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ESCHERICHIA COLI AS A NEW PLATFORM FOR THE STUDY OF PHOSPHOINOSITIDES 

Sergio Botero, Ph.D. 

The Rockefeller University 2016 

Phosphoinositides are membrane phospholipids involved in a wide variety of processes 

across the tree of life. In eukaryotic cells they function though their role as integral 

membrane components, anchors for proteins, membrane identity markers, and 

signaling molecules. Phosphoinositides are regulated through the phosphorylation and 

dephosphorylation of the inositol head-group at the 3rd, 4th, and 5th positions, creating a 

complex and very dynamic interconversion network. They can also be hydrolyzed into 

an inositide head-group and diacylglycerol which are in turn signaling molecules. The 

wide variety of functions, and redundancy in their synthesis pathways, makes the in-vivo 

study of phosphoinositides complex since any experimental alterations can have 

undesired effects throughout the cell. In this work I engineered the metabolic network 

required to synthesize the most abundant eukaryotic phosphoinositides in the 

bacterium Escherichia coli, which normally lacks any of these phospholipids. This 

engineered bacterium is a new tool for the in-vivo study of cell biology models that 

involve phosphoinositides, allowing for a precise control of the system and avoiding any 

undesired interactions. To achieve this I built and optimized the expression of the 

required enzymes into a single plasmid such that it can be used in any strain of E. coli. 



My system can produce phosphatidyl inositol, phosphatidyl inositol (4) phosphate 

(PI4P), and phosphatidyl inositol (4,5) diphosphate (PIP2), and is easily controlled trough 

the addition of inositol to the growth media of the bacterium. As an example application 

of my system, I use it to confirm the role of PIP2 binding in the non-conventional protein 

export of human basic fibroblast growth factor (FGF2). 
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1. Introduction

1.1. An evolutionary outlook 

As the main components of all cellular membranes, phospholipids are essential 

components of all living organisms. Their basic structure consists of a hydrophobic lipid 

component, two fatty acid tails, and a hydrophilic head which includes a phosphate 

group, hence the name phospholipid. The head-group can be modified further with the 

addition of other chemical moieties. Their amphipathic character is essential for the 

formation of biological membranes because their hydrophobic tails can align towards 

the inside of a bilayer, leaving the hydrophilic head towards the exterior. These 

membranes create the semipermeable barrier that is essential to separate the interior 

of cells from the environment, but also to separate the different organelles and vesicles 

from the rest of the cytoplasm in eukaryotes. 

Phosphoinositides are a class of phospholipids that have a 6 carbon-ring myo-inositol 

(commonly referred to simply as inositol) head. This head-group is linked via a 

phosphate to a cytidine diphosphate diacylglycerol (CDP-DAG) in Bacteria and Eukarya, 

or to a CDP-archaeol in Archaea 1, and it presents a hydrogen and a hydroxyl in each of 

the other 5 carbons. The carbon linked to the phosphate is carbon 1 in the myo-inositol 

ring. These hydroxyls can be substituted by phosphate groups in positions 3, 4, and 5, in 

any combination, creating a code that can be used by cells to differentiate among 

membranes or sections of them2. Figure 1 shows a schematic representation of all 
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phosphoinositide variants and their known interconversion pathways in mammalian 

cells. Phosphoinositides are present in all eukaryotes, most archaea, and some groups of 

bacteria3. While the actual lipids are different in Bacteria and Archaea due to the 

different linkers of each domain (ether linked in Archaea and Ester linked in Bacteria and 

Eukarya), their synthesis is thought to have a common origin giving the similarity in their 

biosynthetic pathways4.  

Bacteria and Eukarya phosphoinositides are the same in terms of their overall structure, 

with differences only in the length and saturation of the lipid tails, but their biosynthetic 

pathways differ. In Eukarya the first molecule to be synthesized is phosphatidyl inositol 

(PI), the only phosphoinositide that is un-phosphorylated. In Bacteria, as well as 

Archaea, PI is not the first molecule to be synthesized; in the prokaryotes a 

phosphorylated version is the first phosphoinositide to be synthesized, starting from 

CDP-DAG in Bacteria, or CDP-archaeol in Archaea, and adding a phosphorylated myo-

inositol to create a phosphatidylinositol phosphate (PIP) in Bacteria or an 

archaetidylinositol phosphate in Archaea. This PIP or archaetidylinositol phosphate is 

then dephosphorylated to synthesize PI or archaetidylinositol. The PI-synthase (PIS) and 

PIP-synthase enzymes for this first step in the biosynthetic pathway can only use their 

specific substrates but are closely related evolutionarily in all three domains of life 

despite this difference3. 
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Figure 1. Phosphoinositide chemical structure and interconversion pathways 

 The pathways shown are present in mammalian cells and represent a eukaryotic 

generalization although there is variation between the major groups of eukaryotes. 

Bacteria and Archaea have much simplified pathways involving only PI and 

monophosphorylated phosphoinositides or no phosphoinositides at all. Only the 

hydrolysis pathway of PIP2 into diacylglycerol (DAG) and inositol trisphosphate (IP3) is 

shown, since this is the best understood, but hydrolysis of phosphoinositide releasing 

DAG and the corresponding inositide occurs for other phosphoinositides (see text). 

Figure adapted from the works of Shah and coworkers5 and Viaud and coworkers6. 



4 

There is little known about prokaryotic phosphoinositides and their functions remain 

poorly described, especially since until recently it was thought that it was an uncommon 

occurrence in bacteria3. It is however assumed, given their presence in all eukaryotes, 

that phosphoinositides were present in the last common eukaryotic ancestor and it has 

been proposed that eukaryotes acquired their phosphoinositides from Archaea 7. 

Phosphoinositide functions vary widely across the domains of life. The best understood 

functions encompass being integral membrane phospholipids8, membrane anchors for 

proteins covalently bound to them9, and anchor sites for proteins with domains specific 

for their recognition2. They can also act as signaling molecules directly10, or through the 

products of their hydrolysis into DAG and inositides (the head-group)11. Inositides can 

also act as compatible solutes12, as cofactors for several processes in the nucleus 

involving both RNA and DNA regulation13,14, and as protein modification moieties15. 

In Archaea phosphoinositides have functions as integral membrane components8 and 

inositides (just the head-group without a lipid tail) are thermo-protective solutes for 

some hyperthermophilic Archaea12. In Bacteria phosphoinositides have been associated 

mostly with the Actinobacteria16, which includes a large number of environmental 

bacteria but also the Mycobacterium genus and Corynebacterium diphtheria, the 

etiological agent causing diphtheria, which use inositides (lacking the lipid tails) as an 

intracellular redox-buffer17 and as intermediates in the production of antibiotics in some 

environmental actinomycetes18. Recently it was shown that phosphoinositides are 
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present in a significantly larger proportion of bacteria than previously thought but their 

function in these other bacteria remains mostly unexplored3. Photosynthesizing 

cyanobacteria and α-proteobacteria have phosphoinositides so, as expected being their 

descendants, chloroplast have  and synthesize PI19 but its function remains poorly 

characterized7. Mitochondria have a small phosphoinositide component they do not 

synthesize and presumably get through their contact with the endoplasmic reticulum. 

There are no known functions of mitochondrial phosphoinositides but there is an 

observation that aged mitochondria can recover some of their functionality with the 

addition of PI20. 

Since all eukaryotes have phosphoinositides in their membranes, their presence is 

considered to be an ancestral character of the group derived from an archaeal origin, 

and it is in eukaryotes that their functions are more diverse21.  Phosphoinositides are 

used as protein anchors in the form of glycophosphoinositides (GPI) using a complex 

protein machinery for their synthesis in the ER9. Inositol polyphosphates (the non-lipid-

bound version of the head-group) are used as osmoregulators by some eukaryotes just 

as in some prokaryotes22.  

PI is synthesized at the endoplasmic reticulum (ER) by a PI-synthase (PIS) and its 

concentration is at the highest in this organelle23. As mentioned earlier, this PIS is closely 

related to that of prokaryotes, but it synthesizes PI, in contrast to PIP, in prokaryotes3. 

From PI synthesized in the ER, all other forms of phosphoinositides are formed by the 
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phosphorylation or dephosphorylation of the 3, 4 and 5 positions, giving seven possible 

phosphorylated variants. These variants can be localized in different membranes and 

used as a code for membrane identity, a use that is considered a eukaryotic innovation. 

The use of inositide-phosphate derivatives, missing lipid tails, gives even a larger 

number of possibilities as a code since they can also be phosphorylated at the 2nd and 

6th position. Using of both phosphoinositides and their inositide derivatives in signaling 

is considered the most evolutionarily novel adaptation of inositide functionality21.  

In eukaryotes, the basic biosynthetic pathway of phosphoinositides starts from the ER, 

being rich in PI, with the next step in their biosynthesis being the phosphorylation to 

create phosphatidylinositol-4-phosphate (PI4P) in the Golgi apparatus, and especially 

the trans-Golgi system. In this way, ER and Golgi apparatus already have a characteristic 

membrane phospholipid composition characterized by PI and PI4P respectively. Some of 

this PI4P is carried to the plasma membrane where it is phosphorylated again in its 5th 

position to create phosphatidylinositol-4,5-diphosphate (PI(4,5)P2 or simply PIP2), which 

is characteristic of this membrane21. However, there are variations that make the 

system more complex. There is evidence, for example, of PI4P synthesis also at the 

plasma membrane and nucleus24, but conceptually the ER-Golgi-Plasma membrane 

respectively matching PI-PI4P-PIP2 in their localization and synthesis is a valid 

simplification. Through mass spectrometry it was measured that PI constituted 5-10% of 

the total phospholipids  of a mammalian cell while PI4P and PIP2 represent only 0.5-

1%25. Those three phosphoinositides, PI, PI4P and PIP2 represent the majority of the 



7 

cells phosphoinositides, with PI being the bulk of them and PI4P and PIP2 each 

comprising about 5% with all others being a very small fraction of the phosphoinositides 

in a “resting mammalian cell”26. This is not by any means static, as an example PI(3,5)P2

increases twenty fold upon osmotic stress in yeast27. 

Not surprisingly, the phosphoinositide code eukaryotes develop as a membrane identity 

system is an essential cellular function since different phosphorylations mark different 

membranes2. The phosphoinositides are always facing the cytoplasmic side of the 

membranes 28. The only characterized mechanism to flip them across the membrane is 

that needed for the use of GPI anchors for some proteins. This occurs in the ER which 

involves a PI without additional phosphorylation9, although PI3P has been found in the 

lumen of Plasmodium falciparum’s ER and been associated with secretion29. This 

perhaps reflects an adaptation to be exposed to the cytoplasm of the host upon vesicle 

fusion with the plasma membrane of the parasite. There is also an observation of PI3P 

present in the outside membranes of some mammalian and plant cells but this remains 

largely unexplored30.  
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1.2. Synthesis, distribution, regulation and function of eukaryotic 

phosphoinositides 

Despite the relative low abundance of phosphoinositides, they perform a wide variety of 

essential functions. Phosphoinositides function as signaling intermediates31 and in 

overall membrane biology32, including cell division33, cortical actin organization34, and 

membrane curvature control, either directly or through their protein interactors35. 

Additional roles for phosphoinositides have been reported in the nucleus in chromatin 

maintenance36. This functionality is given by all 8 possible combinations of 

phosphorylation at the 3rd, 4th or 5th position of PI, creating the phosphoinositide code. 

Figure 2 shows a schematic representation of phosphoinositide location and abundance 

in a mammalian cell. Given the tight regulation of the phosphoinositides both in 

localization and phosphorylation state I will discuss the synthesis, distribution and 

functions of them simultaneously. 

Regulation of phosphoinositide abundance, and therefore their functions, is very 

complex. At the basic level it represents a complex balance between synthesis and 

degradation, where it’s important to consider that for the most part this means another 

type of phosphoinositide is formed either by addition or removal of a phosphate. The 

synthesis might be under more stringent control than the catalysis since the 

phosphoinositide phosphatases tend to be more promiscuous than phosphoinositide 

kinases regarding their substrates37. 
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Figure 2. Schematic representation of phosphoinositide location and abundance in a 

mammalian cell 

Figure adapted from the works of Shah and coworkers38 and Viaud and coworkers6. 
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The higher substrate promiscuity of the phosphatases does not mean in any way that 

they are not regulated, in fact tyrosine phosphorylation is a well characterized form of 

regulation for the phosphatases and it’s been proposed that serine/threonine 

phosphorylation is relevant as well39. The exception for this phosphoinositide 

phosphorylation/dephosphorylation balance is degradation via separation of the head-

group from the fatty acids by phosphoinositide specific phospholipase C (PLC), creating 

diacylglycerol (DAG) and the inositol phosphate moiety corresponding to the 

phosphoinositide of origin40 compounds that are in turn major signaling molecules11. 

Regulation extends beyond synthesis and degradation with sequestration of 

phosphoinositides representing an alternative form of regulation41 and the segregation 

of phosphoinositides across organelles42 or sections of the same membrane being 

another important factor. It has been shown for example that different pools of the 

same phosphoinositide being present in the same membrane but linked to different 

kinase isoforms are important in aspects of immune cell calcium regulation and 

signaling43 as well as vesicle and overall organelle trafficking44. Perhaps the best studied 

system is the sequestration of PIP2 by proteins to release these stored pools upon Ca+2 

binding45. But as in most phospholipid studies the validity of results indicating any sort 

of “rafts” or segmentation between membranes has been questioned functionally, in 

this case by showing two proteins with very distinct localizations on the membrane use 

the same PIP2 pool46. This picture is much more complex since it is now clear that some 

of the enzymes involved in phosphoinositide synthesis have preferences for certain fatty 
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acid moieties creating another way to regulate the system47 48. This type of difference is 

functionally relevant as shown with the differences between regular and stress induced 

phosphoinositide pools in Arabidopsis49, where it’s also been shown that differences in 

the fatty acid tails propagate from the synthesis of PI to different PIPs selectively50. 

Whether this is an explanation that applies for all observed differences between pools 

of the “same” phosphoinositide in cells is still an open question although it wouldn’t be 

a surprising observation. 

The length of the lipid tails varies significantly between yeast, mammals and plants. 

Yeast phosphoinositides possess fatty acid tails in the range of 26 to 36 C atoms per DAG 

molecule (which includes two fatty acids) and a maximum of 2 double bonds with 

several moieties being completely saturated. Mammals have between 34 and 40 C 

atoms per DAG, up to 6 double bonds, and there is always at least one double bond 

between the 2 lipid tails25. Plants showing a similar composition to that of mammals 

with a slightly larger range, including molecules with only 32 C atoms but the same 

range of double bonds49. Additionally there is evidence for ether linked inositol 

phospholipids in Dictyostelium, although their function seems to remain the same as in 

mammals51. This suggests that the lipid moieties might not be as relevant for the 

function of phosphoinositides, supporting the role of protein domains that bind to their 

head-groups as the major effectors of phosphoinositides. Also, since the lipid 

composition of membranes is controlled as a way to regulate fluidity52, the changes in 

the fatty acid tails of phosphoinositides could just reflect the overall status of the cells 
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phospholipids. The evidence for some differences between different phosphoinositides 

and other lipids during stress in Arabidopsis49 suggest this might not always be the case. 

Overall, the extent over which phosphoinositide fatty acids play a role in their functions 

beyond affecting their membrane mobility and localization is still an open question. 

As mentioned earlier, PI is synthesized at the ER from CDP-diacylglycerol, a common 

precursor for other lipids, by PIS which is a membrane bound protein found in the 

tubular ER23. PI can then be transferred to other membranes by proteins specialized on 

its transfer 53 and potentially by the normal vesicular transport between ER and Golgi 54. 

The transference of PI is however not fully characterized, and given its essential role 

both as a structural phospholipid and as the precursor of PIPs, which are quickly 

replenished upon their depletion on signaling activation, a more complex mechanism 

has been proposed. This mechanism involves a special ER derived organelle that has 

contact with numerous other membranes and acts independently of the main ER bound 

PIS, with the different population of PIS having different activities. The experiments that 

characterized this organelle did not however provide a clear picture as to how it 

interacts with the ER showing only that it is separate and not continuous with other 

membranes during the experiments55. However, no further support for this organelle 

has been reported. The function of PI transfer proteins is also now thought to be more 

complex than initially conceived. The transfer proteins have recently been proposed to 

have a role in presenting PI to the PI-kinases56. There are no protein motifs with specific 

binding to PI and its function is therefore assumed to be mostly structural or as a 
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precursor of PIPs but, while these are definitively important roles for it, this might 

reflect more a lack of tools for its study than the reality in cells55. 

PI can then be phosphorylated at its 3rd, 4th, or 5th positions generating PIP, but of these, 

PI4P is the most abundant form26. There are 4 different kinds of PI-4 kinases in 

mammals and 3 in yeast. These show different cellular localization and act on the 

maintenance of different pools of PI4P, although several occur simultaneously at the 

plasma membrane or Golgi57. PI4-kinases have also been shown to occur at secretory 

vesicles58 and are known to shuffle between the Golgi and nucleus being essential for 

viability of yeast in both locations59. Synthesis of PI4P is a complex process that is linked 

to the overall maintenance of ER-Golgi lipid transfer where the gradient in PI between 

the membranes is used to transfer other lipids; the conversion of PI to PI4P in the Golgi 

maintains this gradient60. PI4P is also an important component of the plasma membrane 

with many proteins showing erroneous localization upon selectively depleting this pool 

of PI4P61. The function of PI4P is then shown to be not only as a precursor of PIP2, for 

which different pools have different relevance, but also directly as a scaffold for the 

binding of proteins to the appropriate membranes. This interaction has been shown to 

be essential for Golgi vesicle transport62. It is common for proteins binding PIPs to 

present an interaction as a combination of specific and non-specific electrostatic 

interactions63 providing a marker for different membranes. This “membrane code” is 

not exclusively phospholipid based and in many cases an interaction with both PI4P and 

one or more proteins is required64, a situation that is common to all phosphoinositides. 
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There is also evidence of the importance of PI4P in a counter-transport of phospholipids 

between ER and plasma membrane, in this case helping to enrich phosphatidylserine in 

the plasma membrane using the PI4P gradient as the driver65, 66. This PI4P is in turn 

dephosphorylated to PI in the ER in a manner that allows for the regulation system 

based on PI4P abundance67. PI4P dephosphorylation into PI is catalyzed by 

phosphatases with the SAC1 domain68. 

The next major step in PIPs synthesis is the phosphorylation of PI4P in its 5th position to 

make PIP2. While PI kinases share some homology with protein kinases, the PI4P-5-

kinases show no homology to any other kinases and constitute a separate family of 

kinases24. Their active site does however have structural similarity to protein kinases69. 

There are two types of PIP kinases known to generate PIP2, type I and II. Since type II 

have a preference for PI5P as their substrate70, the bulk of PIP2 is synthesized by PI4P-5-

kinases type I at the plasma membrane directly from PI4P synthesized there24. However, 

there is evidence supporting an important role of Golgi PI4P as a precursor of PIP271. If 

the pool of PI4P available as a precursor is disrupted the PIP2 synthesis occurs in other 

cellular compartments from other PI4P pools and is not localized correctly to the plasma 

membrane61. From this plasma membrane PIP2 is where most other PIPs, which are 

generally short lived, are synthesized either directly or through PI(3,4,5)P3 (PIP3) as an 

intermediate. The head-group of PIP2 can also be cleaved by phospholipase C releasing 

inositol triphosphate (IP3) and DAG as a signaling molecules72, 73.
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PIP2 is directly involved in a very diverse array of functions at the membrane that 

include structural effects on membrane curvature35, cortical actin organization34, acting 

ring binding at the cleavage furrow during cell division74 and overall actin regulation at 

the membrane75, endocytosis76, vesicle recruitment and docking77, exocytosis78, ion 

channel gating79, basement membrane polarization maintenance80, ER-plasma 

membrane interactions81, regulation of dopamine transporter activity82, regulation of 

other lipids through ceramide kinase localization83, membrane potential sensing 

through changes in its localization84, regulation of the phospholipase D family (PLDs) 

through both localization and activation of the enzymes85, localization of signaling 

proteins and complexes to the plasma membrane86, regulation of mitogen-activated 

protein kinase (MAPK) signaling though localization of scaffold proteins87. Thus, many of 

the functions that involve plasma membrane identity are in one way or another 

dependent on PIP2. 

In the functions already mentioned activity is mainly dominated by phosphoinositides 

acting as a platform for the recruitment of proteins, however, functions of 

phosphoinositides much more complex. Interconversion between phosphoinositides is 

perhaps the rule when it comes to their diverse functions. As an example PIP2 is 

excluded from cilia and hypothesized to be dephosphorylated into PI4P as a way to 

maintain the transition zone and compartmentalization of cilia88 and it’s been shown 

that this conversion is essential for ciliogenesis89.  
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The major function of phosphoinositide turnover might however be in signaling 

pathways. As an example, the cold sensitive TRPM8 Ca2+ channels are activated by a 

combination of PIP2 and cold or menthol, and in turn the Ca2+ input activates Ca2+ 

sensitive phospholipase C which degrades PIP2 and releases IP3 and DAG providing both 

a negative feedback and a signaling event90. In metazoans DAG is active in the 

membrane itself as an activator of ion channels, protein kinase D, members of the 

protein kinase C family, RasGRP1 (which is involved in the Ras/MEK/ERK signaling 

pathway), and neurotransmitter secretion91. IP3 is soluble and acts on specific receptors

in the ER leading to Ca2+ release92. In plants DAG is phosphorylated before it has a 

signaling function and it is also phosphorylated derivatives of IP3 that are signaling 

effectors93. Currently it is considered that direct signaling by DAG and IP3 from PIP2

through phospholipase C is a metazoan innovation7. 

PIP2 is therefore considered a signaling molecule in itself. Not only is it the precursor of 

major signaling pathways, but by changing the availability of PIP2 the recruitment of 

proteins complexes to the plasma membrane and the activation of ion channels and 

receptors can be controlled. This emphasizes the still unsolved question as to how are 

so many functions and the possible crosstalk between them regulated94. The function of 

PIP2 as the major precursor of PIP3 adds an extra level of complexity to the system as 

does the positive feedback loop that PIP2 can have on the activation of PIP-kinases95.  
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Although the other phosphoinositides show very low abundance in the cells the 

diversity and relevance of functions they perform make them essential cell components. 

Perhaps the most studied one is PIP3, which is a major signaling hub involved in a 

variety of functions related to cell movement such as wound healing, directional 

movement of cells, neuronal patterning and embryogenesis, but also in the immune 

response96. This PIP3 signaling pathway seems to be metazoan innovation93, in it PIP2 is 

phosphorylated by a class I PI3-kinase upon activation by G-protein-coupled receptors 

(GPCRs) and/or receptor tyrosine kinases generating PIP3. As expected from the 

involvement in GPCR signaling the PI3-kinases are regulated through binding to other 

proteins of which G-proteins, and GTPases in the Rho and Ras families are common 

interactors97. Given the importance of these signaling pathways and the low basal 

abundance of PIP3 in cells it’s not surprising its half-life is quite short, of less than 5 

seconds98. PIP3 acts by the very fast recruitment of proteins with binding domains 

specific to it, of which the serine/threonine protein kinase Akt (known as well as protein 

kinase B, PKB)99, and the phosphoinositide-dependent kinase 1 (PDK1)100 are the most 

studied. Both kinases are involved in a variety of essential signaling networks related to 

cellular migration, proliferation and metabolism. The signaling pathways involving PIP3 

are grouped as PI3K signaling pathways, named for the class I PI3-kinase that 

synthesizes it. PIP3 can be degraded through two pathways. It can be dephosphorylated 

at its 3rd position to generate PIP2 again, a reaction catalyzed by the phosphatase and 

tensin homolog deleted on chromosome 10 (PTEN)101, or by dephosphorylation of its 5th 

position by phosphatases synaptojanin or src homology 2-containing inositol 
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phosphatase (SHIP) producing PI(3,4)P2 which is another of the minor 

phosphoinositides102.  

PI(3,4)P2 can be synthesized in two ways: by dephosphorylation of PIP3 or by 

phosphorylation of PI4P in its 3rd position by a class II PI3-kinase. The roles of PI(3,4)P2

are still mostly unknown with very few protein interactors identified103. It has been 

shown to be involved in lamellipodia104 and podosome105 formation where several of 

the proteins relevant for these processes have domains that bind specifically to this 

phosphoinositide. In a more detailed experimental setup it has been shown to be used 

as a negative regulator of PI3k signaling through its interactions with tandem pleckstrin 

homology-domain-containing protein 1 and 2 (TAPP1 and TAPP2) in the control of 

insulin signaling with deregulation occurring upon genetic ablation of the interaction 

with TAPP1 and TAPP2106. The best studied role of PI(3,4)P2 is in clathrin mediated

endocytosis, where it’s been shown to control the enrichment of late stage endosome 

proteins, and is absence causes the endosome to become an elongated tubular 

structure before fission107. This is mediated by phosphorylation of PI4P in its 3rd position, 

and this PI4P is also been shown to be the product of PIP2 dephosphorylation108 

providing a precise mechanism for the control of clathrin mediated endocytosis by 

phosphoinositide transition and the different proteins they recruit109. PI(3,4)P2 has also

been shown to be involved in clathrin-independent endocytosis activated by receptor 

activation of the PIP3 pathway110. It is unclear whether PI(3,4)P2 really has just these

functions or if its low abundance and fast dynamics have precluded the discovery of 
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more. It nonetheless has been proposed as an important molecule downstream of the 

PI3K signaling pathway and hypothesized to have more functions, with the current lack 

of understanding being a product of lack of interest in the research community103. Given 

the wide variety of functions involving PIP3 and the known importance of endocytosis 

(where PI(3,4)P2 role is well characterized) for receptor signaling and recycling it would 

not be surprising for PI(3,4)P2 to have a central role in PI3K signaling as proposed. 

The other three minor phosphoinositides PI3P, PI5P and PI(3,5)P2 have all low 

abundance but are still very important in the cell. It’s been proposed that as a group 

they allow for the regulation of some types of vesicular traffic and cytoskeletal 

processes6. PI3P is generated by the phosphorylation of PI in its 3rd position by a PI3-

kinase or by the dephosphorylation of PI(3,4)P2 or PI(3,5)P2 in their 4th and 5th position

respectively. There are 3 classes of PI3-kinases all of which phosphorylate the 3rd 

position in phosphoinositides but of which class I and class II show substrate promiscuity 

in vitro, although respectively preferring PIP2 and PI as their substrates. Class III PI3-

kinases do show specificity only for PI as a substrate111. The generation of PI3P by 

synthesis from PI seems to be common to all eukaryotes while its synthesis by 

dephosphorylation of PIPs might be exclusively metazoan112. As with all 

phosphoinositides PI3P can be degraded through lipases, and by being 

dephosphorylated or phosphorylated. Lipases represent the main pathway for its 

degradation in yeast and mammals, a process that occurs in the endosomal pathway113. 

It is precisely the endosomal pathway that presents the best known function of PI3P 
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where it serves as an anchor for the endosomal sorting complex required for transport 

(ESCRT) machinery, in particular for ESCRT-0 and ESCRT-II 112, although in vitro the 

interaction of the ESCRT complex with vesicles proceeds in the absence of 

phosphoinositides at a lower rate114. PI3P is considered to be important for endosome 

recycling where sorting nexin (SNX) protein 1 has been shown to bind PI3P and PI(3,5)P2. 

There is evidence for the involvement of PI3P in regulated exocytosis in neurons115 but 

the mechanism is still unknown112. PI3P has also been shown to be essential for 

autophagy where its synthesis at the ER helps to segregate the membrane that will 

become separated to form the autophagosome116 and there is some more detailed 

mechanistic understanding of the process in yeast, although it is known that the protein 

binding domains that interact with PI3P in autophagy also bind to PI(3,5)P2
117. Finally

there is some mechanistic evidence for PI3P involvement in cytokinesis118 and signaling 

although this role might be indirect due to the role it has in endosome sorting112. 

PI(3,5)P2 is a poorly studied phosphoinositide given its low abundance and the lack of 

tools for its precise localization. It can be produced by the phosphorylation of PI3P in its 

5th position or of PI5P in its 3rd position with the first pathway dominating its 

production6. Theoretically it could also be synthesized through dephosphorylation of 

PIP3 in its 5th position but there seems to be no evidence for this pathway. The PAS 

(PIKfyve/ArPIKfyve/Sac3) protein complex localizes to the endosomes and contains both 

the kinase PIKfyve that phosphorylates the 5th position of PI3P and the phosphatase 

Sac3 that dephosphorylate it back to PI3P119. PI(3,5)P2 is essential for vesicle recycling
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from vacuoles and lysosomes120 and endosome to trans Golgi network recycling121. 

Given the promiscuity in some of the protein binding domains that recognize both PI3P 

and PI(3,5)P2
117, and their closely related synthesis and localization119, it would not be

surprising if they share functions or some of their ascribed functions are actually 

performed by the other phosphoinositide, with both possibilities likely happening. It is 

nonetheless clear that both PI3P and PI(3,5)P2 are important factors for vesicle sorting in 

cells6. 

Finally PI5P was the last phosphoinositide to be discovered and the one with the lowest 

abundance in cells although, as is usual for phosphoinositides, variability exists122. It is 

localized to the plasma membrane, ER, Golgi apparatus, endosomes, and nucleus123. It 

can be synthesized by phosphorylating PI, or dephosphorylating PI(3,5)P2, or PIP2, but 

its degradation seems to be coupled mostly to its phosphorylation leading to PIP2 

synthesis6. Most of its functions remain poorly studied but it’s been associated with cell 

motility124, glucose metabolism upon insulin activation in adipocytes125, negative 

feedback loops in T-cell signaling126, and in autophagosome biogenesis in a way 

independent of PI3P but which shares some of the effectors127. The best characterized 

functions of PI5P are however in the nucleus where it has been shown to bind ING2, (a 

candidate tumor suppressor) in-vivo, and regulate its ability to activate p53 and 

apoptosis128 as well as have a role in chromatin structure129.  
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Functions of phosphoinositides in the nucleus are not exclusive of PI5P and involve at 

least PI, PI5P, PI4P and PIP2 in the most characterized models. PI3P and PIP3 have also 

been detected but their functions remain obscure38. There are several lines of evidence 

for Ca2+ signaling in the nucleus through phospholipase C hydrolysis of PIP2 into IP3 and

DAG as occurs in the cytoplasm130. In this case with the Ca2+being released from the ER 

and nuclear envelope131. This system has been associated with cell cycle progression 

and differentiation132. Also, another function that seems to be shared with the 

cytoplasm is the binding of PIP2 to actin or other cytoskeletal related proteins inside the 

nucleus133. The most surprising observation is that the nuclear phosphoinositides aren’t 

all in the nuclear envelope membrane, but in the nucleoplasm itself with the key initial 

observation being that of a significant fraction of PIP2 (35%) remaining in nuclear 

preparations that had been stripped of their membranes by treatment with 

detergent134. It was shown that PIP2 co-localizes with PIPKIα, a PI4P-5-kinase to nuclear 

speckles135 which are dynamic structures involved in RNA processing and maturation136. 

The essential role of PI-4-kinases in the nucleus of yeast59 as well as their known 

localization to the nucleus in mammalian cells137, make the PI-PI4P-PI5P-PIP2 axis clearly 

relevant in the nucleus where it’s been implicated into mRNA processing and export138. 

As mentioned before, PI5P has a more characterized role in P53 dependent apoptosis128. 

PI5P has also been shown to be in the chromatin fraction and its amount increases upon 

UV damage supporting a role in chromatin structure129.  
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An additional level of complexity is given by the fact that a variety of inositol 

polyphosphates (just the inositol head-group lacking any lipid tails) can be generated 

from IP3 in the nucleus and have associations with proteins involved in RNA editing13,

RNA export139, chromatin remodeling140, telomere length141, non-homologous end 

joining14, and potentially a novel type of protein modification by adding the 

pyrophosphorylated bond from IP7 or IP8 to a serine that is already phosphorylated15.

But for all these functions it is unknown if inositol polyphosphates act simply as 

cofactors or are actually regulated and the changes in their abundance serve as ways to 

control these processes38. In the case of Trypanosoma brucei the control of the antigen 

switch and regulation of telomeric expression sites, which is essential for its escape from 

immune detection, is directly linked to phosphoinositides cycling including the PI4P-

PIP2-PIP3 axis but also PI(3,4)P2, and the soluble head groups IP3, IP4, and IP5, 

reinforcing the notion of a code that is shared both by the soluble head-groups and the 

phosphoinositides themselves142. 

1.3. How phosphoinositides’ functions are performed and how we study them 

The very wide array of functions in which phosphoinositides have been implicated 

makes a detailed description of the evidence for each of them too lengthy for the scope 

of this thesis. I will instead provide an overview of the mechanistic patterns on these 

functions as well as the methods useful for the study of phosphoinositides, emphasizing 

particular methods or discoveries when appropriate. 
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1.3.1. Phosphoinositides in membranes 

Phosphoinositide functions in maintaining/altering the membrane curvature can be 

direct through their inverted conical shape for the phosphorylated forms (big head 

group volume relative to a small lipid tail volume) which leads to positive curvature in 

membranes, but most of their known role in altering membrane seems to be mediated 

through their interactions with proteins which can also modify the membrane 

properties by inserting domains into it upon phosphoinositide binding35. Given the very 

high complexity of living cells and the intrinsic difficulty of controlling membrane 

composition in-vivo, studies of this kind of activity are done on artificial membranes. A 

good example of how this type of study is performed is provided by the work of 

Rusinova and collaborators143. In it they worked by creating lipid bilayers over 1.5 mm 

diameter pores and varying the lipid composition using gramicidin A channels as 

reporters. The use of gramicidin A channels relies on their apparent independence on 

specific lipid binding for their function, but their requirement for a bilayer compression 

for their activity. This occurs because they function as dimers, one monomer on each 

leaflet of the membrane, thus the probability of dimerization depends on the properties 

of the membrane they reside on. As a dimer they allow the flux of monovalent cations 

and water allowing electrophysiological measures to be taken. There are gramicidin A 

channel variants with different lengths allowing for a more detailed control of the 

system144.  



25 

In the work of Rusinova and collaborators143 the composition of the lipid bilayers was 

maintained at PIP2 levels that are physiologically relevant but changing the type of PIP2 

that was used from endogenous PIP2 purified from brain, to exogenous PIP2 with short 

(carbon chains 8 long all saturated) or long (carbon chains 18 long with one double 

bond) fatty acid tails. The rational for this was to evaluate if there are differences 

between endogenous PIP2 and the exogenous ones that are more commonly used in 

research with artificial membranes. The main result of this analysis was that the 

properties of the bilayer are not affected at low concentrations of phosphoinositides 

while direct effects on the membrane are observable at high concentrations (>10 μM). 

This conclusion is important because it highlights the potential that the enrichment of a 

phosphoinositide has to alter membrane properties. It implies that when binding to 

proteins in a membrane, if the proteins have a tendency to aggregate, or if they bind to 

areas already rich in phosphoinositides and stabilize them, phosphoinositides can not 

only alter the proteins upon binding to their specific binding sites but the properties of 

the section of membrane. No clear pattern was observable when it came to the 

comparison between exogenous and endogenous phosphoinositides. 

The use of artificial vesicles and membranes has been instrumental for the study of 

phosphoinositides. While these systems do not present the complexities of a living 

membrane or cytoplasm (for example not allowing membranes with asymmetric 

distribution of lipids to be used) being able to control precisely the lipid composition 

allows for a wide variety of experiments. As mentioned earlier this approach has been 
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useful to test the effects of PIP2 on membrane properties143. The use of unilamellar 

vesicles has allowed some very detailed studies such as the role of the ESCRT-III 

Complex in membrane scission, although in these experiments the phosphoinositide 

involved, PI3P, was kept constant114. The concept of lipid domains or “rafts” is also 

relevant here since artificial vesicles have also been used to test hypothesis about the 

distribution of phosphoinositides. Lipid rafts rich in PIP2 have been proposed as a 

mechanism involved in actin dynamics at the cell cortex145. In order to test how such 

rafts could regulate the neuronal Wiskott-Aldrich Syndrome Protein (N-WASP), which 

normally has a self-inhibitory mechanism until bound to PIP2, vesicles with different 

concentrations of PIP2 were used showing that the affinity of N-WASP for PIP2 depends 

directly on PIP2 concentration. These results provided evidence for a cooperative 

binding model that involves several molecules of PIP2 thus explaining the need for a 

locally high concentration of the phosphoinositide for N-WASP activity on actin 

polymerization, such as in a hypothetical raft. In this study the authors went further 

showing that increasing the amount of basic residues in the phosphoinositide binding 

patch allowed the interaction to take place at lower PIP2 concentrations146.  
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1.3.2. Phosphoinositides and proteins 

Knowledge of phosphoinositides in the realm of membranes is very limited compared to 

that of their functions interacting with proteins2. This is likely the result of difficulties 

studying the biophysical properties of membranes in-vivo combined with the relatively 

low abundance of phosphoinositides. The interactions of phosphoinositides with 

proteins are mediated through their roles as scaffolds for protein binding with varying 

specificities. There are many protein domains specialized in phosphoinositide binding 

including PH, ENTH, CALM or ANTH, PTB, PHD, C2, BAR, PX, PDZ, FERM, Tubby, and FYVE 

domains2, 147-149 (the names of these all come from acronyms of the original proteins 

they were found and have little relevance). Most of these domains are also present in 

plants and yeast suggesting they have an ancestral eukaryotic origin93. Of these the PH 

domains and C2 domains are notable because they are some of the most abundant 

protein families in the human proteome150 while the PHD domain seems to be 

particularly common in proteins involved in chromatin maintenance and histone 

interactors38. The C2 domain has been studied phylogenetically showing a very 

interesting pattern in which the last universal eukaryotic ancestor is hypothesized to 

have at least 6 families of C2 domains. This study also showed that the calcium 

dependent membrane binding is exclusive to the protein kinase C-C2 domain family and 

no other C2 domains151. Given the well characterized importance of phosphoinositide 

signaling for calcium regulation152, this calcium conditional C2 domain represents a very 

useful evolutionary adaptation to provide feedback in signaling networks. 



28 

The charge of phosphoinositides is an important factor for their interaction with protein 

domains specialized in binding to them. Nuclear magnetic resonance studies have 

determined that PIP2 charge is -4 at pH 7.0153, but based on vesicle mobility in a 

potassium buffer at pH 7.0 its charge seems to be -3 since it can bind both a K+ and H+ 

ion154. It has been proposed that the H+ ion can be removed by protein interactions thus 

giving PIP2 a possible charge of -3, -4 or -5 depending on its interactions. For many of 

the protein domains that interact with phosphoinositides the interaction is given in a 

non-specific way by this charge and other membrane properties that phosphoinositides 

impart. Clusters of basic and aromatic residues are common among domains that bind 

to phosphoinositides95. In an experimental set up using phosphatases targeted to the 

plasma membrane it was shown that this polybasic cluster is important for protein 

localization to the plasma membrane of a large proportion of the proteins that localize 

to this compartment. An unexpected result of the study was however the necessity for 

PIP2 and PIP3 removal suggesting that PIP3 shares the plasma membrane identity role 

with PIP2155.  

The binding of proteins to phosphoinositides can be very promiscuous or specific 

depending on the specific domain156. It is not uncommon to find that the domain binds 

the phosphoinositide with similar affinity as the isolated inositol phosphate head-group; 

the PH domain from phosphor lipase C-δ (PLC-δ) for example binds both PIP2 and IP3 

with high affinity157. This property has been exploited for crystallographic studies which 
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are commonly performed with the proteins bound to only the head-group of the 

phosphoinositide158, 159. Evidently this methodology is very useful when studying 

inositides phosphates (the naturally occurring head-groups that lack lipid tails). 

Specific interactions can also be more complex with the binding sites for a 

phosphoinositide forming between two interacting proteins, as is the case between 

phospholipase γ1 and the ion channel TRPC3, which form a PH domains that binds PIP2, 

localizing the channel to the plasma membrane. This result is interesting not only 

because of the potential for more complex interactions it illustrates but because it was 

found through an in-silico approach to identify phosphoinositide binding partners160. A 

well characterized non-specific protein-phosphoinositide interaction is the 

myristoylated alanine-rich C kinase substrate (MARCKS), which has a patch of basic 

residues in an unstructured domain that allow it to bind PIPs in a non-specific manner. 

This binding occurs through electrostatic interactions aided by the insertion of the 

myristoyl moiety into the membrane. This interaction is regulated by the 

phosphorylation of serine residues in the basic path causing cytosolic localization of the 

protein161. It’s important to highlight that this is an interaction of the MARCKS 

phosphoinositide binding domain with 3 molecules of PIP2 allowing it to both sequester 

PIP2 more effectively and bind preferentially to areas of the membrane rich in PIP245.  

While most of our knowledge about the interaction of protein domains and 

phosphoinositides seems to indicate it is their head groups that drive the interaction, 
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the lipid tails are an important part for a few known cases. The most obvious one is that 

of phosphoinositide transport proteins, which need to house the hydrophobic lipid tails 

in order to transport them successfully162. This does not imply that the lipid tails play an 

important part for their functions, since it is simply a requirement for their transport by 

burying the hydrophobic lipid tails in a pocket in the protein and leaving the hydrophilic 

head-group exposed to the cytoplasm. However this mechanism has been hypothesized 

as a way in which phosphoinositides could perform functions in a way independent of 

the membranes they normally are part of. The argument is that since most protein 

interactions seem to work directly with the head-group, a protein that carries 

phosphoinositides with the head-groups exposed could lead to successful 

phosphoinositide-protein interactions. This could be a particularly useful mechanism to 

explain the functions of phosphoinositides in the nucleus138. Recently this was shown to 

be the case for the human steroidogenic factor-1 ligand (SF1) binding domain (a nuclear 

receptor), which can bind to both PIP2 and PIP3, hiding the lipid tail in the hormone 

binding pocket (common to nuclear receptors) and exposing the head groups to the 

cytoplasm. The surface that is created by this binding, and which includes the 

phosphoinositide head-group, matches the binding site of a protein interactor of SF1 

providing a mechanistic model for the effect of some mutations to SF1 which were 

previously not understood at the structural level10. Whether variation of lipid tails in the 

phosphoinositides allow for regulation of this type of process is still an open question, 

but it is now clear that phosphoinositides can have functions that aren’t linked to 

membranes though this “protein presenting” mechanism. 
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The study of phosphoinositide binding to proteins has used the expected biochemical 

assays including crystallography163, nuclear magnetic resonance164, radioactively labeled 

phosphoinositides in in-vitro binding assays70, and calorimetry156. Assays specific to 

phospholipids such as protein lipid overlays165, and protein binding to vesicles with 

known lipid compositions have also been used156. Protein lipid overlays are particularly 

relevant because they are analogous to dot blots. In them purified lipids are blotted and 

incubated with proteins which are then detected with a secondary antibody. This 

provides a straight forward way to detect the binding preferences of proteins165, and 

has been transformed into a system commercialized for the quantification of some 

phosphoinositides and as the basis for ELISA assays for phosphoinositide quantification. 

As expected, there is a wide range of affinities for protein binding to phosphoinositides 

and whether in vitro measures reflect the reality in cells is still an open question95. The 

KD of PH domain from pleckstrin (which gives the name to the specialized 

phosphoinositide binding PH domain as an acronym to Pleckstrin Homology) has been 

measured at 30 μM through binding to vesicles166, while that of the PH domain of PLC-δ 

has been measured at 2 μM through several independent techniques95, 157, 167. The 

affinity and specificity of some phosphoinositide binding domains has made them a very 

useful tool for the study of phosphoinositides in-vivo. By combining a phosphoinositide 

binding domain and a fluorescent protein reporter a genetic reporter for 

phosphoinositide location is created. This has been an instrumental tool for the in-vivo 
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study of phosphoinositides allowing studies of their dynamics as well as quantification 

of their abundance in some cases168. Antibody staining against phosphoinositides has 

also been used but in the majority of cases antibodies are used only for 

immunohistochemistry and have therefore limited utility given the very dynamic nature 

of phosphoinositides169.  

Phosphoinositide binding domains have also been used in more complex schemes 

involving fluorescent resonant energy transfer (FRET) as a way to increase sensitivity170 

and a similar approach has been done using a split luciferase171. Overexpression of a 

phosphoinositide binding domain has been used as an approach to sequester the 

phosphoinositide in order to tests its importance for a specific function, such as 

overexpressing the pH domain of PLC-δ to inhibit receptor mediated endocytosis172. In 

the specific case of PI3P the use of a FYVE domain that dimerizes with the addition of 

the rapamycin derivative, AP20187, has the advantage of allowing overexpression of the 

protein without side effects. This is because it remains cytoplasmic as an inactive 

monomer, avoiding any negative effects, until AP20187 is added causing the FYVE 

domain dimerization and sequestration of all PI3P available173. 

Despite the widespread use of phosphoinositide binding domains for their study there 

are significant caveats to their use. The most commonly mentioned problem is the 

possibility that their study interferes with the normal processes in which 

phosphoinositides are involved. This occurs because by binding to proteins the 
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phosphoinositides are in effect sequestered, precluding the activity of any enzymes that 

would act upon them or their binding of effectors6. This is well illustrated with the 

measured half-life of PIP3 which was estimated to be less than 10 seconds when 

measured without using phosphoinositide binding domains (in this case a PH domain) 

but when measured using a PH domain it was close to 1 minute98. The promiscuity of 

the binding domains can be an important problem too, especially since our knowledge 

of their binding affinities came from in vitro studies31. The pH domain of PLC-δ is widely 

used for the detection of PIP2 because of its KD of just 1.66 μM, but its KD when binding 

IP3 is just 0.21 μM 
157, making interpretation of results obtained with it very complex

since an increase in soluble IP3 would give the same result as a decrease in PIP2174.

However, the biggest problem for the use of phosphoinositide binding domains to study 

phosphoinositides might come from the assumption that these domains only interact 

with phosphoinositides and/or that different domains interact in the same way174. As an 

example, the PH domains of both Bruton’s tyrosine kinase and Cytohesin-1 bind to PIP3 

and therefore bind to the plasma membrane upon activation of Jurkat cells. However 

overexpression of cytohesin-1 PH domain inhibits the cell adhesion of stimulated Jurkart 

cells while that of Bruton’s tyrosine kinase does not175. Since their binding and 

localization is the same this observation is most likely the result of differences in their 

interactions with other molecules. Different phosphoinositide binding domains have 

also been shown to have different localization or even miss entirely some pools of 

phosphoinositides31. This problem is not exclusive of phosphoinositide binding domains, 
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the PTEN phosphatase has phosphatase activity on both phosphoinositides and 

polypeptides through the same active site176, so interpretation of results from 

modifications to PTEN activity, localization, or abundance is very complex. 

This “problem” when interpreting experimental results illustrates an important aspect 

of phosphoinositide behavior. Given that most binding domains do not show high 

affinity for their preferred phosphoinositides and are promiscuous in their binding 

partners174, the functions of phosphoinositides have been proposed as the result of 

coincidence detection in which it is the simultaneous binding of proteins to 

phosphoinositides and other proteins that allows for their functions to occur31. In this 

way the “membrane code” is not given exclusively by the phosphoinositides but by a 

combination of phosphoinositides and proteins that do not necessarily interact directly 

with them. Of the proteins that share this scaffolding/code function the Rab-GTPases 

are particularly relevant given their importance for membrane and vesicle trafficking 

across the cell177. The coincidence detection is not limited to phosphoinositides and/or 

proteins, membrane properties are also employed. The best example might be that of 

the sorting nexin-1 (SNX1) protein which has both a PX domain that binds to PI3P and 

PI(3,5)P2, and a Bin-Amphiphysin-Rvs (BAR) domain that allows it to form dimers that 

sense membrane curvature, as determined by its binding to vesicles of the same 

components but different sizes. In this way both the phosphoinositide binding and the 

membrane curvature allow targeting of SNX1 to the early endosome178. 
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The study of phosphoinositide location by using labeled phosphoinositide binding 

domains or antibodies has been instrumental to our knowledge of their functions 

despite the caveats of each method. More classical cell biology approaches have also 

been used successfully. While the fine scale details are lost in these approaches the 

fractionation of membranes and quantification of the phosphoinositides afterwards 

gave the first suggestion for non-membrane-bound nuclear phosphoinositides as 

mentioned earlier134. Radioactive labeling, using 3H labeled inositol, has also provided a 

way of quantifying phosphoinositides through thin layer chromatography or high 

performance liquid chromatography coupled to mass spectrometry. This approach 

however is complicated because the three mono-phosphorylated and the three di-

phosphorylated isomers are not distinguishable by these methods169. A chemical 

modification that allows for the distinction of isomers in mass spectrometry has been 

developed179 but it remains available only to specialized laboratories since it requires a 

different configuration of the machines involved in the process from that used for 

protein identification. 

1.3.3. The egg and chicken problem 

A problem with the interpretation of any result linked to the presence of 

phosphoinositide rich domains is the experimental determination of the cause for such 

a domain. These could potentially come from membrane properties that enhance 

phosphoinositide localization to the areas with the appropriate curvature, but could also 
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be driven through protein interactions with phosphoinositides and posterior protein 

aggregation driving the phosphoinositide enrichment31. Both situations can occur 

simultaneously and several proteins can be involved, thus determining a specific cause 

for an area rich in a phosphoinositide can be very complicated, especially since the 

processes do not occur in isolation from other processes involving phosphoinositides. 

1.3.4. Manipulation of phosphoinositide abundance 

Genetic modifications to the proteins that interact with phosphoinositides have been 

one of the most commonly used tools for their study. Genetic modifications can be very 

simple and provide clear results such as the demonstration of the osmo-protective role 

of myo-inositol-1-phosphate (MI1P) for growth in elevated salinity environments. This 

work was done by expressing the gene for the synthesis of MI1P (PcINO) obtained from 

Porteresia coarctata (a wild plant related to rice) in E. coli, Schizosaccharomyces pombe, 

and plants from the genus Oryza (rice) and Brassica (mustard and cabbage). The 

experiment showed that the expression of the MI1P-synthase allowed them to growth 

under normally inhibitory salt concentrations. Since E. coli does not have the ability to 

synthesize myo-inositol this allowed to confirm it was MI1P that provided the salt 

tolerance and not the synthase itself since the growth of the bacteria showed a dose 

response to the myo-inositol added22. 
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Genetic labeling with fluorescent proteins of the enzymes involved in phosphoinositide 

synthesis or degradation is a common practice. In the best cases co-localization of the 

labeled phosphoinositide binding domain and the enzyme responsible for its synthesis 

can be evaluated simultaneously by using a labeled enzyme and a labeled 

phosphoinositide binding domain. PIP2 and a PI4P-5-kinase were shown to co-localize to 

nuclear speckles135 suggesting that PI4P should also be localized there. This approach 

has the same caveats as using the phosphoinositide binding domains since the enzyme 

might interact with a lot more proteins thus their localization does not necessarily imply 

the presence of phosphoinositides. As mentioned earlier the tumor suppressor PTEN is a 

good example of an enzyme which active site is known to dephosphorylate both 

peptides and phosphoinositides176. 

Basic approaches including knock-outs have been particularly fruitful in yeast. By 

selectively deleting the parts of the sequence that control the nuclear or cytoplasmic 

localization of Pik1, a PI4-kinase, it was possible to show that it is necessary for viability 

in both locations, and this was confirmed by the rescue of viability only when 

constitutively cytoplasmic and constitutively nuclear forms were expressed 

simultaneously59. Mouse knock-downs have also been carried out and there are a 

significant number of human diseases linked to loss of function of enzymes involved in 

phosphoinositide metabolism. The interpretation of these is however hampered by the 

difficulty in ascribing specific functions given the possibility of compensation for the 
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production of a phosphoinositide from an alternative pathway or the lethality of the 

mutations5, 169.  

Overexpression of enzymes involved in phosphoinositide metabolism is an approach 

that has also provided useful information. While the approach suffers from the same 

problem most genetic screens do when dealing with phosphoinositides, the possibility 

of alternative compensating pathways, very important insights have been gained in this 

way. The characterization of a second PIS in Arabidopsis was done in this way for 

example. Through fluorescent labelling it was shown that both PIS enzymes (PIS1 and 

PIS2) localized to the ER and in a lower amount to the Golgi apparatus. In vitro activity 

showed a difference in the preference for different fatty acids in the CDP-DAG from 

both synthetic and plant derived origins with PIS2 preferring unsaturated fatty acids 

while PIS1 used mostly saturated or mono-unsaturated ones. Overexpression of each of 

the enzymes showed very different patterns in other lipids. While PIS2 generated 

significantly higher levels of PI4P and PIP2 the levels of these remained normal with 

overexpression of PIS1 which instead led to higher levels of phosphatidylethanolamine 

and DAG50. This study is exceptional because it suggests a mechanism of regulation of 

phosphoinositide metabolism by the fatty acid tails of the phospholipid, and because 

the tests were performed in-vivo. 

Changes in the localization of enzymes involved in phosphoinositide metabolism can be 

achieved with the use of rapamycin and dimerization domains that depend on it for 
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their interaction. As an example, localization of the PI4-phosphatase Sac1 to the Golgi 

was shown to inhibit exit of cargo to the plasma membrane and endosomes and change 

the localization of some proteins and dynamics of PIP2 at the plasma membrane180. A 

caveat of the use of rapamycin is the fact that its target is mTOR (mammalian target of 

rapamycin) is already involved in phosphoinositide metabolism through the PI3K 

pathway, thus it has the potential to produce significant undesirable side effects169. 

Nonetheless this has been a very useful tool providing insights into many of the 

phosphoinositides roles in the cell. 

Electrogenetic and optogenetic manipulations present a new set of tools that allow the 

same type of approach as rapamycin induced localization but with potentially more 

control on the system. A voltage sensitive phosphoinositide phosphatase from Ciona 

intestinalis opened the door for the manipulation of some phosphoinositides upon 

membrane potential changes. Its specificity is controlled by the magnitude of the 

change in membrane potential allowing for a more precise tuning of its phosphatase 

activity from the 5th position of the inositol ring upon activation to the 3rd position with 

a higher voltage (0 mV and 60 mV respectively)181. The mechanism for this activation 

and change on preferred substrate has been recently described by showing there are 

two sequential active states on which the protein can be depending on voltage182. The 

approach however has the caveat that it can only be used at the plasma membrane, and 

it is not really specific to a phosphoinositide but a position in the phosphoinositide ring. 

This has been addressed in one case by coupling it to a native phosphatase to acquire a 
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more realistic control of its activity using the PTEN phosphatase183. Optogenetic 

manipulations rely on the use of protein domains that dimerize upon illumination from 

specific wavelengths, allowing the localization of a phosphoinositide kinase or 

phosphatase domain to the cellular localization of interest in a relatively fast (seconds) 

and reversible (few minutes) manner184, 185. This approach has also been used to 

activate signaling pathways involving phosphoinositide and GPCRs186. The main problem 

with them, which is also common to the use of rapamycin, is the potential activity the 

soluble phosphatases or kinases might have before being localized, creating an 

abnormal basal cell state. Additionally the use of some wavelengths to control the 

system restricts those available for visualization with fluorescence microscopy but that 

is only a minor caveat169. 

Pharmacological manipulation of the enzymes involved in phosphoinositide metabolism 

is also possible in several cases, with the majority of attention focusing on PI3-kinases 

since PTEN is a PI3-phosphatase that is implicated in a variety of cancers187. The main 

problem with inhibitors of PI3-kinases is the lack of specificity and the presence of 

resistant isoforms188. The problem with lack of specificity is shared by PI4-kinase and 

PI5-kinase inhibitors, and the drugs specificity is also only present in very narrow 

concentration ranges thus their value is mostly for in vitro studies169. Nonetheless 

pharmacological inhibitors of phosphoinositide metabolizing enzymes present a very 

active area of research given their potential for treatment of several cancers and 

immune diseases187, 189. 



41 

Small molecules that directly bind to phosphoinositides preventing their interactions 

with proteins while minimizing undesired effects on other proteins or phosphoinositides 

are starting to be researched. A membrane soluble molecule that binds to PIP2 was 

developed and shown to be well tolerated by fibroblasts (3T3 cell line) in culture 

modifying both cytoskeletal dynamics and receptor endocytosis. This molecule shows 

preference for PIP2 over IP3 (the head-group of PIP2 without lipid tails) which is the 

opposite of the behavior in PIP2 binding proteins190. While this is an isolated approach it 

might represent a new avenue for the creation of tools to control phosphoinositide 

abundance. 

On the reverse approach, membrane permeable phosphoinositide analogs in which the 

phosphate and hydroxyl groups are respectively masked with acetoxymethyl esters and 

butyrates have been developed. Once in the cytosol unspecific carboxyhydrolases turn 

the molecules into “normal” phosphoinositides191. This approach has been extended to 

unnatural phosphoinositides which are also phosphorylated at the 6th position, although 

the results obtained with this approach couldn’t be interpreted mechanistically192. Since 

the carboxylases are relatively slow to release the phosphoinositide analog, a caged 

version was developed in which the molecule can diffuse and accumulate in the 

cytoplasm in the caged state until photoactivated and released to go into 

membranes193. This approach allows for more precise control at both the temporal and 

spatial scales. Nonetheless there is no control over which membrane the 
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phosphoinositide analogs integrate potentially complicating the interpretation of results 

obtained using them169. The fatty acid tails used in these phosphoinositide analogs are 

also typically short192 and while the regulation of phosphoinositide activity by the lipid 

tails remains largely unexplored this could add another level of complexity to the 

interpretation of experiments using the analogs. 

Finally pathogens have provided alternate evidence for some of the functions of 

phosphoinositides. The intracellular pathogen Shigella uses several protein effectors in 

order to remodel the actin cytoskeleton and successfully carry out infection. Of this IpgD 

is a phosphoinositide phosphatase that produces PI5P showing a preference for PIP2 as 

its substrate but also from other phosphoinositides194. Salmonella, another intracellular 

pathogen has a homolog of IpgD called SopB which prefers PI(3,4)P2 and PIP3 as its 

substrates195. In the case of SopB the function of the protein seems to be a general one 

depending on changes of the charge of the membrane of the vacuole containing the 

bacterium since it not only alters phosphoinositides but also reduces 

phosphatidylserine. The change in the membrane prevents the vacuole from fusing with 

lysosomes196. It is however complex to adjudicate this results exclusively to charge since 

there is no methodology available to in-vivo separate the specific binding of proteins to 

phosphoinositides to that based only on charge interactions. 

IpgD however seems to be more specific in its pathogenic role and was shown to 

regulate the trafficking of ICAM-1 (intercellular adhesion molecule-1) in a manner 
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dependent of its phosphatase activity and PI5P production. This in turn leads to less 

neutrophil adhesion reducing the immune response to the pathogen197. The role of PI5P 

in endosomal trafficking has been described for other receptors, such as the epidermal 

growth factor receptor (EGFR), and shown to be dependent on the adaptor protein 

TOM1( target of myb-1 originally described from chicken) by using IpgD as a tool for the 

enrichment of PI5P198. PI3P has been shown to be important for Plasmodium 

pathogenesis29, both for its own trafficking of ingested hemoglobin and in the host cell 

where one of its effectors is a promiscuous PI3-kinase but which functions are less well 

characterized199. There is evidence suggesting PI3P is present on the outer leaflet of the 

plasma membrane of some plant and animal cells where it is used by fungal and 

oomycetes effectors for internalization30. The authors of this study used 

phosphoinositide binding domains that are specific for PI3P labeled with fluorescent 

proteins for their assays and as a negative control showed that this construct didn’t bind 

to erythrocytes which act as a control for unspecific binding. A PI4P binding domain also 

showed no accumulation on the evaluated cells outer membrane leaflet suggesting that 

the results are valid. How PI3P would be localized to the plasma membrane in the first 

place remains unexplored and highlights the fact that our knowledge of 

phosphoinositide biology is still limited. 

Given the vast array of functions phosphoinositides are part of, and the complexity in 

studying them, it has been proposed that a network approach that includes both 

proteomic and interatomic analyses might help elucidate their functions better. This 
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would help build a clearer picture about the different functions of isoforms of the same 

enzymes. Such an approach would also allow using the phenotypes observed in the 

diseases linked to mutations in the enzymes involved in phosphoinositide metabolism to 

better inform knowledge of their functions and potentially identify medical targets5. 

While this definitively seems to be a very promising avenue for research it has remained 

largely unexplored. 

1.4. Reason and goal for this thesis 

The study of phosphoinositides represents an area of science where the intrinsic 

complexity of the system requires the slow tuning of our mechanistic models through 

many independent lines of evidence. It is clear that the phosphoinositides are involved 

in a wide variety of functions that they perform though their interactions with proteins 

in a finely tuned manner, and through many detailed experiments we have several 

mechanistic models for some of the processes that involve phosphoinositides. Direct 

evidence is however very hard to obtain for most functions since the controls available 

are not ideal and, given the multiplicity of functions phosphoinositides have, it is not 

possible to demonstrate sufficiency of a set of components for a process. This is because 

of the possibility of interference with other pathways in the cell that involve some of the 

same phosphoinositides or proteins. An additional problem is the possibility of 

compensation for any experimental alteration by alternative phosphoinositide 

metabolic or trafficking pathways. 
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While in vitro experiments present a good alternative to demonstrate the sufficiency of 

the components of a model, in vitro systems lack the complexity of the highly diverse 

living membranes. Artificial membranes do not fully reproduce the dynamic processes 

and complexity observed in living cells200. With this in mind I set to develop a new 

platform for the in-vivo study of phosphoinositides without the possibility of cross talk 

or interference with other processes that involve them. 

In order to do so I have developed a system that takes advantage of the lack of any 

phosphoinositides in the bacterium Escherichia coli201 to prevent any interference from 

other processes while allowing researchers to perform experiments in-vivo. By 

engineering this bacterium to synthesize the phosphoinositides of interest it is possible 

to build new systems based on mechanistic models of phosphoinositide functions and 

demonstrate the sufficiency of a set of components for a process in-vivo. While this 

platform does not address the necessity of the set of components used for the actual 

process being evaluated it provides with a fully independent line of evidence to 

complement other types of experiments and advance our knowledge of 

phosphoinositide biology. 
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1.5. Design decisions for the new platform 

To systematically test all of the possible combinations for designing such a platform 

would require an enormous amount of work. Thus I made several design decisions at 

the start of the project, most of which worked satisfactorily. 

The first one was to use the gram negative bacterium Escherichia coli as the cell upon 

which to build the system. The reason for this choice was the assumption that by being 

one of the most well characterized organisms the tools available to build the system, 

and thus its utility would be maximized. E. coli is known not to have any endogenous 

phosphoinositides since classical experiments intended to find them202 and this remains 

the case in recent experiments201, thus it is perhaps the best candidate organism to not 

have any phosphoinositides. While this sounds like an extreme precaution it is not 

without reason; until very recently it was thought that phosphoinositides only occurred 

on few bacteria while now they are known to be present in a significant number of 

bacterial clades3. Another advantage of using E. coli is the availability of tools for protein 

expression, and in particular for multiple protein co-expression203.  

The second design decision was to focus on PIP2 as the phosphoinositide of interest 

with PI, PI4P as its precursors. While the system can be expanded in the future to other 

phosphoinositides limiting it to just these 3 allowed for a simpler biochemical pathway 
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to be needed. Additionally given these are the most abundant phosphoinositides in 

mammalian cells25 the potential applications for the system are maximized. 

The other design decisions refer to the expression of the enzymes necessary and the 

control of phosphoinositide abundance. Since the goal of the system is to build a 

platform that can be used to recreate diverse models for cellular processes I decided to 

minimize the use of any protein expression tools such that most would be available to 

potential users of the system. To do so I chose to express the enzymes required for the 

phosphoinositide synthesis in a constitutive manner, using inositol as a way to control 

the system since it can be added to growth media. This choice means all inducible 

protein expression systems will be available to any potential user of the system. All 

enzymes were labeled with the same peptide tag to ease their identification with a 

single antibody, thus also leaving all other commonly used tags free for use by users of 

the system. Additional by putting all enzymes on the same plasmid only one antibiotic 

marker and only one of the 4 families of compatible plasmids203 is used leaving 3 

plasmid origin families and all but one antibiotic resistant markers available for users of 

the system. 
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2. Materials and Methods

2.1. Description of the system 

Because of the nature of the system I have combined its description with the methods 

section in order to better illustrate why certain optimization steps were required. The 

designed metabolic pathway is illustrated in Figure 3A. The first step, synthesizing PI, is 

catalyzed by phosphatidyl inositol synthase (PIS) from the lipid cytidine diphosphate-

diacylglycerol (CDP-DAG) and myo-inositol. Cytidine diphosphate-diacylglycerol is 

present naturally as the precursor of E. coli’s phospholipids204 and myo-inositol can be 

added to growth media of E. coli expressing Trypanosome brucei PIS to synthesize PI in-

vivo205. This enzyme was kindly provided by Dr. Terry K. Smith of The University of St 

Andrews, UK. Using this enzyme gave me the advantage of starting from a system that 

was already characterized for the production of PI, and in which inositol was known to 

be a viable way to regulate the system in vivo. While it is not clear how inositol will 

reach the cytoplasm of the bacterium, I did not try to investigate the mechanisms since 

the previous work had shown its addition to the media leads to the production of PI. 

Thus for the purposes of my system the relevant factor is that inositol is incorporated, 

although the mechanisms is unknown. 

The next two steps involve the phosphorylation of PI at the 4th and 5th positions, by 

phosphatidylinositol 4- kinase and phosphatidylinositol 4-phosphate 5-kinase 
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respectively206. To my knowledge these enzymes have not been shown to be active in-

vivo when expressed in E. coli, so I used enzymes that had been previously expressed in 

this bacterium and showed activity when purified. I used Bos taurus (cow) 

phosphatidylinositol 4-kinase β 207 (PI4Kβ, PI4K henceforth) kindly provided by Dr. 

Tamas Balla of the Program for Developmental Neuroscience at NIH, and human 

phosphatidylinositol 4-phosphate 5-kinase type-1 α isoform 2 (PI4P5Kα henceforth 

PI4P5K)208 kindly provided by Dr. Richard A. Anderson of the University of Wisconsin - 

Madison. When choosing these enzymes I assumed that given they are active after 

production and purification from E. coli they should also show activity in the bacterium. 
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Figure 3. Phospholipid metabolic pathway in E. coli and modifications for 

phosphoinositide production 

A) E. coli phospholipid metabolic pathway and designed PIP2 synthesis pathway.

B) Construct for the expression of the enzymes required for PIP2 synthesis.
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2.2. Laboratory methods 

To build the system I used a combination of traditional restriction enzyme cloning, site 

directed mutagenesis, artificial synthesis of DNA, and assembly PCR. For the site 

directed mutagenesis I used the QuikChange Lightning site directed mutagenesis kit 

from Agilent Technologies according to the manufacturer protocol but scaling down the 

volume to 25, 15, or 10 μl per reaction instead of the recommended 50 μl. All primers 

used were obtained from Integrated DNA Technologies and designed manually. 

Restriction enzymes were acquired from New England BioLabs and used according to 

their protocol. Ligations were performed with the Quick Ligation Kit also from New 

England BioLabs following their protocol. PCRs were performed using the Platinum PCR 

SuperMix according to manufacturer protocol or the AccuPrime Pfx SuperMix when 

blunt ends were required or for the assembly PCR; both of these mixes were from 

Invitrogen (now Thermo Scientific). Artificial DNA synthesis was obtained as a service 

from GENEWIZ. All purification steps were performed using the DNA Clean & 

Concentrator-5 from Zymo Research, and agarose gel purifications were performed 

using Zymoclean Gel DNA Recovery Kit from the same company. Plasmid purification 

was performed with the PureLink Quick Plasmid Miniprep Kit from Invitrogen. 

No DNA sequence optimization was performed on the enzymes except on PI4K, which 

had 3 translation pause sites specific to E. coli209 which I removed. On PI4K I also 

modified the 5’ end to eliminate possible loops in the RNA that could affect translation. I 
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identified the loops using the RNAfold web server from the Institute for Theoretical 

Chemistry at the University of Vienna (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). 

The changes amount to a total of 10 synonymous point mutations to the enzyme, 

focused on its N terminus. Since the expression and activity of this enzyme was 

satisfactory after all these changes I did not attempt to isolate the effects of each 

individual change or to fully codon optimize the sequence and moved forward with the 

modified enzyme. A file with the final construct fully annotated is provided as the 

Supplementary File 1, and the sequence will be uploaded to NCBI upon publication of 

the paper describing this work. All constructs were fully sequence verified by Sanger 

sequencing using GENEWIZ services. 

Originally the plasmids used for this study were built in lab based on plasmid pET151 

from Invitrogen, which has an origin of replication from the ColE1 family. Because 

during optimization I had to switch to a lower copy plasmid the final constructs were 

built based on an origin of replication from the P15A family, obtained from the plasmid 

carried by E. coli BL21-CodonPlus(DE3) from Agilent Technologies. This strain was not 

used in my experiments and only the origin of replication obtained from the plasmid it 

carries was used. When a second compatible origin of replication was needed for the 

experiments, I used a plasmid built with an origin of replication from the ClodF13 family 

obtained from plasmid pCDFDuet-1 MKK4(EE)-MKK7a1(EE) which was constructed by 

Dr. Kevin Jane’s research group and purchased from Addgene (plasmid # 47580). All 

plasmids used are presented in Table 1. 

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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Cloning procedures were performed in E. coli strain DH5α since this is the routine strain 

for this purpose, using chemically competent cells. For all the experiments the E. coli 

strain BL21 DE3 was used since this is a strain commonly used for the expression of 

exogenous proteins in this bacterium taking advantage of the inducible T7 

polymerase210 and thus is likely to be most useful to users of the system. Note that the 

system I developed does not require the T7 polymerase and should work in any E. coli 

strain. In order to make chemically competent cells for my experiments I used the Mix & 

Go E. coli Transformation Kit from Zymo Research according to manufacturer’s protocols 

which follows a standard chemical competence protocol211. Strains of E. coli were 

obtained from Invitrogen (Thermo Scientific). All bacteria were grown in LB media at 

37C in an orbital shaker at 260 rpms. 

In order to make the measures most consistent, BL21 DE3 cells for experiments were 

transformed with the appropriate plasmids and plated on LB agar with the appropriate 

antibiotics. After a day a single colony was picked and grown overnight in LB media with 

antibiotic, and then diluted to an OD600 of 0.05 in fresh media with the appropriate 

antibiotics and inositol if required for the specific treatment. Liquid cultures were grown 

in 14 ml tubes filled with 6ml of media unless indicated otherwise. Except for time 

course experiments, cells were always grown for 3h or less for experiments after the 

initial dilution to guarantee that they would be in the exponential growth phase, thus 

diminishing cell to cell variability. 
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For lipid extractions a volume of culture was pelleted to be equivalent to 10 ml of 

OD600 equal to 1.0. For protein extractions the same protocol was used but using only 1 

ml volumes and only one fourth of the extraction was loaded to the polyacrylamide gels. 

Protein extraction was performed using the BugBuster 10X Protein Extraction Reagent 

from Millipore supplemented with rLysozyme Solution and Benzonase Nuclease, Purity > 

90%, also from Millipore according to manufacturer protocol. For Western blots 9E10 

antibodies were obtained from Acris Antibodies (now part of Origene). 

To measure the growth rate of the cells an overnight culture of bacteria was diluted to 

an OD600 of 0.05 and 300 μl were grown in a 96 well plate incubated at 37C in a plate 

reader. OD600 was measured every 30 minutes. Each strain was measured in 4 

independent wells and a correction was performed for evaporation on the blank well. 

The slope of the linear approximation to the middle of the exponential phase of growth 

was measured for each well and this slope is the data gathered to perform the 

averaging. For morphology observations 1 μl of bacterial culture was spread in a glass 

slide, covered with a cover slip and bright field images were obtained with a 60x water 

objective with a 1.5x objective in the light path (90x total). 
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Table 1: Plasmids used in this work 

Plasmid type 1 

P15A family origin of replication (10-12 copies per cell), chloramphenicol resistance, 

constitutive promoter D, N-terminal myc tag 

Name Insert Notes 

p15aC None Empty plasmid control 

p15aC-GFP GFP Control 

p15aC-1D PIS 

p15aC-4D1D PI4K and PIS 
Enzymes expressed with separate 

repeated promoters 

p15aC-1D-5 PIS+PI5P5K 
Enzymes expressed as an operon in 

that order 

p15aC-4D1D-5 PI4K and PIS+PI5P5K 

PI4K expressed separate and 

PIS+PI5P5K expressed as an operon in 

that order with repeated promoters 

Plasmid type 2 

ClodF13 family origin of replication (20-40 copies per cell), ampicillin resistance, dual 

constitutive promoter D, cytoplasmic mCherry, N-terminal GFP tag 

Name Insert Notes 

pClodACherry-

PIP2PH-GFP 
PLCδ-PH domain 

pClodACherry-

PIP2PHmutant-GFP 

PLCδ-PH domain with 

mutant binding site: 

K30A, K32A, W36A, 

R40A, E54A, S55A, 

R56A, K57A 

pClodACherry-

PI4PPH-GFP 
OSBP-PH domain Failed construct (see text) 
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Table 1: Plasmids used in this work (continued) 

Plasmid type 3 

ClodF13 family origin of replication (20-40 copies per cell), ampicillin resistance, 

constitutive promoter D, C-terminal NanoLuciferase tag 

Name Insert Notes 

pClodANL-Cherry mCherry Control 

pClodANL-

NonBinderFGF2 

FGF2 non-binding mutant 

K127Q,R128Q, K133Q  

pClodANL-wtFGF2 FGF2 wild type 

pClodANL-FGF2-Y82E FGF2 Y82E phosphomimic 

pClodANL-FGF2-Y82EE 
FGF2 Y82EE double 

phosphomimic 

Plasmid type 4 

ColE1 family origin of replication (~40 copies per cell), chloramphenicol resistance, 

constitutive promoter T7 and promoter D in tandem, N-terminal myc tag, enzymes 

expressed as operon in order indicated. These were used as optimization intermediates 

Name Insert Notes 

pET151Cons1 PIS 

pET151Cons41 PI4K+PIS 

pET151Cons51 PI4P5K+PIS 

pET151Cons54 PI4P5K+PI4K 

pET151Cons541 PI4P5K+PI4K+PIS 
Reverse order operon, 

showed better activity 

pET151Cons145 PIS+PI4K+PI4P5K 
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Lipid extraction was performed with the Bligh-Dyer protocol212 adapted specifically for 

this project (see Supplementary Protocol 1). Lipids were stored at -20C and measured 

the next day after extraction since degradation was observed over time in the 

optimization runs. PI4P and PIP2 abundances were measured using a competitive ELISA 

assay commercially available from Echelon Biosciences. On the day of the ELISA tests an 

aliquot of 6 μl or less of the extracted lipids was dried by leaving a 1.5 ml 

microcentrifuge tube open for 10 to 15 minutes and resuspended according to the ELISA 

protocol. 

In order to do the calculations of the percentage of lipids in the cell being 

phosphoinositides I used a relationship between total biomass of E. coli and optical 

density of the culture determined previously213. This equation defines the dry weight of 

E. coli growing in LB media as 0.56 by the OD660 in grams per liter, thus: Dry weight (g/l) 

= 0.56 x OD660. The percentage of lipids in E. coli by dry weight has been estimated at 

9.1%214 so an estimate can be made for the total lipids in the cell given the measured 

OD. These values were found using the BioNumbers database215 with their ID numbers 

being 108127 and 101938 respectively. In order to estimate the quantity of 

phosphoinositides relative to the overall lipids in the cell, an assumption on the molar 

weight of the phosphoinositides needs to be made since the precise lipid tails are 

unknown. I used values of 800 and 850 g/mol for PI4P and PIP2 respectively, which 

correspond to a phosphoinositide with the shorter lipid tails characteristic of E. coli. 

While this is by no means a precise calculation, it allows for an estimate of the range of 
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phosphoinositides being produced in the cells. This estimate is good enough to evaluate 

the potential of the system to build mechanistic models of eukaryotic cell biology. 

For the phosphoinositide localization tests I used the PH domain of oxysterol-binding 

protein (OSBP-PH domain) which binds PI4P 216 and the PH domain of phospholipase 

Cδ1 (PLCδ-PH domain) which binds PIP2217. These constructs were kindly provided by 

Dr. Tamas Balla of the Program for Developmental Neuroscience at NIH. The 

expectation for these tests is that the cells should show diffuse fluorescence in the 

cytoplasm when no phosphoinositides are being produced, and a halo should appear 

when phosphoinositides are present indicating the localization of some of the labeled 

protein to the plasma membrane. As a way to have an internal control I also expressed 

mCherry, a red fluorescent protein, such that in the same cell I could observe the 

behavior of the tagged phosphoinositide binding PH domain in the green channel and a 

control in the red channel. To perform these analyses with the appropriate resolution I 

used a LEICA scanning confocal microscope. I set the aperture of the pinhole to 1 airy 

unit relative to the fluorescence of GFP at 507 nm (in this case 1 airy = 128 μm), and 

excited sequentially with a laser at 488nm for GFP and 587 nm for mCherry, acquiring 

on the range of 500 to 570 nm for GFP and 600 to 670 nm for mCherry. For imaging I 

used a 100x HC PL APO oil objective of 1.44na. The image size was a square of side 29 

μm at a resolution of 512x512 pixels, scanned at 100Hz. 



59 

Detection of the enzymes expressed in the system using the myc tag proved 

problematic initially. Polyclonal antibodies showed poor performance, with many non-

specific bands appearing. This is presumably due to imperfect affinity purification 

combined with the use of proteins expressed in E. coli for the immunization of animals. 

Since the myc tag is a very commonly used tool there are monoclonal antibodies 

available which should have solved the issue. Of these the clone 9E10 from mouse 

showed the best results, but surprisingly only when the antibody is directly labeled with 

horse radish peroxidase (HRP). When the 9E10 monoclonal antibody is used with a 

secondary antibody a western with very little or no noise is obtained but only PI5K is 

detected. Figure 4 shows a comparison of the 9E10 antibody with its HRP tagged version 

when used to detect the construct expressing PIS and PI4P5K in both nitrocellulose and 

PVDF membranes. 
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Figure 4. Comparison of the 9E10 monoclonal labeled and unlabeled antibodies 

Untagged and tagged versions of the monoclonal antibody 9E10 were used for the 

detection of PIS and PI4P5K simultaneously in both PVDF and Nitrocellulose 

membranes. This comparison shows the best detection of the enzymes is obtained 

when using the HRP labeled antibody in a nitrocellulose membrane. 

Nitrocellulose  PVDF  Nitrocellulose       PVDF 
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For NanoLuc Luciferase assays cells were grown in the same way as for the other 

experiments and at 3h 50 μl of culture were pipetted to a well in a 96-well plate. 30 μl of 

freshly made PBS pH 7.0 containing 30 μl of substrate (Promega N113A) per 10 ml of 

buffer were added to each well and luminescence and OD600 were measured. After this 

initial measure 100 μl of BugBuster 1X prepared in PBS pH 7.0 were added to each well 

and lysis was allowed to run for 15 minutes. Lysis was confirmed by the decrease in 

OD600 in the well reading. After lysis 20 μl of PBS pH 7.0 containing 20 μl of substrate 

were added to each well and luminescence was measured again. All measures were 

performed immediately after substrate addition to guarantee substrate excess and an 

appropriate reading. 

2.3. Optimization of the system 

I initially attempted to build an operon expressing the 3 enzymes required for PIP2 

synthesis from the same RNA. However, expression of PI4-kinase was problematic and a 

system in which PIS and PI4P5-kinase were expressed in that order as an operon, and 

PI4-kinase was expressed separately was necessary for detection of all 3 enzymes on 

western blots. This was assembled in the same plasmid, using the same promoter and 

terminator for both PI4-kinase and the PIS-PI4P5-kinase operon. Each of the enzyme 

sequences is preceded by a ribosome binding site (RBS) designed with the RBS calculator 

software to maximize their expression218, 219, and has an N-terminal myc peptide tag 

(amino acid sequence EQKLISEEDL) for easy identification in western blots. To prevent 
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possible recombination between the repeated promoters the origin of replication and 

the resistance marker were arranged in such a way that if recombination happens the 

resulting plasmids would lack either a promoter or an origin of replication and be 

therefore selected against. A schematic of the final expression system is shown in Figure 

3B. 

In the initial steps of optimization of the system I attempted to use a modified version of 

the plasmid pET151 (from Invitrogen) changing the resistance marker to 

chloramphenicol. Plasmid pET151 has a medium-high copy number (~40 copies per 

cell)203. I left the very strong T7 promoter210 directly followed by the promoter selected 

for the system (see description of the final system below). This system led to 

morphological abnormalities in the bacteria (see Figure 5A), presumably due to overly 

high protein expression levels causing aggregation. An additional abnormal phenotype 

in which cells became very long also appeared when growing with PIS and PI4P5K 

together (note the lack of PI4K) in minimal media supplemented with inositol (Figure 

5B). Some long cells are observed even in control cells so a small fraction of long cells in 

any construct is normal, but in this case it is the majority of the cells that are long with 

most of them being extremely long. This phenotype only appeared as extreme in this 

media and only for this construct so I suspect it to be an interaction between the level of 

phosphoinositides present and the amount of the exogenous proteins potentially 

interfering with correct localization of E. coli’s membrane bound proteins under the 

stress of growing on poor media. In one occasion the high expression of PIS alone did 
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produce some very long cells in LB media supplemented with inositol, but those were 

less than 20% of the cells (Figure 5C). Since I did not use these constructs and built a 

working system using another origin of replication I did not investigate any of these 

abnormalities further. 

I built the final system using a low copy plasmid with an origin of replication from the 

P15A family, and a chloramphenicol resistance marker. There was no specific reason to 

choose this over other antibiotics except ampicillin. Since ampicillin is the most 

commonly used antibiotic I wanted to use one that would allow more of the already 

available constructs to work in the system without modifications. The origin of 

replication used has a low copy number of 10-12 copies per cell203, and I used an 

insulated constitutive promoter that expresses robustly in E. coli, named promoter D in 

the work of Davis and co-workers220, henceforth simply referred to as promoter. A 

schematic of the final expression system is shown in Figure 3B. Since the promoter 

works in E. coli without needing specific exogenous polymerases (such as the commonly 

used T7 promoter) the system can be used in any strain of this bacterium. In order to 

make the system most useful and maximize its uses I created versions of the plasmid 

expressing only PIS, PIS plus PI4K, and PIS plus PI4K and PI4P5K, thus producing PI, PI 

plus PI4P, and PI plus PI4P and PIP2 respectively. Additionally, I constructed control 

plasmids expressing only a myc-tagged green fluorescence protein or just the myc tag. 
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Figure 5. Abnormal morphology of cells with high expression constructs  

Overnight cultures were diluted to an OD600 of 0.05 and grown for 3 hours in LB or 

minimal media supplemented with inositol and the appropriate antibiotics. A) 

Morphology in LB media. While a larger cell size is normal in E. coli overexpressing 

protein, I observed several other abnormalities in LB media even without the addition of 

inositol. B) Extreme abnormal growth observed in E. coli expressing PIS and PI4P5K in 

the grown in minimal media supplemented with inositol. C) Low frequency abnormal 

growth of E. coli expressing PIS in LB media supplemented with inositol. 

A 

C B 

Control    PIS        PIS + PI4K   PIS + PI4K + PI4P5K 
 LB media 

PIS 
LB media with 2mM inositol 

PIS + PI4P5K 
Minimal media with 2mM inositol 
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3. Results and discussion

3.1. Characterization of the system 

All enzymes were expressed as expected in the final construct (Figure 6, Figure 7 shows 

the same western on a PVDF membrane) but there are a large number of faint 

nonspecific bands appearing in the western. While generally these can be thought of as 

degradation or incomplete translation products some of them increase in size relative to 

the enzymes expressed and likely reflect a more complex situation like the modification 

of the enzymes by the bacterium or possibly the induction of expression of endogenous 

proteins from E. coli that share the recognized peptide. Since the pattern of expression 

is the expected one and the functional tests showed the production of the 

phosphoinositides of interest I did not try to optimize the system further to reduce 

these nonspecific/degradation product bands. 
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Figure 6. Western blot confirmation of enzyme expression on nitrocellulose 

Western blot detection of the enzymes in the final constructs using an HRP labeled 9E10 

antibody against myc peptide on a nitrocellulose membrane. Note that constructs 

expressing PI4K show bands significantly higher than expected and the PI4K band itself 

is odd showing more signal towards the edges than the center of the lane. The protein 

sizes indicated include the myc tag and spacers. 
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Figure 7. Western blot confirmation of enzyme expression on PVDF 

Western blot detection of the enzymes in the final constructs using an HRP labeled 9E10 

antibody against myc peptide on a PVDF membrane. Note that constructs expressing 

PI4K show bands significantly higher than expected and the PI4K band itself is odd 

showing more signal towards the edges than the center of the lane. Also detection of 

PIS is not consistent among constructs. The protein sizes indicated include the myc tag 

and spacers. 
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The system showed no adverse effects on growth (Figure 8) of the cells expressing the 

enzymes regardless of inositol addition up to 10mM when growing on LB media. 

However, 20mM of inositol proved lethal for all constructs except the control. This could 

be due to a lethal effect of the phosphoinositides themselves or to competition for the 

CDP-diacylglycerol precursor. Since the effect is observed even when just PI is produced, 

it should be due to the properties of PI directly or to the competition effect and not to 

the high charge of PI4P or PIP2. If the effect is due to PI it would likely be due to its 

bulkier head-group compared to the normal E. coli phospholipids. For the purposes of 

my system this lethality effect imposes a limitation of maximum 10mM inositol in the 

media. I performed all experiments using at most 5mM inositol in the media with 2mM 

being the concentration used for most experiments. Larger cell size is normal in E. coli 

overexpressing protein221, so when judging changes induced by protein expression it is 

important to consider that a larger size is not an abnormal situation. The morphology of 

the cells expressing the different constructs was normal when growing in LB media with 

2mM inositol (Figure 9). In some of the tests expressing other proteins cell size did 

increase (see the “no inositol control” in Figure 15 for an example), but the cells never 

behaved in an aberrant way such as that observed during the optimization runs in the 

high expression system (see Figure 5). 
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Figure 8. Effects of constructs and inositol on the growth rate of E. coli 

Cells were grown in 300 μl of media in a plate reader measuring OD600 every 30 

minutes. Note the lethality of the treatment of 20mM inositol for all constructs except 

control (red circles). Data shown is the average of 4 independent measures with error 

bars showing the standard deviation of the sample. 
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Figure 9. Normal morphology in E. coli producing phosphoinositides 

Cells were grown for 3h in LB media with chloramphenicol and with or without inositol 

depending on the treatment. Scale bar is 2μm. 
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Control (myc 
peptide) 

PIS 

PIS + PI4K 

PIS + PI4P5K 

PIS +PI4K + PI4P5K 



71 

Since PI had been produced and characterized in E. coli by other researchers205 and its 

role seems to be only structural and as a precursor of phosphorylated phosphoinositides 

I did not characterize the PI further, and only characterized the production of PI4P and 

PIP2. The goal of the project is to allow the study of PI4P and PIP2 functions, with a 

focus on PIP2. Initial tests of the effects of different combinations of the enzymes all 

showed the expected behavior except for the expression of PIS and PI4P5K together in 

the absence of PI4K. This construct should produce only PI but it also produced PI4P and 

PIP2. This shows that PI4P5K is able to phosphorylate PI at the 4th position creating PI4P, 

its normal substrate, which it then phosphorylates again generating PIP2. The fact that 

PI4P can be detected implies that the phosphorylation is not carried in tandem but that 

the enzyme must release PI4P at least a fraction of the time. While it is a surprising 

finding, it is beyond the scope of this project to investigate it further and I prefer not to 

speculate about its potential biological meaning. Since the system lacks any of the 

normal regulators of activity for this enzyme, and there is no spatial segregation by an 

endo-membranous system, this activity might in fact be specific to my system. 

Nonetheless this construct was included when characterizing the amount of 

phosphoinositides produced since it may offer an alternative for users of the system 

that would like to minimize the metabolic stress of exogenous protein expression to the 

bacterium. Using this construct it is possible to have a cell with PI, PI4P and PIP2 present 

while only expressing two enzymes (PIS and PI4P5K). 
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Figure 10 shows the production of PI4P and PIP2 by the different constructs. Quantities 

are indicated as percentage of the total lipids by mass since this allows for the most 

direct comparison to the levels of phosphoinositides Eukaryotic cells. The range 

observed is on the lower end of the range observed in mammalian cells, in which PI4P or 

PIP2 each represents about 0.5-1% of the total phospholipids. Considering that in 

eukaryotic cells phosphoinositides interact with a wide variety of proteins at all times 

the amount of free phosphoinositides in these cells should be significantly lower, thus 

the amount produced by the system I developed should be enough to test most cell 

biology models of interest with levels of available PIP2 equal or higher than those in 

eukaryotic cells. 

Another consideration is the fact that E. coli has a double membrane and since 

phosphoinositides do not spontaneously flip, they most likely would all be on the inner 

leaflet of the plasma membrane. Although not yet characterized, the unspecific 

scrambling of phospholipids in the membrane of E. coli222 could cause equal distribution 

of the produced phosphoinositides on both leaflets of the plasma membrane, but given 

the high charge of PI4P and PIP2 relative to normal E. coli lipids it is unlikely this would 

be the case since any transporter would not normally act on highly charged 

phospholipids. If phosphoinositides were to flip to the outer leaflet of the plasma 

membrane it is also possible, albeit very unlikely for phosphorylated phosphoinositides 

given their charge, that they could make it to the outer membrane through the normal 

mechanism for translocation used by the bacterium. 
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Figure 10. Phosphoinositide production for all constructs 

Cells for the analysis were grown for 3h in LB media with 2mM inositol and 

chloramphenicol, after which lipids were extracted as described in the text. Data shown 

is the average of 4 independent measures with error bars showing the standard 

deviation of the sample. Note the unexpected production of PI4P and PIP2 in the last 

construct where PI4K is absent. 
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Thus the estimate provided represents a conservative scenario for their abundance with 

the maximum effective concentration being four times the reported one (assuming an 

equal split of phospholipids between the inner and outer membranes of the bacterium 

and all phosphorylated phosphoinositides residing on the inner leaflet of the plasma 

membrane) and the minimum being the reported one (assuming equal distribution 

among inner and outer leaflets, of both plasma and outer membranes). It is important 

to note that PI4P is produced at a lower level than PIP2 even when only PIS and PI4K are 

expressed. While in the constructs that produce PIP2 a lower amount of PI4P is 

expected, since it will be phosphorylated to PIP2, one would expect a similar or even 

higher level of PI4P when no PI4P5K is present since it should accumulate in the cell. The 

fact that this is not observed suggests that PI4K might autoregulate based on the 

abundance of PI4P. 

The ELISA assay, used to determine PI4P and PIP2 abundances, has a first step consisting 

on the resuspension of phosphoinositides in aqueous solution and its subsequent 

binding by a phosphoinositide binding domain specific to the phosphoinositide of 

interest. Since phospholipids are intrinsically unlikely to be in aqueous solution given 

their hydrophobic tails this first step is particularly problematic and can cause abnormal 

behavior in some runs of this assay. The successful runs show consistency across them 

and within the trends among samples and controls, but the unsuccessful ones show no 

differences among the samples and either a very low (barely above the detection limit) 

or very high signal (saturated for the most part) on all samples. Customer support could 
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not provide any solutions for this problem thus the test was repeated and the results 

reported are only from successful runs. 

As explained above, unsuccessful runs of the ELISA tests are easily detectable by the 

behavior of controls, thus they can be objectively identified. In particular, the behavior 

of the control system which is E. coli with a control plasmid that doesn’t express any of 

the enzymes, and the control that just expresses PIS allows for the identification of any 

abnormal runs. An alternative form of evidence confirming this assessment of successful 

runs was initially done by a protein lipid overlay assay, which is the equivalent of a dot 

blot in which lipids are dotted on a membrane and then identified with a protein165. This 

overlay assay for the detection of PI4P was also available commercially from Echelon 

Biosciences but has now been discontinued and the version for the detection of PIP2 

was discontinued before I started the project. This test showed that control and PIS 

expressing constructs produced no PI4P. Figure 11 shows the results of one PI4P strip 

test performed with some of the intermediate constructs used for the optimization of 

the system. Unfortunately, these tests were performed before the system was 

optimized and after the product was discontinued I could not replicate the protein lipid 

overlay assay successfully even while getting the reagents from the same company. In 

these failed attempts the calibration curve showed very bad results with little difference 

across the same range of concentrations used in the commercial kit. The only difference 

between these optimization assays and the final constructs was the higher expression of 

enzymes, thus the assessment should be valid for the final optimized system. 
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Figure 11. Protein lipid overlay for the detection of PI4P 

Detection of PI4P produced by some of the optimization constructs. Since samples were 

spotted in a complex order the organized data as well as the raw image are provided. 

Note that at the time I was working with two operon constructs thus there are two tests 

for a case when all the 3 enzymes are present, but their order of expression in the 

operon was different. 
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In order to characterize the system further I performed a time course experiment for 

the construct expressing all 3 enzymes. The results of this experiment are shown in 

Figure 12. In this experiment inositol is added at the start of the culture, defining this as 

time 0. In this way cells should initially accumulate phosphoinositides, but at some point 

the inositol in the media becomes limiting since it’s not being replaces and the 

phosphoinositides per cell should start to decline by being diluted during cell division. 

While the result is relatively noisy, it shows the expected pattern in which the amount 

of phosphoinositide increases over time to a peak around 3 h, after which it declines 

slowly. 
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Figure 12. Time course of phosphoinositide production 

Cells expressing PIS, PI4K and PI4P5K simultaneously were grown in LB media with 2 mM 

inositol and chloramphenicol. Aliquots were extracted every hour, and diluted or 

concentrated to obtain a pellet equivalent to 10 ml of culture at OD600 = 1 for lipid 

extraction. Trend curves are from a second order polynomial. Data shown is the average 

of 4 independent measures with error bars showing the standard deviation of the 

sample. 
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As a next step to characterize the system I performed an analysis of the effect of the 

concentration of inositol in the media for the production of phosphoinositides. The 

results of this test can be seen in Figure 13. This analysis showed that production of 

phosphoinositides grew with increasing inositol in the media but it also saturated fast, 

reaching a plateau at around 2mM inositol. This saturation indicates the system is 

limited by the speed of PI production since PI4P can be produced at higher levels when 

PI4P5K is not present and PIP2 is dependent upon this PI4P as a precursor. Evidently 

these results, as well as the levels of phosphoinositide production and time course of 

production, will vary when the system is used in different bacterial strains and/or under 

different growing conditions. Their value lies in showing that the system works as 

expected, and how inositol can be used to control it. 
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Figure 13. Phosphoinositide production under different inositol concentrations 

Cells expressing PIS, PI4K and PI4P5K simultaneously were grown in LB media with 

chloramphenicol and different concentrations of inositol. At 3 hours OD was measured 

and cells were diluted or concentrated to obtain a pellet equivalent to 10 ml of culture 

at OD600 = 1 for lipid extraction. Trend curves are from an exponential fit of the form 

y=a+b℮(-c x). Data shown is the average of 4 independent measures with error bars

showing the standard deviation of the sample. When error bars are not visible it is not 

because of an absence of variation but because it is too small to be seen at the scale of 

the graphic. 
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As a final step in the characterization of the system, and to provide alternative evidence 

of the production of phosphoinositides, I used a GFP tagged phosphoinositide binding 

PH protein domain. As mentioned in the introduction these are used routinely to 

visualize the localization of phosphoinositides in mammalian cells168. The advantage is 

that in my system there is no possible interference by other proteins that also bind 

specifically to the same phosphoinositide. A result obtained with this system will then 

allow for a robust in-vivo confirmation of the production of PIP2 in my system. 

For PI4P I used the OSBP-PH domain, which binds to PI4P, but this test failed, with no 

membrane localization appearing even in the presence of the construct that has PIS and 

PI4K growing in 2mM inositol for 3 h (Figure 14). This could be due to an insufficient 

amount of PI4P but the ELISA tests showed it is produced satisfactorily under these 

conditions so it is most likely due to a problem in the folding of the PH binding domain. 

This domain has been used successfully for this type of experiment in mammalian 

cells216, and the fact fluorescence is detected implies the protein is being produced, so 

the failure is most likely a problem with folding of the PH domain in the E. coli 

cytoplasm. 
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 OSBP-PH (green)  Cytoplasm (red)  Overlay 

Figure 14. Localization of the GFP tagged PI4P binding OSBP-PH domain 

Scale bar is 2 μm. The second row shows a zoom in on the bottom left of the top image 

as indicated by the square. Note the lack of membrane localization in the green channel. 

The line observed in the green channel (indicated with an arrow in the lower left panel) 

is an error of the scanning system during the image acquisition. 
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For the PIP2 binding test I used the PLCδ-PH domain, which binds PIP2. It is expected 

that membrane localization of the probe will be observed only in the cells expressing all 

3 enzymes required for PIP2 production and growing in LB media with inositol. Several 

controls can be used for this system in order to make sure that if membrane localization 

of the probe is observed it is due to the expected interaction. The first control uses the 

same cells as the main experiment, expressing all 3 enzymes, but growing without 

inositol. In this control no phosphoinositides should be produced and no halo should 

form, confirming that the appearance of the halo is not due to some unexpected effect 

of the enzymes being present. A second control uses a control system that has no 

enzymes (in this case an empty plasmid) but grown with inositol in the media, showing 

that inositol on its own also does not cause membrane localization of the probe. A final 

control in which I mutated the binding site of the PLCδ-PH domain to eliminate its 

possible interaction with PIP2 also showed no halo even when the enzymes necessary 

and inositol were present, thus showing that the interaction depends specifically on its 

binding to PIP2. 

This mutation approach had not been attempted before so I used the structural 

knowledge of the molecule published in the literature159 and performed 8 amino acid 

changes to the residues that were implicated in PIP2 binding: K30A, K32A, W36A, R40A, 

E54A, S55A, R56A, K57A (numbering follows that of Ferguson and coworkers159). A 

representative image of each of these 3 controls and the experimental treatment is 

presented in Figure 15. In some cells the levels of protein expression are high and it 
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starts aggregating on the cell poles, in what might be the beginning of, or a fully formed, 

inclusion body. In this case the red fluorescence is also excluded from this area. It is 

important to highlight that this does not indicate any interaction with phosphoinositides 

but simply a known effect of protein overexpression in E. coli and analysis should 

exclude cell poles to avoid confounding the results. In these cases the cells still show 

diffuse fluorescence in the cytoplasm so there is enough protein to evaluate its 

localization satisfactorily regardless of a fraction of it being part of these aggregations. 

As can be seen in Figure 15 a line scan perpendicular to the major axis, thereby avoiding 

the poles of the cell, shows a clear difference between the test and the controls. The 

cytoplasmic signal shows a symmetric mono-modal distribution while that of the 

membrane bound GFP tagged PLCδ-PH domain shows 2 peaks with a central dip in the 

signal. 
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Figure 15. Localization of the GFP tagged PIP2 binding PLCδ-PH domain 

Scale bar is 2 μm. Images were modified to leave only one cell in the field. Line scans 

were 10 pixels wide and are indicated by the purple rectangle on the overlay image. 

Data from line scans was standardized to show the same amplitude on all channels. 

Note the aggregation of protein towards the pole in some cells, in a way that excludes 

the cytoplasmic red marker. 
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In order to gain better confidence about the data, and avoid a possible selection bias, I 

created a bimodality index. To calculate this index I split the curves obtained with the 

line scan into three regions, taking the central 0.5 microns as the center region and the 

remainder to each site as the left or right side accordingly. Then the maximum of the 

left and right sides is averaged and divided by the minimum in the center region. In this 

way a curve that follows a normal or symmetric mono-modal distribution will give a 

value very close to 1, since the maximum outside the center region is almost the same 

as the minimum inside. In the case of a bimodal curve this value should be higher than 1 

because the average of maximums in the outside regions should be higher than the 

minimum in the center region where the curve dips. 

Since misalignment of the center region would bias the analysis towards values higher 

than one, I divide the value obtained for the curve corresponding to the green channel 

by that of the red channel (control channel). In this way any artifact due to 

misalignment of the center region boundaries will be corrected for, bringing the index 

value back to 1 for mono-modal curves. Figure 16 illustrates the index calculations. To 

do the calculations I acquired 4 different fields for each treatment and scored 10 cells 

per field picking them on the mCherry channel in order to avoid any bias when selecting 

them. The only consideration when picking the cells was that they were separate 

enough from other cells so a good curve could be obtained. 
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Figure 16. Calculation of the bimodality index 

The line scan for each channel is standardized to its maximum so both channels have 

the same range. The maximum of the values in the outside (left and right) regions is 

averaged and divided by the minimum in the center region. This value should be very 

close to 1 for mono-modal distributions and higher than one for bimodal distributions. 

In order to correct for the effect of misalignment of the center region boundaries, which 

would lead to values higher than one, the green channel value is divided by the red 

(dashed) channel value. In this way any misalignment is corrected for, bringing the value 

back to one for mono-modal distributions. Theoretically this correction would not be 

necessary if the alignment was perfect but, as can be seen on the right side of the red 

(dashed) channel in the figure, small variations in the data make the alignment 

imperfect and the correction is appropriate. 

0.5 μm 

Center Right Left 

Max(Left) + Max(Right) 
         2   Min(Center) 

Max(Left) + Max(Right) 
 2   Min(Center) 

Bimodality index = 



88 

The results obtained with the bimodality index are presented in Figure 17.  The data 

confirms the localization of the PIP2 binding PH domain to the membrane only when 

PIP2 is present and in a manner directly dependent of PIP2 binding by the PH domain. 

While this could be observed from the images, being able to do a quantitative test 

allows for more certainty in the assessment, and confirms in a completely independent 

way the success of the system I developed in producing phosphoinositides. 



89 

Figure 17. Bimodality index measures for the PIP2 binding PH domain 

Each treatment had a sample size of 40 cells that came from 4 different fields, each with 

10 cells measured. Graph shows the mean bimodality index and the standard deviation 

of the sample. All controls show an index value close to 1 as expected for mono-modal 

curves. There is a statistically significant difference between the localization test and all 

controls as assessed by a one-way ANOVA analysis and a post hoc Tukey HSD test, both 

with p<0.01 as indicated by **. 
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3.2. An application for the system 

In order to illustrate how my system can be useful I decided to build a test for the 

current model of non-conventional protein export for human basic fibroblast growth 

factor (FGF2). FGF2 is a classic example of protein export in a manner independent of 

the Golgi and endoplasmic reticulum. While several transporters have been proposed to 

be involved in other models of non-conventional protein export, there is no evidence of 

their involvement in FGF2 export223. The current model proposes that FGF2 is translated 

and released into the cytoplasm, after which it becomes phosphorylated at tyrosine 82 

by Tec-kinase. It is not clear if this phosphorylation occurs in the cytoplasm or at the 

plasma membrane but it is more likely it occurs at the plasma membrane given that is 

the normal Tec-kinase localization224. This phosphorylation enhances FGF2 

oligomerization after binding to PIP2 for which it has a KD of approximately 1 μM225.

PIP2 binding drives membrane localization and together with the phosphorylation at 

tyrosine 82 induces oligomerization of FGF2226. While the lack of this phosphorylation 

diminishes export of FGF2 it does not entirely abolish it227, suggesting that the system is 

perhaps more robust than expected. A schematic of the current model is presented on 

Figure 18. 



91 

Figure 18. Schematic representation of the current FGF2 export model 

FGF2 is synthesized and released to the cytoplasm, it is then phosphorylated in tyrosine 

82 by Tec-kinase, this phosphorylation enhances binding to PIP2 and oligomerization 

forming a temporary channel that allows it to reach the outside of the cell. Once in the 

outside of the cell it releases PIP2 and binds to heparan sulfate proteoglycans. The 

binding site for PIP2 is shared with that of heparan sulfate proteoglycans, but the 

affinity is higher for the later creating a ratchet for accumulation of FGF2 in the outside 

of the cell. 

FGF2 
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Kinase 

Heparan sulfate proteoglycans 
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After oligomerization of FGF2 is it believed that a membrane pore is produced which 

allows FGF2 to cross through the plasma membrane reaching the extracellular space. 

This pore allows the diffusion of small molecules, and its hypothesized to be lined with 

PIP2, although this has only been shown to be the case in vitro227. It has been shown 

that FGF2 exports in a fully folded conformation and in fact that the folded state is 

required for its export228. Once at the extracellular side FGF2 binds to heparan sulfate 

proteoglycans which act as an anchor. The binding site is partly shared between PIP2 

and heparan sulfate proteoglycans226 but the affinity for heparan sulfate proteoglycans 

is significantly higher than for PIP2 with a KD of approximately 10 nM229. This anchoring

mechanism generates the directionality of the FGF2 movement without the need for 

energy consumption in the process230. Two surface cysteines have recently been shown 

to be important for the oligomerization of FGF2 at the pore in a manner that seems to 

be independent of any accessory proteins, but it is hypothesized that they function 

directly at the pore since the reducing environment at the cytoplasm would not allow 

disulfide bridge formation231. 

This model represents a problem on which to try my system because it is otherwise 

impossible to confirm the sufficiency of the proposed components in-vivo. At the same 

time there is extensive evidence supporting each step of the process in the model, thus 

an in-vivo, independent test for the sufficiency of the proposed components would 

provide very strong support for the model. Additionally, there are several experimental 

advantages to testing this model. FGF2 export isn’t impaired when it is fused to a 
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protein tag, such as GFP, and a phosphomimic using glutamate substitution for tyrosine 

82 (Y82E) completely restored FGF2 export when Tec-kinase activity was experimentally 

ablated224. The binding site for PIP2 can also be eliminated by using 3 point mutations 

K127Q,R128Q, K133Q226. These findings allow me to create a very clear test for the 

sufficiency of the components since a negative control can be stablished by abolishing 

PIP2 binding, and the wild type and phosphomimic FGF2 molecules can also be 

evaluated. Since in some instances it has been shown that a double phosphomimic 

(replacing the aminoacid that is phosphorylated by two glutamates instead of one) 

resembles better the behavior of a phosphorylated protein232, 233 I also included a 

double phosphomimic, Y82EE, construct for my tests. 

Since E. coli is a gram negative, if FGF2 expressed in this bacterium were to export 

successfully it would be trapped between the plasma membrane and the outer 

membrane in the periplasmic space. However, given that my system does not have 

heparan sulfate proteoglycans to drive the export of FGF2, under the current model 

FGF2 would only form pores and remain attached to the plasma membrane. It is unclear 

if in this state FGF2 will face the outside of the plasma membrane, the inside, or 

oscillate between the two states. The fact that the binding site is shared between PIP2 

and heparan sulfate proteoglycans indicates that FGF2 will have to release PIP2 and be 

exposed to the extracellular space at least some of the time. 
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Because of this ambiguity I chose a system that would inform on FGF2 forming a pore 

regardless of FGF2 separation from the membrane or the direction it faces if attached to 

it. For this I used the NanoLuc Luciferase assay. This consists of a luciferase enzyme 

optimized to reduce its size (about 19 kDa) to which I will refer as NanoLuciferase, and 

an optimized substrate. Upon encountering the substrate NanoLuciferase catalyzes its 

degradation releasing photons. One important advantage over other luminescent 

systems is that this reaction does not require ATP as a cofactor, with all energy required 

stored in the chemical structure of the substrate. This substrate is not membrane 

permeable so if added to the media it will only be available on the periplasm of an intact 

E. coli, with only a basal amount reaching the cytoplasm. NanoLuciferase can be 

expressed as a C terminal fusion protein with FGF2, and this fusion should not interfere 

with export since FGF2 has been shown to export successfully with a GFP fused to its C-

terminus, and GFP is a larger protein (27 kDa). 

Using this reporter assay it’s possible to evaluate the effect of PIP2 on the formation of 

the membrane pore by FGF2 whether it remains attached to the plasma membrane or 

released to the periplasm. If FGF2 forms a pore in my system a luminescent signal can 

be produced in 3 different ways. If FGF2-NanoLuc is released to the periplasm, a signal 

should be observed since the NanoLuciferase will have access to the substrate added to 

the media; this would also be the same if FGF2-NanoLuc remains attached to the plasma 

membrane but facing the periplasm. Finally, in the case that only the pore is formed, but 

FGF2-NanoLuc is neither released to the periplasm not facing it, some level of substrate 
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should be able to diffuse through the pore and be accessible to FGF2-NanoLuc in the 

cytoplasm or inner side of the plasma membrane, producing a signal. An additional 

advantage of this reporter is that it allows for standardization of the results to the 

overall level of expression of the fusion protein. A percentage of luminescence can be 

obtained by measuring the luminescence before lysis (signal of the treatment), and after 

lysis of the cells (maximum signal possible, a measure directly proportional to the level 

of protein expression), correcting for differences in the expression levels of the different 

constructs being compared. 

For these tests I used a plasmid with a ClodF13 origin of replication and an ampicillin 

resistance marker. In this way the plasmid is fully compatible with my system for PIP2 

production. I expressed the FGF2-NanoLuc reporter constitutively to avoid problems 

with variable induction of the protein between constructs. For this I used the same 

constitutive promoter I used for expression of the enzymes required for PIP2 

production. This FGF2-NanoLuc construct constitutes my wild type reporter (FGF2-

NanoLuc-wt), and on it I performed site directed mutagenesis to obtain three more 

constructs: FGF2-NanoLuc unable to bind to PIP2 by including the mutations K127Q, 

R128Q, K133Q (FGF2-NanoLuc-NoBinding), FGF2-NanoLuc phosphomimic (FGF2-

NanoLuc-Y82E), and FGF2-NanoLuc double phosphomimic (FGF2-NanoLuc-Y82EE). 

Each of the four constructs is expected to behave differently reflecting its proposed fit 

with the model of FGF2 export. FGF2-NanoLuc-NoBinding should show the lowest signal, 
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since it is unable to bind to PIP2 and therefore should not be able to form pores; this will 

be the background signal for the system. FGF2-NanoLuc-wt should show the same low 

level of signal or perhaps a little higher since it should bind to PIP2 but it lacks the 

phosphorylation that has been shown to be important for enhancing its oligomerization 

and pore formation. Finally, FGF2-NanoLuc-Y82E and FGF2-NanoLuc-Y82EE should both 

present the highest level of signal since they have a phosphomimic mutation, allowing 

them to oligomerize successfully, forming the pore. It is possible that the double 

phosphomimic behaves differently, since in theory it is a better substitute for the 

natural phosphorylation, but it might also not work as well since the backbone of the 

protein is altered by extending its length. 

Using my system to test these four FGF2-NanoLuc constructs allows testing the effect of 

PIP2 on the pore forming behavior of FGF2 by using two types of cells for each 

construct: control and test cells. Control cells do not have the enzymes required for 

phosphoinositide synthesis, allowing to test the effect of inositol on its own. This is 

important to make sure that inositol has no effect on the system on its own, 

confounding the results. The test cells on the other hand express the enzymes required 

for PIP2 synthesis, and differences observed when inositol is added are due to the 

production of PIP2. The test can be easily performed and measured on a plate reader 

where the initial OD600 of the culture as well as its luminescence is measured, and then 

each well is measured again after lysis of the cells. Results of the experiment are 

presented on Figure 19. 
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Figure 19. FGF2 export tests with 2 mM inositol 

Cells were grown in LB media supplemented with the appropriate amount of inositol for 

3h before an initial luminescence measure in a plate reader. After this measure the cells 

were lysed and the total luminescence was measured. The control treatment lacks the 

enzymes required for PIP2 production. Data shown is the average of 4 replicates and the 

distribution is the standard deviation of the samples. A two way ANOVA test found both 

the constructs, the treatment (PIP2 vs control), and the interaction to have a significant 

effect on the signal with p<0.01. A post hoc Tukey HSD test determined that FGF2-

NanoLuc-NoBinding is significantly lower than the other constructs in the PIP2 

treatment with p<0.01 as indicated by **. 
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As can be seen in Figure 19, all constructs showed little difference between the 

treatment of inositol and no inositol in the control system, which lacks the enzymes to 

synthesize PIP2. This is a basic control and this is the expected result confirming that 

inositol on its own has no effect on FGF2 export. While the effect sizes observed in the 

PIP2 treatment are not very large, varying between 6 and 10 % of the total 

luminescence, they are significant as determined by the two way ANOVA test. This is 

important because the value observed is too high to be due to the small fraction of cells 

that might die randomly during the experiments; thus the differences observed are in 

fact due to the different factors being evaluated (effect of PIP2 and different variants of 

FGF2). Unexpectedly PIP2 had an effect on all constructs, with an increase in the 

percentage of signal before lysis observed even for FGF2-NanoLuc-NoBinding when 

inositol is added to the media. This effect is dependent on PIP2 directly, as it was not 

observed in the control cells (which do not express the enzymes required for PIP2 

synthesis). This suggests that even with the mutations to its binding site FGF2-NanoLuc-

NoBinding is able to form a pore in a manner dependent on PIP2. Since its binding site is 

impaired or possibly entirely non-functional this might be an effect of PIP2 on 

membrane properties instead of on its oligomerization. This is consistent with the 

importance of PIP2 at the membrane for the pore formation, where its shape would 

allow for the curvature deformation required for a hypothesized toroidal pore227. All 

other constructs (wild type and both phosphomimics) showed a statistically significant 

higher signal which confirms the observation that the binding for PIP2 enhances pore 

formation. On the other hand the fact that the phosphomimics do not perform 
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significantly better than the wild type construct suggest that this phosphorylation is not 

as important as postulated although it shows slightly reduced signal compared to them. 

In order to gain more insight into the process I repeated the test adding 5mM instead of 

2mM of inositol into the media. While the concentration tests effects on PIP2 

production in my system showed the production saturated around 2mM of inositol, if 

this saturation is the product of feedback on the enzymes the sequestration of PIP2 by 

FGF2 would induce the production of more PIP2. The increased inositol could also vary 

the dynamics of production even if the overall maximum level remains the same, 

reaching the maximum concentration of PIP2 faster. This would allow for more of the 

FGF2 to form pores during the growth time of the cells, which I kept constant at 3 hours 

to guarantee the measures are performed during the exponential growth phase of the 

cells. In this way if the inositol concentration required for pore formation is reached 

earlier, there is more time for pore accumulation. Additionally I added a new control, in 

which I replaced the FGF2 in the reporter for mCherry. Since mCherry does not interact 

with PIP2 in any way this mCherry-NanoLuc construct can determine whether the signal 

observed in the other treatments is in fact due to the interaction between FGF2 and 

PIP2 or somehow a passive result perhaps altering the permeability of the membrane to 

the NanoLuciferase substrate. Results of this experiment are presented in Figure 20. 
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Figure 20. FGF2 export tests with 5 mM inositol 

Cells were grown in LB media supplemented with the appropriate amount of inositol for 

3h before an initial luminescence measure in a plate reader. After this measure the cells 

were lysed and the total luminescence was measured. The control treatment lacks the 

enzymes required for PIP2 production. Data shown is the average of 4 replicates and the 

distribution is the standard deviation of the samples. A two way ANOVA test found both 

the constructs, the treatment (PIP2 vs control), and the interaction to have a significant 

effect on the signal with p<0.01. A post hoc Tukey HSD test determined that FGF2-

NanoLuc-NoBinding is not significantly different from FGF2-NanoLuc-wt and that these 

are significantly lower than both phosphomimics which are also significantly different 

between themselves. All these differences were significant with p<0.01 as indicated by 

**. The very small value obtained for the mCherry construct is indicated on the graph 

since the scale does not allow visualizing it. 
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In the new 5mM inositol experiment, the control system, which does not produce PIP2, 

showed the same lack of effect as in the previous 2mM treatment for all constructs. This 

confirmed the previous observation of inositol not having an effect on its own. The 

mCherry control (which was performed only for the system producing PIP2) showed no 

difference between the inositol and no inositol treatment, confirming that neither 

inositol not PIP2 alter the background level of signal of NanoLuciferase in the E. coli cells 

used for my studies. Just as in the 2mM inositol treatment, FGF2-NanoLuc-NoBinding 

showed a significant increase in signal upon inositol addition and in this case the effect 

size is much higher, increasing from about 6% in the 2mM inositol treatment to about 

22% in the 5mM inositol treatment. The implication is the same as in the previous 

experiment, showing that PIP2 has an effect on FGF2 pore formation (and possibly 

export) that does not depend fully on the described binding site. In this case the signal 

in FGF2-NanoLuc-wt wasn’t significantly different from FGF2-NanoLuc-NoBinding and 

these were both significantly lower that the signal of the phosphomimics. The double 

phosphomimic (FGF2-NanoLuc-Y82EE) showed lower signal than the single 

phosphomimic (FGF2-NanoLuc-Y82E) but the overall patterns are the same. The double 

phosphomimic is therefore not an improvement over the single phosphomimic and does 

not add any new information to the tests. 

The lack of a difference between the wild type construct and the non-binding mutant 

might reflect a saturation effect. Based on the combined data of the 2mM and 5mM 

inositol tests I propose that a shift in the dominant limiting factor for export is occurring. 
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At both concentrations the phosphomimic, which can both bind to PIP2 and oligomerize 

successfully, exports better than the other constructs. At the same time the non-binding 

mutant, which has impaired PIP2 binding and lacks the phosphorylation therefore 

showing impaired oligomerization, presents the lowest level of export at both 

concentrations. The wild type on the other hand should bind to PIP2 successfully but 

lacking the phosphorylation should have impaired oligomerization, and at lower 

concentrations (2mM inositol) is able to export at a rate similar to that of the 

phosphomimic. This implies that in this situation PIP2 might be limiting the system, thus 

differences in oligomerization are not that important. Once PIP2 is increased (at 5mM 

inositol) the limiting factor is not binding to PIP2 but oligomerization of the FGF2 

molecule. The impaired binding to PIP2 has little effect given an excess of PIP2 in the 

membrane and the oligomerization, which is dependent on the phosphorylation, 

becomes the dominant factor limiting the pore formation and export of the molecule. 

An important factor to consider is that this binding site of the PIP2 binding mutant 

(FGF2-NanoLuc-NoBinding) might not be fully impaired. When the mutations to the 

binding site were described a small fraction of mutant FGF2, less than 1%, would still 

associate with plasma membrane like liposomes containing PIP2, although surface 

localization would only be reduced to 20-30% of that of the control when only 2 

mutations were present (K127Q,R128Q but not K133Q)226. In that same work it was 

shown that the K133Q mutation impaired PIP2 binding, but more importantly heparan 

sulfate proteoglycan binding, and this was the decisive factor to virtually eliminate all 
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export of FGF2. While all mutations affect PIP2 binding and my system has all 3 

mutations, the lack of heparan sulfate proteoglycan means that the mechanism of 

action has to be different. The results observed in my system suggest that FGF2 pore 

formation is enhanced by PIP2 regardless of the mutations. These results also support 

the idea that at 5mM inositol PIP2 is in excess, rendering the mutation less relevant and 

shifting the limiting factor to the oligomerization of the molecule. 

While discussing these tests I have analyzed the difference between the no inositol and 

inositol treatments, but it is also important to consider the absolute values of 

background observed for them. These are shown for both experiments in Figure 21. The 

important result in this case is the fact that the FGF2 constructs are able to produce a 

signal corresponding to a range between 40% and 60% of the total signal. This is the 

equivalent of saying that 40-60% of the protein produced encounters the 

NanoLuciferase substrate. While the controls show that this is not dependent on 

addition of exogenous inositol, and the PIP2 treatment clearly has an effect that 

depends on the construct (this has been discussed already referring to figures 12 and 

13), this very high background implies that FGF2 on its own, regardless of the presence 

of inositol and/or PIP2, produces a very significant signal. While this is simply the 

background level for the experiment, and as such one would just use it as a baseline, 

there is important information reflected in this observation. For instance, the mCherry 

control shows a background signal level of less than 1%, matching to the expected 

cytoplasmic localization of the construct. This is not an artifact of protein production 
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since the mCherry control produces significantly higher protein levels measured as the 

total luminescence per OD600 unit (p<0.01 on a t test). 

The very large background level observed for all FGF2 constructs means that a very large 

fraction of the FGF2-NanoLuc constructs is able to reach, or be exposed to, the 

periplasm even under control conditions. The mCherry control on the other hand shows 

almost no signal. This is important because it shows unambiguously that inositol, PIP2, 

and the enzymes required to synthesize it are not responsible for this signal thus it is an 

effect of FGF2. An alternative to FGF2 being fully exported could be that a number of 

pores are being formed on the membrane by the FGF2 constructs allowing the entrance 

of a significant amount of NanoLuciferase substrate to the cytoplasm. I argue that the 

magnitude of the effect indicates that FGF2 molecules are either being released to the 

periplasm or on the outer leaflet of the plasma membrane but only going through a 

pore state as a short lived intermediate, since having such a high amount of permanent 

pores on the membrane would lead to major growth defects which I did not observe. 
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Figure 21. Raw data for the FGF2-NanoLuciferase export tests 

Cells were grown in LB media supplemented with the appropriate amount of inositol for 

3h before an initial luminescence measure in a plate reader. After this measure the cells 

were lysed and the total luminescence was measured. The control treatment lacks the 

enzymes required for PIP2 production. The very small value obtained for the mCherry 

constructs is indicated on the graph since the scale does not allow visualizing them. 

Note that the mCherry construct was only evaluated in the presence of the PIP2 system 

at 0 mM and 5 mM inositol in the media. 
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FGF2 has been shown to not bind to phosphatidylethanolamine or PI, but to have 

affinity for any phosphorylated phosphoinositide and for phosphatidylserine although at 

a lower level than for phosphoinositides226. This indicates that it has a strong preference 

for phospholipids with negatively charged head-groups, thus in the absence of PI4P and 

PIP2 it should have low affinity for the plasma membrane of E. coli, which is composed 

of phosphatidylethanolamine, phosphatidyl glycerol and cardiolipins (the latter two 

having neutral head-groups). The fact that it is able to bind and export even in the 

absence of PIP2 suggest that some hydrophobic interactions with the lipid tails and not 

just the head-groups might be important for its export. Alternatively, it is possible that 

phosphatidylserine, which is an intermediate for phosphatidylethanolamine production 

in E. coli, is binding to FGF2 and this interaction allows FGF2 to anchor itself to the 

membrane and initiate export. However, this is unlikely since phosphatidylserine can 

only be detected in trace amounts in normally growing E. coli201 and will only 

accumulate if phosphatidylethanolamine production is impaired, a situation that has 

significant effects on the bacterium leading to lethality in the extreme cases204.  

FGF2 might also be able to insert at membranes at a low rate even when PIP2 binding 

and oligomerization are impaired. It is possible that this hypothesized insertion and 

oligomerization is enough to cross the thinner plasma membrane found in bacteria 

(which have phospholipids with shorter lipid tails) a fraction of the time but not enough 

to allow for its export of the mammalian cell. Since my assays are end point assays the 

observed result could reflect accumulation over the time of the experiment of FGF2 that 
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exports at a low constant level. At this point this is a purely speculative mechanism and 

elucidating it would require a variety of independent tests that are beyond the point of 

this work, which is to demonstrate an application of my system. 

Overall my experiments on FGF2 export support two main aspects of the current model; 

they show that PIP2 enhances export of FGF2 and that the phosphorylation at Y82 also 

enhances the export of the molecule. My data also shows that export of FGF2 is more 

robust than expected, and that the effect of PIP2 is not only dependent on the reported 

binding site, and/or that the binding site is not fully impaired by the mutations that have 

been described in the literature. 
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4. Conclusion and outlook

In this work I have built a new platform for the study of phosphoinositides in-vivo using 

the bacterium E. coli, and have shown that the phosphoinositide production can be 

controlled with the addition of inositol to the media allowing for very detailed 

experimental manipulations. I have confirmed the production of PIP2 in my system with 

both a biochemical characterization and an imaging approach, providing fully 

independent observations as evidence that my system behaves as desired. 

I have also applied my system to the study of FGF2 export from cells, confirming the role 

of PIP2 and a phosphorylation of its tyrosine residue at position 82 in enhancing its 

export. Additionally I have found some puzzling results suggesting that FGF2 export is 

more robust than expected in bacteria. This results needs to be confirmed and explored 

with alternative approaches to provide independent evidence, and this is beyond the 

scope of my project. 

Overall the system I have developed shows the potential I set up to accomplish, and 

provides a new tool for experimenters interested in phosphoinositide biology. 

Opportunities are only limited by the boundaries imposed by E. coli in terms of protein 

production. The adoption of the tool by other researchers will be the ultimate indication 

of its value. 
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5. Appendix

5.1. Supplementary Protocol: Lipid extraction protocol 

This Extraction Protocol is adapted from the Bligh & Dyer protocol. The volumes 

reported here are for a 10 mL pellet but can be adjusted to other sizes with a linear 

approximation. The protocol assumed an 80 μl pellet came out of the 10 ml of culture, 

but this measure does not need to be precise. 

-Take 10 ml of culture at OD600 equal to 1 and pellet gently (1-3 min at 8000 rcf) 

-Entirely remove the supernatant and store the pellet at -80C until fully frozen. The 

pellet can be stored like this until the lipid extraction is to be performed 

-Add 420 μl of water to the frozen pellet ant thaw while resuspending with pipet mixing. 

Make sure the pellet is fully resuspended before continuing 

-Add 1250 μl of methanol 

-Add 625μl of chloroform 

-Vortex until fully mixed, no cell clumps should be visible 

-Add another 625μl of chloroform 

-Vortex until fully mixed, no cell clumps should be visible 

-Add 600 μl of ddH20 

-Vortex until fully mixed, at this point two phases become obvious and start appearing 

even without centrifugation 

-For total lipid extraction add 25 µl of HCl 
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-Vortex until fully mixed, the two phases are equally evident here 

-Centrifuge at 100-150 rcf for 5 minutes 

-Take the bottom phase of this solution, this is the organic phase and contains the lipids. 

The upper phase contains proteins and other water soluble molecules. Avoid pipetting 

up any of the top phase by pipetting a bit of air into the pipette and releasing it while 

moving through to the aqueous top phase. Between the two phases there is normally a 

layer of white material, mostly protein that is to be avoided 

-Dry the bottom phase with argon until there is no solution remaining. These are the dry 

lipids. This should be done on glass vials 

-Resuspend the mix on 100 µl of chloroform:methanol mix 20:9. I the resuspension 

turns problematic this can be sonicated in ice cold water to help, or a higher volume of 

chloroform:methanol can be used 

Protocol variations: 

For a cleaner extraction the obtained bottom phase can be washed with authentic 

upper phase. The authentic upper phase is obtained from the same protocol but in a 

tube in which instead of a sample pellet 80 µl of water were used. This cleaning step can 

be repeated if desired but for most extractions no cleaning is required. 
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For separation of charged lipids the bottom phase can be obtained before the addition 

of HCl, saving the upper phase and layer of white material. The bottom phase so 

obtained is enriched in the uncharged phospholipids. Then the charged lipids can be 

obtained by adding new authentic bottom phase to the remaining top phase and white 

material and only then adding the HCl to acidify the mixture. The new bottom phase 

obtained will be enriched on the charged phospholipids, in this case PI4P and PIP2. 

5.2. Supplementary discussion: Thin layer chromatography for phosphoinositide 

detection 

Besides the detection by mass spectrometry mentioned in the main text a common 

technique for the detection of phosphoinositides consists on the chromatographic 

separation of the extracted phospholipids. This method is known as thin layer 

chromatography (TLC). In TLC differences in the affinity of each lipid for the moving 

phase relative to their affinity for the solid face create a separation of distinct lipid 

classes allowing for their detection. The detection can be done in a nonspecific manner, 

for example using iodine vapor, or in some cases with chemical reactions specific to the 

head-group of the phospholipid of interest, but to the best of my knowledge there is no 

specific chemical method for the detection of phosphoinositides on TLCs. For this reason 

it is common to use radioactively labelled inositol; this allows to make a direct measure 

of the phosphoinositides present in the sample, integrating over the spread of each 
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class. The method is highly sensitive and there is virtually no interference of other 

phospholipids since only phosphoinositides will contain the radioactive molecule. 

For this project the use of radioactivity was undesirable since it would add a significant 

cost and regulatory burden, thus I tested the use of non-specific iodine detection. 

Measuring spots on the solid silica phase I could detect amounts as small as 0.1 μg of 

PIP2 (Supplementary Figure 1), which was a satisfactory observation. However once in a 

complex mixture that same level of sensitivity was problematic because the noise left by 

other classes of phospholipids during the run made it very hard to detect small amounts 

of control phosphoinositides, with the effective detection limit in the range of 50 μg 

(Supplementary Figure 2). This occurred because the distribution of any particular 

phospholipid had long tails, thus the signal of the very small amounts of 

phosphoinositide was diluted among the tails of the very abundant E. coli phospholipids. 

Given the measured sensitivity in my system, successful detection of the 

phosphorylated phosphoinositides would require them to be produced in the range of 

5% of total phospholipids, which is too high relative to their abundance in eukaryotic 

cells. In my case the phosphorylated phosphoinositides are produced at very small 

amounts, a fraction of less than 0.5% of the phospholipids in the bacterium. It is thus 

clear that TLC would only be useful for my project if combined with radioactive labeling 

of the inositol added to the media. 
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Supplementary Figure 1. Sensitivity and effective TLC sensitivity of iodine vapor 

detection of phospholipids: 

A) PIP2 was spotted at different amounts on a Silica Gel Hard Layer plate, and this was

developed with iodine crystals in a closed box until signal was detected (approx. 15 

min), after which the plate was scanned. Note that no solvent was used for this test.  

B) A combination of 375 μg of E coli total phospholipids and varying amounts of PI4P

were spotted at the bottom of the plate for each lane, plus a control lane where PI4P 

was spotted alone. After the run of the solvent to the top of the plate, the plate was 

allowed to air dry and developed with iodine crystals in a closed box until signal was 

detected (approx. 15 min), after which the plate was scanned. 

PIP2 (μg) 5  1   0.5 0.1 

PI4P 

   0  50  250  500  15     PI4P (μg) 

Direction 
of solvent 

run 

A) 

B)
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An additional problem with the use of TLC is that it cannot differentiate among the 

different kinds of mono-phosphorylated or di-phosphorylated phosphoinositides since 

each category will run in the same manner regardless of which of the positions in the 

inositol ring is phosphorylated. While in my case this shouldn’t be a problem, since I only 

have PI4P as a mono-phosphorylated phosphoinositide and PIP2 as a di-phosphorylated 

one, this is an important consideration for other projects. 

For all TLC test mentioned I used plates with a Silica Gel Hard Layer (HL) 250 µm, using a 

mixture of chloroform-methanol-acetic acid-water-formic acid (35:15:6:2:0.3) as the 

solvent. After running to completion plates were allowed to air-dry, once dry the plated 

were incubated with iodine crystals in a closed box until signal was observed 

(approximately 15 minutes). The plates were then scanned using a conventional 

document scanner. 

5.3. Supplementary discussion: Alternative reporters for FGF2 export detection 

As mentioned in the main text, the use of the NanoLuc reporter allowed a precise 

measure of FGF2 export that is corrected for differences in protein expression. This is an 

important factor to consider when doing this type of analysis because the expected 

response of the system is small, thus small variation in the protein expression among 

constructs might mask the signal of interest. It is important to recall here that the 

difference between treatments and control at 2mM inositol in the media is only 
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between 6 and 10% of the signal. While several alternative approaches could have been 

used since they have the potential to detect periplasmic localization of FGF2, most of 

them have caveats that make them less appropriate than the NanoLuc assay employed. 

As a basic approach, biochemical enrichment for periplasmic protein could have been 

employed. This approach has several problems, the main one being the fact that, as 

enrichment, it is very prone to some level of leakage of cytoplasmic proteins into the 

enriched periplasmic fraction. While this is a minor problem for proteins that should 

mostly be in the periplasm, in my system I expect a small signal and a very significant 

cytoplasmic contribution, thus the small level of contamination with cytoplasmic 

proteins expected can easily mask the signal. The second problem is the variability of 

the level of cytoplasmic contamination among samples; again this could easily mask a 

low level of signal. A final problem consist on the quantitation of the protein in the 

isolated fractions, since it would require a quantitative western blot, which is not a 

strength of the western blot technique, or a mass spectrometric approach, which would 

require the development of several time consuming controls. As a test for this approach 

I performed periplasmic protein enrichment on bacteria expressing cytoplasmic GFP, in 

theory the periplasmic fraction should be entirely free of GFP, in practice it is expected 

that it had a small amount would be present. On a western blot I detected a strong GFP 

band in the periplasmic fraction, confirming that this approach would not be useful for 

my FGF2 tests where only small differences were expected. 
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A second approach could consist on the immune detection of the localization of FGF2. 

This could be done both with immunohistochemistry and with electron microscopy. I did 

not attempt either of these approaches for two reasons. First the test would be done in 

fixed permeabilized cells, thus once the size of the antibodies used is taken into account 

it would be complex to determine whether the molecules detected are truly in the 

periplasm or simply associated with the plasma membrane but on the cytoplasm. This 

problem would favor the use of electron microscopy over that of regular 

immunohistochemistry since the resolution of the latter would not be satisfactory for 

this test. The second problem with this approach is purely logistic, because even if the 

resolution obtained is satisfactory, it would require a significantly larger amount of time 

to perform the analysis and obtain enough sample size to perform statistical tests. 

Differences in the efficiency of labeling among samples could also be a big problem, 

again masking the small levels of signal expected. 

Finally, the use of fluorescent proteins would be another valid alternative. Direct 

measure of the localization of FGF2 could be an alternative, but there are several 

problems with this approach. The main difficulty would consist in determining the 

difference between periplasmic localization and localization to the inner side of the 

plasma membrane. The very small size of the bacterium makes this distinction a very 

hard problem to solve with conventional fluorescent proteins.  This could be 

circumvented using a pH sensitive fluorescent protein, since the pH of the media can be 

controlled carefully in a flow chamber. The pH sensitive reporters in the cytoplasm 
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should vary less upon media pH changes than those in the periplasm, given that the pH 

in the cytoplasm is buffered by the bacterium. There are several pH sensitive fluorescent 

proteins that could be used for this purpose. However results obtained with this analysis 

depend directly on the fluorescent intensity (since it is the factor to vary with pH), and 

fluorescent intensity depends on the levels of protein expression. Thus here again small 

variations in protein expression among constructs could mask the small effects 

expected.  There is a special kind of pH sensitive GFP, known as ratiometric GFP, which 

does not suffer from this caveat. This ratiometric GFP presents a shift of its absorbance 

spectrum with pH, thus, instead of simply observing a decrease in brightness upon pH 

change as in regular pH sensitive fluorescent proteins, a pH change creates a decrease in 

fluorescence intensity when excited at one wavelength (405 nm), but an increase when 

excited at another (475). This is a very useful property because instead of analyzing the 

absolute intensity, one can take the ratio of fluorescence at both wavelengths (signal at 

405nm/signal at 475 nm). This not only eliminates the problems of differences due to 

varying amounts of protein between different constructs, but also slightly amplifies the 

signal making its detection easier. 

Compared to the NanoLuc approach the ratiometric pH sensitive GFP has the advantage 

of allowing single cell analyses, but the disadvantage of being more labor intensive and 

costly (due to the special microfluidic plates required for the control of the pH in the 

media) thus reducing the amount of tests possible. The single cell measures do not 

represent a particularly relevant advantage in my system since there is no reason to 
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expect significant cell to cell variation, nonetheless, if cell to cell variation is present this 

would be the ideal test to detect it. 

I attempted to use the ratiometric GFP reporter for my system but could not get a 

positive control to work thus I decided to use the NanoLuc approach which was working 

satisfactorily.  The problem observed was that a cytoplasmic ratiometric GFP would 

produce the same signal variation (change in the ratio of signal at 405nm/signal at 475 

nm) upon pH changes as one that had a twin-arginine translocation pathway signal and 

should have been localized exclusively to the periplasm (this signal leads to the export of 

folded proteins to the periplasm). The expectation was that the reporter with the 

periplasmic localization signal would show more variation than the cytoplasmic 

reporter. I later detected this problem was due to the failure of the signal to drive 

periplasmic localization, with the fluorescence being diffuse in the cytoplasm instead of 

showing periplasmic localization.  This reporter remains a viable alternative to detect 

FGF2 export but it I did not pursue it further since the NanoLuc assay allows me to 

perform test faster. 
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