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Protein S-palmitoylation is a reversible post-translational lipid modification that regulates 

the trafficking, stability, and activity of proteins in eukaryotes. The detection of fatty-

acylated proteins has been challenging but recent advances in chemical labeling methods 

have enabled more sensitive detection and proteomic analyses, which I summarize in 

Chapter 1. The proteomic analysis of S-palmitoylated proteins in dendritic cells and 

macrophages by our laboratory revealed that the interferon-induced transmembrane 

proteins (IFITMs) are S-fatty-acylated at conserved cysteine (Cys) residues. IFITMs are 

unique interferon-induced proteins that restrict the infection of multiple pathogenic viruses. 

Initial studies by our laboratory showed that S-fatty-acylation on three conserved Cys 

residues were crucial for IFITM3 anti-influenza virus activity. However, endogenous 

levels and site-specific functions of S-palmitoylation on the individual IFITM3 Cys 

residues were unknown and are addressed in Chapter 2. In collaboration with other 

members of the Hang laboratory, we discovered that endogenous IFITM3 is fully S-fatty-

acylated in IFN-stimulated mammalian cells and that Cys72 in particular plays an 

important role in IFITM3 antiviral activity. My additional biochemical studies suggest S-

palmitoylation may regulate IFITM3 protein turnover in mammalian cells. 



 

IFITMs appear to inhibit virus entry into mammalian cells, but the precise 

mechanisms have been unclear due to limited methods for live-cell imaging and IFITM3 

protein-protein interaction studies. To address these limitations, I explored amber codon 

suppression technology for site-specific IFITM3 labeling with unnatural amino acids for 

bioorthogonal imaging and covalent protein crosslinking in mammalian cells in Chapter 3. 

Using the pyrrolysyl-tRNA synthetase (PylRS)/Pyl tRNACUA system, I showed that 

unnatural amino acid can be site-specifically incorporated throughout IFITM3 in 

mammalian cells. The site-specific labeling of IFITM3 with unnatural amino acids has 

provided new opportunities for live-cell imaging and photocrosslinking studies with 

specific interacting proteins in Chapter 4. My thesis studies have revealed additional insight 

into IFITM3 regulation by S-palmitoylation and established new tools to explore the 

antiviral mechanism of IFITMs. 
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Chapter One: Biochemical methods for analyzing protein fatty-

acylation  

1.1 Introduction to protein fatty-acylation 

Of the numerous protein modifications in bacteria and eukaryotes (Walsh et al., 

2005), lipidation is especially intriguing due to its ability to directly regulate protein 

hydrophobicity and membrane trafficking. Lipidation refers to the covalent attachment of 

lipid or lipid-like groups onto proteins (Hang and Linder, 2011; Resh, 2006). Fatty-

acylation and prenylation are the most common types of protein lipidation found in 

mammalian cells (Hang and Linder, 2011; Resh, 2006). While prenylation primarily occurs 

at the C-terminus of proteins through a thioether bond, protein fatty-acylation can be 

attached through S-, O-, or N-linkages at different sites throughout proteins. Protein fatty-

acylation occurs co- or post-translationally and plays an essential role in regulating protein 

function and localization. Specifically, during the protein modification, lipid moieties with 

varying chain length, such as myristate (14 carbons) and palmitate (16 carbons), covalently 

attach to proteins under the regulation of a set of enzymes like acyltransferases and 

deacylases. Furthermore, lipidated proteins can have distinct interactions with signaling 

proteins and specific membrane domains. In this introduction, we will focus on protein 

fatty-acylation and will present a summary of chemical tools used for detecting these 

modifications in vitro and in vivo. 
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Figure 1. Different types of fatty-acylated proteins A) S-palmitoylation. B) N-

myristoylation. C) N-palmitoylation. D) Stearoylation. E) Palmitoleylation on Ser or Thr. 

F) Lys-myristoylation. 
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Figure 2. Function of protein fatty-acylation. Protein fatty-acylation regulates the 

interaction of the modified proteins with cellular membrane. The presence or absence of 

fatty-acylation also regulates protein stability, degradation and complex formation. 

Specific fatty-acylation might determine the cellular microdomain targeting and cellular 

vesicle shuttle. 
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1.1.1 S-fatty-acylation 

Protein S-fatty-acylation, or frequently referred to as S-palmitoylation, is the post-

translational modification of fatty acids onto Cys residues via a thioester linkage 

(Chamberlain and Shipston, 2015) (Figure 1A). S-palmitoylation is often used to describe 

this modification because palmitate is the predominant fatty acid in this process. However, 

other long chain fatty acids have also been observed (Liang et al., 2001). Protein S-

palmitoylation was first documented more than 30 years ago (Schmidt and Schlesinger, 

1979), but the enzymes responsible for this modification took over 20 years to identify 

(Bartels et al., 1999; Deschenes and Broach, 1987). Historically, radioactive labeling using 

[3H]palmitate had been the major method to study palmitoylation. G protein-coupled 

receptors (GPCR) (O’Brien and Zatz, 1984), Gα subunits (Linder et al., 1993), Src family 

kinases (Paige et al., 1993), Ras proteins (Buss and Sefton, 1986), and soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) (Hess et al., 1992) 

are among the list of proteins that were identified using this approach. S-fatty-acylation is 

enzymatically mediated by a family of zinc finger DHHC (zDHHC) motif-containing 

protein acyltransferases (DHHC-PATs) that catalyze S-palmitoylation. There are seven 

DHHC proteins in budding yeast (Mitchell et al., 2006), five in fission yeast (Zhang et al., 

2013a) and more than 20 DHHC genes in mammalian species, all of which are multi-pass 

transmembrane proteins. Early work on DHHC enzymatic activity towards postsynaptic 

density protein of 95 kDa (PSD-95), which was the first comprehensive analysis of the 

mammalian DHHC, identified that DHHC 2, 3, 7 and 15 were the most active (Fukata et 

al., 2004). 
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Protein S-fatty-acylation is a reversible process, a key property that distinguishes it 

from other lipid modifications. Pulse-chase experiments on N-Ras with [3H] palmitate 

highlighted the reversibility of S-fatty-acylation (half-life ~20 min) (Magee et al., 1987). 

That deacylation of N-Ras may occur 10–20 times faster than calculated by pulse-chase 

analysis (Rocks et al., 2005, 2010). However, marked differences can exist in the turnover 

rates of different S-fatty-acylation sites in the same protein (Zuckerman et al., 2011). 

Indeed, rates of palmitate turnover at each cysteines are dramatically different. For example, 

although S-palmitoylation at the proximal site of the β-adrenergic receptor is remarkably 

stable, S-palmitoylation at the distal site is rapidly turned over. Thus, the dynamics of 

acylation/deacylation is an outstanding question in the S-fatty-acylation research: how the 

dynamics of lipid turnover of S-fatty-acylated proteins is regulated and why different 

proteins display distinct turnover rates. Notably, recent enrichment and mass-

spectrometry-based proteomics approaches have significantly accelerated the 

characterization of S-fatty-acylated proteins and reignited the interest in the poorly 

characterized dynamics of protein S-fatty-acylation (Peng et al., 2016; Zhou et al., 2014). 

Major functions of protein S-fatty-acylation include targeting proteins to discrete 

intracellular membrane compartments, control of protein stability and modulation of 

protein-protein interactions (Chamberlain and Shipston, 2015) (Figure 2). Furthermore, the 

reversibility of S-fatty-acylation offers spatial and temporal control of protein function, for 

example, stable association, and release of peripheral membrane proteins from lipid 

bilayers (Figure 3).  
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Figure 3. Protein S-fatty-acylation regulates multiple steps in the life cycle of 

membrane and peripheral membrane proteins. Protein S-fatty-acylation can happen at 

multiple locations including ER, Golgi, endosomes, as well as the plasma membrane. A) 

Protein synthesis and ER exit. B) Maturation and Golgi exit. C) Sorting and trafficking to 

the plasma membrane. D) Clustering into membrane microdomains. E) Partitioning of 

peripheral membrane proteins between the cytosol and membranes. F) Internalization. G) 

Recycling and degradation. 
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1.1.2 N-myristoylation 

Protein N-myristoylation describes the covalent modification of N-terminal Gly residues 

with a 14 carbon fatty acid (myristate) (Farazi et al., 2001) (Figure 1B). This fatty acid is 

transferred from myristoyl-CoA to substrate proteins by N-myristoyltransferase (NMT). 

N-myristoylation is necessarily preceded by proteolysis to reveal an N-terminal glycine, 

the only completely conserved motif across all known NMT substrates. N-myristoylation 

can also occur posttranslationally during apoptosis upon proteolytic cleavage, thereby 

exposing an N-terminal glycine residue within a myristoylation consensus sequence 

(Martin et al., 2011). Recent chemical proteomics approaches identified N-myristoylated 

proteins during normal cellular growth and apoptosis (Martin et al., 2008; Thinon et al., 

2014). The wide scope of substrates with diverse functions that undergo co-translational or 

post-translational N-myristoylation, such as c-Abl (Nagar et al., 2003), c-Src (Patwardhan 

and Resh, 2010), Bid (Zha et al., 2000), PAK2 (Vilas et al., 2006), and gelsolin (Sakurai 

and Utsumi, 2006), to name a few, underscores the critical role that N-myristoylation plays 

not only in proper localization of proteins but also regulating their activity. Notably, atomic 

crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b 

binds to the kinase domain and induces conformational changes that allow the SH2 and 

SH3 domains to dock onto it (Nagar et al., 2003). These approaches should help uncover 

potential roles of N-myristoylation in cancer and neurodegenerative disease.  

The 50-60 kDa monomeric enzyme NMT catalyzes the transfer of myristate from 

myristoyl-CoA to suitable peptides and proteins. The structure of the yeast Saccharomyces 

cerevisiae NMT1p was solved as a ternary complex and reveals how myristoyl-CoA and 

peptide substrates bind to the enzyme (Bhatnagar et al., 1998). Although usually non-
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eukaryotic species lack NMT that is required for this modification, there are instances of 

pathogen-host interaction around N-myristoylation. Indeed, since first discovered in the 

early eighties, many viral proteins has been found to be myristoylated by NMTs of their 

eukaryotic hosts (Maurer-Stroh and Eisenhaber, 2004). N-myristoylation of viral proteins 

has roles in assembly, structure, budding, viral entry and intracellular host interactions. 

Furthermore, bacteria effectors injected into host cells through type III secretion system 

(TTSS) can also be myristoylated (Nimchuk et al., 2000). A recent study found that 

Shigella flexneri virulence factor invasion plasmid antigen J (IpaJ) cleaves N-myristoylated 

glycines of eukaryotic proteins as a pathogenic mechanism in host cells (Burnaevskiy et 

al., 2013, 2015). Specifically, mass spectrometry showed that IpaJ cleaved the peptide bond 

between N-myristoylated Gly2 and Asn3 of human ARF1, thereby providing a new 

mechanism for host secretory inhibition by a bacterial pathogen (Burnaevskiy et al., 2013, 

2015). 

  



9 

 

1.1.3 O-acylation 

Protein O-acylation is a less common form of fatty-acylation at serine or threonine residues. 

A notable example of O-acylation is O-palmitoleoylation on Wnt proteins (Figure 1E). 

Wnts are secreted signaling molecules that are covalently modified with palmitoleic acid 

(16:1) at a serine residue (Gao and Hannoush, 2014; Takada et al., 2006). Other O-acylated 

proteins include ghrelin (Gutierrez et al., 2008; Yang et al., 2008), PLTX-II (Branton et al., 

1993), and histone H4 protein (Zou et al., 2011). Serine-3 of ghrelin is acylated with an 

eight-carbon fatty acid, octanoate, which is required for its endocrine actions. Notably, Wnt 

has been studied extensively because first of all, Wnt protein family is one of the largest 

secreted protein families that are responsible for extracellular signaling in virtually all 

animal development stages, and secondly post-translational fatty acylation is essential for 

its activity. Interestingly, mass spectrometry studies and recent bioorthogonal fatty acid 

labeling on Wnt3a have shown that Ser209 is O-palmitoleoylated rather than Cys77 (Gao 

and Hannoush, 2014; Takada et al., 2006). The enzyme that is responsible for the 

modification is called Porcupine, a member of membrane-bound O-acyl transferase 

(MBOAT). Chemical reporter methods also demonstrated that Porcupine is S-

palmitoylated, which negatively regulates Wnt signaling (Berthiaume, 2014). 
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1.1.4 ε-N-Lys acylation 

Fatty-acylation on Lys side-chain via formation of an amide bond is another potentially 

regulated lipid modification (Figure 1F). Tumor necrosis factor alpha (TNF-α) precursor 

and Interleukin-1-α were shown to undergo myristoylation on specific inner lysine residues 

(Stevenson et al., 1992, 1993). ε-N-Ly acylation has been long thought to be non-

hydrolysable due to the irreversible nature of amide bond linkage, but the recent discovery 

of SIRT6, a sirtuin family NAD+-dependent protein deacetylase that can also remove long-

chain fatty acids on Lys side chains reignites interests on dynamics regulation of fatty N-

acylation. SIRT6 promotes the secretion of TNF-α by removing the fatty acyl modification 

on K19 and K20 of TNF-α (Jiang et al., 2013). Subsequently, in vitro studies of all sirtuins 

to hydrolyze 13 different acyl groups have revealed the specificity of sirtuin enzymes for 

deacylating Lys modified with a broad range of fatty acids (Feldman et al., 2013; Teng et 

al., 2015). Interestingly, free fatty acids (FFAs) could stimulate deacetylation activity of 

SIRT6 towards long-chain acylated peptides. Crystal structure of SIRT6 reveals that, 

different from the other four members of mammalian sirtuins family, there is a large 

hydrophobic pocket that can accommodate long-chain fatty acyl groups rather than shorter 

acetyl groups. The new findings of protein deacylation enzyme activity provide a roadmap 

to uncover the biological functions of protein ε-N-Lys-fatty-acylation modifications with 

previously unknown functions.  
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1.2 Methods for analyzing fatty-acylated proteins 

Due to the importance of protein fatty-acylation in regulating protein function, there have 

been significant interests in detecting and characterizing these modifications in cells. 

Unlike phosphorylation and other post-translational modifications, no robust antibodies 

specific to lipid-modified peptides or proteins are readily available. Bioinfomatic 

predictions of fatty-acylation are also limited since some modifications do not have clear 

consensus motifs (Table 1). Traditionally, the analysis of protein fatty-acylation relied on 

radioactive lipid labeling, followed by immune precipitation and lengthy film exposure 

(Berthiaume et al., 1995; Schlesinger et al., 1980). However, this classical method suffers 

the risks associated with radioactivity, as well as low sensitivity and long exposure time, 

from days to months. Other methods like acyl-biotin exchange (ABE) (Drisdel and Green, 

2004) and acyl-resin-assisted capture (acyl-RAC) (Forrester et al., 2011) are useful to 

detect and enrich S-acylated proteins since the thioester bond can be readily cleaved with 

hydroxylamine and replaced by other functional groups. 

Bioorthogonal chemistry developed in the recent years has permitted improved 

detection and large-scale proteomic analysis of fatty-acylated proteins (Hang and Linder, 

2011; Hang et al., 2011). The two-step strategy involves metabolic labeling with chemical 

reporters and then detection using bioorthogonal chemistry (Grammel and Hang, 2013; 

Prescher and Bertozzi, 2005). The advantages of separating incorporation and detection are 

that 1) sterically-demanding fluorophores or affinity tags would not interfere with chemical 

reporter incorporation and 2) chemical reporters provide direct detection of the modified 

substrate.  
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Table 1. List of fatty acylation prediction sites. 

Myristoylation 

predictor  

http://mendel.imp.ac.at/myristate/ (Maurer-Stroh 

and Eisenhaber, 

2004) 

http://web.expasy.org/myristoylator/ (Bologna et al., 

2004) 

http://plantsp.genomics.purdue.edu/myrist.html (Podell and 

Gribskov, 2004) 

Palmitoylation 

predictor 

http://doc.aporc.org/wiki/CKSAAP-Palm (Wang et al., 

2009) 

http://csspalm.biocuckoo.org/ (Ren et al., 2008) 

http://nbapalm.biocuckoo.org/ (Xue et al., 2006) 

http://14.139.227.92/mkumar/palmpred/ (Kumari et al., 

2014) 

http://bioinfo.ncu.edu.cn/WAP-Palm.aspx (Shi et al., 2013) 

Prenylation site 

predictor 

http://mendel.imp.ac.at/sat/PrePS/ (Maurer-Stroh 

and Eisenhaber, 

2005) 
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1.2.1 Detection of fatty-acylation by radiolabeling 

The traditional method for detecting fatty-acylation study used radio-active 3H-, 14C-

labeled or iodinated fatty acids, which are converted into fatty-acyl-CoA in cells and 

incorporated into proteins. Compared to 3H-, 14C-labeling methods, use of radioiodinated 

fatty acids is advantageous, because it reduces the exposure times and allows the use of 

phosphorimager technology (Berthiaume et al., 1995; Peseckis et al., 1993). 

1.2.2 Bioorthogonal detection of fatty-acylation using chemical reporters 

By first incorporating fatty acid chemical reporters that contain bioorthogonal handles, we 

can then label modified proteins with secondary detection tags such as fluorophores or 

affinity tags (Charron et al., 2009a). The chemical reporter is usually of similar size with 

natural fatty acid (azide- or alkyne- reporter) to facilitate recognition by acyltransferase 

inside cells (Table 2). In vitro labeling can also be done using fatty acyl-CoA reporter 

analogs. Although both azide and alkyne reporters have been used in the past, alkyne 

reporters are preferred for detection of protein fatty-acylation due to its better efficiency 

and specificity (Figure 4) (Thinon and Hang, 2015). Our lab has successfully detected 

protein N-myristoylation (Charron et al., 2009a), S-palmitoylation (Charron et al., 2009a; 

Yount et al., 2010; Zhang et al., 2010), S-prenylation (Charron et al., 2011) and Lys-

acetylation (Yang et al., 2010b) using alkynyl-chemical reporters in the past. Alkyne-

tagged reporters have been used in specific and efficient two-step labeling with Cu(I)-

catalyzed azide-alkyne cycloaddition (CuAAC) for fluorescence visualization or 

quantitative proteomics methods such as stable isotope labeling by amino acids in cell 

culture (SILAC) (Figure 4). Specifically, SILAC enables the evaluation of 
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signal/background ratios to identify fatty-acylated proteins with high confidence as well as 

the comparison of the protein acylation level (Peng et al., 2016). 

 

Figure 4. Detection of protein fatty-acylation using chemical reporters. Alkyne-

bearing chemical reporters are fed to the cells. After uptake and metabolic incorporated 

into proteins, cells are lysed and subjected to subsequent CuAAC ligation with either 

fluorophore for imaging or biotin for proteomics study. 

 

One of the advantages of using chemical reporters is the ability to apply to versatile 

lipid modifications on proteins, including S-fatty-acylation, N-myristoylation and S-

prenylation. They also offer more sensitive and immediate detection compared to 

radioactive methods. After probes have been incorporated into proteins, samples can be 

processed and reacted through bioorthogonal chemistries with fluorophore conjugates for 

visualization or biotin conjugates for enrichment. Furthermore, dynamic S-fatty-acylation 
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can be readily monitored using pulse-chase analysis with fatty acid reporters (az-16 or alk-

16) (Martin et al., 2012; Zhang et al., 2010). 

Table 2. List of chemical reporters for fatty-acylation. 

Acylation Reporter chemical 

structure 

References 

S-palmitoylation 

, Alk-16 or ODYA 

(Charron et al., 2009b; 

Hannoush and Arenas-

Ramirez, 2009) 

 

, HDYOA 

(Yount et al., 2011a) 

 

, Alk-14 

(Charron et al., 2009a; 

Hannoush and Arenas-

Ramirez, 2009) 

 

, Az-15 

(Charron et al., 2009a; 

Hang et al., 2007) 

 

, Az-14-CoA 

(Kostiuk et al., 2008) 

  

15
OH

O

O
14

OH

O

13
OH

O

N3
14
OH

O

N3
13
S

O
CoA
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Table 2. List of chemical reporters for fatty-acylation (continued). 

Acylation Reporter chemical 

structure 

References 

N-myristoylation 

, Alk-11 

(Hannoush and Arenas-

Ramirez, 2009) 

 

, Alk-12 

(Charron et al., 2009a; 

Hannoush and Arenas-

Ramirez, 2009; Heal et al., 

2008a) 

 

, Alk-12-CoA 

(Heal et al., 2008a) 

 

, Az-11 

(Heal et al., 2008a) 

 

, Az-12 

(Charron et al., 2009a; 

Hang et al., 2007; Martin et 

al., 2008) 

 

, Az-11-CoA 

(Heal et al., 2008a, 2008b) 

 

  

10
OH

O

11
OH

O

11
S

O
CoA

N3
10
OH

O

N3
11
OH

O

N3
10
S

O
CoA
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1.2.3 Acyl-biotin exchange method for S-fatty-acylation detection and enrichment 

Unlike N-/O- acylation, thioester linkage is sensitive to nucleophilic reagents that can be 

exploited for detection and enrichment. Drisdel and Green developed acyl-biotin exchange 

(ABE) chemistry to take advantage of the free thiol that is liberated by hydroxylamine 

(NH2OH) to be labeled with a Cys-reactive reagent (Drisdel and Green, 2004). In the first 

step, cell extracts are treated with N-ethylmaleimide (NEM) to block free Cys residues. 

One-half of the sample is then treated with NH2OH to remove fatty acids from Cys residues, 

whereas the other half is the control sample. Reactive biotin reagents like HPDP-Biotin 

(N-[6-(Biotinamido)hexyl]-3 ́-(2 ́-pyridyldithio)propionamide) can then be used to label 

newly liberated Cys residues. Biotinylated proteins are then captured on a streptavidin 

column and eluted. Eluted proteins can be either visualized by SDS-PAGE or analyzed by 

proteomics (Figure 5A). A S-palmitoylated protein should be present in the NH2OH-treated 

sample, but absent from the control sample. 

Compared to the chemical reporters method, ABE does not require metabolic 

labeling so it can be used to analyze S-acylated proteins in native cells, tissues, and 

biofluids (Zhou et al., 2014). ABE has been used to analyze global protein palmitoylation 

in the yeast, which identified thirty five new S-palmitoyl proteins including many SNARE 

proteins and amino acids permeases as well as other participants in cellular signaling and 

membrane trafficking pathway (Roth et al., 2006). While ABE has the potential to capture 

the full S-acylproteome, chemical reporters only capture proteins that are dynamic and 

turnover during the metabolic labeling window, which indicates that metabolic labeling 

method is potentially biased towards the enrichment of proteins with fast S-fatty-acylation 

turnover.  
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Figure 5. Methods for analysis of fatty-acylated proteins. A) Acyl-biotin exchange 

(ABE). B) Acyl-RAC. C) Acyl-PEG exchange (APE). 
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1.2.4 Acyl-RAC method for S-fatty-acylation detection and enrichment 

ABE is readily adapted to immunoblotting techniques and is also adaptable to mass 

spectrometric-based identification of individual S-acylated proteins (Kang et al., 2008; 

Roth et al., 2006; Yang et al., 2010a). However, the detection of biotinylated proteins 

requires repeated protein precipitations, SDS neutralization, and streptavidin pull-down. 

An alternative to ABE that uses the detection of S-acylated proteins via resin-assisted 

capture (acyl-RAC) instead of biotinylation was proposed (Forrester et al., 2009, 2011; 

Ren et al., 2013). Specifically, acyl-RAC method was initially described as a methodology 

to identify S-nitrosylation sites in proteins and later developed to apply on S-fatty-acylation. 

Coupled with mass-spectrometry proteomics, acyl-RAC can be also used to enrich and 

identify S-acylproteome (Figure 5B). Compared with ABE, which involves multiple steps 

of precipitation and resolubilization of samples, acyl-RAC method use thiolpropyl 

sepharose to eliminate the biotin enrichment steps so the purification scheme is relatively 

simplified (Zhou et al., 2014). This method can also be generalized to study other cysteine-

based reversible modifications, including disulfide formation, S-nitrosylation (SNO), and 

S-glutathionylation (SSG), by varying reducing reagents such as ascorbate, glutaredoxin, 

DTT, or NH2OH, respectively (Guo et al., 2014). 
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 Acyl-RAC has been used to detect S-fatty-acylation of overexpressed and 

endogenous H-Ras in mammalian cell system in an NH2OH-dependent manner. Double 

mutants C181,184S, which are not S-acylated, were not detected, which further validate 

the specificity of acyl-RAC method. Coupled with mass spectrometry and isobaric labeling 

method, acyl-RAC was able to identify new S-acylated substrates, such as the β-subunit of 

the protein translocating system (Sec61b), ribosomal protein S11 (Rps11), and microsomal 

glutathione-S-transferase 3 (MGST3) (Forrester et al., 2011). 
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1.2.5 Acyl-PEG exchange method for S-fatty-acylation detection and enrichment 

To evaluate endogenous levels of S-fatty-acylation, our laboratory developed a mass-shift 

labeling method that exploits the NH2OH-sensitivity of thioesters and selective reactivity 

of Cys residues for site-specific alkylation with maleimide-functionalized polyethylene 

glycol reagents, termed acyl-PEG exchange (APE) (Figure 5C). APE induces a mass-shift 

on S-acylated proteins that can be readily monitored by western blot analysis of target 

proteins and circumvents the need for metabolic labeling or affinity enrichment of proteins. 

More importantly, acyl-PEG exchange method reveals the ratio of unmodified versus S-

fatty-acylated proteins or multiple sites of S-fatty-acylation, which is critical for 

understanding how quantitative differences in S-fatty-acylation level control protein 

function and associated cellular phenotypes. APE provides a sensitive and readily 

accessible method of evaluating endogenous S-fatty acylation levels and should facilitate 

the quantitative analysis of this dynamic lipid modification in diverse cell types and tissues 

(Percher et al., 2016). 
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1.2.6 Comparison of different methods for protein S-fatty-acylation detection and 

enrichment 

In general, two major methods exist for S-fatty acylation: first is metabolic chemical 

reporter labeling method, in which synthetic fatty acids analogs with bioorthogonal handles 

are incorporated into proteins on cysteine residues; the second is to use reversible 

modifications of cysteine thiols to label S-acylated residues. The two methods complement 

each other and are best used together to avoid some of the biases. 

Firstly, ABE, acyl-RAC, or APE does not require metabolic labeling so it can be 

used to analyze S-acylated proteins in native cells, tissues, and biofluids. In comparison, 

chemical reporters metabolic labeling requires feeding and uptake of chemical reporters 

beforehand. Secondly, ABE, acyl-RAC, APE have the potential to capture the full S-

acylproteome, while chemical reporters theoretically only capture proteins that become S-

acylated during the metabolic labeling window, which tends to label proteins with fast 

turnover (Zhou et al., 2014). However, metabolic labeling has considerable advances in the 

past decade. Development of bioorthogonal reactions enables versatile chemical reporters 

for various kinds of modifications. The ability to pulse reporters at a specific time into cell 

culture, tissue or animals provides information about the dynamics of the modification 

(Martin et al., 2012; Zhang et al., 2010). 
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1.3 Discovery of new fatty-acylated proteins from chemical proteomics 

1.3.1 Summary of proteomics studying using chemical reporter and ABE method 

It has been challenging to study protein fatty acylation due to lack of specific antibody and 

limited methods. However, some of the methods developed as mentioned above enabled 

specific enrichment and large-scale analysis using mass spectrometry. Metabolic chemical 

reporters introduce alkyne or azide tag into fatty-acylated proteins, which allows 

bioorthogonal reactions with affinity tags (e.g., biotin) for selective enrichment and large-

scale proteomic identification (Peng et al., 2016). This chemical reporter strategy has been 

widely employed for the global analysis of N-myristoylated and S-palmitoylated proteins, 

and can in principle be used for other fatty-acylated proteins. Alternatively, NH2OH-

mediated ABE or acyl-RAC methods utilize HPDP-biotin or thiolpropyl sepharose to 

capture and enrich S-acylated proteins for mass spectrometry analysis (Thinon and Hang, 

2015).  

 Those selective methods have allowed the large-scale analysis of fatty-acylated 

proteins in different cell types and animals and more than 300 fatty-acylated proteins have 

been identified to date, suggesting broader roles of fatty-acylation in regulating eukaryotic 

biology than previously appreciated (Thinon and Hang, 2015). To label N-myristoylation 

proteins, alk-12 is preferred reporters because comparative analysis of different analogs 

like alk-11, alk-12, az-11 and az-12 showed that alk-12 in combination with azide-tagged 

fluorophores gives minimal background labeling. Alk-12 also labels N-myristoylated 

proteins better than other longer-chain fatty acid reporters (Charron et al., 2009a; Wilson 

et al., 2011). However, it becomes complicated when chemical reporters enter the cell and 

are metabolized to other alkyne containing molecules. It should be also noted that some of 
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the fatty-acylation process is highly promiscuous which tolerates chemical reporters 

labeling non-specifically (Jiang et al., 2013). To mediate the artifact effects of false positive 

candidates, several strategies have been used. First one is to use NMT inhibitors to test 

whether the enriched proteins are dependent on NMT inhibitors or not to reliably identify 

NMT substrates. Wright et al. quantitatively profiled N-myristoylation in malaria parasites 

using chemical reporters, NMT inhibitors and validated NMT as a potential drug target 

(Wright et al., 2014). Further analysis of global co-translationally and post- translationally 

N-myristoylated proteome in human cells has identified over 100 NMT substrates, 

including 40 proteins that are post-translationally N-myristoylated, following caspase 

cleavage, during apoptosis (Thinon et al., 2014). Further application of this strategy in 

parasites such as Leishmania donovani, revealed 30 high confidence NMT substrates with 

more than half uncharacterized previously (Wright et al., 2015). However, due to the 

toxicity of NMT inhibitors, not all the systems will work with this strategy. Another way 

to differentiate N-myristoylation from other forms of fatty acylation is to use the criteria of 

possession of N-terminal glycine. Studies on global profiling of host N-myristoylated 

proteins in cells infected by herpes simplex virus (HSV) or human immunodeficiency virus 

1 (HIV-1) revealed protein fatty-acylation during infection (Colquhoun et al., 2015; Serwa 

et al., 2015). Another N-myristoylation study in the context of bacterial infection was 

focused on Gram-negative bacteria Shigella effector protein IpaJ (Burnaevskiy et al., 2015). 

IpaJ specifically demyristoylates Golgi-associated ARF/ARL family GTPases during 

Shigella infection which suggests important concerted mechanism of proteolytic 

demyristoylation. 
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 Proteomics studies on S-fatty-acylation using ABE, acyl-RAC or chemical 

reporters methods have made a tremendous contribution to our understanding of this 

reversible modification (Thinon and Hang, 2015). Indeed, there were over 20 proteomics 

profiling studies on identification of dynamic S-acylated proteins and substrates of DHHC 

or deacylation enzyme (Table 3). The palmitoyl acyltransferases (PATs) encoded by 

ZDHHC genes (5 in fission yeast, 7 in budding yeast, 23 in human, 24 in mouse and 

Arabidopsis) are responsible for catalyzing the formation of thioester bond on cysteine 

residue with fatty acyl-CoA. Since there are redundant genes for this enzymatic activity, 

one important question that remains to be solved is the function and specificity of each 

DHHC-PAT enzyme. In cells, DHHC-PATs are localized to different compartments such 

as the endoplasmic reticulum, the Golgi apparatus, plasma membrane, and endocytic 

vesicles. The first global study in Saccharomyces cerevisiae by Roth et al. compared the 

differences in the S-fatty-acylation levels of 30 abundant S-acylated proteins before and 

after the deletion of one to six DHHC-PATs (Roth et al., 2006). They were able to identify 

35 new S-palmitoylated proteins and reveal the diverse enzymatic specificities of 

individual DHHC-PATs. A global analysis of rat neural S-palmitoylome using the ABE 

method identified most of the known neural palmitoyl proteins and more than 200 new S-

palmitoylated protein candidates with diverse functions, including neurotransmitter 

receptors, transporters, scaffolding proteins, as well as vesicular trafficking proteins (Kang 

et al., 2008). 

 S-palmitoylome study using chemical reporters in dendritic cells (DC2.4) identified 

more than 150 candidate S-palmitoylated proteins and revealed that S-palmitoylation is 

crucial for the antiviral activity of IFITM3 as well as the activity of Toll-like receptor 2 
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(TLR2), both of which are crucial immune-related proteins, highlighting the importance of 

S-fatty-acylation in control of immune response (Chesarino et al., 2014a; Yount et al., 

2010). Quantitative proteomics with ABE and Stable Isotope Labeling of Mammals 

(SILAM) has also enabled protein S-palmitoylation profiling in more complex biological 

samples (Wan et al., 2013) (Table 3). 

 The advances that have been made on understanding of protein fatty-acylation and 

the scale of proteome that is regulated by these modifications enable us to design new drug 

targets deepen our understanding of the biological function. Though we should also 

recognize that there are limitations of current methods. The first one is to understand the 

native S-fatty-acylation of endogenous proteins. Both ABE or metabolic labeling methods 

ignore or presume the fatty acid to be palmitate. However, other long chain fatty acids like 

palmitoleate, stearate, oleate, arachidonate, and eicosapentaenoic acid can also modify 

proteins on cysteine residues. Mass spectrometry analysis of intact S-acylated peptides can 

provide direct evidence of the fatty acids composition. 
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Table 3. Summary of literature on proteomics study of fatty-acylated proteins 

Species Method References 

Saccharomyces 

cerevisiae 

ABE (Roth et al., 2006),  

Embryonic rat 

neurons 

ABE (Kang et al., 2008) 

Jurkat T cells Chemical reporter (Martin and Cravatt, 2009), (Wilson et al., 

2011) 

Macrophage ABE (Merrick et al., 2011) 

Human B cells ABE (Ivaldi et al., 2012) 

Plasmodium 

falciparum 

ABE/Chemical 

reporter 

(Jones et al., 2012) 

Neuronal stem cell Chemical reporter (Li et al., 2012)a 

Endothelial cell ABE (Marin et al., 2012)a, 

Mouse brain ABE (Wan et al., 2013) 

. 
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1.3.2 Discovery of IFITMs S-fatty-acylation 

Proteomic analysis of fatty-acylated proteins in murine dendritic cell line (DC2.4) using a 

palmitic acid reporter (alk-16) and bioorthogonal ligation methods by our laboratory 

recovered known S-palmitoylated proteins (i.e. NRas, CANX) as well as many new 

candidate S-fatty-acylation proteins such as IFITMs that are directly involved in host 

immunity to pathogens (Yount et al., 2010) (Figure 6). The S-fatty-acylation on IFITM3 is 

NH2OH-sensitive, and loss of S-fatty-acylation by mutagenesis of all three Cys residues 

inactivates IFITM3. The first two Cys residues are at the edge of the first helical domain 

while the third Cys is near the second helical domain. The two helical domains are 

predicted to be transmembrane, but the exact topology of IFITM3 remained to be 

determined. 
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Figure 6. Visualization and identification of S-palmitoylated proteins in dendritic 

cells. A) Metabolic labeling of cells with alk-16 palmitate reporter and subsequent CuAAC 

ligation with bioorthogonal detection tags for imaging or proteomics. B) and C) DC2.4 

cells were incubated for two hours with 50 mM alk-16 or DMSO as a control. In B), cell 

lysates were reacted with az-rho by CuAAC, and proteins were separated by SDS-PAGE 

for visualization by fluorescence gel scanning. Coomassie blue staining demonstrates equal 

loading. In C), cell lysates were reacted with az-diazo-biotin by CuAAC for the enrichment 

of alk-16–labeled proteins with streptavidin beads and identification by mass spectrometry. 

For each identified protein, the ratio of peptide spectral counts from the alk-16 and DMSO 

samples was plotted. Several known palmitoylated proteins are shown in black. IFITM3, 

the highest-ranked candidate S-palmitoylated protein, is shown in red. Figure is taken from 

(Yount et al., 2010).  
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Chapter Two: Characterization of IFITM3 S-palmitoylation 

2.1 Summary 

Interferon-induced transmembrane protein (IFITM) family proteins are unique interferon-

induced proteins that restrict the infection of multiple pathogenic viruses. Our laboratory 

discovered that S-palmitoylation and ubiquitination of IFITM3 are critical for its antiviral 

activity. While overexpression of wild-type mouse or human IFITM3 in mammalian cell 

lines significantly reduced influenza A virus (IAV) infection, overexpression of the S-

palmitoylation deficient (Palm∆) IFITM3 mutant had no antiviral activity. Notably, 

mutation of Cys72 to Ala (C72A) in both mouse and human IFITM3 constructs increased 

the infection level, and additional mutation of Cys71 to Ala (C71A) further reduced the 

antiviral effect to the level similar to that of Palm∆ IFITM3. Bioinformatics studies on the 

IFITM family of proteins across 27 vertebrates reveals that CD225 domain and all three 

cysteines are highly conserved, Especially C72 is more conserved than C71 and C105. To 

quantify the endogenous levels of IFITM3 palmitoylation, we developed a mass-shift assay 

based on hydroxylamine-sensitivity of thioesters and selective maleimide-modification of 

Cys residues, termed the acyl-PEG exchange (APE). Using metabolic chemical reporter 

labeling and APE methods, we demonstrated that IFITM3 is S-fatty-acylated on three Cys 

residues, but specific sites and fatty acylation levels are vital for its antiviral activity. 

We observed lower protein expression levels of human IFITM3 C72A mutant in 

HeLa and lung epithelial cells, suggesting S-palmitoylation might regulate the stability of 

IFITM3. To understand the precise mechanism(s) by which IFITMs prevent virus entry, 

we generated hIFITM1, 2, 3 deletion cell lines utilizing CRISPR/Cas9 technology. We then 

performed a cycloheximide (CHX) chase assay in HeLa IFITM2/3 knockout (KO) cell 
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lines with overexpressed IFITM3 WT and cysteine mutants with or without 

proteasome/lysosome/p97 inhibitor to identify which pathway is responsible for IFITM3 

degradation. 
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2.2 Introduction 

2.2.1 Early findings on IFN-induced effectors 

Interferons (IFN) are a group of cytokines made and released from host cells to inhibit 

pathogen infection by inducing expression of more than 300 IFN-stimulated genes (ISGs) 

(MacMicking, 2012; Sadler and Williams, 2008). Type I IFNs activate host pathways to 

inhibit the replication of most viruses. Humans deficient in components of type I IFN 

signaling are particularly vulnerable to viral disease. This innate system of defense limits 

viral infections through the induction of ISGs but the antiviral mechanisms for many of 

these genes remain to be determined.  

 As early as the 1950s, researchers observed that under certain conditions virus-

infected cells are resistant to a second virus infection. It also had been demonstrated that 

inactivated IAVs can interfere with live IAVs, even though the mechanism or substance 

that mediates this process was not known (Henle, 1950). In 1957, the term “interferon” was 

coined by Isaacs & Lindenmann to describe the substance that interferes with IAV (Isaacs 

and Lindenmann, 1957; Isaacs et al., 1957). By the 1980s, it was shown that IFN is a small 

protein produced and secreted by cells (Lengyel, 1982). It had been nearly two decades 

since the initial description of IFN before methods were developed to allow sufficient 

purification and more rigorous characterization of IFN properties (Pestka, 2007). 
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2.2.2 Discovery of antiviral activity of IFITMs towards different viruses 

IFITM family was recently shown to mediate a significant portion of the IFN-associated 

response. IFITMs appear to be conserved in vertebrates with 5 homologs in humans 

(IFITM1, 2, 3, 5 and 10) and 7 in mice (Ifitm1, 2, 3, 5, 6, 7 and 10). Murine embryonic 

fibroblasts (MEFs) deficient in Ifitm3 were more readily infected with influenza virus than 

control cells, before and particularly after treatment with IFNα when compared to wild-

type MEFs. In addition, overexpression studies have shown that IFITM3/Ifitm3 is the most 

active isoform and also provides antiviral activity against many other pathogenic viruses 

including, hepatitis C virus (HCV), dengue virus, West Nile virus, vesicular stomatitis 

virus (VSV), human immunodeficiency virus (HIV), and SARS virus (Bailey et al., 2012; 

Brass et al., 2009; Everitt et al., 2012; Schoggins et al., 2011; Yount et al., 2010). (Table 

4).  

Table 4. List of viruses suppressed by IFITMs.  Taken from (Perreira et al., 2013) 
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2.2.3 IFITM3 posttranslational modifications, localization and membrane topology 

IFITMs are relatively small proteins (133 - 137 amino acids) that were originally predicted 

to be dual-pass transmembrane proteins based on two hydrophobic domains (Brass et al., 

2009). Subsequent biochemical studies from our laboratory revealed that mIFITM3 is also 

ubiquitinated on four conserved lysines (K24, K83, K88, K104), mostly on K24, which 

regulates IFITM3 stability, antiviral activity and localization (Yount et al., 2012) (Table 5). 

Tyr20 was later reported to be phosphorylated (Chesarino et al., 2014b; Jia et al., 2012). 

The identification of K24 ubiquitination on IFITM3 raised the possibility that the predicted 

dual-pass transmembrane topology was incorrect since the enzymes responsible for 

ubiquitin conjugation are localized in the mammalian cytosol (Yount et al., 2012). 

Subsequent N-linked glycosylation mapping studies and protein lipidation engineering (N-

myristoylation and C-prenylation) studies, in conjunction with immunofluorescence 

analysis and antiviral activity assays from our laboratory suggest that mIFITM3 may be an 

intramembrane protein where both the N- and C-termini of mIFITM3 have access to the 

cytoplasm (Yount et al., 2012). In addition to S-fatty-acylation and ubiquitination, 

phosphorylation of Tyr20 has also been reported to regulate IFITM3 endocytosis from the 

plasma membrane (Chesarino et al., 2014a; Jia et al., 2014). More recent epitope-mapping 

studies have also confirmed the cytoplasmic orientation of IFITM3 N-terminus and suggest 

that the C-terminus may either be luminal or extracellular (Bailey et al., 2013; Weston et 

al., 2014). These studies collectively suggest that the IFITM proteins may adopt an 

intramembrane or type II membrane protein topology, or both, in mammalian cells (Figure 

7). 
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Figure 7. Topology model of IFITM3. From left to right, predicted dual-pass 

transmembrane topology, intramembrane topology and type II membrane topology models. 

 

Table 5. Summary of post-translational modifications on IFITM3. 

Residue PTM Function* 

Y20 Phosphorylation Localization 

K24 Ubiquitination  Stability, anti-viral activity 

C71 S-fatty-acylation Stability, localization, anti-viral activity 

C72 S-fatty-acylation Stability, localization, anti-viral activity 

K83 Ubiquitination  Stability, anti-viral activity 

K88 Ubiquitination  Stability, anti-viral activity 

K104 Ubiquitination  Stability, anti-viral activity 

C105 S-fatty-acylation Stability, localization, anti-viral activity 

 The exact function of each PTM is still not very clear 
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Our laboratory has further demonstrated the antiviral activity of Ifitm3 is dependent 

on S-palmitoylation of all three membrane-proximal Cys residues as well as ubiquitination 

of conserved Lys residues that regulate IFITM3 protein turnover and localization to 

endolysosomes. However, the precise mechanisms of how S-fatty-acylation of IFITM3 

controls its antiviral activity, and protein stability are still unclear. Sequence alignment of 

IFITM family from human, mouse, and chicken revealed highly conserved cysteine 

residues across all species (Figure 8), which highlights the importance of S-fatty-acylation 

during the evolution of IFITM family. To follow up on our previous study of mouse 

IFITM3, we focused on human IFITM3. 
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Figure 8. Sequence alignment and predicted topology of IFITM proteins. Human, 

mouse, and chicken IFITM protein family sequences are aligned. Red residues indicate that 

at least nine of twelve IFITM proteins are conserved. The site of palmitoylation is 

highlighted in orange. Green and blue highlighting indicate species-specific signature 

residues of humans and mice, respectively, possibly suggesting interaction with a cofactor 

that similarly diverged in each species. Blue stars indicate conserved cysteines position. B) 

Membrane topology models of IFITM3. 
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2.3 Results 

2.3.1 S-fatty-acylation of human IFITMs 

Our lab previously discovered that S-fatty-acylation of membrane-proximal Cys on 

murine IFITM3 enhances its clustering and is crucial for its inhibitory activity toward 

influenza virus infection (Yount et al., 2010). However S-fatty-acylation does not appear 

to influence the protein levels of overexpressed murine IFITM3 in human HeLa cells, as 

judged by western blot, immunofluorescence, and flow cytometry analysis (Yount et al., 

2010), (Figure 9). For our studies of human IFITM3, expression of Cys-to-Ala mutants in 

A549 revealed that all three Cys residues are S-acylated, indicating a conserved pattern of 

S-fatty-acylation (Figure 10). Alkynyl palmitate reporter alk-16 was used to detect IFITM3 

S-fatty-acylation as shown in Figure 9 and Figure 10. Specifically, 50 µM Alk-16 was 

pulsed for one hour after transfection with respective IFITM3 constructs. Cells were then 

harvested and immunoprecipitated using α-HA antibody conjugated resin. On-bead click 

chemistry was then performed and the in-gel fluorescence level was measured using 

Typhoon biomolecule imager. Interesting, the human IFITM3 C72A mutant affects not 

only its S-palmitoylation but also protein expression levels (Figure 10). C71A has lower 

expression level compared to the wild-type and but still higher than C72A. We then 

performed a similar analysis on human IFITM1 and IFITM2 (Figure 11). All three IFITMs 

orthologues were S-acylated on the conserved Cys. Interestingly, IFITM2 and IFITM3 

showed doublet bands in in-gel fluorescence results while IFITM1 only showed a single 

band. Sequence alignment showed IFITM1 has a shorter N-terminal domain, but all three 

proteins have conserved CD225 domain including three Cys at similar positions near the 

helical domain (Figure 9). Mutagenesis analysis of single Cys to Ala showed that the 
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middle Cys expressed consistently lower level proteins, which suggests a conserved 

function of this key Cys residue on IFITM protein stability (Figure 11)  

 

 

Figure 9. S-fatty-acylation of murine IFITM3 and Cys mutants. NIH3T3 cells 

transfected with HA-mIFITM3 constructs were metabolically labeled for two hours with 

50 µM alk-16. Cell lysates prepared with 1% Brij 97 were subjected to 

immunoprecipitation with anti-HA agarose beads, reacted with az-rho by CuAAC, 

separated by SDS-PAGE and visualized by fluorescence gel scanning. Comparable protein 

loading was confirmed by anti-HA western blotting (Data from Jacob Yount). 
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Figure 10. S-fatty-acylation of human IFITM3 and Cys mutants in A549 cells. Human 

IFITM3 plasmid was subcloned into N-HA vector to create pCMV-HA-hIFITM3 plasmid. 

Single, double and triple (PalmΔ) mutations were made using QuikChange II XL Site-

Directed Mutagenesis Kit (Agilent). A549 cells were plated in growth medium without 

antibiotics the day before the experiment and then trasfected with indicated plasmids using 

Lipofectin® 2000 (Invitrogen). After 18 hours of incubation, cells were labeled with alk-

16 reporter for one hour. Cells were then lysed in 1% Brij97 buffer with EDTA-free 

protease inhibitors. After centrifugation to get rid of cell debris, the supernatant was 

immunoprecipitated with EZviewTM anti-HA agarose (Sigma-Aldrich). After washing with 

RIPA buffer for three times, on beads click chemistry was then performed and incubated 

for one hour at room temperature. Beads were washed again with RIPA buffer for three 

times before adding loading buffer and subject to SDS-PAGE. Two identical gels are 

subjected to western blot analysis and in-gel fluorescence respectively. 
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Figure 11. S-fatty-acylation of human IFITMs in HEK293T cells. In-gel fluorescence 

detection of alk-16 labeled proteins and α-HA western blot of the same gel were performed 

to show protein expression and S-fatty-acylation. A) Wild-type pCMV-HA-IFITM1, 

pCMV-HA-IFITM2, and pCMV-HA-IFITM3 were transfected into HEK293T cells before 

labeling with Alk-16. B) Single cysteine mutations IFITM1 C50A, C51A, C84A, IFITM2 

C70A, C71A, C104A and IFITM3 C71A, C72A, C105A, were labeled with alk-16 and S-

palmitoylation was measured using in-gel fluorescence. 
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2.3.2 Characterization of endogenous and site-specific S-fatty-acylation levels of 

IFITM3 in mammalian cells 

Our site-directed mutagenesis studies and alk-16 labeling revealed that all three Cys 

residues can be S-acylated. However, mutation of Cys to Ala may affect properties other 

than S-fatty-acylation and does not reveal the endogenous levels of IFITM3 S-fatty-

acylation. To address these challenges, our laboratory has developed a mass-shift detection 

method based on NH2OH-sensitivity of thioesters and selective maleimide-modification of 

Cys, termed acyl-PEG exchange (APE). The protocol of APE is discussed in Chapter 1.2. 

We first tested APE for detection of S-fatty-acylation of endogenous IFITM3 from 

NIH3T3 and Raw264.7 cell lines (Figure 12), which revealed three slower migrating 

PEGylated polypeptides in SDS-PAGE that likely correspond to the mono-, di-, and tri-S-

fatty-acylated isoforms of mIFITM3. Unmodified IFIMT3 is far less abundant than the 

PEGylated proteins, which indicated that most of the endogenously expressed mIFITM3 

in IFN-stimulated cells are S-acylated on one or more Cys residues. The analysis of 

endogenous human IFITM3 in A549 cells also revealed similar results to mouse IFITM3 

(Figure 13). Endogenous Calnexin 1 (CANX) that is dually S-palmitoylated was used as a 

control for protein loading and APE (Lakkaraju et al., 2012). 
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Figure 12. Endogenous mIFITM3 S-palmitoylation assessed by APE. NIH3T3 or 

RAW264.7 cells were activated with 500 ng /mL LPS, 100 U/mL IFN-γ for 16 hours, 

subjected to APE, separated by SDS-PAGE and analyzed by western blot (Data from 

Percher et al., 2016) 
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Figure 13. Endogenous human IFITM3 S-fatty-acylation in A549 cells. A549 cells 

were activated with 500 ng/mL LPS, 100 μg/mL IFN-γ or IFN-α for 16 hours, subjected to 

APE, separated by SDS-PAGE and analyzed by western blot. (Data from Percher et al., 

2016) 
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To evaluate the contribution of individual Cys residues on IFITM3 S-fatty acylation 

levels, we generated single and double Cys mutants and analyzed their levels of S-fatty 

acylation by APE and metabolic labeling methods. APE analysis of the wild-type and the 

individual Cys to Ala HA-mIFITM3 mutants transfected into unstimulated murine NIH3T3 

fibroblasts showed that mutation of Cys71 and 105 to Ala eliminated the tri-S-acylated 

fraction and decreased the levels of the mono- and di-S-acylated mIFITM3. In contrast, the 

C72A mutant or multiple Cys mutants containing C72A abrogated the tri- and di-S-

acylated IFITM3 and even lost the mono-S-acylated fraction for C72,105A mutant (Figure 

14). A similar trend was also observed for human IFIMT3 APE experiment (Figure 15). 

The comparison of APE and alk-16 labeling suggests that while the C72A IFITM3 mutant 

is still significantly mono-S-fatty-acylated, the majority of fatty acid metabolic labeling is 

abrogated (Figure 10 and Figure 15). These data suggested that quantitative differences of 

dynamic S-fatty-acylation may contribute to the function of IFITM3. 
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Figure 14. APE analysis of overexpressed mIFITM3 and Cys mutants. NIH3T3 cells 

transfected with WT HA-mIFITM3 or Cys to Ala mutant constructs were subjected to APE, 

separated by SDS-PAGE and analyzed by western blot. Analysis of whole cell lysate 

(WCL) indicates levels of protein expression without APE. 
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Figure 15. APE of overexpressed human IFITM3 and mutants. HEK293T cells 

transfected with WT and mutant HA-IFITM3 constructs were analyzed using APE protocol. 

For the wild-type sample, with or without hydroxylamine (HA) controls were both used. 

Star indicated the mono-, di-, and tri-S-palmitoylated species. 
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2.3.3 Anti-influenza virus activity of IFITM3 S-palmitoylation mutants 

We next evaluated the antiviral activity of IFITM3 Cys mutants using flow cytometry 

staining with influenza virus NP-specific antibodies, as previously described by our 

laboratory (Yount et al., 2010, 2012). The analysis of HA-IFITM3-PalmΔ mutant activity 

against H1N1 influenza virus (type A, PR8 strain) infection confirmed this S-

palmitoylation deficient has decreased antiviral activity. Interestingly, both mouse and 

human IFITM3 C72A had significantly less activity compared to C71A (Figure 16). 

Moreover, C71, 72A double mutant showed loss of activity similar to the level of PalmΔ, 

which suggested that C71 and/or C72 are necessary for the activity of IFITM3. On the 

other hand, C71A hardly affected antiviral activity, which suggests a crucial role of Cys72 

S-fatty-acylation for the full antiviral activity of IFITM3. Note that single C105A mutant 

also had decreased activity to a very low level especially for mouse IFITM3, however 

IFITM3 double mutants C71,72A with only one Cys105 was inactive (Figure 16) 

indicating Cys105 is essential but not sufficient for the activity of IFITM3. 
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Figure 16. Antiviral activity of WT and IFITM3 Cys mutants. A) NIH3T3 fibroblasts 

were transfected with vector or HΑ-mIFITM3 plasmids, then infected with influenza A 

virus (PR8 strain) for six hours and analyzed by flow cytometry using α-HA antibody to 

identify HA-mIFITM3 expressing cells and α-NP to analyze the number of IAV-infected 

cells. B) HEK293T cells were transfected overnight with indicated plasmids before a 6-h 

infection with influenza virus at a multiplicity of infection of 2.5 and analyzed by flow 

cytometry. Cells expressing IFITM3 constructs were analyzed for the percentage of cells 

that were infected using influenza specific anti-NP antibodies. 
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2.3.4 Immunofluorescence analysis of IFITM3 Cys mutants in mammalian cells. 

To understand the mechanism of action of IFITM3 S-fatty-acylation, we investigated the 

influence of S-palmitoylation on IFITM3 expression and distribution in cells. 

Immunofluorescence analysis revealed that mIFITM3 is distributed into punctate clusters. 

Loss of S-palmitoylation led to decreased co-localization with lysosome marker LAMP1 

(Figure 17). However, the quantitative analysis did not show enough statistical difference 

between IFITM3 WT and C72A mutant. Similarly, we transfected human IFITM3 WT and 

Cys mutants in HeLa cells and analyzed their colocalization with GFP-LAMP1 (data not 

shown). Even though we initially observed altered colocalization of hIFITM3 C72A and 

PalmD with GFP-LAMP1, these differences were not still not statistically significant. 
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Figure 17. Imaging of HA-mIFITM3 in NIH3T3 fibroblasts. NIH3T3 cells grown on 

coverslips in 12-well plates were transfected with one μg pCMV-HA-mIFITM3 WT, C71A, 

C72A, C105A and PalmΔ and stained with anti-HA (red) and DAPI (blue). Scale bars 

represent five μm. Cells were also co-transfected with lysosomal markers, LAMP1-GFP 

(green). 
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2.3.5 Protein turnover of human IFITM3 and Cys mutants 

To understand how Cys mutation affects IFITM3 protein stability, we investigated whether 

S-fatty-acylation affected IFITM protein stability in cycloheximide (CHX) chase 

experiments. For these experiments, CHX is added to cells, and the decay in the steady-

state level of a target protein is monitored by immunoblotting. Normalized protein 

expression data is then fitted into protein decay model to calculate rate constant and half-

life. I then compared the differences between wild-type IFITM3 and Cys mutants. To avoid 

the complication of endogenous IFITM3, our lab has generated IFITM3 knockout HeLa 

and A549 cell lines, using CRISPR-Cas9 gene targeting technology (Ruina He). 

 For the IFITM3 turnover experiments, IFITM2/3 -/- knockout HeLa cells were used 

to avoid heterotypic interaction with endogenous IFITMs. Transient expression of IFITM3 

WT, C72A, and PalmΔ plasmids was performed in IFITM2/3 -/- knockout cells, which 

were then treated with inhibitors at different concentrations for 12 hours before analysis 

using immunoblotting (Figure 18). Quantification of normalized proteins level showed that 

proteasome, lysosome, and p97 inhibitors can increase protein expression. Interestingly, 

the p97 inhibitor ML240-treated sample showed the highest expression level and stability. 

ML240 is a selective, ATP-competitive inhibitor of p97/VCP. VCP has been shown to 

mediated turnover of ubiquitin-labeled proteins for recycling or degradation by the 

proteasome but also has functional relevance to lysosomal degradation for similar proteins 

to IFITM3 such as caveolin (Meyer et al., 2012). 

After I identified working concentration for different inhibitors at a single time 

point, I profiled dynamic changes of protein expression at various time points (Figure 19). 

IFITM2/3 -/- HeLa cells were transfected with hIFITM3 WT, C72A, and PalmΔ constructs. 
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After transfection for 16 hours, 25 μg/ml CHX was added to the cell culture to inhibit 

protein synthesis. Cells were harvested at designated time points and snap-freezed for 

further analysis. After lysis with 4% SDS buffer, protein expression level in homeostasis 

was detected using α-HA and α-GAPDH immunoblotting. Triplicates of the same 

experiment were performed and the normalized IFITM3 expression level was plotted. I 

then fit the data using one-phase decay from Graphpad Prism (Figure 20). Rate constants 

of IFITM3 WT, C72A, and PalmΔ were calculated (Table 6). 
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Figure 18. Protein turnover of IFITM3 WT, C72A, and Palm∆ in HeLa IFITM2/3 -/- 

cell line. HeLa IFITM2/3 -/- cells were plated into 12-well plates before transfection. 

pCMV-HA-IFITM3 WT, C72A, and PalmΔ were transfected respectively followed by 

treatment with proteasome and lysosome inhibitors. Cells were harvested after 12-hour 

incubation and were analyzed for α-HA and α-GAPDH. Normalized protein level 
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Figure 19. Cycloheximide-chase analysis of IFITM3 turnover. HeLa IFITM2/3 -/- cells 

were plated into 12-well plates before transfection. pCMV-HA-IFITM3 WT, C72A, and 

PalmΔ were transfected respectively and were treated with cycloheximide (CHX) after 18 

hours. Cells were harvested at indicated hours and were analyzed for immunoblotting α-

HA and α-GAPDH. Cycloheximide is an inhibitor of protein biosynthesis in eukaryotic 

organisms, produced by the bacterium Streptomyces griseus. Due to the inhibition of 

overall protein synthesis, by measuring the degradation rate of existing IFITM3 proteins, 

we can measure the half-life of each construct. 

 

Table 6. Rate constant and half-life of CHX chase experiment. 

 WT C72A PalmΔ 

K (hr-1) ~ 7.857e-

005 

0.1643 0.03655 

Half-Life (hr) ~ 22 4.22 18.97 
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Figure 20. Determination of rate constant and protein degradation half-life. Data of 

cycloheximide chase experiments Triplicates of the degradation experiments were 

performed and the normalized data was fit with one phase decay model using GraphPad 

Prism.  

Triplicates of the cycloheximide chase experiments were fitted with the non-linear 

curve model. Best-fit values of the curve showed that WT IFITM3 was relatively stable at 

half-life of ~22 hours, while the half-life of C72A mutant is 4.22 hours and PalmΔ 18.97 

hours. The rate of protein degradation of IFITM3 was increased to ~5-fold with C72A 

mutation. Interestingly, PalmΔ IFITM3 with three Cys residues mutated is relatively more 

stable than C72A, which is consistent with the western blotting data (Figure 10). The loss 

of stability associated with Cys72 mutation also partly contributed to the lower antiviral 

activity of this construct compared to other Cys mutants during the antiviral assay (Figure 

16). We then want to understand the mechanism of action of how IFIITM3 is degraded and 

why C72 is essential to keep IFITM3 stable. 
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2.3.6 Effects of protein degradation pathway inhibitors 

To understand which degradation pathway was responsible for IFITM3 degradation, we 

used specific inhibitors of proteasome, lysosomal protease and p97 to measure the 

dynamics under those inhibitor treatments. Similar to cycloheximide-chase experiment, 

HeLa IFITM2/3 -/- cells were transfected with IFITM3 C72A construct and were treated 

the CHX and respective inhibitors for designated hours (Figure 21). After immunoblotting 

with α-HA and α-GAPDH, protein expression level was then normalized to plot on the 

non-linear model. 

 

Figure 21. Cycloheximide with inhibitors chase experiment. HeLa IFITM2/3 -/- cells 

were transfected with IFITM3 C72A and were treated with CHX plus proteasome 

(MG132), lysosome (E/P), or p97 (ML240) inhibitors. Cells were harvested at indicated 

time points and snap-freezed. Samples were analyzed by immunoblotting of α-HA 

antibody and α-GAPDH antibody. Cells were mostly dead after 24 hr incubation with 

CHX+MG132 or E/P. CHX+ML240 was much more toxic to cells as most cells were dead 

after 8 hours.   
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 Because of the toxicity of cycloheximide with degradation inhibitors, most cells 

died after 12 hours, especially for CHX plus ML240 samples. So I only use the data from 

the first 12 hours. After plotting with Graphpad Prism, we were able to get the half-life of 

inhibitor-treated samples (Table 7). Interestingly, all three inhibitors increased the stability 

of IFITM3, with ML240 having the most effect. The half-life of C72 was increased from 

4.22 hours to 7.95, 6.38, and 20.26 hours respectively. Since p97/VCP is involved in both 

endosome-lysosome membrane fusion and proteasome degradation pathway, the 

prominent effect of p97 inhibition might suggest that IFITM3 is degraded through both 

proteasome and lysosomal pathway. 

 

Figure 22. Analysis of protein degradation with inhibitors. Triplicates of the 

degradation experiments were performed and the normalized data was fit with one phase 

decay model using GraphPad Prism. 
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Table 7. Determination of rate constant using one phase decay model. 

 CHX+MG132 CHX+E/P CHX+ML240* 

K (hr-1) 0.08723 0.1086 ~ 0.03421 

Half Life (hr) 7.946 6.381 ~ 20.26 
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2.4 Discussion 

2.4.1 Key sites of human IFITM3 S-fatty-acylation 

Bioinformatics analysis of IFITM isoforms from 27 vertebrate genomes representing from 

diverse animals (reptiles, amphibian, fish, birds, primates and other mammals) shows that 

these three S-fatty-acylated Cys residues (C71, 72 and 105 in mIFITM3) are amongst the 

most highly conserved amino acids within this family of membrane proteins (Figure 8) 

(Hickford et al., 2012; Zhang et al., 2012). All three Cys residues of IFITM3 are S-

palmitoylated, APE and alk-16 experiment showed that endogenous IFITM3 is mostly S-

fatty-acylated in IFN-stimulated cells and that S-fatty acylation of specific Cys residues 

and levels are crucial for IFITM3 antiviral activity against influenza virus. In murine and 

human IFITM3, even though Cys71 is highly conserved this residue is dispensable for 

dual-S-fatty acylation and antiviral activity. In contrast, Cys72 in IFITM3 is the most 

prominent site of S-fatty-acylation and results in the loss of antiviral activity when mutated 

to Ala. The S-fatty-acylation and antiviral activity of Cys105 may depend on the IFITM 

isoform, expression levels, and cell-type, as the mutation of this Cys residue decreases 

murine IFITM3 antiviral activity but is not required for human IFITM3 activity. From 

CHX chase experiments, C72A and PalmΔ mutants dramatically decreased protein 

stability of IFITM3, while protein degradation inhibitors restored some but not all of C72A 

stability. In summary, antiviral activity results from our laboratory and others (John et al., 

2013; Yount et al., 2010), S-fatty-acylation assay, and protein turnover experiments 

suggests Cys72 in IFITM3, at the edge of the first helical domain, plays a critical role in 

IFITM3 function. 
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 Protein hydrophobicity analysis using Kyte & Doolittle plot with nine amino acids 

as a window shows that IFITM3 protein contains two major hydrophobic regions. 

Experimental results with in vitro recombinant expression of IFITM3 without S-

palmitoylation also showed insolubility without detergent solubilization. So without 

lipidation IFITM3 is also intrinsic membrane protein. However, ultracentrifugation 

experiment showed there is a higher percentage of IFITM3 PalmΔ in soluble fraction 

compared to IFITM3 wide type purified from mammalian cell lysate, indicating an 

enhanced membrane attachment ability with S-palmitoylation. Indeed, multiple other 

membrane proteins are also S-palmitoylated at the same time such as Calnexin, GPCRs. 

The reasons for such addition lipidation are multi-fold. First of all, attachment of palmitate 

acids increases the membrane affinity of the membrane protein. Secondly, S-

palmitoylation in many cases specifies the membrane subdomain to which modified 

proteins are localized. 
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2.4.2 Lipid composition of IFITM3 S-fatty-acylation 

A key drawback of chemical reporter labeling method is its inability to distinguish the fatty 

acid species that are incorporated into the candidate proteins. Although palmitate is the 

major modification, other long chain fatty acids like palmitoleate, stearate, oleate, 

arachidonate, and eicosapentaenoic acid can also modify proteins on cysteine residues 

(Liang et al., 2001). To determine the composition of fatty acids attached to a particular S-

fatty-acylation site, mass spectrometry analysis of intact S-acylated peptides can provide 

direct evidence. It has been shown that at least singly or dually S-palmitoylated peptides 

can be separated by C18 reversed-phase liquid chromatography and sequenced by mass 

spectrometry (Ji et al., 2013). It is important to know about the lipid composition because 

the levels and composition of fatty acids in vivo can determine the strength and specificity 

of immune responses that are essential for host resistance to pathogens and inflammatory 

metabolic diseases such as type 2 diabetes (Stienstra et al., 2012).  
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2.4.3 Protein stability regulated by S-fatty-acylation 

S-fatty-acylation has been implicated in regulating proteins stability in multiple proteins 

(Linder and Deschenes, 2007). For example, the viral membrane glycoprotein of Rous 

sarcoma virus and two G-protein-coupled receptors, the A1 adenosine receptor and the 

chemokine receptor CCR5 showed reduced stability when S-palmitoylation is defective 

(Gao et al., 1999; Percherancier et al., 2001). S-palmitoylation of SNARE complex in S. 

cerevisiae and anthrax-toxin receptor trafficking in mammalian cells protects proteins from 

degradation by preventing their ubiquitination (Abrami et al., 2006; Valdez-Taubas and 

Pelham, 2005) The SNARE complex protein Tlg1 was recently shown to have opposing 

roles of palmitoylation and ubiquitination in regulating its half-life. Tlg1 is an essential 

target-membrane SNARE in S. cerevisiae that mediates the fusion of vesicles with the late 

Golgi compartment (Siniossoglou and Pelham, 2001; Valdez-Taubas and Pelham, 2005). 

 Similarly, IFITM3 was shown to be regulated by ubiquitination and S-

palmitoylation (Yount et al., 2012). Previously ubiquitination was shown to control 

IFITM3’s stability while S-fatty-acylation affects its anti-viral activity but not its protein 

level. From the CHX chase experiments, C72A and PalmΔ dramatically decreased the 

protein half-life of IFITM3 which suggested that S-fatty-acylation, especially, on Cys72 

residue indeed affect IFITM3’s stability. We also observed that the loss of stability 

associated with Cys72Ala was more prominent in A549 cells than HEK 293T cells. Since 

transfection efficiency is much higher in HEK293T cells, more episomal IFITM3 was 

expressed in HEK293T cells than A549 cells, which may cause overwhelming of normal 

protein degradation pathway. 
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 Another point worth noted regarding the methodology used for analyzing protein 

stability is the toxicity with CHX plus protein degradation inhibitors. Cells treated with 

either CHX or protein degradation inhibitors showed less cell death than combined. Cell 

death caused by drugs treatment might interfere with the results. One way to lower the 

toxicity is to use radioactive pulse-chase approach. First, radioactive labeling with (35)S-

methionine is carried out to label newly synthesized proteins (pulse). Subsequently, the 

dynamics of the decay of these proteins is monitored in the absence of labeled amino acids 

over a defined time period (chase). CHX is not needed for this method, thus may reduce 

the cell death rate. A systematic analysis using radioactive pulse-chase with protein 

degradation inhibitor might provide a more conclusive results on the protein degradation 

pathway.  



65 

 

2.4.4 Differences between murine and human IFITM3 

The effect about lower protein expression level was only observed in human but 

not murine IFITM3 Cys72Ala mutants, probably because of the differences between two 

species and there is added complicated regulatory mechanism for human IFITM3. 

Sequence alignment of murine and human IFITM3 showed that the central domains are 

highly conserved with overall 66% identity. The amino acids from Ser53 to Ile108 are 

basically same between human and mouse except position 70, where it is Pro in human, 

but Phe in mouse. Proline is sometimes known as "helix breakers" because they disrupt the 

regularity of the α helical backbone conformation. Since Pro is close to Cys71 and Cys72, 

it might be possible that the change from mouse Phe70 to human Pro70 causes disparity 

on Cys72Ala mutation protein stability.  
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2.4.5 Effect of S-fatty-acylation on protein localization 

To understand the functional significance of IFITM3 S-fatty-acylation, we wanted to 

investigate whether the loss of fatty acylation will affect its localization inside the cell. 

Study of mIFITM3 transiently expressed in HeLa cells showed S-fatty-acylation controls 

clustering of IFITM3 in membranes rather than its trafficking to distinct cellular 

compartments (Yount et al., 2010). In another study, single Cys mutation C72A of human 

IFITM3 in A549 cells exhibited a more centralized expression pattern, although no 

colocalization marker was shown in the image (John et al., 2013). Our study on the murine 

and human IFITM3 WT, single Cys mutants, and palmitoylation-deficient mutant in either 

NIH3T3 cells or HeLa cells confirmed the previous observation that WT IFITM3 is 

colocalized with lysosomal marker LAMP1 and partly with Rab5 and Rab7. However, no 

significant effects on protein localization for Cys mutants were observed. The reason for 

no change in localization of Cys mutations might due to the fact that IFITM3 has different 

S-fatty-acylation states inside the cell. Some of them are functional against virus infection 

while the others are relatively inactive. The subtle change of the proper S-fatty-acylated 

species may not obvious among all IFITM3 population. New site-specific lipidation 

methods and imaging in live cells as well as more detailed biophysical methods will be 

required to evaluate how S-fatty-acylation controls IFITM3 antiviral activity. 

 

  



67 

 

2.5 Materials and methods 

2.5.1 Materials 

E. coli DH5α (Invitrogen) was used for plasmid propagation and isolation. 

Oligonucleotides were obtained from Integrated DNA Technology. Nucleotides were 

synthesized from Integrated DNA Technologies (IDTdna). Plasmid DNA was purified 

using Qiagen Mini and Maxi prep kits. Metabolic chemical reporter (alk-16) and 

fluorescent dye were synthesized in the lab. QuikChange site-directed mutagenesis kit from 

Agilent was used for mutation experiments. HEK293T cells, HeLa cells were obtained 

from ATCC.  

 

2.5.2 Metabolic incorporation of chemical reporters of protein fatty acylation in 

living cells 

Serum-containing complete cell culture medium (DMEM, invitrogen) was replaced with 

cell culture medium, supplemented with 2% charcoal/dextran-filtered FBS. Cells were 

labeled with either DMSO as a solvent control or 20 to 100 µM (final concentration) 

alkyne-fatty acid chemical reporter (Alk-16) for one hour at 37 °C. Cell pellets were then 

lysed with 4% SDS buffer with EDTA-free protease inhibitors and 1μl (250 U) of 

Benzonase (Sigma-Aldrich). Protein concentration was determined using a standard BCA 

assay (Olson and Markwell, 2001). Aliquots of equal amounts of protein (~50 μg) were 

dispensed into 1.5-ml microcentrifuge tubes, and were brought to 44.5 μl with 4% SDS 

buffer with EDTA-free protease inhibitors. 
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2.5.3 Copper(I)-catalyzed alkyne-azide cycloaddition labeling of cell lysates 

5.5 μl click chemistry master mix (1 µl of 5 mM azido-rhodamine in DMSO, 1 µl of 50 

mM TCEP, 2.5 µl of 2 mM TBTA in 1:4 (v/v) DMSO/butanol, 1 µl of 50 mM CuSO4) was 

added of the to the protein sample (44.5 μl) from method 2.5.2, and vortex to mix. Samples 

are incubated for 1 hour at room temperature, followed by a chloroform/methanol 

precipitation of protein to remove unreacted azido-rhodamine by adding the following ice-

cold reagents to each tube: 200 μl methanol, 75 μl chloroform, and 150 μl water. Mixture 

was vortexed and centrifuged for 15 min at 20,000 × g, at 4 °C. The solution in the tube 

was separated into three phases: the clear upper aqueous layer, the pink-colored lower 

organic layer, and a white layer of protein between the two layers. Remove and discard the 

upper aqueous phase, leaving the lower organic phase and the white layer of protein 

between the two layers. 1ml of ice-cold methanol was added to each sample and mix gently, 

causing the protein pellet to sink to the bottom of the tube. Centrifuge 10 min at 20,000 × 

g, 4 °C. All of the liquid was removed by pipetting, being careful not to disturb the pellet 

and then wash the protein pellet by adding 1 ml of ice-cold methanol and inverting the tube. 

Centrifuge 10 min at 20,000 × g, 4 °C. After carefully removing the methanol, the 

remaining methanol was dried by leaving the sample tubes open on the bench for 20 min 

at room temperature. Protein pellets were then dissolved in 50 μl of 4% SDS buffer with 

EDTA-free protease inhibitors to dissolve the protein pellets. 4×LDS sample buffer 

(Invitrogen) and 2-mercaptoethanol were then added and the samples were heated for 5 

min at 95 °C; 20 µL of the sample was loaded per gel lane for separation by SDS-PAGE 

(4−20% Bio-Rad Criterion Tris-HCl gel).  
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2.5.4 Immuno-precipitation using antibody-conjugated resin for click chemistry 

reaction 

Cells were lysed in Brij97 buffer (1% Brij 97, 50 mM TEA, 150 mM NaCl, pH 7.4) and 

protein concentration was determined using the BCA assay. Add 500-1000 mg protein in 

100 uL Brij97 buffer to a dolphin tube. Prewashed -HA-conjugated agarose (Sigma) in 

Brij97 buffer (Use 15 uL Sigma agarose per sample) was added to protein sample and 

incubate over the nutating mixer at 4 °C for 1h. Agarose was spun down for 1 min at 9000x 

g to remove the supernatant. Agarose resin was then washed three times with 500 uL RIPA 

wash buffer (50 mM TEA, 150 mM NaCl, 1% Na-Deoxycholate, 1% Triton X 100, 0.1% 

SDS). Beads were resuspended in 22.5 uL 4% SDS buffer and 2.5 uL click chemistry 

master mix was added to the beads to incubate for 1 h. 4x blue buffer/BME (165 uL blue 

buffer with 35 uL BME) was added after incubation followed by vortexing and boil for 5 

min. Samples were spin down beads and load gel. After running SDS-PAGE, gels were 

imaged by TyphoonTM scanner (GE Healthcare). 

 

2.5.5 Site mutagenesis using QuikChange methods for Cysteine mutants 

Site-directed mutagenesis was done using Agilent QuikChange II Site-Directed 

Mutagenesis Kit (http://www.agilent.com). Primers used in the experiments are  listed 

in Table 8. 

 

 

http://www.agilent.com/
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Table 8. Sequences of primers for site-directed mutagenesis of IFITM3 cysteine 

mutations. 

Primer name Sequence 

mIFITM3-C71A-F acactcttcatgaacttcgcctgcctgggcttcatagc 

mIFITM3-C71A-R gctatgaagcccaggcaggcgaagttcatgaagagtgt 

mIFITM3-C72A-F ctcttcatgaacttctgcgccctgggcttcatagccta 

mIFITM3-C72A-R taggctatgaagcccagggcgcagaagttcatgaagag 

mIFITM3-C105A-F cgcctccactgctaaggccctgaacatcagcacc 

mIFITM3-C105A-R ggtgctgatgttcagggccttagcagtggaggcg 

hIFITM1-C50A-F ccctcttcttgaactgggcctgtctgggcttcatag 

hIFITM1-C50A-R ctatgaagcccagacaggcccagttcaagaagaggg 

hIFITM1-C51A-F cctcttcttgaactggtgcgctctgggcttcatagcattc 

hIFITM1-C51A-R gaatgctatgaagcccagagcgcaccagttcaagaagagg 

hIFITM1-C84A-F cctccaccgccaaggccctgaacatctggg 

hIFITM1-C84A-R cccagatgttcagggccttggcggtggagg 

hIFITM2-C70A-F ccctcttcatgaacaccgcctgcctgggcttcatag 

hIFITM2-C70A-R ctatgaagcccaggcaggcggtgttcatgaagaggg 

hIFITM2-C71A-F ctcttcatgaacacctgcgccctgggcttcatagcatt 

hIFITM2-C71A-R aatgctatgaagcccagggcgcaggtgttcatgaagag 

hIFITM2-C104A-F cctccaccgccaaggccctgaacatctggg 

hIFITM2-C104A-R cccagatgttcagggccttggcggtggagg 

hIFITM3-C71A-F cctcttcatgaaccccgcctgcctgggcttcata 
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hIFITM3-C71A-R tatgaagcccaggcaggcggggttcatgaagagg 

hIFITM3-C72A-F cttcatgaacccctgcgccctgggcttcatagca 

hIFITM3-C72A-R tgctatgaagcccagggcgcaggggttcatgaag 

hIFITM3-C105A-F cctccaccgccaaggccctgaacatctggg 

hIFITM3-C105A-R cccagatgttcagggccttggcggtggagg 

 

2.5.6 Transfection of mammalian cell lines 

Cells were seeded to be 70–90% confluent at transfection. Medium was changed to Opti-

MEM® for transfection. DNA-lipid complexes were made by mixing Lipofectamine® 

Reagent with DNA plasmids in Opti-MEM® Medium. After 10 min incubation, DNA and 

Lipofectamine® 2000 reagent mixture was added to cells for 16 hours and then check for 

expression. 

 

2.5.7 S-fatty-acylation detection using acyl-PEG exchange 

Cell samples were lysed with 4% sodium dodecyl sulfate (SDS, Fischer) in TEA buffer 

(pH 7.3, 50 mM triethanolamine (TEA), 150 mM NaCl) containing 1x protease inhibitor 

cocktail (Roche), 5 mM PMSF (Sigma), 5 mM EDTA (Fischer) and 1500 units/mL 

benzonase (EMD). The protein concentration of the cell lysate was then measured using a 

BCA assay (Thermo), and adjusted to 2 mg/mL with lysis buffer. Typically, 200 µg of total 

protein in 92.5 µL of lysis buffer was treated with 5 µL of 200 mM neutralized tris(2-

carboxyethyl)phosphine (TCEP, Thermo) for final concentration of 10 mM TCEP for 30 

minutes with nutation. N-ethylmaleimide (NEM, Sigma), 2.5 µL from freshly made 1 M 

stock in ethanol, was added for a final concentration of 25 mM and incubated for 2 hours 
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at room temperature. Reductive alkylation of the proteins was then terminated by 

methanol-chloroform-H2O precipitation (4:1.5:3) with sequential addition of methanol 

(400 µL), chloroform (150 µL) and distilled H2O (300 µL) (all pre-chilled on ice). The 

reactions were then mixed by inversion and centrifuged (Centrifuge 5417R, Eppendorf) at 

20,000 g for 5 minutes at 4o C. To pellet the precipitated proteins, the aqueous layer was 

removed, 1 mL of pre-chilled MeOH was added, the eppendorf tube inverted several times 

and centrifuged at 20,000 g for 3 minutes at 4o C. The supernatant was then decanted, and 

the protein pellet washed once more with 800 µL of pre-chilled MeOH, centrifuged again 

and dried using a speed-vacuum (Centrivap Concentrator, Labconco) To ensure complete 

removal of NEM from the protein pellets, the samples were resuspended with 100 µL of 

TEA buffer containing 4% SDS, warmed to 37o C for 10 minutes, briefly (~5 seconds) 

sonicated (Ultrasonic Cleaner, VWR) and subjected to two additional rounds of methanol-

chloroform-H2O precipitations as described above. 

For hydroxylamine (NH2OH) cleavage and mPEG-maleimide alkylation, the 

protein pellet was resuspended in 30 µL TEA buffer containing 4% SDS, 4 mM EDTA and 

treated with 90 µL of 1 M neutralized NH2OH (J.T. Baker) dissolved in TEA buffer pH 

7.3, containing 0.2% Triton X-100 (Fisher) to obtain a final concentration of 0.75 M 

NH2OH. Protease inhibitor cocktail or PMSF should be omitted, as these reagents can 

interfere with the NH2OH reactivity. Control samples not treated with NH2OH were 

diluted in 90 µL TEA buffer with 0.2% Triton X-100. Samples were incubated at room 

temperature for 1 hour with nutation. The samples were then subjected to methanol-

chloroform-H2O precipitation as described above and resuspended in 30 µL TEA buffer 

containing 4% SDS, 4 mM EDTA, warmed to 37o C for 10 minutes and briefly (~5 seconds) 
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sonicated and treated with 90 µL TEA buffer with 0.2% Triton X-100 and 1.33 mM 

methoxypolyethylene glycol-maleimide (mPEG-Mal, 5 or 10 kDa, Sigma) for a final 

concentration of 1 mM mPEG-Mal. Samples were incubated for 2 hours at room 

temperature with nutation before a final methanol-chloroform-H2O precipitation. Dried 

protein pellets were resuspended in 50 µL 1 X Laemmli buffer (BioRad) and then heated 

for 5 minutes at 95o C. Typically, 15 µL of the sample was loaded in 4-20% Criterion-TGX 

Stain Free polyacrylamide gels (Bio-Rad), separated by SDS-PAGE and analyzed by 

western blot. For western blots, primary antibodies used were anti-calnexin (1:2000 

ab22595, Abcam), anti-Pan Ras (1:500, Ras10, Millipore), anti-mouse IFITM3 (1:1000, 

ab15592, Abcam) anti-FLAG (1:1000, F1804, Sigma) anti-HA (1:1000, ab9134, Abcam), 

and HRP-conjugated anti-HA (3F10, Roche). Secondary antibodies used were HRP-

conjugated goat anti-rabbit (DC03L, Calbiochem), and goat-anti-mouse (ab97023, Abcam). 

Protein detection was performed with ECL detection reagent (GE healthcare) on a BioRad 

ChemiDoc MP Imaging System. 

 

2.5.8 Microscopy 

For determination of IFITM3 localization, transfected HeLa cells were fixed with 3.7% 

(w/v) paraformaldehyde, permeabilized with 0.2% (w/v) saponin or 1% (v/v) Tween and 

blocked with 2% (v/v) FBS in PBS. Cells were incubated with individual antibodies for 30 

min in sequence starting with mouse anti-HA (1/1,000, 16B12, Covance), then goat anti-

mouse antibodies conjugated to rhod- amine red (1/1,000, Invitrogen), then rabbit 

antibodies against specific cellular markers or cholera toxin B conjugated to Alexa-488 

(Invitrogen) followed by sec- ondary goat anti-rabbit antibodies conjugated to Alexa-488 
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(1/1,000, Invitrogen). All antibodies were diluted in PBS and 0.2% (w/v) saponin, except 

for cholera toxin B staining in which PBS and 1% (v/v) Tween 20 was used in all steps. 

Antibodies against calreticulin (1/500, ab2907, Abcam), LAMP1 (1/500, ab24170, Abcam), 

EEA1 (1/100, 2411, Cell Signaling) and golgin-97 (1/100, ab33701, Abcam) were used. 

Cells were incubated with TOPRO-3 (1/1,000, Invitrogen) as a final step. 

2.5.9 Infections, fluorescence microscopy, and flow cytometry 

Influenza virus A/PR/8/34 (H1N1) was propagated in 10-day embryonated chicken eggs 

for 40 h at 37° C and titrated using Madin-Darby canine kidney cells. Cells were infected 

at a multiplicity of infection of 2.5 for 6 h before fixation and staining. For Salmonella 

typhimurium infections, strain IR715 was used, and infections were performed as 

previously described (18). For both flow cytometry and microscopy, cells were fixed with 

3.7% paraformaldehyde in PBS for 10 min followed by a 10-min per- meabilization with 

0.2% saponin in PBS and a 10-min blocking step with 2% FBS in PBS. Cells were stained 

using anti-HA anti-antibody (Covance, clone 16B12) directly conjugated to Alexa-488, -

555, or -647 using kits for 100 μg of antibody available from Invitrogen. Anti-NP (Abcam, 

ab20343) was directly conjugated to Alexa-647 using a similar kit. Likewise, anti-myc 

(Clontech, 631206) was conjugated to Alexa-488. All conjugated antibodies were used at 

a 1:200 dilution in 0.2% saponin in PBS for 30 min at room temperature for both 

microscopy and flow cytometry. Anti-calreticulin (Abcam, ab2907) was used at a 1:1000 

dilution followed by a goat anti-rabbit secondary con- jugated to Alexa-488 (Invitrogen). 

TOPRO-3 (Invitrogen) was used at a 1:1000 dilution in PBS for 10 min to stain nuclei as 

a final step in some experiments before glass slide mounting in ProLong Gold Antifade 

Reagent (Invitrogen).  
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Chapter Three: Site-specific incorporation of unnatural amino 

acid into IFITM3 in mammalian cells 

3.1 Summary 

To understand IFITM3 function and regulation in mammalian cells, I explored the site-

specific incorporation of unnatural amino acids (UAAs) using amber codon suppression 

for potential live-cell imaging and protein crosslinking studies. We chose the pyrrolysyl-

tRNA synthetase (PylRS)/Pyl tRNACUA system from Methanosarcina species due to its 

ability to incorporate structurally diverse UAAs. Using this technology, I systematically 

evaluated sites in mouse and human IFITM3 for the incorporation of UAAs. By screening 

amber codon (TAG) mutants, I identified several IFITM3-TAG mutants that showed with 

high expression levels and no truncation products. Notably, both mouse and human 

IFITM3 F8TAG mutant (Phe8 mutated to the amber codon TAG) showed consistent 

expression in mammalian cells. The full length IFITM3 amber codon mutants labeled with 

UAAs were S-fatty-acylated and showed antiviral activity similar to wild type. Notably, 

these IFITM3 amber codon mutants could be site-specifically labeled with lysine analogs 

for bioorthogonal labeling studies in vitro and living cells. Furthermore, we showed that 

IFITM3 amber codon mutants could also be labeled with photo-crosslinkable UAA, 

DiZPK, for site-specific protein crosslinking in living cells. These studies demonstrate 

IFITM3 can be site-specifically labeled with UAAs for potential live cell imaging and 

protein crosslinking studies. 
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3.2 Introduction 

3.2.1 Overview of site-specific protein labeling 

Amber codon suppression technology has enabled the site-specific incorporation of 

unnatural amino acids bearing uniquely reactive functional groups into proteins in yeast 

(Hancock et al., 2010), bacteria (Liu and Schultz, 2010), mammalian cells (Gautier et al., 

2010; Lang et al., 2012; Mukai et al., 2008), and animals (Bianco et al., 2012; Greiss and 

Chin, 2011) via the evolution of orthogonal aminoacyl-tRNA synthetase/tRNA pairs 

(Figure 23). Site-specific labeling of the proteins with unnatural amino acid containing 

unique chemical reactivity has provided scientists with new tools for understanding basic 

biology and drug development (Krall et al., 2015). Notably, the incorporation of unnatural 

amino acids containing bioorthogonal chemical handles and photocrosslinkers are 

providing new opportunities for imaging studies and protein-protein interaction studies, 

respectively. 
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Figure 23. Site-specific incorporation of UAAs using amber codon suppression. 

Orthogonal synthetase and tRNA are introduced to the host cells. After adding unnatural 

amino acids that are compatible with the orthogonal pair but not with endogenous 

machinery, they will be incorporated into specific positions (unique codon, such as amber 

codon). Figure is taken from (Wang et al., 2001). 
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3.2.2 Application of unnatural amino acids for imaging 

The site-specific incorporation of unnatural amino acids enables powerful new approaches 

to control and image proteins of interest at a site-specific level. While genetic fusion of 

fluorescence protein (GFP, RFP) to the protein of interest is the most common method to 

do imaging, because it is easy to implement and has greatly advanced our understanding 

of protein localization and function, GFP fusion may disturb the structure and function of 

the protein and can be only placed at the N- or C- terminus. The size of GFP is ~27 kDa, 

which may be too big for the purpose of protein labeling, and may disturb the structure or 

localization of the fused proteins, especially if the protein has a small size. By using 

unnatural amino acids, we are able to genetically incorporate fluorescent amino acids or 

bioorthogonal amino acids that can ligate with a fluorophore later. With respect to 

established methods for fluorescently labeling proteins, the incorporation of unnatural 

amino acids has minimal perturbations to protein structure and is therefore unlikely to 

interfere with the function and localization of proteins as approaches using fusions or 

tagging can. 

The ability to introduce amino acids with functional side chains combined with 

bioorthogonal chemistry greatly expands available toolbox to study protein structure and 

function (Liu and Schultz, 2010). Progress on discovery and invention of bioorthogonal 

reactions that do not react with natural entities inside the cell but selectively react with each 

other greatly promoted the development of new methods to visualize, identify, and analyze 

different classes of biomolecules (Figure 24) (Prescher and Bertozzi, 2005; Sletten and 

Bertozzi, 2009). The combination of site-specific labeling and bioorthogonal chemistry 

provides new opportunities for precise imaging studies in vitro and in cells. 
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Figure 24. Site-specific protein labeling. To label protein of interest, the first step is to 

incorporate a natural or unnatural amino acid to the intended site of modification. The 

inserted molecule would be chemoselectively reacted with a fluorescent probe, an affinity 

tag, or PTM analog. The resulting molecule can be either visualized by fluorescence 

imaging, analyzed by proteomics or modulated as a “gain/loss of function” (PTM, 

antibody-drug conjugate, or in situ activation). 

The two-step method used by bioorthogonal chemistry involves 1) incorporation of 

unnatural amino acids with tailor-made side chain and 2) bioorthogonal reaction with the 

externally added chemical probe. For the first step, an orthogonal synthetase/tRNA pair is 

required for incorporation. An orthogonal aminoacyl-tRNA synthetase does not recognize 

any endogenous tRNAs in the host cell, but specifically aminoacylates its cognate 

orthogonal tRNA. On the other hand, endogenous aminoacyl-tRNA synthetases do not 

accept an orthogonal tRNA. Translational incorporation of amino acid substrates of the 

orthogonal aminoacyl-tRNA synthetase responses to a blank codon, most commonly the 

amber stop codon. 

One example using unnatural amino acids strategy to investigate previous 

intractable protein is G-protein coupled receptors (GPCRs) (Figure 25). GPCR is a 
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particularly important class of cell-surface receptors that represent targets for more than a 

quarter of all therapeutic drugs (Daggett and Sakmar, 2011). Amber codon suppression 

method allows site-specific labeling of GPCRs with various molecular probes to facilitate 

cell-based studies of protein–protein or protein–ligand interactions and the visualization of 

conformational changes using fluorescence spectroscopy or single-molecule imaging. 

UAAs such as p-benzoyl-L-phenylalanine (BzF), p-acetyl-L-phenylalanine (AcF), and p-

azido-L-phenylalanine (azF) into heterologously were able to be expressed in GPCRs in 

mammalian cells (Grunbeck et al., 2011; Huber et al., 2013; Tian et al., 2013). 
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Figure 25. Using UAA to study GPCR. Amber stop codon (UAG) suppression 

technology has been used to study GPCR functions. HEK293T or HEK293F cells are 

cotransfected with three different plasmids encoding the evolved synthetase gene, the 

suppressor tRNA gene, and the gene encoding the GPCR with an in-frame TAG mutation 

at a desired position. Culturing the transfected cells in the presence of the UAA results in 

protein translation, with suppression of the amber stop codon and site-specific 

incorporation of the UAA at a desired position to give a full-length protein. Figure taken 

from (Huber and Sakmar, 2014) 

Live-cell imaging using amber suppression requires rapid and compatible 

bioorthogonal ligation with fluorophores (Figure 26). CuI-azide-alkyne cycloaddition 

(CuAAC) reaction has a reasonable reaction rate, but the toxicity of CuI makes it hard to 

use this method to label live cells (Figure 26A). To solve this problem, strain-promoted, 

copper-free azide-alkyne cycloaddition was developed to provide alternatives for live-cell 
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imaging. The tagging of azide-containing glycan with cyclooctyne conjugates has been 

explored previously (Figure 26B) (Agard et al., 2004). Strained cycloocynes enabled rapid 

labeling of cell-surface azides for dynamic cell imaging. However, the dynamic rate of 

cyclooctyne-azide ligation is still low with the first generation around 0.0012 M-1S-1. 

Further development of more reactive cyclooctyne compounds includes 

dibenzycycloocynes and biarylazacyclooctynone compounds. Even with these 

modifications, the most reactive version showed rate constants from ~0.1 to 1 M-1S-1. 

Moreover, synthesis of the cyclooctyne probes is demanding and often low-yielding.  

 

Figure 26. Bioorthogonal ligations. A) CuI-azide-alkyne cycloaddition (CuAAC). B) 

Strain-promoted alkyne-azide cycloadditions (SPAAC). C) inverse-electron-demand 

Diels-Alder cycloaddition (IEDDA). 

The recent development of unnatural amino acids bearing components of the 

inverse-electron-demand Diels-Alder cycloaddition (IEDDA) can react exceptional fast 

with fluogenic dyes with second-order rate constants in the range of 102–104 M–1 s–1 (Figure 

26C) (Lang and Chin, 2014). UAAs that contain strained alkene Bicyclo[6.1.0]nonyne-
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lysine and trans-cyclooctene-lysine (BCNK and TCOK) have been incorporated into 

epidermal growth factor receptor (EGFR) to demonstrate the specific labeling. Membrane 

permeable fluogenic dye-tetrazine conjugate is then ligated to the protein for live-cell and 

super-resolution imaging (Uttamapinant et al., 2015). 
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3.2.3 Application of unnatural amino acids for photocrosslinking 

To capture the transient protein interaction inside a complex system, chemical crosslinking 

has been used to covalently bind partners that are close in space. Crosslinking has also been 

utilized to stabilize protein tertiary and quaternary structure (Sinz, 2006), lipidated protein 

interaction (Peng and Hang, 2015) or conjugate an enzyme or tag to purified protein. 

However, it has been challenging to crosslink specific protein in vivo using traditional 

method. The development of photoreactive UAA has enabled us to study specific protein-

protein interactions in mammalian cells (Davis and Chin, 2012). For example, the 

photoreactive UAAs, BzF and azF, enabled the mapping of ligand-binding sites on 

chemokine receptors (CXCR4 and CCR5) and and on the substance P receptor NK1 

(Grunbeck et al., 2011, 2012; Valentin-Hansen et al., 2014). An alkyl diazirine–containing 

unnatural amino acid, DiZPK, developed by Chen lab was introduced site-specifically onto 

HdeA, which in conjunction with gel-based proteomics permitted the substrate-profiling 

of HdeA in E. coli cells under very low pH conditions (Zhang et al., 2011). 
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3.3 Results 

3.3.1 Unnatural amino acids incorporation in IFITM3 

It has not been possible to image IFITM3 trafficking during virus entry, as N- and C-

terminal translational fusions with fluorescent proteins (GFP or mCherry) aggregate in 

lysosomes and are inactive in antiviral assays (unpublished results Hang laboratory). These 

observations have precluded us from live-cell imaging experiments to directly visualize 

whether IFITM3 is recruited to virus-containing vesicles and shuttles this exogenous cargo 

into lysosomes for degradation or exports these particles through exosomes. However, as 

mentioned above, unnatural amino acid introduced by amber codon suppression provides 

a minimal perturbation to the structure of IFITM3 while introducing a bioorthogonal 

handle that is capable of ligation with fluorophore or affinity tag that is specific to the 

protein. As shown in Figure 27, unnatural amino acids with different functionality could 

be made and incorporated into IFITM3. 

 To develop a robust amber codon suppression system for studying IFITM3, we first 

started from screening optimal expression positions for murine IFITM3. I chose sites based 

on several criteria. First, the residue should not affect protein functions, like post-

translational modification, protein-protein interaction or disulfide bond. Second, ideally 

the residue should have similar side chain size to minimize the impact of unnatural amino 

acids on protein folding and structure. We explored amber codon suppression through 

different domains of IFITM3 (N-terminus, IMD-1, cytosolic domain, I/TMD-2 and C-

terminus) and focused on hydrophobic (Leu, Val, Ile) or aromatic amino acids (Phe, Trp). 

As shown in Figure 28A, N-terminal HA-tagged and C-terminal FLAG-tagged IFITM3 

construct was made to detect both N- and C- terminal epitope to make sure full-length 
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IFITM3 was expressed. I then use BocLys (Figure 27) as an initial UAA to test the 

expression profile of different positions (Figure 28). Full length IFITM3 was expressed 

with the addition of BocLys for several TAG mutants. However, truncation products of 

several TAG mutants near C-terminal were observed, highlighting potential limitations for 

site-specific IFITM3 labeling. Nonetheless, several IFITM3 mutants (F8TAG) showed 

very consistent expression that could be used for the future studies. 

 

Figure 27. Unnatural amino acids used for bioorthogonal labeling. ACPK and alk-Pyl 

are used for CuAAC ligation. DiZPK contains photocrosslinkable group which can be used 

for protein interaction proteomics. øp-Pyl contains cyclopropene group which can be used 

to do fast IED-DA reaction. BocLys is used for screening and optimization of amber codon 

positions. 
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Figure 28. Analysis of murine IFITM3 amber codon mutants with BocLys. Upper 

panel, schematic illustration of mouse IFITM3 and amber mutations positions. HA- and 

FLAG-tags were attached to N- and C- terminal of IFITM3 to be able to detect full-length 

version of the protein. Mutations at different positions across the protein were made. Lower 

panel, pyrrolysyl-rRNA synthetase PylRS/tRNACUA pairs from Methanosarcina species 

was transfected along with different amber codon mutation of IFITM3. The residue number 

on the top of the figure indicates the position of amber codon mutation.  
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 Based on the encouraging results with mIFITM3, I evaluated UAA incorporation 

into human IFITM3 constructs. Similar to the criteria for selecting amino acids position for 

mouse version mentioned above, mutations were made across the human IFITM3 (Figure 

29). Each mutation was then transfected into HEK293T cells with or without BocLys. After 

transfection for 18 hours, cells were harvested and lysed. Cell lysates were then 

immunoblotted for α-HA and α-GAPDH. Protein expression level of each mutant was then 

normalized to GAPDH level, and triplicates of the results were plotted in Figure 30. The 

expression level of IFITM3 mutants depends on the position of the amber codon mutation. 

Some positions exhibited much better protein stability (F8, I74, V93, C105) and expression 

level while others barely expressed (V29, S61, L73, K88) (Figure 30).  
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Figure 29. Profiling sites of amber suppression of human IFITM3 using BocLys. We 

screened human IFITM3 amber mutations at different positions to find the optimal position 

to introduction unnatural amino acids for imaging and cross-linking purpose. Each mutant 

was made based on wild type pCMV-HA-IFITM3 plasmid using QuikChange mutagenesis 

kit. Optimized PylRS/tRNACUA with respective IFITM3 mutant were co-transfected into 

HEK293T cells with or without 50 µM BocK. After incubation for about 16 hours, cells 

were harvested and tested for IFITM3 expression using immunoblotting against HA 

epitope. 
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Figure 30. Relative expression level of human IFITM3 expression level. Triplicate 

experiments of human IFITM3 amber codon expression were plotted as bar graph. Varying 

positions displayed significant differences in protein expression. The number on the x-axis 

indicates amber codon mutation position (X to TAG). F8, I76, V93, and C105 were the 

best-expressed TAG mutants among all the positions. 
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3.3.2 Site-specific bioorthogonal labeling of IFITM3 

To determine if IFITM3 amber codon mutants might be suitable for bioorthogonal imaging 

studies, I evaluated the incorporation of azide- and alkyne-containing UAAs (Figure 27). 

Figure 31A describes the initial protocol I used to evaluate bioorthogonal labeling of 

IFITM3 in vitro. Similar to the previous experiments, mIFITM3 F8TAG, F70TAG, 

V93TAG, I122TAG, L135TAG mutants were transfected individually with PylRS-

tRNACUA, with or without alk-Pyl. Cell lysates were then analyzed for HA-mFITM3-

FLAG expression and click chemistry labeling with fluorescent dyes. The in-gel 

fluorescence results showed that only in alk-Pyl positive samples, fluorescence signal 

corresponding to the molecular weight of IFITM3 can be detected. These results showed 

that in vitro fluorescent labeling of IFITM3 amber codon mutants can be achieved, which 

provides important results for future IFITM3 imaging and membrane topology studies. 
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Figure 31. Site-specific bioorthogonal labeling of IFITM3 in vitro. Upper panel, 

IFITM3 amber mutants were transiently transfected into mammalian cells with 

PylRS/tRNA and unnatural amino acids with bioorthogonal handle (alkyne group in this 

case). After incubation, cells were lysed and solubilized to do click chemistry detection 

with azide-fluorophore. Lower panel, mIFITM3 with N-terminal HA tag and C-terminal 

FLAG mutants were tested for alk-Pyl incorporation and az-rho click chemistry. 

Fluorescence signal can only be detected in alk-Pyl positive samples, even though some of 

the constructs showed truncation products. 
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3.3.3 Photo-crosslinking of DiZPK to study IFITM3 interaction partners 

In addition to site-specific fluorescence labeling of IFITM3, we explored the incorporation 

of DiZPK, a photocrosslinkable amino acid that could be used to covalently trap IFITM3-

interacting proteins in mammalian cells. DiZPK contains a diazirine functional group that 

was previously used to photocrosslink and identify client proteins of the chaperone HdeA 

in E. coli (Zhang et al., 2011). Compared to other photo-activatable chemical groups, 

diazirine has better photo-stability than phenyl azide groups and it is more easily and 

efficiently activated with UV light (330 to 370 nm). Figure 32 upper panel shows the 

scheme for photo-crosslinking DiZPK to identify protein-protein interaction partners. After 

DiZPK was incorporated into IFITM3, cells were then radiated under UV lamp at 

wavelength 365 nm to generate active carbene intermediate to covalently trap nearby 

proteins. Lysates were immunoblotted to check for IFITM3 and its crosslinked products. 

Multiple crosslinked IFITM3 products were clearly seen after UV radiation when DiZPK 

was incorporated (Figure 32). These IFITM3 crosslinked products could represent 

homotypic interactions as well as heterotypic interactions with other key cellular regulators. 

These preliminary results suggest DiZPK-labeled IFITM3 could be used to discover and 

validate IFITM3 interacting proteins for future functional studies. 
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Figure 32. Incorporation DiZPK into IFITM3 for photocrosslinking studies. A) Cells 

were transfected with HA-IFITM3 plus PylRS-tRNACUA with DiZPK. After transfection 

for 18 hours, cells were placed in UV chamber with the lamp at 365 nm wavelength for 5 

min. Cells were then lysed and immunoblotted to visualized linked protein complex or 

immunoprecipitated for proteomics study. B) HA-mIFITM3 F8TAG, V29TAG, V45TAG, 

and F70TAG were cotransfected with PylRS-tRNACUA and DiZPK. After UV radiation for 

5 min or no UV as control, cells were lysed and immunoblotted for α-HA and α-GAPDH. 

Compared to the sample with UV induced crosslinking, several more bands higher than 

MW of IFITM3 were seen. 

.  
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3.3.4 Application of UAA in other membrane proteins 

As we were exploring amber codon suppression technology in IFITM3, I also evaluated 

other membrane proteins to assess the generality of this system. I initially analyzed 

caveolin 1 (Cav1) (Dennis J Dietzen et al., 1995), an intramembrane protein involved in 

vesicle trafficking that has similar biochemical features to IFITMs. I generated several 

Cav1 amber codon mutants and evaluated their expression with UAAs. Most of Cav1 

amber codon mutants can express full-length protein, but V16, V52, V130 TAG mutants 

appeared to yield the best full length Cav1 expression. I then performed click chemistry 

ligation with alk-rho, showed that Cav1 can ideally be bioorthogonally labeled by in-gel 

fluorescence analysis (Figure 33). 

 

Figure 33. Incorporation of UAA in Caveolin 1 (Cav1). Mutations of Cav1 were chose 

using criteria mentioned above. HEK293T cells were transfected with Cav1 plasmids and 

PylRS-tRNACUA. ACPK was added during transfection. After transfection, cells lysates 

were click with alk-Rho for visualization. Immunoblotting and in-gel fluorescence were 

performed to determine the protein expression level and fluorescence signal. 
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3.4 Discussion 

3.4.1 Optimization of Amber codon suppression in IFITM3 

To facilitate imaging and protein-protein interaction studies of IFITM3, we developed 

amber codon suppression system in IFITM3. Since the incorporation efficiency of UAAs 

in different residues and proteins can vary, we first needed to systematically profile 

IFITM3 to find optimal positions for amber codon mutation. As mentioned earlier, we 

chose positions according to several criteria. First, the residue should not affect protein 

functions, like post-translational modification, protein-protein interaction or disulfide bond. 

Second, ideally the residue should have similar side chain size to minimize the impact of 

unnatural amino acids on protein folding and structure. 15 and 24 mutations were made on 

mIFITM3 and hIFITM3 respectively. Each mutant was then tested for incorporation of 

UAA. To make sure full-length proteins were made, N- and C- terminus were tagged with 

HA and FLAG. Immunoblotting using α-HA or α-FLAG would reveal whether full-length 

protein is synthesized. 

Interestingly, mIFITM3 amber codon positions larger than 80 showed truncated 

products corresponding to the molecular weight of the protein from first amino acid to 

amber codon (Figure 28). However, hIFITM3 does not show truncation except a few very 

C-terminal mutations (I122, F129, A131). Screening of mouse and human IFITM3 amber 

codon mutants revealed that indeed protein expression level varies from one position to 

another. mIFITM3 F8, V29, V45, F70 and hIFITM3 F8, I76, V93, C105 mutations 

exhibited best expression efficiency (Figure 32 and Figure 30). Especially, F8TAG showed 

great promise for later applications in live-cell imaging and photocrosslinking due to its 

high expression efficiency with multiple kinds of UAAs. 
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3.4.2 Bioorthogonal labeling of IFITM3 amber codon mutants with UAAs 

UAAs with click chemistry handles (ACPK and alk-Pyl) enabled specific bioorthogonal 

labeling (Figure 27). To increase the signal-to-noise ratio of the labeling, alkyne-containing 

UAA was preferred for labeling and azide-conjugated fluorophore or biotin was then use 

to ligate. Preliminary testing of UAA and dye pairs confirmed that alk-Pyl with az-Rho 

(Cy3) had best fluorescent signal-to-noise level. The protocol of click chemistry is similar 

to the ones we used to identify fatty-acylated proteins with chemical reporter alk-16 (Yount 

et al., 2011b). Our experiments with mIFITM3 amber codon mutants confirmed that 

labeled IFITM3 can be specifically ligated to fluorophores in vitro (Figure 31). 

 

3.4.3 Application of amber codon suppression in other membrane proteins 

Due to the encouraging results from IFITM3 UAA incorporation, we seek to generalize the 

method to other S-palmitoylated transmembrane proteins. Amber codon mutations on 

Cav1, CD9, CANX, TLR2 were made and tested for UAA incorporation. However, only 

Cav1 mutants showed successful expression in several positions (Figure 33) and other 

mutations of CD9, CANX or TLR2 were either not expressed or truncated (data not shown). 

Similar to IFITM3, Cav1 is a short intramembrane protein with flexible helical domain. It 

is possible that flexible intramembrane proteins are more susceptible to amber codon 

suppression. Transmembrane proteins like CD9, CANX, TLR2 may need more careful 

analysis of the amber codon position to locate optimal site for incorporation. 
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3.5 Materials and methods 

3.5.1 Materials 

The plasmids of Cav1, CANX, CD9 were obtained from Addgene. Anti-HA-Peroxidase, 

high affinity (clone 3F10) was from Roche life science. Rabbit polyclonal GAPDH 

Antibody (FL-335) was purchased from Santa Cruz Biotechnology.  

 

3.5.2 Site mutagenesis for amber mutants 

Site-directed mutagenesis was done using Agilent QuikChange II Site-Directed 

Mutagenesis Kit (http://www.agilent.com). Primers used in the experiments are listed in 

Table 9. 

Table 9. Sequences of primers for site-directed mutagenesis of amber mutants. 

mIFITM3-F8TAG-F CACACTTCTCAAGCCTAGATCACCGCTGCCAGTG 

mIFITM3-F8TAG-R CACTGGCAGCGGTGATCTAGGCTTGAGAAGTGTG 

mIFITM3-V29TAG-F CAAGGAAGAATATGAGTAGGCTGAGATGGGGGC 

mIFITM3-V29TAG-R GCCCCCATCTCAGCCTACTCATATTCTTCCTTG 

mIFITM3-V45TAG-F GCTTCTGTCAGAACTACTTAGATCAACATGCCCAGAG 

mIFITM3-V45TAG-R CTCTGGGCATGTTGATCTAAGTAGTTCTGACAGAAGC 

mIFITM3-V58TAG-F GTCGGTGCCTGACCATTAGGTCTGGTCCCTGTTC 

mIFITM3-V58TAG-R GAACAGGGACCAGACCTAATGGTCAGGCACCGAC 

mIFITM3-F63TAG-F CATGTGGTCTGGTCCCTGTAGAATACACTCTTCATGAACT 

mIFITM3-F63TAG-R AGTTCATGAAGAGTGTATTCTACAGGGACCAGACCACATG 

mIFITM3-L66TAG-F GTCTGGTCCCTGTTCAATACATAGTTCATGAACTTCTGCTGCCTG 
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mIFITM3-L66TAG-R CAGGCAGCAGAAGTTCATGAACTATGTATTGAACAGGGACCAGAC 

mIFITM3-F67TAG-F TCCCTGTTCAATACACTCTAGATGAACTTCTGCTGCCTGG 

mIFITM3-F67TAG-R CCAGGCAGCAGAAGTTCATCTAGAGTGTATTGAACAGGGA 

mIFITM3-F70TAG-F CTGTTCAATACACTCTTCATGAACTAGTGCTGCCTGGGCT 

mIFITM3-F70TAG-R AGCCCAGGCAGCACTAGTTCATGAAGAGTGTATTGAACAG 

mIFITM3-L73TAG-F CATGAACTTCTGCTGCTAGGGCTTCATAGCCTATG 

mIFITM3-L73TAG-R CATAGGCTATGAAGCCCTAGCAGCAGAAGTTCATG 

mIFITM3-V82TAG-F CCTATGCCTACTCCTAGAAGTCTAGGGATCG 

mIFITM3-V82TAG-R CGATCCCTAGACTTCTAGGAGTAGGCATAGG 

mIFITM3-V93TAG-F GAAGATGGTGGGTGATTAGACTGGAGCCCAGGC 

mIFITM3-V93TAG-R GCCTGGGCTCCAGTCTAATCACCCACCATCTTC 

mIFITM3-L113TAG-F CTGAACATCAGCACCTTGGTCTAGAGCATCCTGATGGTTGTTATC 

mIFITM3-L113TAG-R GATAACAACCATCAGGATGCTCTAGACCAAGGTGCTGATGTTCAG 

mIFITM3-I122TAG-F TCCTGATGGTTGTTATCACCTAGGTTAGTGTCATCATCATTGT 

mIFITM3-I122TAG-R ACAATGATGATGACACTAACCTAGGTGATAACAACCATCAGGA 

mIFITM3-L130TAG-F GTTAGTGTCATCATCATTGTTTAGAACGCTCAAAACCTTCACAC 

mIFITM3-L130TAG-R GTGTGAAGGTTTTGAGCGTTCTAAACAATGATGATGACACTAAC 

mIFITM3-L135TAG-F ATTGTTCTTAACGCTCAAAACTAGCACACTGATTACAAGGATGAC 

mIFITM3-L135TAG-R GTCATCCTTGTAATCAGTGTGCTAGTTTTGAGCGTTAAGAACAAT 

hIfitm3-F8TAG-F CACACTTCTCAAGCCTAGATCACCGCTGCCAGTG 

hIfitm3-F8TAG-R CACTGGCAGCGGTGATCTAGGCTTGAGAAGTGTG 

hIfitm3-V93TAG-F GAAGATGGTGGGTGATTAGACTGGAGCCCAGGC 

hIfitm3-V93TAG-R GCCTGGGCTCCAGTCTAATCACCCACCATCTTC 



100 

 

hIfitm3-L135TAG-F ATTGTTCTTAACGCTCAAAACTAGCACACTGATTACAAGGATGAC 

hIfitm3-L135TAG-R GTCATCCTTGTAATCAGTGTGCTAGTTTTGAGCGTTAAGAACAAT 

hIfitm3-I122TAG-F TCCTGATGGTTGTTATCACCTAGGTTAGTGTCATCATCATTGT 

hIfitm3-I122TAG-R ACAATGATGATGACACTAACCTAGGTGATAACAACCATCAGGA 

hIfitm3-I9TAG-F CACTTCTCAAGCCTTCTAGACCGCTGCCAGTGGAG 

hIfitm3-I9TAG-R CTCCACTGGCAGCGGTCTAGAAGGCTTGAGAAGTG 

hIfitm3-T10TAG-F CTTCTCAAGCCTTCATCTAGGCTGCCAGTGGAGGAC 

hIfitm3-T10TAG-R GTCCTCCACTGGCAGCCTAGATGAAGGCTTGAGAAG 

hIfitm3-N131TAG-F GTGTCATCATCATTGTTCTTTAGGCTCAAAACCTTCACACTG 

hIfitm3-N131TAG-R CAGTGTGAAGGTTTTGAGCCTAAAGAACAATGATGATGACAC 

hIfitm3-S13TAG-F CAAGCCTTCATCACCGCTGCCTAGGGAGGACAGCCCCCAAACTAC 

hIfitm3-S13TAG-R GTAGTTTGGGGGCTGTCCTCCCTAGGCAGCGGTGATGAAGGCTTG 

Cav1-V16TAG-F GGACATCTCTACACCTAGCCCATCCGGGAACAG 

Cav1-V16TAG-R CTGTTCCCGGATGGGCTAGGTGTAGAGATGTCC 

Cav1-V52TAG-F GAGATCGACCTGTAGAACCGCGACCCTC 

Cav1-V52TAG-R GAGGGTCGCGGTTCTACAGGTCGATCTC 

Cav1-V71TAG-F CGCATTGACTTTGAAGATTAGATTGCAGAACCAGAAG 

Cav1-V71TAG-R CTTCTGGTTCTGCAATCTAATCTTCAAAGTCAATGCG 

Cav1-V94TAG-F CAGCTTCACCACCTTCACTTAGACGCGCTACTGGTTTTAC 

Cav1-V94TAG-R GTAAAACCAGTAGCGCGTCTAAGTGAAGGTGGTGAAGCTG 

Cav1-L122TAG-F GGCATTTACTTCGCCATTTAGTCTTTCCTGCACATCTGG 

Cav1-L122TAG-R CCAGATGTGCAGGAAAGACTAAATGGCGAAGTAAATGCC 

Cav1-V130TAG-F CCTGCACATCTGGGCATAGGTACCATGCATTCGC 
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Cav1-V130TAG-R GCGAATGCATGGTACCTATGCCCAGATGTGCAGG 

Cav1-V155TAG-F CCATCTACGTCCACACCTAGTGTGACCCACTCTTTG 

Cav1-V155TAG-R CAAAGAGTGGGTCACACTAGGTGTGGACGTAGATGG 

Cav1-V163TAG-F GACCCACTCTTTGAAGCTTAGGGGCGCATATTCAGCAATG 

Cav1-V163TAG-R CATTGCTGAATATGCGCCCCTAAGCTTCAAAGAGTGGGTC 

 

3.5.3 Unnatural amino acids incorporation in mammalian cell culture 

HEK293T cells were seeded into Corning 6-well plate (Costar, Corning) and grown to 90% 

confluence in 10% fetal bovine serum DMEM (Invitrogen) in a humidified atmosphere of 

5% CO2. Plasmids encoding RNA synthetase and tRNA, pCMV-Mb-DiZPK-RS, were 

obtained from Dr. Peng Chen lab (Zhang et al., 2011). When cells reached 80-90% 

confluency, the media was exchanged to Opti-MEM containing 50 μM unnatural amino 

acids (e.g. BocK), and cells were then transfected with pCMV-Mb-DiZPK-RS and pCMV-

IFITM3 amber mutants using Lipofectamine® 2000 from Invitrogen. Cells were grown for 

an additional 12 h before being visualized by a fluorescence microscope. 

 

3.5.4 In-gel fluorescence detection of ligated products 

Cells were lysed in Brij97 buffer (1% Brij 97, 50 mM TEA, 150 mM NaCl, pH 7.4) and 

protein concentration was quantified with BCA assay. 500-1000 mg protein was aliquoted 

into 100 uL Brij97 buffer in a dolphin tube. Prewashed α-HA-conjugated agarose (Sigma) 

in Brij97 buffer (Use 15 uL Sigma agarose per sample) was added to protein sample and 

incubated over the nutating mixer at 4 °C for 1h. Agarose beads were spun down for 1 min 

at 9000x g. Agarose resin was washed three times with 500 uL RIPA wash buffer (50 mM 
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TEA, 150 mM NaCl, 1% Na-Deoxycholate, 1% Triton X 100, 0.1% SDS). Beads was 

resuspended in 22.5 uL 4% SDS buffer and added to 2.5 uL click chemistry master mix for 

one hour incubation. 4x blue buffer/BME (165 uL blue buffer with 35 uL BME) was added 

for SDS-PAGE. After running SDS-PAGE, gels were imaged by TyphoonTM scanner (GE 

Healthcare). 

 

3.5.5 UV-induced photo-crosslinking by DiZPK 

Photocrosslinking was performed by irradiation of the mammalian cells with UV light (365 

nm) for 0–10 min using a Hoefer UVC 500 Crosslinker installed with 365-nm-wavelength 

UV lamps (Amersham Biosciences) at a distance of 3 cm at 25 °C. The cells were harvested 

by Trypsin digestion and centrifuge at 6000g for 2 min and then analyzed by tricine SDS-

PAGE and immunoblotting with antibodies against the specified proteins. Gel bands and 

western blots were scanned and quantified using the ImageJ program (NIH).  
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Chapter Four: Conclusion and perspective 

4.1 Conclusion 

New chemical methods for protein fatty-acylation have expanded the number of modified 

proteins in eukaryotes and highlighted novel roles in biology (Peng et al., 2016) (Chapter 

1). Indeed, the discovery of IFITM3 S-palmitoylation by the Hang laboratory identified a 

new role for protein fatty-acylation in host resistance to virus infection (Yount et al., 2010, 

2012). Nonetheless, the precise mechanism of IFITM3 antiviral activity and regulation by 

S-palmitoylation is not fully understood. To address these outstanding questions of IFITM3 

function, I characterized endogenous levels and specific sites of IFITM3 S-palmitoylation 

in Chapter 2. I demonstrated that IFITM3 is primarily S-palmitoylated on C72, a highly 

conserved amino acid, which is important for IFITM3 antiviral activity. My additional 

experiments showed that loss of IFITM3 S-palmitoylation, particularly at Cys72, resulted 

in enhanced protein turnover through proteasome- and lysosome-mediated degradation 

pathways. 

 I also developed new chemical tools and expression systems to explore IFITM3 

function and regulation. In particular, I identified IFITM3 amber codon mutants that could 

be used for site-specific labeling with unnatural amino acids. The ability to incorporate 

unnatural amino acids into IFITM3 is providing our laboratory new opportunities for live 

cell imaging studies and photocrosslinking studies, which I will summarize below. In 

addition, I also explored expression and purification of recombinant IFITM3 in bacteria 

for in vitro site-specific lipidation, which may enable reconstitution of IFITM3 in vitro for 

more precise biochemical and biophysical studies. An updated working model for IFITM3 

antiviral activity and future directions is summarized below.  
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4.2 Perspectives 

4.2.1 A model for IFITM3 antiviral mechanism 

IFITMs are important IFN-stimulated effectors that control host susceptibility to many 

viruses, but their mechanisms of action are not understood. Although the complexity of 

IFITMs antiviral mechanism and the specificity of virus inhibition, there are some 

proposed mechanisms for IFITMs activity. In the absence of IFITM3, incoming influenza 

virus particles traffic to acidic endosomes and fuse with host membranes to deposit viral 

RNA for infection. In IFN-stimulated cells, expression of IFITM3 inhibits virus entry and 

may divert incoming virus particles for degradation in lysosomes. 

IFITM3 does not appear to block the internalization of viruses such as VSV, 

influenza virus or HCV into host cells but instead prevents deposition of viral contents into 

the cytosol (Feeley et al., 2011; Huang et al., 2011; Schoggins et al., 2011; Weidner et al., 

2010). Additional cell biology studies have suggested that IFITM3, localized to endocytic 

vesicles and lysosomes, may directly block virus pore formation  or indirectly inhibit virus 

entry by increasing vesicular cholesterol levels and ultimately target incoming viral 

particles for lysosomal degradation (Amini-Bavil-Olyaee et al., 2013; Desai et al., 2014; 

Feeley et al., 2011; Li et al., 2013). More recent studies have suggested that IFITM3 does 

not affect virus-host membrane hemifusion but impairs pore formation or alter lipid vesicle 

composition (Amini-Bavil-Olyaee et al., 2013; Desai et al., 2014). The localization of 

IFITM3 on vesicles has even been proposed to alter membrane curvature and generate 

“tough membranes” to inhibit virus membrane fusion (Perreira et al., 2013). Beyond 

viruses, IFITMs have been recently reported to restrict Mycobacterium tuberculosis 

infection (Ranjbar et al., 2015). 
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Figure 34. IFITM3 antiviral working models. Incoming viruses are first trapped into 

early endosome (marker protein Rab5) where some of the IFITM3 population colocalize. 

As vesicles mature to late endosomes, IFITM3 will first enhance the membrane rigidness 

to prevent back fusion into the cytosol and secondly direct vesicles into a non-productive 

pathway for degradation, like lysosome. Immunofluorescence showed IFITM3 strongly 

colocalized with lysosome marker LAMP1 indicating its role as vesicular trafficking factor 

for the virus to degrade in the lysosome. 

 Recent studies in our laboratory suggests that IFITM3 may act like “immune-

SNAREs” for pathogens due to its interaction with syntaxin proteins (Q-SNARE) and 

similarity with VAMP proteins (R-SNARE). VAMPs with similar size to IFITMs are also 

S-fatty-acylated (unpublished data). Knockdown of VAMPs increased susceptibility to 

virus infection and are essential for vesicle fusion (Pirooz et al., 2014). VAMPs may thus 

serve as models to understand how IFITM3 directs pathogen-containing vesicles into 

degradative cellular compartments. The new chemical tools developed in my thesis studies 

may help understand IFITM3 mechanism and regulation by S-fatty-acylation.  



106 

 

4.2.2 Future studies  

Live-cell imaging to monitor IFITM3 trafficking 

The amber codon suppression technology developed for IFITM3 is providing a new system 

for live-cell imaging (Figure 35). To profile different cell permeable fluorophores, 

rhodamine, BODIPY or Si-rhodamine (Lukinavičius et al., 2013) were synthesized and 

tested for three amino acids. Human IFITM3-F8TAG amber mutant was used as a model 

protein because the previous study had shown that UAA can robustly incorporate into 

F8TAG mutant. Si-Rho with TCOK showed strong and specific bioorthogonal labeling 

(Figure 36). The biocompatible near-infrared high permeability and fluorogenic character 

permit the imaging of proteins in living cells and tissues without washing steps, and its 

brightness and photostability make it ideally suited for live-cell super-resolution 

microscopy (Lukinavičius et al., 2013). 
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Figure 35. Scheme of site-specific live cell imaging using IED-DA reaction. Amber 

suppression-mediated incorporation of øp-Lys in IFITM3-TAG mutants enables 

bioorthogonal ligation with tetrazine-dyes for in-gel fluorescence profiling of cell lysates 

and live cell labeling for confocal fluorescence imaging studies. 
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Figure 36. Screening for an optimal pair of unnatural amino acids and tetrazine dye. 

Several UAAs, øp-Lys, BCNK and TCOK were tested individually with multiple kinds of 

fluorescent tetrazine dye to screen the optimal pair for labeling IFITM3-F8TAG. Artificial 

units were used to indicate the relative labeling intensity of each pair. Data from Tao Peng. 

Live-cell imaging experiments were then performed using the optimal conditions 

(Figure 37). IFITM3-F8TAG labeled with Si-Rh-Tz colocalized very well with GFP-

LAMP1, which is consistent with the immunofluorescence results. α-HA 

immunofluorescence of HA-IFITM3 overlapped very well with the Rhodamine 

fluorescence, which further confirmed the specificity of the UAA labeling. This new 

technology provides us an exciting opportunity to image IFITM3 trafficking in living cells 

during virus infection for the first time. We will optimize the multiplicity and kinetics of 

fluorophore-labeled IAV and then perform live cell imaging studies in IFITM2/3-KO cells 

coexpressing Si-Rh-Tz-labeled IFITM3 and other GFP-labeled cellular markers. By 

monitoring the time-lapse imaging of IAV particle infection process, we would be able to 

know at what step do IFITM3 engages the virus-containing vesicle and the degradation 
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process. To further understand the specificity of IFITM3 cargo selectivity, other 

fluorescently-labeled exogenous cargo such as dextran, transferrin, EGF will be tested in 

parallel with IAV assay. 

 

Figure 37. Live cell imaging of IFITM3 F8TAG with Si-Rh-Tz. Upper panel, Si-Rh-Tz 

labeled IFITM3-F8TAG were cotransfected with GFP-LAMP1. Live-cell imaging were 

then performed and in consistent with previous observation, Rhodamine signal overlap 

very well with GFP-LAMP1. Lower panel, pH sensitive EGF-pHrodo® Green is used for 

the detection of internalized EGF receptor in cells. Data from Tao Peng. 
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Understanding IFITM3 membrane topology with UAA accessibility methods 

The membrane topology of IFITM3 was predicted to be dual transmembrane protein but 

the identification of K24 ubiquitination on mouse IFITM3 raised the possibility that the 

predicted dual-pass transmembrane topology was incorrect since the enzymes responsible 

for ubiquitin conjugation are localized in the mammalian cytosol (Brass et al., 2009; Yount 

et al., 2012). To further support the N-terminal cytosolic orientation, phosphorylation of 

Tyr20 has also been reported to regulate IFITM3 endocytosis from the plasma membrane 

(Chesarino et al., 2014a; Jia et al., 2014). Subsequent N-linked glycosylation mapping 

studies and protein lipidation site engineering (N-myristoylation and C-prenylation) 

studies suggest that mIFITM3 may be an intramembrane protein where both the N- and C-

termini of mIFITM3 have access to the cytoplasm (Yount et al., 2012). More recent 

epitope-mapping studies have also confirmed the cytoplasmic orientation of IFITM3 N-

terminus and also suggest that the C-terminus may either be luminal or extracellular (Bailey 

et al., 2013; Weston et al., 2014). Since multiple UAA positions of IFITM3 are available, 

it creates a new opportunity to study IFITM3 topology with accessibility assay. Basically, 

membrane impermeable fluorophore conjugates could be used to screen IFITM3 with 

amber codons at different positions. Only positions that are outside the vesicle membrane 

should be able to be ligated to the fluorophore. It is especially interesting to figure out 

whether C-terminus of IFITM3 is luminal or cytosolic or a mix of both (Figure 7). 
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Identification of cellular factors required for IFITM3 antiviral activity 

Development of novel tools to study essential proteins or lipids required for IFITM3 

function is vital for us to understand IFITM3 biology. It requires a detailed characterization 

of lipids and proteins in IFITM3-vesicles, which could provide experimental evidence for 

two potential mechanisms of action for IFITM3: 1) vesicle-coating protein that enhances 

membrane integrity by remodeling the lipid or protein composition and or 2) membrane 

trafficking receptor or adapter that sorts virus-containing vesicles to lysosomes for 

degradation or export. 

 As discussed earlier in Chapter 2, the composition of lipids that modify IFITM3 is 

not known. To characterize IFITM3-associated lipids, IFN-stimulated cells will be 

mechanically lysed without detergents by Dounce homogenization and IFITM3-vesicles 

will be purified by α-IFITM3 antibody-conjugated magnetic beads and selectively eluted 

with low pH buffer. Western blot analysis of these purified vesicles will be performed with 

antibodies to IFITM3, endocytic markers, and other organelles to ensure specific and 

efficient enrichment. The immune-purified IFITM3-vesicles will then be extracted with 

chloroform/methanol, concentrated and analyzed by high-performance thin layer 

chromatography (HPTLC) and LC-MS/MS along with commercially available lipid 

standards as previously described (Maeda et al., 2014) 

 It is often challenging to identify the protein-protein interaction between membrane 

proteins due to normal co-immunoprecipitions conditions would perturb the cellular lipid 

environment that is required for proper protein interaction. Amber codon suppression 

coupled with crosslinkable UAA provides a feasible system for capturing this transient 

interaction. 
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To understand the proteins that are interacting with IFITM3 at the N-terminus. Double 

SILAC experiment was performed by our lab. Stable isotope labeling by amino acids in 

cell culture (SILAC) is a simple and straightforward approach for in vivo incorporation of 

a label into proteins for mass spectrometry (MS)-based quantitative proteomics. By 

employing quantitative method, several interesting protein partners were identified such as 

p97/VCP. 

 

Figure 38. Summary of HA-IFITM3-F8-DiZPK double-SILAC X-proteomics. HeLa 

cells labeled with heavy- or light-isotope amino acids plus DiZPK, were tranfected with 

HA-IFITM3-Phe8-TAG, subjected to 5 min of UV-crosslinking or not, combined in a 1:1 

ratio, subjected to anti-HA immunoprecipitation and then analyzed by LC-MS/MS 

sequencing using Orbitrap and MaxQuant. For double-SILAC analysis, DiZPK labeling 

was done with heavy amino acids (Forward) and subsequently performed with light amino 

acids (Reverse). Quantitative comparison of the samples from forward and reverse (H/L) 

ratios reveals protein candidates (i.e. p62) that were robustly photocrosslinked to HA-

IFITM3-Phe8-DiZPK. Data from Tao Peng.  

p62 
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Reconstitute and analyze lipidated IFITM3 in vitro 

Reconstitution of IFITM3 antiviral activity using purified proteins and lipids would 

definitively clarify how IFITM3 works and whether it needs help from other factors. After 

purifying IFITM3 from bacteria, lipidated or unmodified IFITM3 will be incorporated into 

synthetic liposome with different compositions to optimize the best system for IFITM3 

vesicles. Membrane fractionation experiment would be helpful to understand how S-fatty-

acylation changes protein hydrophobicity and lipid preference. Further analysis of how and 

where IFITM3 participate in the membrane fraction by fluorescent tracking using UAA 

labeling of IFITM3 and well-established fluorescent membrane probes would provide 

information on whether S-acylated IFITM3 would prefer ordered membrane fraction. 

 Several studies have been done on loss of function analysis of IFITM3 S-fatty-

acylation through mutagenesis. However, to understand how alterations in S-fatty-

acylation controls IFITM3 targeting to membranes and antiviral activity, we need to 

reconstitute and characterize lipidated IFITM3 in vitro and in vivo. We have successfully 

purified codon optimized mouse and human IFITM3 from E. Coli. Since S-fatty-acylation 

machinery is not available in the bacteria, the proteins we’ve purified have no lipidation. 

To understand the interaction of IFITM3 with membranes, we will chemically install fatty 

acid analogs onto the recombinant IFITM3. To introduce defined lipid structures on 

hIFITM3-His6, we have explored a variety of Cys alkylation methods (maleimide coupling, 

haloacetamide alkylation, direct acylation, disulfide exchange (Kim et al., 2014) and thiol-

ene coupling (TEC) (Valkevich et al., 2012)) and have discovered that maleimide-coupling 

affords the most selective and efficient method for chemical labeling of the Cys residues 

of IFITM3 in vitro. Lipidation with hexadecyl maleimide (Mal-C16:0) induces a clear 
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change in purified mouse and human IFITM3 mobility, but not that of IFITM3 palmΔ 

mutation (Figure 39). 

 

Figure 39. In vitro alkylation with hexadecylmaleimide (Mal-C16:0). 30 µL protein (0.16 

mM for mIFITM3 and much lower for hIFITM3) was mixed with 1 µL 500 mM TCEP 

(250 eq.) solution. The solution was shaken at room temperature for 30 mins. 60 μL of a 

20 mM (500 eq.) solution of the hexadecyl maleimide (Mal-C16:0) in DMF or DMF 

control was then added and the reaction shaken at room temperature for another two hours. 

Chloroform-Methanol precipitation was used to stop the reaction and retrieve proteins. 

 Even though the maleimide lipidated product is not a natural lipid linkage, this 

chemical strategy should provide a reasonable approach to generate and reconstitute 

lipidated IFITM3 variants in vitro (Triola et al., 2012). Amber codon mutation could also 

be introduced into IFITM3 for labeling with fluorescent tags that would facilitate the 

imaging or membrane fusion assay. To further understand how site-specific lipidation 

affects IFITM3 function, we can generate proteins with mono-, di- or tri-lipidated isoforms 

to determine if specific cysteine or cysteine combination is required for proper function. 

As we mentioned before Cys72 has been proved to be an important site for S-fatty-
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acylation, putting back lipidation to Cys72 in vitro and in vivo will further improve our 

understand of the function of S-fatty-acylation. 

 To characterize the activity of the IFITM3-liposome system, we will perform 

liposome fusion assay and membrane permeability assay to understand how IFITM3 

affects vesicle fusion and membrane permeability, which have been suggested as two main 

mechanisms of IFITM3 antiviral activity (Bailey et al., 2014). More importantly, it is 

crucial to show that the reconstituted IFITM3-liposome is biologically active. Recent 

studies have shown that exosomes containing IFITM3 can be added to unstimulated cells 

and protect them from Dengue virus infection (Zhu et al., 2014). Thus, we can design 

experiments to compare the antiviral activity of fluorescent lipidated IFITM3-exosomes 

with nonlipidated version. Importantly, the production of active recombinant lipidated-

IFITM3 may provide a well-defined protein-based therapeutic for the prevention or 

treatment of IAV infections in humans with loss-of-function mutations in IFITM3 (Everitt 

et al., 2012; Wang et al., 2013; Zhang et al., 2013b). 

 

Summary 

My thesis work focused to the development of chemical tools to study the innate immune 

protein IFITM3, especially focused on the function of S-palmitoylation. The new tools for 

live-cell imaging, site-specific photocrosslinking and in vitro reconstitution system should 

facilitate future studies on the mechanisms and regulation of IFITM3 antiviral activity. The 

enhanced understanding of IFITM3 not only helps us figure out how IFITM3 restricts a 
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broad spectrum of viruses, but may enable the development of new therapeutic approaches 

against intracellular pathogens in the future.  
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