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EXTRACELLULAR METABOLIC ENERGETICS CAN PROMOTE CANCER 

PROGRESSION 

Jia Min Loo, Ph.D. 

The Rockefeller University 2016 

Colon cancer progression is characterized by growth of the primary tumor in the 

colon followed by metastasis to distant organs. The metastatic cascade involves 

invasion of cells from the primary tumor into the surrounding tissue, entering 

into and survival of cancer cells in the circulation, arrival at the end organ and 

finally colonization of the end organ. The liver is the primary site of colon cancer 

metastatic colonization, with over 70% of colon cancer patients experiencing liver 

metastases. Despite current standard-of-care surgical intervention and broad-

spectra cytotoxic chemotherapeutics, the survival rate of patients with metastatic 

disease is less then 5%. A greater understanding of the biology and molecular 

determinants of liver colonization is therefore of great importance to the 

scientific and clinical community.  This thesis presents unbiased approaches to 

identify regulators of liver metastasis in colon cancer and the elucidation of the 

mechanisms involved. 

The first part of this thesis describes the identification of two microRNAs, miR-

483-5p and miR-551a as suppressors of liver metastasis by human colon cancer 

cells using two parallel, complementary xenograft models of colon cancer 

metastasis. The first approach involved a functional library-based in vivo screen

of 661 microRNAs. The second approach utilized in vivo selection of liver-



metastatic colon cancer cell population from poorly metastatic parental 

population. Functional studies revealed both microRNAs to target a common 

downstream effector gene, Creatine Kinase Brain (CKB).  

CKB was found to promote metastasis and the second part of this thesis present 

mechanistic studies that describe CKB-mediated modulation of intra- and extra-

cellular energetics by colon cancer cells that contributed to colon cancer cell 

survival in the liver microenvironment, allowing for development of macro-

metastases and finally liver colonization. Further investigation identified the 

membrane transporter SLC6a8 as an important effector of the CKB pathway and 

also a promoter of colon cancer metastasis. 

The final part of this study reveals miR-483-5p, miR-551a, CKB and SLC6a8 to be 

clinically relevant across multiple patient datasets and archival patient samples. 

MiR-483-5p and miR-551a were found to be down-regulated in liver metastases 

of patients relative to primary tumors, while CKB and SLC6a8 were up-regulated. 

In addition, proof-of-principle therapeutic experiments involving adeno-

associated viral delivery of the microRNAs and small molecule inhibition of CKB 

and SLC6a8 demonstrated the therapeutic potential of targeting this pathway in 

suppressing colon cancer metastasis. 
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CHAPTER I: Introduction 
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Colorectal cancer: Epidemiology, staging and prognosis 

Colorectal cancer (CRC) is the third most common type of cancer and one of the 

leading contributors to cancer mortality in the United States. It is the third most 

common type of cancer for both genders, behind lung cancers and gender-

specific breast and prostate cancers. Every year, there are over 160,000 newly 

diagnosed cases of colorectal cancer, with about 50,000 colorectal cancer patients 

dying from the disease (Jemal et al., 2011; Siegel et al., 2014b).  

Colorectal cancer progresses through several stages (I-IV) that, without early 

diagnosis and medical intervention, can lead to metastatic disease, the primary 

cause of mortality (Fig. 1.1). Staging of colorectal cancer is determined by the 

extent of primary tumor growth (T), the presence of cancer cells in regional 

lymph nodes (N) and the presence of distal metastases. Precancerous lesions, 

otherwise known as polyps, can be removed during colonoscopy. Localized non-

invasive tumors that had not grown beyond the muscularis priopia of the colon 

(stage I) and invasive primary tumors (stage II) without lymph nodes 

involvement can be surgically resected with high curative rates of 93% and 78% 

respectively. Disease that had progressed to stage III, which involves spread to 

regional lymph nodes, is treatable with surgery and adjuvant chemotherapy and 

is highly curable; stage III patients who undergo treatment have a 64% five-year 

survival rate. Despite current systemic chemotherapy and targeted therapy, the 

prognosis for patients with stage IV metastatic disease is poor, with five-year 

survival rate of approximately 5-7% (Siegel et al., 2014a). There is therefore an 

urgent need to identify therapeutically targetable pathways that drive colorectal 

cancer metastasis. 
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Figure 1.1 | Stages of colorectal cancer progression. Localized non-invasive 
tumors and invasive primary tumors can be cured by surgical resection. Patients 
with regional lymph node metastases (Stage III) have relatively good prognosis 
compared to patients with Stage IV diseases, which involves distal organ 
metastases (<7% five-year survival rate). 

Colorectal cancer: Therapeutic intervention 

The mainstay of current colorectal cancer chemotherapy is 5’-fluorouracil, a 

fluorinated uracil that acts through inhibition of thymidylate synthase, the rate-

limiting enzyme for pyrimidine nucleotide synthesis. In combination with 

leucovorin, which stabilizes the binding of 5’-fluorouracil to thymidylate 

synthase, 5’-fluorouracil has been shown to prolong median survival in patients 

about two-fold, from 6 months to almost a year (Moertel, 1994). Two other 

cytotoxic drugs, Irinotecan and Oxaliplatin have also been utilized in colorectal 

cancer chemotherapy. Like 5’-fluorouracil, the two drugs act by perturbing 
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nucleic acid homeostasis, but through different mechanisms. Irinotecan stabilizes 

DNA breaks caused by DNA topoisomerase I during DNA replication and 

transcription. The accumulation of such breaks results in cell death arising from 

activation of DNA damage checkpoints. Oxaliplatin is a platinum derivative that 

forms adducts with DNA, which again results in activation of DNA damage 

response pathways and subsequent cell death. Clinical trials have demonstrated 

that combinations of the above drugs in therapeutic regimes such as FOLFOX (a 

regime consisting of 5’fluorouracil, Leucovorin and Oxaliplatin) or FOLFIRI (5’-

fluorouracil, Leucovorin and Irinotecan) resulted in patients with metastatic 

disease having median survival times of approximately 20 months as compared 

to 6 months without treatment (Meyerhardt and Mayer, 2005).   

Regardless of the treatment regime used, patients diagnosed with metastatic 

colorectal cancer have a poor prognosis; 5-year survival rates for such patients 

are around 5%. The dependence of patients on chemotherapeutic agents that 

have been around for decades—5’-fluorouracil was first synthesized in 1957 

(Heidelberger et al., 1957), Oxaliplatin in 1976 (Kidani et al., 1976) and Irinotecan 

in 1987 (Kunimoto et al., 1987)—and yet only provide modest survival benefits 

that are accompanied by toxic side effects highlight the urgent need for more 

effective targeted therapies with diminished side effects. 

In recent years, identification of epidermal growth factor receptor (EGFR) as a 

receptor that is over-expressed in colorectal cancer has led to the development of 

small molecule inhibitors of EGFR (Erlotinib and Gefitinib) as well as inhibitory 

monoclonal antibodies (Cetuximab and Panitumumab). When such antagonists 
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of EGFR activity are used in clinical trials with or without Irinotecan or 

Oxaliplatin, patient response was observed with improved quality of life. 

Although there is statistically significant increase in overall survival of patients 

with metastatic disease, the increase in survival is typically modest, between 6 

months to a year, and limited to patients with KRAS wild-type disease 

(Bokemeyer et al., 2009; Van Cutsem et al., 2009). 

Given the relative lack of clinical progress in the treatment of metastatic 

colorectal cancer, there is an urgent need for a better understanding of the 

pathogenesis of colorectal cancer metastasis to identify targetable nodes in 

metastatic pathways. As the liver is the main site of colorectal cancer 

metastasis—over 70% of patients that developed metastatic disease will present 

with liver lesions, an understanding of the biology that governs colorectal cancer 

cells metastatic colonization of the liver could lead to the development of 

therapeutics targeting this important stage of colorectal cancer progression that 

are more effective then currently available therapies.  

Colorectal Cancer: Origins and progression 

Pathophysiology

Colorectal cancer arises from the lower gastrointestinal tract, which is comprised 

of the cecum, the colon and the rectum and initiates in the mucosa, the innermost 

lining of the gastrointestinal tract. Colorectal cancer begins as pre-cancerous 

lesions called polyps that project above the mucosa of the intestinal tract. The 

majority of polyps in the intestinal tracts are from non-glandular epithelium and 

are small and hyperplastic and usually do not develop into pre-cancerous lesions. 
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Adenomatous polyps are the important precursors of colorectal cancer and arise 

from the glandular epithelium of the colon and rectum. Such polyps are usually 

larger then ten millimeters in size and if not detected and removed during 

colonoscopy, can further progress to display severe dysplasia and before 

progression into adenocarcinoma and subsequent invasion through the mucosa 

of the colon and into surrounding tissues. 

Molecular determinants of colorectal cancer tumorigenesis 

As with its pathophysiology, the molecular determinants of colorectal cancer 

tumorigenesis are well understood. Seminal work by Vogelstein and others had 

identified genes and pathways which, when dysregulated progressively in the 

colonic epithelium, results in formation of adenomas and subsequently colorectal 

cancer (Fig. 1.2) (Fearon and Vogelstein, 1990). Key pathways that are 

deregulated during colorectal cancer tumorigenesis include but are not limited to 

the APC tumor suppressor pathway (Kinzler and Vogelstein, 1996), the KRAS 

oncogenic pathway (Fang and Richardson, 2005) and the p53 tumor suppressor 

pathway (Hollstein et al., 1991). 



! 7

Figure 1.2 | Molecular basis of colorectal cancer tumorigenesis. Colorectal 
cancer tumorigenesis is marked by distinct mutational inactivation of tumor 
suppressors and activation of oncogenes leading to loss of cellular checkpoints 
and activation of oncogenic pathways. After tumorigenesis, further 
dysregulation of pathways contributes to metastatic progression. 

Constitutive activation of the Wnt pathway, achieved through inactivating 

mutations of APC or activating mutation of its degradative target, β-catenin is 

widely recognized as the initiating event prior to adenoma formation, with over 

80% of sporadic colorectal adenomas and cancers found to have aberrations in 

this pathway (Bienz and Clevers, 2000).  

Another oncogenic pathway that is frequently activated in colorectal cancer 

tumorigenesis is the mitogen activated protein kinase (MAPK) signaling 

pathway. Constitutive activation of MAPK signaling in colorectal cancer results 

from activating mutations in KRAS (Bos et al., 1987; Forrester et al., 1987) or its 

downstream effector BRAF (Rajagopalan et al., 2002; Wan et al., 2004). Such 

oncogenic mutations are commonly found in polyps and adenomas and indicate 
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a substantial role of this pathway in the early stages of colorectal cancer 

tumorigenesis (Fang and Richardson, 2005). 

An important and relatively late step in colorectal cancer formation is the 

inactivation of the p53 tumor suppressor pathway. The inactivation of the 

pathway through missense mutations or chromosomal deletion leads to loss of 

critical cellular checks against oncogenic stresses. This prevents activation of cell-

cycle arrest checkpoints or initiation of the apoptotic cascade as a result of 

cellular stresses, contributing to carcinogenesis (Rodrigues et al., 1990). 

In addition to the above-mentioned pathways, mutations in other regulatory 

pathways such as those mediated by phosphatidylinositol 3-kinase and PTEN 

(Yuan and Cantley, 2008), as well as the TGF-β tumor suppressor pathway 

(Wakefield and Roberts, 2002) have been described to occur and contribute in 

varying frequencies during colorectal cancer development. Besides these classical 

pathways, the advent of high-throughput sequencing and whole genome 

sequencing of colorectal cancer samples have led to the identification of 

additional somatic mutations that are putative drivers of colorectal cancer 

tumorigenesis (Kandoth et al., 2013; Network, 2012). However, much work 

remains with regards to functional characterization of putative driver genes 

identified by whole genome sequencing. 

Besides the above-mentioned dysregulated pathways in colorectal cancer 

tumorigenesis, there is a subgroup of patients who possess deficiencies in DNA 
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mismatch repair as a result of inactivation of the genes involved. Mismatch 

repair genes that are commonly inactivated in these patients include MLH1,

MSH2 and MSH6. The inactivation of these genes results in colorectal cancers

that are characterized as microsatellite instable (MSI) in which sizes of repetitive 

DNA elements in the genome are frequently altered (Thibodeau et al., 1998). It is 

not uncommon for these patients to have inactivation of other tumor suppressor 

genes as a result of DNA repair deficiency. MYH, another DNA repair gene

involved in base-excision repair of nucleotides, is also inactivated in certain 

colorectal cancer patients (Al-Tassan et al., 2002). 

The metastatic cascade in colorectal cancer 

Metastasis during colorectal cancer progression is a complex multi-step process 

during which the primary tumor on the surface of the mucosa develops an 

invasive front that invades through the mucosa and into the underlying 

submucosa of the colonic tract. The submucosa is richly supplied by blood 

vessels and is also responsible for the draining of blood carrying nutrients 

absorbed by the colon into the portal circulation towards the liver.  Once the 

primary tumor invades into the submucosa and surrounding circulatory vessels, 

shedding of cancer cells from the primary tumor into the circulation will result in 

dissemination of cancer cells towards distal organs (Fig. 1.3) (Gupta and 

Massagué, 2006; Nguyen et al., 2009). Upon arrival at the distal organ, the 

majority of disseminated cancer cells will undergo cell death as a result of 

inability to adapt to a new microenvironment (Chambers et al., 2002). As the 

liver is the first major organ encountered by the portal circulation, it is the main 

organ of colon cancer cell dissemination (Weiss et al., 1986). Cells that survive in 
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the liver microenvironment might undergo a period of dormancy that can last 

from several months to years. Clinically, patients have been found to have 

substantial numbers of circulating tumor cells, as well as disseminated colon 

cancer cells in the liver. However, only a small fraction of disseminated cells go 

on to develop macroscopic metastases as majority of cells die without forming 

macro-metastases (Sugarbaker, 1993). Given such evidence, in colorectal cancer, 

the rate-limiting step of liver metastases appears to be that of liver colonization. 

It is therefore of great scientific and clinical value to understand the molecular 

mechanisms that drive this process. 
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Figure 1.3 | The metastatic cascade. During metastasis, cells disseminate from 
the primary tumors and invade into the circulatory system. Cells that survive 
dissemination in circulation and arrive at distal organs have to adapt and survive 
within the foreign microenvironment before they can proliferate and colonize the 
distal organ. Colonization of distal organs and subsequent organ failure is a 
significant cause of patient mortality. 

Molecular determinants of colorectal cancer metastasis 

Given the complexity of the metastatic cascade, it is of little surprise that 

identified pathways involved in colorectal progression from the primary tumor 
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to distal metastasis are more diverse. Unlike primary tumorigenesis, mutational 

inactivation of specific metastasis-suppressing genes or activation of metastasis 

promoting genes is rare and comparative sequencing of matched primary tumors 

and metastases from the same patient have not identified many mutations 

responsible for metastatic progression (Brannon et al., 2014; Jones et al., 2008). 

However, gene expression analyses followed by experimental studies have 

identified some of the pathways involved in various steps of the metastatic 

cascade during colorectal cancer metastasis. 

Gene expression changes during colorectal cancer progression and metastasis 

can be brought about through various means, including but not limited to 

chromatin aberrations such as re-arrangements, amplifications or deletions. DNA 

hypermethylation or hypomethylation in the promoter region of genes can cause 

down-regulation or up-regulation of gene expression, respectively, and have 

been reported in colon cancer (Markowitz and Bertagnolli, 2009). More recently, 

post-transcriptional regulation of gene expression has been a subject of intense 

scrutiny (Licatalosi and Darnell, 2010; Schwanhäusser et al., 2011). 

A class of short noncoding RNAs known as microRNAs can mediate post-

transcriptional modulation of mRNA stability and translation with 

corresponding changes in gene expression. The biogenesis of mature microRNAs 

is well understood (Ha and Kim, 2014). A primary microRNA transcript (pri-

miRNA) is first transcribed by RNA polymerase II, and occasionally RNA 

polymerase III. Subsequently, pri-miRNA transcripts are cleaved by the 

ribonuclease Drosha, to form pre-miRNA stem-loop transcripts that are then 
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exported into the cytoplasm where they are recognized and cleaved by a second 

ribonuclease, Dicer, to form short 21-26 nucleotide miRNA-duplexes. These 

duplexes are loaded onto the RNA-induced silencing (RISC) complex, with the 

subsequent release of the passenger non-targeting microRNA strand. The RISC 

complex bearing a mature single-stranded miRNA will bind to target mRNAs 

bearing sequences complementary to the bound miRNA and recruit effector 

proteins responsible for initiating the decay or translational repression of the 

target mRNA. Target sequences of microRNAs are usually present on the 3’-UTR, 

and occasionally coding sequences (CDS) of the mRNA transcript. 

In recent years, as with identification of genes and pathways involved in primary 

tumorigenesis, microRNAs that regulate tumorigenesis have also been identified 

and their downstream effector genes and pathways well established (Schickel et 

al., 2008). In addition to the numerous studies identifying microRNAs that 

regulate overt tumorigenic phenotypes such as proliferation and apoptosis, and 

early stages of the metastatic cascade such as invasion and migration, 

microRNAs involved in later stages of metastasis such as lung colonization by 

breast cancer and melanoma cells have been described (Pencheva et al., 2012; Png 

et al., 2012). The relative lack of studies investigating and identifying genes and 

microRNAs involved in liver colonization is in part due to a lack of defined 

experimental models that specifically examine liver colonization by colon cancer 

cells without involving other aspects of the metastatic cascade such as invasion 

into circulation, survival during dissemination and extravasation into the liver 

parenchyma. 
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Given the importance of liver colonization as a rate-limiting step in the 

culmination of the metastatic cascade, it would be of scientific interest develop a 

model of colon cancer liver colonization that can be utilized to identify 

microRNAs that regulate liver colonization. Clinically, identification of 

microRNAs and downstream pathways that suppress liver metastasis can 

potentially lead to development of therapeutics that suppress liver metastasis, 

either by therapeutic delivery of the microRNAs or inhibition of their effector 

genes. Availability of such therapeutics, alongside currently available drugs can 

potentially lead to better outcomes for patients. 

Colorectal cancer: In vivo experimental models

Mouse models of colorectal cancer tumorigenesis 

The tumorigenic process of colorectal cancer is well defined and consequently, 

genetic mouse models of colorectal cancer tumorigenesis with mutations of key 

oncogenic or tumor suppressor genes have been established (Karim and Huso, 

2013). 

Considering the significance of APC as a gatekeeper to colon tissue integrity and 

inactivation of APC as an initiating event in formation of most adenomas, the 

most common types of genetic mouse models of colorectal cancer tumorigenesis 

is the APC mutant mouse or the β-catenin mutant mice that regulate the Wnt 

signaling pathway downstream of APC. 
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APC mutant mice with various inactivating mutations of the APC tumor 

suppressor genes have been generated. Loss of APC activity results in formation 

of polyps. However the polyps themselves do not progress to aggressive 

adenocarcinoma (Moser et al., 1990). Similarly, activating stabilizing mutations of 

β-catenin downstream of APC regulation results in the formation of polyps that 

do not progress to malignancy. Based on the work of Vogelstein and others in 

defining the molecular progression of colorectal cancer tumorigenesis, APC or β-

catenin mutant mice with mutations in other oncogenic and tumor suppressors 

genes have also been generated. 

APC mutant mice with genetic alterations in other genes have been observed to 

exhibit progression of colonic polyps to adenomas and adenocarcinomas. In 

particular, abrogation of the TGF-β tumor suppressor pathway through mutation 

of SMAD4 in APC mutant mice resulted in development of invasive 

adenocarcinomas (Takaku et al., 1998). 

In addition to genetic mouse models developed through abrogation of APC 

tumor suppressor pathways and synergistic mutation of oncogenes and/or 

suppressors, genetic mouse models that involve perturbation of the mismatch 

repairs system were also developed which also resulted in the onset of adenomas 

in the gastrointestinal tracts of the mice (de Wind et al., 1999). 

Despite the numerous genetic mouse models of colorectal cancer tumorigenesis, 

a common caveat for all of the above-mentioned models is the lack of cancer 
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progression beyond the primary site. It is not surprising that these genetic mouse 

models rarely develop distal metastases (Nandan and Yang, 2010), given the 

shorter lifespan of the above-described mice due to heavy primary tumor burden. 

As metastasis to distal organs such as the liver and lungs are responsible for the 

majority of colon cancer deaths in human patients, in vivo mouse models of

metastasis that are complementary to available genetic models of tumorigenesis 

have to be developed and utilized to study the metastatic cascade and potential 

therapeutic applications (Francia et al., 2011). 

Mouse models of colorectal cancer metastasis 

In order to study colon cancer metastasis in vivo with human colon cancer cells,

xenograft mouse models in which cells are implanted or injected into 

immunodeficient mice are developed. Depending on the stage(s) of the 

metastatic cascade that are under investigation, investigators have transplanted 

or inoculated cells into mice at various sites. 

To model the progression of colon cancer cells from the primary site to 

metastasis of distal organs, intra-cecal injections of colon cancer cells or 

implantation of small tumor fragments onto the cecum of nude mice have been 

performed (Morikawa et al., 1988a). Mice inoculated with colon cancer through 

these means went on to develop metastases at local and regional lymph nodes as 

well as distal organs such as the liver and lungs, demonstrating the 

recapitulation of the entire metastatic cascade. 
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Besides inoculation of colon cancer at orthotopic sites, direct introduction of 

colon cancer cells into the circulation have been performed through portal vein 

injection or intrasplenic injection, both of which result in dissemination of colon 

cancer cells into the portal circulation and into the liver parenchyma (Morikawa 

et al., 1988b). Compared to intra-cecal injection, these procedures bypass the 

earlier stages of the metastatic cascade such as invasion of the primary tumor 

and intravasation into the circulation. Instead, survival of colon cancer cells in 

the circulation and later stages are examined.  

Regardless of which stage of the metastatic cascade is under investigation, 

xenograft models of colon cancer metastasis have proven of great utility in 

delineating the mechanisms involved in metastasis as in vivo modeling of

colorectal cancer progression can provide insights that are not readily apparent 

in in vitro systems. A criticism of xenograft models of human colon cancer cell

metastasis is that immunodeficient mice are used, which do not allow for study 

of the interactions between the immune system and cancer cells. To address this 

concern, it is possible to utilize xenograft models using mouse cancer cells 

implanted into syngeneic mice. However, currently available mouse colon cell-

lines are limited to those derived from chemical carcinogenesis which might not 

necessarily represent the common etiology of human colon cancers (Griswold 

and Corbett, 1975). Eventually, derivation of mouse cell-lines from primary 

tumors arising from genetic mouse models of colorectal cancer for use in 

xenograft experimental systems can allow for better interrogation of the 

metastatic cascade in an immuno-competent setting. 
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In vivo selection of metastatic phenotypes 

In vivo selection of cancer cells is a technique pioneered by Fidler and colleagues

in 1973 (Fig. 1.4) (Fidler, 1973). It can be utilized to enrich for specific cell 

populations with desired phenotypes from more heterogeneous populations. 

Within the context of cancer biology, in vivo selection had been utilized to select

for breast cancer cells with enhanced capacity for lung, bone and brain metastasis. 

Transcriptomic profiling and mechanistic studies comparing the parental 

heterogeneous breast cancer population and the in vivo selected organ-metastatic

derivatives had resulted in the identification of genes that regulate metastasis to 

the respective organs by breast cancer cells (Kang et al., 2003; Minn et al., 2005; 

Png et al., 2012; Tavazoie et al., 2008). More recently, in vivo selection was

performed with melanoma cells and mediators of melanoma metastasis to the 

lungs were identified (Pencheva et al., 2012). Similar cellular phenotypes were 

identified in breast and melanoma cancer cells that were in vivo selected for lung

colonization capacity, although different genes and pathways were utilized in 

breast cancer and melanoma respectively (Pencheva et al., 2012; Png et al., 2012). 

This highlights the possibility that with regards to organ colonization, there 

might be common phenotypes that are selected for irrespective of cancer type. 
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Figure 1.4 | In vivo selection. During in vivo selection, a heterogeneous
population of cancer cells is inoculated into specific organs (such as lung) in a 
mouse. The first generation metastatic nodule that forms can be excised, 
dissociated into cells and the process repeated. Over several iterations, a more 
metastatic population of cells can be selected for. 

With regards to colorectal cancer, an in vivo selection model for liver colonization,

the final step of metastasis has not been yet been demonstrated. Given the utility 

of in vivo selection for identifying molecular mediators of breast and lung cancer

metastasis, novel mediators of colorectal cancer metastasis can be identified with 

an appropriate model of liver colonization and in vivo selection.

Specific aims 

This thesis aims to identify molecular determinants of colorectal cancer 

metastasis to the liver, the primary site of colorectal cancer metastasis. The first 

part of the thesis will describe two complementary approaches used to identify 

microRNAs that suppress liver colonization and metastasis by colon cancer cells. 
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The first approach is an in vivo microRNA library screen using multiple colon

cancer cell-lines with distinct mutational spectrum. The second approach 

harnesses in vivo selection of colon cancer cells to identify endogenous

microRNAs that suppress colon cancer liver colonization. The complementary 

approaches led to the identification of miR-483-5p and miR-551a as suppressors 

of colon cancer metastasis and colonization (Chapter II). Functional 

characterization of both microRNAs was performed and an organotypic slice 

culture system was developed to allow for phenotypic characterization of the 

microRNAs in vitro.

Following the identification of miR-483-5p and miR-551a, unbiased 

transcriptomic profiling approaches were used to identify downstream targets 

and effectors of both microRNAs. One gene, Creatine Kinase Brain (CKB), was 

identified to phenocopy the effects of the microRNAs and further mechanistic 

dissection of CKB-mediated pathways identified it as a pro-survival factor in the 

hypoxic liver microenvironment of colon cancer metastases through modulation 

of intra- and extra-cellular energetics. Other components of the creatine kinase 

axis during colon cancer metastasis to the liver are also examined, leading to the 

identification of SLC6a8, a membrane channel as another critical effector in the 

creatine kinase mediated metastatic axis (Chapter III). 

In the third part of this thesis, clinical evidence is provided to support the clinical 

significance of these findings to colorectal cancer metastasis in patients (Chapter 

IV). Publicly available datasets as well as archival materials from primary tumors 

and liver metastases were interrogated to reveal the relevance of the microRNAs, 
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CKB and SLC6a8 to colon cancer liver metastasis. Given the clinical relevance of 

the pathway described, proof-of-principle therapeutic delivery of the microRNAs 

and inhibition of CKB and SLC6a8 was investigated as well. The final chapter of 

the thesis discusses the findings of this thesis and presents future directions 

(Chapter V). 
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Chapter II: Identification of Novel Molecular Determinants of Colorectal 

Cancer Metastasis to the Liver 
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As a first step to identify molecular determinants of colorectal cancer metastasis 

to the liver, this chapter describes two complementary approaches used to 

identify microRNAs that regulate colon cancer cell metastasis. The first approach 

employed a library-based gain-of-function in vivo screen of 661 microRNAs to

identify microRNAs that when over-expressed, suppressed liver colonization by 

colon cancer cells. The second approach utilizes in vivo selection to select for

highly metastatic colon cancer cells to identify endogenous microRNA 

suppressors of colon cancer metastasis. MicroRNAs that were identified and 

common to both approaches were further characterized and studied. An in vitro

organotypic slice culture system was also developed to allow for phenotypic 

study of processes regulated by the microRNAs. 

In vivo screening of microRNA library identifies suppressors of liver

colonization by colon cancer cells 

Library-based screening approaches have been previously employed to identify 

regulators of cancer progression (Mohr et al., 2010). However, most of the earlier 

studies have been performed in an in vitro setting that might not result in

identification of modulators that are active in an in vivo and more physiologically

relevant setting. 

To identify microRNAs that when over-expressed, suppress colon cancer liver 

colonization in a physiological context, a lentiviral expression library of 661 

microRNAs was used (Fig. 2.1). Heterogeneous colon cancer cell-line populations 

were infected with the lentiviral library at a low multiplicity-of-infection (MOI), 

such that each individual cell likely over-expressed a single microRNA.  
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Figure 2.1 | A lentiviral-based microRNA library screen is used to identify 
microRNAs that are potential suppressors of liver metastasis by colorectal 
cancer cells. 

Two colon cancer cell-lines, SW620 and WiDR, were used and were selected in 

part for their different known driver mutational spectrum. This allowed for 

identification of microRNAs that can suppress colon cancer liver colonization 

irrespective of their mutational backgrounds.

Following transduction, colon cancer cell-populations were intra-hepatically 

injected into immunodeficient mice to allow for selection of cells capable of 

colonizing the liver and forming metastatic liver nodules 4-6 weeks after 

injection. Genomic DNA was extracted from the resulting nodules and PCR 

amplification, reverse transcription and microRNA profiling of microRNA 

inserts allowed for quantification of changes in library-derived microRNA 
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representation in the context of liver colonization compared to a reference pool 

obtained from cell-populations that had not undergo the selective pressure of 

liver colonization (Fig. 2.1). Biological replicate screenings were performed for 

both cell-lines and significant correlation was found between pairs of biological 

replicates, indicating that the screen was reproducible (for SW620, r=0.7344, 

p<0.001; WiDR, r=0.8066, p<0.001). MicroRNAs that displayed reduced 

representation in the context of liver colonization were identified in both cell-

lines (Table 2.1) and considered to be putative suppressors of liver colonization. 
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Table 2.1 | List of microRNAs depleted after liver colonization by SW620 and 
WiDR cells transduced with the microRNA library. In vivo library screen was
performed in duplicate for both cell-lines and compared to reference samples 
comprising of cell populations transduced with the library, but not injected into 
mice. 

miRNA Fold Change vs. 
Reference 

miRNA Fold Change vs. 
Reference 

SW620 WiDR SW620 WiDR 
hsa-let-7e -1.92 -92.73 hsa-miR-384 -3.57 -5.63 
hsa-miR-009-1 -3.47 -3.79 hsa-miR-409-3p -3.27 -8.58 
hsa-miR-023a -6.11 -1.61 hsa-miR-412 -2.51 -1.92 
hsa-miR-092a -1.99 -2.91 hsa-miR-483-5p -1.71 -2 
hsa-miR-099a -4.24 -1.99 hsa-miR-509-1 -1.98 -11.25 
hsa-miR-099b -1.7 -6.35 hsa-miR-542-3p -2.09 -1.64 
hsa-miR-107 -2.43 -3.05 hsa-miR-545 -2.17 -1.61 
hsa-miR-1203 -1.79 -2.18 hsa-miR-551a -7.14 -8.07 
hsa-miR-1243 -1.61 -1.95 hsa-miR-551b -12.7 -8.97 
hsa-miR-1244 -3.52 -1.61 hsa-miR-557 -1.92 -5.27 
hsa-miR-1288 -2.61 -1.81 hsa-miR-563 -1.78 -2.43 
hsa-miR-1297 -1.74 -3.62 hsa-miR-574 -8.09 -4.33 
hsa-miR-133a -1.75 -2.8 hsa-miR-574-5p -3.18 -5.18 
hsa-miR-134 -1.99 -2.5 hsa-miR-590-5p -1.86 -2.38 
hsa-miR-138-2 -2.84 -2.99 hsa-miR-591 -1.93 -3 
hsa-miR-143 -2.58 -2.2 hsa-miR-592 -2.4 -5.36 
hsa-miR-149* -2.74 -2.05 hsa-miR-638 -2.1 -1.95 
hsa-miR-181a-2* -1.65 -1.66 hsa-miR-656 -2.02 -2.51 
hsa-miR-192 -1.67 -3.8 hsa-miR-769-5p -2.17 -1.61 
hsa-miR-196a-1 -1.92 -19.33 hsa-miR-877 -1.83 -1.87 
hsa-miR-218-1 -29.13 -17.78 hsa-miR-9* -1.96 -7.84 
hsa-miR-363 -2.37 -3.68 hsa-miR-92a-2* -1.64 -6.14 
hsa-miR-369-3p -1.83 -2.03 
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In vivo selection for liver metastatic colon cancer cells identifies endogenous

microRNAs that suppressed liver metastasis 

As a complementary approach to library-based screening, which identified 

microRNAs that when over-expressed suppressed liver colonization by colon 

cancer cells, in vivo selection was used to identify endogenously modulated

microRNAs that suppress liver metastasis. In vivo selection was performed on

the LS174T human colon cancer line, which displays MSI, for enhanced liver 

colonization activity through iterative intra-hepatic injection of cancer cells into 

immunodeficient mice followed by surgical resection of metastatic liver nodules 

and dissociation of cells (Fig. 2.2).  

Figure 2.2 | In vivo selection of LS174T human colon cancer cells. LS174T
parental cell populations expressing a luciferase reporter for bioluminescent 
imaging were injected into the liver of immunodeficient NOD-SCID mice. 
Bioluminescent imaging was used to monitor the development of metastatic 
nodules in mice. After a period of 3-4 weeks, mice were euthanized and 
established nodules excised and dissociated into cells. Dissociated cells were 
injected into mice. After three iterations of the process, two independent third-
generation liver colonizers cell populations were derived and tested for 
enhanced liver colonizing potential. 
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Independently derived third-generation liver colonizers LS-LvM3a and LS-

LvM3b displayed significantly enhanced (>50 fold) capacity for liver colonization 

(Fig. 2.3A). Importantly, these derivatives also displayed dramatically enhanced 

(>150 fold) liver metastatic capacity upon portal circulation injection in 

experimental metastasis assay—revealing the acquisition of liver colonization 

capacity to be sufficient for imparting enhanced liver metastasis activity (Fig. 

2.3B). These in vivo selected metastatic derivatives were found to display reduced

expression of endogenous microRNAs that could be suppressors of metastasis 

(Table 2.2). 

Figure 2.3 | Liver colonization is a rate-limiting step during colorectal cancer 
metastasis to the liver. A, Bioluminescence plot of liver colonization by 5 X 105 
LS-Parental, and in vivo-selected LvM3a and LvM3b cells after direct intrahepatic
injection (n>5). Each data-point represents the measurement from one mouse. 
Mice were imaged at day 21 after injection and livers extracted for ex vivo
imaging and gross morphological examination. B, Liver metastasis in mice 
injected intra-splenically with 5 X 105 LS-Parental, LvM3a and LvM3b cells. 
Metastatic progression was measured by bioluminescence imaging (n>5). Mice 
were imaged at day 21 after injection and livers extracted for gross examination. 
p values are based on one-sided Mann-Whitney test for non-Gaussian 
distribution.  **p<0.01; ***p<0.001. 
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Table 2.2 | List of miRNAs depleted in highly metastatic LS Derivatives 
compared to LS174T parental cell-line. 

miRNA Fold Change in Metastatic 
Derivatives 

hsa-miR-483-5p -11.74 
hsa-miR-429 -7.43 
hsa-miR-218-1* -6.015 
hsa-miR-551a -5.03 
hsa-miR-146a* -3.8 
hsa-miR-423-3p -3.64 
hsa-miR-499-3p -3.55 
hsa-miR-1246 -3.2 
hsa-miR-148a -3.065 
hsa-miR-20b* -3.065 
hsa-miR-155 -2.775 
hsa-let-7d* -2.715 
hsa-miR-215 -2.585 
hsa-let-7d* -2.465 
hsa-miR-7-1* -2.435 
hsa-miR-377 -2.31 
hsa-miR-2115 -2.265 
hsa-miR-7 -2.165 
hsa-miR-1231 -2.135 
hsa-miR-16-2* -2.09 
hsa-miR-200b* -2.08 
hsa-miR-211 -2.02 
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Mir-483-5p and miR-551a are robust suppressors of liver metastasis by colon 

cancer cells 

Two microRNAs, miR-483-5p and miR-551a were identified by the overlap of the 

library-based screening approach and in vivo selection to be putative suppressors

of liver metastasis (Fig. 2.4). 

Figure 2.4 | Integrative approach to identification of miR-483-5p and miR-551a 
as putative suppressors of colon cancer metastasis. microRNAs that had a loss 
of representation of at least 1.6 fold in both SW620 and WiDR cell-lines in the 
miRNA library screen (Table 2.1) and silenced at least 2 fold in metastatic 
derivatives (Table 2.2) were considered potential suppressors. 

Consistent with a suppressive role for these microRNAs in liver metastasis, over-

expression of miR-483-5p or miR-551a robustly suppressed metastasis by LS-

LvM3b cells introduced into the portal circulation (Fig. 2.5A), while inhibition of 

endogenous miR-483-5p or miR-551a in poorly metastatic colon cancer cell-lines, 

LS-174T and SW480 significantly enhanced liver metastatic colonization (Fig. 

2.5B, C). 
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Figure 2.5 | miR-483-5p and miR-551a are endogenous microRNAs that 
suppress liver metastasis. A, Liver metastasis of mice injected with 5 X 105 
LvM3b cells over-expressing either a control hairpin, miR-483-5p or miR-551a 
(n>5). Mice were imaged at day 21 after injection and livers extracted for ex vivo
imaging and gross morphological examination. B, Metastatic progression in 
NOD-SCID mice injected with 5 X 105 poorly metastatic LS174T parental cells, 
whose endogenous miR-483-5p or miR-551a activity was inhibited (n>5). Mice 
were imaged at day 28 and euthanized. C, Metastatic progression in mice 
injected with 5 X 105 poorly metastatic SW480 cells, whose endogenous miR-483-
5p or miR-551a was inhibited using LNA targeting miR-483-5p and miR-551a 
(n>5). Mice were imaged at day 28 after injection. p values are based on one-
sided Mann-Whitney test for non-Gaussian distribution.  *p<0.05; **p<0.01; 
***p<0.001. 
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The effects of these microRNAs on metastatic progression were not secondary to 

modulation of intrinsic proliferative capacity since miR-551a inhibition did not 

affect in vitro proliferation, while miR-483-5p inhibition minimally increased

proliferation (10%)—an order of magnitude less than its effect on metastasis (Fig. 

2.6A). Importantly, over-expression of either microRNA did not suppress 

primary tumor growth (Fig. 2.6B). 

Figure 2.6 | Mir-483-5p and miR-551a do not regulate in vitro proliferation and
in vivo primary tumor growth. A, 1x105 SW480 cells whose endogenous miR-
483-5p and miR-551a activity was inhibited were seeded onto a 6-well plate in 
triplicate. Cells numbers were counted after 5 days (n=3). B, 1 X 106 LvM3b cells 
over-expressing a control hairpin, miR-483-5p or miR-551a was injected into the 
subcutaneous flanks of NOD-SCID mice. Tumor volumes were measured over 
time (n=4). Error bars, s.e.m; p values are based on one-sided Student’s t-tests. 
*p<0.05; **p<0.01; ***p<0.001.
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Mir-483-5p and miR-551a suppress colon cancer cell survival in the liver 

microenvironment 

The liver microenvironment is a complex milieu and liver-specific interactions of 

colon cancer cells within the liver might not be easily identified with in vitro

phenotypic assays that do not recapitulate the liver microenvironment. To better 

investigate the mechanism(s) by which miR-483-5p and miR-551a exert their anti-

metastatic effects, an in vitro liver organotypic slice culture system to study

events during liver metastasis was developed. 

The organotypic slice culture system involved the inoculation of colon cancer 

cells labeled with fluorescent dyes or expressing fluorescent proteins into the 

portal circulation of immunodeficient mice through intrasplenic injection, 

allowing for dissemination to the livers (Fig. 2.7A). Following inoculation into 

mice, the animals were euthanized and livers excised. Organotypic slices were 

prepared from the livers and were cultured prior to two-photon microscopy 

imaging of colon cancer cells within the liver slice cultures (Fig. 2.7B). 
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Figure 2.7 | Organotypic slice culture system for in vitro studies of colon
cancer cells interactions within the liver microenvironment. A, Schematic of the 
hepatic organotypic slice culture system for studying events during liver 
colonization by colorectal cancer cells. Colon cancer cells were labeled with cell-
tracker dye and introduced into the livers through intrasplenic injection. The 
livers were then excised and cut into 150um slices and plated onto cell culture 
inserts before imaging by multi-photon microscopy. B, Representative image of 
two colorectal cancer cell populations within the liver microenvironment. Scale 

bar represent 50μm. 

Consistent with prior clinical and experimental studies, which revealed a 

significant selection on cell survival during metastatic colonization (Morikawa et 

al., 1988a; Sugarbaker, 1993), the highly metastatic LvM3b colonizer cells were 

significantly better at persisting in the liver microenvironment than their poorly 

metastatic parental line (Fig. 2.8); consistent with a key role for intrahepatic 

persistence in metastatic progression (Gupta and Massagué, 2006; Talmadge and 

Fidler, 2010). 
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Figure 2.8 | Highly metastatic LvM3b colon cancer cells display enhanced 
intrahepatic persistence. 5 X 105 cells were labeled with cell-tracker green (LS-
Parental) or cell-tracker red (LvM3b) and introduced into the liver. Survival of 
the cells in organotypic cultures was monitored for up to 4 days (n=8). Dye-swap 
experiments were performed to exclude effects of dye bias. Representative 

images at day 0 and day 3 are shown. Scale bar represent 50µm. Error bars, s.e.m; 
all P values are based on one-sided Student’s t-tests. **p<0.01; ***p<0.001. 

To determine whether the enhanced capacity of metastatic cells to persist in the 

hepatic microenvironment could be regulated by miR-483-5p or miR-551a, gain-

of- and loss-of-function studies were performed using the organotypic slice 

culture system. Over-expression of miR-483-5p or miR-551a in highly metastatic 

LS-LvM3b cells suppressed colon cancer persistence in the hepatic 

microenvironment (Fig. 2.9A, B), while inhibition of either microRNA 

significantly enhanced persistence of poorly metastatic SW480 cells (Fig. 2.9 C, D). 
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Figure 2.9 | Mir-483-5p and miR-551a regulate intrahepatic persistence by 
colon cancer cells organotypic slice cultures. A-B, Intrahepatic persistence of of 
LvM3b cells over-expressing miR-483-5p (A) or miR-551a (B) cells in organotypic 
liver slices (n=8). C-D, Intrahepatic persistence of SW480 cells whose endogenous 
miR-483-5p (C) or miR-551a (D) were inhibited by pre-treatment with LNAs 
(n=8). 5 X 105 cells were labeled with cell-tracker green (control LNA) or cell-
tracker red (microRNA targeting LNA) and introduced into the livers prior to 
slice culture. Representative images at day 0 and day 3 are shown. Dye-swap 
experiments were performed to compensate for dye bias. Scale bar represent 
50µm. Error bars, s.e.m; all P values are based on one-sided Student’s t-tests. 
**p<0.01; ***p<0.001. 
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In agreement with the phenotype of hepatic persistence observed via the 

organotypic slice culture assay, colon cancer cells whose endogenous 

microRNAs were inhibited were able to out-compete control cells in the liver as 

early as 24 hours after injection of cells into the portal circulation for hepatic 

metastatic colonization assay (Fig. 2.10). Given that neither of the microRNAs 

regulated proliferation in vitro and in vivo, the ability of the microRNAs to

suppress cancer cell survival during metastatic progression in vivo was

investigated. 

Figure 2.10 | Mir-483-5p and miR-551a regulate early intrahepatic persistence 
by colon cancer cells in vivo. Bioluminescent metastatic signal from mice (n=5)
injected with 5 X 105 SW480 cells whose endogenous miR-483-5p or miR-551a 
activities were inhibited. Images and measurements were taken 24hr after tumor 
cells inoculation. Error bars, s.e.m; all P values are based on one-sided Student’s 
t-tests. ***p<0.001. 

To quantify colon cancer cell death in vivo, a bioluminescent-based luciferin

reporter of caspase-3/7 activity was utilized (Hickson et al., 2010). MicroRNA 
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inhibition significantly reduced in vivo caspase activity in colon cancer cells

during the early phase of hepatic colonization, revealing cancer cells survival to 

be the phenotype suppressed by these microRNAs (Fig. 2.11). Decreased cancer 

cell apoptosis during the early stages of cancer progression has been 

demonstrated to be critical for successful cancer progression (Scabini et al., 2011).  

These in vivo findings provide corroboration and a mechanistic basis for the

organotypic slice culture observations and reveal miR-483 and miR-551a to 

suppress liver metastatic colonization through suppression of metastatic cell 

survival in the liver—a phenotype exhibited by highly metastatic colon cancer 

cells. 

Figure 2.11 | Mir-483-5p and miR-551a regulate colon cancer cell survival 
within the liver. Relative in vivo caspase activities of SW480 cells whose
endogenous miR-483-5p or miR-551a were inhibited and subsequently 
introduced into the liver of immunodeficient mice by intrasplenic injection (n=3). 
Caspase activity was monitored using a caspase-3/7 activated DEVD-luciferin 
and normalized with signal from regular luciferin. Error bars, s.e.m; all P values 
are based on one-sided Student’s t-tests. *p<0.05; **p<0.01. 
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CKB is a common direct target and effector of miR-483-5p and miR-551a 

To delineate the pathways through which miR-483-5p and miR-551a regulate 

colon cancer cell survival in the liver microenvironment, transcriptomic profiling 

was performed to identify mRNA transcripts that were down-regulated upon 

over-expression of each microRNA and that contained 3’-UTR or coding 

sequence elements complementary to the microRNAs. Interestingly, Creatine 

Kinase Brain-type (CKB) was identified as a putative target of both microRNAs 

that could be experimentally validated. As both microRNAs exhibited similar 

phenotypes in the in vitro organotypic slice culture assay, as well as in vivo upon

inoculation into the liver, CKB could be a common target gene and downstream 

effector. Indeed, endogenous miR-483-5p and miR-551a were found to suppress 

CKB protein levels (Fig. 2.12A) in colon cancer cells, and quantitative PCR 

validation also revealed suppression or up-regulation of CKB transcript levels 

upon over-expression or inhibition of the microRNAs, respectively (Fig. 2.12B, C). 
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Figure 2.12 | CKB expression is regulated by miR-483-5p and miR-551a. A, 
Protein levels of CKB in SW480 cells whose endogenous miR-483-5p or miR-551a 
was inhibited with LNAs. B, CKB transcript levels in colorectal cancer cells over-
expressing miR-483-5p or miR-551a (n=3). C, CKB transcript levels in colorectal 
cancer cells whose endogenous miR-483-5p and miR-551a were inhibited by 
LNA (n=3). Error bars, s.e.m; all P values are based on one-sided Student’s t-tests. 
**p<0.01; ***p<0.001. 

In order to confirm that the CKB transcript is a direct target of both microRNAs, 

luciferase-reporter assay was performed in which the coding region and 3’-UTR 

of the CKB transcript were cloned downstream of a luciferase reporter. The 

luciferase reporter assay revealed miR-483-5p to directly target the 3’-UTR (Fig. 

2.13A) and miR-551a to target the coding region of CKB (Fig. 2.13B). Mutagenesis 

of putative microRNA recognition sites abrogated the regulation by the 

microRNAs and confirmed CKB to be direct target of the microRNAs. 
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Figure 2.13 | The CKB transcript is directly targeted by miR-483-5p and miR-
551a. A, B, Luciferase reporter assays of CKB coding sequence and 3’-UTR. A, 
miR-483-5p and B, miR-551a targeted sequences in the 3’-UTR and coding 
sequence of CKB respectively. Inhibition of endogenous miR-483-5p and miR-
551a resulted in increased expression of luciferase reporter. Mutagenesis of 
putative target sites of miR-483-5p and miR-551a on the 3’-UTR and CDS 
respectively abrogated regulation of luciferase reporter by the microRNAs. 
Independent assays were performed as described above at least 3 times. Error 
bars, s.e.m; all P values are based on one-sided Student’s t-tests. **p<0.01; 
***p<0.001. 

Given that CKB is a potential promoter of colon cancer metastasis that is 

regulated by miR-483-5p and miR-551a, gain-of- and loss-of-function 

experiments were performed. Over-expression of CKB in poorly metastatic 

SW480 cells was sufficient to significantly enhance liver metastasis (>3-fold; Fig. 

2.14A), while CKB knockdown in metastatic LS-LvM3b and SW480 cells, through 

the use of two independent shRNA hairpins for each cell-line, robustly 

suppressed liver metastatic colonization (>5 fold, Fig. 2.14B, C). These results 

reveal that CKB is indeed a bona fide promoter of colon cancer liver metastasis.
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Figure 2.14 | CKB is a promoter of colorectal cancer metastasis. A, Liver 
metastasis in mice injected intrasplenically with 5 X 105 poorly metastatic SW480 
cells and CKB over-expressing SW480 cells (n=5). Mice were euthanized at 28 
days after injection and livers excised for ex vivo bioluminescent imaging. B,
Liver metastasis in mice injected with 5 X 105 SW480 cells transduced with two 
independent CKB shRNAs (n=5). Mice were euthanized at 28 days after injection. 
C, Liver metastasis in mice injected intrasplenically with 5 X 105 highly 
aggressive LvM3b expressing a control hairpin or two independent shRNA 
hairpins targeting CKB (n=6). Mice were euthanized 21 days after injection. 
Western-blot was performed to control for CKB expression levels. All P values 
are based on one-sided Mann-Whitney test for non Gaussian distribution. 
*p<0.05; **p<0.01; ***p<0.001.
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In an independent experiment, CKB expression was examined in liver metastases 

that eventually formed from CKB knockdown cells and it was observed that 

recovered tumors were ‘escapers’ with restored CKB expression (Fig. 2.15), 

demonstrating a strong selective pressure for CKB up-regulation in liver 

metastases.  

Figure 2.15 | CKB expression is restored in escaping tumors arising from 
shRNA-mediated CKB-depleted colon cancer cells. CKB protein levels in 
control LvM3b and CKB-knockdown cells, control tumors and escaped CKB 
knockdown tumors from two independent hairpins. Two escaper tumors were 
extracted for each CKB-knockdown cell-line and CKB protein levels were 
examined by western-blot. 

The effects of CKB were also consistent with the phenotypic effects of its 

regulatory microRNAs. CKB over-expression was sufficient to significantly 

enhance the ability of colon cancer cells to persist in the liver microenvironment 

and enhanced their representation in the liver (Fig. 2.16A), while CKB 

knockdown substantially reduced intra-hepatic persistence (Fig. 2.16B). 

Consistent with this, CKB over-expression significantly reduced (Fig. 2.16C), 
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while CKB knockdown significantly increased (Fig. 2.16D), in vivo caspase-3/7

activity in colon cancer cells during the initial phase of hepatic colonization. 
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Figure 2.16 | CKB regulates intrahepatic persistence of colon cancer cells by 
promoting cancer cells survival within the liver microenvironment. A, 
Intrahepatic persistence of control SW480 and CKB over-expressing SW480 cells 
in organotypic liver slices (n=8). B, Organotypic slice cultures of LvM3b cells 
expressing a control hairpin or hairpin targeting CKB (n=8). Representative 
images at day 0 and day 2 are shown. C, Relative in vivo caspase activity of
SW480 cells expressing control or CKB expression vectors in livers of mice 
measured by bioluminescence using a caspase-3 activated DEVD-luciferin 
substrate and normalized to bioluminescence signal from generic luciferin (n=3). 
D, Relative in vivo caspase-3 activity of SW480 cells expressing a control hairpin
or hairpin targeting CKB and introduced into the livers of mice through 
intrasplenic injection. Caspase activity was measured on day 1, 4 and 7 after 
injection (n=3). Error bars, s.e.m; all P values are based on one-sided Student’s t-
tests. *p<0.05; **p<0.01; ***p<0.001. 
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As CKB displayed in vitro and in vivo phenotypes that were consistent with miR-

483-5p and miR-551a, epistasis experiments were performed to confirm CKB as a 

direct downstream effector of both microRNAs. Loss-of-function epistasis 

experiments in which CKB was depleted in cells displaying endogenous miR-

483-5p or miR-551a inhibition prevented the enhanced metastasis effect seen 

with miR-483-5p or miR-551a silencing (Fig. 2.17A). Conversely over-expression 

of CKB was sufficient to rescue the suppressed liver metastatic phenotypes of 

cells over-expressing miR-483-5p or miR-551a (Fig. 2.17B). 
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Figure 2.17 | CKB is a direct downstream effector of miR-483-5p and miR-551a. 
A, Liver metastasis in mice injected with 5 X 105 SW480 cells whose endogenous 
miR-483-5p or miR-551a was inhibited by LNA, with and without CKB 
knockdown (n=5). Mice were euthanized after 28 days and livers were excised 
for ex vivo bioluminescence imaging. B, Metastatic progression in mice injected
with 5 X 105 LvM3b cells over-expressing miR-483-5p or miR-551a, with and 
without CKB over-expression (n=5). P values are based on one-sided Mann-
Whitney test for non-Gaussian distribution. *p<0.05; **p<0.01. 
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The results of the above mutational, gain-of-, loss-of-function and epistasis 

analyses confirmed CKB to be a direct downstream effector of miR-483-5p and 

miR-551a and revealed CKB to be a promoter of colon cancer survival during 

metastatic colonization in the hepatic microenvironment. The restoration of CKB 

levels in tumors that ‘escaped’ from CKB depletion by RNAi also highlighted a 

strong selective pressure for CKB expression in liver metastases. 

Summary of Chapter II 

Chapter II describes two complementary approaches used to identify 

microRNAs that suppressed colon cancer metastasis. The first approach 

employed a lentiviral microRNA library screen in two independent cell-lines, 

SW620 and WiDr, to identify microRNAs that when over-expressed, suppressed 

liver colonization. A third independent cell-line, LS174T, was subjected to in vivo 

selection to select for sub-lines with enhanced metastatic colonization capacity of 

the liver. Two microRNAs, miR-483-5p and miR-551a were identified through 

both approaches. In vivo and in vitro phenotypic assays revealed both

microRNAs to suppress liver metastasis by colon cancer cells through 

suppression of colon cancer cells survival in the liver microenvironment. 

Transcriptomic analysis followed by gain-of- and loss-of-function validation 

experiments, as well as luciferase reporter assays identified CKB as direct target 

of miR-483-5p and miR-551a. Functional CKB over-expression and knockdown 

experiments using in vivo metastasis assays and in vitro liver organotypic slice

culture assays demonstrated CKB to regulate colon cancer metastasis and cell 

survival in the liver, consistent with its regulatory microRNAs. CKB was further 
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confirmed to be a direct downstream effector of miR-483-5p and miR-551a 

through in vivo epistasis experiments. The following chapter shall present efforts

to mechanistically dissect the pathways regulated by the microRNAs and CKB 

that mediate colon cancer metastasis to the liver (Chapter III). 
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Chapter III: Mechanistic Studies of the Creatine Kinase Axis During 

Colorectal Cancer Metastasis to the Liver 
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CKB is a member of the creatine kinase family of metabolic kinases that are 

known to regulate the reservoir of rapidly mobilized high-energy phosphates in 

tissues with high energetic demands such as the brain, muscles and heart by 

catalyzing the transfer of a high-energy phosphate group from ATP to the 

metabolite creatine, yielding phosphocreatine (Wallimann et al., 1992; Wyss and 

Kaddurah-Daouk, 2000). As CKB was demonstrated to be regulator of colon 

cancer metastasis in Chapter II, it is possible that the metabolic reaction catalyzed 

by CKB is also relevant to colon cancer metastasis. This chapter describes efforts 

to delineate the pathways regulated by CKB in colon cancer cells in relation to 

the physiological context of the liver microenvironment. 

CKB modulates cellular energetics of colon cancer cells 

The maintenance of intracellular ATP levels is critical for cell survival under 

energetic stress. In normal tissues, cells with potentially high energetic demands 

maintain high levels of phosphocreatine stores in order to buffer against low 

ATP states, since phosphocreatine’s high-energy phosphate can be transferred to 

ADP to generate ATP (Wallimann et al., 1992). Consistent with the role of CKB in 

modulating phosphocreatine and ATP levels within cells, over-expression and 

knockdown of CKB in colon cancer cells increased and decreased, respectively, 

intracellular phosphocreatine levels (Fig. 3.1A) and CKB depletion resulted in 

decreased ATP levels that could be rescued by phosphocreatine supplementation 

(Fig. 3.1B), consistent with what was previously reported for creatine kinase 

expressing tissues (Li et al., 2012; Prabhakar et al., 2003). 
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Figure 3.1 | CKB regulates intracellular levels of high-energy phosphate 
metabolites. A, Relative intracellular phosphocreatine levels in colorectal cancer 
cells over-expressing CKB or depleted for CKB using a bioluminescent assay 
(n=5). Bioluminescent signals from experimental groups are directly proportional 
to intracellular phosphocreatine levels and normalized to signal from control 
cells. B, Relative intracellular ATP levels in colorectal cancer cells depleted for 
CKB, with and without exogenous 10mM phosphocreatine supplementation 
(n=5). Error bars, s.e.m; P values are based on one-sided Student’s t-tests. *p<0.05; 
***p<0.001. 

As miR-483-5p and miR-551a are regulators of CKB expression, modulation of 

either microRNAs also modulated intracellular phosphocreatine (Fig. 3.2A, B) 

and ATP levels (Fig. 3.2C, D). These findings demonstrated regulation of high-

energy metabolites by CKB as a potential avenue through which CKB can 

promote liver metastasis. 
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Figure 3.2 | Mir-483-5p and miR-551a regulate intracellular levels of high-
energy phosphate metabolites. A, Relative intracellular phosphocreatine levels 
in LvM3b cells over-expressing miR-483-5p and miR-551a (n=3). B, Relative 
intracellular phosphocreatine levels in SW480 cells in which endogenous miR-
483-5p and miR-551a was inhibited (n=3). C, Relative intracellular ATP levels in 
LvM3b cells over-expressing miR-483-5p and miR-551a (n=3). D, Relative 
intracellular ATP levels in SW480 cells in which endogenous miR-483-5p and 
miR-551a was inhibited (n=3). Error bars, s.e.m; all P values are based on one-
sided Student’s t-tests. *p<0.05; ***p<0.001. 
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CKB mediates colon cancer cell survival in the hypoxic liver 

microenvironment 

In the previous chapter, it was showed that CKB promotes colon cancer cell 

persistence and survival at an early phase after dissemination to the liver 

microenvironment. Newly disseminated colon cancer cells that arrive in the liver 

could thus encounter a physiological context that can result in low ATP levels 

unless buffered by a higher intracellular phosphocreatine reservoir as a result of 

high CKB expression.  

The liver microenvironment is known to contain hypoxic regions (Arteel et al., 

1995), with metabolically active hepatocytes at the periportal region displaying 

high rates of oxygen consumption and hepatocytes at the perivenous region 

actively undergoing glycolysis (Jungermann and Kietzmann, 1996, 2000). 

Additionally, colon cancer cells metastasize to the liver via the portal circulation, 

which is relatively hypoxemic (Weiss et al., 1986). It is possible that colon cancer 

cells experience acute hypoxia and intense competition for glycolytic substrates 

during initial dissemination to the liver and could be poorly adapted to the liver 

microenvironment prior to HIF activated responses (Semenza, 2011). To 

determine if colon cancer cells are disseminated to hypoxic regions of the mouse 

liver, a HIF-1 alpha transcriptional luciferase reporter (HRE-Luc) was used as an 

in vivo sensor and reporter of cellular hypoxia (Fig. 3.3A). Subsequent to colon

cancer cells inoculation into the liver, it was observed that colon cancer cells 

indeed experience hypoxia early after hepatic dissemination (Fig. 3.3B). As an 

independent in vivo reporter for hypoxia that is not dependent on HIF1A

activation, a luciferase reporter fused to an oxygen degradative domain (ODD-
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Luc) was used (Fig.3.3C) (Safran et al., 2006). Colon cancer cells that 

disseminated to the liver expressed ODD-Luc (Fig. 3.3D), independently 

indicating that low oxygen levels were indeed a physiological stress present in 

the liver microenvironment. 

Figure 3.3 | Incipient colorectal cancer cells experience hypoxia within the 
liver microenvironment during metastasis. A, Bioluminescent imaging of 
SW480 cells expressing an HRE-luciferase reporter with and without 24hr CoCl2

treatment. B, Bioluminescence imaging of mice (n=5) injected with 5 X 105 SW480 
cells expressing the HRE-luciferase reporter. C, Bioluminescent imaging of 
SW480 cells expressing the ODD-luciferase reporter cultured in atmospheric 
conditions or 1% O2. D, Bioluminescent imaging of mice injected with 5 X 105 

SW480 cells expressing ODD-luciferase reporter. 

Hypoxia can result in cellular energetic stress, ATP depletion and subsequently 

apoptotic cell death (Steinbach et al., 2003). Using the in vivo HRE-Luc reporter
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for hypoxia and the caspase-activated luciferin substrate as system for 

investigating colon cancer cell death under hypoxia in vivo, it was observed that

CKB depletion increased caspase-mediated cell death in HRE-Luc expressing 

cells experiencing hypoxia in vivo (Fig. 3.4A).  Conversely, inhibition of either

miR-483-5p or miR-551a protected colon cancer cells experiencing hypoxia in vivo

(Fig. 3.4B). These results indicated CKB to be a pro-survival metabolic kinase in 

colon cancer cells during hypoxia. 

Figure 3.4 | CKB promotes colon cancer cells survival within the hypoxic liver 
microenvironment during incipient metastasis. A, In vivo caspase activity of
control SW480 cells and CKB knockdown SW480 cells experiencing hypoxia 
within the livers of mice (n=3). Cells expressed an HRE-driven luciferase reporter 
and caspase-3 activity was measured using DEVD-luciferin and normalized to 
using regular luciferin. B, In vivo caspase activity of hypoxic SW480 cells with
inhibition of miR-483-5p or miR-551a in the livers of mice (n=3). Imaging was 
performed on day 1, 4, and 7 after injection. Error bars, s.e.m; all P values are 
based on one-sided Student’s t-tests. *p<0.05; **p<0.01, ***p<0.001. 

Consistent with a role for CKB and its enzymatic product, phosphocreatine, in 

promoting tissue integrity and cell survival during hypoxia or ischemia (Miller et 
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al., 1993; Prabhakar et al., 2003; Sharov et al., 1987), cells depleted of CKB 

through RNAi displayed reduced survival while experiencing hypoxia in vitro—

an effect that was abrogated upon phosphocreatine supplementation (Fig. 3.5).  

Figure 3.5 | Phosphocreatine is protective of colon cancer cells experiencing 
hypoxia. Survival of colorectal cancer cells in hypoxia in vitro with and without
CKB knockdown, and 10mM phosphocreatine supplementation (n=3). Cells were 
culture in 1% O2

 for 96hrs. Error bars, s.e.m; all P values are based on one-sided 
Student’s t-tests. **p<0.01; ***p<0.001. 

In agreement with the in vitro findings, pre-incubation of colon cancer cells

depleted of CKB with phosphocreatine enhanced their ability to metastasize to 

the liver (Fig. 3.6A) while depletion of intracellular phosphocreatine by pre-

incubating colon cancer cells with cyclocreatine, an inhibitor of CKB, suppressed 

liver metastasis (Lillie et al., 1993) (Fig. 3.6B). The above findings suggested that 

hepatic hypoxia poses a survival barrier for colon cancer cells during early 

metastatic colonization and cells endure this phase through the generation of 

ATP from phosphocreatine reserves. The ability of phosphocreatine pre-loading 

to enhance metastasis in vivo supports the importance of the acute initial hypoxic
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barrier and energetic demands in shaping metastatic colonization by cancer cells 

as they enter the liver microenvironment. The findings that exogenous 

phosphocreatine can be protective for colorectal cancer cells during hypoxia 

were in agreement with earlier studies demonstrating that exogenous 

phosphocreatine can be protective against hypoxic, ischemic and other energetic 

insults in neurons and myocardium, with increased phosphocreatine uptake 

observed in ischemic myocardium (Brustovetsky et al., 2001; Li et al., 2012; 

Sharov et al., 1987). 
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Figure 3.6 | Intracellular phosphocreatine contributes to colon cancer cell 
metastasis to the liver.  A, Liver metastasis by CKB depleted LvM3b cells pre-
incubated overnight with 10mM phosphocreatine. 5 X 105 cells were then 
inoculated into the liver of mice through intrasplenic injection. B, Liver 
metastasis in mice injected with 5 X 105 LvM3b cells with and without pre-
treatment with 10mM cyclocreatine for 48hrs prior to injection. P values are 
based on Mann-Whitney test for non-Gaussian distribution. **p<0.01; ***p<0.001. 
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Secreted CKB catalyzes an extracellular reaction that promotes colon cancer 

progression 

CKB was shown to regulate the cellular energetics of colon cancer cells and 

promoted cancer cell survival during in vivo and in vitro hypoxia through

phosphocreatine generation. While further considering CKB’s role in the setting 

of the hypoxia hepatic microenvironment, a conundrum arose: how can colon 

cancer cells arriving and residing in a hypoxic hepatic microenvironment 

generate and replenish phosphocreatine if they are depleted of ATP, especially 

during the acute phase, prior to any hypoxia-response (Bertout et al., 2008; 

Semenza, 2013; Wheaton and Chandel, 2011)? An exogenous source of ATP 

would therefore be required for supplemental phosphocreatine generation. 

Earlier clinical studies have described the detection of CKB proteins and CKB 

activity in the sera of patients with various forms of malignancies and 

physiological insults (Huddleston et al., 2005; Rubery et al., 1982; Wyss and 

Kaddurah-Daouk, 2000). The presence of extracellular ATP in the 

microenvironment of macro-metastases was also reported (Pellegatti et al., 2008; 

Stagg and Smyth, 2010). Interestingly, the liver is the main synthetic organ for 

creatine synthesis in the body, responsible for releasing creatine into the 

circulation for distribution to other tissues. Given that the substrates and enzyme 

required for phosphocreatine generation were reported in earlier literature, a 

hypothesis was developed that colon cancer cells may release CKB into the 

extracellular space, which can then convert extracellular ATP and liver-produced 

creatine into phosphocreatine. This exogenous phosphocreatine can then taken 
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up by cancer cells, thereby exerting a protective effect on hypoxic colon cancer 

cells prior to their adaption to the hypoxic liver microenvironment.  

To investigate this hypothesis, the presence of extracellular ATP and CKB has to 

be confirmed. Cell culture supernatant from metastatic LvM3b cells and LvM3b 

cells depleted of CKB through RNAi were collected and examine for CKB protein 

levels. Extracellular CKB were released from LvM3b cells, but not CKB-depleted 

LvM3b cells (Fig. 3.7). 

Figure 3.7 | Colon cancer cells release CKB extracellularly. Extracellular and 
intracellular CKB protein levels in control and LvM3b cells depleted of CKB 
through RNAi. Supernatant was harvested by culturing LvM3b cells overnight in 
serum-free media. Cells viability was confirmed to be above 99% using trypan 
blue exclusion assay. Supernatant was concentrated 20-fold using column 

centrifugation and 40μL was used for western-blot. 

In order to determine if extracellular CKB was released from live or dying cells, a 

FLAG-tagged CKB expression construct was generated. The FLAG-epitope is 
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attached to CKB through a peptide linker containing a caspase-3/7 recognition 

DEVD motif. Caspase activation in apoptotic cells would result in caspase 

recognition and cleavage of the DEVD motif between the FLAG-epitope tag and 

CKB, causing loss of the FLAG-epitope from the expression CKB (Fig. 3.8A). 

Supernatant from colon cancer cells expressing this FLAG-tagged CKB indicated 

that the FLAG-epitope was not lost, demonstrating that extracellular CKB to be 

released by primarily live cells (Fig. 3.8B). Interestingly, release of extracellular 

CKB was not inhibited by brefeldin A or dimethyl amiloride (DMA) treatment 

(Fig. 3.8C) raising the possibility that CKB release was not mediated by golgi-

related secretory pathways or exosomes respectively. 
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Figure 3.8 | CKB is released by live cells. A, FLAG-tagged CKB with a caspase 
3/7 recognition site linker. The FLAG-DEVD-CKB has a FLAG-tag linked to the 
N-terminal of CKB by a linker containing a caspase 3/7 recognition motif 
(DEVD-amino sequence). Caspase activation by apoptotic cells will result in 
cleavage of linker and release of FLAG-tag. B, Western-blot of FLAG-DEVD-CKB 
over-expressing cells demonstrates release of CKB by live cells into the 
extracellular space. FLAG-tag was not cleaved upon CKB release into the 
extracellular space. C, Western-blot of FLAG-tagged CKB in supernatant of cells 
treated with Brefeldin A or Dimethyl-amiloride. 

As generation of extracellular phosphocreatine requires exogenous ATP, the 

presence of extracellular ATP in the microenvironment of newly disseminated 

colon cancer cells or incipient micro-metastases was investigated using a plasma 

membrane-anchored luciferase reporter for detecting extracellular ATP (pME-

Luciferase)(Pellegatti et al., 2005). Extracellular ATP was confirmed to be present 

in the microenvironment of disseminated colon cancer cells (Fig. 3.9). 
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Figure 3.9 | Extracellular ATP is present in the extracellular microenvironment 
of disseminated colon cancer cells within the liver. 5 x 105 SW480 cells 
expressing pME-Luc were inoculated into the liver of mice through intrasplenic 
injection. The presence of extracellular ATP was detected by bioluminescent 
imaging. 

Given the presence of extracellular ATP and CKB, if the pro-metastatic effects of 

CKB resulted from utilization of extracellular ATP as a substrate for 

phosphocreatine generation by CKB, then depleting extracellular ATP should 

suppress the pro-metastatic activity of CKB. Indeed, expressing CD39, a plasma 

membrane anchored ATP hydrolase in SW480 cells (Kaczmarek et al., 1996), 

significantly precluded the ability of CKB over-expression to promote metastasis 

without affecting CKB levels (Fig. 3.10). 
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Figure 3.10 | Depletion of extracellular ATP attenuates CKB mediated liver 
metastasis by colon cancer cells. 5 x 105 SW480 control cells, or cells over-
expressing CKB alone, or with concomitant over-expression of CD39 was 
introduced into livers of mice through intrasplenic injection (n=5). Metastatic 
burden was monitored by bioluminescent imaging and mice euthanized at day 
28. Liver was excised for ex vivo bioluminescent imaging and gross examination.
Western-blot was performed to determine CD39 over-expression. P values are 
based on one-sided Mann-Whitney test for non-Gaussian distribution. *p<0.05; 
**p<0.01. 

Consistent with CKB consumption of extracellular ATP, cells over-expressing 

CKB or cells whose endogenous miR-483-5p or miR-551a were inhibited 

displayed significantly lower extracellular ATP levels in vivo relative to the

control cells (Fig. 3.11A, C). Conversely, the microenvironment surrounding CKB 

knockdown cells displayed higher extracellular ATP levels (Fig. 3.11B). 
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Figure 3.11 | Extracellular ATP levels of incipient metastases is modulated by 
CKB expression. A, Relative extracellular ATP levels in CKB over-expressing 
cells. Control and CKB over-expressing pME-Luc SW480 cells were injected into 
mice. Mice were imaged one hour after injection to detect the presence of 
extracellular ATP (n=5). Bioluminescent signal is directly proportional to levels 
of extracellular ATP. B, Control and CKB depleted pME-Luc SW480 cells were 
injected into mice (n=5). C, Relative extracellular ATP levels in 
microenvironment of SW480 cells whose endogenous miR-483-5p and miR-551a 
were inhibited. 5 X 105 SW480 cells expressing pME-Luc and whose endogenous 
miRNAs were inhibited were introduced into the portal circulation through 
intrasplenic injection and bioluminescent imaging performed (n=5). Error bars, 
s.e.m; all P values are based on one-sided Student’s t-tests. *p<0.05; **p<0.01. 
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If extracellular CKB catalysis can enhance metastasis, presence of the product of 

CKB-mediated catalysis, phosphocreatine, in the extracellular space should 

partially rescue the effect of CKB loss-of-function. In order to investigate this 

possibility, mini osmotic pumps that continuously released phosphocreatine 

were implanted into the peritoneal cavities of immunodeficient mice. Exogenous 

phosphocreatine released from the pump and draining into the portal circulation 

was able to significantly enhance metastasis (>10 fold) by CKB-depleted cells in 

vivo (Fig. 3.12).

Figure 3.12 | Exogenous phosphocreatine contributes to colon cancer 
metastasis to the liver. Liver metastasis by CKB-depleted LvM3b cells in mice 
implanted with an osmotic pump releasing phosphocreatine into the portal 
circulation (n=8). P values are based Mann-Whitney test for non-Gaussian 
distribution. **p<0.01. 
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To further confirm that extracellular CKB can promote the survival of colon 

cancer cells depleted of CKB during hypoxia, a boyden chamber co-culture 

system was used (Fig. 3.13A). CKB over-expressing cells were able to compensate 

for the survival of CKB depleted cells across the trans-well, while addition of a 

CKB-activity neutralizing antibody abrogated this effect (Fig. 3.13B). 

Figure 3.13 | Extracellular CKB enhances colon cancer cell survival in hypoxia 
in vitro. A, 5 X 104 CKB-knockdown cells were cultured on the bottom of 24-well
plates, while control or CKB-over-expressing cells were plated onto boyden 
chambers above CKB-knockdown cells with pores for exchange of metabolites 
and proteins. Cells at the bottom of the well were counted after 4 days in hypoxia. 
B, Relative survival of CKB-knockdown cells in 1% oxygen when co-cultured 
with control, CKB-over-expressing cells or with CKB-over-expressing cells in the 
presence of a neutralizing antibody (n=4). Error bars, s.e.m; all P values are based 
on one-sided Student’s t-tests. **p<0.01; ***p<0.001. 

To further extend these findings to an in vivo system, colon cancer cells depleted

of intracellular CKB but expressing a secreted form of CKB wherein CKB is fused 
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to the IgK secretory signal sequence was generated. Over-expression of secreted 

CKB was sufficient to enhance colon cancer metastasis in CKB depleted colon 

cancer cells (Fig. 3.14). 

Figure 3.14 | Extracellular CKB promotes liver metastasis by colon cancer cells. 
Liver metastasis by SW480 CKB-knockdown cells over-expressing a secreted 
form of CKB. 5 x 105 cells were introduced into mice through intrasplenic 
injection. Liver metastasis were monitored by bioluminescent imaging and mice 
were euthanized after 28 days, liver excised for ex vivo bioluminescent imaging
and gross morphology. P values are based on one-sided Mann-Whitney test for 
non-Gaussian distribution. **p<0.01. 

Further evidence for the role of extracellular CKB during metastatic progression 

was observed from serum of mice injected with CKB knockdown cells—mice 

with tumors invariably exhibited increased serum CKB levels (Fig. 3.15), in 

agreement with earlier clinical observations of patients with advanced 
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malignancies having higher serum CKB activity or protein levels (Huddleston et 

al., 2005; Rubery et al., 1982).  

Figure 3.15 | Extracellular CKB is present in the circulation of mice with 
metastatic burden. CKB levels in serum of mice injected with CKB-knockdown 
LvM3b cells with and without metastatic burden as a result of escaped tumors. 
Blood was obtained from mice via cardiac puncture after anesthesia. After 
incubation at room temperature for 30min, serum was obtained after 
centrifugation at 200g for 10min. Serum was diluted 1:10 and 10ul used for 
western-blot. 

The SLC6a8 membrane channel is an effector in the CKB axis 

The present findings implicated CKB and exogenous creatine/phosphocreatine 

metabolism in colon cancer metastasis. It is possible that other components of 

creatine/phosphocreatine metabolism could also mediate colon cancer metastatic 

progression. Depletion of guanidinoacetate methyltransferase (GAMT), the 

enzyme for the final step of creatine synthesis (da Silva et al., 2009), in colon 

cancer cells did not affect metastasis (Fig. 3.16), consistent with a model wherein 

an extracellular source (the liver is the primary site of creatine biosynthesis) of, 

rather than intracellular creatine drives colon cancer metastasis. 
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Figure 3.16 | Colon cancer cells-derived creatine does not contribute to liver 
metastasis. 5 X 105 LvM3b control cells or cells depleted of GAMT by RNAi were 
introduced into immunodeficient mice and liver metastases were monitored by 
bioluminescence (n=5). Mice were euthanized at day 21 and liver excised out for 
ex vivo bioluminescent imaging and gross morphology examination. P values are
based on one-sided Mann-Whitney test for non-Gaussian distribution. 

In agreement with the above observations, SLC6a8, a transporter of creatine 

compounds (Salomons et al., 2001), was found to modulate phosphocreatine 

levels in colon cancer cells; SLC6a8 knockdown reduced intracellular 

phosphocreatine and ATP levels (Fig. 3.17A, B). 
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Figure 3.17 | SLC6a8 regulates intracellular levels of phosphocreatine and 
ATP. A, Relative intracellular phosphocreatine levels in LvM3b cells expressing a 
shRNA targeting SLC6a8 (n=4). B, Relative intracellular ATP levels in LvM3b 
cells expressing a shRNA targeting SLC6a8 (n=4). Error bars, s.e.m; all P values 
are based on one-sided Student’s t-tests. ***p<0.001. 

As depletion of phosphocreatine and ATP in colon cancer cells from CKB 

knockdown or inhibition was able to suppress metastasis, depletion of SLC6a8 

should also suppress colon cancer metastasis. Indeed, LvM3b and SW480 colon 

cancer cells depleted of SLC6a8 displayed substantially reduced (10 to 100-fold) 

metastatic activity (Fig. 3.18A, B). Metastatic tumors that eventually grew out 

from SLC6a8 knockdown cells were ‘escapers’ and displayed restored SLC6a8 

expression (Fig. 3.18C). 
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Figure 3.18 | SLC6a8 is a regulator of colon cancer metastasis to the liver. A, 
Liver metastasis by SW480 cells expressing two independent short hairpins 
targeting SLC6a8 (n=5). 5 X 105 cells were injected into immunodeficient mice. 
Metastatic progression was monitored using bioluminescence imaging. Mice 
were euthanized at day 28 and livers excised. B, Liver metastasis by LvM3b cells 
expressing two independent short hairpins targeting SLC6a8 (n=8). 5 X 105 cells 
were injected into immunodeficient mice. Metastatic progression was monitored 
using bioluminescence imaging. Mice were euthanized at day 21 and livers 
excised.  C, CKB levels in SLC6a8-knockdown LvM3b cells and from escaped 
tumors growing out from SLC6a8-knockdown cells injected intro mice. P values 
are based on one-sided Mann-Whitney test for non-Gaussian distribution. 
**p<0.01; ***p<0.001. 

Importantly, SLC6a8 knockdown, which depleted cellular uptake of extracellular 

phosphocreatine, also abrogated the effect of CKB over-expression on colorectal 

cancer metastasis (Fig. 3.19), revealing extracellular phosphocreatine uptake to be 

downstream of CKB catalysis. 
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Figure 3.19 | SLC6a8 is required for CKB mediated colon cancer metastasis to 
the liver. Liver metastasis by SW480 cells over-expressing CKB with and without 
SLC6a8 depletion. 5 X 105 cells were injected into immunodeficient mice (n>4) 
and metastatic burden monitored by bioluminescent imaging. Mice were 
euthanized at day 28 and liver excised for gross morphological examination. 

Additionally, depleting SLC6a8 in CKB knockdown cells abrogated the 

protective effect of phosphocreatine during hypoxic stress in vitro (Fig. 3.20A),

while exogenously added phosphocreatine was not able to promote liver 

metastasis by SLC6a8 knockdown cells (Fig. 3.20B). These findings revealed 

SLC6a8 to be downstream of CKB and phosphocreatine in mediating their 

metastasis-promoting effects. 
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Figure 3.20 | Depletion of SLC6a8 abrogated the effects of exogenously added 
phosphocreatine. A, In vitro survival of LvM3b cells depleted of CKB, SLC6a8
with and without phosphocreatine supplementation in hypoxia (n=3). B, Liver 
metastasis in mice injected with 5 X 105 LvM3b cells transduced with shRNA 
targeting SLC6a8 in mice implanted with osmotic pumps delivering 
phosphocreatine into the portal circulation. Metastatic progression was 
monitored by bioluminescent imaging and mice were euthanized 28 days after 
injection. Error bars, s.e.m; all P values are based on one-sided Student’s t-tests or 
when appropriate, one-sided Mann-Whitney test for non-Gaussian distribution. 
**p<0.01. 

Summary of Chapter III 

In Chapter III, efforts to delineate the mechanisms mediated by CKB in 

promoting colon cancer cell survival in the hepatic microenvironment were 

described. It was observed that disseminated colon cancer cells experience 

hypoxia upon arrival into the liver. CKB enhanced survival of colon cancer cells 

under hypoxia in vivo and in vitro through regulation of intra- and extracellular
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phosphocreatine and ATP levels. Maintenance of intracellular phosphocreatine 

and ATP levels was shown to be necessary for cancer cell survival under hypoxic 

stress during liver metastasis as depletion of these high-energy metabolites 

prevented liver metastasis by colon cancer cells. In addition to CKB’s role in 

modulating intracellular ATP and phosphocreatine levels, CKB can be secreted 

by colon cancer into the extracellular milieu where it converts exogenous ATP 

and creatine into phosphocreatine that can be imported into cancer cells as an 

additional source of ATP to fuel metastatic survival and progression. 

Additional components of the creatine/phosphocreatine pathway were also 

examined for their role in colon cancer metastasis. Exogenous, liver-derived 

creatine was found to be important for cancer metastasis as endogenous GAMT 

was not required for successful liver colonization by colon cancer cells. SLC6a8, a 

membrane transporter that is involved in the transport of creatine compounds 

was required for colon cancer metastasis downstream of CKB, further indicating 

the contribution of exogenous phosphocreatine to successful metastatic 

colonization in coordination with extracellular CKB. In light of the critical roles 

played by various components of the CKB metabolic axis, Chapter IV will 

examine the translational viability of these scientific observations. The 

therapeutic potential of the above pathway will also be investigated through 

proof-of-principle therapeutic intervention. 
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Clinical Relevance and Therapeutic Targeting of the Creatine Kinase Axis 
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With the identification of a miR-483-5p and miR-551a regulated, CKB-mediated 

pathway (Chapter II and Chapter III) that is critical for colon cancer metastasis to 

the liver, it is important to examine the relevance of this pathway to human 

patients. Should this pathway be pertinent to colorectal cancer patients, it would 

be of clinical interest to see if therapeutic perturbation of this pathway could 

prevent colon cancer metastasis to the liver. This chapter describes the 

interrogation of multiple archival patient samples for expression levels of the 

microRNAs as well as CKB and SLC6a8 and their relation to metastatic 

progression. The potential for therapeutic intervention in this pathway in 

preventing metastasis is also investigated in this chapter. Finally the relevance of 

this pathway to liver metastasis by another gastrointestinal cancer, pancreatic 

cancer was investigated. 

Mir-483-5p and miR-551a expression are decreased in liver metastases relative 

to primary tumors 

To determine if miR-483-5p and miR-551a expression levels were suppressed in 

liver metastases of colon cancer patients, archival RNA samples from a set of 66 

surgically resected primary colon cancer tumors and liver metastases were 

obtained from Memorial Sloan-Kettering Cancer Center (MSKCC). Quantitative 

real-time PCR was performed to examine the relative levels of these microRNAs 

in these patient samples. Consistent with a metastasis-suppressive role for these 

microRNAs during cancer progression, miR-483-5p and miR-551a both 

independently displayed significantly reduced expression levels in human liver 

metastases relative to primary colon cancers (Fig. 4.1A, B). 
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Figure 4.1 | Expression levels of mir-483-5p and miR-551a are decreased in 
liver metastases compared to primary tumors from patients. A, MiR-483-5p and 
B, miR-551a levels in 36 primary colorectal adenocarcinomas and 30 liver 
metastases were quantified by quantitative real-time PCR. Error bars, s.e.m; all P 
values are based on one-sided Student’s t-tests. *p<0.05; **p<0.01. 

CKB and SLC6a8 display increased expression in liver metastases relative to 

primary tumors 

With the experimental observations that CKB and SLC6a8 were important 

effectors for liver metastasis and the strong selective pressure for CKB and 

SLC6a8 in escaped liver nodules, the expression levels of CKB and SLC6a8 were 

examined in multiple sets of archival samples to determine if CKB and SLC6a8 

expression were selected for in liver metastases of patients. CKB and SLC6a8 

transcript levels in the above-described archival RNA samples from MSKCC 

were examined by quantitative real-time PCR. Both CKB and SLC6a8 transcripts 

were significantly increased in liver metastases relative to primary tumors (Fig. 
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4.2A, B), supporting a model in which CKB and SLC6a8 are selected for during 

colon cancer progression. 

Figure 4.2 | Expression levels of CKB and SLC6a8 are increased in liver 
metastases compared to primary tumors from patients. A, CKB and B, SLC6a8 
levels in 36 primary colorectal adenocarcinomas and 30 liver metastases were 
quantified by quantitative real-time PCR. Error bars, s.e.m; all P values are based 
on one-sided Student’s t-tests. *p<0.05. 

Given that both miR-483-5p and miR-551a were negative regulators of CKB, the 

correlation between the expression levels of miR-483-5p and miR-551a and CKB 

in patients that had low expression of these microRNAs was examined. Indeed, 

there was significant negative correlation between CKB expression levels and 

that of the microRNAs (Fig. 4.3A). Additionally, in nine patient-derived colon 
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cancer cell-lines, the expression levels of the microRNAs and CKB were 

significantly negatively correlated as well (Fig. 4.3B). 

Figure 4.3 | Expression levels of CKB and the microRNAs are negatively 
correlated in patient samples. A, MicroRNA and CKB expression levels in 
archival RNA samples from MSKCC. B, Expression levels of microRNAs and 
CKB in patient-derived primary colon cancer cell-lines. 

As an independent validation set, a tissue microarray was constructed from a 

collection of primary colorectal cancer tumors and liver metastases that were 

surgically resected from patients at Weill-Cornell Medical Center (WCMC) and 

New York Presbyterian Hospital (NYPH). The tissue microarray was 

immunohistochemically stained for CKB and SLC6a8 expression. Both CKB and 

SLC6a8 protein expression levels were found to be elevated in liver metastases 

relative to primary tumors of patients (Fig. 4.4A, B).  
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Figure 4.4 | Protein expression of CKB and SLC6a8 are increased in liver 
metastases of an independent cohort of patients compared to primary tumors. 
A, Immunohistochemical staining of CKB on a tissue microarray constructed 
from liver metastases and primary tumors of patients from New York 
Presbyterian Hospital. B, Immunohisochemical staining of SLC6a8 in liver 
metastases and primary tumors of patients. P values are based on one-sided 
Mann-Whitney test for non-Gaussian distribution. *p<0.05; **p<0.01. 
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In addition to the clinical samples obtained from MSKCC, WCMC and NYPH, a 

publicly available gene expression dataset was also analyzed for expression 

levels of CKB and SLC6a8 (Sheffer et al., 2009). This additional dataset 

demonstrated higher levels of CKB and SLC6a8 in liver metastases of patients 

compared to primary tumors as well (Fig. 4.5A, B). 

Figure 4.5 | Expression levels of CKB and SLC6a8 in primary tumors and liver 
metastases obtained from a publicly available microarray dataset. A, B, CKB 
and SLC6a8 expression from a public microarray dataset (GSE41258) comparing 
primary tumors and liver metastases (N=233). P values are based on one-sided 
Mann-Whitney’s test. *p<0.05; ***p<0.001. 

The above findings are consistent with the present experimental findings, and 

suggest the pathophysiological basis for, previous studies describing elevated 

expression levels of CKB in advanced stage cancers (Wallimann and Hemmer, 
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1994) and reveal significant association between the components of miR-483-5p 

and miR-551a regulated multi-microRNA network and colon cancer progression. 

Therapeutic delivery of miR-483-5p and miR-551a suppress colon cancer 

metastasis 

With the findings that deregulation of the expression levels of microRNAs, CKB 

and SLC6a8 is relevant to colon cancer patients; the potential for therapeutic 

intervention targeting this multi-microRNA regulatory network was investigated. 

Adeno-associated virus delivery of microRNAs was previously described to 

suppress hepatic carcinogenesis in a mouse model of hepatocellular carcinoma 

(Kota et al., 2009). It may be possible that adeno-associated virus could infect 

colon cancer cells and suppress colon cancer metastasis to the liver in vivo. As a

first step towards determining if adeno-associated viruses are viable vectors for 

delivery of microRNAs into colon cancer cells, the ability of adeno-associated 

virus to transduce colon cancer cells in vitro was examined. Adeno-associated

viruses were able to transduce colon cancer cells even at low multiplicity of 

infection in vitro (Fig. 4.6A). Injection of mice bearing macroscopic hepatic

metastases with adeno-associated virus revealed that adeno-associated virus was 

able to infect colon cancer metastases in vivo as well and could therefore be a

suitable microRNA delivery vector (Fig. 4.6B). 
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Figure 4.6 | Adeno-associated viral vectors are able to infect colon cancer cells 
in vitro and in vivo. A, PCR amplification of adeno-associated viral DNA
extracted from SW480 cells directly transduced with AAV in vitro at indicated
multiplicity of infection. DNA was extracted 48hrs after infection and primers 
specific for adeno-associated viral sequences were used. B, PCR amplification of 
adeno-associated viral DNA extracted from hepatic metastases of mice injected 
with adeno-associated viruses. Tumors were extracted 48hrs after injection, 
genomic DNA extracted and PCR amplification of viral-specific DNA was 
performed. 

A proof-of-principle experiment was performed in which mice were injected 

with highly metastatic LvM3b cells and a single dose of adeno-associated virus 

encoding miR-483-5p and miR-551a from a single transcript was injected 

intravenously 24hrs after colon cancer cells inoculation. A single therapeutic dose 

of AAV delivering both microRNAs were able to significantly reduced metastatic 

colonization (Fig. 4.7A). Therapeutic efficacy was also seen in mice injected with 

SW480 cells (Fig. 4.7B) and a primary patient-derived cell-line (Fig. 4.7C) In these 

experiments, there were no adverse phenotypic outcomes or pathological 

abnormalities in the treated mice. 
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Figure 4.7 | Adeno-associated viral delivery of miR-483-5p and miR-551a 
suppress liver metastasis by colon cancer cells. A, Liver metastasis in mice 
injected with LvM3b cells and treated with a single dose of 1 x 1012 AAV doubly 
expressing miR-483-5p and miR-551a one day after injection cells (n=6). B, Liver 
metastasis in mice injected with SW480 cells and treated with a single dose of 
AAV doubly expressing miR-483-5p and miR-551a one day after injection cells 
(n=4). Metastatic burden was monitored by bioluminescent imaging and mice 
euthanized at day 21 for LvM3b and day 28 for SW480. C, Metastatic burden in 
mice inoculated with a patient-derived primary colon cancer cell-line and treated 
with control AAV or AAV-miR. Representative H&E stained liver sections with 
liver metastases were shown. P values are based on one-sided Mann-Whitney 
test for non-Gaussian distribution. *p<0.05; **p<0.01. 
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In mice injected with BEAS-2B immortalized lung epithelial cells that are prone 

to oncogenic transformation (Amstad et al., 1988; Pacurari et al., 2013), treatment 

with microRNA delivering AAV also did not result in spontaneous tumors, 

demonstrating the relatively safety of this single-dose AAV treatment in the 

context of immunodeficient mice (Fig. 4.8). However, given possible unforeseen 

pleiotropic effects of continued ectopic delivery of microRNAs (Grimm et al., 

2006), further extensive characterization with regards to adeno-associated viral 

delivery of microRNAs has to be performed prior to clinical evaluation in human 

patients (Garzon et al., 2010). 

Figure 4.8 | Adeno-associated viral delivery of microRNA does not result in 
oncogenic transformation in various tissues. H&E sections of indicated organs 
from mice treated with control or microRNA encoding AAV. 
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Small molecule inhibition of CKB and SLC6a8 suppress colon cancer 

metastasis 

As an alternative to adeno-associated viral delivery of miR-483-5p and miR-551a, 

which might have unforeseen pleiotropic effects, targeting of the downstream 

effector, CKB, using a small molecule inhibitor was performed. Cyclocreatine is a 

low-potency inhibitor of CKB. Therapeutic treatment of mice with cyclocreatine 

after colorectal cancer cell inoculation significantly reduced metastatic 

colonization, demonstrating proof-of-principle for targeting this kinase as a 

means of metastasis suppression (Fig. 4.9A). The modest but significant effect of 

cyclocreatine on metastasis suppression could be due to cyclocreatine being a 

relatively poor inhibitor of CKB (Lillie et al., 1993). A more potent inhibitor could 

potentially demonstrate a higher therapeutic efficacy. Treatment of mice 

inoculated with colon cancer cells with guanidinopropionic acid (GPA), a small 

molecule inhibitor of SLC6a8 was also able to significantly inhibit the formation 

of liver metastasis (Fig. 4.9B).  
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Figure 4.9 | Small molecule inhibition of CKB or SLC6a8 suppress metastasis 
by colon cancer cells. Liver metastasis in mice injected with 5 X 105 LvM3b cells 
and treated with cyclocreatine daily for two weeks (n>15). Liver metastasis in 
mice injected with 5 x 105 LvM3b cells and treated with GPA daily for three 
weeks (n=4). P values are based on one-sided Mann-Whitney test for non-
Gaussian distribution. *p<0.05; **p<0.01. 

Depletion of CKB and SLC6a8 in pancreatic cancer cells suppressed liver 

metastasis 

Liver metastasis is a common occurrence during the progression of pancreatic 

cancer. As pancreatic cancer cells will also experience hypoxia within the liver 

microenvironment, depletion of CKB and SLC6a8 in pancreatic cancer cells could 

possibly suppress liver metastasis by pancreatic cancer cells. Indeed knockdown 

of CKB and SLC6a8 in PANC1 cells (a K-RAS mutant human pancreatic cell-line) 

with multiple shRNAs, strongly suppressed their ability to metastasize to the 

liver (Fig. 4.10A, B). This preliminary finding suggested that CKB and SLC6a8, 

and their associated metabolic pathways, might broadly govern liver metastasis 

by other gastrointestinal cancers. Inhibition of this pathway in the clinic might 
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therefore provide therapeutic benefit to patients with pancreatic cancer as well as 

other gastrointestinal cancers. 

Figure 4.10 | Depletion of CKB and SLC6a8 suppress pancreatic cancer 
metastasis to the liver. A, Liver metastasis by pancreatic cancer cells, PANC1, 
with knockdown of CKB with two independent shRNA hairpins (n=5). B, Liver 
metastasis in mice injected with 5 X 105 PANC1 cells transduced with two 
independent SLC6a8 shRNAs (n=5). Metastatic progression was monitored by 
bioluminescent imaging. Mice were euthanized 35 days after injection and liver 
excised for bioluminescent imaging and gross morphology. P values are based 
on one-sided Mann-Whitney test for non-Gaussian distribution. ***p<0.001. 

Summary of Chapter IV 

This chapter presents evidence from archival clinical samples that corroborated 

the role of miR-483-5p and miR-551a as suppressors of colorectal cancer 

metastatic progression from primary tumors to liver metastases. MiR-483-5p and 

miR-551a expression was silenced in liver metastases relative to primary tumors. 

Consistent with experimental findings that CKB and SLC6a8 are promoters of 
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liver metastasis and are selected for during metastatic progression, liver 

metastases from patients had expressed higher levels of CKB and SLC6a8 across 

multiple clinical sets. Proof-of-principle therapeutic delivery of miR-483-5p and 

miR-551a using adeno-associated viral-vectors demonstrated efficacy in 

suppressing colon cancer metastasis, as did small molecule inhibition of CKB 

and SLC6a8. Depletion of CKB and SLC6a8 in a pancreatic cancer cell-line also 

suppressed pancreatic cancer liver metastasis, which suggested that therapeutic 

targeting of CKB and SLC6a8 in other gastrointestinal cancers might prevent 

liver metastasis. 
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Chapter V: Summary and Perspectives 
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Overall Summary 

Colorectal cancer is one of the most prevalent cancers in the United States and 

contributes to almost 10% of all cancer deaths. Majority of patients die as a result 

of colorectal cancer cells metastasis to the liver (Siegel et al., 2014a; Siegel et al., 

2014b). Understanding the cellular and physiological basis of colorectal cancer 

metastasis is therefore of great interest to the medical and scientific community 

with regards to developing new therapies targeting this important step in 

colorectal cancer progression. 

This thesis describes the use of two complementary approaches to identify two 

microRNAs, miR-483-5p and miR-551a, as suppressors of colon cancer cell 

survival in the liver microenvironment and suppressors of metastatic 

colonization. Systematic dissection of the downstream effector pathways using in 

vitro cell culture, organotypic slice culture and in vivo experimental metastasis

systems identified CKB as a direct target and downstream effector of both 

microRNAs. Over-expression of CKB was sufficient to enhance metastasis, while 

depletion of endogenous CKB suppressed metastasis by colon cancer cells. 

Hypoxia was identified to be a relevant physiological stress during colorectal 

cancer metastasis to the liver and CKB was found to promote metastasis to the 

liver by enhancing cell survival in the hypoxic liver microenvironment.  

CKB belongs to a group of enzymes that readily modulate high-energy 

phosphate metabolite levels within the cell by catalyzing the transfer of a high-

energy phosphate group from phosphocreatine to ADP (Wallimann et al., 1992; 

Wyss and Kaddurah-Daouk, 2000). In the physiologically hypoxic environment 
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of the liver, maintenance of intracellular ATP levels by CKB resulted in enhanced 

colon cancer cell survival. This enables surviving cells to subsequently activate 

hypoxia response pathways that can result in successful completion of the 

metastatic cascade and liver colonization (Semenza, 2013).  Remarkably, colon 

cancer cells can release CKB extracellularly to take advantage of the ATP-rich 

extracellular milieu and liver-synthesized creatine to generate an exogenous 

source of phosphocreatine that can be further taken up by colon cancer cells 

through the SLC6a8 membrane transporter as an additional source of ATP for 

metastatic survival and progression (Fig. 5.1). 

Figure 5.1 | Model for the role of CKB during metastatic progression of 
colorectal cancer. Disseminated colon cancer cells arrive in the liver 
microenvironment through the hypoxemic portal circulation. Within the liver 
microenvironment, they experience hypoxic stress and ATP depletion. Cells that 
up-regulate CKB through loss of miRNAs, release CKB into the extracellular 
matrix where it converts available creatine and ATP into phosphocreatine that is 
then taken up by the cell to fuel metastatic survival and subsequent organ 
colonization. Colon cancer cells with higher levels of CKB also build up a larger 
pool of intracellular phosphocreatine that acts as a buffer against energetic stress. 
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In the final chapter of this thesis, clinical evidence was presented that supported 

the roles of miR-483-5p and miR-551a in suppressing colorectal cancer 

progression to liver metastases. A role for CKB and the transport protein SLC6a8 

during metastatic progression was supported by increased expression of CKB 

and SLC6a8 in human liver metastases compared to primary tumors. As the 

microRNAs and the effector proteins in the CKB network are clinically relevant, 

proof-of-concept therapeutic targeting of this pathway through adeno-associated 

viral delivery of the microRNAs and small molecule inhibition of CKB was 

investigated and demonstrated to be effective in vivo in mice.

In summary, this thesis presented the application of two unbiased approaches to 

identify a microRNA network that regulates colon cancer metastasis through 

CKB. CKB promotes colon cancer cell survival in the hypoxic liver 

microenvironment through modulation of high energetic metabolites intra- and 

extracellularly. The identified pathways were found to be clinically relevant and 

could potentially be therapeutically targeted, either through restoration of 

microRNA levels or small molecule inhibition of the effector proteins. 

Library-based identification of microRNAs that suppress colon cancer 

metastasis 

Recently, many investigators have used library-based screening approaches to 

identify molecular mediators of various biological processes during 

tumorigenesis and cancer progression (Eifert and Powers, 2012; Mohr et al., 2010). 

Molecular determinants of phenotypes such as in vitro cell proliferation in

different contexts, in vitro migration and invasion (Quintavalle et al., 2011) and
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drug sensitivity (Gupta et al., 2009) have been described through the use of 

library-based screening approaches. However, while identified mediators of the 

studied phenotypes can be characterized and further validated through 

downstream experiments, a caveat concerning some of the studies is that the 

initial screen was performed in an in vitro context that might not necessarily lend

itself to the appropriate in vivo physiological context. It is only recently that in 

vivo library based functional screens have been reported (Beronja et al., 2013;

Schramek et al., 2014). Because of the above caveat, there could be false negatives 

that are missed by in vitro screens, beyond the identified mediators that are

subsequently validated experimentally. A pre-determined selective pressure in 

vitro would also occlude the identification of novel mediators involved in aspects

of cancer progression that are not readily apparent in vitro.

As an approach to identify novel determinants of colon cancer liver colonization, 

an in vivo library screen of 661 microRNAs was performed through injection of

colon cancer cells directly into the liver parenchyma. To develop into a metastatic 

liver nodule, colon cancer cells would have to survive the stringent selective 

pressure of the liver microenvironment. The use of an in vivo platform for the

screen allowed for identification of microRNAs that when over-expressed, 

suppress colon cancer metastasis in vivo through pathways that are

physiologically relevant and potentially lend themselves to in vivo microRNA-

delivery based therapeutics. The identification of miR-483-5p and miR-551a in 

part through this screen, which mediated colon cancer cell survival under 

hypoxia, a physiological stress present in the liver microenvironment,
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demonstrated the utility of this in vivo strategy in highlighting previously

overlooked biological bottlenecks critical to colon cancer metastasis to the liver. 

In vivo selection for liver metastatic colon cancer cells

A caveat of functional over-expression screens is that the genes or microRNA 

that were overexpressed, might not be present at endogenously relevant levels in 

the studied tissues (Ashworth and Bernards, 2010; Schramek et al., 2014). In vivo

selection thus provides a means to identify mediators that are present at 

endogenously relevant levels. Isaiah Fidler first pioneered in vivo selection when

he performed in vivo selection for metastatic melanoma cells (Fidler, 1973).  In

recent years, in vivo selection had been used to identify molecular determinants

of breast cancer and melanoma metastasis to the lungs, as well as breast cancer 

metastasis to the bone and brain (Kang et al., 2003; Minn et al., 2005; Pencheva et 

al., 2012; Png et al., 2012; Tavazoie et al., 2008). A caveat of in vivo selection is that

observed expression changes between parental and in vivo-selected cell

populations might be over-represented by passenger genes that may not confer a 

biological function. However, in vivo selection lends itself well as a parallel

approach to a functional library screen—targets that are identified in a functional 

overexpression screen and whose endogenous expression levels are changed in 

in vivo selected lines will be higher confidence functional mediators that are

present at physiologically relevant levels. That mir-483-5p and miR-551a were 

identified through the convergence of both functional screens and in vivo

selection and had robust effects highlighted the complementarity of both 

approaches. 
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Regulation of CKB by miR-483-5p and miR-551a 

MicroRNAs have been extensively studied for their roles in tumorigenesis and 

cancer progression and have been shown to modulate well-known cellular 

phenotypes such as migration, invasion, proliferation and cell death through 

regulation of effector gene targets . While it is not uncommon for studies to focus 

on the identification of single gene transcripts targeted by particular microRNAs, 

it is recognized that microRNAs, through their binding to target sequences on 

different gene transcripts, can exert pleotropic effects by modulating divergent 

gene expression programs (Pasquinelli, 2012). Based on this effect, microRNAs 

can regulate the expression of multiple transcripts that do not necessarily 

converge on the same biological pathways. However, an alternative model could 

also hold true in which a single microRNA can regulate multiple transcripts that 

eventually converge on the same biological processes and phenotypes resulting 

in a very robust regulation of particular biological pathways by a single 

microRNA. More recently, a third model of microRNA-mediated regulation of 

biological processes emerged in which multiple microRNAs can coordinately 

converge on a few genes regulating a particular biological process. The 

advantage would be that dysregulation of one of a few microRNAs in a pathway 

would not necessarily disrupt the biological processes as extensively since the 

other microRNAs can still provide a layer of redundancy in terms of regulation. 

In the present thesis, miR-483-5p and miR-551a were identified to convergently 

target a functional effector, CKB. While miR-483-5p and miR-551a could regulate 

the level of other transcripts, in vivo loss-and-gain of function epistasis

experiments confirmed CKB to be an important downstream effector of both 
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microRNAs in the context of liver colonization by colon cancer cells. Given that 

an increase in CKB levels is sufficient to enhance metastasis by colon cancer cells 

and CKB expression is necessary for successful completion of the metastatic 

cascade, a network of multiple microRNAs targeting CKB would provide a layer 

of redundancy in preventing severe dysregulation of this pathway and 

suppressing metastatic colonization.  

The regulation of the above network is critical; in contrast to the multitude of 

pathways and genes that could contribute to a migratory and invasive 

phenotype, the specific enzymatic reaction converting creatine to 

phosphocreatine can only be catalyzed by a few other isoenzymes that are within 

the creatine kinase family, namely CKM, CKMT1 and CKMT2 (Wallimann et al., 

1992). CKMT1 and CKMT2 are ubiquitous mitochondrial creatine kinases whose 

subcellular localization is limited to the mitochondrion, where they perform a 

role in transferring ATP (generated from oxidative phosphorylation) from 

mitochondria to the cytosol of cells. CKM is the only alternative cytosolic 

creatine kinase that could perform the same cellular role as CKB. However, as 

earlier studies had described a lack of CKM expression in colonic tissues (Trask 

et al., 1988; Urdal et al., 1983), CKB remains a critical enzyme in colon cancer cells 

that had to be tightly regulated to prevent dysregulation of 

creatine/phosphocreatine metabolism and metastatic progression to the liver. 

That extracellular CKM had not being extensively detected in the serum of 

patients with advanced cancer also indicates the possibility that the mechanism(s) 

involved in CKB release are unique to CKB and could be an alternative pathway 

through which CKB’s functions are regulated. 
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CKB and initial seeding of colon cancer cells into the liver microenvironment 

Colon cancer cells cannot easily circumvent the physiological challenges 

presented by the liver microenvironment.  Earlier studies investigating the 

efficiency of colon cancer cell metastasis to the liver demonstrated that only 0.1% 

of all colon cancer cells that eventually arrive successfully at the liver go on to 

develop metastases (Sugarbaker, 1993; Weiss et al., 1986). The stresses 

encountered by colon cancer cells during liver colonization can only be 

understood by an appreciation of the physiological functions and architecture of 

the liver. 

The liver is a complex organ that is responsible for a varied number of 

physiological functions required for organismal homeostasis. The enormous 

functional capacity of the liver is surprisingly mediated by a minimal number of 

cell-types comprising parenchymal cells (hepatocytes) and non-parenchymal 

cells consisting of sinusoidal endothelial cells, Kupffer cells and hepatic stellate 

cells. The variation in cellular function is achieved through functional 

specialization of cells based on their location with respect to the direction of 

blood flow through the organ and oxygenation levels (Jungermann and 

Kietzmann, 1996, 2000). This division of biochemical functions is known as ‘liver 

zonation’. Functional groups of hepatocytes can be broadly grouped into cells at 

the periportal region experiencing relatively higher levels of oxygenation 

(considering that blood reaching the liver is already hypoxemic in nature) and 

cells at the perivenous region which is hypoxic in nature. Oxygen pressure at the 

perivenous region can fall as low as 5-10mmHg, corresponding to 0.5-1% oxygen 
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levels due to consumption by metabolically active hepatocytes present upstream 

(Arteel et al., 1995). Perivenous hepatocytes actively undergo glycolysis as their 

main source of cellular energy. Colon cancer cells that initially arrived at the liver 

will eventually get arrested near the perivenous region where they experience 

acute hypoxia. Empirical evidence from in vitro co-culture and tissue-mimetic

studies had also described hepatocytes to consume oxygen at a rate of 10-40 

times that of colon cancer cells, resulting in an hypoxic microenvironment 

experienced by colon cancer cells during co-culture experiments (Jiang et al., 

2013). 

While hypoxia can result in depletion of ATP reserves and cell death, it is widely 

accepted that cancer cells utilize glucose during glycolysis as a major source of 

cellular ATP. In the context of the above-discussed liver microenvironment, 

where colon cancer cells are arrested at the hypoxic perivenous region, an 

understanding of hepatic glucose metabolism is important to understand the 

limitation of glycolysis in fueling metastatic cell survival during initial 

dissemination to the liver prior to any adaptive response to the hypoxic 

environment. 

An important homeostatic role performed by the liver is the regulation of blood 

glucose levels through integration of glucagon and insulin signaling. Excess 

glucose is taken up by hepatocytes to synthesize glycogen (glycogenesis) that can 

be subsequently converted to glucose (gluconeogenesis) when required. 

Periportal and perivenous hepatocytes are responsible for very distinct roles 

during glycogenesis and gluconeogenesis. Particularly pertinent to colon cancer 
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cells at the perivenous regions are the roles of perivenous hepatocytes during 

these two processes. During glycogenic phase, perivenous hepatocytes will 

actively take up glucose to synthesize glycogen. Excess glucose is consumed by 

perivenous hepatocytes via glycolysis, with the release of lactate that travels 

through the circulation to arrive at the periportal hepatocytes where they are 

converted to glucose via gluconeogenesis for glycogenesis. Colon cancer cells 

that are newly disseminated to the liver therefore encounter intense competition 

for the absorption of glucose from perivenous hepatocytes undergoing 

glycogenesis and glycolysis; in vivo measurements of glucose uptake by

hepatocytes had been determined to be as high as 0.61µM/min/g (Jungermann 

et al., 1982). In contrast, glucose uptake rates of established tumors of various 

cancer cell-types had been reported to vary between 0.21-0.43µM/min/g 

(Kallinowski et al., 1989; Kallinowski et al., 1988). Freshly disseminated cells 

arriving at the liver microenvironment would possibly have even lower glucose 

uptake rate prior to up-regulation of glucose transporters. Taking into 

consideration the relative abundance of hepatocytes compared to disseminated 

colon cancer cells, these factors contribute to a scenario in which colon cancer 

cells are severely out-competed for glucose by hepatocytes. 
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Figure 5.2 | Liver metabolism and colorectal cancer cells metastasis. Colon 
cancer cells arriving at the liver via the hypoxemic portal circulation experience 
progressively lower levels of oxygenation and glucose availability as they 
competes with hepatocytes for glucose and oxygen. 

Given the above context  (Fig. 5.2), CKB expression is beneficial to colon cancer 

cells. Increased CKB expression will allow for increased levels of 

phosphocreatine within colon cancer cells that will be a reservoir of ATP that can 

be rapidly utilized for when colon cancer cells first arrive at the liver. The release 

of CKB into the extracellular space will also allow for the scavenging of 

extracellular ATP in the form of phosphocreatine that can be an additional source 

of ATP that fuel cell survival and metastatic progression until further adaptation. 

This latter function of CKB described within this thesis requires that 

concentrations of extracellular ATP and creatine in the pericellular environment 

of colon cancer cells be sufficient for the reaction to proceed. Previous studies 

outside the context of cancer progression have reported resting serum creatine 
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levels to be approximately 50-100μM, while extracellular ATP levels are reported 

to be extremely low in healthy tissues, with concentrations of extracellular ATP 

to be in the nanomolar range. In the context of cancer progression, increased 

levels of extracellular ATP within the immediate microenvironment of cancer 

cells have been reported to be in the range of hundreds of micromolar (Pellegatti 

et al., 2008), while ADP levels were reported to be an order of magnitude lower, 

in part due to the expression of ecto-nucleotidases by cancer cells that readily 

converts ADP to adenosine. Earlier investigations into the kinetics of creatine 

kinases in vitro had established Michaelis constants of creatine kinases for ATP

and creatine to be in the order of micromolars (Valdur A et al., 1998). While the 

extracellular milieu of cancer cells is more complex than the defined reaction 

buffers utilized in in vitro biochemical assays, given the relative high

concentrations of extracellular ATP and creatine, the generation of 

phosphocreatine from ATP and creatine within the extracellular 

microenvironment of cancer cells is energetically favored. However, biological 

sensors for the detection of phosphocreatine without the need for biochemical 

assays or isolation of bulk biological fluids would have to be developed for more 

sensitive and timely detection of phosphocreatine synthesis within the tumor 

microenvironment. 

The role CKB plays in colon cancer cell survival during the initial phase of 

metastatic seeding in the liver is critical as cells that survive the initial hypoxia 

would be able to activate additional pathways involved in energy homeostasis 

and generation such as activation of the AMPK (DeBerardinis et al., 2008; Hardie 
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et al., 2012; Inoki et al., 2012; Jeon et al., 2012). The surviving cells would also 

have engaged hypoxia-activated pathways that are pro-metastatic through the 

HIF-1A transcriptional pathway and can progress to aggressively colonize the 

liver (Chiang and Massagué, 2008; Kaelin and McKnight, 2013; Semenza, 2011). 

Cells that survive the barrier presented by the liver microenvironment through 

CKB expression are therefore selected for aggressive metastatic progression. 

CKB during metastatic progression 

While the role of CKB during metastatic initiation in the liver was investigated in 

the present thesis, CKB could also play a role during metastatic progression after 

macro-metastases have been established. During metastatic progression, an 

intracellular pool of phosphocreatine that functions as a readily accessible source 

of ATP through CKB can provide an energetic buffer for when ATP generated 

through glycolytic pathways are insufficient for the cells’ energetic needs. Such 

stresses could occur when the growing metastases outstrip blood supply or when 

challenged by cytotoxic drugs that deplete intracellular ATP levels of cells. When 

cancer cells are challenged with such an acute stress that depletes intracellular 

ATP, additional ATP can be generated from phosphocreatine rapidly as a buffer 

until an adaptive cellular response. 

Intracellular ATP levels are tightly regulated even as the energetic needs of 

cancer cells are tightly balanced against a requirement for biosynthetic materials 

through modulation of glycolysis (Locasale and Cantley, 2011). Intracellular ATP 

can function as an allosteric inhibitor of glycolytic process through inhibition of 

fructose-6-phosphokinase. CKB expression can thus allow for diversion of excess 
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ATP towards phosphocreatine, allowing glycolysis to continue for generation of 

biosynthetic substrates required during metastatic progression.  

With the possibility that CKB could be beneficial during the later stages of 

metastatic progression, it would be interesting to investigate the effect inhibiting 

or depleting CKB has on metastatic progression after macro-metastases have 

been established. A recent study had also demonstrated increased intracellular 

ATP levels to be important for enhanced drug resistance in colon cancer cells 

(Zhou et al., 2012). The effect of CKB inhibition and decreasing intracellular ATP 

and phosphocreatine levels on potentiating the effects of cytotoxic drugs that 

stress cancer cells energetically could also be investigated as a possible 

therapeutic strategy against metastatic progression. 

Functional consequences of extracellular catalysis by CKB 

CKB protein levels or enzymatic activity as a serum marker for malignancies 

have been described in early clinical studies (Huddleston et al., 2005; Rubery et 

al., 1982). The presence of CKB in the serum was attributed to inconsequential 

release by damaged and dying cells during malignant progression. However, 

functional studies described in the current thesis demonstrated that extracellular 

CKB released by colon cancer cells within the liver microenvironment could 

perform its enzymatic function using substrates available extracellularly to 

generate phosphocreatine to enhance colon cancer metastasis. In addition to 

phosphocreatine, a product of CKB catalysis is ADP, which is generated from 

ATP.  
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While the functional aspects of ATP conversion to ADP by CKB was not 

investigated in the present thesis, numerous studies by other investigators have 

demonstrated the relevance of purinergic signaling to cancer progression (Di 

Virgilio, 2012; Stagg and Smyth, 2010). The presence of ATP in tumor 

microenvironment has been demonstrated to initiate innate immune responses 

that can be suppressive to tumor growth (Aymeric et al., 2010). However, 

conversion of ATP to ADP, and finally adenosine by a series of membrane-bound 

ectonucleotidase can result in an immune-suppressive effect that in turn could be 

conducive to tumor progression (Deaglio et al., 2007; Jin et al., 2010). ADP 

generation as a result of CKB catalysis could therefore be a source of adenosine 

that can mediate immune-suppressive effects. As xenograft models of colon 

cancer progression in immunodeficient mice were use in the current study, the 

effects of CKB-mediated purinergic signaling through extracellular ADP and 

adenosine production were not investigated. However, future studies in 

immunocompetent mouse models will be useful for dissecting the contribution 

of CKB towards immune evasion by colon cancer cells through modulation of 

purinergic signaling. 

An expanded functional space for intracellular enzymes 

The secretome of cancer cells have been the subject of many investigations 

(Paltridge et al., 2013). Unbiased proteomic studies of extracellular proteins from 

cancer cells have reported the presence of multiple intracellular enzymes with no 

known secretory routes and consequently have attributed the presence of 

intracellular enzymes as artifacts arising from cellular damage and death and not 

further investigated. Similarly, prior to the work described in this thesis, the 
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presence of CKB in the serum of cancer patients was considered a consequence of 

dying cells with no functional role during cancer progression.  

The identification of CKB as an intracellular enzyme that also plays an 

extracellular catalytic function therefore expanded the functional space of 

canonical intracellular enzymes, as there could be other intracellular enzymes 

that may also play an extracellular role during cancer progression. Of particular 

interest are enzymes involved in different enzymatic reactions of glycolytic 

pathways, as metabolites arising from glycolytic pathways are abundant in the 

immediate milieu of primary nodules or metastases. Lactate dehydrogenase is a 

prominent intracellular enzyme responsible for the reversible conversion of 

pyruvate to lactate. Similar to CKB, high expression of lactate dehydrogenase has 

been associated with poor prognosis in cancer patients and the presence of 

lactate dehydrogenase have been described in literature as a marker of cell death 

during tumor progression. It is well established that extracellular lactate is 

abundant in the extracellular space of malignancies. It is therefore possible that 

extracellular lactate dehydrogenase could utilize exogenous lactate to generate 

pyruvate that could in turn be beneficial to cancer progression. Interestingly, 

early studies in rabbits have described physiological release and activity of 

lactate dehydrogenase in the oviducts (Georgiev et al., 1970) and postulated an 

extracellular role for lactate dehydrogenase during early embryogenesis when 

substrates for growth are limited, paralleling the context of early metastatic 

growth. It would therefore be of biological interest to investigate if extracellular 

lactate dehydrogenase has a functional role during metastasis. 
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In addition to lactate dehydrogenase, another key glycolytic enzyme, pyruvate 

kinase M2, has also been described to be present in the serum and plasma of 

cancer patients (Hugo et al., 1999) and have recently been reported to have 

functional effects on tumor progression through modulation of angiogenesis (Li 

et al., 2014). While the mechanistic pathway through which extracellular 

pyruvate kinase M2 promotes angiogenesis remains to be identified, the above 

recent study is yet another example of how intracellular enzymes can have non-

canonical roles extracellularly. 

With an expanded functional space for intracellular enzymes, there is a resultant 

expansion of the therapeutic window against intracellular enzymes. Therapeutic 

targeting of key intracellular enzymes using membrane-permeable inhibitors in 

diseases had been limited by accompanying toxicity in normal tissues. The 

expansion of therapeutic space as a result of extracellular roles played by 

intracellular enzymes will allow for the design of non-membrane permeable 

inhibitors that can target extracellular enzymes released by cancer cells while 

avoiding the deleterious effects of inhibiting their intracellular counterparts in 

normal tissue. The use of neutralizing antibodies against these extracellular 

enzymes is also a potential avenue for highly specific inhibition of these enzymes. 

Extracellular release of intracellular enzymes 

An outstanding question remains with regards to how CKB and potentially, 

other intracellular enzymes with no known routes of secretion are released by 

cancer cells. Preliminary experimental evidence presented in this thesis indicated 

that CKB secretion is unlikely to occur through known canonical secretory 
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pathways involving N-terminal signal peptides, nor through exosomes. The 

mechanisms by which intracellular enzymes such as CKB are released into the 

extracellular space by cancer cells remain to be elucidated. 

In recent years, a new class of vesicles known as ectosomes has been described 

and is gaining interests among investigators (Cocucci and Meldolesi, 2015). 

Ectosomes are variable-sized vesicles that bud directly off the plasma 

membranes of cells and can release their contents into the extracellular space. 

They are also able to persist intact before fusion with the plasma membranes of 

other cells, releasing their contents into cells, which results in the intercellular 

transfer of proteins and metabolites into the recipient cell. Immunohistochemical 

staining of archival tissues described in this thesis revealed the presence of CKB 

in the vicinity of plasma membranes of cancer cells in addition to the cytosolic 

space. The possible release of CKB through ectosomal budding of vesicles could 

be investigated in further studies. Regardless of the mechanisms responsible for 

the extracellular release of CKB and other intracellular enzymes, identifying the 

cell biological pathways involved may also have potential therapeutic benefits as 

inhibition of CKB release could also suppress metastatic progression. The 

identification of additional intracellular enzymes with malignant extracellular 

functions will also expand the therapeutic space for metastatic cancer. 

Therapeutic targeting of the miR-483-5/miR-551a/CKB/SLC6a8 functional axis 

Multiple proof-of-principle therapeutic experiments presented in the current 

thesis demonstrated the utility of targeting the miRNAs/CKB/SLC6a8 

functional axis in preventing the establishment of colon cancer metastases. 
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Adeno-associated viral delivery of genes has in recent years been shown to be 

safe and promising in the treatment of various human diseases such as 

hemophilia, having successfully undergone clinical trials with minimal side 

effects (Kotterman and Schaffer, 2014; Nathwani et al., 2011). Therapeutic 

delivery of microRNAs in mouse models of hepatocellular carcinoma had also 

proved to be efficacious (Kota et al., 2009). Adeno-associated viral vectors of 

different serotypes exhibit tropisms for different organs, with most serotypes 

showing some degree of affinity for hepatic tissue. A recently developed, 

recombinant serotype, AAV-DJ was shown to have increased efficiency in 

transducing hepatocytes compared to wild-type virus, and also displayed 

increased infectivity towards multiple other cell-types in vitro (Grimm et al.,

2008). The availability of this recombinant adeno-associated virus allowed for 

testing of the utility of therapeutic microRNA delivery to colon cancer cells in 

vivo in the liver. In proof-of-concept experiments, a single dose of recombinant

AAV-DJ viral particles was able to therapeutically deliver miR-483-5p and miR-

551a to colon cancer cells in the liver and suppressed the formation of colon 

cancer metastases with no noticeable side effects in treated mice. While the 

experiments demonstrated that delivery of microRNAs early after cancer cell 

dissemination can result in suppression of metastases, a caveat remains that 

continuous dissemination of colon cancer cells from remnant primary tumors can 

negate the efficacy of single-dose administration of adeno-associated viruses. 

This concern can be addressed using xenograft orthotopic models of colon cancer 

and treatment of mice with multiple doses of adeno-associated viruses after 

surgical resection of the primary tumor. While there were no observable side 
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effects in mice treated with a single dose of adeno-associated virus, the effects of 

multiple administrations of adeno-associated viruses delivering the microRNAs 

should also be investigated to ensure there are no deleterious side effects from 

continued overexpression of either miR-483-5p or miR-551a in normal tissues. 

As an alternative to delivery of microRNAs by adeno-associated viruses, 

therapeutic inhibition of CKB was demonstrated in the current work. The modest 

effect seen could be a result of the low potency of the available inhibitor, 

cyclocreatine. Improvement of the inhibitor through crystal structure guided 

design might improve the therapeutic effect. While it is possible that normal 

tissues with lower energetic needs are less susceptible to CKB and creatine 

kinases inhibition, the effects of more potent inhibitors or longer durations of 

inhibitor administration have to be thoroughly investigated. The extracellular 

role of CKB during metastatic progression also allows for the design of non-

membrane permeable inhibitors that can potentially have a lower risk of 

undesirable side effects. 

Another targetable aspect of the CKB/SLC6a8 axis is the SLC6a8 membrane 

transporter downstream of the extracellular catalytic reaction performed by CKB. 

As preliminary experiments using a small molecule inhibitor of SLC6a8 

demonstrated that inhibition of SLC6a8 was also able to potently suppress liver 

metastases, designing of more potent small molecule inhibitors targeting SLC6a8 

would provide additional avenues for targeting this pro-metastatic pathway in 

colorectal cancer. Recently, the use of antibodies to block activity of membrane 

transporters and channels have been investigated and shown to be effective in 
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inhibiting transporters and channels’ activities by preventing conformational 

changes in these proteins after binding to specific epitopes on the surface of the 

membrane protein (Fiorio Pla et al., 2012). The development of neutralizing 

antibodies targeting SLC6a8 can therefore provide an alternative and highly 

specific therapy against metastatic colorectal cancer. 

Relevance of CKB and SLC6a8 to metastatic progression in other 

gastrointestinal cancers 

Liver metastasis is a common occurrence during progression of gastrointestinal 

cancers such as pancreatic and gastric cancers as these cancer cells can be 

disseminated via similar hematogenous routes involving the portal circulation. 

These gastrointestinal cancer cells will encounter the same hypoxic and energetic 

stress in the liver microenvironment as colon cancer cells. The results from this 

study arising from depletion of CKB and SLC6a8 in pancreatic cancer cells 

indicated that in addition to colon cancer, CKB and SLC6a8 might also be 

important for liver metastatic colonization by other gastrointestinal cancers, 

warranting further investigation in mouse models of pancreatic and gastric 

cancer. In particular, because of the availability of genetic mouse models of 

pancreatic cancer that could accurately mimic cancer progression in human 

patients, including the development of liver metastases, conditional knockout of 

CKB and SLC6a8 in these genetic mice models could further confirm the 

importance of CKB and SLC6a8 in gastrointestinal cancer progression. 

Therapeutic targeting of these effector proteins in pancreatic and gastrointestinal 

cancers through small molecule or antibody inhibition could therefore prevent 

metastatic progression in patients with other gastrointestinal cancers.  
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Conclusion 

The present thesis describes the use of two unbiased complementary approaches 

to identify regulators of colon cancer liver metastasis. Mir-483-5p and miR-551a 

were identified as suppressors of liver metastasis. CKB, a promoter of liver 

metastases was identified as a direct downstream target and effector of both 

microRNAs. CKB promoted liver metastases through modulation of intra- and 

extracellular energetics. In addition to regulating intracellular levels of ATP, it 

can be released by cancer cells to scavenge high-energy phosphate metabolites 

from exogenous sources of creatine and ATP. SLC6a8, a membrane transporter 

protein responsible for transport of creatine compounds, was found to be a 

critical effector downstream of the extracellular effects of CKB. The microRNAs, 

CKB and SLC6a8 were found to be clinicopathologically associated with 

metastatic progression of colon cancer patients and proof-of-principle 

therapeutic targeting of the pathway identified herein demonstrated therapeutic 

efficacy. This thesis revealed molecular mechanisms underlying liver metastases 

by colon cancer, and possibly other gastrointestinal cancers and may provide 

insights for future development of therapeutics for the treatment of metastatic 

gastrointestinal cancers. 
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Materials and Methods 
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Animal studies 

All animal work was conducted in accordance with a protocol approved by the 

Institutional Animal Care and Use Committee (IACUC) at The Rockefeller 

University. 5-6 weeks old age-matched male NOD-SCID mice were used for 

organotypic slice culture, intrahepatic colonization, liver metastasis assay and 

primary tumor growth assays involving LS174T, SW620, WiDR, LvM3a and 

LvM3b cell-lines. 5-6 weeks old age-matched male NOD/SCID gamma male 

mice were used for liver metastasis assays for the SW480 and PANC1 cell-lines. 

5-6 weeks old age-matched male athymic nude mice were used for experiments 

involving BEAS-2B mice. For all experiments involving anesthesia and surgery, 

mice were monitored after surgery to ensure recovery from anesthesia before 

returning to clean cages. Breeding pairs of all mice strains were originally 

obtained from Jackson Laboratories and bred in house to establish colonies for 

experiments, with supplemental purchase from Jackson Laboratories when 

necessary. 

In vivo selection

1 x 106 LS174T cells expressing a luciferase reporter were suspended in a 20ul 

volume of 1:1 PBS/Matrigel mixture and injected directly into the livers mice 

(described in detail below). Colon cancer liver nodules were allowed to develop 

over a period of 3-4 weeks and monitored by bioluminescence imaging. Nodules 

formed were excised and dissociated by collagenase and hyaluronidase digestion 

(described in detail below) into single cell suspensions. The cells were allowed to 

expand in vitro before re-injection into mice. After three iterations of in vivo 
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selection, highly metastatic LvM3a and LvM3b derivative cell-lines were 

established from nodules obtained from independent mice. 

Intrahepatic injection for in vivo selection and liver colonization

Each mouse was first anesthetized with injection of ketamine/xylazine solution 

into the peritoneal cavity. When the mouse was deeply anesthetized (confirmed 

by lack of reflex response after pinching of hind legs), the fur above the abdomen 

wall was shaved and the shaved abdomen wall scrubbed with Betadine and 70% 

alcohol. A 15mm incision was made through the skin and peritoneum just below 

the sternum of the mouse to expose the liver. The left lobe of the liver was gently 

pulled out and stabilized with a pair of forceps and cells in a 20µL volume of 1:1 

PBS/Matrigel mixture were injected slowly using a 28-gauge needle attached to a 

1/2cc insulin syringe (Becton Dickinson). Blanching of the liver at the site of 

injection without reflux of injected cells indicated a successful injection. The 

needle was retracted slowly and a Q-tip placed over the site of injection with 

gentle pressure for about 30 seconds to prevent bleeding and spillage of injected 

cells. The left lobe was then returned to its original location and the peritoneum 

of the mouse closed with surgical 6-0 sutures (Roboz) and the skin closed with 

9mm wound clips (Roboz). 

Intrasplenic injection for liver metastasis assays and organotypic slice culture 

Each mouse was first anesthetized as described above. The left flank of the 

anesthetized mouse was shaved and scrubbed with Betadine and 70% alcohol. A 

10mm incision was then made in the skin and peritoneum just below the ribcage 
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of the mouse to expose the spleen. The spleen was gently exteriorized with a pair 

of forceps and stabilized. 5 x 105 Cells in 50µL volume of PBS were injected 

slowly using a 28-gauge needle attached to a 1/2cc insulin syringe. A blanching 

of the spleen without reflux of injected cells indicated a successful injection. The 

needle was retracted slowly and a Q-tip placed over the site of injection with 

gentle pressure to prevent bleeding and leakage of the injected cells. After 30 

seconds, the spleen was removed using a cautery and the peritoneum of the 

mouse closed with surgical 6-0 sutures (Roboz) and the skin closed with 9mm 

wound clips (Roboz). 

Retro-orbital injection of luciferin and DEVD-luciferin for bioluminescent 

imaging 

Each mouse was anesthetized using an isoflurane anesthesia chamber. After 

anesthesia, the mouse was placed its left flank and restrained using the thumb 

and index finger of the non-dominant hand. At the same time, the index finger 

and thumb was used to draw back the skin below the right eye of the mouse. 

100µL luciferin substrate (Perkin Elmer) was then injected using a 28-gauge 

insulin needle on a 1cc syringe into the retrobulber sinus of the mouse. For in 

vivo caspase activity bioluminescent imaging, 100µL of amino-DEVD-luciferin

substrate (15mg/mL) (Promega) was injected for bioluminescent imaging. After 

imaging with DEVD-luciferin, regular luciferin substrate (15mg/mL) was 

injected and imaging performed to obtain a normalization signal. The needle was 

then retracted slowly and the anesthetized mouse can be placed into the IVIS 

imaging system for bioluminescent imaging. Mice are imaged with their 
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abdominal facing up, and 30s after injection of luciferin. Images are taken with 

exposure times ranging from 5s to 5min dependent on metastatic burden to 

avoid saturation of CCD camera sensor, leading to inaccurate measurements. 

Tail vein injection for delivery of adeno-associated viral particles 

Intravenous tail vein injection was used for delivery of adeno-associated viral 

particles. Mice inoculated with colon cancer cells were randomized for treatment. 

Each mouse was restrained using a restrainer (Braintree Scientific) designed for 

tail vein injection. The tail of the moue were then gently warmed in 37 degree 

Celsius water, and wiped with 70% alcohol. 1 x 1012 purified adeno-associated 

viral particles in 150µL of PBS were then injected into the lateral tail vein of the 

mouse using a 27 1/2 -gauge needle attached to a 1cc syringe. A paling of the 

vein and noticeable delivery of PBS up the tail indicated a successful injection. 

The needle was retracted slowly and a kim-wipe was used to exert gentle 

pressure on the site of injection to stop the bleeding. The mouse was released 

after 30 seconds. 

Subcutaneous injections for primary tumor growth assays 

Each mouse was first anesthetized as described above. 1 x 106 cells were 

suspended in 100µl of 1:1 PBS:Matrigel mixture and injected into the 

subcutaneous flanks of the anesthetized mouse using a 27-gauge needle on a 1-cc 

syringe. Tumor growth was measured using digital calipers starting 7 days after 

injection. Each mouse was anesthetized using an isoflurane anesthesia chamber. 
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Palpable tumors were then grasped and measured. Volume of the tumors were 

calculated using the formula, Volume = (width)2 x (length)/2. 

Liver extraction and tumor nodule extraction 

Each mouse was first deeply anesthetized with a lethal dose of 

ketamine/xylazine solution. After confirmation of anesthesia, the fur above the 

abdomen wall of the mouse was shaved and the abdomen scrubbed with 

betadine and 70% ethanol. A 30mm incision was then made and the liver 

exteriorized. The liver of the mouse was then cut free of the abdominal cavity 

and washed gently with PBS. It could then be used for downstream experiments. 

If required, metastatic nodules in the liver were excised from the liver, washed 

with PBS and used for downstream experiments. 

Tumor nodule dissociation into cells for culture 

Each excised tumor nodule was first washed twice in PBS supplemented with 

penicillin-streptomycin, gentamicin and amphotericin B antibiotics. After 

washing, the tumor nodule was minced up as finely as possible with a pair no. 10 

surgical scalpels and re-suspended in 15mL of antibiotics-supplemented PBS. 

The minced tumor nodule was then collected by centrifugation at 800g for 5min. 

The PBS was removed and the nodule re-suspended in ACK buffer (Lonza) for 

lysis of residual red blood cells. After 10min incubation at room temperature, the 

minced nodule was collected by centrifugation and re-suspended in enzymatic 

digestion media (300u/mL Collagenase, 1u/mL Dispase, 0.25mg/mL 

Hyaluronidase, 24u/mL DNAseI; Worthington Biochemicals) and incubated 

with gentle agitation for 2hrs at 37 degree Celsius. After enzymatic digestion, 
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cells were collected by centrifugation and incubated in 5mL trypsin-EDTA for 

10min at 37 degree Celsius. After trypsin digestion, cells were collected again by 

centrifugation, re-suspended in cell culture media, and filtered successively 

through 70µm and 40µm cell strainers to remove undigested debris and plated 

onto cell culture plates. Freshly plated cells were monitored daily for 

contamination and tested for mycoplasma contamination before transition into 

routine culture. 

Tumor nodule homogenization for western-blot 

Tumor nodules up to 125mm3 in size were excised and washed in PBS before 

immersion in 3mL of chilled RIPA buffer (Amersham) with protease inhibitors 

(Roche) on ice. A hand-held rotor-stator homogenizer was used to homogenize 

the tumor. After thorough homogenization, the mixture was incubated on ice for 

30min, before centrifugation at 15,000g for 10min to clear the supernatant. The 

supernatant was then used for western-blot after quantification with BCA kit 

(Pierce). 

Serum collection from mice 

Each mouse was first deeply anesthetized with a lethal dose of 

ketamine/xylazine solution. After anesthesia, the chest of the mouse was shaved 

and scrubbed with betadine and 70% ethanol. The chest cavity of the mouse was 

then quickly cut open and the heart exposed. Whole blood was collected from 

the mouse via cardiac puncture using a 27-gauge needle attached to a 1cc syringe. 

Up to 500µL of blood can be collected. After collection, the blood was allowed to 
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clot for 30min at room temperature before centrifugation to separate the serum 

from the blood clot. Collected serum was then stored at -20 degree Celsius. 

Cyclocreatine treatment of mice 

One day after inoculation of colon cancer cells into mice, injected mice was 

randomized and treated mice were injected with 10mg of cyclocreatine in 350μL 

of PBS via intra-peritoneal injection. Control mice received 350μL PBS placebo 

injections. Treatment was performed daily for 2 weeks until the mice were 

euthanized. 

Guanidinoproprionic acid treatment of mice 

One day after inoculation of colon cancer cells into mice, injected mice was 

randomized and treated with either 200μL PBS or 0.5M GPA in 200μL PBS daily 

for three weeks. The treatment was delivered via intra-peritoneal injections. 

Implantation of osmotic pumps 

Each osmotic pump (Alzet) was loaded with PBS or 1M-phosphocreatine 

solution according to manufacturer’s protocol. Briefly, for each pump, a blunt-

end loading tip was attached to a 1cc syringe and solution to be loaded was 

slowly injected into the reservoir of each pump using the syringe. After loading, 

the pump was capped and primed overnight by incubation in a warm saline 

solution at 37 degree Celsius. On the day of surgery, osmotic pumps were 

inserted into the peritoneal cavity of anesthetized mice. Depleted osmotic pumps 

were removed 7 days after implantation to prevent discomfort to mice. 
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Organotypic slice culture 

Cells were passaged such that they were 60% confluent at the start of the assay. 

On the day of slice culture preparation, cells were labeled by addition of either 

cell tracker red or green (Life Technologies) for 45min at 37°C. During incubation, 

tissue culture inserts (30mm, 0.4um; Millipore) was placed in 35mm tissue 

culture dishes and 1.1mL of liver media (Williams media E with hepatic culture 

supplement pack; Gibco) was added. The media from cell tracker labeled cells 

was then removed and replaced with fresh culture media and the cells were 

incubated for 30min at 37°C to ensure proper labeling. Cells were then prepared 

collected by trypsin digest from the cell culture plates and inoculated into mice 

by intrasplenic injection. After inoculation, mice were euthanized and liver 

excised as described above. Excised livers were washed gently with PBS 

supplemented with antibiotics and chopped into 150um slices using a tissue 

chopper (McIlwan). The slices were washed with antibiotics-supplemented PBS 

prior to transfer onto the tissue culture inserts using sterile transfer pipettes. 

Seeding of cells into within liver slices were confirmed by fluorescent light 

microscopy. Liver slices were cultured and media replaced daily until fixation 

with 4% paraformaldehyde for two-photon microscopy. 

Cell culture 

The 293T, LS174T, SW480, SW620, WiDR, PANC1 and BEAS-2B cell-lines were 

purchased from ATCC. 293T, LS174T, WiDR and PANC1 cells were cultured in 

DMEM media (Life Technologies) supplemented with 10% FBS (Sigma-Aldrich), 

sodium pyruvate (Life Technologies), L-glutamine (Life Technologies), 

amphotericin B (Lonza) and penicillin-streptomycin (Life Technologies). SW480 
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and SW620 cells were cultured in McCoy’s 5A media (Life Technologies) 

supplemented with the above cell-culture supplements. BEAS-2B were cultured 

in BEGM media (Lonza) which was supplemented with pre-aliquoted BEGM 

bullet kit (Lonza) with Hydrocortisone, hEGF, Epinephrine, Transferrin, Insulin, 

Retinoic Acid, Triiodothyronine and Gentamicin. For phosphocreatine pre-

treatment, cells were treated with 10mM phosphocreatine for 24hrs in media 

supplemented with 0.2% FBS prior to experiments. For cyclocreatine pre-

treatment, cells were treated with 10mM cyclocreatine for 48hrs. For hypoxic cell 

cultures, cells were cultured in 1% oxygen within a modular hypoxia chamber 

(Billups-Rothenberg). 

Generation of lentivirus, retrovirus, knock-down and over-expressing cells. 

For generation of lentivirus delivering shRNAs or over-expression vectors, 293T 

cells were seeded onto 10cm plates such that cell confluency will be 

approximately 70% the next day. 3µg each of pRSV-Rev, pCMV-VSVG-G and 

pCgpV packaging vectors (Cell Biolabs) were co-transfected with 9µg the 

appropriate pLKO-shRNA or pLenti-overexpression plasmids using 45µl of 

Lipofectamine 2000 in antibiotic-free media. After 16hrs, the media was replaced 

with fresh antibiotic-free media. After 24hrs, virus-containing supernatant was 

collected and centrifuged for 10min at 800g before being filtered through a 

0.45µm filter. For generation of over-expression retrovirus, 293T cells were 

seeded as described above. On the day of transfection, 12µg of the appropriate 

over-expression vector was co-transfected with 12µg of Pol/Gag and 6µg of 

VSVG packaging vectors (Gift of Jiang Lab, MSKCC). Media was replaced after 
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16hrs. 48hrs after transfection, virus-containing supernatant was harvested and 

spun for 10min at 800g before being filtered through 0.45µm filter. For 

transduction of cells, 2mL of the appropriate virus was used to transduce 1 x 105 

cells in the presence of 8µg/mL polybrene. Media was replaced 24hrs later. 48hrs 

after transduction, antibiotic selection was performed with either blasticidin (10-

15µg/mL) or puromycin (2-4µg/mL) for 2-7 days alongside a population of 

untransduced control cells. Selection is deemed completed after untransduced 

control cells were killed by antibiotic selection. After selection, cells were allowed 

to recover in selective antibiotic free media for 72hrs and tested for over-

expression or knockdown of gene of interest by quantitative PCR and Western-

blot where applicable. 

Preparation of adeno-associated virus for in vivo experiments

Adeno-associated viruses was generated by transfection of 30 x 15cm plates of 70% 

confluent 293T cells with 10µg each of pHelper (Cell Biolabs), DJ-Packaging (Cell 

Biolabs), scAAV-miR or scAAV control vector. 16hrs after transfection, the media 

was replaced. 60hrs after transfection, cells were sloughed off by gentle pipetting 

and pelleted by centrifugation. To release viral particles from cells, cell pellets 

were subjected to three cycles of freeze thaw, alternating between a 37 degree 

Celsius water-bath and a dry-ice ethanol bath. After release of viral particles, 

adeno-associated viral particles were purified using Virabind AAV purification 

kit (Cell Biolabs) according to manufacturer’s protocol. Non-viral nucleic acids 

were first digested by incubation of viral supernatant reagent A. Viral particles 

were then captured by affinity beads (reagent B), and loaded onto wash columns. 



! 128

After washing, viral particles were eluted and concentrated using 100kD spin 

columns. Concentrated viral particles were titered using AAV quantification kit 

(Cell Biolabs) according to manufacturer’s protocol. Viral particles were first 

denatured to released viral genomic DNA and viral titer was using the provided 

viral DNA standard and fluorometric DNA binding dye. After quantification, 

viral particles were aliquoted and stored at -80 degree Celsius before use. For 

larger preparation of adeno-associated viral particles, Vector Biolabs provided 

viral preparation services. 

Lenti-miR microRNA library screen 

1 x 106 colon cancer cells were seeded 16hrs prior to the start of experiment. On 

the day of transduction, purified lenti-miR pooled-library viral particles (System 

Biosciences) were used to transduce the seeded colon cancer cells at a low 

multiplicity-of-infection (0.1-1) in the presence of polybrene (8µg/mL) such that 

each individual cell was likely to be transduced by only a single lentiviral 

particle. 48hrs after transduction, transduced cell populations were purified via 

flow cytometry and allowed to recover and expand in vitro. Once sufficient cell

numbers were available (>5 x 106), a portion of the cells was used for intrahepatic 

injection for liver colonization dropout screen. Genomic DNA was extracted 

from the unused population (reference population) of cells using the Qiagen 

DNeasy kit according to manufacturer’s protocol (genomic DNA extraction from 

cells). 4-6 weeks after injection, mice were euthanized, liver nodules were 

harvested and genomic DNA extracted (using protocol for tissue samples). 

Lentiviral inserts, with microRNAs precursors sequences were amplified via 
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PCR using library-specific primers provided by System Biosciences and gel-

purified using Qiagen Gel Purification kit. Genosensor Corporation provided 

microarray preparation and profiling services for quantification of library 

derived microRNA precursors inserts. The raw signal intensities for probe were 

median-normalized. For each cell-line used, biological replicates were performed 

and averaged, with independent library transductions and injection into three 

mice each for each independent transduction. 

LNA mediated inhibition of microRNAs 

Non-targeting control LNA and LNAs targeting miR-483-5p and miR-551a were 

purchased from Exiqon. 10µL of 100µM LNA were transfected into 70% confluent 

cells grown in 15cm cell culture plates using 60µL of Lipofectamine 2000 reagent 

(Life Technologies) in antibiotic free culture media. LNA and Lipofectamine 2000 

reagent were pre-diluted in separate aliquots of 1.5mL of Opti-MEM media (Life 

Technologies) and incubated at room temperature for 5min. After incubation, 

both reagents were mixed gently by pipetting and incubated at room 

temperature for 20min. After incubation, the transfection mix was added drop-

wise to cells to be transfected and the cell culture plate was swirled gently to 

ensure even distribution of transfection reagents. Transfection media was 

removed after 16hrs and replaced with fresh media. 48hrs after transfection, 

transfected cells were used to perform respective assays. 
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Illumina expression beads hybridization and transcriptomic analysis 

To identify transcripts that were regulated by the microRNAs, total RNA was 

extracted from control cell populations and cells over-expressing either 

microRNAs using the miRVANA kit according to manufacturer’s protocol (Life 

Technologies). The RNA was labeled and hybridized onto Illumina HT-12v3 

Expression BeadChip arrays by The Rockefeller University genomics core facility. 

The raw signal intensities were median-normalized. Common putative targets of 

the microRNAs were identified if both microRNAs down-regulate transcript 

levels at least 1.3x fold and confirmed with quantitative real-time PCR validation. 

Putative target genes were further validated to be potential direct targets and 

effectors with dual-luciferase assay and liver metastasis assays. 

Luciferase reporter assay 

The luciferase reporter assay was performed using a Dual-Luciferase Reporter 

Assay Kit (Promega). The full-length 3’-UTR and CDS of CKB were cloned into 

the siCheck2 dual luciferase reporter vector. 2.5 x 104 LS174T cells were seeded in 

quadruplicates for each condition onto 24-well plates and allowed to attach 

overnight before transfection. Cells were co-transfected with either a control 

LNA or LNA targeting miR-483-5p or miR-551a and 100ng of the respective 

siCheck2 dual luciferase reporter vector. 30hrs after transfection, luciferase 

activity was determined using the dual-luciferase assay kit. Cells in each well 

were first washed with gently with 1X PBS and lysed in 100µL of 1X Passive 

Lysis Buffer, with gentle rocking for 30min at room temperature. The cell lysates 

were then collected and spun briefly to clear the cell lysate solutions. 30μL of the 
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cleared solution was then transferred into white opaque 96-well plates. 50μL of 

LARII Reagent was then added to each well and mixed gently by pipetting. The 

bioluminescent signal was read using a microtiter plate reader (Perkin Elmer 

Envision). After the first reading, 50μL of Stop and Glo Reagent was added to 

each well, mixed gently and the resulting bioluminescent signal was read again. 

Cell proliferation and hypoxia survival assay 

For cell proliferation assays, 1 x 105 cells were seeded onto 6-well plates (Falcon) 

in triplicates. Cells were kept in culture for 5 days before collection through 

trypsin digestion and counted using the Cellometer cell-counting machine 

(Nexcelom). Experiments were repeated at least three times. For in vitro hypoxia

assays, 5 x 104 cells were seeded in 24-wells plate and were cultured in 1% 

oxygen in DMEM with 5.6mM glucose for 4 days before counting. Cell counts 

were normalized to that of control conditions. For experiments with 10mM 

phosphocreatine supplementation, 1 x 105 cells were seeded in triplicates in 6-

well plates and cultured in 1% O2 for 4 days before cell counting. For boyden 

chambers co-culture experiments, 5 x 104 cells were seeded on top of transwell 

insert and 5 x 104 cells were seeded at the bottom of the well of the 24 well-plate. 

Cells were cultured in 1% O2 for 4 days before counting. 

Collection of cell culture supernatant 

7.5 x 106 cells were seeded onto 15cm cell culture dishes. After allowing cells to 

attached overnight, cells were washed gently four times with PBS and routine 

culture media was replaced with 12mL serum free media and cell cultured for an 
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additional 24hrs. Supernatant was collected, and centrifuged for 800g for 10min 

to remove debris. Subsequently, 10mL of the supernatant was concentrated using 

a spin column with 10kD cut-off filter to approximately 1mL prior to 

downstream applications. For treatment with brefeldin A, brefeldin A (Biolegend) 

was added to a final concentration of 5μg/mL in the serum-free media and 

supernatant was collected after 6hrs. For treatment with dimethyl-amiloride 

(Sigma-Aldrich), the final concentration was 15nM and supernatant was 

collected after 16hrs. 

Phosphocreatine and ATP measurements 

Cells were cultured routinely (unless otherwise stated) and harvested at 

approximately 70% confluence. On day of measurement, 1 x 106 cells here 

detached from culture dish by trypsin, washed twice in PBS and lysed in 1mL 

ATP assay buffer (Biovision). After vortexing to ensure homogenization, 200μL 

of perchloric acid (Biovision) was added to the cell homogenate. Vortexing was 

performed to ensure complete extraction of proteins, the homogenate was 

incubated on ice for 5min before centrifugation at 15,000g for 3min. 960μL of the 

resulting supernatant was withdrawn and 40μL of neutralization buffer 

(Biovision) was added to the supernatant. The solution was vortexed to ensure 

mixing, and incubate on ice for 5min before centrifugation at 15,000g for 3min to 

spin down any residual precipitate. Triplicate aliquots of 100μL of the cleared 

supernatant were subsequently transferred to a white flat-bottom 96 well 

microplate.  50μL of Vialight assay buffer (Lonza) was added and the mixture 

was incubated at room temperature for 10min. After 10min, 100μL of ATP 
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monitoring reagent (Lonza) was added and a bioluminescent reading was 

performed using a microplate reader (Perkin Elmer Envision). The value of the 

reading corresponds to the relative ATP levels. Subsequently, 5μL of 100mM 

ADP (Sigma-Aldrich) and 50μL of reconstituted rabbit creatine phosphokinase 

(500u/mL) (Sigma-Aldrich) was added and the reaction was allowed to 

completion (10-15min) before a bioluminescent reading was taken. The increase 

in bioluminescent signal corresponds to phosphocreatine levels. 

Western-Blot 

Cell lysates were prepared by lysing cells grown on 10cm plates in 1mL of RIPA 

buffer containing protease inhibitors. Lysate was quantitated using Bio-Rad BCA 

kit. 40µg protein from cell lysates were separated on a 4-12% SDS-PAGE and 

transferred to a PVDF membrane. Membrane was blocked for 1hr in 5% milk in 

PBST (except for FLAG antibody, blocking was performed in 5% BSA in PBST for 

1hr). Antibodies were incubated overnight in 2% milk in PBST at 4 degrees with 

gentle rocking. The CKB antibody was purchased from Abcam (Cat. 38212, 1:400 

dilution). CKB neutralizing antibody was purchased from Abcam (Cat. 48651, 

1:10). (GAPDH antibody was purchased from Genetex (Cat. GTX627408, 1:5000 

dilution). The FLAG antibody was purchased from Sigma (Cat. F3165, 1:2000 

dilution). SLC6a8 antibody was purchased from Abcam (Cat. 62196, 1:1000 

dilution). CD39 antibody was purchased from Abcam (Cat. 127167, 1:1000 

antibody). Horseradish peroxidase-conjugated secondary antibodies were 

purchased from GE Health Sciences and used at a dilution of 1:1000, in 2% milk 

in PBST for 1hr. In between antibody incubation, membranes were washed 3X in 
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PBS, 15mins per wash. Chemiluminescent detection of proteins was performed 

using Pierce ECL plus kit. 

PCR for cloning or genomic DNA amplification 

PCR for cloning or genomic DNA amplification was performed using Phusion 

enzyme (NEB) according to manufacturer’s protocol. Generally 200 to 400ng of 

starting template were used. PCR products were visualized using gel 

electrophoresis, excised and purified using Qiagen gel-extraction kit. Restriction 

digest was performed NEB restriction enzymes, at 37 degree Celsius for 6hrs and 

ligation into appropriate vector performed using NEB T4 ligase, at 16 degree 

Celsius overnight. 

Real-time PCR from archival RNA samples 

For microRNA, cDNA synthesis was performed with 50ng of total RNA using 

the Universal cDNA synthesis kit II (Exiqon, MA) according to protocol. qRT-

PCR LNA primers for miR-551a, miR-483-5p and SNORD44 endogenous control 

was purchased from Exiqon and real-time PCR was performed with SYBR-green 

master mix (Life Technologies, CT). For mRNA, cDNA synthesis was performed 

with 200ng of total RNA using the Superscript III cDNA synthesis kit (Life 

Technologies according to protocol using oligo-dT primers. 

Analysis of publicly available microarray data 

Microarray data from GSE41258 was used to analyze mRNA expression of CKB 

and SLC6A8 from unmatched primary tumor samples and liver metastasis 

samples. Expression was compared using one-sided Mann Whitney U test. 
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Analysis of tissue microarray 

Staining of tissue microarray was performed by New York Presbyterian hospital 

histopathology lab. Each core on the tissue microarray is given a score of 0-3 

based on intensity of staining. Scores of 0 and 1 are interpreted as negative for 

protein expression while scores of 2 and 3 are interpreted as positive staining for 

each core. A tumor sample is considered positive if at least 2 cores (out of 3 

replicate cores) showed positive staining, and is considered negative if cores 

showed 0 and 1 staining intensities, or if only 1 core (out of 3 replicate cores) 

showed staining intensity of 2-3. For each positive sample, the area (% tumor) 

corresponding to each staining intensity was recorded to allow for calculation of 

percentage tumor positivity and a weighted overall staining score (H-score) is 

calculated as (percentage area of 2+ staining x 2) + (percentage area of 3+ 

staining x 3). Individual cores were excluded from the analysis if no tumor was 

present, tumor was predominantly necrotic or falling off the slide or if tumor 

was of signet ring cell morphology due to rarity. A patient sample was not 

included in the analysis if more then one core (out of 3 replicate cores) was 

excluded for reasons above or if only two replicate cores were available and they 

showed discordant results (i.e. one core scored positive and one core score 

negative). 
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Table M.1 | List of Primers used 

miR-551a O/E Fwd CGCATAGGATCCGGAGAACCTTCAGCTTCA
TGTGAC 

miR-551a O/E Rev CGCATAGAATTCGGTCCCTTCCCAGGCTTGG
GGGAG 

miR-483-5p O/E Fwd CGCATAGGATCCCCTGCCCCATTTGGGGGT
AGGAAG 

miR-483-5p O/E Rev CGCATAGAATTCGCTGCCTCCTTCCTCAGAT
GAAAAATGGGC 

miR-551a AAV Fwd CGCATAAGATCTGGAGAACCTTCAGCTTCA
TGTGAC 

miR-551a AAV Rev CGCATACTCGAGGGTCCCTTCCCAGGCTTG
GGGGAG 

miR-483-5p AAV Fwd CGCATACTCGAGCCTGCCCCATTTGGGGGT
AGGAAG 

miR-483-5p AAV Rev CGCATAGCGGCCGCGCTGCCTCCTTCCTCAG
ATGAAAAATGGGC 

miR Control Hairpin GATCCCCGGTGACTTTCTGTAACAATTTCAA
GAGAATTGTTACAGAAAGTCACC 

AAV-Fwd GCTGACCCTGAAGTTCATCTG 
AAV-Rev CACCTTGATGCCGTTCTTCT 
CKB O/E Fwd CGCATAGGATCCATGACGGAGGCGGAGCA

GCAGC 
CKB O/E Rev CGCATAGTCGACTCATTTCTGGGCAGGCAT

GAG GTC 
CKB qPCR Fwd TGAGTTCATGTGGAACCCTCACCT 
CKB qPCR Rev AACTTCTCATGCTTGCCCAGGTTG 
SLC6a8 qPCR Fwd GGCAGCTACAACCGCTTCAACA 
SLC6a8 qPCR Rev CAGGATGGAGAAGACCACGAAG 
GAPDH qPCR Fwd AGCCACATCGCTCAGACAC 
GAPDH qPCR Rev GCCCAATACGACCAAATCC 
FLAG-DEVD-CKB Fwd CGCATAGGATCCATGGATTACAAGGATGAC

GACGATAAGCTGGGCGGCACCGGCAGCGG
CAGCGGCGACGAGGTGGACGGCCCCTTCTC
CAACAGCCACAACGCAC 

FLAG-DEVD-CKB Rev CGCATAGTCGACTCATTTCTGGGCAGGCAT
GAGGTC 

IgK-FLAG-CKB Fwd CGCATAGGATCCATGGAGACAGACACACTC
CTGCTATGGGTACGCTGCTCTGGGTTCCAGG
TTCCACTGGTGACGATTACAAGGATGACGA
CGATAAGCCCTTCTCCAACAGCCACAACGC
AC 

CD39 O/E Fwd CGCATAGGATCCATGGAAGATACAAAGGA
GTCTAACGTGAAG 

CD39 O/E Rev CGCATAGTCGACTATACCATATCTTTCCAGA
AATATGAAGGCTTG 

CKB CDS Luciferase Fwd CGATGCCTCGAGATGCCCTTCTCCAACAGC
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CACAACG 
CKB CDS Luciferase Rev GCGGCCGGCGGCCGCTCATTTCTGGGCAGG

CATGAGGTC 
CKB 3’UTR Luciferase Fwd CGATCGCTCGAGAGCCCGGCCCACACCCGA

C 
CKB 3’UTR Luciferase Rev GCGGCCGGCGGCCGCCAGACGCAGGCAGG

C CAAAACC 
CKB 3’-UTR Mutagenesis 
Forward 

ATGCACCCCTGATGTTCGCAACATGGCGAG
CCCTTAGCCTTG 

CKB 3’-UTR Mutagenesis 
Reverse 

CAAGGCTAAGGGCTCGCCATGTTGCGAACA
TCAGGGGTGCAT 

CKB CDS Mutagenesis 
Forward 

GACAATAAGACCTTCCTGGTGTAAATCAAC
GAGGAGGACCACCT 

CKB CDS Mutagenesis 
Reverse 

CCTTCTGCATGGAGATGGTTCGCAGGTGGTC
CTCCTC 
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Table M.2 | List of shRNA sequences used 

shRNA Sequence 
shCtrl CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTG

CTCTTCATCTTGTTGTTTTTG 
shCKB #3 CCGGCCCAGATTGAAACTCTCTTCACTCGAGTGAAGAG

AGTTTCAATCTGGGTTTTTG 
shCKB #5 CCGGCCGCGGTATCTGGCACAATGACTCGAGTCATTGT

GCCAGATACCGCGGTTTTTTG 
shSLC6a8 #1 CCGGCACGGGAAAGATCGTGTACTTCTCGAGAAGTACA

CGATCTTTCCCGTGTTTTTG 
shSLC6a8 #2 CCGGGCTGGTCTACAACAACACCTACTCGAGTAGGTGT

TGTTGTAGACCAGCTTTTTG 
shSLC6a8 #4 CCGGCTTATTCCCTACGTCCTGATCCTCGAGGATCAGG

ACGTAGGGAATAAGTTTTTG 
shSLC6a8 #5 CCGGATTACCTGGTCAAGTCCTTTACTCGAGTAAAGGA

CTTGACCAGGTAATTTTTTG 
shGAMT CCGGATGGCCATCGCAGCGTCAAAGCTCGAGCTTTGAC

GCTGCGATGGCCATTTTTTG 
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Sequences of miR-551a and miR-483-5p with flanking genomic sequence in 

adeno-associated viral vector 

miR-551a (with flanking genomic sequence) in AAV 

GGAGAACCTTCAGCTTCATGTGACCCAGAGACTCCTGTATGCCTGGCTCT
GGGAGTACAGAAGGGCCTAGAGCTGACCCCTGCCCTCCGAAGCCCCTGG
GGCACTAGATGGATGTGTGCCAGAGGGTAGTAGAGGCCTGGGGGTAGAG
CCCAGCACCCCCTTCGCGTAGAGACCTGGGGGACCAGCCAGCCCAGCAA
CCCCCTCGCGGCCGACGCCTGAGGCTGTTCCTGGCTGCTCCGGTGGCTGC
CAGAGGGGACTGCCGGGTGACCCTGGAAATCCAGAGTGGGTGGGGCCA
GTCTGACCGTTTCTAGGCGACCCACTCTTGGTTTCCAGGGTTGCCCTGGAA
ACCACAGATGGGGAGGGGTTGATGGCACCCAGCCTCCCCCAAGCCTGGG
AAGGGACCCCGGATCCCCAGAGCCTTTCCCTGCCTATGGAGCGTTTCTCTT
GGAGAACAGGGGGGCCTCTCAGCCCCTCAATGCAAGTTGCTGAG 

miR-483-5p (with flanking genomic sequence) in AAV 

CCTGCCCCATTTGGGGGTAGGAAGTGGCACTGCAGGGCCTGGTGCCAGC
CAGTCCTTGCCCAGGGAGAAGCTTCCCTGCACCAGGCTTTCCTGAGAGGA
GGGGAGGGCCAAGCCCCCACTTGGGGGACCCCCGTGATGGGGCTCCTGC
TCCCTCCTCCGGCTGATGGCACCTGCCCTTTGGCACCCCAAGGTGGAGCC
CCCAGCGACCTTCCCCTTCCAGCTGAGCATTGCTGTGGGGGAGAGGGGG
AAGACGGGAGGAAAGAAGGGAGTGGTTCCATCACGCCTCCTCACTCCTC
TCCTCCCGTCTTCTCCTCTCCTGCCCTTGTCTCCCTGTCTCAGCAGCTCCAG
GGGTGGTGTGGGCCCCTCCAGCCTCCTAGGTGGTGCCAGGCCAGAGTCC
AAGCTCAGGGACAGCAGTCCCTCCTGTGGGGGCCCCTGAACTGGGCTCA
CATCCCACACATTTTCCAAACCACTCCCATTGTGAGCCTTTGGTCCTGGTG
GTGTCCCTCTGGTTGTGGGACCAAGAGCTTGTGCCCATTTTTCATCTGAGG
AAGGAGGCAGC 
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