into the variability of the 

budding yeast cell cycle and regulation of Cdh1 inhibition by multisite 

phosphorylation. As outlined above, many questions about regulation of APC-
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Cdh1 remain unresolved, and understanding the regulation of proteins by 

multisite phosphorylation is of significant general interest. 

All the work was done in the budding yeast Saccharomyces cerevisiae. In 

chapter 2, I focus on development of a quantitative assay to measure the 

dynamics of APC-Cdh1 activity in single cells, and address the cell-to-cell 

variability of timing of cell cycle events leading to entry into mitosis. In 

subsequent chapters 3 and 4, I then focus on regulation of Cdh1. In chapter 3, I 

address the regulation of APC-Cdh1 by multisite phosphorylation by generating 

partially phosphorylatable CDH1 mutants and analyzing their phenotype. In 

chapter 4, I focus on the relationship and hierarchy between regulators of Cdh1. 

Chapter 5, experimental part of which was done in collaboration with S. Jamal 

Rahi and Kresti Pecani, is a departure from the topic of the rest of this thesis, 

and is an analysis of the genome-wide pattern of cell cycle-regulated gene 

expression, also in Saccharomyces cerevisiae. Chapter 6 is a discussion of the 

main findings of the work presented in the thesis. 
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Chapter 2: Timing of mitotic entry events 

2.1. Variability of duration of the budded period of the budding yeast cell 

cycle 

The budded period of the cell cycle (time from bud emergence to cytokinesis) is 

variable (Di Talia et al, 2007; figure 2.1). In contrast to the G1 period, the 

variability does not scale with ploidy, ruling out the molecular noise in gene 

expression as a simple explanation (Di Talia et al, 2007). The variability is also 

not accounted for by sporadic activation of checkpoints, since deleting both the 

components of the spindle assembly checkpoint and DNA damage checkpoint at 

once does not reduce the variability (F. Cross, unpublished data). 

The budded period of the cell cycle involves multiple crucial cell cycle events 

and independent regulatory steps, and it remains unexplored how variable each 

of these steps are. In this chapter, I focused on developing tools to assess the 

timing and variability of regulatory events leading to entry into mitosis, 

inactivation of APC-Cdh1 and activation of expression of the mitotic cyclin CLB2. 
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Figure 2.1: Variability of the budded period in the budding yeast cell cycle. A 
histogram of durations of the cell cycle period from budding to cytokinesis, as 
measured by presence of the bud neck marker Myo1-mCherry signal at the 
bud neck.   



20 

2.2. Development of a biosensor for APC-Cdh1 activity 

In order to precisely measure the variability in inactivation of APC-Cdh1, I 

sought to develop a fluorescent biosensor that would be sensitive to degradation 

regulated by ubiquitylation by APC-Cdh1. An ideal biosensor would be inert and 

degraded exclusively by APC-Cdh1. 

Based on these considerations, I constructed the biosensor using a C-terminal 

fragment of Ase1, a spindle protein (Juang et al, 1997). Unlike many other APC 

targets that are ubiquitylated by both APC-Cdc20 and APC-Cdh1, Ase1 is 

strongly destabilized by APC-Cdh1, but is not significantly destabilized by APC-

Cdc20 (Visintin et al, 1997). Previous studies have also determined the minimal 

Ase1 fragment necessary and sufficient for degradation and established that this 

fragment does not interfere with any cellular processes (Huang et al, 2001). 

The construct encoded the C-terminal fragment of Ase1 sufficient for APC-Cdh1 

degradation (amino acid residues 632-885) fused to a yellow fluorescent protein 

yVenus and placed the construct under control of the MET3 promoter (figure 2.2 

A). MET3 promoter is repressed by methionine in the media and expressed in 

absence of methionine. Expression from the MET3 promoter has been shown to 

be stable throughout the cell cycle (Charvin et al, 2008). 
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Figure 2.2: A biosensor for APC-Cdh1 activity. A) A scheme of the 
biosensor construct. The construct is composed of a fusion of a yellow 
fluorescent protein (yVenus) and the C-terminal sequence of Ase1. 
Expression of the construct is driven by the methionine-repressible 
promoter MET3pr. B) Combined phase-contrast and fluorescence images 
from the time-lapse video of a representative wild-type cell expressing the 
biosensor (yellow) and a bud-neck marker Myo1-mCherry in red. C) 
Quantification of mean cellular fluorescence in a representative cell 
expressing the biosensor. Open circles: raw data, solid line: smoothing 
spline fit. D) Quantification of total nuclear fluorescence in a representative 
cell. Black lines represent nuclear division, and dashed line is the sum of 
the fluorescence in the mother and daughter nucleus.    
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The cells carrying the biosensor exhibited once per cell cycle oscillations in 

yVenus fluorescence (figure 2.2 B). To quantitatively assess these oscillations, I 

quantified mean cell fluorescence by using the semi-automated image 

segmentation software (Charvin et al, 2008). The fluorescence begins to rise 

around the time of bud emergence, and conversely, fluorescence begins to drop 

before cytokinesis (figure 2.2 C). These oscillations of fluorescence are due cell 

cycle-regulated stability of the biosensor by APC-Cdh1. However, an effect, 

owing to the fact that the biosensor is localized in the nucleus, contributes to the 

mean fluorescence of the cell. At the time of the nuclear division, half of the 

amount of the biosensor was lost to the nascent daughter cell during the nuclear 

migration and division (and was excluded in quantification of the mother cell), 

resulting in a drop of fluorescence in the mother cell. Since APC-Cdh1 activity is 

present at mitotic exit, the timing of these two effects is somewhat overlapping. 

To account for that effect due to nuclear division and demonstrate that 

degradation of the biosensor indeed takes place, I quantified the total 

fluorescence of the nucleus, corresponding to the total amount of the biosensor 

(figure 2.2 D). To account for fluorescence loss at nuclear division, I then 

summed up the fluorescence of the mother and daughter cells after nuclear 

division (dashed lines). The total fluorescence still dropped after the nuclear 

division, indicating that biosensor was degraded after nuclear division. However, 
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the dynamic range of oscillations was reduced if the dilution of fluorescence due 

to nuclear division was taken into account. 

It needs to be noted that the gradual rise and fall, rather than sharp transitions in 

fluorescence levels, are due to slow maturation time of fluorescent proteins; first 

order constant for maturation of yVenus in budding yeast was measured to be 

around 20 minutes (Charvin et al, 2008). Assigning precise transition times from 

such gradual changes poses a problem. I tackle this issue later in this chapter; I 

note that the problem is analogous to determining turn-on times of promoters, 

which are likewise masked by identical dynamics of slow fluorescent protein 

maturations (Skotheim et al, 2008). 

2.3. Oscillations in biosensor stability are due to APC-Cdh1 activity 

First, I sought to establish whether constant activity of APC-Cdh1 is sufficient for 

complete biosensor degradation. To do so, I measured the biosensor dynamics 

in cells lacking the ability to inhibit APC-Cdh1 activity. I used an 

unphosphorylatable and therefore constitutively active allele of CDH1, CDH1-

m11, that lacks all 11 CDK phosphorylation sites (Robbins and Cross, 2010a; 

Zachariae et al, 1998). CDH1-m11 is lethal, but cells can be conditionally kept 

alive by overexpressing ACM1, the stoichiometric inhibitor of APC-Cdh1, from a 

galactose-inducible promoter. Upon switch to glucose to turn off GAL-ACM1, 
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CDH1-m11 cells arrested at mitotic entry. In these arrested cells, the biosensor 

fluorescence was very low and constant (figure 2.3 B,C). The constant 

fluorescence indicates a steady state with balanced synthesis and high 

degradation rate, as the expression from MET3 promoter persists during the 

arrest. This result indicates that constitutive activity of APC-Cdh1 is sufficient for 

constant high degradation rate of the biosensor. 

I then sought to establish whether Cdh1 is solely responsible for cell cycle-

regulated degradation of the biosensor. To do that, I examined the dynamics of 

the biosensor in cells lacking APC-Cdh1 activity. cdh1 cells are viable and do 

not exhibit any major cell cycle defects. Quantified as mean fluorescence within 

the entire cell boundary (excluding the bud), the biosensor fluorescence was 

substantially (three-fold) elevated throughout the cell cycle compared to wild 

type, indicating an overall lower degradation rate in these cells (figure 2.3 C). 

Therefore, APC-Cdh1 contributes to degradation of the biosensor. 

However, quantifying the fluorescence as mean fluorescence within the entire 

cell still results in oscillations during the cell cycle, with fluorescence dropping 

precipitously at the time just before cytokinesis (figure 2.3 A). This is due to the 

nuclear localization effect, described above. To account for that, I instead 

quantified the total fluorescence of the nucleus in cdh1 cells (figure 2.3 D), 

similarly as done above for wild type cells (figure 2.2 D). The sum of 
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Figure 2.3: APC-Cdh1 is responsible for oscillations in biosensor 
fluorescence. A) Representative traces of biosensor fluorescence in cdh1 
cells, along with a wild type cells (dashed line). B) Representative traces of 
biosensor fluorescence in CDH1-m11 cells. C) Quantification of normalized 
average fluorescence levels. D) Representative traces of biosensor 
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fluorescence of the mother and daughter nuclei after nuclear division resulted in 

a linear rising trend, consistent with constant synthesis of the biosensor, in most 

cell cycles (71% of cell cycles; example cycle 1 in figure 3.3 D). Only in a 

minority of cell cycles (29%) the summed fluorescence of the mother and 

daughter nuclei exhibited a slight drop. This effect could be attributed to image 

analysis, since the total fluorescence intensity of the nucleus is difficult to 

quantify due to changing shape of the nucleus during the division. 

2.4. Determining the timing of APC-Cdh1 inactivation in single cells 

In this work, I wanted to develop a method to determine the time of inactivation 

of APC-Cdh1. However, this problem is challenging because slow maturation 

time of fluorescent proteins masks the sharpness of transitions. The problem is 

analogous to examining promoter turn-on times, for which tools already exist 

(Skotheim et al, 2008; Eser et al, 2011). 

Previously, the maximum of the second derivative of the smoothing spline fit 

was used for determining the turn-on time for a promoter (Skotheim et al, 2008). 

However, for the biosensor data, it turned out that the second derivative method 

is particularly sensitive to noise in fluorescence measurements (see chapter 

2.6). Subsequently, a method for determining the turn-on times from where the 
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first derivative reaches 10% of the maximum value has been used (Eser et al, 

2011), as it was shown that this method provides higher reproducibility between 

datasets (Jan Skotheim, personal communication). 

I measured the APC-Cdh1 turn-off times from the fluorescence time series 

quantified as mean cell fluorescence. Since the nucleus is divided earlier in the 

cell cycle, the effect of the nuclear division does not interfere with the 

determination of APC-Cdh1 inactivation time. In order to assign a sharp timing of 

the APC-Cdh1 inactivation from the data with gradual rise of fluorescence, the 

time point at which the first derivative of the smoothing spline fit changed from 

negative to positive (i.e. where the slope turns upwards) was chosen to be 

assigned as the APC-Cdh1 turnoff time. I note that the method used here is 

essentially equivalent to the 10% of the maximum of the first derivative method, 

since the first derivative of APC-Cdh1 biosensor traces typically reaches about 

10% around the first frame after the fluorescence minimum (figure 2.5); therefore 

the difference between the results of these two methods would be smaller than 

the sampling interval. 
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Figure 2.4: A first derivative-based method for detection of APC-Cdh1 
inactivation time. Bold blue line: a smoothing spline fit of a fluorescence trace 
as shown in 2.2. Red line: first derivative of the fluorescence trace, computed 
as difference between fluorescence values at two adjacent time points. Black 
stars: points of the transition as determined by the algorithm. The points 
where the first derivative transitioned to positive represent APC-Cdh1 
inactivation times. 
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2.5. Measuring the contribution of measurement error to the timing of 

APC-Cdh1 inactivation 

It is unclear to what extent the determination of the measured inactivation time is 

governed by the noise. The fluorescence intensities measured from images vary 

considerably between frames, and the noise at particular time points could 

strongly affect the exact shape of the smoothing spline fit, the first derivative 

function, and the measurement of the APC-Cdh1 inactivation time. 

To estimate the noise, I calculated the difference between the raw data value 

and the value of the corresponding fit at each data point of the curve. The 

distribution of the difference is uniform throughout the time course and follows a 

roughly normal distribution (figure 2.5, panels A,B). 

I then added normally distributed noise (with the same standard deviation as the 

SD for the difference between the raw data and smoothing spline fit) to the 

smoothing spline fit (figure 2.5 C). This generated simulated data with equal 

degree of noisiness as the raw data. Then, I fitted the simulated data with a 

smoothing spline, and determined the apparent APC-Cdh1 inactivation time 

from the fitted simulated data using the first derivative method. 
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Figure 2.5: Estimation of measurement noise in inactivation time. A,B) The 
distribution of the difference between the raw data and the smoothing spline 
fit. C) The procedure for generating simulated data. Raw data (thin blue line) 
was fitted with the smoothing spline (bold blue line). Subsequently, random 
noise with the standard deviation of the distribution in B was added (thin red 
line). Simulated data was then fitted again with the smoothing spline (bold red 
line) and inactivation times were determined as in 2.4. D,E) Examples of 
fluorescence traces for two cell cycles. Blue line, smoothing spline fit; blue 
dots, raw data. Inset, the distributions of measurement error in APC-Cdh1 
inactivation, defined as the difference in time measured from the simulated 
data and the time measured from the experimental data, by generating the 
simulated data 50 times. The data for the cell in D) represent a noise-
resistant measurement. The measurement for the cell in E) is sensitive to 
noise, and was discarded. 
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The difference between the time of inactivation measured from the fit of the 

simulated data and the time of inactivation measured from the original fit 

represents the measurement error. For each cell, I performed the procedure 

multiple times to obtain a distribution of the apparent APC-Cdh1 inactivation 

measurement error (figure 2.5 D,E). I define the mean of the measurement error 

(MME) to be the mean of this distribution, and the standard deviation of the 

measurement error (SDME) to be the standard deviation of this distribution. 

For most cells, the distribution of measurement error was tight and centered 

around 0 (figure 2.5 D). However, a fraction of measured cells was found to be 

sensitive to noise, as the SDME was significantly bigger than zero (indicating a 

great dependence of the measurement to noisy time points), and/or the MME 

differed greatly from zero (indicating a systematic shift in the measurement of 

APC-Cdh1 inactivation; figure 2.5 E). The fluorescence traces of these cells 

typically had a less sharp transition, which could be due to some noisy time 

points around the time of transition (figure 2.5 E). The apparent APC-Cdh1 

inactivation time from these cell cycles therefore does not represent an accurate 

measurement of the biological event. To avoid contaminating the measurement 

of cell-to-cell variability with potentially noisy data points, I excluded cell cycles 

in which the MME was greater than 3 minutes, or in which the SDME was 

greater than 3 minutes. By using this procedure, I therefore limited the 

contribution of the measurement error to the standard deviation to maximum 3 
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minutes, and the rest of the measured standard deviation therefore likely reflects 

biological variability. The 3 minutes cutoff is equal to the imaging frequency in 

the experiment; therefore detection of events on a shorter time scale in this 

experiment is impossible. 

I note that exclusion of a fraction of cells might potentially introduce a bias, 

because it is possible that these excluded cells might include a population of 

biologically different cells, for instance cells in which APC-Cdh1 inactivation was 

less sharp. However, the number of excluded cells in the experiments was only 

10-20% (table 2.1), and the excluded cells looked morphologically normal and 

had overall similar cell cycle times. 

2.6. Variability in timing of APC-Cdh1 inactivation 

Using a strain that harbored a fluorescently labeled Myo1-mCherry as a bud 

neck marker in addition to the APC-Cdh1 biosensor, I measured the time of 

APC-Cdh1 inactivation with respect to budding. On average, Cdh1 was 

inactivated 4 minutes before budding (figure 2.6 A). However, even after 

removing the noisy data points using the procedure described above, there was 

a considerable variability between cells, likely representing biological cell-to-cell 

variability in coherence between these two events. This poor coherence 
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between budding and APC-Cdh1 inactivation could be due to variability in APC-

Cdh1 inactivation times, variability in timing of bud emergence (already known to 

be variable (Di Talia et al, 2007)), or both. 

To measure the timing of APC-Cdh1 inactivation with respect to relevant 

regulatory steps, I constructed a strain carrying both the APC-Cdh1 biosensor, 

as well as a GFP-tagged Whi5 protein. Whi5 is a transcriptional repressor that 

controls the passage through Start, the commitment point in the budding yeast 

cell cycle. Whi5 directly represses the G1/S transcriptional regulon, which 

includes all of the regulators of Cdh1 – CLN1,2, CLB5,6 and ACM1. Upon 

phosphorylation of Whi5, the repression is lifted and the G1/S regulon 

transcription can occur. At the same time, Whi5 localization sharply changes 

from nuclear to cytoplasmic, which can be followed by time-lapse microscopy. 

APC-Cdh1 inactivation occurred 12 minutes after Whi5 nuclear exit (figure 2.6 

B), and variability between cells is considerably smaller than when measured 

with respect to Whi5 exit than to budding. The standard deviation is only 3 

minutes, which is equal to the upper estimate of the fitting error. Since the frame 

rate in the experiment was also 3 minutes, and that measurement of Whi5 exit is 

limited by this estimate, the measurement effectively limits the variability to one 

frame. Therefore, I cannot exclude that there might not be any biological 

variability between cells at all. 
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Figure 2.6: Timing of APC-Cdh1 inactivation with respect to cell cycle events. 
A) A histogram of times from budding to APC-Cdh1 inactivation. B) A
histogram of times from Whi5 nuclear exit to APC-Cdh1 inactivation. C) A 
histogram of times from APC-Cdh1 inactivation to cytokinesis. Each data 
point represents a measurement from one single cell. The data points that 
were sensitive to noise are excluded.   
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I also measured the time of APC-Cdh1 inactivation with respect to subsequent 

cytokinesis (detected by disappearance of the Myo1-mCherry signal at the bud 

neck; figure 2.6 C). Compared to the variability of the time from budding to 

cytokinesis, APC-Cdh1 inactivation occurred with similar variability (table 2.1). It 

is therefore likely that the timing of APC-Cdh1 inactivation is not the crucial 

factor in the post-budding variability in the cell cycle timing. 

2.7. Variability in timing of CLB2 promoter activation 

I measured the timing of another event leading to entry into mitosis, activation of 

CLB2 promoter. Accumulation of the mitotic cyclin Clb2 requires APC-Cdh1 

inactivation (Robbins and Cross, 2010a). The expression of mitotic cyclin genes 

is cell cycle-regulated; the CLB2 gene belongs to the CLB2 cluster (Spellman et 

al, 1998). It is believed that mitotic cyclin-CDK activity is required for full 

activation of CLB2 (Amon et al, 1993). Consistent with the existence of such 

positive feedback loop, I show later in this work that inactivation of APC-Cdh1 is 

required for CLB2 promoter expression, as cells bearing constitutively active 

CDH1-m11 do not activate the CLB2pr (chapter 3.8). It is therefore expected 

that induction of CLB2 expression occurs after APC-Cdh1 inactivation. 
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To measure the time of induction of CLB2 promoter, I used a construct of CLB2 

promoter driving the expression of unstable GFP (Skotheim et al, 2008). The 

strain also harbored the MYO1-mCherry bud neck marker for detection of 

cytokinesis. 

Using these two markers, I measured the time from CLB2pr activation to 

subsequent cytokinesis. I determined the CLB2pr activation time using the same 

first derivative-based detection method, and applied the same procedure as 

used for the APC-Cdh1 biosensor to address the dependence of each data point 

to noise (see chapter 2.5). The CLB2pr-GFP signal exhibits a lower dynamic 

range; as a result, the measurements of induction times from the first derivative 

sign switch in this experiment were more dependent on noise. I included data 

points from cell cycles for which both the MME and SDME were less than 4.5 

minutes (as opposed to 3 min for the APC-Cdh1 biosensor experiments). This 

causes a bigger residual error in these measurements. 

On average, CLB2pr activation occurred later than APC-Cdh1 inactivation 

(comparing both events with respect to cytokinesis; figure 2.7, table 2.1). In 

addition, the timing of the interval from CLB2pr inactivation to cytokinesis is 

variable. This raises the possibility that the entire variability of the post-Start 
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period of the cell cycle could be accounted for by variability of events after 

CLB2pr induction. 

2.8. Conclusions and future directions 

In this chapter, I focused on developing experimental tools and data analysis 

procedures to measure the timing of cell cycle events that lead to entry into 

mitosis. These tools enabled quantitative measurement of cell-to-cell variability 

of these events. This work was motivated by the fact that variability of the 

duration of the cell cycle period after budding is not understood. I therefore 

sought to measure the durations of various sub-periods, with the idea that 

finding sub-periods of the cell cycle that are not variable in timing would allow 

me to narrow down the cell cycle events that are responsible for generating 

variability. 

In general, variability of timing of different events is different to compare 

because of technical error; biological variability is masked by measurement 

variability. The detection of events is limited by sampling resolution (3 minutes in 

all experiments presented here) and is additionally increased for events of which 

timing was extrapolated by the first derivative method. This causes a technical 

error in the measurements. In general, a useful parameter for comparison of 
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variability for events with different average durations is coefficient of variation 

(CV; ratio of standard deviation (SD) over mean), because it takes into account 

the average duration of events. However, technical variability due to sampling 

resolution is independent of the mean, and therefore affects longer events less 

than shorter events (assuming equal CV). CV is therefore only useful for 

comparing longer events. In contrast, for shorter events, comparing SD 

(assuming the technical error is the same for both events) might be more useful. 

However, this comparison is only valid for events of equal mean duration. 

The findings are schematically summarized in figure 2.8. Timing of bud 

emergence is independent of all other events, since budding is regulatorily 

decoupled from other events assessed here. Therefore, the relevant reference 

point for measurements is Whi5 exit, which marks the Start transition. Start is 

the major regulatory step that controls both bud emergence and APC-Cdh1 

inactivation. The timing of bud emergence with respect to Start is variable (Di 

Talia et al, 2007; table 2.1) and ploidy dependent, suggesting that it is affected 

by molecular noise in gene expression (Di Talia et al, 2007). In contrast to 

budding, the timing of APC-Cdh1 inactivation was found to be invariable with 

respect to Start (table 2.1). I did not test whether the variability in timing of APC-

Cdh1 inactivation is ploidy-dependent. The standard deviation reported for the 

interval from Whi5 exit to APC-Cdh1 inactivation is an overestimation of the 

actual biological variability, because it still includes the remaining measurement 
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error in APC-Cdh1 inactivation (the upper limit is 3 minutes) as well as error in 

detection of Whi5 exit, which is limited by the imaging interval (also 3 minutes). 

Given these technical constraints, the contribution of (biological) cell-to-cell 

variability might be as low as zero. This is in contrast to the variability of APC-

Cdh1 inactivation with respect to budding, which on average occurs at almost 

the same time, but has considerable cell-to-cell variability. 

Inactivation of APC-Cdh1 depends on multiple genes expressed from the G1/S 

regulon: CLN1,2, CLB5,6 and ACM1 are all SBF and MBF targets. CLN2 

promoter expression is almost concurrent with Whi5 exit, measured in single 

cells (Skotheim et al, 2008). Expression of most other members of the regulon 

occurs later than CLN2 (Eser et al, 2011), but can be expected to be expressed 

with little cell-to-cell variability in timing (like CLN2), although no single cell data 

exists for the particular APC-Cdh1 regulator genes. Deletion of WHI5 advances 

expression of the regulon (Skotheim et al, 2008); it would be interesting to 

assess whether it also advances APC-Cdh1 inactivation. Furthermore, to test 

whether the timing of APC-Cdh1 inactivation is dependent specifically on SBF or 

MBF-regulated transcripts, it would be interested to measure the time of APC-

Cdh1 inactivation in cells where either MBF or SBF are removed by deleting the 

DNA-binding domains of those transcription factors, MBP1 and SWI4, 

respectively. 
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Event Mean 
(min) 

SD 
(min) 

CV Number 
of cells 
measured 

Number 
of cells 
excluded 

Bud emergence to cytokinesis 58 11 0.19 74 0 
Bud emergence to APC-Cdh1 
inactivation 

-4 6 1.5 49 6 

Whi5 exit to APC-Cdh1 
inactivation 

12 3 0.25 31 10 

APC-Cdh1 inactivation to 
cytokinesis 

67 14 0.21 30 5 

CLB2pr activation to 
cytokinesis 

52 11 0.21 37 15 

Whi5 exit to bud emergence 23 10 0.43 66 0 

Figure 2.8: Variability in cell cycle events. A schematic representation of the 
findings in this chapter, in combination with results from Di Talia et al, 2007 and 
Skotheim et al, 2008. The dotted lines represent intervals that show 
considerable cell-to-cell variability in duration; solid lines represent cell-to-cell 
invariable intervals. The question mark represents a hypothesized invariable 
interval (see text). Blue arrows are known regulatory nodes. 

Table 2.1: Summary of the data from chapter 2. The last column is the 
number of cells that were excluded from the measurement due to sensitivity 
to experimental noise. 
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Another event of interest is activation of APC-Cdh1 at mitotic exit. APC-Cdh1 is 

activated by dephosphorylation by phosphatase Cdc14 (Visintin et al, 1997; Lu 

and Cross, 2010). The timing of Whi5 nuclear entry, which is also regulated by 

Cdc14 dephosphorylation of Whi5, was measured to occur 6 minutes before 

cytokinesis with little or no cell-to-cell variability (Di Talia et al, 2007; K. Pecani, 

unpublished data), and it is likely that APC-Cdh1 is activated with similar 

dynamics. Measuring the timing of APC-Cdh1 activation would have to take into 

account the drop in fluorescence due to nuclear division (which occurs at around 

the same time). 

I also examined the timing of activation of CLB2 promoter. The cell-to-cell 

variability in time from CLB2pr induction to cytokinesis is equal to the variability 

of time from budding to cytokinesis. Therefore, the entire variability of the 

budded period of the cell cycle can be explained by the variability from CLB2pr 

activation to cytokinesis. Since I show that inactivation of APC-Cdh1 is required 

for CLB2pr activation (see chapter 3.8), I speculate that the entire regulatory set 

of events leading from Start to APC-Cdh1 inactivation to induction of CLB2 

expression might be invariable in timing. Directly measuring the time between 

APC-Cdh1 inactivation and CLB2pr activation in the same cell would reveal if 

this timing interval is invariable. If this interval is indeed found to be constant, 

this would suggest a deterministic chain of events leading from Start to APC-
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Cdh1 inactivation to CLB2 expression, which leaves entire post-Start variability 

to be generated by events after CLB2pr induction. 

A general future direction is further dissection of the variability of cell cycle 

events after CLB2pr activation. I propose measurement of timing of a further set 

of cell cycle events, such as markers for transcriptional activity of genes that 

regulate the S-phase, chromosome segregation, and mitotic exit, both with 

respect to budding and cytokinesis, as well as with respect to each other. Using 

multiple transcriptional markers in the same cell should be possible by 

combining spectrally non-overlapping fluorescent proteins. Taken together, 

these measurements should be able to narrow down and define intervals that 

generate the observed variability, as well as provide a basis for further studies 

into mechanisms that generate and/or suppress variability in the budding yeast 

cell cycle. 
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Chapter 3: Analysis of multisite phosphorylation of Cdh1 

In this chapter, I investigate the mechanism of APC-Cdh1 inactivation by 

multisite phosphorylation. There are 11 putative CDK phosphorylation sites on 

the Cdh1 protein (figure 3.1; Zachariae et al 1998, Robbins & Cross 2010a). In 

complete absence of CDK phosphorylation, Cdh1 remains associated with the 

APC and active (Zachariae et al, 1998). Exact gene replacement of the CDH1 

gene with an allele lacking all 11 phosphorylation sites, CDH1-m11, at the 

endogenous locus, confirmed that unregulated CDH1-m11 is incompatible with 

viability due to the inability to restrain the APC-Cdh1 activity at the entry into 

mitosis (Robbins and Cross, 2010a). Cells bearing the unphosphorylatable 

CDH1-m11 allele entered the S-phase and underwent one round of DNA 

replication normally, but failed to depolarize bud growth and form mitotic 

spindles. These defects were found to be due to unrestrained Clb2 proteolysis 

(Robbins and Cross, 2010a). 

A correlation between the number of CDK phosphorylation sites on Cdh1 and 

the ability to suppress degradation of mitotic cyclins has previously been 

reported (Zachariae et al, 1998). However, the study relied on overexpression of 

Cdh1, which is problematic because even overexpression of wild type CDH1 

from GAL1 promoter is almost lethal (Martinez et al, 2006). Furthermore, the 

survey did not directly address the importance of particular phosphorylation 



46 

sites. Here, I assessed the need for particular phosphorylation sites, in the 

context of endogenous expression levels, and elucidate the relationship 

between the number of phosphorylation sites, APC-Cdh1 activity, and the 

phenotype at the cellular level. 

3.1. No single CDK phosphorylation site on Cdh1 is essential for viability 

In order to assess the requirement for particular phosphorylation sites in the 

context of endogenous expression levels, Jonathan Robbins constructed a 

series of partially phosphorylatable CDH1 alleles (J. Robbins, PhD thesis). 

Serine of threonine residues in the CDK consensus motif were mutated to 

alanine, starting either with the most N-terminal or C-terminal site and mutating 

consecutive sites (J. Robbins, PhD thesis). 

In the series of mutants where sites were mutated from the C terminus, mutation 

of up to eight phosphorylation sites caused no loss of viability (figure 3.1, blue 

line on the diagram). In contrast, mutants in N-terminal sites were more 

sensitive; while 7 C-terminal sites were sufficient for complete viability, the 

mutant allele bearing only 4 C-terminal phosphorylation sites was lethal (figure 

3.1, green line on the diagram). 
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Cdh1

S169 T176     S239 
T12  S16   S42 T157 T173    S227 S418 S436 

Figure 3.1: A scheme of Cdh1 with CDK consensus sites (S/T followed by a P 
residue). The sites are referred by their sequential number, counting from the 
most N-terminal site. The blue and green lines on the bottom indicate the 
minimal number of phosphorylation sites required for N-terminal and C-
terminal sites, respectively (see text). These results are summarized from J. 
Robbins, PhD thesis. 
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Cell viability is therefore not dependent on any particular phosphorylation site, 

since alleles compatible with viability were constructed with two non-overlapping 

sets of phosphorylation sites; however, fewer sites are sufficient for viability on 

the N-terminal side, suggesting that N-terminal sites are have stronger effects 

on Cdh1 inhibition. 

3.2. No single CDK phosphorylation site on Cdh1 is sufficient for viability 

Follow up on this result, I asked whether any particular phosphorylation site 

might alone be sufficient for viability. Since only three most N-terminal 

phosphorylation sites were sufficient for viability, I reasoned that these sites 

might contribute the most, and are therefore the most likely candidates for 

phosphorylation sites sufficient for viability. Since overexpression of the inhibitor 

Acm1 from a galactose-inducible promoter (GAL-ACM1) was previously shown 

to allow for normal growth of CDH1-m11 cells, these CDH1 phosphomutants 

were constructed in GAL-ACM1 background. Cells were then plated on glucose 

(GAL-ACM1 off) to assess their viability. 

Here, I will refer to the phosphorylation sites by the sequential number of the site 

from the N-terminus, and refer to the mutants by the phosphorylation sites that 
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are present (for instance, Cdh1-3P contains only the third phosphorylation site, 

but lacks the remaining sites). 

I constructed partially phosphorylatable CDH1 mutants bearing only the first, 

second or third phosphorylation site, as exact gene replacements to ensure 

endogenous expression levels. Upon plating onto glucose, none of these single 

phosphorylatable CDH1 alleles allowed cell viability, since cells were not able to 

form colonies up on glucose (figure 3.2). 

In addition, I constructed partially phosphorylatable alleles bearing combinations 

of two among the three N-terminal phosphorylation sites. I found that cells 

bearing the CDH1-2,3P allele (with the second and third sites present) were 

partially viable on glucose; however, compared to colony formation on 

galactose, colony formation was reduced by a factor of 10 to 100. 

I conclude that among the phosphorylation sites in the N-terminal part, no single 

site was sufficient for viability, and that at least two phosphorylation sites are 

required for (partial) viability. Since I did not test the remaining 8 sites for 

sufficiency for viability, I cannot formally exclude that one of these sites might be 

alone sufficient for viability; however, this conclusion is justified by the fact that 

C-terminal sites appear weaker than the C-terminal sites in the ability to inhibit 

Cdh1. 
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GAL-ACM1 +

CDH1-m11

CDH1-1P

CDH1-2P

CDH1-3P

CDH1-1,3P

CDH1-2,3P

CDH1

DG

Figure 3.2: No single phosphorylation site is sufficient for viability. Tenfold 
dilutions of strains bearing CDH1 alleles with only one or two phosphorylation 
sites. D, glucose; G, galactose. 
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CDH1-5:11P CDH1-2,3P

CDH1-m11 CDH1

Figure 3.3: DIC images of cells bearing partially phosphorylatable CDH1 
alleles. Images were taken with 63x objective. 
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3.3. Cells with partially phosphorylatable CDH1 alleles exhibit stochastic 

morphological abnormalities 

To assess the phenotype of cells bearing partially phosphorylatable CDH1 

alleles, I took DIC images of cells in liquid cultures in glucose media. Cells 

bearing the unphosphorylatable CDH1-m11 allele exhibited uniformly abnormal 

morphology (figure 3.3). These cells formed extremely elongated buds, owing to 

the inability to depolarize bud growth due to lack of mitotic Clb-CDK activity (Lew 

and Reed, 1993), and frequently rebudded multiple times (Robbins & Cross, 

2010a). 

In cultures of CDH1-2,3P cells, the long-budded or multiple budded cells 

represented the majority; however, a small fraction of normally budded cells 

were also observed. Other partially phosphorylatable CDH1 mutants also 

showed sporadic morphologically defective cell cycles (Jonathan Robbins, PhD 

thesis). In particular, cells bearing CDH1-5:11P (originally named CDH1-4N; in 

this work the mutant is renamed for consistency with the naming used here), 

which lacks the 4 N-terminal sites, but has the remaining 7 C-terminal sites, 

were occasionally also long-budded, but the fraction of these morphologically 

abnormal cells was smaller than CDH1-2,3P cells. 
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3.4. Partially penetrant phenotype of CDH1-2,3P 

To further characterize the phenotype in these cells lacking full phosphorylation 

control, I performed fluorescent time-lapse microscopy using strains with a bud 

neck marker, Myo1-mCherry, and the APC-Cdh1 biosensor (see chapter 2). In 

particular, I focused on the CDH1-2,3P mutant, which showed variability in cell 

morphology. The nuclear localization of the biosensor allowed me to monitor 

nuclear morphology and assess nuclear division. The cells were grown in a 

microfluidic chamber where I was able to rapidly switch media and induce or 

repress gene expression (see materials and methods). First, the cells were 

grown in galactose (GAL-ACM1 on) to form a small microcolony of ~10 cells, 

and then switched to glucose to expose the phenotype of the CDH1 allele. Acm1 

is very rapidly degraded during mitotic exit and in G1 phase, and is stabilized by 

phosphorylation from budding to mitosis (Enquist-Newman et al, 2008). 

Therefore, the cells that have budded by the time a switch to glucose occurred 

were be protected until the next G1, but enter the next cell cycle with no leftover 

Acm1, as the depletion of GAL-ACM1 has been shown to be very effective 

(Robbins and Cross, 2010a). I therefore count the first cell cycle in the 

experiment as the first cycle that the cell initiated as an unbudded cell in 

glucose. 
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Figure 3.4: CDH1-2,3P mutant exhibits a partially penetrant cell cycle 
phenotype. A) Fraction of cells that completed the first cell cycle (starting as 
an unbudded cell in glucose). B) Fraction of cells that completed at least one 
nuclear division during the time-lapse. Inset, a composite image of a CDH1-
2,3P cell that formed elongated buds and also completed the nuclear division. 
Red, Myo1-mCherry (bud neck marker); yellow, APC-Cdh1 biosensor (nuclear 
marker). C) Images at representative intervals from a 20-hour time-lapse of 
CDH1-2,3P cells illustrate partial penetrance in colony formation of CDH1-
2,3P. Same fluorescent markers as in B. 
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CDH1-m11 cells uniformly arrested in the first cell cycle upon switch to glucose 

(figure 3.4). In accordance with previous results (Robbins and Cross, 2010a), 

these cells established a new bud site and proceeded to grow elongated buds 

without switching to isotropic bud growth, and never underwent cytokinesis 

(Myo1-mCherry signal remained present at the bud site). During the duration of 

the time lapse (7 hours), these cells often rebudded (i.e. established a new bud 

site either on the cell body or on the bud) and formed multiple elongated buds. 

The nuclei, marked by the localization of the biosensor, were stuck at the bud 

site, and remained undivided in all observed cells throughout the duration of the 

time-lapse (figure 3.4). 

In contrast, CDH1-2,3P cells were variable. 20% of the cells (4/20) successfully 

completed the first cell cycle after switch to glucose (figure 3.4 A). Other cells 

formed elongated buds and rebudded, like CDH1-m11 cells, without completing 

cytokinesis. I also observed variability in nuclear morphology in these cells. 

Frequently, nuclei rapidly migrated along the nascent buds. In addition, 62% 

(13/21) of arrested CDH1-2,3P cells performed at least one round of nuclear 

division (figure 3.4 B). However, I note that these nuclear divisions were often 

visibly aberrant – the nuclear mass separated unevenly, and the newborn nuclei 

remained attached. Nuclear divisions also occurred at very variable times 

throughout the arrest (shown on traces in figure 3.5), although due to 
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morphological abnormalities the precise timing of nuclear divisions was often 

impossible to score. 

In summary, on the single cell level, CDH1-2,3P exhibited partially penetrant cell 

cycle phenotype, as a fraction of cells were capable of progressing through the 

cell cycle, and a fraction of cells arresting. While I label these cells “arrested” 

because of their morphological abnormality and failure to perform an essential 

cell cycle event (cytokinesis), these cells continued to perform other cell cycle 

events such as nuclear division and establishment of bud sites, and as judged 

by the growth on the colonies on the plates, at least some of these cells were 

ultimately viable. 

It was surprising that a big fraction of CDH1-2,3P cells resembled arrested 

CDH1-m11 cells, but still a fraction of these cells managed to escape and form 

colonies on glucose plates (figure 3.2). To investigate this phenomenon, I 

performed longer time-lapse experiments. In these experiments, single cells 

were plated in the microfluidic device, immediately switched to glucose media, 

and imaged for 20 hours. As described above, these cells grew elongated buds, 

re-budded, and divided their nuclei within that period. Strikingly, however, at 10 

an 15 hours time points, some of these long-budded multinucleated cells started 

producing morphologically normal cells, and by the 20 hour time point, grew into 

a sizeable colony of mostly morphologically normal cells (figure 3.4 C), which 
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likely had the ability to form a macroscopic colony. This phenomenon was 

observed in 30% of imaged cells, while the rest of the cells did not recover and 

started to lyse by the end of the experiment. 

However, in an attempt to investigate this phenomenon by recovering cells 

grown on glucose plates, I noticed that these cells were no longer able to arrest 

even transiently. I therefore conclude that the cells that switched to 

morphologically normal cells likely suffered an irreversible genetic change. 

3.5. Complex phenotype of CDH1-2,3P due to partially regulated APC-Cdh1 

activity 

The APC-Cdh1 biosensor in these cells allowed me to assess the dynamics of 

APC-Cdh1 activity. CDH1-m11 cells arrested with low fluorescence levels, 

suggesting persistently high APC-Cdh1 activity (figure 3.5 B). In contrast, 

arrested CDH1-2,3P maintained intermediate biosensor levels between wild 

type and CDH1-m11 cells (quantified as average biosensor fluorescence in the 

mother cell body excluding the elongated bud, figure 3.5 B). 

In addition, CDH1-2,3P cells exhibited dynamic biosensor levels in the arrest. 

This dynamics can at least partially be explained by mean fluorescence of the 
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cell dropping due to nuclear division as described in chapter 2.4. In addition, 

many CDH1-2,3P cells exhibited aberrant nuclear migration along the elongated 

buds. However, even in cells where the nucleus remained in the mother cell 

body (not in the bud) throughout the imaging period, the oscillations occurred 

without any nuclear division (figure 3.4 A). This implies APC-Cdh1 activity in 

CDH1-2,3P cells undergoes oscillations in activity, presumably due to cycles of 

phosphorylation and dephosphorylation of Cdh1-2,3P at the remaining two sites. 

This dynamic behavior was irregular in both amplitude and timing, and the time 

between peaks was generally longer than in wild type. 

Overall, the results indicate that partial phosphorylation of Cdh1 allows for 

partial, but not complete inactivation of APC-Cdh1. Comparison with CDH1-m11 

reveals that Cdh1-2,3P allows for partial inactivation of APC-Cdh1, which 

implies that the remaining two phosphorylation sites are phosphorylated at least 

some of the time. However, due to dynamic activity of APC-Cdh1 in these 

arrested cells, precise quantification of APC-Cdh1 activity, compared to wild 

type APC-Cdh1 activity, was not possible. 
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Figure 3.5: APC-Cdh1 activity in CDH1-2,3P cells. A) Representative time 
courses of APC-Cdh1 biosensor fluorescence for two CDH1-2,3P cells (solid 
lines), along with wild type and CDH1-m11 cells (dashed lines). B) 
Quantification of average biosensor fluorescence intensities. Error bars 
represent standard deviation. Fluorescence intensities were corrected for 
autofluorescence by subtracting fluorescence intensities of unlabeled cells. 



60 

3.6. CDH1-2,3P cells arrest with dynamic Clb2 levels 

I assessed whether partial phosphorylation of Cdh1 allows for accumulation of 

mitotic cyclin Clb2. CDH1-m11 cells did not have any detectable Clb2 levels by 

western blot (figure 3.7), consistent with previous results (Robbins and Cross, 

2010a). However, Clb2 was detected in CDH1-2,3P cells, although the level was 

lower than asynchronous wild type cells (figure 3.7). 

To assess the Clb2 levels in CDH1-2,3P cells on the single cell level, I 

performed time-lapse microscopy using GFP-tagged endogenously expressed 

CLB2 (Lu and Cross, 2010). In CDH1-m11 cells, no detectable Clb2-GFP signal 

was observed. In contrast, in CDH1-2,3P cells, detectable Clb2-GFP 

accumulation was observed. Clb2-GFP levels were dynamic, and ranging from 

zero to approximately peak levels of wild type cells. Qualitatively, these traces 

were similar to APC-Cdh1 biosensor in CDH1-2,3P cells, with no regular pattern 

of oscillations. 
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Figure 3.6: Clb2 levels in CDH1-2,3P cells. A) representative time courses of 
Clb2-GFP fluorescence in two CDH1-2,3P cells (solid lines), along with wild 
type and CDH1-m11 cells (dashed lines). Fluorescence intensities were 
corrected for autofluorescence by subtracting fluorescence intensities of 
unlabeled cells. B) Immunoblots against Clb2 at 6 hours after switch to 
glucose (GAL-ACM1 off). 
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3.7. Restoring Clb2 levels by introducing a partially degradation-immune 

CLB2 allele does not rescue the cell cycle phenotype of CDH1-2,3P 

Next, I wanted to test whether the levels of mitotic cyclin accumulated in CDH1-

2,3P cells are sufficient for cell cycle progression (implying that other APC-Cdh1 

targets are the limiting factor), or whether the cell cycle arrest occurs due to 

insufficient Clb2 levels. To do that, I introduced CLB2-ken, a partially non-

degradable version of Clb2 expressed from the endogenous CLB2 promoter 

instead of wild type CLB2, into CDH1-2,3P cells. Previously, it was found that 

the defects in entering into mitosis in CDH1-m11 cells were due to inability to 

establish mitotic Clb-CDK activity, as introducing a completely non-degradable 

CLB2-kd allele into CDH1-m11 cells restored the depolarization of bud growth, 

and allowed for formation of mitotic spindle (Robbins and Cross, 2010a). 

Clb2-ken is partially immune to degradation by APC; mutation of KEN boxes 

prevents degradation by APC-Cdh1, but not APC-Cdc20 (Wasch and Cross, 

2002). I used only a partially degradation immune CLB2-ken with an expectation 

that I might be able to observe a complete rescue of cell progression; while 

using CLB2-kd restores even higher Clb2 accumulation, it does not allow for 

mitotic exit and results in arrest, which would make the interpretation of the 

result more difficult. 
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Figure 3.7: Restoring Clb2 levels does not rescue the phenotype associated 
with incomplete APC-Cdh1 inactivation. A) Immunoblots against Clb2 (top). 
Relative intensities of Clb2/Pgk1 signal, normalized to the wild type ratio 
(bottom). B) Representative time courses of the APC-Cdh1 biosensor 
fluorescence in two CDH1-2,3P CLB2-ken double mutant cells (solid lines) 
along with a wild type cell (dashed line). Fluorescence intensities were 
corrected for autofluorescence by subtracting fluorescence intensity of 
unlabeled cells. 
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CLB2-ken cells are viable and largely morphologically normal, but they contain 

approximately twice the amount of wild type Clb2 levels in asynchronous 

population (figure 3.7 A). Introducing CLB2-ken into CDH1-2,3P cells restored 

average Clb2 levels, measured by western blot, to about wild-type levels, but not 

to the levels of CLB2-ken cells (figure 3.7 B). This indicates that perhaps Clb2-

ken can still be degraded by APC-Cdh1-2,3P, or that Clb2-ken degradation by 

APC-Cdc20 is higher in CDH1-2,3P CLB2-ken cells than in CLB2-ken cells 

(Clb2-ken is immune only to degradation by APC-Cdh1 and not to degradation 

of APC-Cdc20). 

However, despite elevated Clb2 levels in these cells compared to CDH1-2,3P 

cells, the morphology and cell cycle progression phenotype of these cells 

remained similar to CDH1-2,3P cells. Time lapse microscopy of CDH1-2,3P 

CLB2-ken cells revealed no detectable difference from CDH1-2,3P cells. CDH1-

2,3P CLB2-ken cells also displayed a variability in cell cycle progression, with a 

fraction of cells completing the first cell cycle after GAL-ACM1 off switch (2/18 

cells, compared to 4/20 for CDH1-2,3P cells). Occasional nuclear divisions in 

CDH1-2,3P CLB2-ken cells were also observed (8/20, compared to 13/21 for 

CDH1-2,3P cells). In arrested cells, the averaged levels of the APC-Cdh1 

biosensor were similar to CDH1-2,3P cells, and the behavior of the biosensor 

was similarly dynamic (figure 3.7). 
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Overall, introducing partially non-degradable Clb2 into CDH1-2,3P cells did not 

rescue the phenotypes associated with the CDH1-2,3P mutant. Therefore, Clb2 

is might not be the limiting target of APC-Cdh1-2,3P degradation in depolarizing 

bud growth and progression through the cell cycle. This contrasts with previous 

result, where rescue of the depolarized bud growth was achieved by introducing 

a completely non-degradable Clb2-kd into completely unregulatable CDH1-m11 

cells. A likely possibility is that Clb2-ken into cells does not cause establishment 

of Clb2-CDK activity with proper timing, even though the overall Clb2 levels are 

elevated. Using a GFP-tagged version of CLB2-ken in CDH1-2,3P cells would 

allow to directly assess the dynamics of Clb2-ken accumulation. 

3.8. Periodic gene expression in CDH1 phosphomutants 

Periodic gene expression is associated with the cell cycle; in each cell cycle, a 

significant fraction of the genome undergoes once per cell cycle activation of 

expression (Spellman et al, 1998). However, the relationship between cell cycle 

regulators and periodic gene expression is not fully understood, and it remains 

unresolved whether, and to what extent, these changes in gene expression are 

regulated by cyclin-CDK activity and whether periodic gene expression is 

sustained in arrested cells at various cell cycle stages (Orlando et al, 2008; 
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Simmons-Kovacs et al, 2011; Bristow et al, 2014; see also chapter 5). Here, I 

wanted to assess whether lack of inhibition of APC-Cdh1 still allows for 

expression of cell cycle-regulated genes. 

To address these questions, I measured expression of three genes, associated 

with the three main gene expression regulons in the yeast cell cycle, in CDH1-

m11 and CDH1-2,3P cells. This was done using constructs where a fluorescent 

protein was placed under the control of the gene promoter. CLN2 is a 

representative of the regulon associated with the transcription at the G1/S phase 

border; it is regulated by transcriptional factors SBF and MBF. CLB2 promoter is 

a representative of the G2/M regulon, and its transcription is regulated by a 

complex containing Mcm1, Fkh1/Fkh2 and Ndd1 (Koranda et al, 2000). SIC1 

promoter is a representative of the regulon expressed at the exit of mitosis 

(G2/M border), which is regulated by transcription factors Swi5 and Ace1 (see 

introduction). 

CLN2 promoter was turned on in both CDH1-m11 and CDH1-2,3P cells (figure 

3.8); the CLN2pr-GFP signal was similar to wild type cells and possibly periodic, 

although the oscillations were not as regular as in wild type cells. This was 

expected, given the fact that CLN2 is expressed before APC-Cdh1 inactivation 

and APC-Cdh1 inactivation does not have a role in preventing the transcription 

of G1/S genes. It is also consistent with the observations of elongated bud 
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morphology and periodic rebudding in CDH1-2,3P and CDH1-m11 cells, since 

Cln-CDK is the driver of polarized bud growth and rebudding (Lew and Reed, 

1993). 

CLB2 promoter was not activated in CDH1-m11 cells (figure 3.8). This is in 

agreement with the proposed positive feedback model for mitotic cyclin 

expression, in which Clb2-CDK activity is required for full induction of CLB2 

expression (Amon et al, 1993). This establishes that inactivation of APC-Cdh1 is 

essential not only for accumulation of Clb2 protein, but also for activation of 

CLB2 expression (see chapter 2). 

In contrast, CLB2 promoter was activated in CDH1-2,3P cells. The CLB2pr-GFP 

signal was as high as in wild type cell peaks, with no regular periodic activity, 

implying that CLB2 promoter might be permanently turned on, although I note 

that due to very low dynamic range of CLB2pr-GFP, low signal to noise ratio 

makes it challenging to establish whether the dynamics is due to periodic 

activation or merely due to noise. 

Similar results were observed for SIC1 promoter; CDH1-m11 cells did not 

activate SIC1 transcription, while CDH1-2,3P cells turned on expression of SIC1 

promoter (figure 3.8). 
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Figure 3.8: Cell cycle-associated transcription in CDH1 phosphomutants. 
Upper left, expression of CLN2pr-GFP. Upper right, expression of CLB2pr-
GFP. Bottom, expression of SIC1pr-YFP. Fluorescence intensities were 
corrected for autofluorescence by subtracting fluorescence intensities of 
unlabeled cells. 
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In conclusion, APC-Cdh1 inactivation is required for activation of cell cycle-

regulated promoters. This set of experiments is relevant for the work presented 

in chapter 5, where I, in collaboration with S. Jamal Rahi and Kresti Pecani, 

analyzed cell cycle-regulated gene expression in absence of B-type cyclins. 

Since unrestrained activity of APC-Cdh1 prevents accumulation of mitotic 

cyclins, this experiment is similar, although not exactly equivalent, to the 

experiment performed in chapter 5, where all B-type cyclins CLB1-6 were 

genetically deleted. The differences are that Clb5 and 6 are present in CDH1-

m11 cells (and not in clb1-6 cells), but APC-Cdh1-m11 also does not allow for 

accumulation of other APC-Cdh1 targets that might in principle be present in 

clb1-6 cells. Generally, later cell cycle genes are largely not expressed in cells 

deleted for B-type cyclins (see chapter 5), although SIC1 was found to be a 

notable exception of a gene that is expressed in clb deleted cells (Rahi et al, 

submitted). Lack of expression of SIC1 in CDH1-m11 cells suggests that B-type 

cyclin-CDK-independent mechanism of SIC1 expression is dependent on one 

(or more) of the APC-Cdh1 targets; or that presence of Clb5 and 6 (or perhaps 

residual Clb1-4 not fully degraded by APC-Cdh1-m11) inhibits SIC1 expression. 

Global transcriptome profiling in CDH1-m11 cells would provide an insight into a 

complete picture of gene expression and, in comparison to the data from cln-clb- 

cells (Chapter 5) reveal if inactivation of APC-Cdh1 is required for the periodic 

gene expression. 
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However, in partially phosphorylatable CDH1-2,3P cells, I found that expression 

of cell cycle-regulated genes (at least for the representatives of the two 

regulons) was allowed. This suggests that partial restrainment of APC-Cdh1 

activity, while not sufficient for cell cycle progression (these cells were arrested 

as long-budded cells), was sufficient for continuation of the cell cycle 

transcriptional program. 

3.9. Conclusions and future directions 

In this study, I followed up on previous work addressing multisite 

phosphorylation of Cdh1. Previous studies have partially addressed this 

question; Zachariae et al found that the association with the core APC depends 

gradually on the number of phosphorylation sites on Cdh1 (Zachariae et al, 

1998). Previous data also showed that no single site on Cdh1 is necessary for 

viability, but that some sites contribute more to the inhibition, as concluded from 

the number of sites required. (J. Robbins, PhD thesis). Here, I expanded these 

findings by defining a minimal set of phosphorylation sites required, and an in-

depth analysis of the phenotype associated with partial removal of 

phosphorylation sites. 
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First, I tested whether one single site might be sufficient for viability. Of the three 

more likely candidates among the N-terminal sites, no single site mutant was 

viable. Therefore, no single site is sufficient for required inactivation of APC-

Cdh1. However, it is formally possible, although unlikely, that any of the weaker 

C-terminal sites might be sufficient for viability. Overall, this screen for partially 

phosphorylatable CDH1 mutants has an implication for the mechanism of Cdh1 

phosphorylation, which could be addressed by carrying out biochemical 

experiments. 

An important observation is that the failure of sufficient inactivation of APC-Cdh1 

in these mutants is stochastic, not deterministic. Rather that a uniform response 

of in the entire population of cells, two partially phosphorylatable mutants were 

found (CDH1-2,3P and CDH1-5:11P) that exhibit variability in cell morphology. 

The frequency of morphologically normal and arrested cells was different in 

those two mutants, implying that degree of APC-Cdh1 inactivation might 

modulate the probability of successful cell cycle progression. On the single cell 

level, time-lapse microscopy of CDH1-2,3P cells showed that while the majority 

of the cells were unable to progress through the cell cycle, a small fraction of 

cells completed the cell cycle. 

The phenomenon, in which genetically identical cells exhibit variability in 

phenotype, is called partial penetrance. Partial penetrance has been observed 
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and characterized in many biological systems, including sporulation in Bacillus 

subtilis (Eldar et al, 2009) and vulval development in Caenorhabditis elegans 

(Milloz et al, 2008), but it has not been well studied in budding yeast cell cycle, 

although mutants that cause stochastic cell cycle arrest have been identified (for 

instance, stochastic G1 arrest in cln1,2 cells (Skotheim et al, 2008)). It is 

generally believed that partial penetrance in genetically identical cells is caused 

by molecular noise. 

Interestingly, CDH1-2,3P also exhibited partial penetrance in long-term growth 

and colony formation. Consistent with partial ability to form colonies on agar 

plates, time lapse imaging of single CDH1-2,3P cells revealed that even though 

all cells initially become long-budded, resembling a CDH1-m11-like arrest, a 

fraction of cells escaped arrest and gave rise to normally dividing progeny. 

Using the quantitative essay for APC-Cdh1 activity in partially phosphorylatable 

CDH1 mutants, I aimed to further characterize the stochastic cell fate in CDH1-

2,3P cells. For instance, by correlating cell cycle progression with APC-Cdh1 

activity in single cells, one might be able to discriminate whether the variability is 

caused upstream or downstream of Cdh1 inactivation; if the degree of APC-

Cdh1 inactivation as measured by biosensor correlates with probability of cell 

cycle completion, the cause is likely in upstream regulators, whereas if APC-

Cdh1 is inactivated to a (on average) uniform level in both arrested and 
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unarrested cells, one might conclude that probability of cell cycle progression is 

determined by the molecular noise downstream of Cdh1 phosphorylation. 

However, this experiment was hindered by the technical limitations of the 

biosensor. Quantification of APC-Cdh1 activity in single CDH1-2,3P cells was 

impossible because of dynamic behavior of the system. By comparison to 

CDH1-m11 cells, an indisputable conclusion is that APC-Cdh1-2,3P is partially 

inactivated, which implies that Cdh1-2,3P is phosphorylated at the remaining 

two sites at least some of the time; however, I cannot make further quantitative 

statements about APC-Cdh1 activity. 

To improve this assay, one would need to devise an experimental system where 

partially phosphorylatable Cdh1-2,3P would be “locked” in a phosphorylated 

state and eliminate APC-Cdh1-independent degradation of the biosensor. Since 

Cdc14 is responsible for dephosphorylation of Cdh1, the assay would require 

deleting CDC14 to maintain the phosphorylation state of Cdh1-2,3P. This would 

presumably lock the cells with partial APC-Cdh1 activity corresponding to fully 

phosphorylated Cdh1-2,3P; however, this experimental setup would have other 

limitations. Because CDC14 is essential for mitotic exit, deletion of CDC14 

would by itself interfere with cell cycle progression. The experiment could in 

principle be done with a temperature-sensitive cdc14 allele. 
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Partial penetrance observed in CDH1-2,3P is in dramatic contrast with the 

stereotyped inactivation of APC-Cdh1 with highly regular timing in wild type cells 

(chapter 2). This highly regular timing in wild type suggests an evolved 

mechanism for noise buffering and minimizing variability. Partial removal of a 

subset of phosphorylation sites greatly increased cell-to-cell variability. However, 

this variability is not in timing of APC-Cdh1 inactivation, but rather, depending on 

the two possibilities above, the degree of APC-Cdh1 inactivation, or the degree 

by which partially inactivated APC-Cdh1 can allow for cell cycle progression. 

It therefore remains unresolved how the partially penetrant phenotypes in cells 

with partially phosphorylatable CDH1 arise. To gain understanding of these 

phenotypes, I asked how multiple regulatory mechanisms contribute to APC-

Cdh1 inactivation and interact with each other in the next chapter. 
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Chapter 4: Exploring the interactions between APC-Cdh1 regulators 

Multiple negative regulators of APC-Cdh1 inactivation exist (see introduction). 

While preventing binding of Cdh1 to the APC core by means of inhibitory 

phosphorylation of Cdh1 by CDK is the most important mechanism (Zachariae 

et al, 1998), there are other additional mechanisms. APC-Cdh1 is inhibited by a 

pseudosubstrate inhibitor Acm1 (Martinez et at, 2006), and Cdh1 is also 

regulated by nuclear export, mediated by a karyopherin Msn5 (Jaquenoud et al, 

2002). Furthermore, multiple cyclins, associated with CDK, can potentially have 

a role in Cdh1 phosphorylation. Initial work has suggested G1 cyclins to be 

essential for Cdh1 inactivation (Amon et al, 1993), but subsequent work has 

implied direct roles of Clb3,4 and 5 (Yeong et al, 2001), and Clb5,6 (Huang et al, 

2001), in regulation of Cdh1. In this chapter, I explore the contribution of and the 

interplay between these multiple redundant regulatory mechanisms. 

In addition to CDK, Cdh1 was found to be phosphorylated at multiple other sites 

by additional kinases (Hall et al, 2006), although significance of this 

phosphorylation is not understood. In particular, phosphorylation of Cdh1 by the 

polo kinase Cdc5 was suggested to contribute to APC-Cdh1 inactivation (Crasta 

et al, 2008), although conclusions of those results were later disputed (Robbins 
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and Cross, 2010a). I do not address phosphorylation of Cdh1 by other kinases 

in this work. 

4.1. Deletion of CLB5 and 6 delays APC-Cdh1 inactivation 

To assess the contribution of the S-phase cyclins to APC-Cdh1 inactivation, I 

performed time lapse experiments and measured the time of inactivation of 

APC-Cdh1 in clb5,6 cells with respect to budding, using the APC-Cdh1 

biosensor as described in chapter 2. I performed the described data analysis 

procedure to remove unreliable data points (chapter 2.5). I find that deletion of 

CLB5 and 6 still allows for reliable APC-Cdh1 inactivation, as there were no 

morphological defects observed in clb5,6 cells, and biosensor levels oscillated 

during the experiment. However, the apparent inactivation of APC-Cdh1 is 

delayed on average by 6 minutes with respect to wild type cells (measured with 

respect to budding; figure 4.1). While the difference is not big, it is statistically 

significant (Mann-Whitney p=2.8*10-4), and probably biologically meaningful, 

since many cell cycle events occur on in short time in budding yeast. A delay of 

the same Ase1 degron fragment degradation has previously been observed 

qualitatively in bulk cultures (Huang et al, 2001). 
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Figure 4.1: Timing of inactivation of APC-Cdh1 in clb5,6 cells, measured by 
time-lapse microscopy with APC-Cdh1 biosensor.  
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This suggests that Clb5 and 6-CDK are probably the physiological kinases 

responsible for inactivating APC-Cdh1. However, clearly, other cyclin-CDKs 

and/or other regulators are capable of carrying out sufficient APC-Cdh1 

inactivation, either later in the cell cycle, or with reduced efficiency. 

4.2. Partially phosphorylatable CDH1-2,3P allele shows negative genetic 

interactions with clb5 and acm1 

Next, I looked for genetic interactions of deletions of APC-Cdh1 regulators with 

the partially phosphorylatable CDH1 mutant, CDH1-2,3P. CDH1-2,3P cells are 

viable, but have a reduced ability to form colonies, and exhibit stochastic 

morphological phenotypes associated with incomplete inactivation of APC-Cdh1 

(chapter 3). Again, the strains were constructed in GAL-ACM1 background. 

First, I tested interactions with ACM1 and MSN5 deletions. The logic of this 

experiment was that inhibition by Acm1 or nuclear export (via Msn5) might 

become essential if activity of APC-Cdh1 is not sufficiently restrained by Cdh1 

phosphorylation. Furthermore, nuclear export by Msn5 might depend specifically 

on phosphorylation at particular sites on Cdh1. 
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Figure 4.2: Genetic interactions with CDH1-2,3P. Top, genetic interactions 
with acm1 and msn5. Bottom, genetic interactions with clb5 and clb6. Strains 
were constructed in GAL-ACM1 background. Tenfold serial dilutions were 
plated. G, galactose; D, glucose.
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Deletion of MSN5 and ACM1 had no effects on viability and colony formation in 

wild-type CDH1 cells (J. Robbins, PhD thesis; data not shown). CDH1-2,3P 

showed no genetic interaction with msn5 on the level of colony formation. 

However, CDH1-2,3P was lethal in combination with deletion of ACM1 (figure 

4.2). This indicates that endogenous levels of Acm1 contribute to inhibition of 

APC-Cdh1, and that this inhibition becomes essential when APC-Cdh1 activity is 

not sufficiently restrained by phosphorylation. 

For MSN5, genetic interactions with other partially phosphorylatable alleles have 

been tested before, and no genetic interactions on the level of colony formation 

were found with any of the tested partially phosphorylatable CDH1 mutants (J. 

Robbins, PhD thesis). Nuclear export mediated by Msn5 requires Cdh1 

phosphorylation (Jaquenoud et al, 2002). The interpretation of this result can be 

that Msn5 does not physically interact with any particular phosphorylation site, 

such that nuclear export of Cdh1 can occur if regardless of the particular 

phosphorylation site. An alternative explanation is that the nuclear export has a 

minor contribution to APC-Cdh1 inactivation, and its elimination does not have a 

noticeable effect, at least on the level of colony formation. 

Next, I tested genetic interactions of CDH1-2,3P with deletions of CLB5 and 6, 

which were found to likely be the main physiological kinase for Cdh1 

phosphorylation (chapter 4.1). The idea behind this experiment was that if the 
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remaining Cdh1 sites are phosphorylated exclusively by Clb5 and/or Clb6-CDK, 

deletion of CLB5 and/or 6 would phenocopy the completely unphosphorylatable 

CDH1-m11 allele and result in loss of viability. 

clb5,6 cells are fully viable and have no defects in colony formation (data not 

shown). I found that deletion of CLB5 in CDH1-2,3P background resulted in loss 

of viability (figure 4.2). Deletion of CLB6 did not have any effects, presumably 

because Clb6-CDK contributes significantly less to the total S-phase cyclin-CDK 

activity. This is probably due to the fact that it is about 10x less abundant than 

Clb5 (Cross et al, 2002), and generally deletion of CLB6 has no phenotype if 

CLB5 is present. 

Similarly, deletion of CLB5 also resulted in lethality in combination with the 

CDH1:5:11P mutant lacking the N-terminal phosphorylation sites (J. Robbins, 

PhD thesis). This result shows that when phosphorylation control is partially lost 

by removing either the N-terminal or the C-terminal sites, other cyclin-CDKs that 

are otherwise capable of compensating for loss of Clb5-CDK, are not sufficient 

for Cdh1 phosphorylation; however, alternative interpretations, involving indirect 

effects of Clb5-CDK phosphorylation of other targets, are possible. Because 

CDK phosphorylation causes stabilization of Acm1 (Melesse et al, 2014), it is 

possible that deletion of CLB5 in partially phosphorlatable CDH1 mutants 

causes lethality due to failure of Acm1 stabilization. If this interpretation is 
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correct, mutating phosphorylation sites on Acm1 would phenocopy loss of CLB5 

in partially phosphorylatable CDH1 mutants. 

4.3. Simultaneous deletion of ACM1, CLB5 and CLB6 causes stochastic 

morphological defects 

Based on the results that Clb5-CDK is likely the physiological kinase responsible 

for Cdh1 phosphorylation, and that Acm1 becomes important if phosphorylation 

of Cdh1 is impaired, we reasoned that simultaneous loss of CLB5, CLB6 and 

ACM1 might by itself have deleterious consequences even in presence of all the 

phosphorylation sites on Cdh1. 

The triple mutant cells were constructed in the GAL-ACM1 background and then 

plated onto glucose media to assess their viability. Cells with the triple deletion 

of clb5,6 acm1 were viable and able to form colonies on glucose (data not 

shown). However, a small fraction of these cells (10%) exhibited a 

morphological abnormality. Morphologically abnormal cells were not observed in 

either acm1 or clb5,6 cells. These cells had abnormally elongated buds. This 

phenotype was seen before in partially phosphorylatable mutants (chapter 3) 

and resembles the long-budded morphology of CDH1-m11 cells. Hyperpolarized 
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Figure 4.3: Stochastic morphological defects in acm1 clb5,6 cells. Fraction of 
morphologically abnormal long budded cells.   
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growth is an indicator of lack of mitotic cyclin-CDK activity; mitotic cyclin-CDKs 

are required for the switch to isotropic bud growth (Lew and Reed, 1993). 

Therefore, presence of hyperpolarized buds in these cells could be an indicator 

of stochastic defects in APC-Cdh1 inactivation, similar as observed in partially 

phosphorylatable CDH1 mutants (chapter 3). This interpretation is plausible 

because ACM1 has so far not been found to have any other role than inhibition 

of APC-Cdh1; although other interpretations involving direct effects on mitotic 

cyclins of downstream targets that regulate the bud growth switch are also 

possible. 

4.4. Deletion of G1 cyclins alleviates the stochastic defects in partially 

phosphorylatable CDH1 mutants 

Initially, G1 cyclins were implicated in APC-Cdh1 inactivation (Amon et al, 1993), 

although it was later suggested that they are not sufficient (Yeong et al, 2001). 

To clarify this, I examined genetic interactions between partially 

phosphorylatable CDH1 alleles and deletions of CLN1 and 2. The logic behind 

this experiment was the same as the CLB5,6 experiment; if Cln1 and 2-CDK 

were uniquely required for phosphorylation of the remaining Cdh1 sites, deletion 
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of CLN1 and 2 in that background would phenocopy unphosphorylatable CDH1-

m11 and cause lethality. 

The strains were constructed in GAL-ACM1, as well as MET3-CLN2 

background, in which CLN2 is conditionally expressed in absence of methionine 

(but not expressed in + met) because deletion of CLN1 and 2 is severely 

deleterious and results in frequent G1 arrest (Skotheim et al, 2008). The assays 

were then carried out on media with added methionine. 

Surprisingly, unlike CDH1-2,3P, the triple mutant CDH1-2,3P cln1,2 had no 

reduced ability to form colonies. This is apparent from the image in figure 4.4 A; 

however, to quantitatively assess the ability to form colonies, I plated bigger 

volumes of cultures to count colony-forming units. The ability to form colonies in 

the CDH1-2,3P mutant was decreased approximately tenfold (figure 4.4 B, 

bottom left, compare G+met with D+met (MET3-CLN2 off in both cases)). In 

comparison, the ability to form colonies was restored in CDH1-2,3P cln1,2 cells 

(figure 4.4 B, bottom right, D+met), although the colony number was still slightly 

reduced by approximately 40%. It can also be observed that turning on MET3-

CLN2 in CDH1-2,3P background, which causes moderate overexpression, as 

well as a shift in timing of expression, of G1 cyclins, further reduces the colony 

formation in CDH1-2,3P (figure 4.4 B, bottom left, D+met). 
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In liquid culture, CDH1-2,3P cells exhibited hyperpolarized buds, indicating 

failure in bud growth depolarization owing to only partial APC-Cdh1 inactivation, 

as described before (chapter 3.3). However, the triple mutant CDH1-2,3P cln1,2 

cells did not exhibit hyperpolarized but growth D+met (but were hyperpolarized 

in D-met where MET3-CLN2 was on; figure 4.4 C). Therefore, the morphological 

defects caused by insufficient APC-Cdh1 inhibition were completely restored by 

deleting CLN1 and CLN2. I also note that CDH1-2,3P cln1,2 cells were, similarly 

to cln1,2 cells, enlarged, owing to a well-studied prolonged growth period in G1 

phase in absence of Cln1,2-CDK (Skotheim et al, 2008). 

To assess the growth of these cells quantitatively, I performed time-lapse 

microscopy of these cells. The strains contained Myo1-mCherry, the bud neck 

marker, to measure the duration of the unbudded and budded periods of the cell 

cycle. As noted above, deletion of CLN1 and CLN2 causes extended G1 

(Skotheim et al, 2008); both cln1,2 cells, as well as CDH1-2,3P cln1,2 cells, 

exhibited longer unbudded periods in both mothers and daughters compared to 

wild type (data not shown). 

As described in chapter 3.4, only 20% of CDH1-2,3P cells completed the first 

cell cycle upon switching to glucose (and did so with a delay, compared to the 

distribution budding to cytokinesis times for wild type; figure 4.4 D); the 

remaining 80% of the cells were arrested as long-budded cells and did not 
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Figure 4.4: Genetic interactions between partially phosphorylatable CDH1 
mutants and deletion of CLN1,2. Abbreviations: D, glucose; G, galactose; Met, 
methionine. Strains were constructed in GAL-ACM1 MET3-CLN2 background. 
A) Tenfold serial dilutions of indicated strains. B) Counts of colony forming units
of indicated strains, normalized to number of colonies of each culture on G-met. 
Error bars are standard error of the mean between plating triplicates. C) 
Representative DIC images of cells with indicated genotypes in indicated media. 
Images were taken 6 hours after switch from G-Met. D) Duration of the budded 
period of the cell cycle measured by time lapse microscopy using Myo1-
mCherry as a bud neck marker in D+Met. D) Fraction of unbudded (u), budded 
(b) and long budded (lb) cells of indicated genotype in D+Met.  
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complete cytokinesis (Myo1-mCherry marker remained at the bud site 

throughout). In contrast, 100% of CDH1-2,3P cln1,2 cells completed cytokinesis, 

and did so with no delay in timing with respect to wild type or cln1,2 cells (figure 

4.4 D). Therefore, deletion of cln1,2 in CDH1-2,3P background allows not only 

for depolarizing bud growth, but also for reliable cell cycle progression until 

cytokinesis. 

Overall, no observed cell cycle defects in CDH1-2,3P cln1,2 cells are therefore 

somewhat inconsistent with only partial inability to form colonies (figure 4.4 B). A 

reduced ability to form colonies could be due to occasional G1 arrests due to 

cln1,2 deletion; however, no colony formation defects is observed for cln1,2 cells 

on D+met. The likely explanation for this discrepancy is a systematic plating 

error in the experiment either for CDH1-2,3P cln1,2 cells or cln1,2 cells. 

To test whether this rescue of partially phosphorylatable CDH1 mutants is 

specific to the particular two phosphorylation sites present in the CDH1-2,3P 

mutant, I looked for genetic interactions of another partially phosphorylatable 

CDH1 mutation that causes stochastic failures in APC-Cdh1 inactivation with 

cln1,2 deletion. As above, these strains were constructed in GAL-ACM1 MET3-

CLN2 background. On glucose + methionine, cells bearing the CDH1-5:11P 

allele, which encodes Cdh1 protein that is missing the N-terminal 4 sites but 

have the 7 C-terminal sites (J. Robbins, PhD thesis), arrested as long-budded 
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cells with about 20% frequency (figure 4.4 E). However, these long budded cells 

were completely absent in CDH1-5:11P cln1,2 strain (figure 4.4 E). I note that 

both CDH1-2,3P cln1,2 and cln1,2 strains had a bigger fraction of unbudded 

cells, owing to the prolonged G1 phase in absence of CLN1 and CLN2 

(Skotheim et al, 2008). 

In summary, deletion of G1 cyclins in strains bearing partially phosphorylatable 

CDH1 alleles alleviates the phenotype of associated with incomplete APC-Cdh1 

inactivation, and allows for both reliable bud growth depolarization, as well as 

timely cell cycle progression throughout the rest of the cell cycle. This result was 

unexpected and opposite to the prediction based on suggested role of Cln1,2-

CDK in inhibitory phosphorylation of Cdh1. 

4.5. Deletion of CLN1,2 does not restore mitotic cyclin levels in partially 

phosphorylatable CDH1 mutants 

The morphological defects in cells bearing unphosphorylatable or partially 

phosphorylatable alleles have been traced to the inability to accumulate mitotic 

cyclins; mitotic cyclins are required for switching from polarized to depolarized 

bud growth (Lew and Reed, 1993), and in their absence, abnormally elongated 
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buds are formed. Introducing non-degradable Clb2 into CDH1-m11 cells 

restored the ability to depolarize bud growth (Robbins and Cross, 2010a) 

Based on these predictions, I reasoned that deletion of CLN1 and 2 might, 

through one of many potential pathways, allow for accumulation of higher levels 

of mitotic cyclins in the CDH1-2,3P cells. To test that, I measured Clb2 levels by 

immunoblotting in asynchronous cultures 6 hours after switching to glucose 

media with methionine. As noted in chapter 3.6, CDH1-2,3P cells have reduced 

but detectable Clb2 levels. cln1,2 cells have approximately wild-type levels of 

Clb2. However, Clb2 levels in the triple mutant CDH1-2,3P cln1,2 are only 

comparable to CDH1-2,3P cells and significantly lower than wild type Clb2 

levels. 

A possible explanation of this result is that deletion of CLN1 and 2 might allow 

for depolarizing bud growth and cell cycle progression in CDH1-2,3P cells with 

lower mitotic cyclin-CDK activity, by removing some yet unknown, Clb2-CDK 

independent, pathway that inhibits bud growth depolarization; although 

numerous other interpretations are possible. First, defects in CDH1-2,3P might 

be due to improper timing, not overall levels, of Clb2 accumulation, and deletion 

of CLN1 and 2 might advance Clb2 accumulation without elevating overall 

levels. To test this, time-lapse experiments using a GFP-tagged Clb2 expressed 

from the native promoter would be required. 
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Figure 4.5: Western blotting for Clb2 levels in CDH1-2,3P cln1,2 cells. 
Quantification was done by normalizing to Pgk1 intensity. Error bars represent 
standard error of the mean from three biological replicates. 
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Another possibility is that deletion of CLN1 and 2 might restore levels of other 

mitotic cyclins Clb1,3 and 4, which are able to drive mitosis in absence of Clb2 

(Richardson et al, 1992); western blotting for other mitotic Clbs would be 

required to evaluate this possibility. Another possibility is that Clb2 levels do not 

directly reflect Clb2-CDK kinase activity, since Clb2-CDK activity is also 

controlled both by posttranslational modifications (Sia et al, 1996), as well as the 

inhibitor Sic1 (Schwob et al, 1994). This could be addressed by kinase activity 

assays of immunoprecipitated Clb2-CDK complexes. 

4.6. Conclusions and further directions 

Taken together, the data reveal redundancy in APC-Cdh1 inactivation and 

suggest hierarchy among the negative regulators of APC-Cdh1. In addition to 

phosphorylation sites on Cdh1, where redundancy exists in the number of 

phosphorylation sites (chapter 3), I show here that multiple negative regulators 

of Cdh1 contribute to APC-Cdh1 inactivation in a redundant manner. 

Phosphorylation of Cdh1 by CDKs is essential and therefore certainly the most 

important mode of regulation. However, phosphorylation of Cdh1 can be carried 

out by multiple cyclin-CDKs. Here, I present two pieces of evidence that Clb5-

CDK, and its related partner Clb6-CDK, might be the main kinases responsible 
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for phosphorylation of Cdh1. Firstly, CLB5 and 6 are required for timely 

inactivation of APC-Cdh1; in absence of CLB5,6, inactivation of APC-Cdh1 is 

delayed. However, clearly other, presumably later Clb-CDKs, are also capable 

of carrying out sufficient Cdh1 phosphorylation for cell cycle progression. 

Secondly, deletion of CLB5 is lethal in combination with partially 

phosphorylatable CDH1 alleles lacking either the N-terminal (J. Robbins, PhD 

thesis) or the C-terminal subset of sites. This argues that phosphorylation of 

both of these subsets of sites might be carried out predominantly by Clb5-CDK, 

although, as noted above, other interpretations involving requirement for 

phosphorylation of other targets by Clb5-CDK, most plausibly Acm1, are 

possible. 

In contrast, we found no indication for inhibitory phosphorylation of Cdh1 by 

Cln1 and 2-CDK. Direct measurement of timing of APC-Cdh1 inactivation in cells 

deleted for CLN1 and 2 was impossible because of pleiotropic effects of Cln1 

and 2; deletion of CLN1 and 2 also affect the timing of budding, sharpness of 

Whi5 nuclear exit, as well as timing of expression of other Cdh1 regulators in the 

G1/S regulon. However, in contrast to CLB5 and 6, deletion of CLN1 and 2 did 

not genetically interact negatively with partially phosphorylatable CDH1 mutants, 

but paradoxically completely rescued the phenotypes associated with lack of 

Cdh1 phosphorylation sites. These results do not, however, conclusively prove 

that Cln1 and 2-CDK do not have a role in Cdh1 phosphorylation. 
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I currently do not have a plausible explanation for this unexpected result. A 

possible explanation would be that Cln1,2-CDK phosphorylates Cdh1 at specific 

sites in an activatory manner, and loss of this activatory phosphorylation by 

deletion of CLN1 and 2 balances out the loss of inhibitory phosphorylation by 

other kinases; however, since the same genetic interaction was observed with 

two partially phosphorylatable alleles with non-overlapping subsets of sites, this 

explanation can be ruled out. Further experiments can be done by time-lapse 

microscopy using the APC-Cdh1 biosensor; this might reveal whether APC-

Cdh1 is inactivated more completely in CDH1-2,3P cln1,2 cells compared to 

CDH1-2,3P cells, although the interpretation of the results might be challenging 

due to APC-Cdh1-independent effects on biosensor degradation. Above, I also 

propose a few additional experiments to clarify whether deletion of CLN1 and 2 

in rescues the phenotype of CDH1-2,3P by restoring mitotic cyclin-CDK activity. 

ACM1 is lower on the hierarchy of negative regulators of APC-Cdh1. Deletion of 

ACM1 in wild type cells has no obvious growth or morphological defects, 

although a previous study has suggested that there might be occasional defects 

in nuclear positioning and spindle morphology in acm1 cells (Martinez et al, 

2012). Careful time-lapse microscopy experiments using the APC-Cdh1 

biosensor might be able to reveal any defects in APC-Cdh1 inactivation in acm1 

cells. 
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However, deletion of ACM1 was found to be deleterious when Cdh1 

phosphorylation is impaired, either by removing a subset of phosphorylation 

sites, or deleting the likely main physiological kinases for Cdh1, CLB5 and 6. 

This suggests that inhibition by Acm1 likely serves as a buffer for occasional cell 

cycles when proper phosphorylation of Cdh1 fails. 

I found no genetic interactions between CDH1-2,3P and deletion of MSN5. 

Previous experiments also showed no genetic interactions of msn5 deletion with 

partially phosphorylatable CDH1 alleles bearing other subsets of 

phosphorylation sites (J. Robbins, PhD thesis). Together, this suggests that 

Msn5 can promote nuclear export through interacting with multiple different 

phosphorylation sites on Cdh1, or that nuclear export of Cdh1 contributes so 

little to overall APC-Cdh1 inactivation that eliminating the nuclear export does 

not have any effects on cell viability. To assess the localization of Cdh1 protein 

throughout the cell cycle in partially phosphorylatable CDH1 mutants, I 

attempted to construct a GFP-tagged version of CDH1; however, presumably 

due to low endogenous expression levels of CDH1, even when tagged with 

three repeats of fluorescent protein, the GFP signal was undetectable (data not 

shown). Overall, I therefore cannot evaluate the significance of nuclear export to 

APC-Cdh1 inactivation. 
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Chapter 5: Global analysis of cell cycle-regulated gene expression 

The cell cycle progression in budding yeast is tightly linked to changes in gene 

expression, as approximately 20% of the yeast genome exhibits once per cell 

cycle oscillations of mRNA abundance. The main challenge at the present point 

is to understand to what extent this periodic gene expression is regulated by 

cyclin-CDK activity and therefore downstream of the CDK oscillator, and to what 

extent periodic gene expression is controlled by a “transcriptional oscillator”, 

which was proposed to operate independently of the CDK oscillator (Orlando et 

al, 2008; Simmons-Kovacs et al, 2012). 

In order to address this question, gene expression was measured in a strain 

where all cyclins were deleted and replaced with exogenously controlled G1 and 

mitotic cyclin. In this strain, tight control of cyclin expression allowed for 

complete depletion of all cyclin-CDK activity. A genome-wide gene expression 

time course experiment was performed and analyzed by principal component 

analysis. The experimental part of this work was done in collaboration with S. 

Jamal Rahi and Kresti Pecani. 
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5.1. Construction of strains and the time course experiment 

For this experiment, two yeast strains were used. The experimental strain, 

named cln-clb-, had all three G1 cyclins CLN1,2,3 deleted and replaced with a 

copy of CLN2 driven by methionine-repressible promoter MET3. In addition, all 

the B-type cyclins CLB1-6 were also deleted, and replaced by galactose-

inducible CLB2 (GALL-CLB2). The control strain, named cln-CLB+, also had the 

G1 cyclins deleted and replaced by MET3-CLN2, but retained all the CLB 

cyclins. The cln-clb- strain was viable on G-Met media where both CLN2 and 

CLB2 were constantly expressed, indicating that periodic gene expression of 

cyclins is not essential for cell cycle progression, even though the levels of Clb2 

protein and Clb2-CDK kinase activity was substantially higher than in cyclin wild 

type cells in the same media condition (Rahi et al, submitted). 

The previous experiment where gene expression in absence of B-type cyclins 

was measured (Orlando et al, 2008) was done in a strain where GAL1-CLB1 

was replacing all the B-type cyclins, but the activity of residual Clb1 upon shutoff 

was not measured, and it is possible that due to high expression level of GAL1 

promoter, residual CLB1 could be present and could affect gene expression. For 

our cln-clb- strain, a protocol was devised in which the cells can be arrested in 

G1 completely depleted of any Clb2-CDK activity (1-2% of the wild type peak of 

total Clb-CDK activity; Rahi et al, submitted). 
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Figure 5.1: The scheme of the time course experiment for gene expression 
dynamics. Both cln-CLB+ (control) and cln-clb- cells were synchronized as 
unbudded cells in G1 by depleting G1 cyclins. -Met pulse for 90 minutes allowed 
expression of Cln2 and budding in both cells. cln-CLB+ cells proceeded to 
complete the cell cycle and arrested in subsequent G1 phase. cln-clb- cells were 
arrested at the G1/S border due to absence of B-type cyclins. Samples for 
transcriptome analysis were taken every 30 minutes. D, glucose; met, 
methionine. 
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The graphic scheme of the time course experiment is depicted in figure 5.1. 

Upon G1 arrest in Glu + met media where Clb2 was completely depleted (t=0 in 

the experiment), both strains were transiently shifted to media without 

methionine to transiently express MET3-CLN2 for 90 minutes, after which 

methionine was added back to turn MET3-CLN2 off. The transient expression of 

CLN2 allowed for bud emergence in both strains. The control strains cells 

continued the cell cycle unperturbed until the next G1 phase, when they again 

arrested due to absence of G1 cyclins. Cln-clb- cells arrested after the transient 

-Met pulse as budded cells at the G1/S border, as their cell cycle progression 

was blocked due to absence of Clb-CDK activity. Aliquots of cultures were 

collected every 30 minutes and mRNA was isolated for transcriptome 

sequencing. 

5.2. Dynamic transcriptional activity of cell cycle-regulated transcripts 

Visual inspection of selected genes, previously associated with cell cycle 

regulation, revealed the dynamics of cell cycle regulons. The genes in the G1/S 

regulon, regulated by transcription factors SBF and MBF, peaked at 60 minutes, 

and the transcript abundance promptly decreased after (Figure 5.2 A). Both 

TOS6 (a SBF target), as well as RAD53 (an MBF target) also peaked in the cln-

clb- cells. 
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Figure 5.2: Transcript abundance of representative cell cycle-regulated genes. 
A; G1/S regulon. B; G2/M regulon (CLB2 cluster). C; M/G1 regulon (SIC1 
cluster). D; histone cluster. E; S-phase cluster. 
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The genes from the second main regulon, the CLB2 cluster (Spellman et al, 

1998), regulated by the complex of Mcm1, Fkh1/2 and Ndd1 (Koranda et al, 

2000; Reynolds et al, 2003), showed peak transcript abundance at 90 minutes 

(figure 5.2 B) in control cln-CLB+ cells. In contrast, no transcript of SWI5 or 

CDC20 genes in cln-clb- cells was detected. I note that this is in contrast with 

results by Orlando et al (2008), who observed reduced, but not absent activation 

of these genes (Orlando et al, 2008). Since requirement of mitotic cyclin activity 

for expression of CLB2 cluster genes is well established (Amon et al, 1993), 

residual Clb1-CDK activity in the Orlando et al experiment might explain this 

discrepancy. 

The genes from the late mitotic gene cluster (SIC1 cluster, Spellman et al, 1998) 

peaked at t=120 min and t=150 min time points (figure 5.2 C). Interestingly, in 

cln-clb- cells, SIC1 (a Swi5 target) expression was observed even though the 

amplitude was decreased compared to the control, but no CTS1 (an Ace2 

target) expression was observed. 

I also examined genes belonging to additional regulatory clusters, the “histone 

cluster” (Spellman et al, 1998) and the S-phase cluster, regulated by Hcm1 

(Pramila et al, 2006). Genes belonging to both of these clusters were activated 

at 60 minutes in control cells (Figure 5.2 D,E), making them indistinguishable in 

timing from the G1/S genes in this experiment due to limited time resolution. 
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Both HTA1 (from the histone cluster) and WHI5 (from the S-phase cluster) were 

also activated in cln-clb- cells with reduced amplitude. 

5.3. Principal component analysis of the gene expression dataset 

In order to gain insight into the global patterns of gene expression and global 

differences between the cln-CLB+ and cln-clb- cells, I performed principal 

component analysis (PCA) on the dataset in the matrix A. A is a 6717x16 

matrix, each row representing one gene, and each column one time point 

sample (8 time point samples for each control and cln-clb- strain were collected). 

Preprocessing of the dataset to generate A is described in chapter 7 (Materials 

and methods). 

PCA (also sometimes called singular value decomposition (SVD)) is a statistical 

method that produces a set of mutually orthogonal principal components. PCA is 

a commonly used procedure to reduce the dimensionality of the data by focusing 

on the main principal components that explain most of the variance. The 

transformation of the gene expression dataset matrix A according to the 

equation A=USVT yields a set of 16 principal components, which are sets of 

uncorrelated, mutually orthogonal vectors, contained in matrices U and V. 
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The set of vectors in U represents “eigengenes”, an orthonormal set of vectors 

that explain variance among the genes (mathematically, eigengenes are 

eigenvectors of the covariance matrix ATA). The set of vectors in V represents 

“eigensamples”, an orthonormal set of vectors that explains the variance among 

the time point samples (mathematically, eigenvectors of the covariance matrix 

AAT). 

The first four principal components explain 50% of the total variance (table 1) of 

the dataset. The first two principal components each explain about 15% of the 

variance. The mathematics of the PCA suggests focusing on the principal 

components that explain a higher fraction of variance. 

Here, I plot the time profiles of the first four eigengenes. The profile of the first 

eigengene shows a different pattern between the control and cln-clb- strains 

(figure 5.3). For the control strain, it showed a broad peak at timepoints from 90 

to 180 minutes. For the cln-clb- strain, it remained constant at low levels for the 

entire experiment. In contrast, the second eigengene showed a very pattern for 

both strains, with both the control and cln-clb- strains exhibiting a sharp peak at 

the 60 minutes timepoint. 
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Figure 5.3: Time profiles of eigengenes associated with the four highest singular 
values. 

Principal component Fraction of variance explained 
1 0.15 
2 0.15 
3 0.11 
4 0.08 
Sum (5-16) 0.51 

Table 5.1: Fraction of variance explained by individual principal components. 
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The third and fourth eigengenes, which explain 11 and 8 % of variance in the 

dataset, respectively, also showed different dynamics for the control and cln-clb- 

strain, with peaks and troughs at different timepoints. Further analysis was 

focused on first two principal components. 

5.4. Clustering of co-regulated genes in the eigengene space 

Gene profiles for each individual gene were projected onto the subspace 

spanned by the first two principal components, and combined that with 

functional classification of genes based on published information on their 

transcriptional regulation (Figure 5.4). 

On the scatter plot, genes from the dataset of annotated SBF and MBF targets 

(Ferrezuelo et al, 2010) are plotted in green. On the PC1/PC2 subspace, genes 

from this regulon are largely clustered along the PC2 axis, implying high 

correlation of their profiles with the eigengene 2 (figure 5.4). 
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Figure 5.4: Projections of genes onto the subspace of the first two eigengenes. 
Each dot represents one of the genes (total 6717). Green, genes identified as 
SBF and MBF targets. Blue, genes from the CLB2 cluster. Red, genes from the 
SIC1 cluster. 
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Genes identified as members of the “CLB2 cluster” and “SIC1 cluster” (Spellman 

et al, 1998) were plotted in blue and red, respectively. Both of these gene 

clusters localized in the region of high correlation with PC1 (figure 5.4). 

However, the two clusters were separated from each other. The CLB2 cluster 

genes were observed in the upper right area in the region with slightly positive 

contribution of the PC2. The SIC1 cluster genes were located below in the 

region with slightly negative contribution of PC2. 

This results suggests that projecting genes onto the subspace spanned by the 

first two principal components generates clusters of co-regulated genes, which 

provides validation of the analysis based on the first two principal components. 

Further work could be done to analyze other groups of genes based on known 

transcriptional co-regulation, as well as groups of genes based on other 

functional categories. 

5.5. Projection onto eigensample space reveals global gene expression 

trajectories 

Plotting of projections of successive time point samples onto the subspace of 

eigensamples 1 and 2 revealed differences between the cln-CLB+ control and 

cln-clb- datasets (figure 5.5). Overall, the trajectories of the two time courses are 
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Figure 5.5: Projections of samples onto the subspace of the first two 
eigensamples. Numbers on the plot indicate time points in minutes. Red; cln-
CLB+ samples. Blue; cln-clb- samples. 
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strongly separated along the PC1 axis. The time course of the control strain 

(figure 5.5, red line) started close to the origin. Subsequently, the contribution of 

the second principal component increased strongly at t=60min time point, 

followed by an increase of the contribution of the PC1 while the contribution of 

the PC2 decreased, and ultimately returned to the starting point to form a closed 

orbit. This is consistent with a near-complete return of the cells to the starting 

condition of the experiment. 

The time course of the cln-clb- dataset (figure 5.5, blue line) initially paralleled 

the control time course trajectory. However, the increase of the contribution of 

PC2 at the 60 minute timepoint was smaller. After the 60 min timepoint, the cln-

clb- dataset diverged drastically from the control dataset, immediately returning 

close to the starting condition at t=90 min and remained there. 

This result has a biological interpretation and implies differential patterns of 

global gene expression between the control and cln-clb- cells. The global gene 

expression between the cln-CLB+ and cln-clb- strains changed dramatically 

starting at the t=90 minutes, corresponding to the timing of the expression of the 

CLB2 cluster regulon. Therefore, expression of later cell cycle-transcriptome 

after the 60 minute time point is significantly affected in the cln-clb- strain. 
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5.6. Conclusions and further directions 

Here, I describe a preliminary attempt to analyze the genome-wide gene 

expression pattern using principal component analysis. The main motivation was 

to compare gene expression pattern of the strain that was lacked all the B-type 

cyclins with a control strain. PCA was used before to analyze the budding yeast 

cell cycle gene expression data (Alter et al, 2000), and more recently also to 

analyze diurnal gene expression in green alga Chlamydomonas reinhardtii (Tulin 

and Cross, submitted). Unlike other methods used before to analyze gene 

expression patterns, such as k-means clustering (Eisen et al, 1998) or 

identifying cell cycle-regulated gene expression patterns by comparing with 

idealized gene profiles (de Lichtenberg et al, 2005; Orlando et al, 2008), PCA 

does not require input of any arbitrary parameters and is model-independent. 

Generally, individual eigengenes are only expected to directly reflect some 

underlying biological pattern in case the biological patterns are mutually 

orthogonal. This, in general, depends strongly on the nature of the data, and can 

also be affected by preprocessing of the data. 

I analyzed the data in terms of the first two principal components, which together 

explain 30% of the variance of the dataset. I find that the G1/S regulon genes 

correlate strongly with the second principal component, whereas the later 
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expressed gene regulons (CLB2 cluster and SIC1 cluster) correlate with the first 

principal component. In the subspace spanned by the first two principal 

components, the three main cell cycle gene regulons occupy distinct clusters. 

Furthermore, the analysis provides a clear insight into the effects of B-type 

cyclins on the gene expression patterns. Contrary to previous analysis, which 

highlighted the lack of change in gene expression patterns in cells without B-

type cyclins (Orlando et al, 2008), principal component analysis of the present 

dataset revealed effects of B-type cyclin deletion. Analyzed in terms of the 

subspace of the first two principal components, the gene expression patterns of 

the control and cln-clb- strain diverged greatly after 60 minutes, indicating that 

the gene expression of later genes, but not the G1/S regulon, is affected in the 

B-type cyclin mutant cells. 

Presently, the focus was on the first two principal components, which was 

sufficient to explain the main patterns in the dataset, and the additional principal 

components were ignored. Principal components that explain smaller degree of 

variance are generally assumed to only reflect noise in the dataset; however, 

analyzing the data in terms of additional principal components might reveal 

additional details about the experiment. In addition, further insights might be 

gained by improving the temporal resolution of the experiment; while 30 minute 

sampling interval is sufficient for temporal differentiation of the three major 
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regulons, finer sampling might reveal subtler temporal differences in expression 

between genes in the same regulon, and changes in timing between control and 

cln-clb- cells. 
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Chapter 6: Discussion 

Timing of APC-Cdh1 inactivation 

In this work, I measured the timing of APC-Cdh1 inactivation at the single cell 

resolution. 

The events associated with the Start transition in budding yeast were previously 

shown to be relatively coherent, with some coherence between the events likely 

sacrificed to ensure timely completion of all events (Bean et al, 2006). 

Inactivation of APC-Cdh1, as shown here, is highly coherent with Whi5 exit, but 

poorly coherent with bud emergence. This is, as shown before, due to 

substantial variability of timing of bud emergence with respect to Whi5 exit (Di 

Talia et al, 2007). 

Whi5 exit is the regulatory step that ensures expression of multiple genes that 

contribute to APC-Cdh1 inactivation; which subcomponents of the Start 

regulatory network contribute to timely APC-Cdh1 inactivation remains to be 

addressed. 

I speculate that the difference in observed timing variability between APC-Cdh1 

inactivation and bud emergence might be rationalized by differential selection 
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pressure for reducing variability. The timing variability in bud emergence might 

be tolerated because budding is regulatorily decoupled from downstream cell 

cycle events, and bud growth is likely not rate limiting for cell cycle progression. 

In contrast, inactivation of APC-Cdh1 is an essential step for immediate 

downstream events, such as accumulation of mitotic cyclins, and, as also shown 

in this work, activation of expression of the mitotic cyclins. Therefore, a delay in 

APC-Cdh1 inactivation could be rate-limiting for subsequent cell cycle events. 

The architecture of the Start molecular network has likely been designed to 

prioritize noise suppression in inactivation of APC-Cdh1 over bud emergence. 

Requirement for multisite phosphorylation of Cdh1 for APC-Cdh1 

inactivation 

The experiments presented here contribute to our understanding of how the 

multisite phosphorylation of Cdh1 works. Previously, it has been shown that no 

single site is essential, and that contribution of phosphorylation sites is unequal, 

implying regulation by bulk charge with some regional specificity (J. Robbins, 

PhD thesis). Here, I further show that no single phosphorylation site is sufficient 

for proper inhibition of APC-Cdh1 activity. 
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Multiple partially phosphorylatable CDH1 mutants showed stochastic cell cycle 

defects in individual cells. Further characterization of the phenotype of one of 

these mutants revealed a partially penetrant phenotype in cell cycle progression. 

A fraction of the cells completed the cell cycle, and even the cells that 

resembled the fully arrested cells continued to perform some cell cycle events. 

This phenotype was, as measured using the assay for APC-Cdh1 activity, 

associated by incomplete but partial restrainment of APC-Cdh1 activity. 

However, due to the complex phenotype, precise quantification of the 

requirement for APC-Cdh1 inactivation remains unknown. 

Mechanism of APC-Cdh1 inactivation by phosphorylation at the N-terminal 

sites 

A high-resolution of structure of the APC bound to Cdh1 has revealed the 

interface between Cdh1 and APC (Schreiber et al, 2011). Notably, the N-

terminal sites, which were shown to have the strongest contribution to APC-

Cdh1 inactivation, are located in the unstructured region of Cdh1 that maps into 

the unassigned density in the structure that likely links Cdh1 and the C-terminus 

of Apc2 (Schreiber et al, 2011; D. Barford, personal communication), implying a 

direct physical interaction of the N-terminus of Cdh1 with Apc2. This structural 

detail might provide an insight into the biochemical mechanism of inhibition by 
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phosphorylation at the N-terminal sites, and further biochemical experiments 

could be designed to test this directly. 

Cyclin specificity in Cdh1 phosphorylation 

Here, I add two additional pieces of evidence that suggest that Cdh1 might be 

predominantly phosphorylated by Clb5-CDK (and possibly its less potent partner 

Clb6-CDK) in vivo. Multiple lines of evidence for the role of Clb5-CDK already 

exist. Substrate specificity of Clb5-CDK is determined by presence of the RXL 

motif on the substrate; such a motif exists in Cdh1, and Cdh1 was preferentially 

phosphorylated by Clb5-CDK compared to Clb2-CDK in cell lysates (Loog and 

Morgan, 2005). 

Here, I show that in absence of Clb5 and 6, inactivation of APC-Cdh1 is 

delayed.  This result was shown by measurement in single cells and the delay 

was quantified; however a qualitative observation of the delay in APC-Cdh1 in 

absence of Clb5 and 6 has been shown before (Huang et al, 2001). This 

indicates that Clb5 and/or 6-CDK are likely the physiological kinase for Cdh1 in 

wild type cells, although in their absence, other kinases can carry out 

physiologically sufficient Cdh1 phosphorylation with a delay or with reduced 

efficiency. 
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Second, deletion of CLB5 was shown to be lethal in combination of mutation of 

either the C-terminal or N-terminal sites. The likely interpretation of this result is 

that when phosphorylation of Cdh1 becomes impaired, other kinases become 

insufficient for efficient or timely phosphorylation at the remaining sites, implying 

a strong contribution of Clb5-CDK to phosphorylation of both of these subsets of 

sites. However, this genetic interaction can also be interpreted by indirect effects 

of clb5 deletion. 

In contrast, assessing the role of Cln1 and 2-CDK in APC-Cdh1 inactivation 

revealed an opposite result, as deletion of CLN1,2 in partially phosphorylatable 

CDH1 context paradoxically alleviated the phenotype associated with 

incomplete APC-Cdh1 inactivation. This result is at present difficult to reconcile 

with the current understanding of the budding yeast cell cycle control. This 

genetic interaction does not exclude the possibility that any phosphorylation of 

Cdh1 by Cln1,2-CDK occurs; however, it points at that another additional 

mechanism of APC-Cdh1 regulation by Cln1,2-CDK that is presently not 

understood. Further characterization is required to understand the mechanism of 

the rescue and explain the complete role of Cln1,2-CDK in APC-Cdh1 

regulation. 
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The global cell cycle transcriptional program requires B-type cyclins 

I addressed the global cell cycle regulatory program. The current unresolved 

controversy is to what extent cell cycle-regulated transcription is, like the 

majority of other cell cycle events, regulated by oscillations of cyclin-CDK 

activity, and to what extent the periodic transcriptional program is autonomously 

driven by a proposed transcription factor oscillator (Orlando et al, 2008; 

Simmons-Kovacs et al, 2012). 

To address the question, I performed principle component analysis on the global 

gene expression dataset generated from the time course of cells lacking all B-

type cyclins, along with control cells. The results of the principal component 

analysis showed that the global transcriptional pattern is largely absent in B-type 

cyclin mutant cells. This result implies the requirement for B-type cyclin-CDK 

activity for the global periodic transcriptional program. 

However, it must be noted that the absence of a global pattern of periodic gene 

activation does not preclude that some individual genes might still be activated 

in absence of Clb-CDK activity. In fact, a small subset of M/G1 genes, most 

notably including SIC1, a gene coding for an inhibitor of B-type cyclin kinases, 

was found to be expressed in absence of Clb-CDK activity. Given the function of 
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Sic1 in the budding yeast cell cycle, a mechanism for Clb-CDK-independent 

transcriptional induction has been proposed (Rahi et al, submitted).
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Chapter 7: Materials and methods 

Strains and plasmid construction 

Standard methods for strain constructions were used throughout. All strains are 

W303-congenic. Strains and plasmids used in this work are listed in tables 7.1 

and 7.2, respectively. The APC-Cdh1 biosensor plasmid was constructed by 

amplifying the ASE1 degron sequence from the plasmid PB1452 (obtained from 

David Pellman) and cloned into the pGC25 plasmid to obtain pAO4, which was 

linearized with XbaI to integrate into the TRP1 locus. The following 

oligonucleotides were used for cloning: 

Ase1degr-f-COR: 

GGTATTACCCATGGTATTGATGAATTGTACAAAAGATCTAAAAAGGGAAAAT

GTGGTGCG 

Ase1degr-r:

TCGCTTATTTAGAAGTGGCGCGCCTTATCAAATATCTGTAAAGGAGAATCCA

TTC

The pAO1, pAO2 and pAO3, pAO16-23P and pAO16-13P plasmids bearing 

CDH1 phosphomutants were generated by subcloning AvaI/BlpI fragments 

(containing the N-terminal parts of the CDH1 ORF) from JRP64, JRP63, JRP62, 

JRP60 and JRP78, respectively, into FC687. The plasmid was then linearized 

with BglII to integrate into the CDH1 locus. The transformants were then 



122 

subjected to 5-FOA selection. This generated colonies of both wild-type CDH1 

and desired phosphomutant depending on the site of homologous 

recombination; colonies were screened by sequencing the PCR product. 

Media and culture conditions 

Standard media and liquid culture conditions were used. Fluorescence imaging 

experiments were performed with cultures grown in synthetic media to minimize 

autofluorescence. 

Fluorescence time-lapse microscopy and image analysis 

Time lapse imaging and subsequent automated image segmentation was 

performed using the instrumentation and software as described previously 

(Charvin et al, 2008), with a difference that cells grown in a commercial 

microfluidic chamber (CELLAsic, Hayward, CA) as per manufacturer 

instructions. Images were acquired every 3 minutes. Subsequent data analysis 

was performed in Matlab. Image segmentation was done semi-automatically. 

Fluorescence trace smoothing was performed using the Matlab function 

“smooth” with the method “lowess” over the 10 time points. Nuclear fluorescence 
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was measured by either manually detecting nuclei from the images, or 

computed from the images as described (Charvin et al, 2010). In experiments 

using both GFP and YFP, fluorescence in both channels was recomputed to 

correct for spectral bleed-through using empirically determined parameters. 

DIC microscopy 

DIC images were taken using an Axioplan 2 microscope (Carl Zeiss, 

Thornwood, NY) and a 63x NA 1.4 Plan APO objective. The camera and the 

microscope were controlled by the OpenLab software. 

Immunoblotting 

Immunoblots were performed using standard protocols. The antibodies (rabbit 

polyclonal anti-Clb2 and anti-Pgk1 (Invitrogen, Carlsbad, CA)), were used in 

1:10000 concentrations. Enhanced chemiluminescence signal was measured 

with DarkBox (Fujifilm, Greenwood, SC) with a charge-coupled device camera 

and quantified using MultiGauge software (Fujifilm). Quantification was 

performed using ImageJ. 



124 

Transcriptome analysis 

Total RNA was isolated from collected samples using the Trizol reagent. cDNA 

libraries were prepared using Illumina TruSeq sample preparation kit. 

Sequencing was performed by Genewiz (South Plainfield, NJ) and was done on 

the Illumina HiSeq2500 platform in a 1x50bp single-read configuration in Rapid 

Run mode. 

Data preprocessing 

The mRNA sequencing data were expressed as fpkm (fragments per kilobase 

per million reads). The reads for each strain and time point were normalized to 

the same total reads. The time course was performed in biological duplicates; 

the datasets were normalized to each other before averaging. The matrix 

contained 6717 rows, each corresponding to one gene, and 16 columns, 

corresponding to time point samples (8 for the cln-CLB+ control, 8 for the cln-

clb-). Before performing PCA, each row was normalized by mean expression 

and subtracted 1 to center each gene profile at 0. Finally, genes with mean 

expression below 3 fpkm were filtered out; these low fragment counts are almost 

surely not biologically relevant, and noise from these random fluctuations was 
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found to significantly dominate the principal component analysis if not filtered 

out. This generated the data matrix A. 

Principal component analysis 

Principal component analysis was performed in Matlab using the command svd, 

which generated 3 matrices according to the equation A=USVT, where A is the 

matrix containing the gene expression data. The matrix S is a diagonal matrix 

containing singular values (weights of each principal component). The matrix U 

contains column vectors, “eigensamples”, that are eigenvectors of the 

covariance matrix AAT. Finally, the matrix V contains column vectors, 

“eigengenes”, that are eigenvectors of ATA. 

Projections of genes onto the subspace of the first two principal components 

were calculated as dot products of rows of the matrix A with the first two 

eigengenes (for the figure 5.4). The projections of samples were calculated as 

dot products of each column of the matrix A with the two eigensamples. 
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Table 7.1: List of strains used in this work. 

GC46-03 MATa MYO1-mCherry-HIS5 
AO832-3c MATalpha MET3pr-yVENUS-ASE1deg-TRP1::trp1 MYO1-

mCherry-HIS5 
AO852-2d MATalpha MET3pr-yVENUS-ASE1deg-TRP1::trp1 MYO1-

mCherry-HIS5 cdh1::LEU2 
AO602-11d MATa MET3pr-yVENUS-ASE1deg-TRP1::trp1 GALL-

CDC20-ADE2::ade2 cdc20::LEU2 
AO95-4a MATalpha MET3pr-yVENUS-ASE1deg-TRP1::trp1 MYO1-

mCherry-HIS5 GALL-ACM1-LEU2::leu2 CDH1-m11 
AO261-5b MATa MET3pr-yVENUS-ASE1deg-TRP1::trp1 WHI5-GFP-

KanMX HTB2-mCherry-HIS5 
AO1221-12c MAT? MET3pr-yVENUS-ASE1deg-TRP1::trp1 MYO1-

mCherry clb5::HIS3 clb6::KanMX 
AO7-1p1 MATa GALL-ACM1-LEU2::leu2 CDH1-1P 
AO7-2p2 MATa GALL-ACM1-LEU2::leu2 CDH1-2P 
AO7-3p3 MATa GALL-ACM1-LEU2::leu2 CDH1-3P 
AO17-13P1 MATa GALL-ACM1-LEU2::leu2 CDH1-1,3P 
AO17-23P MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P 
3149-21 MATa GALL-ACM1-LEU2::leu2 CDH1-m11 
AO761-8b MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P MYO1-

mCherry-HIS5 MET3-yVENUS-ASE1deg-TRP1::trp1 
AO812-12c MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P MYO1-

mCherry-HIS5 CLB2-GFP-HIS5  
AO87-4c MATa GALL-ACM1-LEU2::leu2 CDH1-m11 MYO1-

mCherry-HIS5 CLB2-GFP-HIS5  
AO712-11c MATa GALL-ACM1-LEU2 MYO1-mCherry-HIS5 CLB2pr-

GFP-KanMX CDH1-2,3P 
AO64-1c MATalpha GALL-ACM1-LEU2 MYO1-mCherry-HIS5 

CLB2pr-GFP-KanMX CDH1-m11 
AO632-6c MATa GALL-ACM1-LEU2 MYO1-mCherry-HIS5 SIC1pr-

YFP-URA3 CDH1-m11 
AO70-6d MATalpha GALL-ACM1-LEU2 MYO1-mCherry-HIS5 

SIC1pr-YFP-URA3 CDH1-2,3P 
AO632-4b MATa GALL-ACM1-LEU2 MYO1-mCherry-HIS5 SIC1pr-

YFP-URA3 
yLB5 MATa MYO1-mCherry-HIS5 CLN2pr-GFP-URA3 
AO72-5c MATa GALL-ACM1-LEU2 MYO1-mCherry-HIS5 CLN2pr-

GFP-URA3 CDH1-m11 
AO681-1c MATa GALL-ACM1-LEU2 MYO1-mCherry-HIS5 CLN2pr-

GFP-URA3 CDH1-2,3P 
AO86-6b MATa MYO1-mCherry-HIS5 CLB2-GFP-HIS5 
JRC397A-1c MATa GAL1-ACM1-URA3::ura3 acm1::KanMX msn5::HIS3 
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JRC397A-9b MATa GAL1-ACM1-URA3::ura3 acm1::KanMX 
JRC397A-9b MATa GAL1-ACM1-URA3::ura3 msn5::HIS3 
MNX33-1d MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P 

acm1::KanMX msn5::HIS3 
MNX33-3c MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P msn5::HIS3 
MNX33-7d MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P 

acm1::KanMX  
AO88-10a MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P acm1::KanMX 

msn5::HIS3 
AO88-7c MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P acm1::KanMX 
AO88-10b MATalpha GALL-ACM1-LEU2::leu2 CDH1-2,3P 

msn5::HIS3 
AO89-7b MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P clb6::KanMX 

clb5::HIS3 
AO89-10a MATa GALL-ACM1-LEU2::leu2 CDH1-2,3P clb6::KanMX 
AO89-11b MATalpha GALL-ACM1-LEU2::leu2 CDH1-2,3P clb5::HIS3 
JRC437A-6a MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P clb6::KanMX 

clb5::HIS3 
JRC437A-4d MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P clb5::HIS3 
JRC437A-9c MATa GAL1-ACM1-URA3::ura3 CDH1-5:11P clb6::KanMX 
JRC436A-6c MATa GAL1-ACM1-URA3::ura3 clb5::HIS3 
JRC436A-1c MATa GAL1-ACM1-URA3::ura3 clb6::KanMX 
JRC436A-1d MATa GAL1-ACM1-URA3::ura3 clb6::KanMX clb5::HIS3 
AO1272-7d MAT? GALL-ACM1-LEU2::leu2 clb6::KanMX clb5::HIS3 

acm1::NatMX 
AO1272-2d MAT? GALL-ACM1-LEU2::leu2 
AO1271-5b MAT? GALL-ACM1-LEU2::leu2 clb6::KanMX clb5::HIS3 
AO1271-5a MAT? GALL-ACM1-LEU2::leu2 acm1::NatMX 
AO1192-9a MATa GALL-ACM1-LEU2::leu2 MET3-CLN2-TRP1::trp1 

MYO1-mCherry-HIS5 
AO1194-6b MAT? GALL-ACM1-LEU2::leu2 MET3-CLN2-TRP1::trp1 

cln1 cln2 MYO1-mCherry-HIS5 
AO939-7b MATa GALL-ACM1-LEU2::leu2 MET3-CLN2-TRP1::trp1 

CDH1-2,3P 
AO939-7a MATa GALL-ACM1-LEU2::leu2 MET3-CLN2-TRP1::trp1 

CDH1-2,3P cln1 cln2 MYO1-mCherry 
AO1017-3d MAT? GAL1-ACM1-URA3::ura3 MET3-CLN2-TRP1::trp1 

CDH1-5:11P cln1 cln2 
AO1012-10b MAT? GAL1-ACM1-URA3::ura3 MET3-CLN2-TRP1::trp1 

CDH1-5:11P 
AO123-4a MAT? GALL-ACM1-LEU2::leu2 GAL1-SIC1-TRP1::trp1 

CDH1-2,3P CLB2-ken 
AO123-7a MAT? GALL-ACM1-LEU2::leu2 GAL1-SIC1-TRP1::trp1 
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CLB2-ken 
AO123-5d MAT? GALL-ACM1-LEU2::leu2 GAL1-SIC1-TRP1::trp1 

CDH1-2,3P  
AO1261-3b MAT? GALL-ACM1-LEU2::leu2 MET3-yVENUS-ASE1deg-

TRP1::trp1 MYO1-mCherry-HIS5 CDH1-2,3P CLB2-ken 
AO-44-4 MATa MYO1-mCherry-HIS5 CLB2::CLB2pr-GFP-LEU2 
AO-1271-5a MAT? GALL-ACM1-LEU2 acm1::NatMX 
AO-1271-5b MAT? GALL-ACM1-LEU2 clb5::HIS3 clb6::KanMX 
AO-1272-2d MAT? GALL-ACM1-LEU2 
AO-1272-7d MAT? GALL-ACM1-LEU2 clb5::HIS3 clb6::KanMX 

acm1::NatMX 
2773-1D MATa cln1 cln2 cln3::LEU2 MET3-CLN2-TRP1 
SJR27a7b MAT? cln1 cln2 cln3::LEU2 MET3-CLN2-TRP1 clb1 

clb6::KanMX clb2::GAL-CLB2-URA3 clb5::KanMX 
clb3::TRP1 clb4::his3::KanMX SIC1::SIC1pr-YFP-URA3 

Table 7.2: List of plasmids used in this work. 

pAO4 pRS404 MET3pr-Ase1deg-VENUS 
PB1452 GAL1-ASE1degron-GST 
pGC25 pRS404 MET3pr-VENUS 
pAO1 pRS406 CDH1-1P 
pAO2 pRS406 CDH1-2P 
pAO3 pRS406 CDH1-3P 
pAO16-23P pRS406 CDH1-2,3P 
pAO16-13P pRS406 CDH1-1,3P 
FC687 pRS406 CDH1-m11 
JRP64 pRS406 CDH1-S16A-T42A-T157A 
JRP60 pRS406 CDH1-T12A-T157A 
JRP63 pRS406 CDH1-T12A-T42-T157A 
JRP62 pRS406 CDH1-T42-T157A 
JRP78 pRS406 CDH1-S16A-T157A 



129 

References 

Alter, O., Brown, P.O. and Botstein, D. (2000) Singular value decomposition for 
genome-wide expression data processing and modeling. Proc Natl Acad Sci U 
S A, 97, 10101-6. 

Altschuler, S.J. and Wu, L.F. (2010) Cellular heterogeneity: do differences 
make a difference? Cell, 141, 559-63. 

Amon, A., Tyers, M., Futcher, B. and Nasmyth, K. (1993) Mechanisms that 
help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 
cyclins and repress G1 cyclins. Cell, 74, 993-1007. 

Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. and Leibler, S. (2004) Bacterial 
persistence as a phenotypic switch. Science, 305, 1622-5. 

Bean, J.M., Siggia, E.D. and Cross, F.R. (2006) Coherence and timing of cell 
cycle start examined at single-cell resolution. Mol Cell, 21, 3-14. 

Benmaamar, R. and Pagano, M. (2005) Involvement of the SCF complex in the 
control of Cdh1 degradation in S-phase. Cell Cycle, 4,1230-2. 

Bristow, S.L., Leman, A.R., Simmons Kovacs, L.A., Deckard, A., Harer, J and 
Haase, S.B. (2014) Checkpoints couple transcription network oscillator 
dynamics to cell-cycle progression. Genome Biol, 15, doi:10.1186. 

Cagatay, T., Turcotte, M., Elowitz, M.B., Garcia-Ojalvo, J. and Suel, G.M. 
(2009) Architecture-dependent noise discriminates functionally analogous 
differentiation circuits. Cell, 139, 512-22. 

Charvin, G., Cross, F.R. and Siggia, E.D. (2008) A microfluidic device for 
temporally controlled gene expression and long-term fluorescent imaging in 



130 

unperturbed dividing yeast cells. PLoS One, 3, e1468. 

Charvin, G., Oikonomou, C., Siggia, E.D. and Cross, F.R. (2010) Origin of 
irreversibility of cell cycle start in budding yeast. PLoS Biol, 8, e1000284. 

Cohen-Fix, O., Peters, J.M., Kirschner, M.W. and Koshland, D. (1996) 
Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-
dependent degradation of the anaphase inhibitor Pds1p. Genes Dev, 10, 3081-
3093. 

Colman-Lerner, A., Chin, T.E. and Brent, R. (2001) Yeast Cbk1 and Mob2 
activate daughter-specific genetic programs to induce asymmetric cell fates. 
Cell, 107, 739-50. 

Crasta, K., Lim, H.H., Giddings, T.H., Jr., Winey, M. and Surana, U. (2008) 
Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary 
for proper assembly of the mitotic spindle. Nat Cell Biol, 10, 665-675. 

Cross, F.R. and Tinkelenberg, A.H. (1991) A potential positive feedback loop 
controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. 
Cell, 65, 875-883. 

Cross, F.R., Archambault, V., Miller, M. and Klovstad, M. (2002) Testing a 
mathematical model of the yeast cell cycle. Mol Biol Cell, 13, 52-70. 

de Lichtenberg, U., Jensen, L.J., Fausboll, A., Jensen, T.S., Bork, P. and 
Brunak, S. (2005) Comparison of computational methods for the identification 
of cell cycle-regulated genes. Bioinformatics, 21, 1164-71 

Deshaies, R.J. and Ferrell, J.E., Jr. (2001) Multisite phosphorylation and the 
countdown to S phase. Cell, 107, 819-822. 

Di Fiore, B. and Pines, J. (2007) Emi1 is needed to couple DNA replication with 
mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol, 177, 
425-37. 



131 

Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D. and Cross, F.R. (2007) 
The effects if molecular noise and size control on variability in the budding 
yeast cell cycle. Nature, 448, 947-51. 

Dirick, L. and Nasmyth, K. (1991) Positive feedback in the activation of G1 
cyclins in yeast. Nature, 351, 754-757. 

Dirick, L., Moll, T., Auer, H. and Nasmyth, K. (1992) A central role for SWI6 in 
modulating cell cycle Start-specific transcription in yeast. Nature, 357, 508-13. 

Dollard, C., Ricupero-Hovasse, S.L., Natsoulis, G., Boeke, J.D. and Winston, F. 
(1994) SPT10 and SPT21 are required for transcription of particular histone 
genes in Saccharomyces cerevisiae. Mol Cell Biol, 14, 5223-8. 

Drapkin, B.J., Lu, Y., Procko, A.L., Timney, B.L. and Cross, F.R. (2009) 
Analysis of the mitotic exit control using locked levels of stable mitotic cyclin. 
Mol Syst Biol, 5:328.  

Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster 
analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 
U S A, 95, 14863-8. 

Eldar, A., Chary, V.K., Xenopoulos, P., Fontes, M.E., Loson, O.C., Dworkin, J., 
Piggot, P.J. and Elowitz, M.B. (2009) Partial penetrance facilitates 
developmental evolution in bacteria. Nature, 460, 510-4. 

Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S. (2002) Stochastic 
gene expression in a single cell. Science, 297, 1183-6 

Enquist-Newman, M., Sullivan, M. and Morgan, D.O. (2008) Modulation of the 
mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor 
Acm1. Mol Cell, 30, 437-46. 



132 

Epstein, C.B. and Cross, F.R. (1992) CLB5: a novel B cyclin from budding 
yeast with a role in S phase. Genes Dev, 6, 1695-1706. 

Eser, U., Falleur-Fettig, M., Johnson, A. and Skotheim, J.M. (2011) 
Commitment to a cellular transition precedes genome-wide transcriptional 
change. Mol Cell, 43, 515-27. 

Ferrezuelo, F., Colomina, N., Futcher, B. and Aldea, M. (2010) The 
transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the 
yeast cell cycle. Genome Biol, 11:R67. 

Gourguechon, S., Holt, L.J., Cande, W.Z. (2013) The Giardia cell cycle 
progresses independently of the anaphase-promoting complex. J Cell Sci, 126, 
2246-55. 

Hall, M.C., Warren, E.N. and Borchers, C.H. (2004) Multi-kinase 
phosphorylation of the APC/C activator Cdh1 revealed by mass spectrometry. 
Cell Cycle, 3, 1278-1284. 

Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W., and Pavletich, N.P. (2007) 
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate 
recognition by SCF ubiquitin ligases. Mol Cell, 26, 131-43. 

Hildebrandt, E.R. and Hoyt, M.A. (2001) Cell cycle-dependent degradation of 
the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a 
bipartite destruction sequence. Mol Biol Cell, 12, 3402-3416. 

Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P. and Morgan, D.O. 
(2009) Global analysis of Cdk1 substrate phosphorylation sites provides 
insights into evolution. Science, 325, 1682-1686. 

Huang, J.N., Park, I., Ellingson, E., Littlepage, L.E. and Pellman, D. (2001) 
Activity of the APC(Cdh1) form of the anaphase-promoting complex persists 
until S phase and prevents the premature expression of Cdc20p. J Cell Biol, 
154, 85-94. 



133 

Jaquenoud, M., van Drogen, F. and Peter, M. (2002) Cell cycle-dependent 
nuclear export of Cdh1p may contribute to the inactivation of APC/C(Cdh1). 
EMBO J, 21, 6515-6526. 

Juang, Y.L., Huang, J., Peters, J.M., McLaughlin, M.E., Tai, C.Y. and Pellman, 
D. (1997) APC-mediated proteolysis of Ase1 and the morphogenesis of the 
mitotic spindle. Science, 275, 1311-4. 

Kim, S.Y. and Ferrell, J.E., Jr. (2007) Substrate competition as a source of 
ultrasensitivity in the inactivation of Wee1. Cell, 128, 1133-1145. 

King, R.W., Peters, J.M., Tugendreich, S., Rolfe, M., Hieter, P. and Kirschner, 
M.W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the 
mitosis-specific conjugation of ubiquitin to cyclin B. Cell, 81, 279-288. 

Knapp, D., Bhoite, L., Stillman, D.J. and Nasmyth, K. (1996) The transcription 
factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol 
Cell Biol, 16, 5701-7. 

Koivomagi, M., Valk, E., Venta, R., Iofik, A., Lepiku, M., Balog, E.R., Rubin, 
S.M., Morgan, D.O. and Loog, M. (2011) Cascades of multisite phosphorylation 
control Sic1 destruction at the onset of S phase. Nature, 480, 128-31. 

Komeili, A. and O'Shea, E.K. (1999) Roles of phosphorylation sites in 
regulating activity of the transcription factor Pho4. Science, 284, 977-980. 

Koranda, M., Schleiffer, A., Endler, L. and Ammerer, G. (2000) Forkhead-like 
transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. 
Nature, 406, 94-8. 

Kussell, E. and Leibler, S. (2005) Phenotypic diversity, population growth, and 
information in fluctuating environments. Science, 309, 2075-8. 

Levy, S.F., Ziv, N. and Siegal, M.L. (2012) Bet hedging in yeast by 



134 

heterologous, age-correlated expression of a stress protectant. PLoS Biol, 
10:e1001325. 

Lew, D.J. and Reed, S.I. (1993) Morphogenesis in the yeast cell cycle: 
regulation of Cdc28 and cyclins. J Cell Biol, 120, 1305-20. 

Loog, M. and Morgan, D.O. (2005) Cyclin specificity in the phosphorylation of 
cyclin-dependent kinase substrates. Nature, 434, 104-8. 

Lord, P.G. and Wheals, A.E. (1981) Variability in individual cell cycles in 
Saccharomyces cerevisiae. J Cell Sci, 50, 361-76. 

Lu, Y. and Cross, F.R. (2010) Periodic cyclin-Cdk activity entrains an 
autonomous Cdc14 release oscillator. Cell, 141, 268-79 

Maamar, H., Raj, A. and Dubnau, D. (2007) Noise in gene expression 
determines cell fate in Bacillus subtilis. Science, 317, 526-9. 

Martinez, J.S., Jeong, D.E., Choi, E., Billings, B.M. and Hall, M.C. (2006) Acm1 
is a negative regulator of the CDH1-dependent anaphase-promoting 
complex/cyclosome in budding yeast. Mol Cell Biol, 26, 9162-9176. 

Melesse, M., Choi, E., Hall, H., Walsh, M.J., Geer, M.A. and Hall, M.C. (2014) 
Timely activation of budding yeast APCCdh1 involves degradation of its 
inhibitor, Acm1, by an unconventional proteolytic mechanism. PLoS One, 9, 
e103517. 

Milloz, J., Duveau, F., Nuez, I. and Felix, M.A. (2008) Intraspecific evolution of 
the intercellular signaling network underlying a robust developmental system. 
Genes Dev, 22,3064-75. 

Morgan, D.O. (2007) The cell cycle: principles of control. New Science Press, 
London 



135 

Murray, A.W. (2004) Recycling the cell cycle: cyclins revisited. Cell, 116, 221-
34. 

Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertler, F.B., Mendenhall, M.D., 
Sicheri, F., Pawson, T. and Tyers, M. (2001) Multisite phosphorylation of a 
CDK inhibitor sets a threshold for the onset of DNA replication. Nature, 414, 
514-521. 

Newman, J.R., Ghaemmaghami, S., Ihmels, J., Breslow, D.K., Noble, M., 
DeRisi, J.L. and Weissman, J.S. (2006) Single-cell proteomic analysis of S. 
cerevisiae reveals the architecture of biological noise. Nature, 441, 840-6. 

Orlando, D.A., Lin, C.Y., Bernard, A., Wang, J.Y., Socolar, J.E., Iversen, E.S., 
Hartemink, A.J. and Haase, S.B. (2008) Global control of cell-cycle 
transcription by coupled CDK and network oscillators. Nature, 453, 944-7. 

Pramila, T., Wu, W., Miles, S., Noble, W.S. and Breeden, L.L. (2006) The 
Forkhead transcription factor Hcm1 regulates chromosome segregation genes 
and fills the S-phase gap in the transcriptonal circuitry of the cell cycle. Genes 
Dev, 20, 2266-78. 

Rahi, S.J., Ondracka, A., Pecani, K., Oikonomou, C. and Cross, F.R. 
Entrainment of periodic trascription to the CDK/APC oscillator. Manuscript 
submitted 

Richardson, H., Lew, D.J., Henze, M., Sugimoto, K. and Reed, S.I. (1992) 
Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in 
G2. Genes Dev, 6, 2021-34. 

Richardson, H.E., Wittenberg, C., Cross, F.R., and Reed, S.I. An essential G1 
function for cyclin-like proteins in yeast. Cell, 59, 1277-33 

Robbins, J.A., and Cross, F.R. (2010a) Requirements and reasons for effective 
inhibition of the anaphase promoting complex activator CDH1. Mol Biol Cell, 
21, 914-25. 



136 

Robbins, J.A., and Cross, F.R. (2010b) Regulated degradation of the APC 
coactivator Cdc20. Cell Div, 5:23. 

Robbins, Jonathan. PhD Thesis. The Rockefeller University, 2010. 

Rudner, A.D. and Murray, A.W. (2000) Phosphorylation by Cdc28 activates the 
Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol, 149, 
1377-1390. 

Schneider, B.L., Patton, E.E., Lanker, S., Mendenhall, M.D., Wittenberg, C., 
Futcher, B. and Tyers, M. (1998) Yeast G1 cyclins are unstable in G1 phase. 
Nature, 395, 86-89. 

Schreiber, A., Stengel, F., Zhang, Z., Enchev, R.I., Kong, E.H., Morris, E.P., 
Robinson, C.V., da Fonseca, P.C. and Barford, D. (2011) Structural basis for 
the subunit assembly of the anaphase-promoting complex. Nature, 470, 227-
32. 

Schwab, M., Lutum, A.S. and Seufert, W. (1997) Yeast Hct1 is a regulator of 
Clb2 cyclin proteolysis. Cell, 90, 683-693. 

Schwob, E. and Nasmyth, K. (1993) CLB5 and CLB6, a new pair of B cyclins 
involved in DNA replication in Saccharomyces cerevisiae. Genes Dev, 7, 1160-
1175. 

Schwob, E., Bohm, T., Mendenhall, M.D. and Nasmyth, K. (1994) The B-type 
cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. 
Cell, 79, 233-44. 

Shirayama, M., Toth, A., Galova, M. and Nasmyth, K. (1999) APC(Cdc20) 
promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and 
cyclin Clb5. Nature, 402, 203-207. 



137 

Sia, R.A., Herald, H.A. and Lew, D.J. (1996) Cdc28 tyrosine phosphorylation 
and the morphogenesis checkpoint in budding yeast. Mol Biol Cell, 7, 1657-66. 

Simmons-Kovacs, L.A., Mayhew, M.B., Orlando, D.A., Jin, Y., Li, Q., Huang, 
C., Reed, S.I., Mukherjee, S. and Haase, S.B. (2012) Cyclin-dependent kinases 
are regulators and effectors of oscillations driven by a transcription factor 
network. Mol Cell, 45, 669-79. 

Skotheim, J.M., Di Talia, S., Siggia, E.D. and Cross, F.R. (2008) Positive 
feedback of G1 cyclins ensures coherent cell cycle entry. Nature, 454, 291-
296. 

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., 
Brown, P.O., Botstein, D. and Futcher, B. (1998) Comprehensive identification 
of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by 
microarray hybridization. Mol Biol Cell, 9, 3273-3297. 

Strickfaden, S.C., Winters, M.J., Ben-Ari, G., Lamson, R.E., Tyers, M. and 
Pryciak, P.M. (2007) A mechanism for cell-cycle regulation of MAP kinase 
signaling in a yeast differentiation pathway. Cell, 128, 519-531. 

Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F.C., 
Ruderman, J.V. and Hershko, A. (1995) The cyclosome, a large complex 
containing cyclin-selective ubiquitin ligase activity, targets cyclins for 
destruction at the end of mitosis. Mol Biol Cell, 6, 185-197. 

Tulin, F., and Cross, F.R. Environmental cues and cyclin-dependent kinases 
control diurnal transcription in Chlamydomonas. Manuscript submitted 

Tyers, M. (1996) The cyclin-dependent kinase inhibitor p40SIC1 imposes the 
requirement for Cln G1 cyclin function at Start. Proc Natl Acad Sci U S A, 93, 
7772-6. 

Visintin, R., Prinz, S. and Amon, A. (1997) CDC20 and CDH1: a family of 
substrate-specific activators of APC-dependent proteolysis. Science, 278, 460-
3.



138 

Visintin, R., Hwang, E.S. and Amon, A. (1999) Cfi1 prevents premature exit 
from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature, 398, 
818-23. 

Wang, H., Carey, L.B., Cai, Y., Wijnen, H., and Futcher, B. Recruitment of Cln3 
cyclin to promoters controls cell cycle entry via histone deacetylase and other 
targets. PLoS Biology, 7, e1000189. 

Wasch, R. and Cross, F.R. (2002) APC-dependent proteolysis of the mitotic 
cyclin Clb2 is essential for mitotic exit. Nature, 418, 556-62. 

Yeong, F.M., Lim, H.H., Wang, Y. and Surana, U. (2001) Early expressed Clb 
proteins allow accumulation of mitotic cyclin by inactivating proteolytic 
machinery during S phase. Mol Cell Biol, 21, 5071-5081. 

Zachariae, W., Schwab, M., Nasmyth, K. and Seufert, W. (1998) Control of 
cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase 
promoting complex. Science, 282, 1721-1724. 

Zenklusen, D., Larson, D.R. and Singer, R.H. (2008) Single-RNA counting 
reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol, 15, 
1263-71. 


	Rockefeller University
	Digital Commons @ RU
	2016

	Regulation of the Anaphase-Promoting Complex Examined at the Single Cell Level
	Andrej Ondracka
	Recommended Citation


	AO_thesis_final_revised_2

