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EFFECTS OF TEMPORAL AND SPATIAL CONTEXT  

WITHIN THE MACAQUE FACE-PROCESSING SYSTEM 

Clark Andrew Fisher, Ph.D. 

The Rockefeller University 2015 

Temporal and spatial context play a key role in vision as a whole, and in face 

perception specifically. However, little is known about the neurophysiological 

mechanisms by which contextual cues exert their effects. Anatomically distinct 

face patches in the macaque brain analyze facial form, and studies of the activity 

within these patches have begun to clarify the neural machinery that underlies 

facial perception. This system provides a uniquely valuable opportunity to study 

how context affects the perception of form. We used functional magnetic 

resonance imaging (fMRI) to investigate the brain activity of macaque monkeys 

while they viewed faces placed in either temporal or spatial context.  

Facial motion transmits rich and ethologically vital information, but the way 

that the brain interprets such natural temporal context is poorly understood. 

Facial motion activates the face patches and surrounding areas, yet it is not 

known whether this motion is processed by its own specialized neural 

machinery, and if so, what that machinery’s organization might be. To address 

these questions, we monitored the brain activity of macaque monkeys while they 

viewed low- and high-level motion and form stimuli. We found that, beyond 

classical motion areas and the known face patch system, moving faces recruited a 

heretofore-unrecognized face patch. Although all face patches displayed 

distinctive selectivity for face motion over object motion, only two face patches 



preferred naturally moving faces, while three others preferred randomized, 

rapidly varying sequences of facial form. This functional divide was 

anatomically specific, segregating dorsal from ventral face patches, thereby 

revealing a new organizational principle of the macaque face-processing system. 

Like facial motion, bodies can provide valuable social context, revealing 

emotion and identity. Little is known about the joint processing of faces and 

bodies, even though there is reason to believe that their neural representations 

are intertwined. To identify interaction between the neural representations of 

face and body, we monitored the brain activity of the same monkeys while they 

viewed pictures of whole monkeys, isolated monkey heads, and isolated monkey 

bodies. We found that certain areas, including anterior face patches, responded 

more to whole monkeys than would be predicted by summing the separate 

responses to isolated heads and isolated bodies. The supralinear response was 

specific to viewing the conjunction of head and body; heads placed atop non-

body objects did not evoke this activity signature. However, a supralinear 

context response was elicited by pixelated, ambiguous faces presented on bodies. 

The size of this response suggests that the supralinear signal in this case did not 

result from the disambiguation of the ambiguous faces.  

These studies of contextually evoked activity within the macaque face 

processing system deepen our understanding of the cortical organization of both 

visual context and face processing, and identify promising sites for future 

research into the mechanisms underlying these critical aspects of perception.
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1. Introduction 

Making sense of the rapidly changing visual world is a daunting challenge, 

and one of the brain’s great feats. The brain works hard to interpret the spots of 

light and dark, contrast and color captured by the retina, and to ultimately assign 

them to objects as diverse as a candle’s flame, a missing set of keys, and the 

smiling face of a friend. One way that the brain can make this thorny problem 

more manageable is to exploit temporal and spatial contextual cues. For instance, 

the dancing, flickering motion of flame is shared by few other forms, and a 

novelty keychain can be a strong signal that your keys are hiding somewhere 

nearby. 

The wide gulf that exists between basic visual percepts and a meaningful 

visual world may be most evident when the normal functions of the brain break 

down. It is in these circumstances that the crucial role played by context is 

clearest. Consider the case of Dr. P, the music teacher who inspired the title of 

neurologist Oliver Sacks’ popular book, The Man Who Mistook His Wife for a Hat 

(Sacks 1998). When Sacks flipped through a National Geographic and asked Dr. P 

to describe the pictures, 

…a striking brightness, a colour, a shape would arrest his attention and elicit 

comment—but in no case did he get the scene-as-a-whole. He failed to see 

the whole, seeing only details, which he spotted like blips on a radar screen. 

He never entered into relation with the picture as a whole—never faced, so 

to speak, its physiognomy. He had no sense whatever of a landscape or 

scene. 
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This inability to create a meaningful visual whole from its constituent parts had 

its most dramatic effect on the perception of faces, where it meant that he could 

recognize no one by sight, “neither his family, nor his colleagues, nor his pupils, 

nor himself.” 

To mitigate the major social deficit caused by his form-blindness, Dr. P could 

still occasionally identify those around him by leveraging visual context. 

Sometimes, he relied upon the temporal context provided by motion; Sacks 

explains that “…though he could not recognise his students if they sat still, if 

they were merely ‘images’, he might suddenly recognise them if they moved. 

‘That’s Karl,’ he would cry. ‘I know his movements, his body-music’” (Sacks 

1998). At other times, Dr. P relied upon the spatial context provided by a 

characteristic feature near – or even on – the face: “Churchill’s cigar, Schnozzle’s 

nose: as soon as he had picked out a key feature he could identify the face.” 

While the brain relies on contextual clues like these to generate the sense of 

vision, knowing this does not explain how the neural underpinnings of vision 

function. In fact, the realization that contextual information is important presents 

a new set of challenges for understanding the neural basis of sight. How, for 

instance, does the brain represent the distinctive movement of Dr. P’s student 

Karl, and how is this dynamic information linked to knowledge of Karl’s form, 

which stays constant even as Karl moves? Does viewing a cigar enhance the 

activity of neurons that represent the form of Winston Churchill’s face, or do all 

associative links between Churchill and his Cuban exist outside of the brain’s 

visual processing machinery?  

To answer these questions, it would be helpful to identify localized cortical 

regions that underlie such contextual effects. Therefore, rather than studying 
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cases of visual context in general, it is logical to start by studying the effects of 

context on the representation of one particular class of object: faces. Using faces 

to study general aspects of higher visual function is appealing not just because 

faces themselves are important, but also because the neural machinery of face 

processing has proven to be uniquely identifiable and accessible. Because of this, 

faces have repeatedly been objects of critical importance in efforts to understand 

how the brain makes sense of the visual world. Just as faces were fundamental to 

Oliver Sacks’ understanding the depth of Dr. P’s deficits, faces may provide the 

key to understanding the neural circuitry underlying visual context. 

In the early 1970s, the discovery of neurons that responded specifically to 

images of faces was one of the first clues to the high degree of form selectivity 

maintained by certain visual neurons, and to the level of configural complexity 

that could be represented by a single neuron (Gross, Rocha-Miranda, & Bender 

1972; Desimone et al. 1984). With the advent of functional neuroimaging in the 

late 20th century, the field of face processing again found itself at the forefront of 

visual neuroscience; the identification of a macroscopic brain region that showed 

a specific sensitivity to face form provided compelling evidence that the visual 

processing of certain classes of objects depends upon specific, anatomically 

distinct brain regions (Kanwisher, McDermott, & Chun 1997). More recently, the 

description of the “face patch” system in macaques (Tsao et al. 2003) has built 

upon these earlier discoveries, revealing that face-selective regions of cortex 

represent discrete but tightly interconnected functional areas filled with face-

selective neurons (Tsao et al. 2006; Moeller, Freiwald, & Tsao 2008; Freiwald & 

Tsao 2010).  As anatomically similar networks have been discovered with 

selectivities for body form (Pinsk et al. 2005), learned symbols (Srihasam, 
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Vincent, & Livingstone 2014), and even qualities like color and curvature (Lafer-

Sousa & Conway 2013; Yue et al. 2014), it is becoming increasingly clear that 

learning how the brain treats faces not only elucidates the processing of these 

socially critical objects, it also establishes a template for understanding how the 

brain represents a wide diversity of high-level visual features (Orban, Zhu, & 

Vanduffel 2014). 

While these discoveries have fostered much research into the representation 

of faces and other objects within the brain, comparatively little is understood 

about how contextual effects fit into this process. This may be a consequence of 

the face-processing system’s greatest experimental benefit: its striking form-

selectivity. A fundamental feature of face processing research has been the 

repeated finding that a still picture of a face, presented on its own, can drive 

regions of visual cortex that show little or no response to viewing any other 

object or scene. This has been a boon to scientists, who can work within the rich 

but restricted space of face form to understand the rules that underlie neural 

activity in these regions.  

However, when we interact with faces, they are rarely the static, 

disembodied heads most frequently used by face processing researchers. Instead, 

faces are dynamic objects, capable of switching attention and affect – and 

therefore significance – in an instant. Face motion itself can contain information 

normally thought to derive from the static features of a face, such as the identity 

or mood of a speaker. Faces are not usually seen on their own, but atop bodies 

that provide important spatial context; if you see a body, odds are good that 

there is a face nearby. Bodies also provide important social context, as an intent 

stare means one thing when it is paired with an outstretched hand, and another 
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when it is paired with a raised fist. In short, faces are constantly surrounded by 

informative temporal and spatial context. 

Given the clear importance of context to visual processing on the one hand, 

and the preexisting knowledge and experimental accessibility of the macaque 

face patch system on the other, we decided to explore the impact of temporal and 

spatial context on face processing in the macaque temporal lobe. This approach 

held the promise of enriching our comprehension of the neural substrates of both 

visual context effects and face processing, thereby bringing us closer to an 

understanding of how the flood of information taken in by the retina is endowed 

with visual meaning by the brain. 

Face-Processing in the Temporal Lobes of Macaques and Humans 

Although the recognition of the macaque face patch system is still less than 

fifteen years old, the particular structure of this system and its ability to bridge 

the fields of human neuroimaging and monkey electrophysiology have made it a 

uniquely valuable resource for understanding high level aspects of sight.  

The macaque face patches are regions of cortex, initially identified using 

functional magnetic resonance imaging (fMRI), that respond more to images of 

faces than to images of other objects (Tsao et al. 2003). While parcellation and 

naming conventions have not fully settled, 6 patches along the temporal lobe are 

increasingly recognized as reproducible, individually identifiable regions (Figure 

1A; Tsao, Moeller, & Freiwald 2008; Vanduffel, Zhu, & Orban 2014; Russ & 

Leopold 2015). Three of these patches sit along the ventrolateral lip of the 

superior temporal sulcus (STS), running from its middle to its anterior end: the 

posterior lateral face patch (PL), the middle lateral face patch (ML), and the 
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Figure 1. Temporal Lobe Face Areas in the Macaque Monkey and Human 

The locations of the most commonly reported face-selective areas on models (not 
to scale) of representative macaque and human brains. These models have been 
inflated so that areas hidden within sulci can be seen. Dark gray areas represent 
the deepest points within sulci. Locations of face-selective cortex are marked 
with red and yellow. 
(A) Commonly reported face patches along the STS of the macaque temporal 
lobe. Face patches PL, ML, and AL are found along the ventral lip of the STS. MF 
and AF are found in the fundus and dorsal bank of the STS. Face patch AM, 
which is also widely reported, is not visible in this view. It is on the ventral 
surface of the temporal lobe, anterior and ventral to face patch AL. Grey labels 
indicate landmark sulci: IOS, inferior occipital sulcus; SF, sylvian fissure; STS, 
superior temporal sulcus. 
(B) Commonly reported face areas in the human brain. The view of the inflated 
human brain has been rotated 45º in the indicated direction, so that face areas on 
the ventral surface of the brain are visible. The OFA and FFA are on the ventral 
surface of the brain. The pSTS face area is within the superior temporal sulcus, 
and is known to be best-localized using dynamic stimuli. Labels again indicate 
landmark sulci: OTS, occipitotemporal sulcus; SF, sylvian fissure; STS, superior 
temporal sulcus.
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anterior lateral face patch (AL). Two additional patches lie in the fundus and 

upper bank of the STS: the middle fundus face patch (MF) and the anterior 

fundus face patch (AF). The sixth, anterior medial, face patch (AM) is found on 

the ventral surface of the anterior temporal lobe near the anterior middle 

temporal sulcus. Microelectrode stimulation during fMRI (Moeller, Freiwald, & 

Tsao 2008) and recent anatomical studies (Grimaldi, Saleem, & Tsao 2012; 

Grimaldi, Saleem, & Tsao 2013) have revealed that the face patches are 

interconnected with each other. Appreciating this system from the macroscopic 

level, it is notable as a network of discrete but connected regions that respond 

specifically to a known and circumscribed set of complex visual forms. 

Additional temporal lobe face patches have been reported (AD in Pinsk et al. 

2009; vV4 and TF in Ku et al. 2011; pPL and aMF in Janssens et al. 2014), but have 

not been reliably replicated within and across experiments. Beyond the temporal 

lobe, regions of face-selectivity have also been found in prefrontal cortex (Tsao et 

al. 2008; Hadj-Bouziane et al. 2008; Janssens et al. 2014). Relatively little is known 

about these areas at the moment, and, given their location distant from 

recognized “visual” cortex, they may not be necessary for basic visual perception 

(though they may be involved in the processing of social signals, see Hornak, 

Rolls, & Wade 1996; Watson & Platt 2012; P. Johnston et al. 2013). We will put 

aside these face areas, and hereafter when we refer to face patches, we mean the 

reliably identified temporal lobe face patches  

At the single neuron level, the organization of face patches makes them an 

ideal site for the study of visual responses in single cells and small networks. 

75%–97% of cells recorded in the face patches are face-selective (varying with 

patch and selectivity criterion), responding more to images of faces than to 
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images of other objects (Tsao et al. 2006; Freiwald & Tsao 2010; Issa & DiCarlo 

2012; Aparicio 2014). This has proven to be exceedingly useful for the 

characterization of face-selective cells, as it allows researchers to target 

electrophysiological recording to areas highly enriched in face-selectivity (e.g. 

Freiwald, Tsao, & Livingstone 2009; Ohayon, Freiwald, & Tsao 2012; Issa & 

DiCarlo 2012). However, while neurons across all face patches are face-selective, 

they are not functionally uniform. Freiwald and colleagues (2010) found that  

when moving from posterior to anterior, from ML to AL to AM, the neurons that 

they recorded became increasingly tuned to the identity of the face and 

increasingly tolerant to the specific angle from which the face was viewed. Thus, 

different face patches are not merely anatomically distinct, but are functionally 

distinct as well. Recent research further suggests that neurons in these patches 

may be fundamentally different than the face-selective neurons outside of them 

(Taubert et al. 2015). This organization makes it possible to explore the varied 

forms that facial information takes as it moves through the face processing 

machinery of the temporal lobe. 

Information gleaned from the macaque face patch network has direct 

implications for the mechanisms of human vision, as there is an organizationally 

similar, possibly homologous, face processing system along the human temporal 

lobe. Face areas in humans were established in much the same way that macaque 

face patches would later be identified: functional imaging was used to recognize 

areas that preferentially responded to face images. Three face areas have been 

repeatedly found in human studies (Figure 1B): the fusiform face area (FFA) on 

the fusiform gyrus of the ventral temporal lobe (Kanwisher, McDermott, & Chun 

1997), the occipital face area (OFA) in occipito-temporal cortex (Gauthier et al. 
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2000), and the posterior STS face area (pSTS, or sometimes STS-FA) in the 

superior temporal sulcus (Puce et al. 1998; Hoffman & Haxby 2000). It is 

becoming increasingly clear that there are further functional areas, identifiable 

either by subdividing these regions (Weiner & Grill-Spector 2010) or examining 

other parts of the temporal lobe (Pinsk et al. 2009; Rajimehr, J. C. Young, & 

Tootell 2009), so it remains possible that there is an exact human homologue for 

each macaque face patch. However, despite repeated attempts to use matched 

experimental design to homologize the macaque and human face-processing 

systems (Tsao, Moeller, & Freiwald 2008; Pinsk et al. 2009; Polosecki et al. 2013), 

the ability to link specific nodes between the two systems has remained elusive 

(Yovel & Freiwald 2013). Even without an established area-to-area homology, 

monkey studies draw inspiration from human face-processing research – where 

it is easier to run basic imaging experiments, train subjects to follow instructions, 

and receive perceptual reports – and human studies benefit from the insights 

provided by monkey experiments – which offer a greater range of techniques, 

including targeted single neuron recordings (Freiwald, Tsao, & Livingstone 2009; 

Freiwald & Tsao 2010; Issa & DiCarlo 2012), anatomical tracing (Grimaldi, 

Saleem, & Tsao 2012), and optogenetics (Gerits & Vanduffel 2013; Afraz, Boyden, 

& DiCarlo 2014). 

Research into the macaque face patches also relies upon and informs a 

diversity of other form-processing research. The discovery of form-selective 

neurons in temporal cortex predates the description of the face patches by 3 

decades (Gross, Rocha-Miranda, & Bender 1972). Since that time, studies of how 

faces (reviewed in Barraclough & Perrett 2011) and  other objects (reviewed in 

DiCarlo, Zoccolan, & Rust 2012) are represented in temporal cortex at large have 
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revealed remarkable abilities of individual neurons (e.g. Perrett et al. 1989; Oram 

& Perrett 1996; Booth & Rolls 1998) and shed light on the general organization of 

the cortical region that is home to the face patches (Connor, Brincat, & Pasupathy 

2007; Rust & DiCarlo 2010).  

However, it is difficult to characterize the tuning of a form-selective neuron 

without any intuition of the form to which it responds or the visual dimensions 

along which it is tuned, limiting the questions that can be asked. While the study 

of face-selective neurons offers one answer to this challenge (as faces have a 

stereotyped form and a number of natural dimensions to explore), such neurons 

are difficult to study outside of the face patches, where only 9–35% of neurons 

are face-selective (Perrett, Rolls, & Caan 1982; Bell et al. 2011; Aparicio 2014). 

Furthermore, while the organization of earlier visual areas is generally 

established at this point, the functional organization of the temporal lobe is still a 

matter of active discussion (Van Essen 2004); even when a neuron, face-selective 

or otherwise, is characterized, it can be difficult to know how to define a 

functionally related neural population or know where it fits in a wider 

processing hierarchy. The face patches not only provide a high density of face-

selective neurons and their attendant benefits, they also allow for the targeted 

study of separate and identifiable functional areas within the poorly delineated 

landscape of the temporal lobe. Thus, this system supports a more deliberate 

exploration of how form is processed at the highest levels of the visual system. 

Given the benefits of the face patch system, both those inherent to its form 

and those resulting from decades of human and macaque research, it is a logical 

place to study the neural processing of visual form. Beyond these general 

benefits, however, the known perceptual effects of facial motion and body 
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context make faces the ideal subjects with which to explore how temporal and 

spatial context help the brain to make sense of the world. 

How the Brain Views Moving Faces 

Motion can reveal a great deal about an object’s form, state, and identity. 

At a very rudimentary level, this happens when an object’s motion exposes 

previously hidden views of its shape. But motion also has the ability to embody 

dynamic signatures and properties (for instance speed, flexibility, and animacy) 

that can only be suggested by a single, frozen pose. It therefore makes intuitive 

sense that the brain would make use of temporal context to understand visual 

forms. In the case of faces, this intuition has been verified, revealing that the 

brain relies upon facial motion – and not just facial form – to gather critical social 

information. 

Emotion, for instance, can be inferred from facial movements (reviewed in 

Krumhuber, Kappas, & Manstead 2013). This is especially true in cases where 

facial form is degraded or absent. For example, when a face is covered with 

white spots and all other form cues are removed, emotions can be clearly 

identified from the moving dots (Bassili 1978; Bassili 1979). This is true even 

though it is difficult to identify a face from any still image of the dots. While 

motion’s benefit is less evident when the full form of a face is available (e.g. 

Cunningham & Wallraven 2009; Fiorentini & Viviani 2011), it is still relied upon 

in certain instances, as when emotions are subtle (Ambadar, Schooler, & Cohn 

2005) or easily confused (Lemay, Kirouac, & Lacouture 1995; Wehrle et al. 2000). 

Facial movements can also convey identity information (reviewed in Xiao et al. 

2014). This is perhaps more surprising, as a person’s identity (unlike his 
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temperament) is fixed, no matter the range motions expressed by his face. Many 

manipulations that impair the identification of static faces (such as contrast 

inversion, image inversion, or posterization) still allow the identification of 

familiar faces in motion (B. Knight & A. Johnston 1997; Lander, Christie, & Bruce 

1999). People can even be identified when their motions are used to animate an 

anonymous computer-generated model (Hill & A. Johnston 2001). 

How are the dynamic features that support such recognition encoded in 

the brain? It seems increasingly likely that they are carried by a pathway 

functionally distinct from the one encoding static face form. Patients who 

demonstrate facial processing deficits that are specific to static stimuli are a clear 

example of this. For instance, there are multiple reports of patients with 

prosopagnosia (face blindness, as Sacks’ Dr. P demonstrated) who can identify 

specific dynamic faces although they distinguish static faces poorly (Steede, Tree, 

& Hole 2007; Longmore & Tree 2013; Richoz et al. 2015). Other reports describe 

people who, after traumatic brain injury, have increased difficulty judging 

emotions from static faces but not from moving ones (Humphreys, Donnelly, & 

Riddoch 1993; Adolphs, Tranel, & Damasio 2003; McDonald & Saunders 2005).  

Such clinical findings align with popular “division of labor” models of 

face processing, which suggest that different aspects of faces are processed by 

separate functional streams within the brain (Bruce & A. W. Young 1986; Haxby, 

Hoffman, & Gobbini 2000; Weiner & Grill-Spector 2013). These functionally 

parcellated models of face-processing echo the dominant understanding of the 

wider visual system, which holds that high-level visual processing is split into at 

least two primary streams: a ventral stream along the occipital and temporal 

lobes that analyzes object form – the “what” pathway – and a dorsal stream 
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leading into the parietal lobe that analyzes object location and movements – the 

“where” or “how” pathway (Mishkin, Ungerleider, & Macko 1983; Goodale & 

Milner 1992). 

In the human brain, functional imaging has begun to identify the 

anatomical location of “face motion” areas that could represent a functional 

stream for the processing of dynamic facial features. Puce and colleagues (1998) 

were the first to suggest that a region in the posterior STS may be involved in 

processing facial motion. They found that this region specifically responded to 

eye and mouth movements, but not to the motion of geometrical patterns. This 

region, now sometimes called the pSTS face area (see discussion above), is also 

particularly activated when attention is directed to the direction of gaze, a 

changeable aspect of the face (Hoffman & Haxby 2000). In agreement with 

division of labor models, pSTS’s sensitivity to dynamic features does not appear 

to be a general property of the face processing system. While pSTS and a more-

recently discovered anterior STS face area (aSTS) are specifically engaged by 

facial motion, more ventral face-selective areas (including OFA and FFA) have 

been found to respond almost equally to videos of and static pictures of faces 

(Pitcher et al. 2011; Polosecki et al. 2013; but see Fox, Iaria, & Barton 2009; Schultz 

& Pilz 2009; Schultz et al. 2013). A recent study suggests that the naturalness of 

face motion is an important driver of the dorsal areas’ response to motion, as 

scrambling the order of a face movie’s frames decreases the resulting activity in 

the face-responsive STS, but not in the OFA or FFA (Schultz et al. 2013). 

Therefore, the emerging picture of facial motion processing in the human brain 

centers around dorsal areas that are activated by the natural dynamics of faces; 
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these areas stand in contrast to ventral face areas, such as the OFA and FFA, 

which are selective for face form but largely unaffected by facial motion. 

While human fMRI experiments have provided a provisional indication of 

the areas where face motion processing occurs, it is difficult to gain an 

understanding of the neural mechanisms at work within these areas. fMRI does 

not provide the temporal or spatial resolution necessary to probe single-cell or 

small network activity, and neither targeted electrophysiology nor causal studies 

are feasible in humans. The macaque monkey provides an appealing 

experimental alternative, as the localization of facial motion areas in these 

animals could be subsequently augmented with a variety of fine-scale studies.  

In fact, single-neuron electrophysiology has already been used to explore 

responses to moving biological forms within the macaque brain, though never 

within an identified face patch. Much of this research has focused on the 

representation of moving bodies rather than moving faces. For instance, one 

recent study found that neurons in the STS and neighboring cortex carry enough 

information to encode both the kinematics of an action and the form of the body 

performing the action (Singer & Sheinberg 2010). Another found two 

subpopulations of STS neurons that responded to movies of a walking body: a 

primarily ventral population that was tuned to the individual poses that make 

up walking, and a primarily dorsal one that was tuned to walking kinematics, 

responding to movies of forward walking much more than to movies of 

backward walking (Vangeneugden et al. 2011). These studies highlight the 

promise of neuron-level studies of object motion representations, but our limited 

understanding of the heterogeneous selectivity of body-selective neurons 
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(Popivanov et al. 2014) makes it difficult to examine the range of responses to 

body form and motion in a systematic way.  

Only two experiments that we know of have explored single neuron 

responses to face motion, and both did so in a limited way. The first showed that 

certain face-selective cells in the dorsal STS respond to head translation in a 

direction selective manner (Oram & Perrett 1996). The second showed that some 

neurons in the same area respond both to specific articulated movements of a 

head relative to a body and also to static poses that suggest that these motions 

(Jellema & Perrett 2003). Both of these studies predated the description of the face 

patches, and barely begin to explain how neural activity represents facial motion.  

Identification of regional specializations for facial motion within the 

macaque face patch system – matching the specializations of the dorsal human 

face areas – would facilitate a more thorough and systematic study how the 

macaque temporal lobe extracts meaning from face movements. A number of 

studies have recently used fMRI to explore the organization of facial motion 

processing in the macaque brain. However, none of these have identified areas 

specialized for natural facial motion like the ones found in humans.  

Furl and colleagues (2012) were the first group to apply macaque fMRI to 

this problem, identifying “motion in face” areas that responded more to videos 

of facial expressions than to still faces. However, functional areas known to 

process motion with little regard for underlying form, including areas MT, MST, 

and FST, are found in the STS fundus neighboring the face patches (Vanduffel et 

al. 2001; Nelissen, Vanduffel, & Orban 2006).  Because moving faces presumably 

recruit form-agnostic areas such as these, the motion-in-face areas were not 

defined in a category-specific manner. While the authors of this study were 
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aware of this issue (stating that they “expected [their contrast] would reliably 

elicit motion areas known to be relatively domain-general”), this experimental 

design precludes using this study to identify areas selective for face motion. 

A subsequent study from our lab addressed this issue, and used fMRI to 

query the responses of face patches to moving and still faces and to moving and 

still objects (Polosecki et al. 2013). This study found that all macaque face patches 

responded more to moving faces than to static ones. However, these patches also 

tended to respond more to moving non-face objects than to static non-face 

objects. The authors concluded that most face patches did not have special 

selectivity for face motion, but instead demonstrated a general motion sensitivity 

resulting from an overlap with general motion areas in the STS. While the 

authors did identify two ventral patches (AL and AM) that demonstrated 

statistically significant face-specific motion responses, the small size of these 

effects raised the possibility the difference between these patches and all others 

was just a matter of experimental power.  

Another recent fMRI study has approached the problem of the macaque’s 

facial motion response in a somewhat different way. Russ and Leopold (2015) 

scanned macaques while showing them naturalistic videos that included other 

macaques interacting with their environments. The researchers scored each 

moment of each video for different features (including motion energy and the 

presence of faces), and used the resulting time-courses as linear regressors to 

explain the recorded fMRI activity. They found that their motion energy 

regressor explained a great deal of activity within all of the face patches, often 

more than the face regressor did. However, it is important to note that this was 

only true when the observed videos included faces. When videos without 
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animals were used as stimuli, the face patches did not respond. This raises the 

question of whether the precedence of motion signals in the face patch system 

resulted from motion per se. Perhaps it resulted, instead, from the diverse views 

of faces that accompanied motion, a feature that was not captured by the face 

regressor. In any case, this experiment revealed no evident sub-specialization 

within the face patches for natural motion. 

The repeated inability to identify specific macaque face patches specialized 

for facial motion throws into doubt not only the utility of the macaque face 

processing system as an informative homologue of the human one, but also 

whether the processing of face dynamics in macaques is as experimentally 

accessible as the processing of face form is. However, human studies suggest two 

strategies that could allow us to unmask any motion specializations that do exist 

within the macaque face processing system. First, it is often necessary to use 

dynamic stimuli to localize motion-selective areas. This common-sense idea is 

supported by human studies that have identified certain face areas – especially 

motion-selective ones – only when dynamic stimuli are used to look for them 

(Fox, Iaria, & Barton 2009; Pitcher et al. 2011). As previous macaque fMRI studies 

have relied upon static stimuli to identify face patches, they may have missed 

regions that are particularly selective for motion. Human studies also suggest 

that it can be difficult to separate the easily entangled variables of natural motion 

and static information. Because movies contain more static frames than still 

images, face areas that are widely regarded as form-specific have sometimes 

been found to be more active in response to movies than in response to still faces 

(Fox, Iaria, & Barton 2009; Schultz & Pilz 2009; Schultz et al. 2013). However, by 

comparing the activity elicited by natural face movies to the activity elicited by 
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temporally scrambled versions of these movies, the distinct sensitivities to 

dynamic and static information within different face areas can be revealed 

(Schultz et al. 2013). 

By following these leads, it may now be possible to identify areas specialized 

for processing face motion within the macaque monkey brain. This could help to 

explain how the brain can extract important social meaning from facial motion, 

and ultimately how temporal context allows us to fully experience the visual 

world.  

The Role of Body Context in Face Processing 

Spatial context, like motion, is a powerful tool for understanding ambiguous 

and confusing visual information. The brain takes advantage of this, and 

therefore the specific object that a person sees, and how easily that person sees it, 

can depend upon other objects within the surrounding scene (reviewed in Bar 

2004). Consider a metallic cylinder adorned with a bright logo. If this cylinder is 

the size of a person’s hand and a woman is bringing it to her lips, it is probably a 

beverage can. If, on the other hand, it is embedded in a remote control’s back, it 

is much more likely to be a battery. As it turns out, bodies provide this type of 

context for faces and can subconsciously influence what we think about them. 

Put in practical terms, information that we think we gather from the form of 

a face sometimes derives from the form of an associated body instead. Recent 

research shows that body context exerts a particularly strong influence on the 

interpretation of emotion, a feature that has long been associated with facial 

expressions (reviewed in Hassin, Aviezer, & Bentin 2013). The first scientific 

evidence of this came from studies showing that the emotion perceived from a 
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face can be modulated by the posture of an associated body (Meeren, van 

Heijnsbergen, & de Gelder 2005; Aviezer et al. 2008). Interestingly, this effect 

occurs even when the person judging the face is informed of this modulation and 

specifically instructed to ignore the body (Aviezer et al. 2011). A recent and 

dramatic example of this effect comes from Aviezer et al. (2012), who found that 

in certain cases of extreme emotion, still pictures of facial expression provide no  

information for distinguishing a positive emotion from a negative one. They 

showed that bodies, on the other hand, can be strong indicators of the difference 

in valence. Despite this, many people judging the emotions of ambiguous 

emotional faces paired with bodies reported relying on facial cues to categorize 

emotions, even though their performance showed their choices were dependent 

on the bodies. The authors refer to this phenomenon as “illusory facial affect”, 

the belief that a face contained emotional information that was actually coming 

from its body.  

Although it is more challenging to demonstrate, body context can also play a 

similar role in identity recognition. To prove this, Rice and colleagues (Rice, 

Phillips, & O'Toole 2013) used a machine vision algorithm to identify 100 pairs of 

face pictures where the faces provided very little information as to whether the 

pair represented the same person or two different people. While experimental 

subjects were (unsurprisingly) bad at determining whether each pair showed the 

same person when faces were presented alone, they did much better when 

bodies were provided. Again, however, they often reported that they relied upon 

face features to make identification decisions even though their responses 

showed otherwise. These experiments into the perception of emotion and 
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identity not only show that bodies can convey social information, but reveal that 

this body information is regularly misattributed to faces.  

These misattributions could be purely cognitive, the result of an assumption 

that faces – not bodies – convey emotion and identity. Alternatively, they could 

reflect the fact that viewing bodies fundamentally alters the neural 

representations of faces. While the second possibility may seem less likely, 

psychology experiments have lent it support by demonstrating how bodies can 

impact face-processing mechanisms. One study found that exposure to a body 

can change the perception of subsequently viewed face (Ghuman, McDaniel, & 

Martin 2010). For example, adaptation to pictures of female bodies made a face 

appear more male, while adaptation to pictures of male bodies did the opposite. 

Another study showed that bodies paired with faceless heads are much harder to 

identify when they are upside-down – a dramatic “inversion effect” that is 

generally indicative of face processing (Brandman & Yovel 2012). Furthermore, 

when the researchers presented these faceless bodies briefly and quickly 

obscured them with a blank screen, viewers generally believed that they had 

seen a face. These findings suggest not merely that bodies carry some of the same 

information as faces, but also that bodies can directly engage the machinery of 

face perception. 

This impact that bodies have on face processing stands in conflict with the 

accepted neuroanatomy of biological form perception, which holds that faces 

and bodies are processed by neighboring but separate networks within the 

temporal lobe. Just as fMRI was used to discover face areas, it has also been used 

to identify areas in the human brain that respond more to pictures of bodies and 

body parts than to other objects. The most commonly reported body areas in 



 

22 

humans are the extrastriate body area (EBA) at the posterior end of the temporal 

lobe (Downing et al. 2001) and the fusiform body area (FBA) on the fusiform 

gyrus (Peelen & Downing 2005; Schwarzlose, Baker, & Kanwisher 2005). Much as 

with face areas, recent studies suggested that additional body areas beyond these 

may exist (Weiner & Grill-Spector 2010).  

Research paints a similar picture of the macaque brain, with patches of body 

selectivity generally found neighboring the face patches (Tsao et al. 2003; Pinsk et 

al. 2005). Two of the larger patches have been given names: the one near the 

middle face patches (ML and MF) has been labeled midSTS and the one near the 

anterior face patches (AL and AF) is called antSTS (Popivanov et al. 2012). The 

neurons within these patches are most often selective for body parts, and those 

that are not evince high selectivity for other forms (Bell et al. 2011; Popivanov et 

al. 2014).  While some face cells are found within these body patches, the 

category selectivity of the individual neurons in the face and body patches and 

the distinct activity peaks of face and body areas in fMRI studies of humans 

(Schwarzlose, Baker, & Kanwisher 2005; Weiner & Grill-Spector 2011) and 

macaques (Pinsk et al. 2009; Popivanov et al. 2012) have reinforced the idea that 

these two categories are processed by two distinct systems. Even so, the 

behavioral results described above go against this framework. 

One possible reason for this discrepancy is that the experiments which have 

identified face and body processing areas – and those that have characterized the 

neurons within them – tend to present faces independent of bodies and bodies 

independent of faces. If the influence of bodies upon face processing is 

contextual in nature, it might only be detectable in situations where at least the 

suggestion of a face is present with the body. Cox et al. (2004) were the first to 
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find evidence of such a body context effect with fMRI. They showed subjects 

both pictures of faces and pictures of blurred faces, where all internal details 

were removed, while measuring the response in the FFA. The blurred, 

ambiguous faces elicited less activity than the unambiguous faces. However, 

when the blurred faces were shown with a body below them, they elicited at 

least as much activity as the lone unambiguous faces did. The authors reached 

the conclusion that these “contextually defined faces” activated the FFA much 

like intrinsically defined faces do, hypothesizing a physiological similar in spirit 

to the illusory facial affect described by Aviezer and colleagues (2012). Notably, 

Cox et al. claimed that unambiguous faces did not elicit a greater response from 

FFA when paired with a body, a claim supported by an earlier study (Kanwisher, 

Stanley, & Harris 1999). Thus, these authors posited that bodies activate face 

processing by disambiguating an unclear face, and will neither activate face 

processing when little possibility of a face exists nor when a clear face is visible. 

Since this experiment, a number of groups have revisited the question of 

whether body context affects cortical face responses even when facial form is 

clear and evident. These groups have taken four fundamentally different 

approaches to this question. While their conclusions have varied, many of these 

studies suggest that face responses can be modulated by the presence of a body. 

Two studies took the straightforward approach to this question:  showing 

faces and bodies, together and separately, and comparing the evoked activity in 

cortical regions of interest (Morris, Pelphrey, & McCarthy 2006; Song et al. 2013). 

Both of these studies demonstrated that showing a body along with a face could 

increase the activity within the FFA. The one study that examined the OFA (Song 

et al. 2013), however, found the addition of a body to a face did not significantly 
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increase OFA activity. In no case did the level of activity elicited by a face and a 

body rise above the sum of the responses to faces and bodies presented 

independently. Therefore, while these experiments suggested a response to faces 

with bodies in FFA, it is possible that the observed activity was merely the sum 

of independent responses to the two forms, perhaps resulting from overlapping 

face and body areas.  

This led one of the groups (Song et al. 2013) to apply the second approach to 

this question: multi-voxel pattern analysis (MVPA). The researchers considered 

whether the spatial pattern of activity within the face areas was fundamentally 

altered when a body was shown with a face, or if this pattern could be accurately 

modeled by summing the patterns evoked by faces and bodies presented alone. 

They concluded that the whole person pattern, at least in the right FFA, was not 

well explained by the sum of the face and body patterns, and thus must 

represent a functional integration of body and face information in this area. 

However, a subsequent study taking a similar MVPA approach found that the 

response pattern in the fusiform gyrus evoked by pictures of whole people could 

be accurately modeled by a summation of face and body patterns (Kaiser et al. 

2014). 

Two other studies took a third approach to determine if face and body form 

are jointly represented in the brain, utilizing fMRI adaptation experiments. Such 

adaptation experiments are based on the idea that repeated presentations of a 

stimulus perceived as identical will lead to diminished fMRI responses (which is 

to say adaptation; Grill-Spector & Malach 2001). Therefore, if a stimulus change 

releases adaptation within a certain brain area, that brain area must be tuned to 

whatever feature was changed. One study examined whether changing the body 
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presented with a face released face areas from adaptation, and found that this 

occurred in the FFA but not the OFA (Andrews et al. 2010). The second fMRI 

adaptation experiment used a voxel-wise analysis, and found that some voxels, 

both near the OFA and near the FFA, were released from adaptation if either the 

face or the body was changed (Schmalzl, Zopf, & Williams 2012). Furthermore, 

some even showed supralinear adaptation when the face and body were 

constant, an adaptation effect that was greater than the one predicted by 

summing the adaptation effects of holding just the face or just the body constant. 

Thus, both adaptation experiments suggest a joint response to faces and bodies 

around face areas. 

The most recent experiment to address the interaction between face 

representations and body context considered whether bodies and faces compete 

with each other for neural resources (Bernstein et al. 2014). This study built upon 

experimental results suggesting that distinct objects presented simultaneously 

will suppress each others’ fMRI responses, while objects that the brain groups 

together show no such competition (McMains & Kastner 2010). The researchers 

found that body images competed with paired head images in the OFA but not 

in the FFA, and concluded that head and body are represented holistically in this 

more anterior face patch.  

Some of these studies also sought to determine if faces could exert a 

contextual effect upon body representations, and examined whether body areas 

showed evidence of face effects (Morris, Pelphrey, & McCarthy 2006; Song et al. 

2013; Bernstein et al. 2014). These experiments generally found no effect of 

adding faces to bodies in the more posterior EBA. However, the studies that 

examined the more anterior FBA found evidence of joint tuning, similar to what 
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the same studies found in the face-selective FFA (Song et al. 2013; Bernstein et al. 

2014). 

Although their methods and conclusions varied, these studies generally 

suggest that bodies can influence responses of “face areas” in certain situations, 

and even that faces may influence “body areas”. Such jointly determined 

responses may underlie the interaction of face and body information that has 

been found in behavior. However, as discussed above, human imaging is 

inherently limited in is ability to probe neural mechanisms. Continuing this line 

of research with macaque monkeys could reveal if and how face information and 

body information are integrated at a much finer scale. 

In fact, while macaque vision research has generally examined responses to 

lone faces and lone bodies presented without context, there is one study that 

provides evidence of interactions between faces and bodies in single cells. 

Wachsmuth et al. (1994), without any knowledge of the face patches, recorded 

single neurons along the macaque STS while showing pictures of whole people, 

lone heads, and lone bodies. They identified 7287 neurons, found just 64 of these 

that responded to pictures of whole people, and were able to successfully record 

from 53 of these. While 17 of these cells responded only when the head was 

present and 5 responded only when the body was present, 22 responded when 

either the head or body were present (but not when inanimate objects were 

shown). Furthermore, 9 cells responded only when both head and body were 

visible. While it is not possible to precisely position these neurons within our 

current understanding of face and body areas, and although they represent a 

very small sample, this experiment provides hints of the single neuron 
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selectivities that may underlie the contextual interactions between faces and 

bodies. 

The macaque face and body patches provide an opportunity to reexamine 

how bodies impact the representation of faces – and vice versa – within a system 

that is open to exploration with electrophysiology and causative experiments. 

Pursuing this opportunity could reveal how viewing bodies influences 

representations of faces, and more generally how visual context shapes the 

neural representation of visual objects.  

Finding Effects of Visual Context in the Macaque Face-Processing System 

To address the questions raised above and identify the cortical areas 

underpinning the representation of facial context in the macaque, we ran two 

sets of fMRI experiments: one to explore the processing of facial motion, the 

other to explore interactions between the representations of face and body form. 

In the facial motion experiment, we imaged the brains of macaques while 

showing them still pictures and movies of geometrical patterns, faces, and non-

face objects. This allowed us to carefully compare the intertwined responses to 

general motion, facial form, and facial motion. In order to examine regions where 

facial motion might be critical for neural activity, we located an expanded face 

processing system by comparing responses to moving faces with responses to 

moving objects. Afterwards, we considered the activity of each face patch when a 

monkey viewed movies of face motion and temporally scrambled control movies 

in order to determine which areas – if any – demonstrated selectivity for natural 

motion. Through this experiment, we found both a previously undiscovered face 
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patch and a functional division of the face-processing system that suggests that 

dorsal face patches are specialized for natural face motion. 

In the body context experiment, we showed macaques pictures of faces and 

bodies, alone and together, while imaging activity in the face patches, body 

patches, and surrounding temporal lobe. This allowed us to study interactions 

between the neural representations of these two forms. We also used pictures of 

body-matched objects to examine the form-specificity of observed body context 

effects, as well as heavily pixelated pictures of faces to probe the underlying 

meaning of such effects. As we will show, this experiment revealed an 

unexpectedly supralinear response to faces viewed in the context of bodies in a 

subset of face patches, a response which was specific to body form and does not 

appear to result directly from the disambiguating effect of bodies. 

These two studies, by identifying areas that demonstrate contextual effects, 

deepened our understanding of the brain’s face-processing machinery and set 

the stage for future exploration of visual context’s neural foundations. 



 

29 

2. Experimental Procedures* 

All procedures conformed to local and NIH guidelines, including the NIH 

Guide for Care and Use of Laboratory Animals. These experiments were 

performed with the approval of the Institutional Animal Care and Use 

Committees of The Rockefeller University and Weill Cornell Medical College. 

Subjects 

We studied four male rhesus monkeys (Macaca mulatta), aged 3.5 to 5 years 

old, weighing 5.5 to 7.5 kg. Here, they are referred to as M1–M4. A cranial 

implant composed of acrylic cements (C&B-Metabond, Parkell; Palacos LV+G, 

Zimmer) and anchored with ceramic screws (Thomas Recording; Rogue 

Research) was implanted in each monkey using standard surgical methods, and 

standard anesthetic and postoperative treatment protocols were followed. A 

custom-designed MRI-compatible headpost made of Ultem (SABIC) was secured 

in each implant.  

Data Acquisition 

All MRI data were acquired with a 3T Siemens Tim Trio MRI scanner, using 

an AC-88 gradient insert (Siemens) for functional scans. Immediately prior to 

each functional scan, a dose of Feraheme (AMAG Pharmaceuticals; M1-M3) or 

Molday ION (BioPAL; M4) containing 8 to 10 mg/kg of iron was injected into a 

saphenous vein to increase functional contrast. When Molday ION was 

administered on consecutive days, we adjusted the dosage to compensate for 

                                                

* Portions this chapter have been published previously (Fisher & Freiwald 2015). 
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functional half-life. As these agents increase functional contrast by decreasing 

local MR signal (Mandeville et al. 1998; Vanduffel et al. 2001), we inverted the 

sign of our measurements during analysis so that positive values reported here 

reflect increased blood volume. Functional images were obtained with a custom-

designed 8-channel surface coil (Lawrence Wald, MGH Martinos Center) and a 

gradient-echo echo-planar imaging sequence with 54 horizontal slices, a 96 × 96 

in-plane matrix, an isotropic resolution of 1 mm3, TR = 2 s, TE = 16 ms, and 2× 

GRAPPA acceleration.  

We acquired 6 anatomical MRI volumes from each monkey to serve as the 

basis for individualized models of the cortical surface. With the subject under 

isoflurane anesthesia and positioned in an MRI-compatible stereotactic frame, 

T1-weighted images were obtained using a custom single-channel surface coil 

and a fast gradient echo sequence (magnetization-prepared rapid gradient echo, 

MPRAGE) with 240 sagittal slices, an in-plane matrix of 256 × 256, and an 

isotropic resolution of 0.5 mm3. 

Visual Stimuli 

During functional scans, stimuli were projected at 60 Hz onto a screen 

placed 35 cm in front of the monkey’s eyes. For the study of facial motion 

processing (Chapter 3), three block design stimulus sets were presented to each 

monkey: low-level motion, object category, and object motion stimulus sets 

(Figure 2). A fourth stimulus set for retinotopic mapping was presented to M1, 

M2, and M3. For the study of context effects (Chapter 4), an additional body 

context stimulus set was presented to all 4 monkeys (Figure 3). 



 

31 

Figure 2. Example Stimuli from the Face Motion Study 

(A) Sample frames from the low-level motion stimulus set and definition of 
contrast (blue arrow) for measuring low-level motion selectivity.  
(B) Sample stimuli from the object category stimulus set and definition of the 
static face selectivity and static body selectivity contrasts.  
(C) Sample frames from the object motion stimulus set and definition of related 
contrasts. Note that the source movies used to create the stimuli for the dynamic 
face selectivity contrast were different than the source movies used for the other 
blocks of this stimulus set; they featured the same monkeys and cage toys 
demonstrating different actions. We used data collected in response to the 
localizer movies solely to localize the face patch ROIs, and based all analyses 
within these ROIs on independent data collected during the presentation of other 
stimuli. 
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Figure 3. Example Stimuli from the Body Context Study 

Sample stimuli from the body context stimulus set. This is one example  
monkey/object pair of the 15 that made up this stimulus set. In each case, the 
object was chosen to match the overall shape and size of the monkey’s body. The 
empty/empty condition was presented in baseline blocks. 
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The low-level motion stimulus set (Figure 2A) consisted of two types of 

stimuli: dynamic and static. Dynamic blocks contained movies of shifting plaids 

created by superimposing two drifting sinusoidal gratings (Rust et al. 2006). The 

gratings drifted linearly with a period of 1/3 s and were randomly reoriented 

after a single period (3 times per second). The static blocks consisted of still 

frames taken from these movies. The frames of the static stimuli were updated 

every 1/6 s (every half period) so that 2 frames were shown for each plaid: an 

initial image and its contrast negative. Thus, while there was a strong percept of 

translational movement throughout the dynamic blocks, this was removed in the 

static blocks. These stimuli were presented in the scanner at 15º × 15º and 30 

frames per second (fps). A single run of this stimulus set consisted of 36 s of gray, 

6 stimulus blocks of 24 s alternating between dynamic and static, 24 s of gray, the 

6 stimulus blocks shown in reverse order, and a final 24 s of gray. 2 different 

orders were used: one where a static block came first and one where a dynamic 

block came first. 16, 10, 8 and 16 runs of this stimulus set were analyzed, 

respectively, for M1 to M4. 

In the object category stimulus set (Figure 2B), grayscale pictures of rhesus 

macaque faces, cynomolgus macaque faces, fruits and vegetables, monkey 

bodies, and manmade objects were presented in separate 24 s blocks. An 

additional block, composed of phase-scrambled versions of the fruit and 

vegetable pictures, was also presented. We used this stimulus set to both localize 

the face patches by comparing the responses to monkey faces with the responses 

to fruits and vegetables and localize body patches by comparing the responses to 

monkey bodies with the responses to manmade objects. Both blocks of monkey 

faces were combined for the identification of face patches. Each block of this 
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stimulus set consisted of 15 exemplar images shown for 0.4 s, with each exemplar 

repeated 4 times in a block. Images were matched within and across all 

categories for total screen area, placed on a pink noise background, and 

normalized for luminance and frequency amplitude (http://www.mapageweb 

.umontreal.ca/gosselif/shine/; Willenbockel et al. 2010). In addition, images 

were chosen so that the aspect ratios of the fruits and vegetables matched those 

of the macaque faces, and the aspect ratios of the manmade objects matched 

those of the macaque bodies. At the scanner, the pink noise background was 

presented at 15º × 15º, and the average foreground image was 7.1º × 5.5º. Each 

image was presented at 1 of 5 equally likely screen positions: either at the screen 

center or offset 1.1º from the screen center to the left, right, top, or bottom. A 

Latin square design was used to create 6 orders of the stimulus blocks, so that 

both the relative position of each block within a run and the identity of the 

immediately preceding block were balanced. Each run of this stimulus set 

consisted of 36 s of gray, followed by the 6 stimulus blocks without intervening 

gaps, 24 s of gray, the 6 blocks presented in reverse order, and a final 24 s of gray. 

In cases where matched sets of all 6 orders were not available for analysis, the 

palindromic design of the runs allowed balance to be achieved by analyzing 

matched sets of 3 orders. 36, 30, 27, and 30 runs of this stimulus set were 

analyzed, respectively, for M1 to M4. 

The object motion stimulus set (Figure 2C) consisted of stimuli showing 

either familiar macaque faces (“faces”) or familiar cage toys (“objects”) as 

“pictures”, “natural movies”, or “jumbled movies”. Picture, natural movie, and 

jumbled movie stimuli were created from a common set of videos: picture blocks 

showed the videos at 2 fps, natural movie blocks showed them at 15 fps, and 
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jumbled movie blocks showed the same frames in randomized order at 15 fps. 

Independent videos were used to create an additional block of natural face 

movies and an additional block of natural object movies to use for the 

localization of face patches (in Figure 6A); we refer to these as “localizer movies”. 

Each block of this stimulus set consisted of 6 exemplar movies/image sequences 

shown for 3 s apiece. Source videos of both monkeys and objects were recorded 

at 60 fps to minimize motion blur. The cage toys shown in the object blocks were 

all able to undergo non-rigid movement to better match the range of 

transformations demonstrated by the monkey faces, and object videos showing 

vigorous movement were captured to ensure that motion content was no greater 

in the face videos than in object videos (also, see Figure 8). Stimulus subjects 

were recorded in front of a blue screen under a standardized set of lighting 

conditions, monkey bodies were masked with a blue neck plate, and chroma 

keying was carried out in Final Cut Pro (Apple) so that the subjects could be 

isolated from the background and videos could be standardized. An exemplar 

frame from each video was used to standardize the pixel area of the subjects to 

an equivalent circular diameter, the centers of all subjects’ trajectories were 

aligned, color was removed, and luminance was histogram-normalized across all 

frames (Willenbockel et al. 2010). At the scanner, the resulting stimuli were 

shown with the subjects having an equivalent circular diameter 8.5º and moving 

within a 15º x 15º middle gray background. Again, a Latin squares design was 

used, resulting in 8 counterbalanced orders. Each experimental run was 

composed of 24 s of gray, the 8 stimulus blocks (18 s apiece), 24 s of gray, the 

stimulus blocks in reverse order, and a final 30 s of gray. Palindromic design 

allowed for balance with matched sets of 4 orders when available runs were not 
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balanced across all 8 orders. 48, 32, 20 and 40 runs of this stimulus set were 

analyzed, respectively, for M1 to M4. 

The retinotopic mapping stimulus that we showed to M1, M2, and M3 

consisted of a bar containing a high contrast moving pattern (the shifting plaids 

of the low-level motion stimulus) crossing a gray visual field in 8 directions 

(Dumoulin & Wandell 2008). The circular area traversed by the bar was 30º in 

diameter at the scanner. This stimulus began with a 30 s period of gray, each 

crossing of the bar took 32 s, and 20 s periods of gray were placed after every 2 

crossings. 19, 31, and 17 runs of this stimulus set were analyzed for M1, M2, and 

M3, respectively. 

The body context stimulus set (Figure 3) consisted of 8 conditions, in which 

grayscale exemplars of different categories occupied the upper and lower visual 

fields. The upper visual field could contain either a monkey face (“face”) or a 

heavily pixelated version of the same monkey face (“blurred face”), while the 

lower visual field could contain either a monkey body (“body”) or an inanimate 

object shaped and sized to match a given body (“object”). The 8 resulting 

conditions (which were presented in a block design) were therefore “face”, 

“blurred face”, “body”, “object”, “face & body”, “face & object”, “blurred face & 

body”, and “blurred face & object”. Each exemplar face (or its blurred version) 

was only matched with the body of the same monkey or an object chosen and 

scaled to match the body. All pictures of monkeys and objects were histogram-

normalized (Willenbockel et al. 2010) before being assembled into final stimuli. 

All stimuli were presented on a middle gray background at 15º x 15º in the 

scanner. Each block of this stimulus set consisted of 15 exemplar images shown 

for 0.4 s, with each exemplar repeated 3 times in a block. A Latin squares design 
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was used to plan experimental runs, resulting in 8 counterbalanced orders. Each 

run of this stimulus set began with 24 s of grey, the 8 stimulus blocks (18 s 

apiece), 24 s of grey, the 8 stimulus blocks presented in reverse order, and a final 

24 s of grey. As before, palindromic design allowed for balance with matched 

sets of 4 orders when available runs were not balanced across all 8 orders. 48, 28, 

24 and 40 runs of this stimulus set were analyzed, respectively, for M1 to M4. 

Data Analysis 

We carried out the preprocessing of our fMRI data in a way designed to 

account for the artifacts most common when imaging of head-fixed, awake 

monkeys (see discussion in Farivar & Vanduffel 2014). To correct for image 

changes resulting from head and body motion, slice-wise correction within each 

run was carried out using AFNI’s 3dAllineate (http://afni.nimh.nih.gov/) and 

included terms for cubic warping in the phase-encoding direction, as well as 

shifts, rotations, scaling, and skewing within each slice. We then slice-time 

corrected all runs with FreeSurfer’s functional analysis stream (FS-FAST, 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast/; Fischl 2012) and used 

mutual information-based non-linear alignment (JIP, http://www.nitrc.org 

/projects/jip/; Mandeville et al. 2011) to compensate for static distortions of the 

functional volumes and align them to the high-resolution anatomical scans that 

we used for cortical surface modeling. In order to increase our ability to identify 

areas showing nonlinear effects of viewing face and bodies together (see Figure 

10, purple), we smoothed the data from the body context experiment using a 

Gaussian kernel with 2 mm full width at half maximum to increase the signal-to-
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noise ratio before analysis and mapping. We used unsmoothed data in all other 

cases, including all other analyses in the body context experiment. 

We analyzed the preprocessed data recorded during presentation of the low-

level motion, object category, object motion, and body context stimuli with 

FS-FAST, as described previously (Tsao et al. 2003; Fischl 2012). For retinotopic 

mapping, we fit a population receptive field model to the recorded data using 

mrVista (http://vistalab.stanford.edu/software/; Dumoulin & Wandell 2008). 

As in the FS-FAST analysis, a wide model hemodynamic response function was 

used to match the expected effect of the contrast agent (Mandeville et al. 1998; 

Vanduffel et al. 2001). 

When mapping functional data, either within brain volumes or onto cortical 

surface models, we considered two outputs of our fMRI analysis: the percent 

signal change of a voxel (either between baseline and a stimulus block or 

between linear combinations of stimulus blocks) and the statistical significance of 

this percent signal change. Because of inter-subject differences, including MRI 

coil placement and contrast agent clearance, a given percent signal change does 

not reliably reflect the same degree of hemodynamic activity in every subject. To 

compensate for this, signal change was normalized by separately scaling each 

subject, dividing signal change values of every voxel by the maximal signal 

change seen in the STS for a contrast of interest. Signals resulting from the low-

level motion stimuli were normalized by finding the voxel in the STS with the 

highest percent signal difference between plaid movies and plaid pictures and 

dividing all percent signal change values from the same animal by that number. 

Object category data were normalized by the maximum value of the static face-

selectivity localizer within the STS and object motion data were normalized by 
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the maximum STS value of the dynamic face-selectivity localizer. Because these 

normalizations were constant multiplicative scaling within each subject, they had 

no effect on the statistical significance of the maps. Significance values for the 

maps were adjusted for multiple comparisons by considering all voxels (cortical, 

subcortical, and cerebellar) within a whole brain mask and using the Benjamini-

Hochberg procedure to calculate q values representing false discovery rate 

(Benjamini & Hochberg 1995).  

A model of each monkey’s cortical surface was created from the 

anesthetized anatomical scans using FreeSurfer (http://surfer.nmr.mgh 

.harvard.edu/; Tsao et al. 2003; Fischl 2012). Data (signal changes and q values) 

were projected from voxels in the midway point of the cortical sheet onto cortical 

surface models using trilinear interpolation. Images of cortical surface models 

with functional overlays were rendered using custom code in MATLAB (The 

MathWorks), while images of volume slices with functional overlays and the 

volumetric reconstruction of ROIs (Figure 6C) were created in Slicer 

(http://www.slicer.org/). 

We analyzed the spatial similarity of the anatomical distributions of static 

face selectivity and low-level motion selectivity in the fundus of the STS (in 

Figure 4C-D) by using the overlapping coefficient (hereafter referred to as 

“distribution overlap”). We restricted our analysis to parts of the STS with a 

concave curvature and anterior to the MT/MSTv/FST complex, as areas in this 

complex or along the lips of the STS generally show clear separation of face and 

low-level motion signals (Polosecki et al. 2013). To identify voxels in the STS 

fundus that would be likely driven by our stimuli, we subselected from these 

voxels, choosing the 500 in each subject with the greatest significant signal 
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change in response to either the localizer face movies or the localizer object 

movies (Figure 2C); note that responses to these movies were not used to 

calculate either of the functional maps being compared. We then looked, per 

voxel, at the selectivity for static faces and low-level motion (normalized per 

subject) and measured their similarity across the 2000 voxels. Distribution 

overlap was calculated by normalizing the sum of each contrast over all 2000 

voxels to 1, and then summing the lesser of these two normalized distributions 

on each voxel over all voxels. To determine the significance of this overlap, we 

used a Monte Carlo permutation test. We created an empirical null distribution 

(Figure 4D) by randomizing the pairing of the two compared contrasts across the 

considered voxels within each monkey 1,000,000 times and recording the 

resulting distribution overlap each time. We calculated the 99% confidence 

interval of the resulting p value according to the binomial distribution (see Ernst 

2004). We report the upper (less statistically significant) bound of this confidence 

interval. 

For group analysis, regions of interest (ROIs) were defined in each 

hemisphere of each animal and combined into bilateral ROIs. Within a given 

hemisphere, we positioned each ROI by finding a voxel showing a local 

maximum signal change in an area, selecting a 3 x 3 x 3 voxel region centered on 

this point, and excluding all voxels that did not meet a q < 0.05 significance 

criterion. If multiple maxima were found which could represent a given area of 

interest, we chose the one that maximized the symmetry between the 

hemispheres of a subject. To display the location of these ROIs on cortical surface 

models, their volumetric locations were projected from voxels at the midway 

plane of the cortical sheet. In cases where this resulted in a single ROI being 
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projected to multiple disconnected locations on the cortical surface, only the 

largest projected location was kept. In some instances, when the included voxels 

did not include any that fell at the midpoint of the cortical sheet, a volumetric 

ROI would not appear on the cortical surface model. In these cases, an asterisk 

was manually placed on the map to denote the approximate location of the 

unseen ROI. 

ROIs were named based on both anatomical and functional characteristics. 

Face patches were identified using the dynamic face-selectivity localizer and 

named based on anatomical location and relative position (Tsao, Moeller, & 

Freiwald 2008). The toy patch was also identified using the dynamic face-

selectivity localizer, and was defined by responding more to object movies than 

face movies. Because there were a number of such areas in each hemisphere (and 

no existing classification scheme), we chose the most anterior local maximum 

that was posterior to AL in each hemisphere, as we found that this region 

reliably neighbored both face patches and areas responding to low-level motion 

(generally LST). Body patches were identified using the static body-selectivity 

localizer and named based on anatomical location and relationship to identified 

face patches (Popivanov et al. 2012); because the currently recognized midSTS 

and antSTS body patches often include multiple discrete areas of body 

selectivity, we chose the body-selective activation best-described as between ML 

and MF to be midSTS, and the one best-described as medial to AL along the 

ventral bank of the STS to be antSTS. LST was identified as a motion-sensitive 

area (recognized with the pattern motion localizer) in the lower bank of the STS 

and anterior to area FST (Nelissen, Vanduffel, & Orban 2006). The 

MT/MSTv/FST complex (analyzed in Figure 8) was identified as a motion-
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sensitive area (recognized with the pattern motion localizer) with appropriate 

retinotopic organization (M1–M3) and anatomical location (Kolster et al. 2009).  

Because the MT/MSTv/FST complex is a functionally heterogeneous region 

with known retinotopic organization, it was important to define an ROI that 

spanned this functional diversity and was not overly influenced by a single area 

or retinotopic preference. The ROI identification scheme used in other regions (a 

3 × 3 voxel ROI centered on a local signal maximum) created ROIs that were too 

spatially limited to meet these criteria. Therefore, we took another approach to 

define this ROI. We used the low-level motion selectivity localizer (Figure 2A), 

set a significance threshold with q << 0.01 and q small enough that there was no 

contiguous path of voxels meeting the threshold between the retinotopic center 

of MT/MSTv/FST and other motion-selective regions. All contiguously 

connected voxels meeting this threshold were considered part of the 

MT/MSTv/FST ROI (as in Polosecki et al. 2013). 

For group analysis, we independently normalized the time courses from 

each ROI of each monkey and subjected them to a fixed effects analysis, pooling 

runs across all monkeys. We did this in two steps. In the first step, the time 

courses of all voxels within a given monkey and ROI were averaged and the 

resulting ROI time courses were analyzed with FS-FAST, just as if each ROI was 

a standard functional voxel. This allowed us to calculate responses within each 

ROI that could be used for normalization in the second step. In the second step, 

we normalized the time courses for each ROI in each monkey independently 

before performing a fixed effects analysis across all monkeys. Note that this is 

different than the pan-brain per-subject normalization that we performed for the 

mapping analyses; we chose this alternate approach because differences in signal 
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distribution (see Janssens et al. 2012) and hemodynamic effects (Handwerker et 

al. 2012) can occur across the brain – not only between subjects – and it is 

important to minimize these differences as much as possible prior to a fixed 

effects analysis. For the object category stimuli, time courses in each face patch 

were divided by the response to the rhesus faces in that patch. For the object 

motion stimuli, time courses in each face patch were divided by the response to 

the localizer face movies in that patch, while time courses in LST and the object 

patch were normalized by the response to the localizer object movies in that ROI. 

For the body context experiment, time courses in each face and body patch were 

divided by the response to whole monkeys (face & body) in that patch. Because 

each ROI was independently normalized, comparisons between ROIs should be 

drawn with care, keeping in mind that each signal change is dependent on the 

response to the condition used for normalization. These normalized ROI time 

courses were then analyzed across all 4 monkeys using a fixed effects analysis in 

FS-FAST. We used a fixed effects analysis (as is common in monkey fMRI 

experiments, e.g., Jastorff et al. 2012; Polosecki et al. 2013) because our sample 

size was too small for effective power in a random effects analysis (Leibovici & S. 

Smith 2000) despite our comparatively large number of subjects (see Furl et al. 

2012; Polosecki et al. 2013; Janssens et al. 2014). Statistical conclusions drawn 

from fixed effects analyses generalize only to the sample under study (see 

discussion in Friston, Holmes, & Worsley 1999). We adjusted the p values of ROI 

analyses for multiple testing using the Holm-Bonferroni method to control for 

familywise error rate (Holm 1979). 
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3. Faces in Temporal Context: Responses to Face 
Motion in the Macaque Temporal Lobe* 

We didn’t need dialogue. We had faces!  

― Norma Desmond on silent movies, Sunset Boulevard 

Face Motion Activates a Diverse Set of Functionally Specific Areas 

Faces carry important emotional, communicational, and identifying 

information in their movements as well as their form. Face motion activates a 

wide expanse of cortex in and around the macaque STS (Furl et al. 2012; 

Polosecki et al. 2013), and this activation may, in part, represent the specific 

processing of this social signal. However, the degree to which this activation 

merely reflects underlying sensitivity to general motion or face form remains 

unclear.  

To determine the functional basis of this activity, we identified classical 

motion areas and face patches for subsequent comparison to the regions that are 

recruited by face motion. We presented visual stimuli to four rhesus macaque 

monkeys (M1–M4), and measured the resulting brain activity with fMRI; we 

used this same technique throughout this study (both Chapter 3 and Chapter 4). 

Motion areas were localized by contrasting the responses evoked by drifting 

plaid patterns to those evoked by still plaids (Figure 2A). Face patches were 

localized by comparing the responses to pictures of faces with responses to fruits 

and vegetables matched in low-level properties (Figure 2B).  

                                                

* Portions this chapter have been published previously (Fisher & Freiwald 2015). 
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The selectivity maps for motion and faces (Figure 4A–B) revealed distinct 

functional specializations within the STS: motion areas MT, MSTv, FST and LST 

(Nelissen, Vanduffel, & Orban 2006; Kolster et al. 2009), and face patches PL, ML, 

MF, AL and AF (Tsao, Moeller, & Freiwald 2008). Face patch AM was sometimes 

difficult to locate, due to chronic contrast agent administration and the 

subsequent functional signal loss in the ventral brain (Lafer-Sousa & Conway 

2013; Gagin et al. 2014). In light of this, we chose to focus our studies on the face 

patches within or immediately adjoining the STS. 

Motion and face activations, despite their proximity in the STS fundus near 

ML, MF and LST, remained spatially separate: voxels with the highest face-

selectivity (Figure 4B, red channel) showed little low-level motion selectivity 

(Figure 4B, blue; also see Figure 4C–D). Only on the edge of face patches, at the 

border of motion-selective areas, did concurrent selectivity for low-level motion 

appear. We found just one exception to this rule of spatial segregation of 

function: in two subjects the ventral, foveal aspect of the MT/MSTv/FST motion 

complex exhibited face selectivity (similar to area pPL of Janssens et al. 2014). 

However, the established face patches are not, as previously suggested 

(Polosecki et al. 2013), part of a generally motion-selective region within the STS. 

Face motion activated some face patches, all identified motion areas, and 

further outlying areas (Figure 5). Contrasting responses to moving faces with 

responses to still faces (Figure 2C; Furl et al. 2012; Polosecki et al. 2013) revealed 

a cortical expanse in and around the STS activated by face motion that included 

not only face patches, but also all identified motion areas and additional territory 

in between (Figure 5, left column). Motion of non-face objects, (a contrast 

comparing object movies to static controls) activated motion areas and anterior 
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Figure 4. Spatially Dissociated Selectivities for Static Faces and Low-Level 
Motion in the STS Fundus 

(A) Left: face form selectivity (red; faces − fruits & vegetables) and low-level 
motion selectivity (blue; plaid movies − plaid pictures) on  M1’s right cortical 
hemisphere. The gray box highlights the region depicted below in B. Right: the 
hue at each point reflects the relative strength (normalized signal change) of 
these two contrasts, and opacity reflects the strength of the strongest contrast.  
(B) Flattened maps, as in panel A, of the STS of each hemisphere in 4 subjects. 
Face patches (white text) and motion areas (black text) are labeled. Dotted lines 
represent retinotopic meridians used to identify motion areas and solid lines 
represent retinotopic meridians at the anterior edge of area V4. Note how there is 
widespread separation of face selectivity and low-level motion selectivity. We 
found just one exception to this rule of spatial segregation of function: in M2 and 
M4 the ventral, foveal aspect of the MT/MSTv/FST motion complex exhibited 
face selectivity (similar to area pPL of Janssens et al. 2014).  
(C) Joint face and motion selectivity of voxels in the STS fundus. Static face 
selectivity and low-level motion selectivity (signal change, normalized per 
subject) were determined for STS fundus voxels (excluding the MT/MSTv/FST 
complex; see Chapter 2) most responsive to face or object movies. Color denotes 
significant (q < 0.01) stimulus selectivities of each voxel: red for static face 
selectivity (faces − fruits and vegetables), blue for low-level motion selectivity 
(plaid movies − plaid pictures), magenta for both. These selectivity distributions 
had a voxel-wise distribution overlap value (DOV) of 0.34 (see Chapter 2).  
(D) Statistical significance of measured DOV. Plot shows the null distribution of 
DOV, assuming a random association between face-selectivity and motion-
selectivity. The red line represents the measured DOV of 0.34 (from panel A). 
This is significantly (p < 0.00001) smaller than expected by chance associations. 
Thus face- and motion-selectivity are neither co-localized nor independently 
distributed in this area, but are spatially segregated. Alternative similarity 
quantifications – cosine distance and Spearman correlation – confirmed the 
distributions were less similar than expected by chance (p < 0.0005). p-values 
reflect upper (less significant) limits of 99% confidence intervals (see Chapter 2).
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Figure 5. Selectivities for Motion Carried by Faces or Non-Face Objects along 
the Macaque STS 

Regions responding to face motion (left column, red; natural face movies − face 
pictures) or non-face object motion (middle column, blue; natural object movies − 
object pictures), and the relative strength of these contrasts (right column), in the 
left hemisphere of each subject. Opacity reflects the contrast strength 
(normalized signal change). This data is presented on a flattened cortical model 
of the area surrounding the STS, with dark gray regions representing sulci and 
light gray regions representing gyri (as in Figure 4B). Dashed white lines outline 
areas of static face selectivity and dotted black lines outline areas of low-level 
motion selectivity, both measured in independent fMRI runs (Figure 4). 
Similarly, white labels indicate face patches and black labels indicate motion 
areas. Black asterisks highlight areas responding to face and object motion 
outside of recognized motion processing areas. White asterisks highlight areas 
more activated by face motion than object motion outside of known face patches. 
For orientation, the white-filled arrow points anteriorly and the black arrow 
points dorsally. 
Signal change in maps is normalized per-subject and thresholded at a false 
discovery rate (FDR) of q < 0.01. 
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regions (Figure 5, center column) in a pattern largely similar to that of face 

motion (Figure 5, right column). Some areas responding to the motion of both 

faces and non-face objects fell outside the general motion areas (Figure 5, black 

asterisks), suggesting that specializations for forms in motion beyond LST 

(Nelissen et al. 2011) can be recruited by a range of complex shape motion, 

including face and non-face object motion. Importantly, there were also regions 

selectively recruited by face motion but not object motion. These included parts 

of the known patch face system (Figure 5, white outlines) and additional regions 

beyond it (Figure 5, white asterisks). These maps show that responses to face 

motion reach throughout the motion sensitive STS, into at least a subset of face 

patches, and, intriguingly, beyond the classical face patch system and motion 

areas. 

A Novel Face Patch Responds to Moving Faces 

To extend beyond the classical face patch system and map areas that may be 

particularly attuned to the motion of faces (Fox, Iaria, & Barton 2009; Pitcher et al. 

2011), we contrasted fMRI responses to movies of faces with responses to movies 

of articulated toys (Figure 2C). This dynamic localizer (Figure 6A) activated all of 

the earlier-identified face patches (Figure 4B) and additional parts of the STS’s 

dorsal bank, including many of the areas that had been selectively recruited by 

face motion (Figure 5, white asterisks). These new dorsal activations included 

scattered points of face selectivity that varied from individual to individual and, 

importantly, one area of selectivity at a consistent location in every subject and 

hemisphere. This area was located anterodorsal to face patches ML and MF 
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Figure 6. Responses to Complex Motion within an Extended Face Patch System 

(A) Left: Dynamic face selectivity (localizer face movies − localizer object movies, 
Figure 2C) on flattened maps of the STS of each hemisphere in 4 subjects. Green 
boxes highlight the newly described middle dorsal face patch MD, so-called 
because it is in the dorsal bank of the STS and neighbors middle face patches ML 
and MF. Dashed white lines outline static face selectivity and dotted black lines 
outline low-level motion selectivity (as in Figure 5). Right: signal strength color 
map and schematic of contrast.  
(B) Coronal slice from M2, showing position of MD and its separation from MF. 
The right side of the brain is on the right side of the page. The anterior-posterior 
stereotaxic coordinate is taken relative to the interaural line.  
(C) Volumetric model of M2’s left hemisphere showing the relative locations of 
ML (purple), MF (blue), and MD (green).  
(D) Plot of static face selectivity (faces − fruits and vegetables) within the six face 
patch ROIs that were defined with the dynamic face selectivity localizer 
(panel A).  
(E and F) Responses to face motion (natural face movies − face pictures) (E) and 
object motion (natural object movies − object pictures) (F) in the face patches, 
“toy patch”, and LST.  
(G) Strength of interaction between responses to form and motion: (natural face 
movies − face pictures) − (natural object movies − object pictures). 
* = p < 0.05 and ** = p < 0.01, corrected using Holm–Bonferroni method for 30 
tests (6 ROIs × 1 measure + 8 ROIs × 3 measures). Dots on bar plots represent the 
values for individual subjects. Error bars represent standard error. Signal change 
in bar plots is normalized per ROI. Signal change in maps is normalized per-
subject and thresholded at an FDR of q < 0.01. The raw data analyzed in panels 
E–G is the same data plotted in Figure 5. 
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(Figure 6A), spatially distinct from both (Figures 6B–C, 7). We call this new area 

the middle dorsal face patch (MD). Thus the pairing of face form and motion 

reliably recruits six face-specific patches around the STS: PL, ML and AL along 

its ventral lip, and MF, AF, and the just-recognized MD in its fundus and 

dorsal bank. 

All STS Face Patches Possess a Distinctive Selectivity for Face Motion 

The preference for moving faces over moving objects in these six face 

patches could result from two simpler specializations: selectivity either for face 

form or for face motion. In fact, all face patches demonstrated similar degrees of 

selectivity for facial form (Figure 6D) and a preference for facial motion (Figure 

6E). The facial motion preference was more pronounced in the patches along the 

fundus and dorsal bank of the STS. Responses to non-face object motion (Figure 

6F) were smaller than responses to facial motion throughout. Consistent with 

this, the interaction between shape category (face vs. object) and motion (moving 

vs. static) was significant in all STS face patches (Figure 6G). Thus all face patches 

exhibited a response to motion that was face-specific. Two neighboring control 

areas, an object-selective STS region that responded more to moving toys than 

moving faces (referred to as the “toy patch”) and motion area LST (Nelissen, 

Vanduffel, & Orban 2006), were sensitive to both face and object motion to a 

similar extent (Figure 6E–G). The observed form-specific motion-selectivity of the 

face patches is, therefore, not due to an imbalance of low-level motion energy 

across stimuli, a conclusion further supported by balanced activation of general 

motion areas (Figure 8). Thus selectivity for both the form and motion of faces 

characterizes all STS face patches, but not the STS at large.
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Figure 7 Identification and Location of the Middle Dorsal Face Patch (MD) 

(A) Inflated cortical surface model of M2’s left hemisphere showing the relative 
locations of ML (purple), MF (blue), and MD (green).  
(B) Slice representations of the middle face patches (ML, MF, and MD) in all 
subjects (top to bottom). Parasagittal slices (left column) show the left 
hemispheres. Coronal and horizontal slices (center and right column, 
respectively) are presented following neurological convention, with the right 
side of the brain on the right side of the page. Slice coordinates assume standard 
stereotaxic positioning and are measured from the midpoint of the interaural 
line. The coronal slice of M2 is the one shown in Figure 6B and is reproduced 
here for completeness. 
Functional color maps show the dynamic face selectivity localizer thresholded at 
an FDR of q < 0.01. 
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Figure 8. Analysis of Motion Content in Face and Object Movies 

(A) Responses of two ROIs, MT/MSTv/FST complex and LST, to two stimulus 
contrasts, face movie motion (natural face movies − face pictures; “facial motion 
selectivity” in Figure 2C) and object movie motion (natural object movies − object 
pictures; “object motion selectivity” in Figure 2C). Both motion-selective regions 
responded just as much (LST) if not more (MT/MSTv/FST) to the motion in the 
object movies as to the motion in the face movies. * = p < 0.05 and ** = p < 0.01, 
corrected using Holm–Bonferroni method for 6 tests (2 ROIs × (2 measures + 
comparison)). Dots on bar plots represent the values for individual subjects. 
Signal change is normalized per ROI. Error bars represent standard error. The 
data from LST are the same as those presented in Figure 6E–G.  
(B) Response of the 250 voxels in each subject’s temporal lobe most responsive to 
low-level motion (as measured by the low-level motion selectivity localizer) to 
face movie and object movie motion. Responses to the two types of motion are 
highly correlated. Linear regression suggests that the voxels in the temporal 
lobes most sensitive to low level motion responded ~89% as strongly to motion 
in the face movies as they responded to motion in the object movies. Signal 
change is normalized per subject. Both analyses suggest that motion content in 
face and object movies was well matched, and if not entirely equal, slightly larger 
in object movies than in face movies. 
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Natural Face Motion Selectivity Divides the STS Face Patch System 

We now know that all STS face patches are selective for facial motion (Figure 

6G). But does activity within these areas represent natural facial motion, or is it 

simply a response to any update in facial pose, natural or unnatural? We 

addressed this question by challenging the face-processing system with two 

stimulus sets that were identical in static content and frame rate, but differed in 

motion quality: the normal, natural movies used earlier in the study, and 

“jumbled” versions of the same movies, in which frames were presented in a 

random order (Figures 9A, 2C). We found that dorsal face patches MD and AF 

showed a significantly greater response to natural movies of faces (Figure 9B). In 

contrast, ventral face patches PL, ML and AL not only failed to respond more to 

natural movies, but, surprisingly, their responses were significantly stronger for 

jumbled movies. MF, positioned between MD and ML, showed no significant 

preference for either movie type. Thus the face patch system is fundamentally 

differentiated along a ventrodorsal axis (Figure 9C): the dorsal portion responds 

preferentially to natural face movements and the ventral portion responds 

preferentially to facial shapes undergoing rapid, even random, transitions. 

The divergent responses of face patches to natural versus jumbled motion 

did not extend to non-face objects: no patch preferred jumbled object movies to 

natural ones (Figure 9D). Furthermore, the two control regions responded more 

to natural object motion (compared to jumbled object motion) than to natural 

facial motion (compared to jumbled facial motion). As a result, face patches PL, 

ML, MF and control area LST showed significant interactions between motion 

quality (natural or jumbled) and form (face or object; Figure 9E). 
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Figure 9. Preferential Responses to Natural or Disordered Face Motion within 
the Face Patch System 

(A) Schematics of stimuli used for analyses of natural motion selectivity. For 
faces and non-face objects, picture, natural movie, and jumbled movie stimuli 
were derived from the same 60 fps source videos. Each video was downsampled 
to 2 fps in the picture condition and 15 fps in the movie conditions. By 
randomizing the order of each natural movie’s frames, a matched jumbled movie 
was created. Each exemplar stimulus lasted 3 s; a 1 s period is shown here for 
demonstration.  
(B) Preference for natural face motion over jumbled face motion across six face 
patches and two control regions. Dorsal patches MD and AF show a significant 
preference for natural face motion, while, conversely, ventral patches PL, ML, 
and AL significantly preferred the rapidly changing jumbled face movies.  
(C) Preference for either natural face motion (red) or jumbled face motion (blue), 
as calculated in panel B, across face-selective cortex. Opacity reflects strength of 
face selectivity (from Figure 6A).  
(D) Preference for natural object movies over jumbled object movies.  
(E) Strength of interaction between form (face or object) and frame ordering 
(natural or jumbled): (natural face movies − jumbled face movies) − (natural 
object movies − jumbled object movies).  
* = p < 0.05 and ** = p < 0.01, corrected using Holm-Bonferroni method for 24 
tests (8 ROIs × 3 measures). Dots on bar plots represent the values for individual 
subjects. Error bars represent standard error. Signal change in bar plots is 
normalized per ROI. Signal change in maps is normalized per subject. 
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Thus, while natural motion improved localization of an extended face 

processing system (Figure 6A), and all constituent areas of this system were 

selective for an interaction of face form and motion (Figure 6G), this shared 

selectivity arose from two different specializations: the dorsal face patches (MD 

and AF) genuinely favor natural facial motion, while the ventral face patches 

(PL, ML and AL) appear to prefer rapidly changing facial pose, regardless of 

kinematic meaning. 
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4. Faces in Spatial Context: Specific Interactions 
Between Heads and Bodies in the Macaque 
Temporal Lobe 

All optical illusions which have for result the exhibition of an isolated portion 

of a live human body, such as a head liberated from the trunk, a bust without a 

body, or a body without a head, always surprise and interest the spectator. 

― “Two New Optical Illusions”, Scientific American, November 15, 1884 

STS Areas Sensitive to the Conjunction of Face and Body 

For as long a face patches have been recognized in macaques, body-selective 

patches have been found nearby (Tsao et al. 2003). Despite these neighboring 

cortical specializations for two mutually informative biological forms, it is 

unknown whether the face patches, body patches, or any neighboring STS region 

integrate information from both faces and their accompanying bodies. Again, we 

used fMRI to approach this question, and to determine if we could find evidence 

of such cross-domain contextual effects. 

In order to establish the location of the known body patches in the STS and 

allow for analysis within them, we identified regions that responded more to 

headless pictures of bodies than to matched pictures of manmade objects (Figure 

10, blue), using data from the same fMRI sessions that were used earlier to 

identify face form-selectivity (Figures 2B). Body-selective areas, though more 

variable from subject to subject than face patches, were reliably found adjoining 

face patch ML (often between ML and MF) and medial to face patch AL. These 

locations agree with the previously described locations of the midSTS body patch 
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Figure 10. Selectivity for Faces, Bodies, and Their Conjunction in the STS  

Flattened maps of the STS in 4 subjects. Face selectivity (faces − fruits & 
vegetables) and body selectivity (bodies − manmade objects) measured with the 
object form stimulus set are plotted on each hemisphere; hue at each point 
reflects the relative strength (normalized signal change) of these two contrasts 
and opacity reflects the strength of the strongest contrast. Signal change is 
normalized per-subject and thresholded at an FDR of q < 0.01. These two 
selectivities often neighbor each other, and sometimes overlap (especially 
evident in M1, M3). Areas that showed a significantly positive response to 
face/body conjunction (face & body > face + body, q < 0.05) were identified 
using the body context stimulus set and smoothed functional data. These areas 
are evident in M1 and M4, often overlapping AF, and sometimes overlapping or 
neighboring AL, MD or MF. The data used to identify these areas are further 
analyzed in Figures 11–13. Face patch ROIs (white dashes) and body area ROIs 
(black dots) are labeled according to the criteria described in Chapter 2. In cases 
where an ROI was not visible on the cortical surface model, an asterisk 
represents it. The face patch ROIs were defined with the dynamic face selectivity 
localizer, so that MD could be recognized and so that face patch definitions were 
constant across the facial motion and body context experiments. Body patch 
ROIs were defined with the static body selectivity localizer. 
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and the antSTS body patch, respectively (Popivanov et al. 2012). In addition to 

these reliably identifiable body patches, small areas of body-selectivity were 

sporadically identifiable anterior to ML (M1, M3 left hemisphere), near MF and 

MD (M1, M2 left hemisphere, M4 left hemisphere), and adjacent to AF (M1, M3). 

By independently measuring selectivities for faces and bodies, we could see that 

these two selectivities sometimes, but not always, overlapped (as in Pinsk et al. 

2005; Popivanov et al. 2012). 

To search for joint processing of faces and bodies, we scanned each monkey 

while showing it pictures of whole macaques (head and body), and versions of 

these pictures where either the head or the body had been isolated (Figure 3). 

Given the results of previous functional imaging studies (Kanwisher, Stanley, & 

Harris 1999; Morris, Pelphrey, & McCarthy 2006; MacEvoy & Epstein 2009; Song 

et al. 2013), it seemed unlikely that we would be able to identify a brain region 

with an fMRI response to whole monkeys that was stronger than the sum of the 

responses to isolated heads and isolated bodies; this concern was particularly 

acute for voxel by voxel whole brain analysis, where low signal-to-noise ratio 

and multiple comparison correction makes it difficult to identify significant and 

small signal differences. However, we attempted a whole brain search for 

evidence of such supralinear responses, using smoothed data to improve the 

signal-to-noise ratio. We chose to do this so that we might be able to identify 

regions of selectivity for whole monkeys that could not simply be explained by 

the superposition of the responses to individual parts, and so that we did not 

have to limit our search to established functional areas. 

Surprisingly, this analysis revealed small areas near some face and body 

patches that responded more to whole macaques than would have been 
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predicted by summing the responses to lone faces and lone bodies (Figure 10, 

purple outlines) in 2 of 4 monkeys (M1 and M4). These areas overlapped with AF 

in 4 of 8 hemispheres, and neighbored MF in 2 hemispheres (M4), MD in 2 

hemispheres (M1), and AL in one hemisphere (M1, left hemisphere). While these 

regions with a positive context response sometimes fell near the conjunction of 

face and body patches (as in M4, near MF), at other times they neighbored no 

regions of identifiable body selectivity (as in M1, near left AF). These maps 

demonstrate that regions specially attuned to faces and bodies viewed in concert 

can sometimes be found in the macaque STS near the known face patches. 

Faces with Bodies Elicit Supralinear Responses in Certain Face Patches  

In light of the surprising finding that we could identify supralinear 

responses to the conjunction of faces and bodies near the face patches, and the 

psychological evidence that bodies may sometimes affect face-processing 

mechanisms (e.g. Aviezer et al. 2011; Brandman & Yovel 2012; Rice et al. 2013), 

we wondered: could positive context responses be localized within the face 

patches? To address this question, we pooled data across the four monkeys to 

examine the responses of face patches (Figure 10, dashed white outlines) and 

body patches (Figure 10, dotted black outlines) to pictures of lone faces, lone 

bodies, and whole monkeys comprised of both a face and a body (Figure 11).  

Although face patches responded more to faces than to bodies and body 

patches responded more to bodies than to faces, each area generally responded 

more to pictures of whole monkeys than to its preferred monkey part (Figure 

11A). The only exceptions were PL and antSTS, where there was no significant 

difference between responses to the preferred part and to the whole monkey. 
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Figure 11. Contextual Effect of Viewing Faces with Bodies 

(A) Response to lone bodies (“body”, blue), lone heads (“face”, red), and whole 
monkeys (“face & body”, purple) in 6 face patches and 2 body patches. Two-tone 
blue and red bars represent the sum of the response to lone bodies and the 
response to lone heads. All face patches except PL responded significantly more 
to whole monkeys than to heads alone, and the midSTS body patch responded 
significantly more to whole monkeys than to bodies alone. 
(B) The contextual effect of viewing faces in the context of bodies: (face & body) 
− (face + body). This is the comparison between the purple bar and the red/blue 
bar in panel A. Face patch AF is activated significantly more by viewing faces 
and bodies together than by viewing them separately (3 of 4 subjects), while PL, 
ML, and the body patches are activated significantly less by viewing faces and 
bodies together. Although AL shows a context effect similar in size to that seen 
in AF, this effect did not reach significance. 
* = p < 0.05 and ** = p < 0.01, corrected using Holm-Bonferroni method for 88 
tests (8 ROIs × 11 measures [across Figures 11–13]). Comparisons labeled n.s. did 
not reach significance. Dots on bar plots represent the values for individual 
subjects; dashes represent dots outside of the plotted bounds. Error bars 
represent standard error. Signal change in bar plots is normalized per ROI to the 
response to “face & body” stimuli.
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While this arguably shows a benefit for whole monkeys over faces in most of the 

face patches (and for whole monkeys over bodies in midSTS), this benefit could 

derive from independent selectivities for faces and bodies rather than joint 

processing of the whole animal. 

When comparing responses to whole monkeys with the sum of responses to 

lone faces and lone bodies, we discovered qualitatively different results in 

different patches (Figure 11B). PL, ML, and both body patches responded less to 

whole monkeys than summing the responses to individual parts would suggest. 

In fact, summing the responses to lone faces and bodies in PL predicted a 

response to whole monkeys 51.9% (95% CI: [39.4%, 64.4%]) greater than the one 

that was measured. AF, on the other hand, responded more to the pictures of 

whole monkeys than a linear accounting predicted (in 3 of 4 monkeys). The 

response to monkey faces in this patch only accounted for an average of 61.7% 

(95% CI: [55.2%, 68.3%]) of the response to whole monkeys; with the body 

response accounting for 17.8% (95% CI: [11.3%, 24.3%]) of the activity, 20.5% 

(95% CI: [10.0%, 30.1%]) of AF’s response to whole monkeys could be considered 

a positive contrast effect. The contrast effect in AL was similar in magnitude 

(17.6%; 95% CI: [6.0%, 29.5%]), but did not reach our threshold for statistical 

significance after correction for multiple comparisons. This shows a functional 

diversity within the face patch system, with posterior patches showing sublinear 

responses to faces and bodies viewed together while AF (and possibly AL) 

showing a supralinear response to faces viewed in the context of bodies. 
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The Form-Specific Contextual Effects of Viewing Faces with Bodies 

Although AF showed a clear increase in response when a face was viewed 

on top of a body, it was unclear how important the specific form of the body was 

for eliciting this benefit. Therefore, we next examined how each functional area 

responded when a face was shown not with its accompanying body, but instead 

with an inanimate object that had been chosen to match the overall shape and 

scale of the body (Figure 3, bottom row).  

In contrast to what we saw when faces were presented with bodies, viewing 

faces with non-body objects did not significantly increase the response of most 

face patches beyond the response elicited by viewing faces alone (Figure 12A). 

Again, PL was the lone exception. Relatedly, there were no face areas that 

showed a significantly supralinear response when faces were viewed with non-

body objects (Figure 12B, top). Unsurprisingly, perhaps, this was also true of the 

body areas.  

To determine the body-specific context effect within each face patch, we 

subtracted the context effect that was elicited by pairing faces with objects from 

the context effect that was elicited by pairing faces with bodies. This comparison 

has the benefit of accounting for any low-level retinotopic effects that occur when 

a body is shown along with a face. We found that both AL and AF showed 

positive body-specific positive context effects (4 of 4 monkeys; Figure 12B, 

bottom). The size of this effect was 22.7% (95% CI: [11.4, 33.9]) of the overall 

response to a whole monkey in AL, and 22.8% (95% CI: [12.7, 32.9]) of this 

response in AF. Body patch antSTS was the only area to show an increased 

negative context effect when faces were paired with bodies rather than objects. 



 

73 

Figure 12. Effect of Viewing Faces in the Context of Non-Body Objects 

(A) Response to non-body objects (“object”, blue), macaque heads (“face”, red), 
and their conjunction (“face & object”, purple) in 6 face patches and 2 body 
patches. Two-tone blue and red bars represent the sum of response to objects and 
the response to heads. No face patches, save PL, responded significantly more to 
heads presented on top of objects than to heads alone. 
(B) Top: the contextual effect of viewing faces paired with non-body objects, i.e., 
(face & object) − (face + object). This is the comparison between the purple bar 
and the red/blue bar in panel A. No face or body patch was activated 
significantly more by viewing faces and objects together than by viewing them 
separately. Bottom: body-specific contextual effect of viewing faces with bodies, 
i.e., ((face & body) − body) − ((face & object) − object). This is the difference 
between Figure 11B and the top plot in this panel. Both AL and AF show 
significantly more benefit when viewing a face with a body than when viewing a 
face with a matched non-body object. 
* = p < 0.05 and ** = p < 0.01, corrected using Holm-Bonferroni method for 88 
tests (8 ROIs × 11 measures [across Figures 11–13]). Comparisons labeled n.s. did 
not reach significance. Dots on bar plots represent the values for individual 
subjects; dashes represent dots outside of the plotted bounds. Error bars 
represent standard error. Signal change in bar plots is normalized per ROI to the 
response to “face & body” stimuli.
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The negative context responses that PL and ML showed with bodies were not 

significantly different from the negative context responses that they showed with 

non-body objects, suggesting that these were form-agnostic competition effects. 

This comparison shows that while some spatial contextual effects in the face 

patches are not form-specific, body-specific context effects in anterior face 

patches AL and AF represent a sizable portion of the activity elicited by viewing 

a whole monkey. 

Faces and Ambiguous Faces Elicit Similar Body Context Effects 

Given the hypothesis that some of the contextual effects of pairing heads 

with bodies results from bodies providing evidence that ambiguous faces are, in 

fact, faces (Cox, Meyers, & Sinha 2004; Brandman & Yovel 2012), we decided to 

investigate whether the effects we were seeing were the result of such 

disambiguation. If this were the case, we believed that we should be able to 

increase the strength of the context effects we observed, or elicit context effects in 

additional face patches, by increasing the ambiguity of the faces in our stimuli. 

We examined this possibility by showing the monkeys versions of the stimuli in 

which internal details of the faces were blurred by heavy pixelation (Figure 3, 

right column). 

As expected, the face patches responded less when faces were blurred than 

when faces were unobscured (Figure 13A), though interestingly, they still 

showed a contextual effect with blurred faces (Figure 13B, top). AF showed a 

significant positive context effect with blurred faces, as it had with unambiguous 

faces, responding more to blurred faces on a body than a linear accounting 

would predict. PL, ML, and the body patches showed a negative context effect 
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Figure 13. Response to Viewing Ambiguous Faces in the Context of Bodies and 
Non-Body Objects 

(A) Effects of viewing 4 different pairs of upper/lower visual field stimuli, either 
singly or in concert, in 6 face patches and 2 body patches. Responses to lone 
upper field stimuli (faces or blurred faces) are represented by the red portion of 
each two-tone bar and responses to lone lower field stimuli (bodies or objects) 
are represented by the blue portion. Reponses to viewing the pairs together are 
represented by the purple outlines. Asterisks mark cases where there is a 
significant difference between the response to viewing upper and lower field 
stimuli together and the sum of the responses to viewing them separately. The 
bottom two rows show data from Figures 10 and 11 for the sake of comparison.  
(B) Top: the benefit of viewing ambiguous faces in the context of bodies, i.e. 
(blurred face & body) − (blurred face + body). This is the comparison tested in 
the top row of panel A. As was true with unambiguous faces, AF is activated 
significantly more by viewing blurred faces and bodies together than by viewing 
them separately. 2nd row: effect of viewing faces on bodies that can be attributed 
to facial disambiguation, i.e., ((blurred face & body) − blurred face) − ((face & 
body) − face). This is the difference between the top plot in this panel and Figure 
10B. Only PL shows a significantly larger contextual benefit with blurred faces, 
and it results from less of a negative context effect, rather than more of a positive 
one. 3rd row: the contextual effect of viewing blurred faces paired with non-body 
objects, i.e., (blurred face & object) − (blurred face + object). No face or body 
patch was activated significantly more by viewing blurred faces and objects 
together than by viewing them separately. Bottom: body-specific effect of viewing 
faces on bodies that can be attributed to facial disambiguation, i.e., ((blurred face 
& body) − (blurred face & object)) − ((face & body) − (face & object)). This effect 
did not reach significance in any of the examined areas. 
* = p < 0.05 and ** = p < 0.01, corrected using Holm-Bonferroni method for 88 
tests (8 ROIs × 11 measures [across Figures 11–13]). Comparisons labeled n.s. did 
not reach significance. Dots represent single subject values; dashes represent dots 
outside of plotted bounds. Error bars represent standard error. Signal change in 
bar plots is normalized per ROI to the response to “face & body” stimuli.
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with blurred faces. AL, once more, showed a positive context effect that did not 

reach significance. By subtracting the contextual effect for clear faces (Figure 11B) 

from the effect for ambiguous faces, it became evident that the contextual effects 

of bodies on blurred faces were not significantly different from their effects on 

unambiguous faces in any area other than PL (Figure 13B, 2nd row). When 

looking at the body-specific context effects, taking into account responses to 

blurred faces seen atop non-body objects (Figure 13B, 3rd row), even PL showed 

no difference in context effect between the blurred and unambiguous faces 

(Figure 13B, bottom). Therefore, bodies shown with either unambiguous or 

ambiguous faces can elicit a supralinear context effect within certain STS face 

patches, suggesting joint processing of faces and bodies. However, the size of the 

two context effects is almost identical, arguing against disambiguation as the 

primary impetus of these effects. 
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5. Discussion* 

Constructing a coherent visual world is not easy. Piecing together faces and 

extracting the crucial information that they convey – who she is, how he feels, 

where they are looking – is a challenging undertaking, and it is logical to use 

every available resource to confront it. Our work shows that the macaque brain, 

following this logic, may take a catholic approach to ease the burden of 

understanding faces: the activity of the face patches is dictated not only by facial 

form, but also by the temporal and spatial context in which faces are seen.  

Context-evoked responses are not evident throughout the face processing 

system, but only in a subset of patches. One set of face patches responds 

preferentially to naturally moving faces, and another partially overlapping set is 

particularly activated by faces seen in the context of bodies. Taking the 

contextual effects within these areas one at a time for the moment, we can 

consider what they tell us about the organization of the macaque temporal lobe, 

how they relate to human physiology and psychology, and what our functional 

imaging results suggest about underlying neural processes. 

Localizing Responses to Facial Motion 

From just a glance at a face, we gather an abundance of social information 

(Willis & Todorov 2006). Set in motion, the face comes alive, augmenting this 

knowledge (B. Knight & A. Johnston 1997; Lander, Christie, & Bruce 1999), but 

also posing a challenge for the neural systems that must now interpret an 

evolving subject (Sinha 2011). Our investigation of facial motion processing 
                                                

* Portions this chapter have been published previously (Fisher & Freiwald 2015). 
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aimed to identify the neural machinery that navigates these intertwined 

opportunities and challenges of facial motion, leveraging a model system that is 

similar to the human face-processing system (Tsao, Moeller, & Freiwald 2008; 

Yovel & Freiwald 2013), remains highly reproducible across subjects (Tsao, 

Moeller, & Freiwald 2008), and enables mechanistic exploration of the 

computations underlying face recognition (Freiwald & Tsao 2010). The 

specialized areas that we recruited with naturally moving faces may mark a key 

component of the machinery for dynamic face recognition. 

The architecture of face motion processing revealed in the macaque STS 

includes areas selective for low- and high-level motion (Furl et al. 2012), face 

form (Polosecki et al. 2013), and natural facial motion. These areas all neighbor 

each other but remain spatially distinct. This picture of a functionally 

heterogeneous mosaic represents a fundamental departure from earlier fMRI 

studies (Furl et al. 2012; Polosecki et al. 2013) which suggested that any motion 

responsiveness found in dorsal face patches (Polosecki et al. 2013) was a 

byproduct of these areas overlapping a generally motion responsive region. Our 

results reflect a different reality: while some STS regions are broadly motion-

sensitive – responding similarly to face motion and non-face motion – 

neighboring areas specifically process face motion. 

One such area is MD, a newly described face patch in the upper bank of the 

STS (Figures 6A–C, 7). While MD is occasionally evident when static stimuli are 

used for mapping (similar to aMF of Janssens et al. 2014), dynamic stimuli 

allowed us to locate this area in all eight hemispheres that we studied. This 

pattern is reminiscent of the human pSTS face area, which is critical for 

processing moving faces (Pitcher, Duchaine, & Walsh 2014), is identified 
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sporadically with static stimuli but reliably with dynamic ones (Fox, Iaria, & 

Barton 2009; Polosecki et al. 2013) and shows selectivity for natural face motion 

(Schultz et al. 2013). Interestingly, the human pSTS face area does not appear to 

be strongly connected to the ventrally located fusiform and occipital face areas 

(Gschwind et al. 2012). Similarly in macaque monkeys, when connectivity of face 

patches was mapped, no strong projections to the location of MD were reported 

(Moeller, Freiwald, & Tsao 2008). Furthermore, anatomically variable activations 

by faces are found anterior to both MD (this study and Janssens et al. 2014) and 

human pSTS (Pitcher et al. 2011). One plausible explanation of this variability is 

that these anterior regions represent a variety of social signals of diverse 

complexity (Keysers & Perrett 2004; Hein & R. T. Knight 2008), and are only 

partially and erratically activated by faces. Thus functional specialization, 

connectivity, and relative location indicate that MD might be the macaque 

homolog of the human pSTS face area, and could therefore be critical for 

establishing general homology between face processing systems of humans and 

macaques (Tsao, Moeller, & Freiwald 2008; Yovel & Freiwald 2013). 

We found a new functional differentiation within the macaque face-

processing system in which dorsal patches preferred naturally moving faces, 

while ventral patches (to our surprise) preferred random transitions in face pose 

(Figure 9B–C). This reveals a novel dimension of the cortical representation of 

faces and marks, to our knowledge, the first time that fMRI has revealed an overt 

functional dissociation – where different areas have significant and opposing 

selectivities – within the macaque face-processing system. 

While it is not currently possible to link changes in fMRI signals to 

underlying neural activity with absolute certainty (see discussion below), this 
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preference for natural facial motion suggests that cells in MD and AF could also 

exhibit selectivity for the kinematics of naturally moving faces in addition to 

their selectivity for static facial form (McMahon et al. 2014). Some neurons in 

these patches may fire only in response to a specific sequence of poses, a 

mechanism that has been proposed for the neural coding of biological motion 

(Giese & Poggio 2003; Vangeneugden et al. 2011).  

On the other hand, the apparent selectivity of ventral face patches PL, ML 

and AL for randomized face motion is unlikely to represent a genuine selectivity 

for specific sequences of facial pose. Rather, this preference may reflect purely 

shape-selective face neurons that adapt quickly (Grill-Spector & Malach 2001), 

respond less to expected stimuli (Summerfield et al. 2008; Meyer & Olson 2011), 

or show a combination of these effects (Perrett et al. 2009; Larsson & A. T. Smith 

2012). Thus a predictive coding scheme, where deviations from expectation drive 

neural activity (Friston 2005; Clark 2013), could underlie processing in the 

ventral patches. While predictive coding models generally assume predictions 

from later processing levels inform earlier processing levels (e.g. Friston 2005), 

our discovery of qualitatively distinct representations of facial motion within the 

face patch system allows an alternative hypothesis to be explored: dynamic face 

representations in dorsal face patches might generate predictions of momentary 

features which are communicated to ventral patches through lateral connections 

(Moeller, Freiwald, & Tsao 2008). 

The fact that the natural motion benefit in the dynamic dorsal patches was 

just as great for the object stimuli as for the face stimuli (Figure 9D–E) is difficult 

to explain at the moment. It could mean that these areas have independent 

selectivities for face form and for natural, continuous motion; however, the 
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relative insensitivity of the dorsal STS to the pattern motion localizer speaks 

against this. Another possibility is that there is a greater difference in natural 

motion content between our veridical and jumbled object movies than between 

our veridical and jumbled face movies. The fact that LST shows greater benefit 

for natural motion with objects than with faces (Figure 9C–E) supports this idea. 

Unfortunately, there is no way to control for such potential differences without 

knowing what it is about natural motion that these regions prefer. Experiments 

that use a wider range of stimuli to dissect the relevant components of motion 

“naturalness” will likely be necessary to explain this result. 

When interpreting this experiment’s results, it is also crucial to note that the 

neural correlates of fMRI signals are a subject of ongoing debate, and links 

between the signals we describe and specific neural activity are still conjectural. 

Studies over the past 15 years have variously identified either the integration of 

neural inputs (Logothetis et al. 2001; Goense & Logothetis 2008) or the spiking of 

local neurons (D.-S. Kim et al. 2004; Lee et al. 2010; Issa, Papanastassiou, & 

DiCarlo 2013) as the best correlate of fMRI signals. It is likely that both of these 

influences and others play a role in generating fMRI signals some of the time 

(reviewed in S. G. Kim & Ogawa 2012). Furthermore, our contrast-enhanced 

fMRI technique measured cerebral blood volume (CBV), not the blood-oxygen-

level-dependent (BOLD) fMRI signal that has been most frequently studied. 

While CBV changes are similar to BOLD in most cases, they are decoupled in 

others (Smirnakis et al. 2007; Goense, Merkle, & Logothetis 2012), so much of 

what is  known about the neural correlates of fMRI signals may not directly 

apply to our study. Despite this, we have good reason to believe that CBV 

corresponds well to the firing rate in and around the face patches; Issa et al. 
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(2013), who also measured CBV, found that a spatially smoothed map of raw 

spike rates was a very good predictor of the fMRI signals that they measured 

around the macaque STS. While this suggests that our measured fMRI responses 

reflect local firing rates, and therefore that natural motion increases the firing 

rate of dorsal face patch neurons, direct neural recordings are necessary to 

confirm this. 

Furthermore, while our use of jumbled frames as a control revealed a 

functional divide within the face-patch system, jumbling is a coarse 

manipulation that introduces discontinuities into continuous motion and 

interrupts the possible expectation of preserved stimulus identity. This study, 

therefore, speaks specifically to functional specializations for continuous face 

motion. A recent experiment demonstrated that certain human face areas 

respond differentially to movies of facial expressions played either forwards in 

time (a continuous, biologically plausible motion) or backwards (a continuous but 

implausible motion; Reinl & Bartels 2014). A similar comparison in monkeys 

might deepen our understanding, showing further motion specialization within 

the face patches or refining the mechanistic understanding of the division we 

describe. 

By integrating our results with the findings of earlier studies, we can 

develop a picture of how face form and motion processing are arranged in the 

macaque temporal lobe (Figure 14). Within and around the STS, face patches and 

general motion areas adjoin each other, but are anatomically distinct. The face 

patches are differentiated along two axes. As information flows from posterior to 

anterior, face patches show increased form-specificity and view-tolerance 

(Freiwald & Tsao 2010), consistent with general trends in the temporal lobe 
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Figure 14. Model of Face Motion and Face Form Processing along the Macaque 
Temporal Lobe 

Functional specificity of face patches is organized along two main anatomical 
axes. From posterior to anterior, face patches show increasing identity selectivity 
and increasing tolerance to viewing condition (Freiwald & Tsao 2010). Along the 
dorso-ventral axis, face patches show differential selectivity for natural motion, 
with “dynamic” dorsal patches (purple) responding to natural motion and 
“static” ventral patches (red) responding more to rapidly varying face stimuli. 
Face motion activates all of these patches as well as motion processing areas 
(blue), which are selective for neither momentary face form nor natural face 
motion.



 

 86 



 

 87 

(Rust & DiCarlo 2010). Along the ventral to dorsal axis, there is a functional 

transition that reflects a likely selectivity for momentary facial form in the ventral 

patches and for continuous facial motion in the dorsal ones. This picture is 

compatible with influential “division of labor” face recognition models (e.g. 

Bruce & A. W. Young 1986), particularly those that posit a separation of static 

features (such as identity) from dynamic ones (such as expression and gaze; 

Haxby, Hoffman, & Gobbini 2000). In fact, our findings present the best evidence 

yet of such a division of labor between identifiable nodes in the macaque brain, 

opening the door to further characterization of putative static and dynamic 

streams by electrophysiological and causal approaches. This could ultimately 

elucidate how the myriad signals conveyed by faces are given meaning by the 

brain (Calder & A. W. Young 2005; Barraclough & Perrett 2011) at neuron and 

network levels. In this way, the specializations for facial motion within the areas 

described here provide a concrete anatomical framework for investigating both 

the computations that extract and abstract from facial dynamics and, more 

generally, the interrelated neural representations of form and motion. 

Responses to the Conjunction of Head and Body  

When we observe a face atop a body, these two distinct forms 

fundamentally represent the same agent with the same identity, feelings, and 

motivations. This is why poker players scrutinize both faces and bodies for tells, 

why it is so alarming to recognize a friend from behind but find yourself face to 

face with a stranger when he turns around, and why, presumably, the brain is 

wired to use the body as well as the face to interpret emotion and identity 

(Aviezer, Trope, & Todorov 2012; Rice et al. 2013). Our investigation into the 
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effects of viewing faces in the context of bodies aimed to identify regions of the 

macaque temporal lobe that jointly process these two related forms. Our work 

shows that activity within some face patches is elicited specifically by the joint 

observation of head and body, contrary to the view that the representations of 

faces and bodies are separated into independent domains in the temporal lobe. 

When comparing responses to whole monkeys with the sum of responses to 

heads and bodies, we found 3 different activity patterns in the face and body 

patches: sublinear responses in PL, ML and the body patches, linear responses in 

MF and MD, and a supralinear response in AF and possibly AL (Figure 11B). The 

sublinear and linear responses are in line with the common view of face and 

body patches as being largely non-selective for forms that are not their preferred 

stimulus. Both monkey electrophysiology (e.g. Sato 1989; Miller, Gochin, & Gross 

1993; Zoccolan, Cox, & DiCarlo 2005) and human neuroimaging (e.g. Beck & 

Kastner 2005; Gentile & Jansma 2010; Nagy, Greenlee, & Kovács 2011) have 

shown that viewing multiple stimuli together can lead to less activation in high-

level visual areas than would be naively predicted by a linear model based on 

responses to independently-presented stimuli. This is usually understood as the 

result of competition between different objects for a limited pool of neural 

resources (reviewed in Desimone & Duncan 1995). In this light, the sublinear 

responses in PL and ML can be explained by the competition between the 

preferred face stimuli and the non-preferred body stimuli. The same logic holds 

true for the body patches, though in this case the body stimuli would be the 

preferred subjects. Linearity would be predicted, on their other hand, if the 

signal within a measured region were composed of face and body selective 

components that do not interact even when a face is presented with a body. An 
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alternative explanation for linearity is that a body attached to a face may be 

treated as part of the face. Because the combination of body and face would form 

a single perceptual group, no competition would be induced (McMains & 

Kastner 2010; Bernstein et al. 2014). If this is the case, the progression from 

sublinear to linear when moving from PL and ML to MF and MD could represent 

a transition to a unified representation of faces and bodies (as argued in 

Bernstein et al. 2014).  

In contrast to these more readily explainable responses, the supralinear 

response that characterizes AF and AL (at least when form-specificity is 

accounted for), and which we sometimes found in whole brain analyses, came as 

a surprise. Supralinear fMRI signals have not normally been evoked by viewing 

multiple objects at once (MacEvoy & Epstein 2009; Nagy, Greenlee, & Kovács 

2011; Baeck, Wagemans, & Op de Beeck 2013), so their presence here suggests a 

special link between faces and bodies in these patches. In support of such a link, 

the supralinear responses in AF and AL depended on the specific form of the 

body; faces shown atop non-body objects in these patches elicited merely linear 

responses (Figure 12B). In contrast to the form-selectivity of the supralinear 

responses in AL and AF, the sublinear and linear responses to faces with bodies 

in the other patches mirrored the response patterns evoked when faces were 

presented in conjunction with non-body objects. This supports the idea that the 

increased activity in anterior patches AL and AF is fundamentally different than 

the response to bodies in more posterior face patches, and results from the 

unique relationship between faces and bodies in these regions.  

Interestingly, the antSTS body patch also demonstrated a form-dependent 

interaction effect, showing a greater sublinearity when a face was paired with a 
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body than when it was paired with a non-body object (Figure 12C). The form-

specific suppression effect speaks to a possible functional link between the 

representations of faces and bodies in this patch. The fact that no similar effect 

was found in midSTS further bolsters the idea that there is an increasing 

integration of face and body information in the more anterior parts of the 

temporal lobe. This may be one facet of the frequently noted increase in receptive 

field size and development of complex stimulus selectivity as information moves 

from posterior to anterior through the visual stream (Rust & DiCarlo 2010).  

While there are a number of challenges to comparing our work here with 

human research, human studies have also pointed to an increasing integration of 

face and body information in more anterior areas. The three primary barriers to 

comparison with the existing human studies are the diversity of approaches that 

these studies took, the fMRI signatures that they identified, and the small 

number of face areas that they examined. Only three human studies have shared 

our basic approach, employing univariate analysis to explore the relative 

responses to faces, bodies, and whole agents in multiple areas (Morris, Pelphrey, 

& McCarthy 2006; Song et al. 2013; Kaiser et al. 2014), and no two of these 

defined their regions of interest in the same way. Song et al. (2013) – like us – 

chose to examine activity within independently localized face and body areas, 

but they – like other research groups working with humans – found no areas 

with supralinear responses to faces and bodies viewed together. One explanation 

for this lack of a supralinear signature is that human experiments have only 

examined functional regions at the posterior end of the temporal lobe, while the 

supralinear responses that we found were only evident in very anterior face 

patches. Alternatively, this disparity might result from our use of an fMRI 
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contrast agent, while all previous human studies have measured functional 

activity using a functionally similar, but not equivalent, endogenous fMRI signal 

(see discussion above). 

 Despite these differences, all human studies that have examined multiple 

face areas in the brain have found a more integrated representation of face and 

body in the anterior (FFA) than in the posterior (OFA), much as we did. One 

study showed that altering a body could reverse fMRI adaptation in the FFA but 

not OFA (Andrews et al. 2010), a second study showed more supralinear fMRI 

adaptation to faces and bodies in FFA than OFA (Schmalzl, Zopf, & Williams 

2012), another found an increased response when a face was presented with a 

body only in FFA and not OFA (Song et al. 2013), and the fourth suggested 

competition between faces and their bodies in OFA but not FFA (Bernstein et al. 

2014). Thus, while the human and macaque face processing systems cannot yet 

be homologized area to area, the overall organization of body context effects 

within them is similar.  

Human studies also inspired our investigation into the role that facial 

ambiguity plays in the joint responses to faces and bodies. We found a 

supralinear effect of providing body context to blurred faces in AF and a 

suggestion of it in AL, the same patches where positive body context effects were 

seen with unambiguous faces (Figure 13B, top). It is remarkable that there is a 

supralinear response to bodies and heads in these face patches even in the total 

absence of a clearly defined face. This is reminiscent of the psychological finding 

that a faceless head paired with a body, when viewed briefly, is often perceived 

as having a face and even shows inversion effects like a face (Brandman & Yovel 

2012), suggesting that face-processing mechanisms can be engaged by bodies 
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paired with the general shape of a head .  However, our data argues against the 

related idea that the activity induced by blurred faces atop bodies represents the 

normal recruitment of the face-processing machinery usually activated by 

unambiguous faces. In contrast to what Cox et al. (2004) found in the human 

FFA, the contextually evoked activity elicited by ambiguous faces atop bodies 

was equal to the contextual activity elicited by unambiguous faces atop bodies 

(Figure 13B, bottom). Perhaps the contextual activity evoked by a body paired 

with either an ambiguous or unambiguous face is a whole-agent response that is 

not dependent upon internal features of the face. Such a whole-agent response 

could either originate from a collection of otherwise silent neurons in the face 

patches, or, alternatively, from face neurons firing beyond their usual response to 

face features. Direct recordings of neurons in AL and AF would be the most 

straightforward way to explore these possibilities, and could also confirm that 

the supralinear fMRI signals we observed accurately reflects a supralinear 

change in neural firing. 

While face-selective areas provide a useful framework for exploring the joint 

representation of faces and bodies in the temporal lobe, our findings also suggest 

that focusing our attention solely on these regions may not tell the whole story. 

In the two subjects where a whole-brain analysis was sufficiently powered to 

visualize positive interactions between face and body responses, we found 

supralinear responses not just in the anterior STS near face patches AL and AF, 

but also in the mid-STS near face patches MF and MD (Figure 10, M1 and M4). 

This is in seeming contradiction with the fact that neither of these middle face 

patches showed a supralinear response in our group analysis, but agrees with the 

only previous macaque study that described a specific responsiveness to whole 
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agents in the temporal lobe. Wachsmuth, Oram, and Perret (1994) found neurons 

with selectivity for whole people (but not faces or bodies) in the upper bank and 

fundus of the STS, and the coordinates of their recording sites suggest that these 

cells fell near the middle face patches. The fact that these supralinear responses 

in the middle STS were evident in our whole brain analysis but not the group 

analysis of MD and MF suggests that whole-agent-responsive regions may make 

up only part of these face patches, or may reside in neighboring but distinct 

functional areas. This finding also calls into question whether the supralinear 

responses in AL and AF originate from the previously characterized face-

selective cells within them (Freiwald & Tsao 2010; McMahon et al. 2014), or 

instead from a unrecognized population of cells selective for faces with bodies in 

an overlapping or closely neighboring functional area. To distinguish these 

possibilities, it will be necessary to perform a study with enough power to 

reliably localize areas with a supralinear response to faces and bodies and then 

use independent data to explore if these areas have selectivity for faces presented 

alone. Even then, recordings of single neurons will be needed to definitively 

determine whether selectivity for lone faces and for faces with bodies can be 

found within the same cell.  

Our examination of the joint representation of heads and bodies expands 

our understanding of biological form processing in the temporal lobe, revealing 

an intertwined functional organization that is richer than previously appreciated 

(Figure 15). Within the recognized face patches, the temporal lobe contains 

regions that select for the conjunction of head and body. While there is limited 

evidence for independent areas of joint form selectivity at this point, face patches 

along the STS form a posterior to anterior hierarchy that demonstrates the 
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Figure 15. Model of Face and Body Representations Along the Macaque 
Temporal Lobe 

Viewing faces or bodies activates a number of functional areas along the STS. 
Near the face patches, two large and reliable body selective patches can be found 
in every hemisphere (midSTS and antSTS; solid blue). Additional regions of 
body selectivity can be found in some hemispheres anterior to ML, near MD, and 
near AF (blue outlines). Moving posterior to anterior, different face patches show 
different responses to the simultaneous sight of faces and bodies. The most 
posterior patches (PL and ML; red) show a sublinear response to faces and 
bodies, patches in the middle (MF and MD; magenta) show a nearly linear 
response, and the most anterior (AF and AL; purple) show a likely supralinear 
response. Notably, only the supralinear responses are body-specific (Figure 12). 
The body patches show sublinear responses to faces and bodies presented 
together. In addition, whole brain analysis suggests that there can sometimes be 
areas of supralinear response to a face atop a body in the STS near MF and MD, 
and such supralinear areas may fall outside of face patches (purple outline).
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emergence of this positive interaction between head and body, with posterior 

patches showing sublinear responses to the conjunction of these forms, middle 

patches showing linear responses, and anterior patches showing supralinear 

responses. The ability to examine the differences in the interaction of head and 

body representations between these identifiable regions has the potential to shed 

light on major problems of object vision: how multiple objects are simultaneously 

encoded at different stages in the temporal lobe (Zoccolan, Cox, & DiCarlo 2005), 

how selectivity for complex objects is developed (Connor, Brincat, & Pasupathy 

2007; Rust & DiCarlo 2010), and how spatial context facilitates object processing 

(Bar 2004). The functional specializations identified in this set of experiments 

provide a framework for understanding the neural mechanisms that integrate 

visual information from faces and bodies, and may shed light on the more 

general question of how the brain combines information from spatially disparate 

but meaningfully intertwined parts of the visual world. 

How Contextual Effects Illuminate the Organization of the Face Patches 

In acknowledging visual context’s importance, we have attempted to move 

beyond the limitations of motionless, isolated face stimuli to study two very 

different contextual effects within the macaque face processing system. While 

each study alone enriched our understanding of the considered contextual cue 

and the organization of the face patches, combining the findings of the two 

studies both strengthens these gains and provides an even deeper understanding 

of face processing in the macaque. 

At a very practical level, both of these experiments revealed that the 

reciprocal exchange of activity between the face patches is not strong enough to 
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obscure local differences in specialization. The face patches form a densely 

interconnected web of functional areas (Moeller, Freiwald, & Tsao 2008), and 

previous univariate fMRI experiments have revealed response profiles of the 

different patches that differ in degree, but not in fundamental character (e.g. 

Polosecki et al. 2013; Russ & Leopold 2015). Thus, it had seemed possible that 

activity originating in a single patch might spread throughout the network more 

quickly than fMRI could capture, and that fMRI might therefore be useless for 

functionally separating different nodes within this system. The fact that both of 

our experiments revealed patterns of fMRI activity that are localized, and not 

shared throughout the entire face-processing system, precludes this possibility.  

Fundamentally, these localized differences in visible activity mean that fMRI 

can be used to define functional signatures specific to a face patch, and 

researchers can use these to identify equivalent functional areas across animals. 

For instance, AF was the only face patch in our studies to show both selectivity 

for natural motion and a supralinear response to co-presented faces and bodies; 

this signature can now be used to recognize a functionally homologous area in 

other monkeys, even if unusual anatomical patterning otherwise obscures AF. 

Conceptually, this finding also suggests that fMRI activity patterns represent the 

neural responses within each individual face patch, rather than composite 

activity of the entire face-processing system. This supports the utility of fMRI as 

a tool for targeting high-resolution experimental methods to functionally 

interesting regions of the face processing system. 

At the level of functional neuroanatomy, these studies also show that the 

face patches are not solely driven by face form, nor are they organized in a 

wholly different manner than the rest of the temporal lobe visual areas. Both 
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motion and body form drive activity in some patches, and these effects are not 

uniform throughout the system, but fall along axes of stimulus selectivity that 

have been previously suggested by years of human and monkey research. The 

dorsal-ventral split in sensitivity to natural face motion is in line with the 

influential idea that vision is processed through a ventral “what” stream and a 

dorsal “how” stream (Goodale & Milner 1992), as well as the suggestion that the 

dorsal bank of the macaque STS is a point of communication between these 

streams (Oram & Perrett 1996). The posterior-to-anterior increase in the joint 

response to faces and bodies likewise parallels the increased complexity of 

preferred features demonstrated by neurons at the anterior end of the temporal 

lobe (Connor, Brincat, & Pasupathy 2007; Rust & DiCarlo 2010). Considered as a 

pair, these trends highlight the extent to which the face patches appear to be 

representative of the wider visual system, even as they are functionally and 

anatomically separate from it. 

Considering the intersection of these two experiments can also suggest 

alternative functional organization schemes. Although we considered facial 

motion and body context separately, the representations of these two features 

may be related in certain cases. The strong effects of both temporal and spatial 

context in face patch AF, for instance, could point to a higher-level specialization 

within this area. Previous electrophysiological studies in the anterior STS near 

AF have revealed a wide range of specializations for biological perception – 

ranging from neurons that respond to paired sound and motion to neurons that 

respond to the presence of a visually obscured person – leading some to 

speculate that this region is a hub of social cognition (reviewed in Brothers 1996; 

Keysers & Perrett 2004). Understanding both facial movements and body posture 
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is critical for social interactions, and the fact that AF is attuned these influences 

raises the possibility that it may be part of, or even encompass, the hypothesized 

social cognition area. Further characterization of the face patches could explore 

whether AF plays a role in additional, untested, social functions. 

Finally, and perhaps most critically, both of these studies show that 

contextual cues can exert their effects within the visual processing stream, and 

not solely within the “higher”, more cognitive areas of the brain. By identifying 

areas of the macaque cortex where this happens, these experiments open the 

door to experiments that can probe the cellular and system-level origins of this 

contextual influence. 

Next Steps 

Using macaque fMRI to study how the brain processes facial context has 

allowed us to rely upon information from both human fMRI experiments and 

macaque electrophysiology, along with the structure provided by the face patch 

system. By doing so, we have identified temporal lobe areas that react to the 

context in which a face is viewed and have hypothesized both the underlying 

neural activity in these areas and their behavioral impact. However, in order to 

understand the processing of facial context from neuron to human behavior 

using the macaque as a model, three additional steps need to be taken. First, the 

contextual effects we observed must be demonstrated at the level of single 

neurons. Second, a causative link must be established between the activity of 

these neurons and the ability to act on the contextual information. Finally, there 

needs to be a better understanding of how (and if) the organization of the 
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macaque face patches can be mapped onto human face areas. Our experiments 

have laid the groundwork for studies that can meet these needs. 

Although the wide field of view provided by fMRI makes it a useful 

complement to single-cell observation, it can only hint at the richness of the 

information carried by neurons within each voxel (see Dubois, de Berker, & Tsao 

2015 for a pertinent example). While new technologies are expanding the ways 

that single neurons can be monitored, the simplest method for understanding the 

activity underlying the fMRI signatures we observed remains 

electrophysiological recording. In the short time since the macaque face patches 

were discovered, electrophysiological studies have already begun to piece 

together the tuning of face patch neurons, revealing their dependence on face 

features (Freiwald, Tsao, & Livingstone 2009; Issa & DiCarlo 2012), their patch-

dependent selectivity for identity and viewpoint (Freiwald & Tsao 2010), and the 

stability of their tuning over multiple months (McMahon et al. 2014). Our 

experiments have suggested recording sites where neurons representing facial 

motion and the interaction of face and body form can be found, recorded, and 

characterized within the face processing system. 

Comparing the activity of neurons within MD and AF (which we predict 

respond to natural motion) to the activity of neurons in PL, ML, and AL (which 

we predict respond to momentary static form) would be the logical place to 

begin an electrophysiological exploration of how cells represent facial motion. 

While the first step should be to see if single neurons recapitulate the patterns of 

natural motion preference we see in fMRI, electrophysiological experiments 

would also be an effective way to define what type of motion excites these face 
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cells, over what time window they integrate motion, and how these cells 

combine information about dynamics and form.  

The face videos that we used in our first study contained many types of 

motion, including head movements, chewing, and expressive face motion. By 

restricting presented stimuli to a specific rigid motion (such as translation, 

looming, or rotation in or through the visual plane) or non-rigid motion (such as 

a mouth, eye, or brow movement), it would be possible to determine what types 

of movements are represented within the identified face patches. To explore how 

motion is integrated over time, stimuli in which a motion is reversed or 

scrambled at different time scales (see Hasson et al. 2008; Singer & Sheinberg 

2010) could be utilized to determine what temporal aspects of an effective motion 

stimulus are necessary to elicit a neural response. Animated avatars, either made 

with traditional 3D modeling (as in Hill & A. Johnston 2001) or derived from 

videos of animals (as in Nagle et al. 2013), could be used to show different 

monkeys performing identical actions; this would allow the definition of joint 

tuning functions for form and dynamics for neurons in the ventral and dorsal 

portions of the face processing system. While these three suggested experiments 

would only scratch the surface of possible selectivities a cell tuned for facial 

motion might exhibit, they could suggest what behavioral functions the dorsal 

face patches support. 

Similarly, recordings in AF and AL could both confirm that individual face 

cells can integrate contextual body information and determine the way in which 

they integrate it. Experiments that we recounted earlier suggest that both the 

relative location of a face and body, as well as the specific form of a body, can 

alter the contextual effect that a body exerts. By translating, rotating, or flipping a 
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presented body while holding a face constant, it would be possible to investigate 

the location dependency of the neural body context effects. Exhaustively pairing 

a set of faces with a set of bodies could provide insight into the nature of these 

face/body interactions. For instance, a given body might have an equivalent 

contextual effect on a neuron’s firing no matter the face with which it is paired. 

Alternatively, the strength of contextual effects could depend on the congruency 

of affect between face and body, the rotational position of the head relative to the 

body, or other such interactions. In the event that it is possible to confirm the 

existence of areas with a supralinear response to faces and bodies outside of the 

face patches, single cell recordings would also be critical for confirming whether 

such areas contain a high density of neurons specifically selective for whole 

agents. These studies would suggest whether the areas we have identified 

underlie the known psychological links between body form and face form. 

While electrophysiology could reveal the variety of contextual signals 

contained within the face patches, neural inactivation will be necessary to 

understand whether these signals are necessary for acting upon contextual 

information. The GABA agonist muscimol and optogenetic inhibition techniques 

have already been used in and near the face patches to show the role of these 

areas in involuntary gaze-following (Roy, Shepherd, & Platt 2012) and facial 

discrimination (Afraz, Boyden, & DiCarlo 2014). By selectively inactivating the 

face patches thought to be involved in contextual information processing, it will 

be possible to determine whether the observed contextual activity signatures 

underlie the expected behavior.  

For instance, our results suggest that inactivating MD and AF would reduce 

the ability to discriminate identities embodied by dot-motion representations of 
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faces, but not by still photographs of faces. Through similar logic, inactivation of 

AF and AL would be expected to decrease the influence of body posture on 

reported facial emotion. The most difficult part of performing such experiments 

would likely not be implementing the inactivation protocol, but designing tasks 

that can measure such complicated concepts as perceived facial emotion and 

training monkeys to reliably perform them. Such tasks will ultimately be 

necessary, however, to understand if and how macaques use contextual 

information. 

As an aside, inactivation techniques could also help to reveal the 

connectivity underlying contextual activity. The discovery that activity within 

the face patches can be modulated by the presence of a body raises the possibility 

that there may be direct interactions between neighboring face and body patches. 

By inactivating body patches and seeing if supralinear body context responses 

remain in the anterior face patches, it would be possible to determine whether 

the joint representation of face and body that we observed is dependent upon 

prior activity within the body patches, or if the form-selectivity of body context 

effects arises from an independent mechanism. A similar method has already 

been used to demonstrate that the face patches are hierarchically organized, 

showing that pharmacologic inactivation of the middle face patches blocks the 

activity of anterior face patches (Liu et al. 2011). If the activity of body patches is 

not required for the context effects that we observed, it may even be possible to 

disrupt the normal perception of bodies while leaving their effects on face 

perception intact. 

Even if context responses were understood at the level of single cells, and 

inactivation of these cells were to elicit the expected behavioral deficit, the ability 
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to apply these findings to the human brain would be hindered by the current 

lack of known homology between macaque and human face areas. While our 

experiments have uncovered fMRI signatures which can be used to identify 

specific face patches in macaques, at the moment these signatures cannot be 

identified within the human brain; human experiments have uncovered neither 

face areas that respond more to scrambled motion than to natural motion 

(Schultz et al. 2013) nor face areas with a supralinear response to faces paired 

with bodies (Kanwisher, Stanley, & Harris 1999; Morris, Pelphrey, & McCarthy 

2006; Song et al. 2013; Kaiser et al. 2014). However, by performing human fMRI 

experiments that measure CBV rather than BOLD signal, it might be possible to 

identify human face areas that behave much like the macaque face patches do. 

As we mentioned earlier, BOLD signal and cerebral blood volume diverge in 

certain cases. For instance, CBV changes can sometimes be found in areas with 

no BOLD response (Smirnakis et al. 2007) and while a positive BOLD signal is 

generally accompanied by an increase in CBV, a negative BOLD signal may also 

be accompanied by an increase in CBV (Goense, Merkle, & Logothetis 2012). 

These differences between BOLD and CBV responses could explain the 

continued difficulty in aligning the functional profiles of macaque and human 

face areas. 

By measuring human CBV responses, it might therefore be possible to find 

face areas with functional signatures similar to those that we found in macaques. 

Researchers have recently begun to measure CBV in humans with Feraheme, one 

of the contrast agents we used (Qiu et al. 2012; D'Arceuil et al. 2013). However, 

given the discovery that Feraheme or its metabolites can accumulate and hinder 

future brain imaging (Lafer-Sousa & Conway 2013; Gagin et al. 2014), it may not 
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be appropriate to use exogenous contrast to measure human CBV until a 

superior contrast agent is developed. An alternative way to measure human CBV 

would be to employ vascular-space-occupancy (VASO) imaging, an MRI method 

that requires no exogenous contrast agent and relies upon a specialized MRI 

pulse sequence to determine the volume of blood within each voxel (Lu et al. 

2003; reviewed in Lu, Hua, & Zijl 2013). Although VASO imaging has worse 

functional sensitivity than BOLD imaging, the additional time required to 

measure a meaningful signal would likely be worth the ability to directly 

compare the resulting data to the CBV data from macaque experiments. This 

comparison could be a key step in understanding the neuron-level origins of a 

complex perceptual ability. 

No part of our everyday world exists in a contextual vacuum. Faces are no 

exception to this rule, and, taking advantage of this fact, we have identified 

regions of form-selective visual cortex that reflect contextual influences. While 

future studies – like those just described – will be necessary to understand the 

role that these areas play in creating comprehensible visual experience, our 

findings reinforce the importance of recognizing the linked challenges and 

opportunities that visual context presents. Embracing these challenges and 

opportunities might ultimately provide the perspective we need to perceive the 

whole of the brain’s form-processing machinery, and not just its constituent 

parts. 
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