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There is mounting evidence that demonstrates that body weight and energy 

homeostasis is tightly regulated by a physiological system. This system consists of 

sensing and effector components that primarily reside in the central nervous system and 

disruption to these components can lead to obesity and metabolic disorders. Although 

many neural substrates have been identified in the past decades, there is reason to believe 

that there are numerous unidentified neural populations that play a role in energy balance. 

Besides regulating caloric consumption and energy expenditure, neural components that 

control energy homeostasis are also tightly intertwined with circadian rhythmicity but 

this aspect has received less attention.  

In this dissertation, I will first describe a novel method to identify functionally 

activated neurons in the central nervous system using phosphorylated ribosome profiling. 

I will use this method to identify new neuronal populations that regulate energy balance 

as well as uncover new functions for well-studied neural populations. I will elaborate on 

key findings such as the role of prodynorphin, agouti-related protein and melanin 

concentrating hormone expressing neurons during scheduled feeding and the role of 

galanin neurons in maintaining body weight.  
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Chapter 1: 

Introduction 

Obesity as a public health problem 

Worldwide prevalence of obesity has increased significantly in the past decades. 

Obesity causes or exacerbates many health problems and is associated with type 2 

diabetes mellitus, hypertension, hyperlipidemia, coronary heart disease, osteoarthritis and 

increase incidence of certain forms of cancer(Flegal et al., 2010; Grundy, 2000). 

Actuarial tables and epidemiological studies confirm that life expectancy is reduced with 

increasing degrees of overweight and obesity(Lew, 1985). According to the World Health 

Organization, in 2008 more than 1.4 billion adults, age 20 and older, were overweight. Of 

these overweight adults, over 200 million men and nearly 300 million women were 

obese. Overweight and obesity, once considered a high-come country problem, are also 

on the rise in low and middle-income countries especially in urban settings. The causes of 

obesity are multi-factorial including genetic susceptibility, increase availability and 

access to high-energy foods and decreased requirement for physical activity due to 

increasingly sedentary nature of many forms of work, changing modes of transportation 

and increasing urbanization. Changes in dietary and physical activity patterns can be 

attributed to societal changes associated with lack of supportive policies in areas such are 

health care, agriculture, transport, urban planning, food processing, marketing and 

education. Estimates of the economic costs of obesity in developed countries are between 

2-7% of total health costs, which is a significant proportion of national health care 

budgets(Seidell, 1995). This alarming increase in overweight and obesity threatens global 

well-being and adds more burden to public health spending worldwide.  
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Definition of overweight and obesity 

Obesity is commonly defined as an excess of body adiposity. In practice, body fat 

is usually estimated by using a formula that takes into account weight and height. The 

underlying assumption of this metric is that most variation in weight for individuals of 

the same height is due to fat mass and the formula most frequently used is body mass 

index (BMI): weight in kilograms divided by the square of height in meters. A commonly 

used cutoff for overweight adults 

is BMI 25-30 and obese 

individuals is BMI>30 (Figure 1). 

Such a graded classification of 

overweight and obesity using 

BMI values allows for 

meaningful comparisons between 

and within populations and the 

identification of individuals and 

groups for appropriate interventions. It is worth bearing in mind that due to differences in 

body proportions, BMI may not correspond to the same degree of fatness across different 

populations. There is a close correlation between BMI and the incidence of several 

chronic conditions caused by excess adiposity such as type 2 diabetes mellitus, 

hypertension and coronary heart disease(Willett et al., 1999; 1995). Other measures of 

body fat include waist circumference: measured at mid-point between lower border of 

ribs and upper border of pelvis, skinfold thickness: measurement of skinfold thickness 

with calipers and bioimpedance: based on the principle that lean mass conducts current 
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better than fat mass, measurement of resistance to a weak current applied across 

extremities provides an estimate of body fat using an empirically derived formula.  

Causes of Obesity 

A common perception of obesity espouses the view that individuals are obese due 

to a lack of discipline and affected individuals are the product of their own actions (or 

inactions). However, there is increasing evidence for the view that body weight is 

regulated by a physiological system and that changes in body weight in either direction 

evokes a counter-response that restores the change, maintaining body weight over the 

lifetime of many adults(Weigle, 1994). For instance, normal-weight individuals are 

protected against expansion of body fat stores resulting from overeating, demonstrating 

that biological mechanisms must regulate body weight (Leibel et al., 1995; Sims et al., 

1973). The presence of a tightly regulated physiological system strongly suggests the role 

of genetics in obesity development.   

The genetic basis for obesity is most clearly illustrated in twin studies. Pairs of 

twins were exposed to periods of positive and negative energy balance and the 

differences in their rate of weight gain, proportion of weight gained and site of fat 

deposition exhibited greater similarity within pairs than between pairs(Bouchard et al., 

1990). Furthermore, when correlations of BMI were determined for monozygotic and 

dizygotic twin pairs, the weighted mean BMI correlation for monozygotic twins was 0.74 

compared with 0.32 for dizygotic twin pairs. This corresponds to heritability of between 

50-90%, a level exceeded only by height(Maes et al., 1997; Stunkard et al., 1990). 
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 Studies of monogenic rodent models of obesity have led to the discovery of key 

components of body weight homeostasis. Positional cloning of the ob gene revealed that 

mice with a nonsense mutation in this gene are deficient in the gene product: leptin 

(derived from Greek leptos, meaning thin)(Zhang et al., 1994). Mice with homozygous 

mutations in the ob gene are hyperphagic, develop early onset obesity, hyperinsulinaemia 

and insulin resistance, all of which can be reversed with recombinant leptin 

treatment(Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al., 1995). 

Similarly, db/db mice have non-functional leptin receptor and manifests strikingly similar 

metabolic phenotypes as ob/ob mice, albeit with high levels of plasma leptin(Chen et al., 

1996). While monogenic causes of obesity has provided insights into fundamental 

physiological pathways that regulate body weight and energy balance (which will be 

covered later), the low incidence of monogenic mutations causing obesity in the general 

population, despite increasing number of obese individuals, suggests that obesity is 

influenced by multiple gene loci. The susceptibility gene hypothesis postulates that 

several genes increase the risk of 

developing obesity but are not 

essential for its expression or by 

themselves sufficient to explain the 

development of obesity(Kopelman, 

2000). Moreover, if body weight is 

determined by a homeostatic 

physiological system encoded by the genome, it begs the question to why ever increasing 

numbers of individuals are failing to regulate their body weight within a healthy range? 
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 Implicit in the susceptibility gene hypothesis is the role of environmental factors 

that unmask latent tendencies to pathogenesis of obesity. The thrifty gene hypothesis as 

proposed by Neel(NEEL, 1962; 1999a; 1999b), sets out to explain the increased 

incidence of obesity through the lens of evolution and a changing environment. Neel 

argues that a thrifty gene results in a phenotype that is ‘exceptionally efficient in the 

intake and/or utilization of food’. It is suggested that throughout most of human 

evolutionary history, humans experienced alternate periods of famine and feast and that a 

thrifty gene is an advantageous adaptation that allows humans to store energy, in the form 

of fat deposits, in times of food abundance to successfully survive in reciprocal periods of 

famine. Individuals with the thrifty genotype would have a survival advantage since they 

relied on previously stored energy to tide over periods of scarce food availability while 

those without the thrifty genotype would less likely survive famine due to lack of 

‘emergency’ energy stores. Another advantage of the thrifty genotype was sustained 

fecundity during famine. Therefore, in an environment where food availability was 

unpredictable, thrifty genes are positively selected for because of survival and fecundity 

advantages conferred by energy stores in fat deposits during times of abundance. 

However, in today’s modern society where food is readily available, thrifty genes prepare 

individuals for famines that almost never occur, resulting in increased incidence of excess 

energy storage and obesity.  

 Fetal nutrition is also another environmental factor that has been implicated in the 

onset of obesity, hypertension and type 2 diabetes mellitus later on in life independent of 

genetic inheritance(Kopelman, 2000). Predisposition to adult obesity is an adaptation to 

malnutrition by the developing fetus. It is suggested that the developing fetus adapts its 
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growth and metabolism to the expectation of low food availability postnatally, thereby 

increasing its ability to store energy as fat to provide energy reserves for use when food is 

scarce. These adaptations can prove detrimental when food and nutrition becomes readily 

available. The study of babies born at the time of the Dutch famine during the winter of 

1944-1945 provides evidence that early gestation is a critical period for the onset of 

obesity during adulthood(Ravelli et al., 1976). Obesity was more prevalent in adults 

whose fetal exposure to famine coincided with the first and second trimesters of 

pregnancy compared to a control group not exposed to famine during pregnancy.  

 More recently, gut microbome has also been implicated in obesity. Gut bacteria 

from pairs of human twins in which one was obese and the other lean was transferred into 

mice reared in a sterile environment and had no bacteria of their own(Ridaura et al., 

2013). Over a 5-week period, mice with bacteria from fat twins developed more body fat 

then those that had bacteria from lean twins. Furthermore, when mice with gut bacteria 

from lean twins were housed together with mice with gut bacteria from obese twins, 

bacteria from lean twins took over in the mice that started out with bacteria from obese 

twins, resulting in weight loss. The causes of obesity are multifactorial with contributions 

from both genetic and extrinsic elements. Figure 2 summarizes the genetic and 

environmental factors that influence development of obesity. 

Physiological System for Energy Balance 

 Kennedy first proposed the idea that energy homeostasis is achieved whereby 

circulating factors inform the brain of available energy stores and the brain makes 

adjustments to food intake in response to changes in energy stores(KENNEDY, 1953). 
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This adiposity negative-feedback model of energy balance suggests the presence of a 

blood-borne factor that circulates at levels proportionate to fat mass and can cross the 

blood-brain barrier. This factor, if present, should also promote weight loss by acting on 

neural systems involved in energy homeostasis and inhibition of these neural systems 

should increase food intake and body weight. 

 Despite low incidence of obesity due to single gene disruptions in the general 

population, studies of monogenic causes of obesity especially in rodent models have 

provided great insight into the components of the physiological system that maintains 

body weight homeostasis. In the 1950s and 1960s, two independent obese mutant mice 

were discovered at Jackson Laboratory: ob/ob mouse with mutation on chromosome 6 

and db/db with mutation on chromosome 4(Coleman, 2010). Douglas Coleman at 

Jackson Laboratory set out to characterize the phenotype of these mutants. Both mutants 

exhibit remarkably identical phenotype of morbid obesity and Coleman reasoned that two 

genes on separate chromosomes manifesting identical phenotypes strongly suggested that 

these genes mediate a common metabolic pathway. Coleman performed a series of 

elegant parabiosis experiments where he linked the blood supplies of different mouse 

strains by surgical joining of two mice by skin to skin anastomosis from the shoulder to 

the pelvic girdle(Coleman, 1973; Coleman and Hummel, 1969). When the db/db mutant 

was parabiosed to a wildtype mouse, the wildtype mouse died of starvation while the 

mutant continued to gain weight and fat mass. When the db/db mutant was fused to an 

ob/ob mutant, the ob/ob mutant also died of starvation while the db/db animal continued 

to gain weight. When the ob/ob mutant was parabiosed to a wildtype mouse, the ob/ob 

mutant decreased body weight gain and food consumption while the wildtype animal was 
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not affected. Lastly, when two wildtype animals were fused, the pair remained healthy 

but did show smaller fat pads compared to unparabiosed mice. These experiments are 

summarized in Figure 3. With the observations from these experiments, Coleman 

concluded that the db/db mutant mouse overproduced a satiety factor but was unable to 

respond to it (possibly due to a defective receptor) whereas the ob/ob mutant recognized 

and responded to the factor but was deficient in it. Decades later in 1994, Jeffrey 

Friedman definitively cloned and identified the satiety factor and named it leptin(Zhang 

et al., 1994). This groundbreaking discovery was followed by the discovery of the leptin 

receptor(Tartaglia et al., 1995). With these discoveries, the predictions of the parabiosis 

experiments were confirmed: ob/ob encodes a blood-borne hormone that acts in a 

negative feedback loop to regulate adipose tissue mass and appetite; while db/db gene 

encodes the leptin receptor.  

 Leptin is an approximately 16-kDa protein produced and secreted by adipocytes 

into the circulatory system. Plasma leptin levels increase proportionately with adipose 

tissue mass and decreases when adipose tissue is reduced(Halaas et al., 1995). As 
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expected, administration of recombinant leptin reduces body weight and food intake of 

wildtype mice and normalized weight and food consumption of ob/ob mice but had no 

effect on db/db mice(Campfield et al., 1995; Halaas et al., 1995; 1997; Pelleymounter et 

al., 1995).  

 The leptin receptor is a cytokine family receptor with 5 splice variants (ObRa-

ObRe)(Fei et al., 1997; Lee et al., 1996; Tartaglia et al., 1995), of which only ObRb is 

capable of activating the Janus kinase signal transducer and activator of transcription 

(JAK-STAT) signaling pathway(Morton et al., 2006). Binding of leptin to ObRb 

stimulates tyrosine kinase Jak2 to phosphorylate STAT3 at tyrosine residues(Bjørbaek et 

al., 1997). Phospho-STAT3 dimerizes and enters the nucleus to regulate transcription of 

target genes. It was later determined that the db/db mouse is only mutant for ObRb(Chen 

et al., 1996; Lee et al., 1996). While other receptor isoforms are found broadly, ObRb is 

highly expressed in the hypothalamus(Fei et al., 1997; Lee et al., 1996). Furthermore, in 

vivo activation of leptin receptor results in stimulation of STAT3 tyrosine 

phosphorylation in the rodent hypothalamus, demonstrating the presence of functionally 

active ObRb there(McCowen et al., 1998; Vaisse et al., 1996). Brain-specific knockout of 

the leptin receptor results in obesity similar to that of the db/db mutant while brain-

specific expression of leptin receptor can suppress obesity of db/db mice(de Luca et al., 

2005; Kowalski et al., 2001; McMinn et al., 2005). Taken together, these data strongly 

demonstrate that the primary site of leptin’s action is the central nervous system and that 

leptin maintains energy balance by modulating activity of food intake, energy 

expenditure and metabolism.  
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 The discovery of leptin and its effect on food intake and body weight fueled great 

excitement about a possible novel therapy to treat obesity. In humans, plasma leptin 

levels increases with increasing adipose tissue mass and most obese patients have high 

leptin levels(Maffei et al., 1995). Thus, it seems paradoxical that obese patients are 

unable to lose weight despite elevated leptin levels. This led to the idea that obese 

patients develop resistance to the hormone and are unable to effectively respond to 

plasma leptin levels to regulate adipose tissue mass. Prolonged exposure to high leptin 

levels, hyperleptinemia has been shown to be the cause of leptin resistance(Knight et al., 

2010), though the precise cellular and molecular mechanisms involved in the 

development of leptin resistance still remains unclear.  

Neural Components of Energy Homeostasis 

 Brain lesion and stimulation studies performed in the 1940s first implicated the 

hypothalamus as a major anatomical region controlling body weight and food intake. 

Lesion of specific hypothalamic areas such as the ventromedial, paraventricular and 

dorsomedial nuclei induced hyperphagia and obesity. In contrast, lesions of the lateral 

hypothalamus caused hypophagia(ANAND and Brobeck, 1951; Brobeck, 1946; Brobeck 

et al., 1943; Hetherington, 1944; Hetherington and Ranson, 1942). Similarly, electrical 

stimulation of the ventromedial hypothalamic nucleus suppressed food intake whereas 

stimulation of the laternal hypothalamus invoked feeding(Bray et al., 1990).  

 Since these findings, our knowledge of the discrete neuronal subpopulations that 

regulate energy homeostasis has expanded greatly. Among the most-studied and well-

characterized neural populations are those that coexpress neuropeptide Y (NPY) and 
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agouti-related protein (AgRP)(Hahn et al., 1998). NPY is a potent orexigenic peptide that 

induced acute and robust feeding behavior when delivered 

intracerebroventricularly(Clark et al., 1984) while AgRP acts as an antagonist of the 

melanocortin-4 receptor (MC4R). AgRP/NPY neurons are situated almost exclusively in 

the arcuate nucleus of the hypothalamus, adjacent to the floor of the third ventricle and 

majority of these neurons also express the active form of the leptin receptor(Baskin et al., 

1999). Optogenetic activation of 

AgRP/NPY neurons stimulate feeding, 

regardless of nutritional state(Aponte et al., 

2011; Atasoy et al., 2012) and it is not 

surprising that leptin actually inhbits these 

cells(Spanswick et al., 1997; van den Top et 

al., 2004). In leptin deficient ob/ob mice, 

AgRP and NPY gene expressions are 

elevated and these neurons are strongly 

activated, functionally linking AgRP/NPY neurons to the hyperphagia observed in these 

mice(Schwartz et al., 1996).  

 Located adjacent to AgRP/NPY neurons are neurons that express pro-

opiomelanocortin (POMC) and releases α-melanocyte stimulating hormone (α-

MSH)(Figure 4), which inhibits food intake by binding to and activating melanocortin 

receptors. POMC neurons also express the leptin receptor(Cheung et al., 1997) but, 

unlike AgRP/NPY neurons, are activated by leptin(Cowley et al., 2001). It is highly 

unlikely that an animal can be both sated and hungry at the same time, thus when 
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AgRP/NPY neurons are activated to drive food consumption, POMC neurons, which 

inhibit food intake, should be silent and vice versa. Indeed, POMC neurons are inhibited 

by GABAergic inputs from AgRP/NPY neurons(Cowley et al., 2001), though inhibition 

of AgRP/NPY neurons by inputs from POMC neurons still remains to be definitively 

demonstrated. Figure 5 summarizes the contrasting effects of leptin on AgRP/NPY and 

POMC neurons. 

 Despite the importance of AgRP/NPY and POMC neurons in maintaining energy 

balance, only a mild obesity phenotype is observed when leptin receptors are deleted 

from AgRP/NPY, POMC or both AgRP/NPY and POMC neurons(Balthasar et al., 2004; 

van de Wall et al., 2008) while deletion of leptin receptor in the entire hypothalamus or in 

GABAergic neurons recapitulates the severe obesity and hyperphagia phenotype of db/db 

mice(Ring and Zeltser, 2010; Vong et al., 2011). Taken together these data suggest that 

there are other leptin receptor expressing neuronal populations, possibly those that use 
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the classical inhibitory neurotransmitter GABA, in the hypothalamus that are crucial for 

metabolic homeostasis.  

Melanocortin System in Energy Homeostasis 

 The prominence of AgRP and POMC cells in modulating food intake via direct 

leptin action has also drawn significant focus to the melanocortin system. Melanocortins 

are neuropeptides (ie α-MSH, ACTH) cleaved from the POMC precursor molecule and 

exert their effects by binding to a family of melanocortin receptors(Cone et al., 1996). 

The MC3- and MC4-receptors are primarily expressed in the central nervous 

system(Mountjoy et al., 1994). Mice deficient in MC4R become hyperphagic and are 

obese(Huszar et al., 1997) demonstrating that tonic signaling on MC4R suppresses food 

intake and body fat mass. In humans, a dominant frame-shift mutation in the MC4R gene 

results in obesity(Vaisse et al., 1998). In fact, mutation at the MC4R gene locus is the 

most common monogenic form of human obesity described thus far, accounting for up to 

6% of early onset or severe adult obesity(Farooqi et al., 2000; 2003). Similarly, loss of α-

MSH in POMC knockout mice also causes hyperphagia and obesity(Yaswen et al., 

1999). Further evidence for the importance of melanocortin signaling can be discerned 

from studies of agouti (Ay/a) mice. This is an autosomal dominant mutant of genetic 

obesity characterized by a yellow coat color. The agouti protein acts as an antagonist of 

cutaneous MC1R. By blocking MC1R signaling, agouti lightens the coat color. Agouti is 

also expressed ectopically throughout the body and the obese phenotype is caused by the 

antagonism of MC4R in the brain(Cone et al., 1996).  

Neural Circuits for Feeding 
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The expression of ObRb in AgRP/NPY and POMC neurons and the role of their 

respective peptides in regulating central melanocortin signaling makes it compelling that 

these two neuronal subpopulations in the ARC are integral components of a neural 

circuitry that determine behavior in response to changes in nutritional state. Indeed, acute 

ablation of either AgRP/NPY or POMC neurons in adult mice, by expressing the human 

diptheria toxin receptor and administering diptheria toxin, results in profound metabolic 

phenotypes. Loss of POMC neurons leads to increase food intake and body weight 

whereas loss of AgRP/NPY neurons results in anorexia, eventually causing death by 

starvation(Gropp et al., 2005; Luquet et al., 2005). Interestingly, when diptheria toxin 

was delivered to neonatal pups, animals remained viable, suggesting a compensatory 

mechanism during a period of elevated neuronal plasticity in development(Luquet et al., 

2005). The advent of optogenetics and DREADDs (designer receptor exclusively 

activated by a designer drug) has enabled investigation into the feeding effects induced 

by activating or inhibiting molecularly defined neural populations in live, conscious 

animals(Kramer et al., 2013; Packer et al., 2013; Urban and Roth, 2014).  

 Recent reports have demonstrated the paraventricular nucleus (PVN) is 

downstream of AgRP/NPY neurons in the ARC. PVN neurons characterized by single-

minded homolgue 1 (SIM1) is inhibited by AgRP/NPY neurons and activation of SIM 1 

neurons reduces food intake and voracious feeding due to AgRP/NPY 

photoactivation(Atasoy et al., 2012). Furthermore, MC4R is abundantly expressed in the 

PVN(Mountjoy et al., 1994), this area is heavily innervated by AgRP/NPY and POMC 

neurons(Cowley et al., 1999) and expression of MC4R in SIM 1 neurons in the PVN of 
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MC4R null animals rescues the hyperphagia phenotype of these animals, suggesting that 

the PVN is a crucial downstream first-order site of melanocortin signaling.  

Biological Rhythms and Metabolism 

 Apart from the basic cellular and 

molecular components that maintain 

energy balance, biological clocks can also 

play a role in metabolic homeostasis. 

Many biological processes ranging from 

metabolic pathways to physiology and 

behavior show 24 hour rhythms driven by 

endogenous circadian clocks. The 

periodicity of 24 hours is commonly found 

in nature from unicellular organisms to complex species such as humans(Pittendrigh, 

1993), strongly implicating evolutionary selection for this periodicity. Biological rhythms 

enable organisms to anticipate changes in the environment and adapt their behavior and 

physiology accordingly. There is increasing evidence that many aspects of metabolism 

show daily rhythmicity including many circulating and intracellular metabolites, feeding-

related hormones and ingestive behaviors. For instance, leptin is expressed in mice 

according to a diurnal pattern, with relatively higher levels during the dark phase(Ahima 

et al., 1998). Metabolism and circadian clocks are deeply intertwined: clocks drive 

metabolic processes and many metabolic parameters affect clocks, forming complex 

feedback relationships (Figure 6). Microarray studies that have examined gene expression 

profiles throughout the circadian cycle in various mammalian tissues such as liver, 
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skeletal muscle, brown and white adipose tissue show that from 3-20% of genes assayed 

exhibit rhythmic expression(Akhtar et al., 2002; Kita et al., 2002; McCarthy et al., 2007; 

Panda et al., 2002; Reddy et al., 2006; Storch et al., 2002; Ueda et al., 2002; Zvonic et al., 

2006), suggesting that a good proportion of the transcriptomes in these tissues are under 

circadian control. Clinical and epidemiologic studies have provided evidence that 

circadian disruption is associated with cardiovascular and metabolic complications across 

large segments of the human population(Laposky et al., 2008). Cross-sectional studies 

have also revealed increased incidences of metabolic syndrome, high BMI and 

cardiovascular issues in shift workers(Ellingsen et al., 2007; Karlsson et al., 2001). Taken 

together, these data suggests that misalignment of rest and activity cycles, as well as 

fasting and feeding, may contribute to pathogenesis of obesity and metabolic syndrome.  

Biological Clocks 

 In mammals, a structure within the anterior hypothalamus called the 

suprachiasmatic nucleus (SCN) generates daily rhythms using light/dark cues from the 

environment relayed through the retina(Hastings et al., 2003; Lowrey and Takahashi, 

2004)(Figure 7). When explants of the SCN were maintained in vitro, robust rhythmicity 

still persisted(Groos and Hendriks, 1982) and when SCN tissue from one animal was 

transplanted to another animal with lesioned SCN, the recipient of the transplanted SCN 

exhibited behavioral rhythms of the donor(Ralph et al., 1990), confirming that the SCN is 

indeed the master pacemaker of circadian rhythm. The molecular mechanism underlying 

circadian rhythms is composed of a set of interlocking transcriptional-translational 

feedback loops(Buhr and Takahashi, 2013). The primary loop consists of the gene 

products of the Clock and Bmal1 genes. Clock/Bmal1 heterodimers initiate transcription 
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of the negative limb of the feedback loop including Period (Per1 and Per2) and 

crytochrome (Cry1 and Cry2) genes. Per/Cry proteins dimerize and inhibit Clock/Bmal1 

transcription, allowing the cycle to repeat from a low level of transcriptional activity. 

Interestingly, homozygous deletion of the Clock gene in mice on the C57BL/6J genetic 

background have severe alterations in energy balance including obesity, hyperlipidemia, 

elevated blood glucose and low plasma insulin(Turek et al., 2005). Feeding rhythms in 

Clock mutants are altered with increased food intake during the day, causing increased 

overall food intake.  

 The relationship between metabolism and circadian rhythms is complicated by the 

contribution of multiple tissues and cell types to metabolic homeostasis. Rhythmic 

expression of clock genes in non-SCN brain areas and many peripheral tissues including 

liver, lungs and skeletal muscle(Balsalobre et al., 1998; Guilding and Piggins, 2007; 

Yamazaki et al., 2000) indicate that individual organs possess their own circadian 

rhythms. The SCN coordinates the many peripheral clocks so that they maintain proper 
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phase-relationships with each other. A common analogy used to describe this 

organization refers to the SCN as a conductor of an orchestra and peripheral tissues 

representing individual musicians. Each musician is able to generate his own time but 

requires the conductor to ensure that they all maintain correct time relative to each other 

to produce a cohesive performance. Peripheral clocks can themselves be entrained by 

various stimuli, with food availability being a dominant zeitgeber (Figure 7). In rodents, a 

scheduled feeding paradigm where food is only available for a few hours during the light 

phase (a time when nocturnal animals do not normally eat) decouples the phase-lock 

rhythm of the SCN and peripheral tissues, even when the SCN remains entrained to 

light/dark cycle(Damiola et al., 2000; Hara et al., 2001; Stokkan et al., 2001; Wakamatsu 

et al., 2001).  

The Food Entrainable Oscillator 

 The understanding of the effects of food on the circadian system is further 

complicated by the presence of a rather mysterious oscillator, the food entrainable 

oscillator (FEO). This oscillator controls daily rhythms of food anticipatory activity 

(FAA) entrained by food availability. When rodents are subjected to a scheduled feeding 

paradigm, where food is only available for a few hours in the middle of the day, they 

show increased activity before the time that food becomes available within a few 

days(Mistlberger, 2011; Stephan, 2002). FAA exhibits the hallmarks of bona fide 

circadian rhythms namely that it persists for several days even if food is withheld. The 

FEO is anatomically distinct from the SCN as lesions of the SCN, which cause animals to 

become arrhythmic, do no abolish FAA(Krieger et al., 1977; Stephan et al., 1979).  

Intriguingly, genetic deletions of canonical clock such as Per1, Per2 and Bmal1 do not 
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eradicate FAA(Storch and Weitz, 2009), suggesting that novel clock genes might 

underlie the mechanism of this rhythm. The dorsomedial hypothalamic nucleus (DMH) 

has been implicated as the site of the FEO. In situ hybridization for Per2 transcript 

demonstrated a robust rhythm in the DMH only when mice are entrained to scheduled 

feeding.(Mieda et al., 2006). However, disparate results were reported for DMH lesion 

experiments. One study observed significant loss of FAA after DMH lesions(Gooley et 

al., 2006) while another observed robust FAA after lesions(Landry et al., 2006). The 

difficulty to definitively identify the FEO has raised the possibility that the FEO may not 

reside in a single anatomical region (ie the SCN for light/dark cycle) but may be 

distributed among many sites.  
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Chapter 2:  

Materials and Methods 

             

Animal Treatment 

 All experiments were carried out in accordance to regulations of the Institutional 

Animal Care and Use Committee at the Rockefeller University. All transgenic mice used 

in this study were previously published. The following line was used to express Cre 

recombinase in AgRP cells: AgRP-IRES-Cre (Jackson Labs Stock 012899, 

Agrptm1(cre)Lowl/J). The following line was used to express Cre recombinase in MCH cells: 

MCH BAC transgenic(Jego et al., 2013). The following line was used to expression Cre 

recombinase in Gal cells: Gal BAC transgenic (MMRRC Stock 031060, Tg(Gal-

cre)KI87Gsat/Mmucd). The following line was used to delete Tsc1 in MCH cells: loxP 

sites flanking exon 17 and exon 18 of the Tsc1 gene (Jackson Labs Stock 005680, 

Tsc1tm1Djk/J). The following line was used to express the diptheria toxin alpha chain in 

Gal cells: Rosa-loxSTOPlox-DTA (Jackson Labs Stock 009669, B6.129P2-

Gt(ROSA)26Sortm1(DTA)Lky/J). The following GFP reporter lines were used: Pomc-eGFP 

(Jackson Labs Stock 009593, C57BL/6J-Tg(Pomc-EGFP)1Low/J), NPY hrGFP (Jackson 

Labs Stock 006417, B6.FVB-Tg(NPY-hrGFP)1Low1/J), Pmch-eGFP (Jackson Labs 

Stock 008324, B6.Cg-Tg(Pmch-MAPT/CFP)1Rck/J), CRH-eGFP(Alon et al., 2009) and 

Gad67-eGFP(Tamamaki et al., 2003). The following reporter line was used, where a lox-

STOP-lox sequence prevents expression of the reporter in the absence of Cre 

recombinase: ROSA-loxSTOPlox-tdTomato (Jackson Labs Stock 007909, B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J) and ROSA-loxSTOPlox-YFP (Jackson Labs Stock 



 21 

006148, B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J). The follwing line was used to delete 

Vgat in MCH and Gal cells: loxP sites flanking exon 2 of the gene Slc32a1 (Jackson Labs 

Stock 012897, Slc32a1tm1Lowl/J). AgRP DTR animals were generated by crossing 

heterozygous AgRP-IRES-Cre animals with animals homozygous for ROSA-

loxSTOPlox-iDTR (Jackson Labs Stock 007900, C57BL/6-

Gt(ROSA)26Sortm1(HBEGF)Awai/J). Animals heterozygous for AgRP-IRES-Cre and ROSA-

loxSTOPlox-iDTR were termed AgRP DTR and animals heterozygous for only ROSA-

loxSTOPlox-iDTR were termed DTR. MCH DTR animals were generated by crossing 

heterozygous MCH CRE animals with animals homozygous for ROSA-loxSTOPlox-

iDTR (Jackson Labs Stock 007900, C57BL/6-Gt(ROSA)26Sortm1(HBEGF)Awai/J). Animals 

heterozygous for MCH Cre and ROSA-loxSTOPlox-iDTR were termed MCH DTR and 

animals heterozygous for only ROSA-loxSTOPlox-iDTR were termed DTR. Unless 

otherwise stated, mice were group housed under a standard 12h light/dark cycle (lights on 

from 8:00 A.M. to 8:00 P.M.) and fed regular chow (LabDiet 5053). To ablate AgRP 

neurons, post natal day 3 (P3) litters were injected once with diptheria toxin [50ng/g, 

subcutaneous (s.c), Sigma-Aldrich D0564]. For osmotic stimulation experiments, animals 

were given an intraperitoneal (i.p) injection of 2M NaCl (350ul), water was removed 

from the cage and mice were sacrificed 120 minutes later. For dehydration experiments, 

water was removed from the cage and mice perfused 24 hours later. For fasting 

experiments, animals were transferred to new cages and food deprived for at least 18 

hours before they were either perfused for immunohistochemistry or re-fed. For ghrelin 

experiments, animals were given ghrelin (66ug, intraperitoneal, i.p, Tocris Bioscience 

#1465) and subsequent food intake measured. Animals were sacrificed 70 minutes after 
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ghrelin injection for immunohistochemistry. Food was removed from cages for animals 

used for immunohistochemistry. For scheduled feeding, mice were allowed access to 

food between ZT4 and ZT7 or between ZT15 and ZT18 each day for 14 days and body 

weight and food intake were measured each day. For drug treatments, mice were given 

intraperitoneal injection of the following dose and then sacrificed at the indicated time: 

cocaine (30mg/kg, 60 minutes), kainate (12.5mh.kg, 120 minutes), olazapine (20mg/kg, 

120 minutes), clozapine (10mg/kg, 45 minutes). For car odor experiments, a domestic cat 

was fitted with a fabric collar for 3 weeks; the collar was removed, mice were exposed to 

the collar for 60 minutes and then were perfused. For the resident intruder test, a male 

mouse was single caged for at least 2 weeks, a foreign male was introduced to the cage, 

animals were monitored for attacks and the resident was perfused after 60 minutes.  

Leptin treatment 

 Miniosmotic pumps (Alzet, 2001) with mean pump rate of 0.98 ul/h were filled 

with leptin (Amylin Pharmaceutical) to achieve dose of 2.5ug/h for 8 days. Pumps were 

incubated in sterile PBS at 37°C for at least 6 hours before subcutaneous (s.c) 

implantation into animals. Animals were anesthetized with isoflurane when pumps were 

implanted or removed.  

Treatment with kappa-opoid receptor antagonists 

 JDTic was delivered by intraperitoneal injections (10mg/kg). Norbinaltorphimine 

(5ul of a 1mg/mL solution) was delivered via Hamilton syringe into the lateral ventricle 

by using the coordinates L/M 1.0mm from Bregma, A/P -0.4mm from Bregma and 

2.5mm beneath the cortex.  
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Locomotion analysis 

 10-12 weeks old male AgRP DTR and DTR mice were acclimatized to the 

experimental chambers for at least 24 hours prior to data collection using the Oxymax 

Lab Animal Monitoring System (Columbus Instruments). Only ambulatory beam breaks 

in the x and y axis were included in the analysis.  

Ribosome Immunoprecipitation 

 150ul protein A Dynabeads (Invitrogen 10002D) were loaded with 4ug of pS6 

antibody (Cell Signaling #2215) in Buffer A (10mM HEPES, pH 7.4, 150mM KCl, 5mM 

MgCl2, 1% NP40, 0.05% IgG-free BSA). Beads were washed 3 times with Buffer A 

immediately before use. Mice were sacrificed by cervical dislocation. The hypothalamus 

was rapidly dissected in Buffer B (1xHBSS, 4mM NaHCO3, 2.5mM HEPES, pH 7.4, 

35mM glucose, 100ug/mL cycloheximide) on ice. Hypothalami were pooled (typically 

10-20 per experiment), transferred to a glass homogenizer (Kimble Kontes 20) and 

resuspended in 1.35mL of Buffer C (10mM HEPES, pH 7.4, 150mM KCl, 5mM MgCl2, 

100nM calyculin A, 2mM DTT, 100U/mL RNasin, 100ug/mL cycloheximide, protease 

and phosphatase inhibitor cocktails). Samples were homogenized 3 times at 250rpm and 

9 times at 750rpm on a variable –speed homogenizer (Glas-Col) at 4ºC. Homogenates 

were transferred to a microcentrifuge tube and clarified at 2000x g for 10 minutes at 4ºC. 

The low-speed supernatant was transferred to a new tube on ice and 90ul of 10% NP40 

and 90ul of 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, Avanti Polar Lipids: 

100mg/0.69mL) was added to the supernatant. This solution was mixed and then clarified 

at 17000x g for 10 minutes at 4ºC. The resulting high-speed supernatant was transferred 
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to a new tube and 20ul of a 0.05mM stock solution of 3P peptide (synthezied by United 

Peptide and has the sequence biotin-QIAKRRRLpSpSLRApSTSKSESSQK where pS is 

for phosphoserine) was added. A 20ul aliquot of this solution was removed, transferred to 

a new tube containing 350ul buffer RLT (QIAGEN, RNeasy Micro kit, 74004) and stored 

at -80ºC for purification as input RNA. The remainder was used for immunoprecipitation. 

Immunprecipitations were allowed to proceed for 10 minutes at 4ºC. The beads were then 

washed 4 times with Buffer D (10mM HEPES, pH 7.4, 350mM KCl, 5mM MgCl2, 2mM 

DTT, 1% NP40, 100U/mL RNasin and 100ug/mL cycloheximide). During the third wash 

the beads were transferred to a new tube and allowed to incubate at room temperature for 

10 minutes. After the final wash, the RNA was eluted by addition of 350ul buffer RLT to 

the beads on ice, the beads removed by magnet and the RNA purified using RNeasy 

Micro kit (QIAGEN, RNeasy Micro kit, 74004). RNA was assessed using an Agilent 

2100 bioanalyzer. For microarray analysis, cDNA was prepared using the Ovation RNA 

AmplificationSystem V2 (Nugen) and hybridized to MouseRef-8 v2 BeadChips 

(Illumina). For RNA-seq analysis cDNA was prepared using the SMARTer Ultralow 

Input RNA for Illumina Sequencing kit (Clontech, 634935) and then sequenced using an 

Illumina HiSeq 2000.  

Immunohistochemistry 

 Mice were first anesthetized with isoflurane followed by transcardial perfusion 

with PBS and then 10% formalin. Brains were dissected, incubated in 10% formalin 

overnight at 4°C and 40um secions were prepared using a vibratome. Free floating 

sections were blocked for 1 hour at room temperature in blocking buffer (PBS, 0.1% 

Triton-X, 2% goat serum, 3% BSA) and then incubated overnight at 4°C with primary 
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antibodies. For pS6 244 staining, the pS6 240/244 polyclonal antibody (Cell Signaling, 

#2215) was combined to the 3P peptide (250nM final concentration). The next day, 

sections were washed in washing buffer (PBS, 0.1% Triton-X) 3 times for 20 minutes, 

incubated with dye-conjugated secondary antibodies at 1:1000 for 1 hour at room 

temperature, washed in washing buffer and then mounted. For vassopression staining, it 

was noted that goat anti-rabbit secondary antibodies cross react with guinea pig primary 

antibodies; therefore primary antibody incubations were performed sequentially. For fosB 

staining, primary antibody incubations were allowed to proceed for 72 hours. For co-

localization studies using 2 rabbit primary antibodies, the following 2 strategies were 

used. In the first approach, sections were stained with rabbit anti-cfos overnight, washed, 

stained with Alexa Fluor conjugated goat anti-rabbit Fab fragment (Jackson 

Immunoresearch), washed, stained with rabbit anti-pS6, washed and then stained with 

Alexa Fluor conjugated goat anti-rabbit. In the second approach, sections were stained 

with rabbit anti-cfos overnight, washed, stained with Alexa Fluor conjugated goat anti-

rabbit, washed and then stained with Alexa Fluor-488 conjugated pS6 235/236. The 

fidelity of double staining was confirmed by noting that cfos staining was exclusively 

nuclear while pS6 staining was cytoplasmic. Primary antibodies used were rabbit anti-

NPY (1:2000, Bachem T4070) and rabbit anti-cfos (1:1000, Santa Cruz, sc52), rabbit 

anti-pS6 240/244 (Cell Signaling, #2215), rabbit anti-pS 235/236 (1:500, Cell Signaling, 

#4858), rabbit anti-pS6 235/236 (1:250, Cell Signaling, #4803), rabbit anti-rpL26 (Novus 

Biologicals, NB100-2131), rabbit anti-rpL7 (Novus Biologicals, NB100-2269), mouse 

anti-oxytocin (1:1000, Millipore, MAB5296), guinea pig anti-vasopressin (1:3000, 

Peninsula Laboratories, T5047), chicken anti-GFP (1:1000, Abcam, ab13970), rabbit 
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anti-fosB (1:25, Cell Signaling, #2251), rabbit anti-CXCL1 (1:200, Abcam, ab17882), 

mouse anti-rpS6 (250ng/mL, Cell Signaling, #2317), rabbit anti-MCH (1:1000, Phoenix 

Pharmaceuticals, H07047).  

Fluorescent In Situ Hybridization 

 For vasoactive intestinal peptide a 527 base pair anti-sense digoxigenin-labeled 

riboprobe was generated based on sequences from the Allen Brain Atlas. For galanin, a 

633 base pair anti-sense digoxigenin-labeled riboprobe was synthesized chemically based 

on sequences from the Allen Brain Atlas. For prodynorphin, a 592 base pair anti-sense 

digoxigenin-labeled riboprobe was synthesized chemically based on sequences from the 

Allen Brain Atlas. 40um cryostat free-floating sections were incubated in 3% H2O2 for 1 

hour at room temperature to quench endogenous peroxidase activity. Sections were 

treated with 0.20% acetic anhydride followed by 1% Triton-X for 30 minutes each. 

Prehybridization was carried out at 62°C using hybridizaition buffer (50% formamide, 5x 

Denhardts, 250ug/mL baker’s yeast RNA, 500ug/mL ssDNA) for 1 hour before overnight 

hybridization with riboprobe at 62°C. Sections were washed in 5x SSC followed by 2 

washes with 0.2x SSC at 62°C. When immunohistochemistry was combined with FISH, 

the primary antibody was added together with the riboprobe at the appropriate dilution. 

Brief washes with 0.2x SSC and Buffer B1 (0.1M Tris, pH 7.5, 0.15M NaCl) were 

performed and sections were blocked in TNB (1% blocking reagent in B1, Roche, 

#1096176) for 1 hour at room temperature. Anti-digoxigenin-POD antibody (1:100, 

Roche, #11207733910) was applied overnight at 4°C. When immunohistochemistry was 

combined with FISH, a secondary antibody conjugated to Alexa Fluor was applied to the 

sections for 1 hour at room temperature before riboprobe was detected. Riboprobe was 
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developed using the TSA Plus Fluorescence System (Perkin Elmer, #NEL744) according 

to the manufacturer’s instructions. 

Cell Culture 

 Wildtype and S6S5A MEFs (a gift from David Sabatini) were cultures in DMEM 

supplemented with 10% FBS and penicillin-streptomycin. Cells were grown to 

confluence, starved for 6 hours in 0.25% DMED/FBS and restimulated with 20% 

DMEM/FBS supplemented with 100nM insulin for 30 minutes. Cells were washed with 

PBS, trypsinized, collected by centrifugation and then lysed in a 1% NP40 buffer 

containing protease and phosphatase inhibitors. Lysates were clarified, 

immunoprecipitated using pS6 antibodies and the recovered RNA quantified using 

Agilent Bioanalyzer 2100.  

Microscopy and Quantification 

 Free-floating sections were stained, mounted and then imaged using either Zeiss 

LSM 510 or Zeiss LSM 810 laser scanning confocal microscope. pS6 was quantified in 

specific neuronal populations as follows. Sections were double immunostained for pS6 

244 and the relevant neuropeptide or GFP expressed from a transgenic mouse line. For 

each of 3 animals from both experimental and control groups, 3 sets of z-stacks were 

acquired from sections 160um apart. The surfaces corresponding to each labeled cell in 

the field were reconstructed using Imaris software (Bitplane), each surface was examined 

manually to confirm that the calculated surface corresponded to a cell and the mean 

intensity in the pS6 channel within the volume bounded by the surface of each labeled 

cell was recorded. This data was then plotted using a scatter dot plot, with the mean and 
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standard error indicated. Images for comparison in the manner were collected using 

identical microscope and camera settings on tissue samples processed in parallel. In cases 

where the absolute number of pS6 positive cells within an anatomical region was desired, 

the number was obtained through manual counts. Fluorescence intensity and cfos counts 

were carried out using ImageJ.  

TaqMan Quantitative PCR Array Analysis and Measurements 

 Primers and internally quenched probes were synthesized (IDT DNA) to detect 

225 genes that mark discrete populations of hypothalamic neurons. Probes were 

distributed to 96-well plates in duplicated, cDNA was prepared using the Quantitect 

Reverse Transcriptase kit (QIAGEN) and reactions were run using the TaqMan Gene 

Expression Master Mix (Applied Biosystems) on an Applied Biosystems 7900HT 

system. For each experiment (stimulus or control), the abundance of each gene in the 

input RNA and in the pS6 immunprecipitated RNA was measured in duplicate. The RNA 

abundance was determined, normalized to an rpL27 probe that was present in every plate 

and the ratio (IP/input) was calculated. The entire experiment from animal sacrifice to 

RNA measurement was repeated the following number of times for each stimulus or 

control: no stimulation at ZT 5 (6 experiments), osmotic stimulation (5 experiments), 

scheduled feeding (4 experiments), ghrelin (3 experiments), no stimulation at ZT 23 (4 

experiments), overnight fast (4 experiments). Each of these experiments utilized 10-20 

animals. These values were then averaged and the differential enrichment calculated 

(ratio of IP/input stimulus over IP/input control). The log-transformed fold enrichment 

values for each gene were analyzed by calculating a p value (unpaired 2-tailed student t 

test) and a q value to estimate the false discovery rate at different thresholds of 
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significance. Follow-up analysis focused on the most highly enriched genes in each 

experimental condition, which were validated by histology.  

List of Hypothalamic Marker Genes used in TaqMan Array 

Gene 
Symbol Gene Name Class 

PENK Pro-enkephalin Neuropeptide 

POMC Pro-opiomelanocortin Neuropeptide 

PDYN Pro-dynorphin Neuropeptide 

PNOC Prepro-nociceptin Neuropeptide 

AVP Vasopressin Neuropeptide 

OXT Oxytocin Neuropeptide 

GAST Gastrin Neuropeptide 

CCK Cholecystokinin Neuropeptide 

SST Somatostatin Neuropeptide 

CORT Cortistatin Neuropeptide 

NPVF RF-amide related peptide, Neuorpeptide VF Neuropeptide 

NPFF Neuropeptide FF Neuropeptide 

NPY Neuropeptide Y Neuropeptide 

CALCA Calcitonin 1, CGRP (calcitonin related polypeptide) Neuropeptide 

CALCB Calcitonin 2 Neuropeptide 

IAPP Amylin, Islet amyloid polypeptide Neuropeptide 

ADM Adrenomedullin Neuropeptide 

NPPA Atrial natriuretic factor Neuropeptide 

NPPC Natriuretic peptide precursor C Neuropeptide 

GRP Gastin releasing peptide Neuropeptide 
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NMB Neuromedin B Neuropeptide 

EDN3 Endothelin 3 Neuropeptide 

SCT Secretin Neuropeptide 

VIP Vasoactive intestinal peptide Neuropeptide 

ADCYAP1 Pituitary adneylcyclase-activated peptide Neuropeptide 

GHRH Growth hormone releasing hormone Neuropeptide 

CRH Corticotropin releasing hormone Neuropeptide 

UCN Urocortin Neuropeptide 

UCN2 Urocortin 2 Neuropeptide 

UCN3 Urocortin 3 Neuropeptide 

TAC1 Prepro-tachykinin A, substance P, Neurokinin A Neuropeptide 

TAC2 Prepro-tachykinin B, Neuromedin K, Neurokinin B Neuropeptide 

NMS Neuromedin S Neuropeptide 

NMU Neuromedin U Neuropeptide 

AGT Angiotensin Neuropeptide 

NTS Neurotensin Neuropeptide 

CHGA Chromogranin A Neuropeptide 

CHGB Chromogranin B Neuropeptide 

SCG2 Secretogranin II Neuropeptide 

SCG3 Secretogranin III Neuropeptide 

SCG5 SGNE1, Secretory granule neuroendocrine protein Neuropeptide 

VGF VGF nerve growth factor Neuropeptide 

GAL Galanin Neuropeptide 

GALP Galanin-like peptide Neuropeptide 

GnRH1 Gonadotropin-releasing hormone 1 Neuropeptide 

NPB Neuropeptide B Neuropeptide 
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NPW Neuropeptide W Neuropeptide 

NPS Neuropeptide S Neuropeptide 

NXPH1 Neurexophilin-1 Neuropeptide 

NXPH2 Neurexophilin-2 Neuropeptide 

NXPH3 Neurexophilin-3 Neuropeptide 

NXPH4 Neurexophilin-4 Neuropeptide 

UTS2D Urotensin-2-related peptide Neuropeptide 

RLN1 Relaxin 1 Neuropeptide 

RLN3 Relaxin 3 Neuropeptide 

TRH Thyrotropin releasing hormone Neuropeptide 

PTHLH Parathryroid hormone-like hormone Neuropeptide 

PMCH Melanin concentrating hormone Neuropeptide 

HCRT Hypocretin Neuropeptide 

CARTPT Cocaine and amphetamine regulated transcript Neuropeptide 

AGRP Agouti related protein Neuropeptide 

APLN Apelin Neuropeptide 

KISS1 Kisspeptin, Metastasis-suppressor KiSS Neuropeptide 

DBI Diazepam-binding inhibitor Neuropeptide 

CBLN1 Cerebellin-1 Neuropeptide 

CBLN2 Cerebellin-2 Neuropeptide 

CBLN4 Cerebellin-4 Neuropeptide 

ADIPOQ Adiponectin Neuropeptide 

RETN Resistin Neuropeptide 

NUCB2 Nucleobindin 2, Nesfatin Neuropeptide 

UBL5 Ubiquitin-like 5 Neuropeptide 

SERPINA3K 
serine (or cysteine) peptidase inhibitor, clade A, 
member 3K Other 
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NPY1R Neuropeptide Y receptor 1 Receptor 

CITED1 
Cbp/p300-interacting transactivator with Glu/Asp-
rich carboxy-terminal domain 1 Transcription factor 

ESYT3  extended synaptotagmin-like protein 3 Other 

PRLR Prolactin receptor Receptor 

ASB4 ankyrin repeat and SOCS box-containing 4 Other 

RGS9 regulator of G-protein signaling 9 Other 

PLAGL1 pleiomorphic adenoma gene-like 1 Other 

GABRE 
gamma-aminobutyric acid (GABA) A receptor, 
subunit epsilon Receptor 

TMEM176A transmembrane protein 176A Other 

Ecel1 Endothelin converting enzyme-like 1 Other 

PEG10 paternally expressed 10 Other 

GRIK3 glutamate receptor, ionotropic, kainate 3 Receptor 

Tbx3  T-box 3 Transcription factor 

IRS4 Insulin receptor substrate 4 Other 

TMED3 transmembrane emp24 domain containing 3 Other 

GPX3 glutathione peroxidase 3 Other 

DLK1 delta-like 1 homolog  Transcription factor 

ARL10 ADP-ribosylation factor-like 10 Other 

SPINT2 serine protease inhibitor, Kunitz type 2 Other 

GPR165 G protein-coupled receptor 165 Receptor 

Clcn5 chloride channel 5 Channel/Transporter 

Celf6 CUGBP, Elav-like family member 6 Other 

Rxfp3 Relaxin family peptide receptor 3 Receptor 

Nnat Neuronatin Other 

Mesdc2 mesoderm development candidate 2 Other 
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Slc2a1 
Glut-1; Solute carrier family 2, facilitated glucose 
transporter member 1 Channel/Transporter 

VAT1 
vesicle amine transport protein 1 homolog (T 
californica) Channel/Transporter 

Adcyap1r1 adenylate cyclase activating polypeptide 1 receptor 1 Receptor 

Fezf1 Fez family zinc finger 1 Transcription factor 

Slit3 slit homolog 3 (Drosophila) Other 

Gda guanine deaminase Other 

Rreb1 ras responsive element binding protein 1 Transcription factor 

AMIGO2 adhesion molecule with Ig like domain 2 Other 

Doc2b double C2, beta Other 

 Pvrl3 poliovirus receptor-related 3 Other 

Icam5 intercellular adhesion molecule 5, telencephalin Other 

Glra1 glycine receptor, alpha 1 subunit Receptor 

 Chrm5 cholinergic receptor, muscarinic 5 Receptor 

Camk1g 
calcium/calmodulin-dependent protein kinase I 
gamma Other 

 Itpr1 inositol 1,4,5-triphosphate receptor 1 Other 

 Lmo3 LIM domain only 3 Transcription factor 

Cacna2d1 
calcium channel, voltage-dependent, alpha2/delta 
subunit 1 Channel/Transporter 

Kcnab1 
potassium voltage-gated channel, shaker-related 
subfamily, beta member 1 Channel/Transporter 

Syt10 synaptotagmin 10 Other 

Lhx1 LIM homeobox protein 1 Transcription factor 

Vipr2 VIP receptor 2 Receptor 

Rasl11b Ras like 11b Other 

Rgs16 Regulator of G-protein signaling 16 Other 
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Rorb RAR-related orphan receptor beta Transcription factor 

Prokr2 prokineticin receptor 2 Receptor 

Rora RAR-related orphan receptor alpha Transcription factor 

NR1D1 nuclear receptor subfamily 1, group D, member 1 Transcription factor 

Zim1 zinc finger, imprinted 1 Transcription factor 

Flrt3 fibronectin leucine rich transmembrane protein 3 Other 

Zic1 zinc finger protein of the cerebellum 1 Transcription factor 

Slc2a13 
solute carrier family 2 (facilitated glucose 
transporter), member 13 Channel/Transporter 

Npsr1 Neuropeptide S receptor 1 Receptor 

Fezf2 Fez family zinc finger 2 Transcription factor 

Tacr3 Tachykinin receptor 3 Receptor 

Ly6H Lymphocyte antigen 6 complex, locus H Other 

Ntsr1 Neurotensin receptor 1 Receptor 

Pitx2 Paired-like homeodomain transcription factor 2 Transcription factor 

Gabrq  
Gamma-aminobutyric acid (GABA) A receptor, 
subunit theta Receptor 

Calcr Calcitonin receptor Receptor 

GPR101 GPCR 101 Receptor 

 Pou6f2  POU domain, class 6, transcription factor 2 Transcription factor 

Crhr2 Corticotropin releasing hormone receptor 2 Receptor 

Htr1a  5-hydroxytryptamine (serotonin) receptor 1A Receptor 

Htr1b  5-hydroxytryptamine (serotonin) receptor 1B Receptor 

Htr2a  5-hydroxytryptamine (serotonin) receptor 2A Receptor 

Htr2c  5-hydroxytryptamine (serotonin) receptor 2C Receptor 

Htr3b  5-hydroxytryptamine (serotonin) receptor 3B Receptor 

Htr4  5-hydroxytryptamine (serotonin) receptor 4 Receptor 
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Htr5A  5-hydroxytryptamine (serotonin) receptor 5A Receptor 

Htr6  5-hydroxytryptamine (serotonin) receptor 6 Receptor 

 Zfhx4  zinc finger homeodomain 4 Transcription factor 

Ar Androgen receptor Transcription factor 

Trhr Thyrotropin releasing hormone receptor Receptor 

 Cnr1 Cannabinoid receptor 1 Receptor 

MC4R Melanocortin 4-receptor Receptor 

NPY5R Neuropeptide Y receptor 5 Receptor 

NPY2R Neuropeptide Y receptor 2 Receptor 

PGR progesterone receptor Transcription factor 

OXTR oxytocin receptor Receptor 

Gpr83 G protein-coupled receptor 83 Receptor 

Pcsk1 Proprotein convertase subtilisin/kexin type 1 Other 

LHX9 Lim homeobox protein 9 Transcription factor 

Sim1 single minded 1 Transcription factor 

Gsbs G substrate Other 

Calb1 calbindin 1 Other 

Calb2 calbindin 2 Other 

Chrna3 cholinergic receptor, nicotinic, alpha polypeptide 3 Receptor 

Chrna4 cholinergic receptor, nicotinic, alpha polypeptide 4 Receptor 

Chrna7 
cholinergic receptor, nicotinic, alpha polypeptide 7 ( 
Chrna7 Receptor 

Avpr1a  arginine vasopressin receptor 1A Receptor 

GBX2 gastrulation brain homeobox 2 Transcription factor 

DDC  dopa decarboxylase Other 

SYTL4  synaptotagmin-like 4 Other 

NGB  neuroglobin Other 
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NHLH2 nescient helix loop helix 2 Transcription factor 

nkx2-1 NK2 homeobox 1 Transcription factor 

isl1 ISL1 transcription factor Transcription factor 

BRS3  bombesin-like receptor 3 Receptor 

Slc18a2  
solute carrier family 18 (vesicular monoamine), 
member 2 Channel/Transporter 

NR5A1  
nuclear receptor subfamily 5, group A, member 1; 
SF1 Transcription factor 

P2RY1  purinergic receptor P2Y, P2Y Channel/Transporter 

Esr1 estrogen receptor alpha Transcription factor 

rpl27 ribosomal protein L27 Other 

rpl23 ribosomal protein L23 Other 

Actb Actin Other 

Syt1 synaptotagmin 1 Other 

slc1a2 
solute carrier family 1 (glial high affinity glutamate 
transporter), member 2 Channel/Transporter 

nefl neurofilament, light Other 

slc12a5 solute carrier family 12, member 5; KCC2 Channel/Transporter 

snap25 synaptosomal associated protein 25 Other 

gfap glial fibrillary acidic protein Other 

HDC Histidine decarboxylase Other 

Ache Acetylcholinesterase Other 

Mal 
myelin and lymphocyte protein, oligodendrocyte 
marker Other 

FA2H fatty acid 2-hydroxylase, oligodendrocyte marker Other 

Slc6a3 Dopamine Transporter; dopamine marker Channel/Transporter 

TH Tyrosine hydroxylase; dopamine marker Other 

GAD2 glutamic acid decarboxylase 2 Other 
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GAD1 GAD67,  glutamic acid decarboxylase 1 Other 

NOS1  nitric oxide synthase 1, neuronal Other 

Fxyd6  FXYD domain-containing ion transport regulator 6 Other 

hap1 huntingtin-associated protein 1 Other 

 Slc17a7 Vglut1; solute carrier family 17 member 7 Channel/Transporter 

 Slc17a6 Vglut2; solute carrier family 17 member 6 Channel/Transporter 

 Slc1a1 
EAAT3, neuronal/epithelial high affinity glutamate 
transporter Channel/Transporter 

Sgsm1  small G protein signaling modulator 1 Other 

Susd2 sushi domain containing 2 Other 

Pcsk1n proprotein convertase subtilisin/kexin type 1 inhibitor Neuropeptide 

Ghsr Growth hormone secretagogue receptor Receptor 

Npr3 natriuretic peptide receptor 3 (NPR-C) Receptor 

Crabp1 cellular retinoic acid binding protein Transcription factor 

Scn9a  sodium channel, voltage-gated, type IX, alpha   Channel/Transporter 

Scn7a sodium channel, voltage-gated, type VII, alpha  Channel/Transporter 

kcnk2 potassium channel subfamily K member 2 Channel/Transporter 

Adra2a alpha  2A adrenergic receptor Receptor 

Per1 Period homolog 1 Transcription factor 

Per2 Period homolog 1 Transcription factor 

Drd2 Dopamine receptor 2 Receptor 

GPR50 G protein coupled receptor 50 Receptor 

Drd1a Dopamine receptor 1a Receptor 

Aplnr  Apelin Receptor Receptor 

Fzd5 frizzled homolog 5 Transcription factor 

Pou2f2 POU domain, class 2, transcription factor 2 Transcription factor 

Sox3 SRY (sex determining region Y)-box 3 Transcription factor 
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Six3 sine oculis-related homeobox 3 homolog Transcription factor 

Qrfpr   pyroglutamylated RFamide peptide receptor Receptor 

Oprl1 opiod receptor like 1 Receptor 

Gck glucokinase Other 

MC3R melanocortin 3-receptor Receptor 

Fos FBJ osteosarcoma oncogene Transcription factor 

FosB FBJ murine osteosarcoma viral oncogene homolog B Transcription factor 

Egr1 early growth response 1; NGFI-A Transcription factor 

Egr4 early growth response 4 Transcription factor 

Nr4a1 Nur77; NGFI-B, immediate early gene Transcription factor 

Arc 
activity-regulated cytoskeleton-associated protein; 
Arg3.1 Transcription factor 

Cxcl1 Chemokine (C-X-C motif) ligand 1 Chemokine 

Nupr1 Nuclear protein 1 
Activity dependent 
gene 

 

Statistical Analysis 

 Data was presented as mean + standard error of the mean (SEM). Student’s t test 

was used to determine significance of the difference of the mean between experiment and 

control animals. p<0.05 represented statistical significance.  

General Considerations for pS6 Profiling Experiments 

 The efficiency and reproducibility of the pS6 induction by the stimulus is a 

critical determinant to the success of these experiments. Stimuli that produce small 

changes in pS6 will produce small fold enrichment values. Likewise, stimuli that induce 

pS6 inconsistently between animals will result in lower fold enrichment values because 
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tissue are pooled for immunoprecipitation. When testing a new paradigm, a time course 

of staining for both pS6 and cfos in brain sections (ie 30, 60 and 120 minutes) was 

performed. Different stimulus conditions (ie dose, time of day) was also tested, starting 

from parameters that have been previously reported in the cfos literature. The key 

parameters that determine the degree of induction of pS6 (or cfos) may not be obvious. 

For instance, overnight fast has been reported in induce pS6 in the arcuate 

nucleus(Villanueva et al., 2009) but we found that this pS6 induction was sensitive to 

both the duration of the fast and the time of day the mice were sacrificed. Fasted mice 

sacrificed during the light phase showed less pS6 in the arcuate nucleus than mice 

sacrificed at the end of the dark phase. Similarly, the optimal fasting duration was 

approximately 15 hours and lower levels of pS6 were observed when mice were fasted 24 

hours or longer. It is important to note that for activity-dependent and other induced 

genes, the level of mRNA (rather than protein) in the activated neurons at the time of 

sacrifice will determine the fold enrichment. For example, in the salt loading experiment, 

cfos was enriched 2-fold by TaqMan and 3.6-fold by RNA-seq following salt challenge 

despite the observation that more significant induction of cfos protein was seen using 

immunohistochemistry. The discrepancy arises from the fact that cfos protein and mRNA 

have different kinetics and that for salt loading, the animals were sacrificed 2 hours after 

the stimulus. Although this time point is at the approximate peak for cfos protein 

induction(Miyata et al., 2001; Penny et al., 2005) as well as pS6, it is long after the peak 

of cfos mRNA expression, which peaks within 30 minutes and has returned to baseline 

by 3 hours following salt challenge(Kawasaki et al., 2005). In contrast, greater 

enrichment for fosB was observed because fosB gene expression has been shown to 
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remain elevated for several hours after salt loading(Miyata et al., 2001; Penny et al., 

2005).  

 A polyclonal pS6 240/244 antibody (Cell Signaling, #2215) combined with a pS6 

240 containing peptide gave the highest and most reproducible fold-enrichment values 

among several commercially available pS6 antibodies that were tested. Acceptable results 

using a polyclonal pS6 244/247 antibody (Life Technologies, 44-923G) were also 

obtained. Monoclonal antibodies targeting pS6 (Cell Signaling, #4858 and #5364) 

immunoprecipitated many non-specific proteins and therefore are not recommended. 

 A typical experiment using the pooled hypothalami from 20 mice yielded 

approximately 10ng of total RNA from the pS6 immunoprecipitate after purification 

(20ul of a 0.5ng/ul solution). This corresponds to an immunoprecipitate yield of 0.02%-

0.1% of the total input RNA. Increasing the percent yield above this level (by relaxing 

the stringency of the immunoprecipitation) tended to decrease the fold-enrichment 

values, presumably because the most highly phosphorylated polysomes are preferentially 

immunoprecipitated. For RNA-seq experiments, we used approximately 0.5ng of total 

RNA from pS6 immunoprecipitation to prepare amplified cDNA. This amount has been 

shown to be sufficient for reproducible coverage of the transcriptome by 

sequencing(Ramsköld et al., 2012).  

 The RNA quantification data is analyzed in 2 steps. First the RNA in the 

immunoprecipitate for each gene is divided by the input to determine the fold-enrichment 

(IP/input). This measures the degree to which the transcript is enriched in the pS6 

immunoprecipitate relative to the tissue as a whole. Since the immunoprecipitate is 



 41 

divided by the input, changes in the absolute expression level of a transcript within the 

tissue have no effect on the fold-enrichment. This analysis is performed separately for 

stimulus and control experiments. The fold-enrichment values for the stimulus are then 

divided by the fold-enrichment values for the control to calculate the differential 

enrichment. The differential enrichment is calculated to identify neuronal markers that 

become enriched or depleted specifically in response to the stimulus. Normalization to 

the control group accounts for the fact that each neural marker has a different enrichment 

at baseline, reflecting different baseline pS6 for each cell population. For transcripts that 

may not be present at detectable levels in the pS6 immunoprecipitate from the control 

group (ie immediate early genes and other inducible transcripts), the data are analyzed as 

fold-enrichment in the stimulus group only.  
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Chapter 3: 

Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture 

             

Introduction 

 A basic goal of neuroscience is to link the activity of specific neuronal cell types 

to the various functions of the brain. This task is complicated by the extraordinary 

cellular diversity of the mammalian central nervous system (CNS)(Lichtman and Denk, 

2011; Masland, 2004; Nelson et al., 2006; Stevens, 1998) and the fact that most neurons 

cannot be identified solely based on their morphology or location(Isogai et al., 2011; 

Siegert et al., 2009). Comprehensive analyses of gene expression in the CNS such as the 

GENSAT project and the Allen Brain Atlas have revealed extensive heterogeneity in 

gene expression across brain regions(Gong et al., 2003; Lein et al., 2007), but there are 

significant gaps in our understanding of how this molecular diversity is linked to 

function. 

 The ability to profile genes uniquely expressed in neurons that respond to a 

stimulus would facilitate the systematic molecular identification of the cell types that 

control behavior. The molecular identification of these cells would also enable their in 

vivo manipulation using technologies that make it possible to activate or inhibit neurons 

with light(Yizhar et al., 2011), generate transcriptional profiles from neurons using 

tagged ribosomes(Heiman et al., 2008; Sanz et al., 2009) or label using fluorescent 

reporters to facilitate eletrophysiological recordings(Gong et al., 2003). These tools 

achieve their selectivity by targeting protein expression using a promoter from a cell-type 
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specific marker gene. However, in many cases marker genes that identify a functional 

population of neurons are lacking(Zhang et al., 2007).  

Immediate early genes such as cfos have been widely used to visualize neurons 

that respond to numerous stimuli(Morgan and Curran, 1991). Despite its utility in 

marking neurons that have been biochemically activated, cfos immunostaining does not 

reveal genetic identity of the labeled cells. Characterizing the co-expression of an 

activation marker such as cfos with even a limited set of candidate genes requires 

processing large numbers of histological sections(Isogai et al., 2011). For this reason, 

systematic methods are needed to profile gene expression from discrete subpopulations of 

activated neurons in the brain.  

Here, I show that phosphorylation of the ribosome can be used as a molecular tag 

to selectively retrieve RNA from activated neurons. This enables the unbiased discovery 

of the genes that are uniquely expressed in functionally activated neurons. By quantifying 

in parallel the enrichment of many such markers, it is possible to assess the activation or 

inhibition of numerous cell types in a complex tissue, revealing the coordinated 

regulation of ensembles of neurons in response to an external stimulus.  

Results 

Ribosome Phosphorylation Often Correlates with Neural Activity 

Immediate early genes such as cfos are widely used to mark activated neurons in 

the mouse brain(Morgan and Curran, 1991) but cfos immunostaining does not reveal the 

molecular identity of the labeled cells. I thus set out to develop a method for generating 

expression profiles from activated neurons. I noted that many stimuli that trigger cfos 
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expreesion in activated neurons also induce phosphrylation of ribosomal subunit S6(Cao 

et al., 2008; Valjent et al., 2011; Villanueva et al., 2009; Zeng et al., 2009). S6 is a 

structural component of the ribosome that is phophorylated downstream of PI3-K/mTOR, 

MAPK and PKA signaling (Figure 8A) (Meyuhas, 2008; Valjent et al., 2011). These 

same pathways regulate the transcription of activity-dependent genes such as cfos(Flavell 

and Greenberg, 2008). I reasoned that because S6 phosphorylation introduces a tag on 

ribosomes that resides in biochemically activated neurons, it might be possible to 

immunoprecipitate these phosphorylated ribosomes from mouse brain homogenates and 

thereby enrich for meseenger RNA (mRNA) expressed in the activated cells (Figure 8B). 

By comparing the abundance of each transcript in the pS6 immunoprecipitate to its 

abundance in the tissue as a whole, it would therefore be possible to rank in an unbiased 

way the genes that are uniquely expressed in a population of neurons that respond to a 

stimulus. 

 To confirm that S6 was phosphorylated in cells expressing cfos, I exposed mice to 

a diverse panel of stimuli and the performed double immunohistochemistry for cfos and 
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pS6 in brain slices (Figure 9). Treatment of mice with drugs such cocaine (a stimulant), 

kainate (a convulsant), clozapine and olanzapine (antipsychotics) all induced 

colocalization of pS6 and cfos in a variety of brain regions (Figure 9A). Exposure of male 

mice to an intruder induced an overlapping pattern of cfos and pS6 expression in brain 

regions that are known to mediate aggression such as the ventrolateral hypothalamus 

(Figure 9B) (Lin et al., 2011). A cat odorant, which signals to rodents the presence of a 

predator, induced cfos and pS6 in the dorsal premammillary nucleus, a region known to 

mediate fear and defensive responses (Figure 9B) (Dielenberg et al., 2001). A wide 

variety of nutritional stimuli including fasting, dehydration, salt challenge and ghrelin 

treatment also resulted in extensive colocalization of cfos and pS6 in regions of the 

hypothalamus that are known to regulate water and food intake (Figure 9C). In some 
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cases, one of these markers labeled a broader population of activated neurons than the 

other. For example, light induced strong pS6 but only scattered cfos within the 

suprachiasmatic nucleus (Figure 9D), a region that regulates circadian rhythms and 

receives input from the retina(Cao et al., 2008). However, in general, a wide range of 

stimuli induced expression of cfos and pS6 in largely overlapping neural populations 

throughout the brain. 

Selective capture of Phosphorylated Ribosomes 

 I next set out to confirm that I could selectively isolate phosphorylated ribosomes 

and their associate mRNA. I prepared lystates from wild-type mouse embryonic 

fibroblasts (MEFs) as well as knockin MEFs in which each of the 5 serine 

phosphorylation sites on S6 was mutated to alanine (Ser 235, 236, 240, 244 and 247; 

S6S5A)(Ruvinsky et al., 2005). Antibodies that recognize pS6 240/244 efficiently 

immunoprecipitated ribosome from lysates of wild-type MEFs but not from S6S5A cells 

(Figure 10A). Approximately 100-fold more RNA was isolated in pS6 

immunoprecipitates from wild-type MEFs compared to S6S5A controls (Figure 10B and 

10C), confirming that phosphorylated ribosomes can be captured with high selectivity.  
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 To confirm that mRNA from a single neuronal cell type can be enriched in vivo, I 

generated mice in which the gene encoding Tsc1 was selectively deleted in melanin-

concentrating hormone (MCH) neurons of the lateral hypothalamus (MCHCre Tsc1fl/fl). 

Deletion of Tsc1 activated the mTORC1 pathway, resulting in constitutive S6 

phosphorylation (Figure 11A and 11B). Consistent with prior reports, deletion of Tsc1 

also results in increased cell size (Figure 11B) (Meikle et al., 2007). I prepared tissue 

homogenates from hypothalami of these mice, immunoprecipitated phosphorylated 

ribosomes and analyzed the purified RNA. Commercially available antibodies that 

recognize either pS6 235/236 or 240/244 could enrich for Pmch mRNA by ~4 fold. 

(Figure 11C and 11D) Because Tsc1 deletion results in uniform and complete S6 

phosphorylation in targeted cells(Meikle et al., 2007), this 4-fold enrichment represents 

an upper limit on the RNA enrichment that can be achieved. At this level of enrichment, 

it was challenging to identify markers for cell types that underwent graded or 

heterogeneous activation in response to a physiologic stimulus. A way to capture RNA 

from activated neurons more selectively was needed. 

 Phosphorylation of S6 is believed to occur sequentially (in the order Ser 235, 236, 

240, 244 and 247) such that the most C-terminal sites (Ser 244 and 247) are 

phosphorylated at much lower stoichiometry than the N-terminal sites at baseline (Figure 

11C) (Meyuhas, 2008). Thus it is possible that phosphorylation of these C-terminal sites 

exhibit a wider dynamic range in response to changes in neural activity and that an 

antibody recognizing only one of the C-terminal sites might enable greater enrichment of 

cell type specific transcripts. After extensive optimization, I discovered that a polyclonal 

antibody targeting pS6 240/244 can be made more selective by pre-incubation with a 
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phosphopeptide containing the S6 Ser240 phosphorylation site, thereby yielding 

antobodies that recognize only phosphorylation at Ser244 (hereafter referred to as pS6 

244 antibodies) (Figure 11C). Immunprecipitation of phosphorylated ribosomes by using 

S6 244 antibodies resulted in more than 30-fold enrichment of Pmch transcripts from 
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MCHCre Tsc1fl/fl mice, but not Tsc1fl/fl controls (Figure 11D). Importantly, robust 

enrichment (8- to 10-fold) for genes co-expressed in only a subset of MCH neurons such 

as Cart and Tacr3 was observed(Croizier et al., 2010). There was no enrichment for genes 

expressed in a set different hypothalamic cell types such as the neuropeptides Hcrt, Oxt, 

Agrp and Crh (Figure 11D). Consistent with this quantitative PCR (qPCR) data, brain 

slices stained by using pS6 244 antibodies showed enhanced contrast between pS6-

positive and pS6-negative neurons compared to slices stained with commercial antibodies 

that recognize a broader set of phosphorylation sites (Figure 11E). Using this optimized 

approach, we were able to achieve highly selective enrichment of transcripts expressed in 

neurons after induction of pS6 in vivo.  

Molecular Identification of Hypothalamus Neurons at Baseline 

 I observed that wildtype mice exhibit strong pS6 immunostaining in the 

suprachiasmtic nucleus (SCN) during the day with variable but low levels of pS6 

detectable in other anatomical regions (Figure 12A). The SCN controls circadian rhythms 

in response to input from the retina and light has been show to induce pS6 in a 

subpopulation of neurons in the SCN(Cao et al., 2011; 2010). These pS6-positive cells 

are predominantly negative for vasopressin but their neurochemical identify is otherwise 

unknown. 

 I sacrificed wild-type mice near the midpoint of the circadian day (ZT 5), 

prepared tissue homogenates from the hypothalami and immunoprecipitated ribosomes 

using pS6 244 antibodies. The fold-enrichment (IP/input) for a panel of 20 neuropeptides 

that represent markers for a series of well-characterized hypothalamic cell types was 
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determined (Figure 12B). Vasoactive intestinal peptide (VIP) was the only neuropeptide 

significantly enriched in pS6 immunoprecipitates at basline. I then confirmed by 

immunohistochemistry that 82% of VIP cells in the SCN were pS6 positive (Figure 12C 

and 12 D). pS6 in the SCN is regulated by circadian time and stimulated by light, 

suggesting that the enrichment observed for VIP should be sensitive to the time of day in 

which the experiment was performed. Mice were sacrificed in the dark phase, at the 

midpoint of the circadian night (ZT 18) and the RNA recovered in pS6 

immunoprecipitates analyzed. Night-time dissection abolished the enrichment for VIP 

mRNA in S6 immunoprecipitates (Figure 12C) and we confirmed by 

immunohistochemistry that mice sacrificed in the dark had significantly fewer pS6 

positive VIP neurons in the SCN (Figure 12D and 12E). VIP is also expressed in the 

cortex, where it defines a major class of interneuron that is functionally unrelated to VIP 

neurons in the SCN. There was little co-localization between pS6 and VIP neurons in the 

cortex by immunostaining (Figure 12D and 12E). Consistent with this result, VIP mRNA 

was markedly depleted in pS6 immunoprecipitates from the cortex (Figure 12C). Thus, 

these data clearly demonstrates that pS6 capture can reveal cell type specific changes in 

activity across circadian time and anatomical space.  

Molecular Identification of Hypothalamic Neurons Activated by Salt 

 I next asked if I could identify neurons activated by a well-characterized stimulus. 

Plasma osmolarity is controlled by a hypothalamic system that includes vasopressin and 

oxytocin neurons. The levels of these neuropeptides are known to increase in response to 

salt loading. Mice were challenged with a concentrated salt solution and brain sections 

were stained for pS6 244.  
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 Salt challenge induced a dramatic increase in regions of the hypothalamus that 

mediate osmoregulation, including the paraventricular nucleus (PVN), supraoptic nucleus 

(SON) and median eminence (Figure 13A). Phosphorylated ribosomes were 

immunoprecipitated from hypothalamic homogenates of salt-challenged and control 

animals and mRNA analyzed for enrichment. To enable the rapid and sensitive 

quantification of low abundance transcripts, I used a custom array of 225 TaqMan probes 

comprising of marker genes that show anatomically restricted expression within the 

hypothalamus, including neuropeptides, receptors and transcription factors. The 

expression data for these genes were plotted as the log of the differential enrichment for 

each gene in response to the stimulus (Figure 13B). Similar results were obtained using 

RNA sequencing (Figure 13D). 

 Markers for the major neural populations that respond to salt challenge were 

among the most highly enriched genes in pS6 immunoprecipitates. These included 

vasopressin (Avp; 49-fold enriched), oxytocin (Oxt; 14-fold enriched and corticotrophin-

releasing hormone (Crh; 10-fold) (Figure 13B). The degree of enrichment for these 

marker genes correlated with the quantitative induction of pS6 in the corresponding cells 

as assayed by immunohistochemistry (Figure 13E and 13F). Specific enrichment for 

genes that partially overlap in expression with Avp and Oxt such as the neuropeptides 

galanin (Gal; 4-fold enriched) and prodynorphin (Pdyn; 3.9-fold enriched) and the PVN-

specific transcription factors Nhlh2 (7.4-fold enriched), Fezf2 (5.6-fold enriched) and 

Sim1 (3.8-fold enriched) (Figure 13B) (Gai et al., 1990; Sherman et al., 1986) were also 

detected at lower levels of enrichment. These data indicate that pS6 immunoprecipitation 
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can enrich for transcripts that identify activated cell types and that the fold enrichment of 

these genes reflects their selective expression in the activated cells.  

 Some of the genes enriched in pS6 immunoprecipitates identify neural 

populations not previously known to be activated by salt challenge. For example, relaxin-

1 (Rln1; 3.7-fold enriched) a neuropeptide that stimulates water intake and activates 

vasopressin and oxytocin neurons but has not been characterized in the hypothalamus due 

to low expression level(Thornton and Fitzsimons, 1995). Other enriched neuropeptides 

include urocortin 3 (Ucn3; 5.4-fold enriched), which is related to Crh and is expressed in 

a small population of neurons in the perifornical regaion and somatostatin (Sst; 3.4-fold 

enriched) wich is known to promote vasopressin release(Brown et al., 1988). 
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 In addition to these cell type specific markers, biochemical markers that are 

known to be induced by neural activity were also enriched (Figure 13C). The most highly  

enriched activity-dependent gene was FosB (43-fold enriched) and immunostaining 

revealed essentially complete colocalization of FosB and pS6 in the PVN and SON 

(Figure 13G and 13H). Cxcl1 (26-fold enriched), a chemokine that is not expressed in the 

hypothalamus at baseline but is selectively induced in the PVN by salt(Koike et al., 

1997), was also enriched (Figure 13G). These data confirm that by capturing 

phosphorylated ribosomes and analyzing the associated mRNA, genetic markers for 

neurons that are activated by a stimulus can be systematically identified, revealing the 

coordinated response of numerous intermingled cell types to a physiologic signal.  

Hypothalamic Respond to Fasting 

 A different set of neurons in the hypothalamus regulate food intake and the 

response to food restriction. To identify components of this system, mice were exposed to 

a series of nutritional perturbations beginning with fasting. Mice were fasted overnight 

and sacrificed at the end of the dark pahse and extent of ribosome phosphorylation was 

assyed by immunostaining. Fasting induced strong pS6 in the arcuate nucleus (ARC) of 

the hypothalamus as well as in the dorsomedial hypothalamus (DMH) and scattered cells 

of the medial preoptic area (MPA) (Figure 14A). To identify fasting-regulated neurons in 

each of these regions, I immunoprecipitated phosphorylated ribosomes from 

hypothalamic homogenates of fasted and fed animals and analyzed the enrichment of cell 

type specific RNAs. 
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 Markers for many cell types that are known to regulate feeding were differentially 

enriched in pS6 immunoprecipitates. Two of the most enriched transcripts in response to 

fasting were Agrp and Npy (Figure 14B). These two neuropeptides are coexpressed in 

critical neurons of the ARC that promote food intake(Elmquist et al., 2005). Selective 

increase of pS6 in these cells were confirmed with histology (Figure 14C) (Villanueva et 

al., 2009). Ghrelin receptor (Ghsr), which is expressed in most AgRP/NPY 

neurons(Willesen et al., 1999), and neuropeptide Vgf, which is induced in AgRP neurons 

following fasting(Hahm et al., 2002) were also enriched.  

 The neuropeptide galanin was one of the most strongly enriched genes in pS6 

immunoprecipitates from fasted animals (Figure 14B). Galanin has been shown to 

stimulate feeding when injected directly into the hypothalamus(Parker and Bloom, 2012) 

but the regulation of galanin neurons by changes in nutritional state has not been 

described(Schwartz et al., 1993). I found that fasting induced a marked increase in pS6 in 

a specific subset of galanin neurons located in the DMA and MPA (Figure 14E). Galanin 

neurons in these 2 regions also expressed cfos after an overnight fast, confirming that 

they are activated by food restriction (Figure 14F). 

 As it is possible that all neurons have a basal level of ribosome phosphorylation, 

neural inhibition might result in a decrease in pS6, which would be detected as the 

depletion of transcripts from pS6 immunoprecipitates in the analysis. Consistent with this 

reasoning, the neuropeptide Pomc was the most depleted transcript in response to fasting 

(Figure 14D). Pomc is expressed in a key population of neurons in the ARC that ihibit 

food intake and Pomc expression is downregulated during food deprivation(Elmquist et 

al., 2005), whereas leptin increases cfos in Pomc neurons as well as the firing rate of 
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these cells(Cowley et al., 2001). Although fasting increases the level of pS6 in the ARC 

overall (largely as a result of AgRP neuron activation, Figure 14A), quantitative imaging 

reveals that fasting decreases the density of pS6 specifically within Pomc cells (Figure 

14D). Thus, the depletion of specific transcripts from pS6 immunoprecipitates can be 

used to identify inhibited neurons. It is important to emphasize that the depletion 

observed for Pomc is not the result of change in gene expression level as only the ratio of 

RNA in the immunoprecipitate versus tissue as a whole (IP/input) was analyzed. Rather, 

enrichment or depletion of RNA from neurons is based on whether the state of activation 

of that neuron has changed. This ability to detect inhibition by ribosome profiling 
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contrasts with cfos immunostaining, which is limited in its ability to detect downreglation 

due to low level of cfos expression in most cells at baseline. 

 In addition to Pomc, several other neuropeptides that inhibit feeding such as apelin 

(Apln, which is co-expressed in a subset of Pomc neurons), angiotensin (Agt) and 

diazepam-binding inhibitor (Dbi) were also depleted (Figure 14B), suggesting that these 

peptides may reside ina population of fasting-inhibited cells(de Mateos-Verchere et al., 

2001; Porter and Potratz, 2004; Reaux-Le Goazigo et al., 2011). 

Scheduled Feeding Synchronizes Ribosome Phosphorylation with Food Availability 

 Although fasting can reveal the respone to chronic energy deficit, most human 

feeding take place intermittently at regular times in the day and the timing of meals is 

associated with many biochemical and behavioral responses. Similarly, rodents allowed 

daily access to food only during a scheduled window are known to synchronize their 

metabolism and activity to the time of food availability(Mistlberger, 2011). This 

behavioral adaptation is know as food-anticipatory activity (FAA) and is associated with 

the activation of neurons in multiple hypothalamuc regions, including the DMH and 

ARC. Despite extensive investigation into the mechanism of FAA, the identity of the 

activated cell types and their specific roles are largely unknown. Thus, I sought to 

identify neurons with a specialized function associated with scheduled feeding. Unlike 

fasting, scheduled feeding also allows for more precise synchronization of behavior, 

enabling a more refined analysis of temporal changes in cell activation. 

 Food access of mice was restricted to a 3 hour window in the middle of the light 

phase, which resulted in robust FAA within 10 days. Next, I performed pS6 staining of 
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brain sections from these mice at several time points to establish the dynamics of 

ribosome phosphorylation in the hypothalamus. Scheduled feeding induced intense pS6 

staining in the DMH and ARC (Figure 15A) that peaked within the meal window and 

declined to baseline thereafter (Figure 15B and 15C). DMH staining was concentrated in 

the compact part of the DMH, a region that does not show changes in ribosome 

phosphorylation after a single overnight fast (Figure 14A). Once the mice were entrained, 

this pattern of S6 phosphorylation no longer depended on the presence of food because 

brain sections from mice that acclimated to scheduled feeding but were not fed on the day 

of experiment showed a similar pattern of pS6 (although with lower intensity in the 

DMH; Figure 15B and 15C). This suggests the existence of unidentified neural 

populations that are regulated in part by a circadian signal entrained by food availability. 

To identify neurons activation during scheduled feeding, I immunoprecipitated 

phosphorylated ribosomes from the hypothalamus of animals sacrificed 2 hours after 

food presentation and analyzed the enriched mRNAs. To provide a comparison data set, I 

also performed ribosome profiling from mice that received an injection of the gut 

hormone ghrelin. Levels of plasma ghrelin increase prior to meal time and this increase 

has been hypothesized to promote scheduled feeding(LeSauter et al., 2009; Mistlberger, 

2011; Verhagen et al., 2011). Ghrelin induced strong pS6 in the ARC but had little effect 

on pS6 in the DMH (Figure 15A). Comparison of these 2 profiles was performed to 

segregate enriched cell type markers according to their potential anatomical location and 

function.  

Both ghrelin injection and scheduled feeding induced strong enrichment of Agrp 

(24-fold and 8.9 fold respectively), Npy (22-fold and 7.8-fold) and Ghsr (6.1-fold and 
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6.9-fold). This result was confirmed by extensive colocalization of pS6 and AgRP/NPY 

neurons in the ARC under both conditions (Figure 15E). The activation of AgRP/NPY is 

consistent with voracious eating displayed by animals acclimated to scheduled feeding 

following food presentation and demonstrates that ghrelin and scheduled feeding activate 

a common set of neural targets in the ARC.

 

 In contrast to the enrichment of Agrp and Npy transcripts, Pmch was consistently 

depleted from pS6 immunoprecipitates during scheduled feeding (Figure 15D). Double 
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immunostaining for pS6 and MCH in brain slices of these animals showed selective 

decrease in pS6 localized to MCH neurons from mice subjected to scheduled feeding 

relative to ad libitum fed controls. This decrease in ribosome phosphorylation was 

specific to MCH neurons as neighboring pS6-positive cells were observed in the lateral 

hypothalamus in the same sections. Therefore, MCH neurons appear to be selectively 

inhibited during scheduled feeding. Interestingly, a second neuropeptide Nphx4, which is 

expressed in the lateral hypothalamus, was also depleted (Figure 15D). As deletion of 

both Pmch and its receptor Mch1r has been reported to induce hyperactivity in 

mice(Zhou et al., 2005), inhibition of these neurons may be related to the locomotor 

phenotype observed during scheduled feeding. 

Molecular Identification of Activated Neurons in the DMH during Scheduled Feeding 

 Since the understanding of function and identity of cell types in the DMH that 

regulate feeding is limited, I turned my attention to identifying neurons in this region. 

Four transcripts: Npvf, Pdyn, Gpr50 and Gsbs were enriched in pS6 immunoprecipitates 

from mice subjected to scheduled feeding relative to ghrelin treatment (Figure 15D). 

Analysis of in situ hybridization data from the Allen Brain Atlas confirmed that these 

transcripts show localized expression in the DMH. Among these transcripts, the 

neuropeptide Npvf has previously been shown to colocalize with cfos in a sparse 

population of DMH cell activated during FAA(Acosta-Galvan et al., 2011) and the G-

protein coupled receptor Gpr50 is known to be regulated by leptin and nutritional 

state(Ivanova et al., 2008) but has not been previously linked to scheduled feeding. 

 I further characterized the neurons in the DMH that express Pdyn, a neuropeptide 
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that has complex effects on mood, nociception and reward but has not been previously 

linked to scheduled feeding. Immunostaining revealed extensive colocalization of pS6 

and Pdyn across the rostrocaudal axis of the DMH. 82% of Pdyn neurons in the DMH 

were positive for pS6 in mice subjected to scheduled feeding compared to just 1% in ad 

libitum fed controls (Figure 15F-H). A smaller increase in colocalization of pS6 and Pdyn 

in the ARC was observed but there was no change in the level of pS6 in Pdyn neurons in 

the PVN or lateral hypothalamus (Figure 15F and 15G). These data suggest that Pdyn 

neurons in the DMH represent a functionally distinct population with a specialized role in 

feeding. Immunostaining for cfos also revealed extensive colocalization with Pdyn 

neurons in the DMH during scheduled feeding but not ad libitum feeding (Figure 15I), 

confirming that Pdyn neurons are biochemically active when mice are subjected to the 

feeding protocol. cfos expression was also observed in other cells in the DMH, indicating 

existence of additional populations of activated neurons in this region. 

Prodynorphin Restrains Bouts of Intense Feeding 

 I hypothesized that Pdyn might play a role in meal termination following bouts of 

intense feeding. This is because, pS6 induction in Pdyn neurons is only evident late in the 

meal window (Figure 15B and 15C), requires food presentation for full expression 

(Figure 15B and 15C) and is not observed in response to orexigenic signals such as 

fasting or ghrelin injection (Figure 14A and 15A). Pdyn signals through the κ-opioid 

receptor (KOR) and potent, highly selective KOR antagonists have been 

developed(Bruchas et al., 2007; Carroll et al., 2004). Using pharmacological inhibitors of 

KOR, the function of Pdyn during scheduled feeding was assessed. An intraperitoneal 

injection of either a selective KOR antagonist (JDTic) or vehicle was given to mice. Mice 
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were divided into 2 groups: one exposed to scheduled feeding paradigm and the other fed 

ad libitum. Because KOR antagonists have a characteristic long duration of action in vivo 

(up to 3 weeks), only a single dose was required(Bruchas et al., 2007; Carroll et al., 

2004).  

 Vehicle-treated animals initially consumed less food each day and lost weight 

after shifting to scheduled feeding. Their weight gradually recovered over the course of 7 

days. (Figure 16A) Mice treated with JDTic show a similar decrease in food intake and 

body weight at first but their food intake increased more rapidly, relative to controls, and 

they showed a more rapid regain of body weight (Figure 16A). In contrast, JDTic had no 

impact on food intake or body weight in ad libitum fed animals (Figure 16B), indicating 

that the increased feeding induced by the drug is only evident under conditions in the 

which Pdyn neurons are activated. 

 To test whether this effect was mediated by central KOR signaling, I delivered a 

second, structurally unrelated KOR antagonist (norbinaltorphimine) to mice by 

intracerebroventricular (icv) injection and then exposed these animals to scheduled 

feeding protocol. Norbinaltorphimine-treated animals consumed approximately 50% 

more food during scheduled feeding than vehicle-treated controls (Figure 16C). Drug-

treated animals likewise gained weight much faster than controls (Figure 16C). 

Remarkably, this effect was specific to scheduled feeding paradigm as icv 

norbinaltorphimine had no effect on food intake or body weight of ad libitum fed animals 

(Figure 16D). Taken together, these data show that Pdyn neurons in the DMH are 

selectively activated during scheduled feeding and that central KOR signaling 

downstream of Pdyn acts to limit food intake following the intense feeding that 
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accompanies this paradigm. As Pdyn neurons are also found in other brain regions, it is 

possible that Pdyn produced outside the DMH also contributes to the effects observed 

here. Understanding how Pdyn signaling is able to selectively regulate episodic feeing 

will require further characterization of the Pdyn cells in the DMH and their relation to 

other elements of the circuitry that control food intake.  

Discussion 

 A vast array of experiments has sought to establish functional importance of 

discrete neuronal populations in controlling behavior(Lichtman and Denk, 2011). 

However, these efforts are often limited by a lack of molecular information about the 

relevant cell types. In 2001, Francis Crick and Christof Koch predicted that the 

development of techniques “based on the molecular identification and manipulation of 

discrete and identifiable subpopulations” of neurons would enable elucidation of the 

functional anatomy of the CNS(Koch and Crick, 2001). With the development of 
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optogenetics and related methods, the means for manipulating cells are now available. In 

contrast, there has been less progress toward the development of approaches for the 

molecular identification of functional populations of neurons and for many neural 

functions, the molecular identity of the relevant cell types remains unknown. This 

problem of linking cell type function has persisted despite increasingly sophisticated 

analyses of the molecular heterogeneity of the brain as a whole(Gong et al., 2003; Lein et 

al., 2007).  

 Here, I report a conceptually distinct way to map the functional organization of 

gene expression in the brain. This approach takes advantage of the fact that marker genes 

can be used to identify specific cell types within an anatomic region such as the 

hypothalamus(Siegert et al., 2009). It is possible to capture RNA from cells proportionate 

to their activity, quantify the enrichment of these cell type specific marker genes and then 

use this information to assay in parallel the functional state of a large number of 

intermingled cell types. A key advantage of this approach is that it enables the use of 

powerful molecular biology tools such as qPCR or RNA sequencing to make 

measurements of cellular activity that would otherwise require analysis of large numbers 

of samples by histology. Thus, it is possible to identify in an unbiased way the specific 

genes that are most uniquely expressed in a co-regulated population of neurons in the 

brain. Once identified, such genes can serve as markers that enable the functional 

interrogation of those cells by using optogenetics or other approaches. 

 In this chapter, I demonstrate that phosphorylation of ribosomal protein S6 can be 

used as a tag to enable capture of mRNA from activated cells. This is possible because 

the same signaling pathways that trigger S6 phosphorylation are also correlated with 
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neural activity(Flavell and Greenberg, 2008; Meyuhas, 2008; Valjent et al., 2011). As the 

phosphorylation sites on S6 are evolutionarily conserved(Meyuhas, 2008), this approach 

can in principle be used to study a range of species, including those that are not amenable 

to genetic modification. Moreover, as S6 phosphorylation is controlled by extracellular 

stimuli in all cells(Meyuhas, 2008), this strategy could also reveal the regulation of non-

neural cell types that reside in other complex tissues such as the immune system, lung, 

intestine and kidney just to name a few. The fidelity of this approach has been validated 

by identifying many neurons known to be activated or inhibited in response to well-

characterized stimuli such as salt challenge and fasting. In addition to recapitulating 

known components of these system, I have identified markers for activated neurons that 

have been overlooked such as Gal neurons during fasting and Pdyn neurons during 

scheuduled feeding. As many functional populations of neurons have been visualized by 

cfos staining but not molecularly characterized(Dielenberg et al., 2001; Lin et al., 2011; 

Wu et al., 2012), phosphorylated ribosome profiling provides a general way to identify 

these cells. Once marker genes for these cell types have been identified, techniques such 

as BacTRAP or Ribotag can be used to genetically deliver tagged ribosomes to these cell, 

enabling deep profiling of their transcriptomes(Heiman et al., 2008; Sanz et al., 2009).  

 Although the data suggest that this approach will find broad application in 

neuroscience, it is important to emphasize that pS6, like other surrogates for neural 

activity such as cfos, measures only 1 dimension of ‘neural activity’ and therefore will 

not retrieve markers for all neurons that become activated in all contexts. It is possible 

that neurons that show induction of cfos and pS6 are most responsive to stimuli that 

modulate neuropeptides and biogenic amines since both cfos and pS6 are triggered by 
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biochemical activation of neurons. Although I have shown here that many stimuli that 

activate neurons induce pS6, it is not fully understood to what extent the induction of pS6 

is correlated with action potentials and changes in firing rate.  

Different stimuli induce pS6 with varying efficiency and for this reason it is 

important to optimize the stimulus protocol to maximize the fold enrichment of relevant 

neural markers. For the stimuli explored here, pS6 is induced with kinetics that range 

from tens of minutes to 2 hours. This is comparable to the expression of many immediate 

early genes but is somewhat slower than cfos transcription, which is often complete 

within 20 minutes of stimulation. In addition, experiments described here have focused 

on the hypothalamus but brain regions that have a high level of pS6 at baseline may be 

less amenable to this approach. 

Several large-scale efforts are currently underway to map the functional 

organization of the mammalian brain(Alivisatos et al., 2012; Gong et al., 2003; Koch and 

Reid, 2012). These projects are being supported by efforts to develop new imaging 

technologies that can probe the complex anatomy of this tissue(Lichtman and Denk, 

2011). The approach described here represents a complementary way to link structure to 

function of the nervous system. Unlike existing efforts, this approach suggests a way to 

simultaneously measure the activity of every cell type within a region of brain, a goal not 

addressed by existing technology. Although the use of ribosome phosphorylation to 

identify activated neurons was focused on the hypothalamus, it should be possible to 

capture ribosomes and its associated mRNA in response to other signals that reflect the 

functional state of a cell. For instance, many proteins dynamically associate with 

polysomes in response to extracellular stimuli and these proteins could also function as 
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ribosome tags that enable enrichment of RNA from cells that received specific signals. 

Althernatively, it might be possible to engineer ribosomes that are modified in response 

to the expression of immediate early genes such as cfos or use mass spectrometry to 

identity posttranslational modifications of the ribosomes that correlate with specific 

stimuli. The combination of such approaches may eventually enable the use of RNA 

sequencing to measure the functional state of complex tissues along multiple dimensions 

and at the resolution of molecularly defined cell types.  
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Chapter 4: 

Ablation of AgRP Neurons Impairs Adaptation to Scheduled Feeding 

             

Introduction 

 Molecular clocks play a key role in coordinating physiology and behavior with 

environmental cues(Rosenwasser et al., 1981). The circadian oscillator in the 

suprachiasmatic nucleus (SCN) is regulated by environmental light/dark cues conveyed 

from the retina and controls the sleep wake cycle and other behaviors in 

mammals(Hastings et al., 2003; Lowrey and Takahashi, 2004). At the molecular level, 

this circadian clock relies on daily oscillations in the transcription and translation of a set 

of evolutionarily conserved clock genes(Reppert and Weaver, 2002). In the SCN, 

circadian oscillations in clock gene expression change cellular activity within this 

structure to control circadian rhythms(Fuller et al., 2008; Gavrila et al., 2008). Circadian 

rhythms in clock gene expression are also observed in many brains outside the 

SCN(Guilding and Piggins, 2007) as well as in peripheral, non neuronal 

tissues(Balsalobre et al., 1998; Yamazaki et al., 2000). 

 While a light entrained oscillator regulates sleep wake cycle and other processes, 

this is not the only biological clock. When food availability is restricted to a single period 

during a fixed time of the day, over the course of a few days animals adapt to this 

schedule and increase their feeding during the window of food availability, even if it is 

during the light phase, a time when animals do not normally eat. In addition, in this 

scheduled feeding paradigm, animals show a marked increase in locomotor activity 

shortly before onset of the time when food is made available. This increased activity is 
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referred to as food anticipatory activity, FAA(Mistlberger, 1994; Stephan, 2002). FAA is 

associated with increase in body temperature, adrenal corticosterone secretion and 

gastrointestinal motility. This biological rhythm, timed to a window of food availability is 

unaffected by SCN ablation, confirming the existence of a food-entrainable oscillator 

(FEO) that is separate from the SCN(Krieger et al., 1977; Stephan et al., 1979). 

Moreover, previous reports have demonstrated that scheduled feeding can entrain and 

shift the circadian rhythms in peripheral tissues as well as brain areas outside the SCN 

even when oscillation in the SCN remains phase-locked to the light/dark cycle(Damiola 

et al., 2000; Hara et al., 2001; Stokkan et al., 2001; Wakamatsu et al., 2001). These 

findings show that the timing of food availability can cause a phase uncoupling among 

multiple circadian oscillators outside the SCN and can even dominate the circadian 

oscillator. However, while the demonstration that FAA and other physiologic responses 

develop after scheduled feeding, the anatomic sites and neuronal populations that 

comprise the food entrained oscillator have not been elucidated. 

 In the previous chapter, I employed a new profiling technology to identify cell 

types in the hypothalamus that are activated in response to an acute or chronic 

stimulus(Knight et al., 2012). I used this method to identify neural populations in the 

hypothalamus that are activated when food availability of animals are restricted to a 3 

hour window during the light phase. In the previous chapter, I reported that dynorphin 

neurons in the dorsomedial hypothalamus play a role in the response to scheduled 

feeding. I also found that AgRP/NPY neurons in the arcuate nucleus are activated when 

animals are subjected to a scheduled feeding paradigm. AgRP neurons in the arcuate 

nucleus of the hypothalamus co-express NPY(Hahn et al., 1998) and regulate food intake 
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and metabolism. Optogenetic activation of these neurons promote food intake(Aponte et 

al., 2011; Atasoy et al., 2012). These neurons also express the ghrelin receptor(Willesen 

et al., 1999) and are responsive to plasma ghrelin which has been shown to rise prior to 

meal times and has been hypothesized to promote feeding during scheduled 

feeding(LeSauter et al., 2009; Mistlberger, 2011; Verhagen et al., 2011). 

 I thus set out to evaluate the possibility that AgRP neurons also play a role in the 

response to scheduled feeding and the development of FAA. In this chapter, I confirm a 

key role for AgRP/NPY neurons in the response to scheduled feeding suggesting that it is 

a key neural component of the food entrainable oscillator. 

Results 

AgRP Neurons are Activated during Scheduled Feeding (SF) 

 Although the role of AgRP neurons in metabolic homeostasis is well studied, their 

role in circadian-regulated feeding behavior is less clear. I first used cfos expression to 

test whether scheduled feeding activates these neurons. I mated AgRP-Cre mice to a lox-

STOP-lox tdTomato reporter line to generate AgRP tdTomato animals that express the 

fluorescent reporter tdTomato only in AgRP cells. These animals were then subjected to a 

SF paradigm in which animals were only allowed access to food during a 3 hour window 

between ZT 4 and ZT 7. As mentioned, mice normally eat between ZT 12 and ZT 24. 

After 10 days of SF, animals were perfused at different times during the day and the 

expression of the immediate early gene, cfos, was probed using immunohistochemistry. 

cfos expression in AgRP neurons was low 2 hours before the start of the scheduled 

feeding window but increased thereafter peaking at ZT 4 just prior to food being made 
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available (Figure 17A-F, 17M). cfos expression in these neurons then fell during the 

feeding window and remained low 2 hours after the feeding window ended (Figure 17G-

M). However, if food was withheld during ZT 4 and ZT 7 in fully trained animals, the 

number of AgRP neurons that expressed cfos continues to rise during the feeding window 

and was still increasing 2 hours after the feeding window ie ZT 9 (Figure 17M-S). These 

observations suggest that the activity of AgRP neurons is synchronized with food 

availability and that they might play a role in the behavioral response to scheduled 

feeding. 

Ablation of AgRP Neurons 

 To study the functional role of AgRP neurons in scheduled feeding, I ablated 

these neurons by generating mice that expressed the human diptheria toxin receptor only 
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in AgRP neurons by mating AgRP-Cre animals with a lox-STOP-lox iDTR line. I then 

injected diptheria toxin (DTX; 50ng/g) subcutaneously in neonatal animals. I used 

neonatal animals because prior reports showed that injection into adult animals resulted 

in profound hypophagia and death(Gropp et al., 2005; Luquet et al., 2005). In contrast, 

these same reports showed that neonatal animals develop normally and fail to show any 

phenotypic effects after neonatal AgRP ablation suggesting that compensatory 

mechanisms enable neonatal animals to maintain normal food intake when fed ad libitum. 

Consistent with previous reports, there was a substantial decrease in the number of AgRP 

neurons after administration of DTX to neonatal animals (Figure 18A-L)(Gropp et al., 

2005; Luquet et al., 2005). Subcutaneous injection of DTX at post natal day 3 led to loss 

of more than 50% of AgRP neurons on post natal day 7 with a similarly marked decrease 

in NPY immunoreactivity in AgRP DTR animals compared to controls. 

 I found that animals receiving DTX at 3 days of age still showed decreased NPY 

immunoreactivity in 8 weeks old animals (Figure 18D-F). The number of NPY fibers was 

similar in neonatal and adult animals after neonatal AgRP ablation suggesting very little 

regeneration of AgRP neurons took place after DTX treatment. I also found a marked 

decrease in NPY projections in the paraventricular hypothalamic nucleus (PVN) and the 

dorsal medial hypothalamic nucleus (DMH) (Figure 18G-L), sites where AgRP neurons 

are known to project.  

Phenotypic Assessment of AgRP DTR animals 

 Previous studies of neonatal animals after AgRP ablation have shown that food 

intake is normal, in contrast to AgRP ablation of adult animals which leads to extreme 
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anorexia and death(Luquet et al., 2005). Consistent with these reports, I found that 

neonatal ablation of AgRP neurons did not alter viability. Body weight (Figure 19A) and 

food intake (Figure 19B) of both male and female neonatal ablated animals were 

comparable to littermate controls. Since AgRP neurons express the leptin receptor and 

are known leptin targets(Flier, 2004), I next assayed the leptin responsiveness of AgRP 

DTR animals after treatment with high dose leptin (2.5ug/h) via osmotic pumps for 8 

days. The extent of weight loss and decrease of food intake following high dose leptin 

was similar in AgRP DTR animals versus littermate controls (Figure 19C and 19D). I 

also tested whether the response to hypoleptinemia was altered by measuring food intake 

after removing the leptin pumps from AgRP ablated and control animals. I found that 

after withdrawal of high dose leptin treatment, the food intake and weight gain was 

similar in animals with neonatal AgRP ablation versus controls (Figure 19C and 19D). 
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 AgRP neurons become activated when animals are deprived of food (Figure 20A-

F) so I next assayed the response of AgRP DTR animals to a 24 hour fast. I first assayed 

cfos expression in these neurons after food deprivation and found that there were 

significantly fewer cfos positive cells in the arcuate nucleus of AgRP DTR animals 

compared to controls (Figure 20G-I). Note the reduction in the number of cells 

expressing cfos was consistent with the loss of AgRP neurons suggesting that the cfos 
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response in surviving cells was unchanged. Despite the loss of AgRP neurons and the 

similarly low number of cfos positive cells in AgRP DTR animals, the food intake of 

these animals after a 18 hour fast was unaltered compared to controls (Figure 20J). 

Because AgRP neurons also express the ghrelin receptor (Ghsr), I also assayed the 

response of AgRP DTR animals to ghrelin. I found that most of the cfos 

immunoreactivity in the arcuate nucleus colocalized with AgRP cells (Figure 21A-F). 

Similar to the case for food deprivation, ghrelin injection during the light phase resulted 

in much smaller number of cfos positive cells in the arcuate of AgRP DTR animals 

(Figure 21G-I). However, despite the decreased number of cfos positive cells, the food 

intake of AgRP DTR animals after ghrelin treatment was indistinguishable from that of 

control animals (Figure 21J). Taken together, these results show that animals with AgRP 

ablation do not show alterations in baseline food intake and body weight and that their 

responses to leptin treatment, leptin withdrawal, fasting and ghrelin treatment are all 

normal. 

Response of AgRP DTR Animals to Scheduled Feeding in the Light Phase 

 I next compared the response to scheduled feeding of AgRP DTR animals that 

received DTX at 3 days of age to their littermate controls (also injected with DTX). 12 

week old animals were maintained on a 12 hour light dark cycle since weaning at which 

time food availability was changed to a period between ZT 4 and ZT 7. This was 

continued for 14 days. Consistent with previous reports, control animals showed a 

transient reduction in food intake but quickly acclimated to this change, steadily 

increasing their food intake over the course of the experiment with no mortality. In 

contrast, I noted increased mortality among AgRP DTR mice with 10% mortality at day 2 
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and 30% mortality at day 4 (Figure 22A). Moreover, the AgRp DTR animals that 

survived the first 4 days of SF and remained viable through the end of the experiment 

failed to acclimate normally to the SF protocol. Wildtype mice that are given food only 

between ZT 4 and ZT 7 consume less food over the first 6 days as they acclimate to the 

change in food availability. However, by day 7 normal mice consume an equivalent 
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amount of food in the feeding window as they consume previously during the entire dark 

phase. In contrast, AgRP DTR animals consumed less food and weighed less than control 

mice from day 4 to day 9 with food intake only reaching that of control mice after day 10 

(Figure 22B and 22C). 

 Animals that have become acclimated to the SF protocol exhibit markedly 

increased locomotor activity known as food anticipatory activity (FAA) beginning at ZT 

2, 2 hours prior to the presentation of food. I next monitored the 24-hour activity of 

AgRP DTR animals after 3 days of SF, by which time wild type animals show robust 

FAA(Mistlberger, 1994). Consistent with the reduced food consumption at this time, 

AgRP DTR animals did not show an increase in locomotion in the 2 hour window prior 

to the scheduled meal 3 days after food availability was shifted to the light phase (Figure 

22D and 22E). This defect in locomotion before meal time was not due to a general 
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deficit in locomotion since total activity counts for AgRP DTR animals was similar to 

controls. However, after 10 days of SF, the FAA of AgRP DTR animals were 

indistinguishable from controls. Taken together, these data demonstrate that AgRP 

neurons play an important role in the ability of animals to sense and adapt to a temporal 

change in food availability. The delayed acclimation to this change leads some animals to 

die of starvation while those animals that survive still show a significant delay in 

recovery of food intake and the onset of FAA. 

Reponse of AgRP DTR Animals to SF in the Dark Phase 

 As a further control, I monitored survival, food intake weight and FAA in AgRP 

DTR mice when food availability was limited to 3 hours during the dark phase which, as 

mentioned, is when wild type mice, which are nocturnal, consume nearly all of their food. 

AgRP DTR animals given food only during a 3 hour window in the dark phase between 

ZT 15 and ZT 18 showed an equivalent increase of food intake and body weight 

compared to controls throughout the experiment (Figure 23A and 23B). After 3 days of 

SF in the dark phase, 24 hour activity analyses further revealed that AgRP DTR animals 

showed increased locomotion prior to the start of meal time, although the magnitude of 

FAA was significantly lower than controls (Figure 23C and 23D). Thus the deficit in 

adapting to SF was more profound when food was only available during the light phase, a 

time when mice generally move less and eat less. 

Discussion 

 AgRP neurons which are localized in the arcuate nucleus are both necessary and 

sufficient for feeding in adult animals(Gropp et al., 2005; Luquet et al., 2005). However, 
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animals in which AgRP neurons are ablated as neonates survive suggesting that the 

increased plasticity of the central nervous system in younger animals allows such animals 

to survive after the loss of these neurons. Here I show that the ablation of AgRP neurons 

in neonatal animals results in significant abnormalities in the response to a temporal 

alteration of food availability. These abnormalities include increased mortality in animals 

subjected to a protocol that elicits FAA with a significant delay in the recovery of food 

intake and body weight and an absence of FAA even in those animals that survive. These 

abnormalities are not observed when food is limited to an equivalent window in the dark 

phase suggesting that AgRP neurons are essential for the ability of animals to adapt to a 

change in food availability at circadian times when food is uncoupled from the circadian 

oscillator (ie moved to the light phase). In contrast, the loss of AgRP neurons has no 

effect on baseline food intake, body weight or the response to food restriction, leptin and 

ghrelin treatment or leptin withdrawal. In aggregate, these findings suggest that AgRP 

neurons are a key component of a food entrained oscillator that allows animals to predict 
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in time when nutrient will be available and adjust their behavior accordingly. Moreover, 

the observation that AgRP neural ablation in neonatal animals affects only the response 

to SF suggests that a key function of these neurons is to control this set of responses. 

 In this study, I used a Cre-lox system to express the human diptheria toxin 

receptor only in AgRP neurons and was able to ablate 50% of these neurons. This extent 

of ablation is consistent with a previous report using the same Cre-lox strategy(Gropp et 

al., 2005). We do note that in a separate report using a knockin strategy as reported by 

Luquet et al(Luquet et al., 2005) there was more than 90% ablation of AgRP neurons. It 

is unclear why these strategies result in differing degrees of ablation. Interestingly, 

neonatal ablation of AgRP neurons using the knockin method (with near complete 

ablation) resulted in animals becoming obese after 12 weeks of age with a metabolic shift 

towards lipid oxidation which is somewhat paradoxical in light of the known effect of 

AgRP neurons to increase feeding(Joly-Amado et al., 2012). The animals with ~90% 

ablation exhibited decreased food intake after 24 hour fast and ghrelin challenge in 

contrast to a failure of a more limited ablation to have an effect as shown in this study. 

The aggregate data show that a loss of only 50% of AgRP cells is not sufficient to impair 

responses to food deprivation and ghrelin injection while the hyperphagia that develops 

after glucoprivation is not impaired even after the loss of the vast majority of AgRP 

neurons(Luquet et al., 2007). Though the extent of AgRP ablation observed here is 

incomplete, the key finding is that the response to SF in animals with AgRP ablation was 

still impaired even when 50% of AgRP neurons were intact, suggesting that the response 

to SF is quite sensitive to perturbations of AgRP neurons. The nutrient signal responsible 

for linking AgRP neuronal activity to circadian time is not known though recent studies 
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have shown that hypothalamic autophagy(Kaushik et al., 2011) and mitochondria 

dynamics(Dietrich et al., 2013) regulate AgRP neuronal function in response to changes 

in energy availability.  

 The SCN, which responds to light, is believed to be the primary circadian 

oscillator, but the biological rhythms that develop in response to changes in food 

availability are known to persist even in the absence of the SCN. These data have thus 

suggested that there is a food entrainable oscillator that separate and independent of the 

light entrained oscillator(Krieger et al., 1977; Stephan et al., 1979). Previous work to 

identify the anatomical sites of the food entrainable oscillator have focused on structures 

in the hypothalamus posterior to the SCN that regulate feeding behavior such as the 

dorsal medial hypothalamus (DMH) as well as the arcuate nucleus (ARC). 

 The possible role of the DMH was previously assayed by analyzing the 

periodicity of the expression of the canonical clock genes, Period 1 (Per1) and Period 

(Per2), both of which were expressed rhythmically in the DMH during SF(Mieda et al., 

2006). However, lesioning studies of the DMH report disparate results. Thus while 

Landry et al(Landry et al., 2006) showed that radio-frequency induced lesions on the 

DMH did not impair FAA. Gooley et al(Gooley et al., 2006) reported that ibotenic acid 

induced lesions of the DMH attenuated FAA. The different findings of these studies may 

be attributed to a variety of factors including lesion type and behavioral assays that were 

used. 

 In addition to the DMH, rhythmic expression of clock genes was also reported in 

other brain regions, including the ARC, after a change in feeding schedule, though the 
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identity of which arcuate population was not determined(Moriya et al., 2009; Verwey et 

al., 2008). The clock genes Per1 and Per2 are also expressed in the ARC with RF(Mieda 

et al., 2006) while endogenous Per2 is expressed rhythmically in the ARC in slice 

preparations of a Per2 luciferase knockin mouse(Guilding et al., 2009). These data show 

that arcuate neurons show rhythmic behaviors and are consistent with our conclusion that 

AgRP neurons are a neural component of the food entrainable oscillator. While 

Mistlberger and Antle(Mistlberger and Antle, 1999) showed that monosodium glutamate 

(MSG) induced lesions of the ARC enhanced FAA in rats during SF, the possible role of 

AgRP neurons was not assessed and furthermore this finding is the opposite of what was 

observed after AgRP ablation which reduces FAA. However, it must be noted that lesions 

of the ARC using MSG not only results in the loss of AgRP neurons but also adjacent 

cell population such as POMC neurons. Thus the increase in FAA after non-specific ARC 

lesions is likely to be a result of the net effect of damage to several different cell types 

and the identity of the putative cell type(s) that normally suppress FAA is not known. 

 Arcuate neurons that co-express the neuropeptide AgRP and NPY(Hahn et al., 

1998) also express the leptin receptor and are inhibited by leptin(Flier, 2004). NPY is a 

potent orexigenic neuropeptide and promotes feeding in sated or food-deprived animals 

was administered centrally(Billington and Levine, 1992) while AgRP is an antagonist of 

the melanocortin-4 receptor (MC4R), which when activated suppresses feeding(Ollmann 

et al., 1997). While the effect of AgRP/NPY neurons in metabolic homeostasis is well-

characterized, their involvement in the temporal control of food intake has been less clear 

at least prior to the current study. Consistent with data presented here, studies of leptin 

deficient ob/ob mice and Zucker rats, which exhibit hyperphagia as well as increased 
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AgRP/NPY neural activity, revealed enhanced FAA after a change in food schedule and 

this effect can be suppressed by recombinant leptin treatment(Mistlberger and Marchant, 

1999; Ribeiro et al., 2011). In addition, AgRP DTR animals exhibited a defect in 

adapting to SF during the light phase despite only a partial loss of AgRP neurons, 

suggesting that a full ‘complement’ of AgRP neurons is essential for the normal response 

of animals to this SF paradigm. It has been recently shown that AgRP neurons are 

heterogeneous with respect to their projections in the central nervous system(Betley et al., 

2013) and it is possible that different AgRP populations suffer different degrees of cell 

loss after DTX treatment. It is also possible that the impairment to SF observed here 

could be due to developmental effects of neonatal AgRP neuronal ablation since 

development of downstream dopamine neurons in the ventral tegmental area (VTA) is 

altered after AgRP neurons ablation(Dietrich et al., 2012). Further studies will be 

necessary to understand whether distinct AgRP subpopulations are responsible for FAA 

as well as to elucidate the cellular mechanisms that couple food availability to the activity 

of these neurons. Since Per1 and Per2 are also expressed rhythmically in the arcuate 

nucleus during SF(Mieda et al., 2006), it is possible that arcuate AgRP neurons express 

the canonical clock genes in response to food availability. Intriguingly, mice lacking 

known canonical clock components in all tissue exhibited normal FAA and response to 

SF(Storch and Weitz, 2009), suggesting that oscillators that link nutrient availability to 

behavior may be different from the known clock genes that regulate circadian rhythm. 

 It has been hypothesized that the gut hormone ghrelin is a peripheral signal that 

targets hupothalamic nuclei to increase locomotor activity in anticipation to a scheduled 

meal. Ghrelin acts through the growth hormone secretgogue receptror (GHSR), which is 
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widely expressed throughout the hypothalamus, including in AgRP neurons in the 

ARC(Guan et al., 1997; Willesen et al., 1999; Zigman et al., 2006). Interestingly, animals 

under SF exhibited rhythmic patterns of ghrelin secretion with plasma levels peaking 2 

hours prior to which when food was available(Drazen et al., 2006). Consistent with this 

study, GHSR knockout mice also exhibited attenuated FAA(Blum et al., 2009). The fact 

that FAA was not abolished but only impaired in GHSR knockout mice suggests that 

there must be other undiscovered peripheral cues that regulate meal pattern behavior. 

Intriguingly, ghrelin knockout mice displayed normal FAA(Szentirmai et al., 2010) 

suggesting that another unknown ligand of GHSR could induce FAA and/or compensate 

for the absence of ghrelin. Since GHSR is widely expressed in the hypothalamus, of 

which AgRP neurons are a small population, it is thus not surprising that FAA can still be 

observed in AgRP ablated animals that survive albeit with a significantly delayed onset. 

Furthermore, shRNA knockdown of GHSR in the DMH and the VMH of rats did not 

abolish FAA with some anticipatory activity still persisting(Merkestein et al., 2014). 

Taken together, these data suggest a distributed network of brain regions that regulate 

meal pattern behavior that includes AgRP neurons in the ARC. Thus, disrupting one node 

of this network only attenuates but does not completely abolish FAA. 

 It is well documented that circadian rhythm of the SCN is primarily determined 

by light/dark cues while food availability can entrain peripheral tissues(Damiola et al., 

2000; Hara et al., 2001; Stokkan et al., 2001; Wakamatsu et al., 2001). It is intriguing to 

note that light availability (or lack of) can also be used as a cue for animals to begin food 

seeking behavior since animals have to be awake to consume food. SF during the light 

phase, when mice are usually at rest and do not feed, uncouples oscillations in peripheral 
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tissues from the central pacemaker to coordinate body physiology in response to food 

intake. At the same time, cues from the peripheral much influence non-SCN brain regions 

to change behavior from rest to food seeking. Data present here suggest that AgRP 

neurons in the ARC are a key site where peripheral and possibly other cues are detected 

independent of visual cues (ie light) that allow an animal to adapt to a new meal time 

during a period when mice are normally at rest and do not consume food.  
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Chapter 5: 

Loss of MCH Neurons Enhances Adaptation to Scheduled Feeding 

             

Introduction 

 The neuropeptide melanin-concentrating hormone (MCH) was first discovered in 

teleost fish(Kawauchi et al., 1983) but is also expressed in mammals. MCH binds to a G-

protein coupled receptor, MCHR1(Kokkotou et al., 2001) and is an orexigenic peptide 

because intracerebroventricular (icv) administration of MCH stimulates food intake(Rossi 

et al., 1997). To date, studies of the physiological role of MCH neurons have manipulated 

MCH or its receptor. MCH knockout mice are lean and hyperactive and exhibit increased 

wakefulness(Kokkotou et al., 2005; Shimada et al., 1998; Willie et al., 2008) while 

MCHR1 knockout mice are also hyperactive(Zhou et al., 2005). The function of MCH 

neurons was explored by expressing a toxic form of ataxin-3 in MCH neurons, which 

caused progressive cell death(Alon and Friedman, 2006). These mice developed a lean 

phenotype with enhanced metabolism consistent with MCH knockout mice. Acute 

ablation of MCH neurons also caused a mild lean phenotype and hyperactivity(Whiddon 

and Palmiter, 2013). However, the role of MCH neurons in scheduled feeding has never 

been explored.  

 In Chapter 3, I described that mRNA transcript for MCH was depleted during 

scheduled feeding, suggesting a role for MCH neurons in this paradigm. Here I 

investigate the role of MCH neurons using diptheria toxin mediated cell ablation.  

Results 
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Ablation of MCH neurons 

 I generated mice expressing the human diptheria toxin receptor only in cells 

expressing MCH by crossing a MCH 

Cre line to a lox-STOP-lox iDTR line. 

I then injected diptheria toxin (DTX, 

100ng) every other day for a total of 4 

doses in adult mice. On the 10th day 

after the first DTX injection, I 

perfused control DTR and MCH DTR 

animals and performed 

immunostaining for MCH in brain 

slices of these animals. After DTX 

injection, I observed a complete loss of MCH immuno-reactivity in MCH DTR brain 

slices while MCH was readily detected in the lateral hypothalamus of control animals 

(Figure 24A-B), confirming that DTX-mediated ablation of MCH was successful. Loss of 

MCH neurons only caused a small but insignificant loss in body weight and no changes 

in food intake were observed (Figure 25A-B). As animals null for MCH and the MCH 

receptor MCH1R become hyperactive(Zhou et al., 2005), the home cage locomotor 

activity of MCH DTR animals was recorded before and after DTX administration and no 

changes in activity counts were observed (Figure 25C-D). I also tested the response of 

MCH DTR animals to hyperleptinemia by administrating leptin via osmotic pumps for 7 

days. Decrease in body weight and daily food intake in MCH ablated animals was 

comparable to control animals (Figure 25E-F). Furthermore, the response in body weight 
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and food intake to hypoleptinemia was also unaltered in MCH DTR animals after 

removal of osmotic pumps (Figure 25E-F).  

Response of MCH DTR animals to scheduled feeding.  

 The transcript for Pmch was depleted following immunoprecipitation of 

phosrylated ribosomes during scheduled feeding (Figure 15D), suggesting that inhibition 

of MCH neurons may play a role in regulating the response to this paradigm. I next 

maintained animals with ablated MCH neurons on a scheduled feeding protocol where 

food was made available only during the light phase between ZT 4 and ZT 7. MCH DTR 

animals acclimated faster to the shift in food available as evidenced by the 25-50% 
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increase in food intake relative to controls on day 3 to day 5 and the normalization of 

daily food intake by day 8 versus day 12 for control animals (Figure 26B). Consistent 

with the earlier normalization of food intake, MCH DTR also regained body weight faster 

than controls (Figure 26A). 24 hour locomotor analysis after animals were entrained on 

the scheduled feeding protocol for 2 weeks revealed that MCH DTR animals exhibited 

greater amplitude of food anticipatory activity (FAA) in the hours before food 

presentation (Figure 26C-D). This observation is consistent with the inactivation of MCH 

neurons during scheduled feeding as uncovered by phosphorylated ribosome capture and 

functionally demonstrates that loss of activity in MCH neurons contributes to FAA.  

Response of MCH Vgat knockout animals to scheduled feeding 

Besides neuropeptides, neurons also use classical neurotransmitters such as 

glutamate and gamma-aminobutyric acid (GABA) to convey information. I first 

determined whether MCH neurons are GABAergic by performing immunostaining for 

the MCH peptide in a glutamate decarboxylase, Gad67 (also known as Gad1) GFP 
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reporter mouse line. Gad67 is a glutamate decarboxylase that catalyzes the 

decarboxylation of glutamate to GABA. I found that 60.23% (+0.6%) of MCH neurons 

overlapped with GFP (Figure 27A-C), suggesting that these neurons are GABAergic. 

Next, I generated mice with MCH neurons that are deficient in GABA signaling by 

mating a MCH Cre line with a Vgat flox/flox line. Vgat is an integral membrane protein 

for the packaging of GABA into synaptic vesicles. I then maintained MCH Vgat flox/flox 

animals on a scheduled feeding protocol. MCH Vgat knockout animals acclimated to the 

protocol as well as control animals as evidenced by comparable recovery of body weight 

and normalization of daily food intake (Figure 27D-E). However, after 2 weeks of 

entrainment to the protocol, conditional knockout animals exhibited FAA with 

significantly more locomotion than control animals (Figure 27F-G). This result suggests 

that GABA signaling from MCH contributes to locomotion during FAA.  

Discussion 

In this chapter, I investigate the role of MCH neurons during scheduled feeding. 

Diptheria toxin mediated ablation of MCH neurons in adult animals resulted in complete 

loss of MCH immunoreactivity and led to a small but insignificant decrease in body 

weight although food intake, response to hyperleptinemia, hypoleptinemia and home cage 

locomotion were unaffected. However, animals with ablated MCH neurons acclimated 

faster to a scheduled feeding protocol as evidenced by earlier recovery of food intake and 

body weight in the first week of the protocol. Loss of MCH neurons also resulted in 

increased FAA locomotion after 2 weeks of entrainment to scheduled feeding.  
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This result combined with the finding that MCH neurons are inhibited during 

scheduled feeding, suggest that activity of MCH neurons acts to counter the adaptation of 

animals to a scheduled feeding paradigm and that silencing MCH neurons promotes this 

adaptation and may also account for the increased FAA locomotion after entrainment. 

MCH has been consistently shown to be an orexigenic peptide but the loss of MCH 

neurons in this study caused increased food intake during acclimatization to scheduled 

feeding is rather surprising.  

I further determined that approximately 60% of MCH neurons are GABAergic 

and generated animals with impaired GABA signaling in MCH neurons. These animals 

did not show enhance adaption to scheduled feeding but did exhibit increased FAA 

compared to control animals after entrainment to scheduled feeding. Taken together, 
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these data demonstrate that different aspects of MCH neurons contribute to distinct 

behavioral phenotypes associated with scheduled feeding with the silencing of GABA 

signaling from MCH neurons contributing to locomotion during FAA. However, more 

studies need to be carried out to further tease apart and definitively show which aspects 

of MCH neurons contribute to which behavioral phenotype. For instance the scheduled 

feeding experiments can be performed in mice with genetic deletion of MCH, in mice 

with disrupted glutamate signaling in MCH neurons and in mice with disruption in both 

glutamate and GABA signaling in MCH neurons.  
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Chapter 6:  

Loss of Galanin Neurons Results in Leanness 

Introduction 

Galanin is a neuromodulator in both the central and peripheral nervous system 

and is implicated in several neural functions including cognition(Wrenn et al., 2006), 

pain perception(Liu and Hökfelt, 2002; Xu et al., 2000) and neuronal protection and 

regeneration(Elliott-Hunt et al., 2004; Mahoney et al., 2003). Galanin is an orexigenic 

neuropeptide since central administration of galanin stimulates food intake(Crawley et 

al., 1990; Kyrkouli et al., 1986; 1990). However, genetic manipulations of the galanin 

gene do not cause changes in body weight and food intake(Hohmann et al., 2003; Wynick 

et al., 1998). Furthermore, food deprivation does not alter galanin gene expression 

levels(Schwartz et al., 1993). Thus, the role of galanin and galanin expressing cells in 

regulating metabolic homeostasis remains unclear. In chapter 3, I reported that galanin 

neurons were activated following an overnight fast, suggesting a role for galanin in 

response to food deprivation. Here, I investigate the role of galanin neurons in energy 

balance using diptheria toxin alpha chain (DTA) mediated cell ablation.  

Results 

Ablation of Galanin neurons in the hypothalamus results in lean animals 

To ablate galanin neurons, I generated GaL DTA animals by mating a GAL Cre 

mouse line with a lox-STOP-lox DTA line. Expression of intra-cellular DTA blocks 

translation, causing death of Cre expressing cells. I verified the lost of galanin neurons in 
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the hypothalamus by performing immunostaining for galanin in adult animals. There was 

a marked decrease in number of galanin positive cells in several hypothalamic nuclei 

including the mPOA, ARC, DMH and LH (Figure 28A-I). I noted that galanin cells were 

not lost in the PVN, possibly due to poor expression of Cre recombinase in this region. I 

next monitored the body weight and weekly food intake of Gal DTA animals on regular 

chow for 6 months. Gal DTA animals weighed less than littermate control animals 

starting at 6 weeks of age and were resistant to age-associated weight gain (Figure 29A). 

Weekly food intake of Gal DTA animals was also consistently lower than control animals 
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(Figure 29B). Consistent with weighing less, body fat percentage measurements using 

MRI revealed that Gal DTA accumulated less fat mass compared to controls (Figure 

29C). I also observed that Gal DTA animals were shorter than their wildtype littermates 

(Figure 29D), suggesting a growth defect. Taken together, these data demonstrate that 

loss of galanin neurons leads to a lean phenotype, which was not observed in galanin null 

animals. 

Loss of GABA transmission in a subset of galanin neurons contributes to leanness 

The loss of galanin neurons but not galanin peptide results in leanness, suggesting 

that other properties of galanin neurons besides the galanin peptide might mediate this 

phenotype. I next investigated whether galanin neurons also use the inhibitory 

neurotransmitter GABA by crossing a galanin tdTomato reporter line with a Gad67 GFP 
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reporter line. Examination of brain slices in these animals showed that a subset of galanin 

neurons in various hypothalamic nuclei colocalized with GFP (Figure 30A-D), 

suggesting that they are GABAergic. I then generated animals with conditional knockout 

of Vgat, an integral membrane protein involved in packaging of GABA into synaptic 

vesicles, in galanin neurons. Gal Vgat fl/fl animals maintained on a high fat diet (60% 

fat) consistently weighed less than littermate control animals starting from 8 weeks of age 

(Figure 30E). Consistent with weighing less, Gal Vgat fl/fl animals accumulated less fat 

mass when body composition was measured by MRI (Figure 30G). 

Discussion 

In this chapter, I investigate the role of galanin neurons in energy homeostasis using 

diptheria toxin alpha chain mediated cell ablation. Loss of galanin immunoeactivity was 

observed in the mPOA, ARC, DMH and LH. Although not all galanin neurons were 

ablated, Gal DTA animals weighed less than control animals and consistently consumed 

less food. These animals also accumulated less age-associated body fat. This result is 
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surprising since galanin knockout animals do not exhibit changes in body weight and 

food intake(Hohmann et al., 2003; Wynick et al., 1998). Taken together, these data 

suggest that other aspects of galanin neurons, besides the galanin neuropeptide, might 

play a role in energy balance.  

I further determined that a subset of galanin neurons use the inhibitory 

neurotransmitter GABA for synaptic transmission and proceeded to disrupt GABA 

signaling in this subset of neurons. Animals with impaired GABA signaling in galanin 

neurons were leaner than controls when maintained on a 60% high fat diet and also 

accumulated less body fat as measure by MRI, suggesting that GABA signaling from 

galanin neurons play a role in energy balance.  

The finding in chapter 3 that galanin neurons in the mPOA and DMH are 

selectively activated after food deprivation suggests that galanin neurons in these 2 

regions might play key roles in maintaining body weight and food intake. The genetic 

approach employed in this chapter is unable to target galanin neurons in specific 

anatomical regions. Therefore, more intricate manipulation of galanin neurons is required 

to determine the specific roles of galanin neurons in each anatomical region in controlling 

energy homeostasis. For example, selective manipulation of specific galanin neurons in 

defined anatomical regions using optogenetics or DREADDs can potentially reveal the 

function of galanin neurons in each region.  
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Chapter 7:  

Summary and Conclusion 

Prior studies have provided evidence for a physiological system that maintains 

energy homeostasis. Numerous studies in the past decades have provided great insights 

into the neural substrates that regulate this system. Disruption of this physiological 

system can lead to obesity and metabolic syndrome. However, there is reason to believe 

that not all neural components of this system have been identified and that there are many 

unidentified and/or under-studied neural populations awaiting discovery. Furthermore, 

metabolism and daily cycles of circadian rhythms appear to be coupled and misalignment 

can result in metabolic disorders but this aspect has received less attention. Here, I 

developed a novel method to identify functionally activated neurons in the central 

nervous system using phosphorylated ribosome capture. I used this new method to 

identify new neural populations as well as uncover novel functions for previously well-

studied populations.  

In this dissertation, I describe a novel method using phosphorylated ribosomal 

subunit S6 as a molecular tag for functionally activated neurons in the central nervous 

system. I showed that it is possible to isolated mRNA transcripts using commercial 

antibodies against pS6 and I further confirmed the fidelity of this method by successfully 

identifying known cell types that become activated upon physiological stimuli such as 

salt challenge (OXT, AVP) and food deprivation (NPY, AGRP). The method is also 

sensitive enough to detect cell type specific markers of cell that become inhibited 

following a physiological stimulus such as the anorexigenic peptide POMC following an 
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overnight fast.  

 A lesser studied gene marker, galanin, was identified following overnight fast, 

which I confirmed with immunostaining for both pS6 and cfos. Although galanin can 

stimulate food intake when administered to rodents, genetic manipulation of the galanin 

gene did not reveal any crucial role for galanin in energy balance. Using diptheria toxin 

alpha chain mediated cell ablation, I generated animals with significant loss of galanin 

neurons in the hypothalamus and found these animals to be lean, implicating galanin 

neurons itself as important for metabolic homeostasis. I further determined that GABA 

signaling from a subset of galanin contributes to this lean phenotype. However, galanin is 

expressed in many neurons in various nuclei of the hypothalamus. Genetic manipulation 

of galanin neurons does not provide insights into how each subpopulation of galanin 

neurons control energy balance. Interestingly, only galanin neurons in the mPOA and 

DMH are activated after overnight fast and these populations do not express the active 

leptin receptor. Additional experiments that can manipulate a specific population of 

galanin neurons, such as optogenetics or DREADDs, are required to further dissect the 

specific contribution of each population to energy homeostasis. Nevertheless, the lean 

phenotype observed after loss of galanin neurons is the first example of the role of 

galanin neurons in regulating energy balance.  

 I also employed phosphorylated ribosome capture to identify molecular markers of 

cell types that are involved in coordinating meal pattern behavior. PDYN neurons in the 

DMH become activated, in a ghrelin independent manner, when animals were entrained 

on a scheduled feeding protocol where food was only available for 3 hours during the 

light phase. The activation of PDYN neurons is rhythmic, peaking in the middle of the 
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food window. Pharmacological blockage of the endogenous receptor of PDYN revealed 

that PDYN activation acts as a ‘stop’ signal to restrain bouts of voracious feeding, 

especially when animals are entrained to eat a whole day’s worth of calories within a 

short time window.  

Besides PDYN, the activation of AgRP neurons also exhibited a rhythmic pattern 

during scheduled feeding, with activation peaking at the start of the feeding window. 

Diptheria toxin mediated loss of AgRP neurons impaired the ability of animals to adapt to 

a feeding window in the light phase, a period when rodents do not normally consume 

food. This impairment was not observed when the food window remained in the dark 

phase, when rodents are active and eat most of their food. Taken together, these data 

revealed the importance of AgRP neurons in coordinating behavior to adapt to changes in 

food availability, especially when food availability is decoupled from light-dependent 

rhythms.  

I also investigated the role of MCH neurons, which were inhibited during scheduled 

feeding, in meal pattern behavior. Diptheria toxin induced adult ablation of MCH neurons 

resulted in viable animals. Animals with complete loss of MCH neurons acclimated to 

scheduled feeding faster than animals with intact MCH neurons, demonstrating MCH 

neurons are part of the neural circuitry that regulates adaption to scheduled feeding.  

Using phosphrylated ribosome capture, I identified molecular markers for cell types 

that regulated adaption to scheduled feeding. This data now provide defined neuronal 

populations where the intracellular mechanisms of meal pattern behavior can be studied. 

As mentioned in chapter 4, there is reason to believe novel, yet undiscovered genes and 
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their gene products regulate meal pattern behavior as animals with genetic knockout of 

known clock components can still be entrained by food.  

 Phosphorylated ribosome capture is a novel and powerful tool that supplements 

current efforts in neuroscience to map function organization of the mammalian brain. 

Since this method utilizes an endogenous biochemical tag on ribosomal subunit S6, it can 

potentially be applied to model organisms that are less amenable to genetic manipulation 

as long as S6 is phosphorylated.  

Future Directions 

 In this dissertation, I have shown that S6 phosphorylation can be used as a mark for 

biochemical activation of neurons and this post-translation tag correlates well with the 

immediate early gene cfos. However, electrophysiological evidence is still the gold 

standard in neuroscience to definitively demonstrate neural activity. Thus, it would be of 

great interest to activate a discrete neuronal population using optogenetics or pharmaco-

genetics and determine the level of pS6 induction in those cells after activation. This set 

of experiments would provide greater understanding on how the electrical activity of 

neurons correlates with S6 phosphorylation.  

 The findings that the activity of cells expressing the neuropeptides PDYN, AgRP 

and MCH contribute to the food entrainment phenotype observed in a scheduled feeding 

paradigm provide molecular entry points to further study the components of the food 

entrainable oscillator and the mechanisms that entrain and maintain meal pattern 

behavior. Mutants deficient in canonical clock genes do exhibit food anticipatory activity, 

suggesting that the molecular components that regulate this behavior differ from that of 
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the light entrainable oscillator. Transcriptional profiling of AgRP or PDYN neurons using 

BAC-TRAP(Heiman et al., 2008) at different time points after entrainment to scheduled 

feeding can provide greater molecular information of the components that cycle with 

food schedule, potentially revealing novel circadian components.  

As mentioned in Chapter 4, disrupting metabolic signaling pathways such as the gut 

hormone ghrelin or the adipocyte derived hormone leptin do affect food anticipatory 

activity but cannot completely abolish this behavior, strongly suggesting that other 

physiological pathways must also play a role. It is highly plausible that the ability to 

anticipate food availability is a trait highly selected for by evolution since consumption of 

nutrients is one of the most fundamental survival necessities, thus it makes sense that 

information from several physiological systems is processed to drive this anticipatory 

activity. Therefore, interfering with one system is insufficient to abolish food anticipatory 

activity. Examples of other signaling molecules that could play a role in food anticipatory 

activity include blood glucose, insulin and glucocorticoid. The involvement of additional 

systems that contribute to food anticipatory activity can possibly be discerned from the 

transcriptional profiling experiment as mentioned above since intracellular pathways that 

process these peripheral signals could exhibit rhythmicity that closely track with the 

imposed food schedule.  
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