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IN CAENORHABDITIS ELEGANS 

Christine Cho, Ph.D. 

The Rockefeller University 2015 

Animals live in constantly changing environments with fluctuating resource availability 

and hazardous threats. By gathering information from past experiences, individuals 

modify their behavioral response to adapt to the changing environment, a phenomenon 

known as “experience-dependent plasticity”. This ability to change is a crucial for 

survival, and how an organism achieves this adaptive plasticity is a question of much 

interest. Research in the field has yielded insight into how changes in connectivity within 

the brain can drive changes in behavior. Understanding the neural mechanisms of 

plasticity not only satisfies intellectual curiosity, but also provides a basis for 

understanding pathological conditions that come from excessive or insufficient 

plasticity. With a well-characterized nervous system, stereotyped behaviors, and an 

armory of molecular and genetic tools, C. elegans is well-suited for the study of 

experience-dependent plasticity. Using an olfactory adaptation paradigm in which 

animals lose attraction to butanone after it is paired with starvation, I here describe 

neuronal and molecular mechanisms that are associated with and necessary for 

plasticity in C. elegans. 



 In Chapter 2, I report my findings on circuit mechanisms of butanone 

adaptation, identifying neurons that are required for adaptation and changes in 

neuronal activity associated with adaptation. I show that an interneuron is required for 

adaptive changes in the olfactory sensory neuron. In particular, I show that nuclear 

translocation of a protein kinase, a process known to be necessary for adaptation, 

requires activity of the interneuron. This feedback from downstream neurons is 

transformed into changes in sensory properties. Using pharmacogenetic tools that 

allowed me to disrupt different parts of the circuit with temporal precision, I identified a 

group of neurons whose activity is required during adaptation. Finally, I performed 

functional calcium imaging of animals before and after adaptation, and determined that 

changes in neuronal responses to butanone can be detected at multiple sites within the 

circuit, starting as early as the as the sensory neurons. 

In Chapter 3, I describe the analysis of two genes, a G-protein β subunit and a K+ 

channel, that have different roles in adaptation. I used whole-genome sequencing and 

genetic mutations to identify the genes that are required for butanone adaptation, then 

characterized the odor-specificity of each gene. This analysis provides the basis for 

future work that should examine the molecular context in which these genes act and 

the impact they have on circuit mechanisms of adaptation. 
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CHAPTER 1: Introduction 

Experience-dependent plasticity refers to changes in the way an organism perceives and 

reacts to a stimulus based on its history. While such plasticity is known to occur during 

specific windows of development (known as ‘developmental plasticity’), it also happens 

acutely in adults. My thesis work addresses the latter. 

The concept of experience-dependent change in adult organisms was explored 

as early as the 1700’s, when the Italian biologist Malacarne found that the brains of 

trained animals were morphologically different from those of untrained animals 

(Rosenzweig, 1996). Subsequent research by Karl Lashley, Ivan Pavlov, and others 

developed paradigms and formalized definitions of the different types of plasticity such 

as habituation and sensitization, associative learning, and cortical remapping (Harris, 

1943; Pavlov, 1927; Merzenich et al., 1983). Habituation and sensitization are forms of 

non-associative learning in which an organism’s response to repeated stimulation is 

decreased or increased, respectively, allowing the organism to selectively respond to 

stimuli that are deemed important. In associative learning, an organism gains 

information about one stimulus based on its relationship to a second stimulus; it is an 

important part of language learning and habit formation. Cortical remapping is a type of 

plasticity that is frequently observed in response to injury, in which sensory 

representation in the cortex is altered to compensate for sensory deprivation. 

These different types of plasticity all share the trait of conferring adaptive 

advantage to an organism. Indeed, experience-dependent plasticity is the basis for 
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everything from the light-adaptation reflex in the retina to food-finding and social 

behavior (Demb, 2008; Sanchez-Andrade and Kendrick, 2009; Griffith and Ejima, 2009). 

It occurs on many different timescales, from milliseconds to days and even years. Such 

plasticity helps an organism predict the future based on the past, and is essential for 

survival in a constantly changing environment. Indeed, organisms with defects in 

plasticity are left at a significant disadvantage.  

 How are these adaptive changes brought about? Research has shown that 

plasticity is a complex process that involves regulation of many genes and coordinated 

signaling between multiple brain regions, and occurs over different spatial and temporal 

scales.  

In this introduction, I will highlight several model systems that illustrate general 

principles of experience-dependent plasticity, followed by a survey of the paradigms 

and mechanisms of plasticity in C. elegans.  

 

Mechanisms of experience-dependent plasticity 

Experience-driven changes in a simple circuit lead to behavioral plasticity: sensitization 

of the gill withdrawal reflex in Aplysia 

The marine slug Aplysia californica defensively retracts its gill when weak mechanical 

stimulation is applied to the siphon, a phenomenon known as the Gill Withdrawal Reflex 

(GWR). Studies by Kandel and colleagues show that this reflex undergoes several forms 

of experience-dependent plasticity (Pinsker et al., 1970; Pinsker et al., 1973; Carew et 

al., 1981).  
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To illustrate one example, training with repeated strong shocks to the tail results 

in sensitization of the GWR, and animals that receive training show much longer GWR 

durations compared to untrained animals. This sensitization behavior can last anywhere 

from several minutes (short-term sensitization) to several weeks (long-term 

sensitization), depending on the training protocol (Pinsker et al., 1973; Brunelli et al., 

1976).  

The GWR is mediated by a neural circuit that consists of approximately 100 

sensory, inter- and motor neurons.  Mechanosensory neurons innervating the siphon 

connect to the motor neurons innervating the gill both directly and indirectly by way of 

interneurons. Taking advantage of the relatively simple nervous system of Aplysia, 

scientists succeeded in mapping an exact locus of sensitization to the monosynaptic 

connection between the sensory and motor neuron, and elucidated the pre- and post-

synaptic molecular mechanisms that take place. 

During training, the tail shocks trigger release of serotonin from modulatory 

neurons, which elevates cyclic adenosine monophosphate (cAMP) in the presynaptic 

sensory neuron (Brunelli et al., 1976). cAMP acts on an S-type K+ channel and 

downregulates its activity, and this reduction in K+ currents is responsible for 

presynaptic facilitation (Castellucci & Kandel, 1976; Castellucci et al., 1980). A 

broadening of the action potentials leads to increased transmitter release, which causes 

a larger postsynaptic potential in the motor neuron and consequently a longer 

withdrawal (Kupfermann et al., 1970). 
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Although this presynaptic mechanism is sufficient to explain short-term 

sensitization, long-term sensitization involves additional mechanisms within the sensory 

neuron as well as in the post-synaptic motor neuron. On the pre-synaptic side, the 

prolonged activation of PKA that accompanies long-term conditioning is thought to 

induce CREB-dependent gene transcription (Glanzman 2008; Bartsch et al., 1998). The 

presynaptic side also sees an increase in the translation and release of the 

neuropeptide-like factor, sensorin (Brunet et al., 1991). Sensorin acts as a feedback 

signal by binding to autoreceptors on the sensory neuron (Hu et al., 2004). Interestingly, 

the production of sensorin in the sensory neuron is not cell-autonomous but instead 

depends on elevated Ca2+ levels in the post-synaptic neuron. In addition to Ca2+, the 

post-synaptic side also experiences increases in AMPA receptor expression and CAMKII 

activity (Jin et al., 2011; Antonov et al., 2010).   

The studies of GWR sensitization in Aplysia are a clear illustration that multiple 

mechanisms are required for plasticity in different temporal domains, and the various 

mechanisms are allocated to different spatial locations within the neural circuit.  

 

Sensory pathways converge at a central locus in associative learning: Pavlovian fear 

conditioning in rodents  

Pavlovian fear conditioning demonstrates how sensory information is processed to give 

rise to adaptive behaviors (Pavlov, 1927). In a rodent version of fear conditioning, 

animals are presented with an innocuous sensory cue such as an acoustic tone 

(Conditioned Stimulus, or CS), which is directly followed by a noxious foot shock 
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(Unconditioned stimulus, or US). Such conditioning gives rise to a very robust learned 

aversion of the CS, and animals will subsequently exhibit fear-like behavior in response 

to the CS alone. This form of plasticity is dependent on precise timing between CS and 

US, which is a hallmark of associative learning (Maren and Fanselow, 1996).  

 The amygdala, a deep brain structure in the temporal lobe, has long been 

highlighted as the neural locus that encodes fear learning and fear memory (Ledoux, 

2000). The CS and US pathways, which have their beginnings in separate regions of the 

nervous system, both send projections that converge in the amygdala (Romanski et al., 

1993).  

For acoustic CS, the auditory information is detected by the hair cells of the 

cochlea, and from there information is sent to the medial geniculate nucleus (MGN) of 

the thalamus and on to auditory cortex. Both the thalamus and the auditory cortex are 

thought to relay CS information to the lateral region of the amygdala (Ledoux, 1990; 

Romanski & Ledoux, 1993).  

The pathway for the noxious US is less clearly defined. Primary afferent 

nociceptors detect the shock and send information to the spinal cord, which relays the 

information to the thalamus and cortical regions. The amygdala appears to receive 

information about noxious stimuli from multiple parallel pathways, such as through the 

posterior intralaminar thalamus and insular cortex (Shi and Davis, 1999), and through 

noradrenergic projections from the locus coeruleus (Lazzaro et al., 2010; Bush et al., 

2010; Aston-Jones and Cohen, 2005). There also appears to be a more indirect pathway 

from the spinal cord through the periaqueductal gray (PAG) (DiScala et al., 1987; Kim et 
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al., 2013). Nociceptive information from PAG most likely goes through other cortical 

regions before reaching the amygdala, but further studies are needed to determine the 

precise flow of nociceptive information in the cortex.  

 The amygdala itself can be divided into several sub-nuclei based on functional 

wiring (Duvarci and Pare, 2014). Complex local microcircuits of excitatory and inhibitory 

connections exist between these sub-nuclei, further processing information once it has 

entered the amygdala. The lateral nucleus of the amygdala (LAn) receives and integrates 

input from multiple sensory modalities, and this information is then sent to the central 

nucleus (CEn) where it is exported to other regions of the brain that direct the 

expression of fear.  

The synaptic changes underlying fear conditioning are distributed throughout 

the neural circuit. In the auditory pathway, recordings from the MGN show enhanced 

neuronal responses to the CS after fear conditioning (Maren et al., 2001; Weinberger 

2011). In the amygdala, there is a strengthening of the auditory projections from 

thalamus and cortex onto LAn glutamatergic neurons. Recordings show that initially, 

LAn neurons show little or no response to the CS, but following fear conditioning LAn 

neurons respond robustly to the CS (Quirk et al., 1995). Synaptic potentiation is also 

observed in local circuits within the amygdala, such as in LAn projections to the CEn 

(Watabe et al., 2013; Li et al., 2013).  

Finally, synchronization of CEn and medial prefrontal cortex (mPFC) activity is 

also thought to be a component of fear memory (Likhtik et al., 2014). Computational 
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models are being developed to look at the relative contribution of these different 

synaptic changes to the behavioral plasticity (Kim et al., 2013).  

Taken together, the circuit for fear conditioning demonstrates how anatomical 

convergence of multiple sensory inputs can result in neural plasticity at multiple sites to 

drive behavioral change.  

 

Multiple circuit motifs mediate olfactory plasticity: local inhibitory circuits and 

corticofugal projections to the mammalian olfactory bulb  

The mammalian olfactory bulb (OB) is the first relay center of olfactory information in 

the brain and also a key site of olfactory learning. The OB receives sensory input from 

the olfactory receptor neurons (ORNs). Within the OB are excitatory mitral cells and 

several types of inhibitory interneurons; the interneurons make local connections, 

whereas the mitral cells are responsible for OB output to higher order regions including 

the olfactory peduncle and piriform cortex (Shipley and Ennis, 1996). Following an 

olfactory experience, the OB exhibits numerous changes that appear to be neural 

correlates of perceptual plasticity, including changes in mitral and granule cell response 

to odor and shifts in β-frequency oscillations of the local field potential (Kato et al., 

2012; Doucette and Restrepo, 2008; Magavi et al., 2005; Martin et al., 2004; Ravel et al., 

2003).  

Synaptic plasticity can occur in feedforward synapses from ORN to mitral cells. 

Ennis et al., (1998) demonstrated in vitro that tetanic stimulation of the ORN results in 

strengthening of these first-order synapses.  
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Another site of modulation is in the reciprocal dendro-dendritic synapses 

between mitral cells and local interneurons. The local interneurons make up an 

inhibitory GABAergic network, and changes to the excitation-inhibition balance in the 

OB is a principle mechanism of plasticity. This excitation-inhibition balance can be 

shifted by neurogenesis of new inhibitory interneurons within the OB, or by regulating 

the activity of existing interneurons through input from outside the OB (Mouret et al., 

2009).  

In addition to local feedback from interneurons within the OB, there is also long-

range feedback to the OB through corticofugal projections from the piriform cortex and 

olfactory peduncle, as well as cholinergic and noradrenergic neuromodulator input from 

basal forebrain nuclei (Matsutani et al., 2008; Fletcher and Chen, 2010).  Inactivation of 

the olfactory peduncle causes defects in odor-reward association learning (Kiselycznyk 

et al., 2006), and disrupts the β/γ oscillations that correlate with olfactory learning 

(Martin et al., 2006). Cholinergic activity in the OB is essential in an olfactory 

discrimination task (Mandairon et al., 2006), and lesions of cholinergic input from the 

basal forebrain leads to defects in olfactory habituation and associative learning (Paolini 

and McKenzie, 1993; Roman 1993). These and other forms of external modulation could 

be a means by which emotional or contextual information is integrated to modify 

sensory processing.  
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Aberrant plasticity can cause mental health problems: addiction and post-traumatic 

stress disorder  

The study of experience-dependent plasticity is fascinating of its own accord, but is also 

important in light of its role in human mental health. A number of mental health 

disorders are increasingly being viewed as disorders of plasticity.  

Post-traumatic stress disorder (PTSD) bears analogies to Pavlovian fear 

conditioning. PTSD occurs after a negative experience, during which an individual 

encounters a stress-inducing event (US) and associates it with the context or cue in the 

environment (CS). The condition is characterized by disproportionately strong CS-US 

association, as well as over-generalization of the CS (Johnson et al., 2012). It is thought 

that the neural cause of PTSD may be in aberrant activity in the limbic system, such as 

reduced top-down control from the mPFC leading to hyperactivation of the amygdala 

(Elzinga and Bremmer, 2002).  

Addiction can be thought of as over-activation of reward-learning mechanisms in 

the mesolimbic system (Pittenger, 2013; Kalivas and O’Brien, 2008). In normal 

motivational behaviors, a learned association between behavior and reward is mediated 

by dopamine release from the neurons of the vental tegmental area (VTA). Drugs of 

abuse hijack this reward pathway, disproportionately enhancing dopamine release in 

response to drug exposure (Kalivas and O’Brien, 2008). Drug-evoked plasticity has been 

observed in the VTA, and pharmacological blockade of synaptic plasticity abolished 

behaviors associated with addiction (Kim et al., 1996; Schenck et al., 1993; Mameli and 

Luscher, 2011).    
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A better understanding of the naturally occurring mechanism of plasticity in 

healthy individuals could shed light on potential therapeutic methods and targets.  

 

C. elegans as a model organism for the study of behavior 

The roundworm C. elegans was first popularized by Sydney Brenner in the 1960’s 

(Brenner, 1974) and has since become a standard model organism in the field of 

neuroscience that offers several advantages. 

First, it has relatively simple and well-characterized neuronal connectivity. The 

worm nervous system comprises 302 neurons. Of these, roughly a third are sensory, 

another third motor, and the remaining third integrating interneurons that link the 

sensory and motor levels. The sensory neurons include 12 pairs in the amphid sensory 

organ, most of which detect chemical stimuli. These synapse onto multiple interneurons 

that are heavily interconnected with each other and with motor neurons (Bargmann, 

2006). The motor neurons are found along the length of the body and control the 

worm’s locomotion. In 1986, White et al. used electron microscopy to construct a 

complete wiring diagram characterizing the stereotyped synaptic connection between 

all neurons of C. elegans (White et al., 1986). Having such knowledge of neuronal 

connectivity provides a significant advantage in understanding the relationship between 

neurons.  

Second, C. elegans is a genetically tractable organism.  C. elegans has a 

completely sequenced genome that includes many conserved genes with homology to 

genes of higher organisms. Mutants are readily available for many of the genes. 
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Additionally, the study of individual genes is facilitated by the ease of transgenesis that 

comes from C. elegans’ ability to form and transmit extrachromosomal arrays across 

generations.  

 

C. elegans responds to numerous sensory cues  

When moving on solid agar surfaces, C. elegans use stereotyped locomotion patterns 

that can be scored and used as a readout of internal state, perception, and preference. 

When placed in a gradient of stimulus, animals respond by migrating to the region of 

the plate with the preferred stimulus concentration (Ward et al., 1973; Hedgecock and 

Russell, 1975; Bargmann and Horvitz, 1991). Variations on the taxis assay can also be 

used to test sensory discrimination, by presenting a point source of one stimulus in a 

uniform field of a second stimulus.  

Using such taxis assays, researchers have demonstrated that C. elegans is 

exquisitely sensitive to many environmental stimuli including temperature, chemicals, 

oxygen levels, mechanical stimuli, and food sources (Hedgecock and Russell, 1975; 

Bargmann, 2006; Ardiel and Rankin, 2010; Zhang, 2008). In terms of chemosensory 

abilities, they can distinguish between at least 12 different classes of chemical stimuli 

including salts, minerals, amino acids, and volatile odorants, and can detect many more 

(Ward 1973; Bargmann and Horvitz, 1991; Bargmann et al., 1993). They also show 

amazing thermosensory capabilities, and are able to react to temperature changes as 

small as 0.05 oC (Hedgecock and Russell, 1975; Ryu and Samuel, 2002).  
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Specialized sensory neurons transmit sensory information 

Chemical and thermal stimuli are detected by amphid sensory neurons that have ciliated 

neurite endings at the tip of the nose. The AWA and AWC neurons are primarily 

responsible for detecting attractive volatile odorants (Bargmann et al., 1993). In AWC 

neurons, odorants bind to a G-protein-coupled receptor (GPCR) at the cell surface to 

initiate a transduction cascade in which the Gα protein ODR-3 decreases levels of cGMP 

produced by the receptor guanylate cyclase ODR-1/DAF-11. The guanylate cyclase 

converts GTP to cGMP, and the cGMP subsequently acts on the cGMP-gated cation 

channel TAX-2/TAX-4, opening it and allowing an influx of cations that depolarize the 

cell [Figure 1.1] (Bargmann, 2006). In addition to depolarization, odor signaling through 

TAX-2/TAX-4 activates a Ras/MAPK pathway. Exposure to odor stimuli causes rapid 

activation of Ras pathway molecules, and mutants of the Ras homolog let-60 and the 

RasGRP homolog rgef-1b are impaired in their response to AWC-sensed odors (Hirotsu 

et al., 2000; Chen et al., 2011).  

Thermal stimuli are detected by the AFD sensory neurons (Mori and Oshima, 

1995), whereas gustatory stimuli such as NaCl are detected by the ASE sensory neurons 

(Bargmann and Horvitz, 1991). The molecular transduction machinery mediating 

temperature and salt sensation in these neurons has some elements in common with 

the olfactory transduction cascade, including the use of cGMP as a messenger to signal 

to TAX-2/TAX-4 channels (Bargmann, 2006; Ramot et al., 2008). However, AFD and ASE 

differ from AWC in that they appear not to rely on GCPRs and instead may rely on 

membrane-bound guanylyl cyclases as primary sensory detectors (Inada et al., 2006).  
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Although most neurons including AFD are in bilaterally symmetric pairs, the AWC 

and ASE sensory neuron pairs are asymmetric in their gene-expression profiles and have 

different functional roles in detecting stimuli. There are two kinds of AWC neurons, 

AWCON and AWCOFF. Each animal has one of each which may be on either the left or the 

right. AWCON expresses the GPCR STR-2 and is capable of sensing butanone but not 2,3-

pentanedione, whereas AWCOFF does not express STR-2 and senses 2,3-pentanedione 

but not butanone (Troemel et al., 1999; Wes and Bargmann 2001). There are also 

several odors that are sensed by both AWCON and AWCOFF, including isoamyl alcohol and 

benzaldehyde (Bargmann et al., 1993).  The ASE are distinguished as ASEL or ASER 

depending on their location on the left or right side of the body, and they detect Na+ 

and Cl- respectively (Pierce-Shimomura et al., 2001; Ortiz et al., 2009). Asymmetry in 

these neuron pairs is thought to enable the animal to discriminate between multiple 

stimuli (Wes and Bargmann, 2001), and may also be important for stimulus-specific 

behavioral plasticity (Adachi et al., 2010).  

C. elegans lacks the voltage-gated Na+ channels that are required to generate 

canonical action potentials; instead, C. elegans neurons generally use graded release to 

signal between neurons. Calcium imaging shows that sensory neurons can either be 

excited or inhibited by stimuli, and the sign and shape of the response are unique to the 

specific neuron (Suzuki et al., 2008; Chalasani et al., 2007). AWC, ASE, and AFD make 

connections to downstream interneurons AIA, AIB, and AIY (White et al., 1986) (Figure 

1.1), and stimulus-driven calcium responses can be detected in these interneurons. 

However, interneuron responses are more probabilistic than sensory neuron responses  
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Figure 1.1 Simplified circuit underlying sensory plasticity in C. elegans 

Circuit diagram showing the major sensory neurons and interneurons that mediate 

thermosensory, gustatory, and olfactory plasticity. The primary sensory neurons make 

excitatory and inhibitory connections with multiple downstream interneurons. These 

interneurons are connected to other interneurons as well as the motor neurons that 

direct locomotion.   
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(Chalasani et al., 2007; Kuhara et al., 2011). As the interneurons receive input from 

multiple modalities, their complex responses may reflect integration of information that 

occurs at this stage of the circuit.  

 

Experience-dependent plasticity observed in C. elegans  

Despite having a relatively simple nervous system, C. elegans is able to perform complex 

behaviors. Using C. elegans’ characteristic sensitivity to chemical and thermal stimuli, 

researchers have developed associative conditioning assays that demonstrate 

behavioral plasticity in worms. In the following sections, I describe several instances of 

behavioral plasticity observed in C. elegans, and the research into the underlying 

neuronal circuitry. 

 

Thermosensory plasticity 

The first observation of thermosensory plasticity in worms was reported by Hedgecock 

and Russell in 1975: worms were cultivated with food at a certain temperature between 

16-25oC (Tcult) and adults were subsequently placed on a plate with a temperature 

gradient. Expressing a combination of cryophilic and thermophilic taxis behaviors, 

animals migrated to the region of the plate with a temperature that matched Tcult and 

remained in that region of the plate, a phenomenon known as ‘isothermal tracking’. 

Several hours of cultivation at a new temperature were sufficient to reset to a new Tcult. 

Food appears to be essential for this behavior, as animals cultivated in starvation 

conditions disperse from the region of Tcult (Kodama et al., 2006).  
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The AFD neuron has been established as the canonical thermosensory neuron 

required for this behavior and its ablation leads to athermotactic phenotypes (Mori and 

Oshima, 1995). In calcium imaging, AFD neurons only respond to temperatures above 

Tcult, indicating that it encodes information about both the current temperature and the 

cultivation temperature (Kimura et al., 2004; Clark et al., 2006).  Recent studies posit 

that several other sensory neurons besides AFD are also involved in thermosensation, 

including AWC and ASI: calcium imaging shows temperature responses in all three 

neuron pairs, and different combinations of the three are required for thermotaxis in 

different contexts (Kimura et al., 2004; Kuhara et al., 2011; Beverly et al., 2011; Biron et 

al., 2008).  

Laser-ablation studies show that downstream of the sensory neurons, there are 

parallel pathways for cryophilic and thermophilic behavior mediated by the 

interneurons AIZ and AIY, respectively (Mori and Oshima, 1995).  A recent study coupled 

the use of calcium imaging with optogenetics to reveal a complex microcircuit between 

AFD and AIY. In this study, strong activation of AFD leads to weak activation of AIY, 

whereas weak activation of AFD leads to strong activation of AIY (Kuhara et al., 2011). 

The authors conclude that AFD sends both inhibitory and excitatory signals to AIY, and 

the response in AIY reflects the two. In addition to the dual modes of signaling from 

AFD, AIY also receives thermosensory information from AWC through excitatory 

glutamatergic signals (Ohnishi et al., 2011) and thus appears to be a hub at which 

upstream thermosensory information converges.  
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Gustatory plasticity 

As is the case with temperature, worms raised on plates with the salt NaCl prefer the 

NaCl concentration at which they were cultivated, and can learn preference for a new 

cultivation concentration within four hours of exposure to the new concentration 

(Kunitomo et al., 2013). This behavior is mediated by the sensory neuron ASER, which 

responds to decreases in NaCl concentration. Calcium imaging shows that ASER 

responses are larger when the cultivation concentration is higher than the stimulus 

concentration. This stimulus information is passed on to the AIB interneurons in a 

selective manner; like ASER, AIB responds to decreases in salt concentration, but only 

under conditions in which the cultivation concentration is higher than the stimulus 

concentration (Kunitomo et al., 2013).  

As with thermosensory plasticity, this learned association of NaCl concentration 

with food availability can also be inverted; worms cultivated for several hours without 

food avoid the cultivation concentration (Saeki et al., 2001). In worms cultivated without 

food, the calcium responses of ASER to NaCl are enhanced but the neuron’s synaptic 

output is diminished, and the calcium response of AIB interneurons is also diminished 

(Oda et al., 2011).  As AIB is thought to control turning behavior (Gray et al., 2005), the 

plasticity seen in AIB activity may be a mechanism underlying the changes in NaCl 

chemotaxis behavior.  

Effects of conditioning with NaCl are generalizable to several other water-soluble 

attractants, indicating that the underlying mechanism most likely acts on cells that 

detect water-soluble attractants, rather than acting in a NaCl-specific pathway (Saeki et 
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al., 2001).  ASE neurons sense multiple water-soluble attracts, so this conclusion 

matches the known features of this sensory neuron pair.  

 

Olfactory plasticity  

C. elegans is innately attracted to many volatile odorants and chemotax towards a point 

source of the odor (Bargmann et al., 1993). In 1995, Colbert and Bargmann developed 

an olfactory adaptation paradigm in which chemotaxis to volatile odors is reduced upon 

conditioning animals to odor in the absence of food. The absence of food is essential for 

successful adaptation, indicating that this is likely a learned association between odor 

and starvation. This learned association was reversed after several hours of removal 

from conditioning, at which point animals recovered their innate attraction to the odor 

(Colbert and Bargmann, 1995).  

Unlike NaCl plasticity, olfactory plasticity is largely stimulus-specific: conditioning 

with benzaldehyde did not elicit adaptation to butanone (another AWC-sensed odorant) 

or diacetyl (an AWA-sensed odorant), and conditioning with butanone did not cause 

adaptation to either benzaldehyde or isoamyl alcohol (Colbert and Bargmann, 1995). 

Mutants defective for adaptation to different subsets of odorants have been found. 

Mutants of Transient Receptor Potential V (TRPV) homolog osm-9 are defective for 

adaptation to isoamyl alcohol and butanone but not benzaldehyde, whereas the 

uncloned adp-1 mutant is defective for adaptation to benzaldehyde and butanone but 

not isoamyl alcohol. This indicates there are overlapping but distinct molecular 

mechanisms mediating adaptation to individual odors. Additionally, an increase in the 
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chemotaxis index after conditioning with odor in presence of food – a phenomenon 

termed ‘enhancement’ – is observed only for butanone and not for isoamyl alcohol or 

benzaldehyde (Torayama et al., 2007).  

Compared to thermosensory or gustatory plasticity, which happens over several 

hours, olfactory plasticity generally occurs on faster time scales ranging from 5 to 90 

minutes of odor exposure (Colbert and Bargmann, 1995; Torayama et al., 2007; Hirotsu 

and Iino, 2005). Additionally, whereas typical massed training protocols result in 

learning that lasts only around two hours, repeated spaced presentations of odor paired 

with food can induce a learned behavior that lasts over 24 hours. This form of learning 

represents a form of Long Term Memory (LTM) in C. elegans (Kauffman et al., 2010). 

Calcium imaging studies show a correlation between reduced responses in the 

sensory neuron AWC and adaptation behavior, and signaling from the interneuron AIA is 

thought to be important for adaptation (see below) (Chalasani et al., 2010; Lin et al., 

2010).  

 

Molecular signaling involved in plasticity in C. elegans 

What are the genes that mediate the changes within and between neurons during 

plasticity? Mutant screens and pharmacological studies have uncovered a wealth of 

genes that are involved, and here I highlight several molecular signaling pathways have 

emerged as common pathways in associative plasticity. A more comprehensive list can 

be found in Table 1.  
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Table 1 Genes involved in plasticity in C. elegans 

 

Gene Protein Plasticity defect Reference 

goa-1 Gα protein olfactory Matsuki et al. (2006) 

egl-30 Gα protein olfactory Matsuki et al. (2006) 

gpc-1 Gγ protein gustatory, olfactory 
Hukema et al. 
(2006), Yamada et al. 
(2009) 

gpa-1 Gα protein gustatory Hukema et al. (2006) 

odr-3 Gα protein gustatory Hukema et al. (2006) 

odr-1 guanylyl cyclase olfactory 
L’Etoile and 
Bargmann (2000) 

tax-6 calcineurin 
thermosensory, 
olfactory 

Kuhara et al. (2002),  
Kuhara and Mori 
(2006) 

egl-4 
cGMP-dependent 
kinase 

olfactory L’Etoile et al. (2002) 

osm-9 TRP channel gustatory, olfactory 
Jansen et al. (2002) 
Colbert and 
Bargmann (1995) 

asic-1 
acid-sensing ion 
channel 

thermosensory, 
gustatory, olfactory 

Voglis and 
Tavernakis (2008) 

glr-1 AMPA receptor olfactory 
Morrison and Van 
der Kooy (2001) 

nmr-1, 
nmr-2 

NMDA receptor gustatory Kano et al. (2008) 

let-60 RAS-GTPase olfactory 
Hirotsu and Iino 
(2005) 

mek-2 MAPKK olfactory 
Hirotsu and Iino 
(2005) 

dgk-1; 
dgk-3 

DAG kinase 
thermosensory, 
olfactory 

Matsuki et al. (2006) 

ins-1 insulin-like peptide 
thermosensory, 
gustatory, olfactory 

Kodama et al. (2006) 
Tomioka et al. (2006) 
Chalasani et al. 
(2010) 
Lin et al. (2010) 

nlp-1 
neuropeptide-like 
protein 

olfactory 
Chalasani et al. 
(2010) 

daf-2 insulin/IGF receptor gustatory, olfactory 
Tomioka et al. (2006) 
Lin et al. (2010) 

age-1 PI 3-kinase gustatory, olfactory 
Tomioka et al. (2006) 
Lin et al. (2010) 

pdk-1 
phosphoinositide-
dependent kinase 

gustatory Tomioka et al. (2006) 

akt-1 Akt/PKB gustatory Tomioka et al. (2006) 
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Table 1 continued 

Gene Protein Plasticity defect Reference 

casy-1 calsyntenin gustatory 
Ikeda et al. (2008) 
Ohno et al. (2014) 

magi-1 PDZ scaffolding protein 
thermosensory, 
gustatory, olfactory 

Stetak et al. (2009) 

dfk-2 protein kinase D gustatory Fu et al. (2009) 

aho-3 hydrolase thermosensory Nishio et al (2012) 

snet-1 neuropeptide olfactory Yamada et al. (2010) 

arr-1 arrestin olfactory 
Palmitessa et al. 
(2005) 

ncs-1 
neuronal calcium 
sensor 

thermosensory Gomez et al. (2001) 

crh-1 CREB olfactory Lakhina et al. (2015) 

hen-1 LDL protein 
thermosensory, 
gustatory 

Ishihara et al. (2002) 

lrn-1, lrn-2 uncloned gustatory, olfactory Wen et al. (1997) 

adp-1 uncloned olfactory 
Colbert and 
Bargmann (1995) 

 

Genes known to be important in plasticity to thermal, gustatory, or olfactory stimuli. 

Some genes act in multiple sensory modalities.  
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ins-1/daf-2 signaling  

The insulin-like peptide INS-1 is one of 38 peptides encoded in the C. elegans genome. In 

addition to its known roles in growth and aging, ins-1 is also important for associative 

learning; ins-1 mutants show defective behavior in olfactory adaptation, salt-avoidance, 

and temperature-avoidance (Chalasani et al., 2010; Tomioka 2006; Kodama et al., 2006). 

Because it is required in paradigms that pair a sensory CS with starvation, ins-1 has been 

proposed to be a molecular starvation signal. ins-1 is expressed in many head neurons, 

including AWA, ASE, ASH, ASI, AIA and NSM (Kodama 2006). Of these, expression of ins-

1 in AIA was sufficient to rescue salt-avoidance (Tomioka et al., 2006), while expression 

in AIA and ASI was sufficient to rescue behavior in an olfactory associative learning assay 

(Lin et al., 2010).  

 Insulin typically binds to an IGF receptor to initiate a PI 3-kinase (PI3K) cascade. 

In C. elegans, the IGF receptor homolog daf-2 and PI3K homolog age-1 are known 

downstream elements of ins-1 signaling, and consequently mutants of daf-2 and age-1 

also show defects in associative plasticity (Lin et al., 2010; Tomioka et al., 2006). daf-2 

expression is required in the ASE and AWC neurons for salt and olfactory learning, 

respectively, indicating that the sensory neurons are targets of the INS-1 signal. In line 

with this model, sensory neurons of ins-1 mutants did not show the calcium response 

changes typically found in conditioned animals (Chalasani et al., 2010; Oda et al., 2011).  

A recent study shows that during salt-aversion learning, a specific DAF-2 isoform 

translocates to the axon of ASE neurons. This translocation event is necessary for 

learning and is dependent on the transmembrane protein CASY-1 (Ohno et al., 2014). 
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CASY-1, a homolog of calsyntenin, appears to act as a scaffolding molecule. Mutants of 

casy-1 are defective in multiple associative learning paradigms (Ikeda et al., 2008), 

which raises the possibility that it has a similar role in other sensory neurons during 

thermosensory or olfactory learning as well.  

 

Gqα/DAG signaling 

While some Gα proteins such as ODR-3 have a role in sensory transduction, other Gα 

proteins are thought to act downstream to regulate signaling between neurons. Many C. 

elegans sensory neurons express GPCRs for neuromodulators and neuropeptides that 

signal through Goα/Gqα pathways. The Goα homolog GOA-1 inhibits the Gqα homolog 

EGL-30, and Gqα proteins stimulate PIP2 hydrolysis, DAG release, and Ca2+ entry into 

cells. Manipulations that cause hyperactive DAG signaling – mutations in diacylglycerol 

kinases (DGK), hyperactivation of EGL-30, or application of phorbol ester –all caused 

defects in olfactory adaptation (Matsuki et al., 2006; O’Halloran et al., 2009). This EGL-

30/DAG signaling pathway acts in AWC for olfactory adaptation. Similarly, activation of 

EGL-30/DAG in ASER reversed salt avoidance behavior (Adachi et al., 2010). DAG 

signaling also appears to have a subtle but complex role in thermosensory plasticity; 

mutants of the DGK homolog dgk-3 show normal tracking of the cultivation 

temperature, but are defective in the rate at which they learn new cultivation 

temperatures (Biron et al., 2006).  

DAG is known to regulate synaptic transmission in C. elegans; in motor neurons, 

DAG binds to synaptic release regulator UNC-13 as well as the nPKC homolog PKC-1, 
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which mediate synaptic transmission and dense-core vesicle release, respectively 

(Lackner et al., 1999; Sieburth et al., 2007). It is possible that the reduced synaptic 

function of sensory neurons following adaptation result from reduced DAG levels. For 

example, in the case of thermosensory behavior, dgk-3 mutants have defects in AFD 

output that mirror the behavioral defect (Biron et al., 2006).   

 

EGL-4 nuclear translocation 

The egl-4 gene encodes a C. elegans homolog of the cGMP-dependent protein kinase-1B 

(PKG), and null mutants of egl-4 have defects in olfactory adaptation and some aspects 

of odor detection (L’Etoile et al., 2002). Cell-specific rescue shows that egl-4 acts in the 

AWC sensory neurons.  Using a GFP-tagged form of EGL-4, Lee et al., (2010) discovered 

that EGL-4 is normally found in the cytoplasm of AWC, but gradually accumulates in the 

nucleus over the course of odor conditioning (Lee et al., 2010). Strains with 

constitutively cytoplasmic EGL-4 failed to adapt, demonstrating necessity of the nuclear 

translocation event.  

PKGs can regulate gene expression after they translocate to the nucleus (Gudi et 

al., 1997). Follow-up studies of EGL-4 translocation have shown that EGL-4 interacts 

with members of the endo-siRNA pathway to down-regulate the expression of the 

guanylyl cyclase subunit ODR-1 (Juang et al., 2013).  

Thus far, roles for EGL-4 have only been highlighted in olfactory adaptation and it 

is not yet known whether this mechanism is generalizable to other types of associative 

learning.  
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Other genes with conserved roles in plasticity 

It is worth noting that several genes with established roles in learning and memory in 

other systems are also required for plasticity behavior in C. elegans. This demonstrates 

the conservation of mechanisms across species.    

N-Methyl-D-Aspartate receptors (NMDAR) are key players in synaptic plasticity, 

and pharmacological blockade of NMDAR activity is known to cause defects in many 

types of learning behavior (Malenka and Bear, 2004; Nakazawa et al., 2004). C. elegans 

encodes two homologs of NMDAR, nmr-1 and nmr-2, which are required in the RIM 

interneurons for salt avoidance learning (Kano et al., 2008).   

Induction of the cAMP-response element binding protein (CREB) activity is a 

fundamental process in long term memory; the transcription factor is thought to 

regulate the expression of genes that are required for long term memory (Silva et al., 

1998). The CREB ortholog in C. elegans, CRH-1, is required for olfactory long-term 

memory as well as thermotaxis (Kauffman et al., 2010; Nishida et al, 2011). While crh-1 

is expressed in many neurons, its activity is required only in specific neurons for each 

behavior – interneuron AIM for olfactory LTM (Lakhina et al., 2015), and sensory neuron 

AFD for thermotaxis (Nishida et al., 2011). A recent comparison of transcripts in 

wildtype and crh-1 mutants shows there are hundreds of genes that are regulated by 

CRH-1 during LTM (Lakhina et al., 2015).  Interestingly, only a fraction of these genes 

contain a CREB-binding sequence and are expressed in AIM. This suggests that there is a 

subset of genes which are directly regulated by CREB in the AIM; the activity of these 
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genes could then propagate throughout the nervous system to regulate other genes in 

other cells.  

 

In the types of plasticity discussed here, C. elegans learns a reversible association 

between a sensory stimulus and food availability during the adult stage. The behavioral 

changes are accompanied by changes in neuronal activity, and multiple genetic 

mechanisms are known to be involved. Questions remain about the relationship 

between the primary sensory neuron and interneurons, the details of when and how 

the downstream interneurons are involved in mediating plasticity, and how such 

changes are translated to altered taxis behavior. In addition to the genes discussed 

above, there are many more for which the mechanism and interacting partners have not 

been worked out. Additionally, there are several known plasticity mutants for which the 

responsible genetic loci have not yet been identified (Table 1). My thesis work is aimed 

at addressing some of these gaps in our understanding of experience-dependent 

plasticity.  
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CHAPTER 2: Circuit mechanisms of olfactory plasticity 

 

Introduction 

Knowledge of how individual neurons and brain regions are connected is central to 

understanding brain function; changes in the strength and existence of neuronal 

connections are a fundamental mechanism that drives changes in behavior.  

Experience-dependent plasticity can be achieved by modulating the circuits for 

sensory input, motor output or the links in between. In particular, plasticity over longer 

timescales engages circuit mechanisms both within and downstream of the primary 

sensory neurons. Plasticity of complex behaviors often involves more centralized brain 

regions, where converging sensory information is integrated to produce a decision 

about behavioral output (Herry and Johansen, 2014; Busto et al., 2010).  

In C. elegans, olfactory adaptation is observed on the timescale of minutes to 

hours, and engages mechanisms within the sensory neuron as well as in the 

interneurons (Figure 2.1). Molecules closely linked to olfactory transduction act in the 

AWC sensory neuron to promote adaptation; overexpression of the membrane-bound 

guanylyl cyclase ODR-1 in AWC causes adaptation defects, and decreased levels of odr-1 

mRNA correlate with adaptation (L’etoile et al., 2002; Juang et al., 2014).  The TRPV 

channel OSM-9 is expressed in AWC and other sensory neurons, and osm-9 mutants 

have defects in adaptation to a subset of AWC-sensed odorants (Colbert and Bargmann, 

1995). OSM-9 is not directly involved in olfactory transduction in AWC, but it most likely 

acts on intracellular calcium levels downstream of the calcineurin TAX-6 to regulate  
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Figure 2.1 Molecules involved in olfactory transduction and adaptation  

Olfactory transduction in AWC utilizes a cGMP transduction cascade. Elements of the 

cascade such as cGMP and guanylyl cyclase have been linked to adaptation. 

Downstream of transduction, a cGMP-dependent protein kinase and Gqa/DAG act in 

AWC to mediate adaptation. A peptide feedback loop between AWC and AIA, and a RAS-

MAPK pathway in AIY also play a role in adaptation.  
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adaptation (Kuhara et al., 2002). Further downstream, the cGMP-dependent nuclear 

localization of cGMP-dependent protein kinase EGL-4, and its subsequent effect on 

transcription, is important for adaptation (O’Halloran et al., 2012; Juang et al., 2013). 

Forcibly excluding EGL-4 from the AWC nucleus blocks adaptation, indicating this 

translocation event is necessary for adaptation (Lee et al., 2010).  

Although less is known about the role of interneurons, recent studies have 

begun to uncover adaptation mechanisms that are localized to the integrative 

interneurons such as AIA and AIY. In early adaptation, which has a short five-minute 

conditioning length, the Ras-MAPK pathway is required in the AIY interneurons to 

downregulate AWC-dependent chemotaxis behavior (Hirotsu et al., 2000; Hirotsu and 

Iino, 2005).  

In addition to cell-autonomous mechanisms, the interaction between sensory 

neurons and interneurons also plays a role in adaptation. Behavioral adaptation to 

isoamyl alcohol is accompanied by a reduction in the AWC calcium response to isoamyl 

alcohol, and this reduction is dependent on a reciprocal peptide feedback loop between 

AWC and AIA. AWC releases the inhibitory peptide NLP-1 on to AIA, silencing its activity. 

When AWC activity is suppressed by odor, AIA activity is upregulated and AIA releases 

an INS-1 peptide signal that acts on AWC (Chalasani et al., 2010).  

The olfactory adaptation paradigm has two phases – the first, a conditioning 

phase in which animals are exposed to stimulus in the absence of food, and the second, 

a test phase in which behavioral response to stimulus is assayed (Figure 2.2a). 

Adaptation bears similarities to learning paradigms which are composed of memory  
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Figure 2.2 Adaptation paradigm for C. elegans 

(a) Schematic of the adaptation assay in C. elegans   (b) chemotaxis index of wildtype 

animals after 30, 60 or 90 minutes of conditioning to butanone 
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acquisition and memory retrieval phases. Distinct mechanisms are thought to regulate 

each phase (Abel and Lattal, 2001) and the continued development of increasingly 

precise pharmacogenetic and optogenetic tools has opened the door for investigations 

of the mechanisms acting at different times.  

In this chapter, I present work that broadly examines the neuronal circuitry 

underlying adaptation. I use calcium imaging to document naturally occurring changes in 

circuit activity, and pharmacogenetic manipulations to identify novel circuit mechanisms 

of adaptation.     
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Results 

I used the butanone adaptation assay that was developed by Colbert and Bargmann 

(1995) (Fig 2.2a). A series of washes was used to remove all traces of food from adult 

animals, and then animals were conditioned to a high concentration of odor for 30 – 90 

minutes in the absence of food (a naïve control group is mock-conditioned without 

odor). This conditioning phase is followed by another series of washes to remove any 

traces of odor, and then the groups are tested for chemotaxis to butanone. In this test 

phase, a population of animals is placed at the center of a chemotaxis plate with 

butanone on one side and ethanol on the other. Ethanol at low concentrations is inert 

and thus acts as a control. The toxin sodium azide (NaN3) is spotted at both ends of the 

plate, paralyzing animals once they have chemotaxed to either side of the plate, 

ensuring that each animal can only make a single choice. The animals are given 1-2 

hours to chemotax, by which point most animals have left the origin and chemotaxed to 

either the butanone or ethanol side of the plate. The plate is scored by counting the 

worms on each side of the plate and using a simple formula to calculate a chemotaxis 

index (see methods). Naïve wildtype animals typically had a chemotaxis index of 0.7 or 

higher, indicating a strong attraction to butanone. Consistent with the findings of 

Colbert and Bargmann (1995), adapted wildtype animals had a lower chemotaxis index 

to butanone, and this effect increased at longer conditioning periods (Fig 2.2b). The 

adaptation assays in the following work typically had a conditioning period of 90 

minutes, unless otherwise noted.  
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As mentioned in Chapter 1, worms are very sensitive to temperature changes 

and fluctuations in temperature can cause variability in behavioral results. In order to 

ensure more consistent results, I modified the assay in two ways that would minimize 

temperature variations; the entire protocol was done in a 20oC temperature-stabilized 

incubator, and the conditioning step was done in glass vials containing liquid medium 

rather than on agar plates. The liquid conditioning also has the advantage of ensuring a 

more uniform distribution of odor.  

 

The interneuron AIA acts on AWC to mediate adaptation  

In order to manipulate neurons in the circuit chronically, I used the the leaky K+ channel 

unc-103(gf) to silence AIA. unc-103(gf) was expressed using the gcy-28d promoter, 

which is known to drive expression strongly in AIA (Tsunozaki et al., 2008; Zhang et al., 

2014). The strain carrying the gcy-28d::unc-103(gf) construct was able to chemotax to 

butanone normally when in the naïve state, but it was completely defective in 

adaptation (Figure 2.3).  This result indicates that AIA activity is required for butanone 

adaptation.  

 

AIA is required for EGL-4 localization in AWC 

Given the feedback loop between AWC and AIA, we hypothesized that gcy-28d::unc-

103(gf) animals might show defects in molecular processes observed in AWC. One 

molecule required in AWC for adaptation is the PKG homolog EGL-4 (L’Etoile et al., 

2002).   
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Figure 2.3 Chronic silencing of gcy-28d neurons disrupts adaptation 

Butanone adaptation of wildtype and gcy-28d::unc-103(gf) animals. Two different lines 

carrying the gcy-28d::unc-103(gf) transgene were completely defective for adaptation. 

WT = wildtype. Error bars represent S.E.M.   *p<0.001, n.s. = not significant, compared 

to naïve controls 
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I created a strain in which GFP-tagged EGL-4 was expressed under the odr-3 

promoter, which drives expression strongly in both AWC’s as well as in AWB neurons 

(Roayaie et al., 1998), and I integrated the extrachromosomal arrays to stabilize 

expression levels. I used this strain to replicate the findings by Lee et al., (2010), which 

showed that in naïve animals EGL-4 is found in the cytoplasm of AWC whereas in 

adapted animals, EGL-4 translocates to the nucleus.  

In previous reports, EGL-4 localization was manually scored in a binary fashion, 

with trained experimenters categorizing it as either cytoplasmic or nuclear-localized 

depending on which subcellular region had stronger GFP fluorescence. I developed a 

scoring method that allows for more quantitative measurement of EGL-4 localization 

(Figure 2.4a). I imaged the AWC of individual animals, measured the fluorescence levels 

in the nucleus and the cytoplasm (see methods), and calculated an index that reflects 

the ratio of fluorescence between the nucleus and cytoplasm.  

Using this method, I was able to look at the distribution of fluorescence ratios in 

a population of animals, and found that the distribution was graded rather than binary 

(Fig 2.4b). Comparing naïve and adapted populations, I found that the adapted 

population also showed a graded distribution but the curve was shifted towards higher 

fluorescence ratios, meaning there was more nuclear localizations in the population 

overall. This is consistent with the adaptation-dependent nuclear translocation of EGL-4 

reported in Lee et al., (2010).   

Comparing EGL-4 translocation in wildtype and gcy-28d::unc-103(gf) animals, I 

found that in the latter, EGL-4 was found in the cytoplasm even in adapted animals  
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Figure 2.4 Chronic silencing of gcy-28d neurons disrupts EGL-4 nuclear translocation  

(a)  Left, protocol for quantitative characterization of EGL-4 localization. Fluorescence 

ratio = (IN-OUT)/(IN+OUT)  Right, sample images of EGL-4::GFP in AWC of naïve (top) 

and adapted (bottom) animals   (b) Kaplan-Meier curves showing the distribution of 

fluorescence ratios in naïve and adapted animals. Error bars represent S.E.M.  
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(Figure 2.4b). This observation indicates that EGL-4 translocation in AWC is a non-cell 

autonomous process that requires activity of AIA. 

 

AIA regulates AWC-mediated turning behavior 

C. elegans locomotion is composed of forward runs and direction-changing turns. The 

turns serve to re-orient the animal and are thought to be an important part of an 

animal’s chemotaxis strategy (Pierce-Shimomura et al., 1999; Iino and Yoshida, 2009). 

An increase in AWC calcium activity correlates with initiation of turns (Albrecht and 

Bargmann, 2011), and optical activation of AWC by channelrhodopsin can elicit turns in 

naïve worms (Gordus et al., 2015).  

To examine whether adaptation affects the ability of AWC to elicit turns, I 

expressed channelrhodopsin in the butanone-sensing AWCON neuron of naïve and 

adapted animals and activated it using optical stimulation. Animals were first 

conditioned (or mock-conditioned), and then received pulses of blue light while their 

locomotion was video-recorded. Naive animals responded to AWCON activation with an 

increase in turn frequency (Figure 2.5 a, b). The increase was observable in nearly all 

subtypes of turns, including long reversals, omegas, and upsilons (Figure 2.6).  

Adapted animals were grossly normal in their basal locomotion in the absence of 

blue light stimulation, with the exception of a slight increase in long reversals (Figure 

2.6a, WT). Unlike naïve animals, adapted animals did not show any increase in turns in 

response to AWCON activation (Figure 2.6a-c, WT). This result indicates that there is a 

change in the circuitry between AWCON activation and motor output in adapted animals,  



38 
 

 

 

 

 

 

 

Figure 2.5 AWC-induced turning behavior shows adaptation 

(a) Schematic of the effect of channelrhodopsin (ChR2) of AWC on locomotion.   

(b) AWC activation with an increase in turning frequency in naïve animals but not in 

adapted animals. Gray shaded region indicates blue light stimulation. Blue and red 

shaded regions represent S.E.M. 
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Figure 2.6 Effects of silencing gcy-28d neurons on AWC-induced turning behavior 

Effects of AWC activation on (a) long reversals, (b) omegas, and (c) upsilons in naïve and 

adapted animals in wildtype or gcy-28d::unc-103(gf) backgrounds.  Gray shaded region 

indicates blue light stimulation. Blue and red shaded regions represent S.E.M.  
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and suggests that a major effect of adaptation is to uncouple AWCON from downstream 

behaviors.  

I next examined the role of AIA activity on AWCON -induced turning in naïve and 

adapted animals. There was no difference between naïve and adapted gcy-28d::unc-

103(gf) animals in their response to AWCON activation; both naïve and adapted gcy-

28d::unc-103(gf) animals responded to AWCON activation with increases in long reversal 

frequency, and slight increases in omega frequency (Figure 2.6 a, b). This mirrors the 

phenotype of gcy-28d::unc-103(gf) animals in butanone chemotaxis, where naïve and 

adapted groups show no difference in their chemotaxis indices (Figure 2.3)  

Interestingly, naïve gcy-28d::unc-103(gf) animals showed several differences 

from wildtype animals in their basal locomotion parameters. Notably, naïve gcy-

28d::unc-103(gf) animals had an elevated basal turn frequency, particularly in upsilons 

but also more subtly in omegas and long reversals (Figure 2.6). This is consistent with 

previous reports (Wakabayashi et al., 2004) indicating that AIA activity is required for 

normal locomotion in the absence of stimulation. However, the elevated basal turning 

does not appear to affect naïve chemotaxis, as evidenced by the normal butanone 

chemotaxis of naïve gcy-28d::unc-103(gf) animals in Figure 2.3.  

The AWCON-induced responses in naïve and adapted gcy-28d::unc-103(gf) 

animals, while similar to each other, were neither exactly like those of wildtype naïve 

animals nor exactly like those of wildtype adapted animals. The mixed behavior likely 

reflects the super-imposed changes in basal behavior and defects in adaptation of the 

gcy-28d::unc-103(gf) animals.  



41 
 

Temporally-selective inhibition identifies novel circuit elements involved 

in adaptation  

Although the use of unc-103(gf) allowed me identify neurons that are required for 

adaptation, it is a chronic manipulation that acts throughout the lifetime of the animal 

and as such, does not provide information about the temporal requirement for a 

neuron. To identify neurons that may selectively act during either the conditioning or 

the test phase of adaptation, I used the histamine-gated chloride channel (HisCl). C. 

elegans do not endogenously express histamine or histamine-gated channels, and thus 

the histamine system can be utilized to inhibit cells in a temporally-restricted manner 

(Pokala et al., 2014).  The HisCl channel was expressed in various sensory and 

interneurons using cell-selective promoters, and animals were assayed for adaptation 

after being exposed to histamine during either the conditioning or the test phase.  

 The cells that I chose to target during the conditioning phase included 

interneurons that receive direct input from AWC, as well as integrative interneurons 

further downstream that have been implicated in feeding or motor functions (Figure 

2.7c). Of these, inhibition of cells expressing gcy-28d caused an adaptation defect, and 

inhibition of cells expressing unc-4 caused a partial adaptation defect (Figure 2.7a). 

Based on the adaptation defects seen in gcy-28d::unc-103(gf) animals, I had 

hypothesized that AIA might be a neuron that is required during adaptation. However, I 

was surprised to find that the strain carrying ttx-3intron7::HisCl, which has transgene 

expression in AIA and NSM (Zhang et al., 2014), did not have an adaptation defect.  
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Figure 2.7 Effects of cell-selective inhibition during the conditioning phase of 

adaptation assays 

(a) Butanone adaptation of strains carrying transgenes that express HisCl under 

different cell-selective promoters. In histamine + groups, animals were exposed to 

histamine during the conditioning phase (green bars). Error bars represent S.E.M.   

*p < 0.01   (b) list of promoter expression patterns   (c) simplified diagram of synaptic 

connections between the cells inhibited in (a).  
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While in the gcy-28d::unc-103(gf) strain transgene expression was restricted to 

AIA, in the gcy-28d::HisCl strain we saw transgene expression in several cells. The 

transgene was expressed consistently in AIA and AVF neurons, and variably in ASI and 

several pharyngeal neurons (Table 2). unc-4 is known to be expressed in AVF, SAB, VD 

and DD neurons (Miller and Niemeyer, 1995). One possibility is that AVF is responsible 

for the defect in the unc-4::HisCl and gcy-28d::HisCl strains, since AVF is the only cell in 

which the gcy-28d and unc-4 promoters overlap in expression.  

Different durations of conditioning are thought to engage overlapping but 

distinct mechanisms of adaptation (Hirotsu and Iino, 2005). The standard protocol used 

above has a 90 minute conditioning phase; I further characterized the role of the gcy-

28d::HisCl neurons in adaptation by testing gcy-28d::HisCl animals on short (30 minute) 

and intermediate (60 minute) conditioning protocols. In contrast to the 90-minute 

protocol, 30- or 60-minute conditioning protocols did not cause defects in adaptation of 

gcy-28d::HisCl animals (Figure 2.8). I therefore concluded that gcy-28d::HisCl neurons 

are required for long-term (90 minute) rather than short or intermediate adaptation.   

In order to determine whether the requirement was stimulus-specific, I tested 

gcy-28d::HisCl animals on adaptation to two other AWC-sensed odorants, benzaldehyde 

and isoamyl alcohol. Inhibition of gcy-28d::HisCl during conditioning did not cause 

defects in either benzaldehyde or isoamyl alcohol adaptation (Figure 2.9), indicating that 

the gcy-28d::HisCl neurons have a stimulus-specific role in butanone adaptation and are 

not part of a mechanism that can be generalized to all AWC-sensed odors.  
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Table 2 Transgene expression in the gcy-28d::HisCl strain 

Pattern of GFP expression in 17 gcy-28d::HisCl animals. The gcy-28d::HisCl transgene 

incorporates a sl2::GFP sequence and thus GFP is used as a surrogate for HisCl 

expression. Animals’ stages ranged from L2 to adult. ‘both’ indicates expression in both 

left and right cell, ‘one’ indicates expression in either the left or right cell.  
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Figure 2.8 gcy-28d neuron inhibition affects long-term but not short-term adaptation 

Butanone adaptation of wildtype and gcy-28d::HisCl animals in adaptation protocols 

with conditioning durations of 30 (short), 60 (intermediate) or 90 minutes (long). The 

adaptation Index is generated by subtracting the naïve chemotaxis index from the 

adapted chemotaxis index. Top, no histamine during conditioning. Bottom, with 

histamine present during conditioning. *p<0.005, n.s. = not significant compared to 

wildtype adapted animals. 
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Figure 2.9 gcy-28d neuron inhibition does not disrupt adaptation to other AWC-sensed 

odors 

Adaptation of wildtype and gcy-28d::HisCl animals to (a) benzaldehyde and (b) isoamyl 

alcohol. In histamine + groups, histamine is present during conditioning. No effect of 

histamine was seen for adaptation to either odor. Error bars represent S.E.M. 
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To see whether the gcy-28d expressing cells were required for other types of 

plasticity, I tested gcy-28d::HisCl animals on the butanone enhancement assay. No 

defect was observed, suggesting that these cells may be required specifically for 

learning the butanone-starvation association (Figure 2.10). 

 Other cells were selectively inhibited with HisCl during the test phase, rather 

than the conditioning phase including sensory neurons that I thought might act 

antagonistically to AWCON (AWCOFF, AWB, ASI). However, none of these strains showed 

defects in adaptation behavior (Figure 2.11).  

 

AWC calcium responses reflect odor history 

Neuronal correlates of adaptation in C. elegans have previously been described by 

Chalasani et al., (2010), in which AWC calcium responses to isoamyl alcohol is 

qualitatively reduced in adapted animals. Using a similar protocol, I tested to see 

whether a similar phenomenon occurs after butanone adaptation. Animals were 

conditioned for 90 minutes and then imaged immediately. Naïve animals show strong 

AWC calcium responses to pulses of butanone 10-7 dilution, but the responses were 

nearly absent in adapted animal (Figure 2.12 a,b).  

However, when the animals were allowed to recover in a buffer wash for 10 

minutes, they showed complete recovery of their AWC responses to this concentration 

of butanone (Figure 2.12c). This timescale is incongruent with the behavioral 

phenotype, as adapted animals show reduced chemotaxis for at least an hour following  
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Figure 2.10 gcy-28d neuron inhibition does not affect butanone enhancement  

Butanone enhancement of wildtype and gcy-28d::HisCl animals. In histamine + groups, 

histamine is present during conditioning. gcy-28d::HisCl animals showed normal 

enhancement in the presence of histamine.  Error bars represent S.E.M. 
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Figure 2.11 Effects of cell-selective inhibition during the test phase of adaptation 

assays 

Butanone adaptation of strains carrying transgenes that express HisCl under different 

cell-selective promoters. In histamine + groups, histamine is present during the test 

phase. The srsx-3 promoter drives expression in AWCOFF and AWB, the str-1 promoter in 

AWB, and the str-3 promoter in ASI. No effect of histamine was seen. Error bars 

represent S.E.M. 
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Figure 2.12 AWC calcium responses show adaptation and recovery 

Fluorescence measurements of the AWC cell body of animals expressing GCaMP 3.0 

under the str-2 promoter. Average traces of (a) naïve, (b) adapted, and (c) adapted and 

recovered animals. Recovery consisted of 10 minutes in S basal buffer after 

conditioning. Gray shaded region indicates delivery of butanone stimulus (10-7 dilution). 

Light blue shaded region represents S.E.M.  
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adaptation. I thus concluded that the reduced AWC calcium responses observed in 

Figure 2.12b are not the neuronal correlate of butanone adaptation.    

To further examine AWC calcium responses for butanone adaptation 

phenotypes, I developed a different imaging protocol that better matched the time 

course of the behavioral protocol. In this protocol, animals were conditioned in the 

liquid environment of a wide-field imaging chip (Larsch et al., 2014). This was followed 

by 15 minute wash and a 45 minute test phase in the same chip. During the test phase, I 

recorded AWC calcium responses to a range of butanone concentrations (Figure 2.13). 

This imaging protocol had several advantages over previously published imaging 

protocols. First, conditioning the animals inside the chip allowed me to avoid potential 

concerns over dishabituation that arise when animals are manipulated between the 

conditioning and test phase. Second, it allowed me to gather data from multiple animals 

simultaneously, making the assay more high-throughput and reducing the variation that 

comes from testing individual animals in separate trials. Lastly, testing multiple stimulus 

concentrations gave a more complete profile of the AWC calcium response.  

AWC typically responds to stimulus onset with a reduction in calcium that lasts 

until the stimulus is removed (Chalasani et al., 2007). Comparison of naïve and adapted 

animals’ responses to butanone showed differences at both low and high 

concentrations; at low concentrations of 10-9 and 10-8 dilution, adapted animals had 

significantly smaller responses than naïve animals, while at high concentrations of 10-5 

and 10-4 they showed much larger responses (Figure 2.14a). It is worth noting that at 

intermediate concentrations there was little to no difference in response magnitude.  
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Figure 2.13 In-chip adaptation imaging over multiple stimulus concentrations 

Schematic of set-up and stimulation protocol for adaptation imaging in wide-field chip. 

Animals are loaded into the chip, and a conditioning sequence of buffer (15 minutes), 

butanone 10-4 dilution (90 minutes), and buffer (15 minutes) is delivered. Then a 

stimulus sequence of increasing butanone concentrations from 10-9 to 10-4 is delivered 

while calcium responses are recorded.  Gray bars represent buffer, red bars represent 

butanone.   
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Figure 2.14 AWC calcium responses in adapted animals show a dose-response shift 

(a) Average traces of AWC cell body calcium responses in naïve and adapted wildtype 

animals over a range of butanone concentrations. Animals express nuclear-localized 

GCaMP 6.0 under the str-2 promoter. Gray shaded region indicates presence of 

stimulus. Red and blue shaded regions represent S.E.M.   (b) Dose-response curve of the 

magnitude of AWC’s response to odor onset in naïve and adapted animals. The curve 

shifts towards higher concentrations in adapted animals. ‘B’ on x-axis represents buffer. 

Error bars represent S.E.M.   (c) Average traces of naïve and adapted animals that were 

conditioned outside the chip. Stimulus is butanone 10-8. Dark gray shaded region 

represents S.E.M.  
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This is consistent with what I observed previously, where adapted animals recover 

responses to butanone 10-7 stimuli within 10 minutes of conditioning.   

I generated a dose-response curve by plotting the magnitude of the response 

over the range of concentrations. The curves showed that in naïve animals the response 

magnitude is greatest at intermediate concentrations, while in adapted animals the 

curve is shifted towards higher concentrations (Figure 2.14b).  

 A potential concern with the above protocol is that prolonged delivery of high 

concentrations of butanone during conditioning may contaminate the chip. In that case, 

the presence of residual background odor could be a cause of smaller responses to low 

concentration stimuli in adapted animals. To ensure this was not the case, I performed 

adaptation imaging experiments using a second protocol: animals were conditioned 

outside the chip, and then were loaded and imaged in a fresh chip that had not been 

exposed to odor. As in the original protocol, the adapted animals showed a reduced 

response to low concentration stimuli, confirming that the phenotype can be attributed 

to adaptation rather than artifacts from a particular protocol (Figure 2.14c).  

It is worth noting that the peak response magnitude in adapted animals is equal 

if not greater than the peak response magnitude in naïve animals, and as such, adapted 

animals cannot be characterized as having an overall reduction in response to stimulus. 

Rather, AWC shows a reduction in sensitivity to butanone in adapted animals, with the 

response range being tuned to higher concentrations.   

 Based on the role of AIA in EGL-4 translocation and AWC-induced turning, we 

hypothesized that AIA might act to regulate AWC sensitivity in adaptation. If this were 
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the case, the behavioral defect in gcy-28d::unc-103(gf) animals could have resulted from 

a failure to regulate AWC sensitivity. To test this hypothesis, I examined AWC calcium 

responses to butanone in gcy-28d::unc-103(gf) animals. Contrary to our prediction, 

adapted gcy-28d::unc-103(gf) animals showed a sensitivity shift similar to that of WT 

animals (Figure 2.15a). Therefore the odor regulation of AWC calcium responses did not 

correlate with the behavioral adaptation defects in gcy-28d::unc-103(gf) animals. 

 Taken together, the AWC dose-response curve shift appeared to correlate with 

an animal’s odor history, regardless of whether it was behaviorally proficient in 

adaptation. To further examine this idea, I used the butanone enhancement assay 

(Torayama et al., 2007), in which animals are conditioned to butanone in the presence 

of food, and as a result show enhanced chemotaxis to odor. If AWC calcium responses 

reflect odor history alone, one would expect to see the dose-response curve of 

enhanced animals to shift in the same direction as in adapted animals, whereas if 

calcium responses were reflective of behavior, one would expect to see the dose-

response curve shift in the opposite direction. I imaged AWC calcium responses in 

butanone-enhanced animals, and found that enhancement also shifts the dose-

response curve to the right (Figure 2.15b). Indeed, butanone adaptation and butanone 

enhancement cause indistinguishable changes in AWC butanone sensitivity. These 

results support the idea that AWC’s calcium response range reflects odor history rather 

than behavioral output.  
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Figure 2.15 AWC calcium responses shows dose-response curve shift in adapted gcy-

28d::unc-103(gf) and butanone enhanced animals 

Dose-response curves of AWC responses in (a) gcy-28d::unc-103(gf) animals and (b) 

butanone enhanced animals. Curves shift to higher odor concentrations after 

adaptation in gcy-28d::unc-103(gf) animals or after enhancement in wildtype animals. . 

‘B’ on x-axis represents buffer.  Error bars represent S.E.M. 
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Adaptation is reflected in downstream circuitry 

AWC makes synaptic connections with several downstream interneurons, including 

inhibitory connections to interneurons AIY and AIA. Both of these interneurons respond 

to AWC-sensed stimuli with a transient increase in calcium, or ‘calcium peaks’ (Chalasani 

et al., 2007, Chalasani et al., 2010). It is worth noting that, unlike AWC, the interneuron 

responses are probabilistic; AIY and AIA have an increased likelihood of exhibiting a 

calcium peak to odor onset, but do not show such responses reliably in every trial. In 

addition to the odor-driven calcium peaks, AIY and AIA also occasionally exhibit 

spontaneous peaks in the absence of odor (Figure 2.16a and data not shown). To probe 

whether adaptation phenotypes can be detected in later parts of the circuit, I examined 

calcium responses of AIY and AIA to butanone using the in-chip adaptation protocol 

illustrated in Figure 2.13.  

When tested over a range of stimulus concentrations, the AIY neurons of naïve 

animals responded to butanone over the full range from 10-9 to 10-4 dilution, with 

responses becoming larger and more reliable at higher concentrations (Figure 2.16b). At 

low concentrations of 10-9 and 10-8, I noticed a period of reduced activity that lasted 

approximately 20 seconds following stimulus removal, during which AIY showed fewer 

spontaneous calcium peaks. 

 In adapted animals, AIY showed attenuation of responses to both stimulus onset 

and offset at low concentrations (Figure 2.16b). This result was quantified as the 

difference in integrated calcium signals during stimulus and buffer periods, and showed 

a clear difference between naïve and adapted animals (Figure 2.16c). Based on its  
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Figure 2.16 AIY calcium responses show adaptation 

(a) Individual trace of AIY responses shows both odor-induced and spontaneous 

increases in fluorescence. Fluorescence measurements are from the AIY neurite of 

animals expressing GCaMP6s under the ttx-3 promoter. Gray shaded region indicates 

presence of odor.   (b) Average traces of AIY responses in naïve and adapted wildtype 

animals over a range of butanone dilutions. Gray shaded region signifies presence of 

stimulus. Red and blue shaded regions represent S.E.M.   (c-d) Dose-response curve of 

the differential magnitude (c) or the response probability (d) of AIY in naïve and adapted 

animals.  Differential magnitude is the area under the curve during buffer periods 

subtracted from the area under the curve during odor periods. The response probability 

is the probability of seeing spontaneous peak after odor removal.  ‘B’ on x-axis 

represents buffer.  Error bars represent S.E.M. 
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connection to AWC, the attenuation of AIY responses may be a reflection of the reduced 

AWC responses I observed at these concentrations. Adapted animals also showed less 

suppression of spontaneous peaks after butanone removal across all concentrations 

(Figure 2.15d). This does not correlate with the AWC calcium response profile, and may 

be of more interest as a correlate of adaptation.  

When the AIA interneurons were imaged over a range of stimulus 

concentrations, I found that naïve animals did not show any calcium response to low 

concentrations of butanone. Rather, AIA appeared to have a distinct response regime 

that was restricted to butanone concentrations of 10-5 and above (Figure 2.17). The AIA 

responses of adapted animals were identical to those in naïve animals.  

These data indicate that AIY and AIA have different roles in relaying butanone 

information, and neither is a simple mirror of AWC calcium activity. Rather, the 

interneuron responses likely result from integration of information from multiple 

sources. 
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Figure 2.17 AIA calcium responses are identical in naïve and adapted animals 

Average traces of AIA neurite responses in naïve and adapted wildtype animals over a 

range of butanone concentrations. Fluorescence measurements are from the AIA 

neurite of animals expressing GCaMP5.0 (D381Y) under the gcy-28d promoter. AIA does 

not respond to concentrations less than butanone 10-5dilution, and no effect of 

adaptation can be seen in AIA responses. Gray shaded region signifies presence of 

stimulus. Red and blue shaded regions represent S.E.M. 
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Discussion 

Results in this chapter highlight different parts of the neuronal circuit that change during 

adaptation to butanone, and uncover an interaction between the sensory neuron and 

interneurons that is required for behavioral adaptation.  

The gcy-28d::unc-103(gf) eliminates behavioral adaptation to butanone, 

indicating that AIA acts in partnership with AWC. In addition, gcy-28d::unc-103(gf) 

disrupts EGL-4 translocation to the AWC nucleus during adaptation. This result shows 

that molecular mechanisms taking place in AWC are in fact not cell-autonomous, but 

instead depend on feedback from a downstream interneuron.  

What might be the molecular identity of the signal from AIA to AWC? Although 

ins-1 is a well-established signaling molecule, I found that an AIA::ins-1 transgene failed 

to rescue the butanone adaptation defect of ins-1 mutants in the 90-minute assay 

described here (Figure 2.18). This result suggests that different odor stimuli and 

adaptation protocols have different circuit requirements, a result that agrees with my 

observations that gcy-28d::unc-103(gf) does not affect 30 or 60-minute adaptation 

assays and that it does not affect adaptation to other AWC-sensed odors. 90-minute 

butanone adaptation may employ an additional ins-1 source other than AIA.  

In addition to AIA, the use of temporally-restricted perturbation of neuronal 

activity allowed me to discover a gcy-28d-expressing neuron required for adaptation, as 

well as an unc-4-expressing neuron. I speculate that AVF might be involved, as it 

expresses both gcy-28d and unc-4. As the effect of unc-4::HisCl is not as strong as 
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Figure 2.18 Expressing ins-1 in AIA does not rescue the adaptation defect of ins-1 

mutants 

ins-1 promoter drives expression in AIA, ASI, and several other cells. ins-1(s) promoter 

drives expression only in AIA. Error bars represent S.E.M. 
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 gcy-28d::HisCl, it is possible that a combination of neurons, perhaps AIA and AVF, are 

needed to achieve the strong effect on adaptation seen in the gcy-28d::HisCl strain.  

AVF is not directly connected to the butanone-sensing circuitry in the worm 

wiring diagram – it makes no direct connections to AWC or its targets. It could be 

modulating AWC by way of neuropeptide signaling or by way of other interneurons, or it 

could be modulating the motor circuit that executes chemotaxis. It will be interesting to 

see whether AVF inhibition affects any of the correlates of adaptation in other parts of 

the circuit. For further studies of AVF, it will be important to develop an AVF-specific 

promoter using an intersectional approach, perhaps using a combination of unc-4 and 

gcy-28d promoters. One could then express channelrhodopsin or histamine-gated 

chloride channels exclusively in AVF to perform cell-specific manipulations. 

 

Imaging the activity of AWC in naïve and adapted animals demonstrated that 

butanone adaptation is accompanied by a change in sensitivity of the AWC sensory 

neuron, with the response range shifting to higher concentrations. This shift is 

reminiscent of adaptive changes seen in other sensory systems, such as light adaptation 

in primate photoreceptors (Valeton and van Norren, 1983). Such changes are thought to 

confer an adaptive advantage in that it allows the sensory system to retune to 

concentrations that are deemed relevant based on prior experience.  

Comparing adaptation and enhancement imaging results, AWC calcium 

responses correlated with odor history in both paradigms, even though behaviorally one 

shows reduction and the other shows increase in chemotaxis. In this sense, AWC 
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calcium responses appear to reflect information about sensory history rather than 

behavioral output, and it is likely that the information about food status is encoded in a 

different part of the circuit.   

Calcium imaging of first-order interneurons yielded results that were more 

complex than anticipated. AIY showed an adaptation phenotype that had some parallels 

to that seen in AWC, whereas AIA did not respond to most concentrations of butanone 

even in the naïve state. It will be interesting to image AIY responses in butanone-

enhanced animals to see whether AIY, like AWC, reflects the odor history of an animal. If 

food context information is integrated in or upstream of AIY, AIY calcium responses may 

diverge from the trend seen in AWC. For example, AIY responses to low concentrations 

may become stronger after enhancement, matching the enhancement in behavior.   

The response magnitude of both AIY and AIA neurons increased substantially at 

concentrations 10-5 and above. Interestingly, AWCON did not have strong calcium 

responses at these high concentrations of butanone. I speculate that this reflects 

sensory input to AIY and AIA from an additional neuron that is specialized to detect high 

concentrations of butanone.  
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CHAPTER 3: Genetic regulators of olfactory plasticity 

 

Introduction 

A multitude of molecular mechanisms act in concert to achieve olfactory adaptation. 

While inactivation of sensory receptors is a well-established response to prolonged 

stimulus exposure (Ferguson, 2001), long-lasting adaptation extends beyond receptor 

regulation to changes in downstream signaling pathways. These molecular mechanisms 

take place in the sensory neuron as well as in downstream neurons, providing the basis 

for circuit changes like those discussed in Chapter 2.  

Early mechanisms of adaptation are set into motion by the sensory transduction 

cascade in the primary sensory neuron. Photoreceptor cells of the vertebrate retina 

share many similarities with the C. elegans sensory neurons, and during light adaptation 

intracellular Ca2+ regulates guanylyl cyclases and cGMP-gated channels to prevent 

photoreceptor saturation (Matthews and Reisert, 2003; Fain et al., 2001). Similarly, a 

cGMP-mediated transduction cascade in AWC neurons has been linked to adaptation; 

for example, cGMP levels direct nuclear localization of the cGMP-dependent protein 

kinase EGL-4, one of the molecular signatures of adapted animals discussed in Chapter 2 

(O’Halloran et al., 2012; Lee et al., 2010). Other molecules required in AWC for olfactory 

adaptation include the Transient Receptor Potential (TRPV) channel OSM-9 and RNA 

binding PUF proteins (O’Halloran et al., 2009).  

Changes in the strength of synaptic transmission are a known hallmark of 

plasticity, and in C. elegans inactivation of the Gqα/DAG signaling pathway has been 
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hypothesized to alter synaptic vesicle release to achieve AWC adaptation. Matsuki et al., 

(2006) found that elevating levels of DAG by genetic or pharmacological mutations 

results in adaptation defects. The same study shows that egl-30(gf) or goa-1(lf) 

mutations also cause adaptation defects, and goa-1(gf);egl-30(gf) double mutants retain 

the adaptation defect seen in egl-30(gf) mutants, placing EGL-30 downstream of GOA-1.  

The authors propose a model in which GOA-1 downregulates EGL-30 activity, leading to 

the lower DAG activity required for adaptation. Another study found that the G-protein 

γ subunit also acts in AWC to achieve adaptation; gpc-1 mutants are adaptation 

defective, and can be rescued by expression of GPC-1 in AWC. Based on double mutant 

studies, the authors placed GPC-1 upstream of EGL-30 but parallel to GOA-1 (Yamada et 

al., 2009, Figure 2.1).  

Neuronal output can also be modified by changing a neuron’s overall excitability; 

enhancement of a neuron’s excitability strengthens the neuron’s output across-the-

board rather than just the output to a specific synaptic partner, effectually changing the 

weight the given neuron carries within the circuit. Regulation of various ion channels is a 

common means by which neuronal excitability is altered (Zhang and Linden, 2003).  

K+ channels are interesting candidates in the study of sensory plasticity, as they 

are capable of regulating cell excitability and have diverse structural, kinetic, and 

modulatory properties (Jan and Jan, 1990). Some K+ channels are open during the 

resting state, and these contribute to the neuron’s resting membrane potential – a key 

determinant of the neuron’s intrinsic excitability. Other K+ channels are expressed 

specifically in pre-synaptic or post-synaptic regions, modulating excitability locally. In 
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the hippocampus, dendritic K+ channels contribute to the back-propagation of action 

potentials that is important for synaptic potentiation (Watanabe et al., 2002). This and 

other studies demonstrate that K+ channels are in a position to modulate input-output 

relationships between neurons (Hawkins et al., 1993; Misonou et al., 2005).  

 

 Although numerous individual genes and mutants of adaptation have been 

identified in C. elegans, there are still many gaps in our understanding of the molecular 

mechanisms of adaptation. In particular, we are far from a comprehensive 

understanding of the way different molecules interact to achieve the adapted state. In 

this chapter, I identified new genes involved in adaptation using two approaches: in the 

first approach, I used whole-genome sequencing to identify a causative mutation in the 

historical uncloned adaptation mutant adp-1(ky20). In the second approach, I screened 

loss-of-function K+ channel mutants for adaptation defects and discovered that loss-of-

function mutations in the K+ channel egl-2 lead to enhanced adaptation.   
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Results 

Identification of a causative mutation in adp-1 (ky20) 

Colbert and Bargmann (1995) isolated the EMS mutant adp-1(ky20), which is defective 

for adaptation to the AWC-sensed odorants benzaldehyde and butanone. The mutation 

was mapped to the right arm of chromosome II, but the exact gene was never identified.  

Taking advantage of the advances in whole-genome sequencing technology, we 

sequenced the genome of adp-1(ky20) mutants and looked for mutations. No mutations 

were found within the mapped region, but there were several Single Nucleotide 

Polymorphisms (SNP) in the vicinity as well as a partial duplication of the gpb-1 gene, 

which encodes the major G-protein β subunit of C. elegans. The 7.5kb duplicated 

sequence begins 4.1kb upstream of the gpb-1 locus and includes the first five exons of 

gpb-1 (Figure 3.1). The sequence of the duplication was confirmed by PCR primers 

targeted to that region.  

I backcrossed the adp-1(ky20) line several times to wildtype animals, and 

generated several independent lines that preserved either the duplication or different 

sets of SNPs. Behavioral testing of these backcrossed lines showed that the line with the 

duplication still had the adaptation defect (Figure 3.2). Interestingly, another line 

containing several SNPs on the left arm, but not the duplication, also had a partial 

adaptation defect. Based on these results, I conclude that the original adp-1(ky20) strain 

most likely contained two or mutations that contributed to its adaptation defect (Figure 

3.2).  
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Figure 3.1 A duplication in adp-1 mutants includes part of the gpb-1 locus 

Diagram of the gpb-1 genomic locus on chromosome II in wildtype (top) and adp-

1(ky20) (bottom). The 7.5kb duplicated region includes the first five exons of gpb-1 and 

is directly upstream of the wildtype locus. 
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Figure 3.2 Adaptation correlates with more than one mutation in adp-1 mutants 

(a) Butanone adaptation of independently back-crossed lines with differential retention 

of the SNPs on chromosome II as denoted in (b). Line #1 and #3 are both adaptation 

defective even though they do not have overlapping SNPs. Error bars represent S.E.M. 
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Alternate gpb-1 mRNAs are expressed in adp-1 mutants 

I chose to focus on the disruption of the gpb-1 locus as a potential cause of adaptation 

defects. gpb-1 encodes the primary G-protein β subunit in C. elegans, and has previously 

been linked to ‘early adaptation’ along with the G-protein γ subunit gpc-1 (Yamada et 

al., 2009).  

I cloned and compared gpb-1 transcripts from wild-type and adp-1 cDNA pools. 

Primers surrounding exons 1 through exon 8 showed that both wild-type and adp-1 

animals produce full-length gpb-1 transcripts convering these exons (Figure 3.3a). A 

second primer pair composed of a forward primer in exon 5 and reverse primer in exon 

3 detected a gpb-1 transcript in adp-1(ky20) that is not found in wild-type animals; this 

mutant transcript fuses exon 5 upstream of exon 1 (Figure 3.3b). This transcript is 

predicted to arise from the partial duplication of gpb-1, and shows that transcription 

continues through the end of the duplicated region and onto the beginning of the 

original gpb-1 locus. Sequencing of the mutant cDNA isoform shows that it is likely to 

encode a truncated protein ending shortly after exon 5 due to a frameshift (Figure 3.3b). 

Based on these cDNA cloning results, I know that there is at least one abnormal 

transcript in adp-1(ky20) mutants, but I cannot determine whether mutants produce a 

normal-length transcript without the upstream duplicated exons. To address this 

question, I performed Western blots against GPB-1 protein; however, results from 

Western blots were unclear and I could not determine whether the mutant transcript 

was translated into a stable protein isoform (data not shown).   
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Figure 3.3 A unique gpb-1 mRNA isoform exists in adp-1 mutants 

PCR cloning of cDNA pools generated from wildtype and adp-1 animals. Red arrows 

represent primers. (a) Use of a forward primer in the 5’UTR and reverse primer in exon 

8 yields a 1.2 kbp product in WT and adp-1.   (b) Use of a forward primer in exon 5 and 

reverse primer in exon 3 yields a 500 bp product only in adp-1. Sequencing of the 500bp 

cDNA fragment indicates the cDNA contains 164 bases from the 5’ UTR between exon 5 

and exon 1 that, if translated, would result in a stop codon at the beginning of exon 1. 

Colored lettering, amino acid translation.  
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GPB-1 function in adp-1 mutants 

GPB-1 is known to be essential for development, and homozygous gpb-1 loss-of-

function mutants are lethal (Bastiani and Mendel, 2006). The fact that adp-1(ky20) 

animals do not exhibit embryonic lethality indicates that the duplication in adp-1(ky20) 

animals is not a simple loss-of-function mutation. Animals that were heterozygous for 

adp-1(ky20) and gpb-1(lf) were viable (Figure 3.4), further supporting the idea that the 

gpb-1 locus in adp-1 mutants codes for a functional GPB-1 protein that can overcome 

embryonic lethality.  

 To determine whether GPB-1 plays a role in adaptation, I tested adp-1(ky20) 

heterozygotes on butanone adaptation. Heterozygotes did not show any defects in 

adaptation (Figure 3.5). This is in contrast to what is reported in Colbert and Bargmann 

(1995), where adp-1(ky20) is described as a dominant mutation. The discrepancy may 

be explained by my mapping results, which show that the original adp-1(ky20) strain 

contained a second causative mutation in addition to the duplication in gpb-1. The 

second mutant could be dominant alone or in combination with the gpb-1 duplication. 

Another possibility is that adp-1(ky20) have differential effects on butanone versus 

benzaldehyde adaptation; Colbert and Bargmann (1995) reported that heterozygotes of 

adp-1(ky20) had benzaldehyde adaptation defects, but they did not test for butanone.  

 Although duplications are often known to produce dominant gain-of-function 

proteins, the fact that a single copy of the duplication does not cause defects in 

butanone adaptation suggests that in the case of adp-1(ky20), the gpb-1 duplication 

might result in a weak loss of function rather than gain-of-function GPB-1 protein. 
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Figure 3.4 adp-1/gpb-1(lf) heterozygotes are viable 

A balanced strain for gpb-1(lf) was crossed to heterozygotes of adp-1. The adp-1 line 

used here was previously back-crossed for the gpb-1 duplication. 56 cross progeny in 

the F1 generation were genotyped. The presence of 12 adp-1/gpb-1(lf) double 

heterozygotes in the F1 generation indicates that these animals are viable, unlike gpb-

1(lf)/gpb-1(lf) homozygotes. The adp-1(ky20) here is back-crossed line #1 from Figure 

3.2, and retains the gpb-1 duplication. 
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Figure 3.5 adp-1/gpb-1 heterozygotes are adaptation defective 

Butanone adaptation of heterozygotes of adp-1, gpb-1 or both. adp-1/gpb-1 double 

heterozygotes showed adaptation defects, while heterozygotes of only adp-1 or only 

gpb-1 did not. The adp-1 strain used here is the original strain, before back-crossing. 

unc-104 or unc-4 are linked to the adp-1 locus and thus were used to distinguish adp-1 

heterozygotes from adp-1 homozygotes in the assay population. Error bars represent 

S.E.M. *p<0.01 
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I also examined the behavior of adp-1/gpb-1(lf) double heterozygotes, and found 

that these animals had an adaptation defect in one marked strain and a partial 

adaptation defect (although not statistically significant) in a second marked strain 

(Figure 3.5). This supports the idea that, in contrast to viability, adp-1 fails to 

complement gpb-1(lf) for adaptation, and therefore supports the hypothesis that the 

adaptation defect of adp-1 mutants results from a weak loss-of-function gpb-1.  

 Efforts to introduce wild-type copies of gpb-1 into the adp-1 mutant using 

transgenes were inconclusive, primarily due to the fact that gpb-1 transgenes frequently 

resulted in developmentally defective strains that could not be tested on behavior. 

Likewise, attempts to introduce the duplicated gpb-1 isoforms into wildtype animals 

caused larval arrest or sickness and these transgenic animals could not be tested for 

adaptation (data not shown). 

 

Naïve adp-1 mutants have abnormal AWC calcium responses 

I imaged the calcium responses of AWC in adp-1(ky20) animals using the protocol 

illustrated in Figure 2.13. As described in Chapter 2, wildtype animals show a shift in 

AWC butanone sensitivity following adaptation (Figure 2.14b). adp-1(ky20) animals also 

exhibited this characteristic dose-response curve shift after adaptation (Figure 3.6 a, b). 

However, they are different from wildtype animals in that the naïve adp-1(ky20) animals 

had weaker responses to low concentrations of butanone. These results demonstrate 

that odor history can still regulate AWC responses in adp-1(ky20) mutants, and supports 

the hypothesis that behavioral adaptation acts through a different mechanism.  
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Figure 3.6 adp-1 mutants have defects in AWC calcium responses 

(a) Average traces of AWC cell body calcium responses in naïve and adapted adp-1 

animals over a range of butanone concentrations. Gray shaded region signifies presence 

of stimulus. Red and blue shaded regions represent S.E.M.   (b) Dose-response curve of 

the magnitude of AWC’s response to odor onset in wildtype and adp-1 animals. At lower 

stimulus concentrations, naïve adp-1 animals show reduced response magnitude 

compared to naïve animals. The curve shifts towards higher concentrations in adapted 

adp-1 animals and is identical to that in adapted wildtype animals. ‘B’ on x-axis 

represents buffer.  Error bars represent S.E.M. 
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K+ channels are involved in adaptation 

To look for novel genes involved in adaptation, I explored the idea that K+ channels may 

act to modulate neuronal excitability during adaptation. Of the 70 or so K+ channel 

genes expressed in C. elegans (Salkoff et al., 2006), I selected mutants of five genes that 

are known to be expressed in AWC, and for which loss-of-function alleles were readily 

available. Of the five, three mutants showed abnormal adaptation phenotypes: mutants 

of the ERG channel homolog unc-103 had defects in adaptation, whereas mutants of the 

EAG channel homolog egl-2 exhibited hyperadaptation (Figure 3.7). The 

hyperadaptation phenotype in kqt-1 disappeared upon back-crossing to N2, and thus 

could be attributed to a background mutation in the strain and was not considered a 

bona fide kqt-1 phenotype. I focused on characterizing the role of egl-2 in adaptation.  

 

Hyperadaptation in egl-2 is a result of rapid onset of adaptation 

Adaptation is highly dependent on the duration of odor exposure. egl-2 mutants were 

tested on adaptation protocols with varying conditioning periods of 30, 60, or 90 

minutes. The difference between wild-type and egl-2 mutants was not uniform across 

all conditioning lengths; the hyperadaptation was most pronounced at shorter odor 

exposure times, and became almost negligible in 90-minute conditioning protocols 

(Figure 3.8)  

Results from several studies support the idea that there are distinct mechanisms 

that mediate adaptation during short-term or long-term conditioning, and these results 

suggest that the egl-2 mutation interferes with mechanisms unique to short-term  



79 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Screen of K+ channel mutants on butanone adaptation 

Butanone adaptation of loss-of-function K+ channel mutants. egl-2 and kqt-1 mutants 

show hyperadaptation while unc-103 mutants are defective for adaptation. Error bars 

represent S.E.M. *p<0.005 
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Figure 3.8 egl-2 mutants are most defective in short-term adaptation 

Butanone adaptation of egl-2 mutants in 30, 60 or 90 minutes conditioning protocols. 

Adapted egl-2 mutants showed the greatest difference from wildtype in 30 minute 

(short-term) adaptation. Error bars represent S.E.M.  ** p<0.001, *p<0.01 
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adaptation. An alternate possibility is that in egl-2 mutants, the normal adaptation 

mechanisms act more rapidly due to lack of inhibition.    

 

Multiple alleles and transgene rescue support egl-2 as the causative gene 

Three different egl-2(lf) alleles were tested – sa236 and sa373 are intragenic revertants 

from a parent strain that had a gain-of-function mutation, and rg4 is a deletion allele. All 

three showed the hyperadaptation defect, supporting the idea that the phenotype 

comes from loss of egl-2 function and not from background mutations unique to any 

one mutant strain (Figure 3.9). Fosmids containing the egl-2 locus were injected into 

egl-2(sa236) and egl-2(rg4) mutants, and transgenic animals carrying the fosmid were 

tested for rescue of the butanone hyperadaptation phenotype. One of four egl-2(sa236) 

lines and three of four egl-2(rg4) lines showed significant rescue of the adaptation 

phenotype (Figure 3.10 and data not shown). This result supports a role for egl-2 in 

adaptation, but suggests that the rescue is very sensitive to expression levels. 

In some cases fosmid injections caused a noticeable defect in naïve chemotaxis – 

in such cases, it was difficult to compare adapted groups. This naïve chemotaxis defect 

may reflect a genuine property of EGL-2 function rather than toxicity from the 

transgene; testing naïve egl-2 mutants for chemotaxis to a range of butanone 

concentrations showed that mutants had a chemotaxis defect that became more 

pronounced at high concentrations of butanone (Figure 3.11).  

 

 



82 
 

 

 

 

 

 

 

 

 

 

Figure 3.9 Multiple alleles of egl-2 show the hyperadaptation phenotype 

Three different loss-of-function alleles of egl-2 show hyperadaptation to butanone. 

sa236 and sa373 contain point mutations while rg4 is a deletion. Error bars represent 

S.E.M. *p<0.05 
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Figure 3.10 Fosmid rescue of hyperadaptation phenotype in egl-2 

egl-2 mutants carrying the WRM0641cC05 fosmid show rescue of the hyperadaptation 

phenotype (butanone adaptation, 30-minute conditioning). The rescue fosmid covers all 

of the egl-2 coding region as well as 10kb upstream and downstream, and includes part 

of the pme-5 coding region. Error bars represent S.E.M. *p<0.05 
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Figure 3.11 egl-2 mutants have reduced chemotaxis to butanone 

Chemotaxis of naïve animals to butanone concentrations ranging from 1:10- 1:100,000. 

egl-2 mutants show mild chemotaxis defects that are significant at higher 

concentrations of butanone. *p<0.05 compared to wildtype.  
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The adaptation phenotype in egl-2 is odorant-specific 

To determine whether the adaptation defect in egl-2 is odorant-specific or generalizable 

to all AWC-sensed odors, I tested egl-2 mutants on adaptation to benzaldehyde and 

isoamyl alcohol. I chose to use a 30-minute conditioning protocol, as that gave the 

strongest hyperadaptation phenotype for butanone. Mutants showed normal 

adaptation to benzaldehyde and isoamyl alcohol in the 30-minute assay (Figure 3.12 a, 

b).  

There are two possible explanations for this result: one is that egl-2 is involved in 

a butanone-specific adaptation pathway. The second possibility is that egl-2 acts in 

AWCON but not AWCOFF, in which case adaptation to odorants sensed by both AWCs 

would be spared due to normal function of the AWCOFF cell. To test the second 

hypothesis, I created an egl-2 strain with no AWCOFF cells and two AWCON cells by using 

the nsy-1 cell fate mutant. When nsy-1; egl-2 double mutants were tested for 30-minute 

benzaldehyde adaptation, they did not show the strong hyperadaptation phenotype 

seen in butanone adaptation (Figure 3.12c). While a naïve chemotaxis defect in the 

double mutants makes it difficult to make quantitative comparisons to controls, the fact 

that double mutants did not exhibit a noticeable hyper-adaptation phenotype makes it 

unlikely that egl-2 causes defects by acting on all AWCON-sensed odors. 

 

egl-2 mutants show hyper-adaptation in AWC calcium response 

I characterized the adaptation of AWC calcium responses by testing animals after 0, 5, 

and 30 minutes of butanone conditioning. Because wide-field imaging with in-chip  
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Figure 3.12 egl-2 mutants are not defective in adaptation to other AWC-sensed odors 

(a) egl-2 mutants do not show hyperadaptation to benzaldehyde (30-minute 

conditioning protocol).   (b) egl-2 mutants do not show hyperadaptation to isoamyl 

alcohol (30-minute conditioning protocol).   (c) egl-1;nsy-1 double mutants do not show 

hyperadaptation but naïve animals have a chemotaxis defect. Error bars represent 

S.E.M. 
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conditioning was not available at the time of these experiments, animals were 

conditioned outside the chip and then loaded into a chip to be imaged. Testing wildtype 

animals after butanone conditioning showed both cumulative and time-domain specific 

changes in AWC, such as increase in baseline calcium levels, decrease in ratio of ON/OFF 

response, and increase in decay time (Figure 3.13a-c).  

egl-2 mutants showed changes in the ON/OFF ratio that were qualitatively 

similar to wild-type, but they occurred at earlier time points (Figure 3.13b). This was 

reminiscent of the hyper-adaptation seen in behavior. Additionally, mutants did not 

show the increase in baseline fluorescence that was observed in wildtype animals after 

adaptation (Figure 3.13a). It is worth noting that even in the naïve state, egl-2 mutants 

showed differences in AWC calcium response compared to wildtype. These differences 

may underlie the mild naïve chemotaxis defect seen in the mutants.  
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Figure 3.13 AWC calcium responses of egl-2 mutants show differences from wildtype 

Calcium responses in AWC to 30 second pulses of butanone 10-7 were measured after 0, 

5 or 30 minutes of conditioning (a) schematic of measures of On-response magnitude 

(ON), Off-response magnitude (OFF), and Decay time (Decay). (b) Comparison of raw 

baseline fluorescence shows that this value increases with conditioning in wildtype 

animals, but not in egl-2 animals. (c) In wildtype animals, the ratio of ON:OFF responses 

decreases gradually with increased conditioning length. In egl-2 animals, the ratio 

decreases between 0-5 minutes but not between 5-30 minutes. (d) in both wildtype and 

egl-2 animals, the decay time increases with increased conditioning length. Decay is 

measured as the time it takes to reach 33% of the maximum response. Error bars 

represent S.E.M. 
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Discussion 

In this chapter, I report the identification of two genes involved in adaptation: gpb-1 and 

egl-2. The former was found by whole-genome sequencing of the uncloned strain adp-1, 

while the latter was found through a candidate screen of K+ channel mutants.  

The nature of the gpb-1 mutation in adp-1(ky20) is complex; based on our 

results, it appears to be neither a complete loss-of-function nor a dominant gain-of-

function mutation. One possible scenario that reconciles these observations would be if 

gpb-1 has differential roles in development versus in adaptation; the GPB-1 isoform in 

adp-1(ky20) may lose functionality for the latter while still retaining functionality for the 

former. Alternately, partial duplication may reduce GPB-1 function in some cells while 

maintaining function in others by disrupting regulatory regions. 

Gβ subunits are known to interact with a plethora of molecular partners, 

including Gα, γ subunits as well as K+ channels. Matuski et al., (2006) showed that goa-1 

loss-of-function and egl-30 gain-of-function mutations are both adaptation-defective. 

Mutations in gpb-1 could affect adaptation either by interfering with goa-1 activity, or 

allowing for egl-30 hyperactivity. Yamada et al., (2009) proposed that GPC-1 partners 

with GPB-1 to permit adaptation, so the mutations in gpb-1 could also be interfering 

with gpc-1 activity. 

Preservation of the adaptation defect in backcrossed strains, as well as the 

existence of a unique gpb-1 isoform, provide a strong case for gpb-1 being a causative 

locus in adp-1(ky20). However, this does not completely rule out the possibility that a 

different gene contributes to the adaptation phenotype. More direct evidence is needed 
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to prove gpb-1 function is required for adaptation. Along these lines, site-directed 

mutagenesis of gpb-1 could be a way to produce viable animals that show loss of 

specific gpb-1 functions, and would furthermore help distinguish which partner 

interactions are important for adaptation. Genetic complementation studies, in which 

adp-1(ky20) is crossed to other mutants, will also be helpful in finding which molecular 

pathways it acts through. Finally, the Crispr/Cas9 system could be used to generate 

targeted mutations and bypass the toxic effects of transgenes (Mali et al., 2013).  

Further studies are needed to definitively localize the adp-1(ky20) defect within 

the neuronal circuitry. Calcium imaging shows that the AWC neurons of naïve adp-

1(ky20) mutants have smaller responses to low concentrations of butanone stimuli. It is 

unclear whether and how this is related to the behavioral adaptation defect, as adapted 

adp-1(ky20) animals had responses that were identical to wildtype animals.  Also, it is 

not yet clear whether the calcium imaging phenotype can be attributed to a 

requirement for adp-1 in AWC itself, or if there is a non-cell autonomous effect. It would 

be interesting to see whether expression of the duplicated GPB-1 isoform in AWC can 

cause this calcium imaging phenotype. 

It will also be interesting to see whether these mutants have defects in other 

AWC adaptation processes such as EGL-4 nuclear translocation.  

Identification of egl-2 as an adaptation defective mutant provides evidence for 

involvement of a K+ channel in adaptation in C. elegans. Recordings from cultured 

hippocampal neurons show that K+ channels are important in both the induction and 

depotentiation of LTP, a signature of long-term memory (Lujan et al., 2009; Stackman et 
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al., 2002).  A recent study on associative learning in C. elegans reports that mutations in 

calcium-dependent BK potassium channel, slo-1, causes defects in long-term memory 

(Lakhina et al., 2015). 

The finding that egl-2 mutants have abnormal AWC calcium activity points to the 

possibility of altered neuronal excitability. The contribution potassium channels make to 

neuronal excitability has been highlighted by a number of genetic and pharmacological 

studies; for example, pharmacological blockade of ERG channels in the vestibular 

nucleus results in increased spontaneous activity and reduction in spike-frequency 

adaptation (Pessia et al., 2008). 

Interestingly, egl-2 mutants are one of only a few known mutants where loss-of-

function leads to enhanced, rather than defective, adaptation. This implies that egl-2 is 

involved in a mechanism which normally acts to counter adaptation. The calcineurin 

mutant tax-6 is defective for chemotaxis to AWC-sensed odors, and Kuhara et al., (2002) 

demonstrated that this was due to rapid adaptation rather than defective sensory 

signaling. This suggests that the mild chemotaxis defects I observed in egl-2 mutants 

may in fact be a reflection of rapid adaptation in egl-2 mutants that occurs while the 

animals are chemotaxing on the assay plate.   
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CHAPTER 4: Discussion 

 

Adaptation-induced changes are distributed throughout the circuit  

As part of my study of neuronal circuit mechanisms in Chapter 2, I demonstrated that 

activity of the AIA interneurons is required for adaptation phenotypes in the AWC 

sensory neurons; AIA activity was required for of changes in EGL-4 nuclear localization 

and for appropriate regulation of AWC-mediated turning behavior. This supports the 

idea that adaptation is not mediated purely by changes in the sensory neuron, but 

rather involves interactions in which the sensory neuron receives feedback signals from 

the interneurons. This is reminiscent of sensory plasticity in higher organisms, where 

top-down control mechanisms often modulate earlier parts of the sensory circuit 

(Mease et al., 2014; Polley et al., 2006). An example can be found in the rat tactile 

system, where adaptation to whisker deflection is thought to be regulated by 

corticofugal projections to the thalamus; projections from layer 6 cortex modulate 

thalamic excitability by regulating resting membrane potential of thalamic neurons 

(Mease et al., 2014).  

What might be the identity of the signal from AIA to AWC? There are several 

peptides known to be released by AIA that would make good candidates. The insulin-like 

peptide INS-1 has already been suggested as a retrograde messenger released by AIA 

onto AWC in several behavioral paradigms including salt chemotaxis learning and 

benzaldehyde associative plasticity (Tomioka et al., 2006; Lin et al., 2010; Chalasani et 

al., 2010). ins-1 mutants also had a defect when I tested them on butanone adaptation. 
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However, expressing ins-1 in AIA of ins-1 mutants was not sufficient to rescue the defect 

in this behavioral paradigm, indicating that additional sources of ins-1 may be required. 

Other AIA-released peptides such as FLP-1 or FLP-2 may also drive changes in AWC. 

In addition to AIA, I also found that another neuron, possibly AVF, was required 

for adaptation. While the AIA interneuron has been implicated in many sensory 

behaviors, AVF is not known to have such functions. The involvement of AVF in 

chemosensory adaptation would be somewhat unexpected when one considers its 

position in the neural circuit – it might be considered a “secondary” interneuron in that 

it is more heavily connected to motor neurons than sensory neurons; it does not make 

any direct connections with AWC or with the interneurons directly downstream of AWC. 

 Results from our temporally-restricted inhibition experiments show that gcy-28d 

expressing neurons need to be active during conditioning in order for adaptation to 

occur. One possibility is that AIA and an additional neuron, perhaps AVF, respond to and 

relay information about the conditioning stimuli, and that inhibition prevents the animal 

from processing information about the presence of odor or absence of food. A second 

possibility is that, rather than represent specific information about the stimulus, gcy28d 

expressing neurons serve as a permissive signal for plasticity. Further experiments of 

AVF examining calcium responses to odor or starvation will help determine whether AVF 

activity reflects information about these stimuli. It would also be interesting to see 

whether AVF is involved in other paradigms of behavioral plasticity – one could activate 

or inhibit AVF during butanone enhancement or salt chemotaxis learning, for example.  
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Positive and negative regulators of adaptation 

In Chapter 3, I identified two new genes involved in adaptation – gpb-1 and egl-2 – that 

may act as positive and negative regulators of adaptation, respectively.  

 I uncovered the likely molecular identity of the mutation in adp-1(ky20); whole 

genome sequencing points to a duplication in the gpb-1 locus as a potential causative 

mutation. The nature of the mutation and its effect on GPB-1 function are complex, 

appearing to be neither a complete loss-of-function nor a clear dominant gain-of-

function. Further experiments in which GPB-1 function is manipulated with temporal 

and spatial control would help elucidate its role in adaptation – one could use cell-

specific or heat-shock-promoter driven RNAi to knockdown gpb-1 in neurons of adult 

animals.  

 One of the most obvious roles of Gβ proteins are as binding partners of Gα as 

part of the heterotrimeric complex, and if gpb-1 is found to act in AWC it may very well 

be having an effect on adaptation through its effect on Gα proteins such as ODR-3, GOA-

1 or EGL-30. Gβ proteins have additional interactions with many molecules that could be 

involved in chemosensation and/or adaptation, including adenylyl cyclases (Steiner et 

al., 2006), Ca2+ channels (Currie, 2010), and K+ channels (Mirshani et al., 2003). Genetic 

studies may help determine which of these interactions are important for adaptation. 

I show that loss-of-function of the K+ channel egl-2 leads to hyperadaptation. 

egl-2 is a homolog of the ether-a-go-go (EAG) type K+ channel, a highly conserved 

channel which was first discovered in Drosophila for the hyperexcitable leg-shaking 

phenotype of the mutants (Warmke et al., 1991). The human homolog (hERG) has 
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important functions in cardiac potential, but is also expressed in brain tissue and as 

such, may play a role in nervous system excitability as well. EAG channels play an 

important role in synaptic release, and mutations are thought to cause increased 

transmitter release in motor neurons (Warmke et al., 1991). Its predicted structure 

suggests many potential domains for modulation by cyclic nucleotides or calcium 

calmodulin (CaM), molecules which themselves have been linked to mechanisms of 

plasticity. As such, EAG channels are well positioned as effectors of behavioral plasticity. 

Indeed, Drosophila mutants of EAG show defects in behavioral plasticity, such as failure 

to adapt in a courtship conditioning assay (Griffith et al., 1994) and enhanced 

habituation in the visually-evoked escape response (Engel and Wu, 1998).  

The fact that egl-2 mutants show enhanced, rather than reduced, adaptation 

indicates that egl-2 normally functions to repress adaptation and may be acting 

antagonistically to known adaptation pathways. Compared to the large number of genes 

known to be required for adaptation, there are relatively few genes known to 

antagonize adaptation. It is nonetheless a crucial process, as restriction of plasticity is an 

equally important counterpart to induction of plasticity – for example, in memory 

systems, plasticity is thought to allow formation of new memories while inhibition of 

plasticity is important for stabilizing and retaining memories. As demonstrated in the 

case of calcineurin mutants (Kuhara et al., 2002), the lack of known adaptation-

countering genes may be due to the fact that many hyperadaptation phenotypes may at 

first glance appear to have naïve chemotaxis defects. Modified chemotaxis assays with 
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faster readout times may help uncover mutants who show normal chemotaxis in the 

first few minutes but quickly transition to an adapted state.  

It will be interesting to probe circuit activity further in egl-2 mutants, as the 

literature shows many examples in which EAG channels affect neuronal activity. My 

imaging experiments showed that egl-2 mutants showed differences from wild-type in 

their AWC calcium activity, both in the naïve and adapted states. However, these results 

do not tell us whether egl-2 is acting in AWC directly, or having an effect on AWC 

indirectly from some other location in the circuit. More thorough characterization of the 

circuit activity over different stimulus protocols would help give a more comprehensive 

understanding of the role EGL-2 plays in the adaptation circuitry.   

The above approaches used forward genetics to identify genes involved in 

adaptation. While mutant studies have been invaluable in uncovering molecular players 

in adaptation, they are limited by the availability of mutants, and genes that cause 

lethality or have redundant functions may be overlooked. A complementary approach 

would be to look for proteins that have changes in transcript levels before and after 

adaptation. In a recent paper by Lakhina et al., (2015), the authors characterized 

widespread transcriptional changes associated with long term memory formation in C. 

elegans. The study reports changes in hundreds of genes, including many receptors, 

peptides, and ion channels. As there is some overlap between adaptation and memory 

formation, these genes may be good candidates for examination in adaptation 

paradigms as well. Another interesting experiment would be to apply transcriptional 

profiling in a spatially restricted way, namely by using ribosomal his-tags to isolate and 
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quantify transcripts from single cells such as the sensory neuron or interneurons of 

interest (Ederth et al., 2009).  

 

Adaptation as a learned association 

The adaptation behavior studied in this work shares many similarities with associative 

learning, in which animals learn a positive or negative response to a previously neutral 

stimulus. In the adaptation paradigm I use here, animals are conditioned to butanone in 

the absence of food (‘starvation’), and adaptation behavior is only observed if these 

conditions are met – indeed, if food is present during butanone exposure, this will 

actually lead to enhancement behavior (Torayama et al., 2007). While not all the details 

of the adaptation paradigm fit the definition of classical conditioning, butanone and 

starvation are reminiscent of the CS and US, respectively.  

Associative learning has been studied extensively in other invertebrates and 

vertebrate models; studies have delineated the sensory pathways that represent the CS 

and the US, and have identified their convergence point within the neural circuit. In the 

honeybee brain, olfactory and gustatory information converge in the mushroom bodies 

and lateral horn to produce a conditioned proboscis extension behavior (Giurfa and 

Sandoz, 2012). In the visually-mediated ciliary response of Hermissenda, CS and US 

pathways converge at two sites – in first-order interneurons shared by the two 

pathways, as well as on sensory neurons of the CS pathway (Crow and Tian, 2006).  

My calcium imaging results in Chapter 2 show that AWC calcium responses shift 

in both ‘butanone + starvation’ and ‘butanone + food’ conditioning paradigms. Could 
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this change in AWC be a neuronal correlate of CS representation? To better understand 

CS-representation in neural circuitry, future experiments should look for mutants that 

have defects in both butanone adaptation and butanone enhancement – such mutants 

may have a shared defects in processing information about the CS, and it would be 

interesting to see whether these mutants have phenotypes in AWC calcium responses.  

Another question is regarding the source of CS detection: AWCON has canonically 

been thought of as the ‘butanone sensor’, as developmental mutants without an AWCON 

cell fails to chemotax to butanone (Wes and Bargmann, 2001). However, when utilized 

as a CS, butanone is delivered at much higher concentrations than used in chemotaxis 

assays, and calcium imaging in AWC of naïve animals shows there is little response at 

these high butanone concentrations. Intriguingly, AIA, and to a lesser extent AIY, show a 

dramatic increase in their calcium responses to butanone at concentrations above  

10-5, which is not what one would predict based on the calcium activity of AWC. While 

calcium activity is not the most direct measure of AWC output, this certainly raises the 

possibility that AIA and AIY may be receiving CS information from a sensory neuron 

other than AWC. Such a phenomenon has already been observed for the AWC-sensed 

odorant isoamyl alcohol; Yoshida et al., (2012) report that high concentrations of 

isoamyl alcohol are detected by sensory neurons ASH and AWB, which are neurons that 

are specialized in detecting aversive stimuli. Based on preliminary results, I found that 

ASH did not show any response to high butanone concentrations, but ASI and another 

un-identified neuron responded to odor onset with increases in calcium (data not 
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shown). Further imaging studies should do a more comprehensive search for the 

sensory circuitry that is geared towards detecting the high concentration CS.  

The neuronal circuitry for the starvation signal is more difficult to pinpoint than 

for the odor signal, as starvation generally involves a systemic response. The 

aforementioned ins-1 has been proposed as a molecular starvation signal (Chalasani et 

al., 2010). There are numerous neurons whose activity is associated with food 

availability. This includes the ASI sensory neuron, which encodes information about 

nutritional state, dauer-formation and lifespan, and the NSM motor neurons which 

detect food information relevant to feeding and foraging behavior (Gallagher et al., 

2013; Flavell et al., 2013).  

 With their numerous inputs from to different sensory neurons, interneurons are 

likely to be the site of convergence of CS and US information, and are also in a prime 

position to influence downstream motor neurons that execute the chemotaxis behavior. 

AIA has been linked to sensory integration in a copper-barrier assay in which worms are 

simultaneously exposed to copper, an aversive stimulus, and diacetyl, an attractive 

odorant (Shinkai et al., 2011). In a tap habituation paradigm, the interneuron RIM 

appears to integrate chemosensory and mechanosensory information (Lau et al., 2013).   

 

Distinct mechanisms for different phases of adaptation 

Associative learning is commonly thought to have three phases: memory acquisition, 

consolidation, and retrieval (Abel and Lattal, 2001). These three phases have distinct but 

overlapping mechanisms that have been elucidated using temporally-selective lesions of 



100 
 

molecules or cells. In spatial learning of rodents, pharmacological blockade of NMDA 

receptors during the different phases shows that NMDAR activity is required during 

acquisition and consolidation, but not during retrieval (Able and Lattal, 2001). In 

Drosophila, a temperature-dependent allele of shibire allows for temporally controlled 

blockade of synaptic transmission; by using this tool in an anatomically restriction 

fashion, researchers showed that synaptic release from dopaminergic neurons was 

required during acquisition, while release from mushroom bodies was required during 

retrieval (Liu and Davis, 2006).  

  The various chemosensory plasticity assays for C. elegans can be thought of as 

having parallels to at least two of the canonical learning phases – an acquisition phase in 

which animals are conditioned to the CS in presence of a US, and a retrieval phase in 

which animals are tested on chemotaxis to the CS.   

In studies of benzaldehyde associative plasticity, authors address the timing 

question by using temperature sensitive alleles of the insulin receptor daf-2 (Lin et al., 

2010). By selectively shifting the test environment to restrictive temperatures during 

either the acquisition phase or the retrieval phase, authors were able to differentiate 

between the role of daf-2 during acquisition and retrieval. As animals showed more 

severe defects when restricted during the retrieval phase, the authors concluded that 

daf-2 signaling is most important during the retrieval. Temperature-sensitive alleles are 

only available for select genes, but inducible promoters could be used to activate or 

repress other genes of interest.  
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The development of the histamine-gated chloride channel as a reagent for C. 

elegans (Pokala et al., 2014) provided a convenient tool with which I could probe 

neurons in the different phases of the adaptation paradigm. I have focused on 

identifying neurons involved in the acquisition phase, and screened nine different 

neuronal sets for effects of histamine-induced inhibition during conditioning; results 

indicate that AIA and a second neuron may be important during the acquisition phase.  

To see whether these or other neurons are involved in the retrieval phase, one could 

screen the same lines while supplying histamine in the chemotaxis plate. Preliminary 

results from such experiments suggest that neither AIB nor AIY are required during 

retrieval, while inhibition of gcy-28d-expressing neurons led to a general chemotaxis 

defect even in naïve animals (Figure 4.1). Further experiments with more spatially-

restricted expression will be needed to distinguish the role of gcy-28d neurons in naïve 

chemotaxis as well as during the retrieval phase of adaptation.  

 

Chemotaxis strategies in the retrieval phase 

During the retrieval phase of adaptation, C. elegans are tested for their ability to 

chemotaxis in a stimulus gradient. The re-orientation behavior of worms can be 

classified into two behavioral categories, turning and steering, and both are observed 

during chemotaxis. Since the two behaviors are thought to employ partly distinct sets of 

neurons (Gray et al., 2005; Wakabayashi et al., 2004; Iino and Yoshida, 2009), studying 

how naïve and adapted animals differentially employ these chemotaxis strategies could 

be a way to better understand what neuronal circuitry changes take place in adaptation.  
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Figure 4.1 Acute inhibition of gcy-28d neurons causes chemotaxis defects 

gcy-28d::HisCl animals are defective for chemotaxis to 1:1000 butanone in the presence 

of histamine. Histamine has no effect on wildtype chemotaxis. Error bars represent 

S.E.M. *p<0.001 compared to no-histamine controls 

 

 

 

 

 



103 
 

Mechanisms of chemotaxis in naïve animals is a popular topic of study. As part of 

a collaborative project with Saul Kato, I characterized the chemotaxis behaviors of wild-

type and the chemotaxis-defective odr-3 mutant animals to a point source of isoamyl 

alcohol (results are published in Kato et al., 2014). Both wildtype and odr-3 mutants 

showed the expected increase in turning when they were angled away from the odor, 

but odr-3 mutants had a defect in steering which we hypothesized was the cause of 

their chemotaxis defect. These results show that steering is important for chemotaxis to 

isoamyl alcohol, and turning behavior alone was not sufficient for successful 

chemotaxis. Other groups have looked at chemotaxis strategies in a salt gradient 

(Kunitomo et al., 2013) and found that both klinokinesis (similar to turning) and 

klinotaxis (similar to steering) contribute to chemotaxis towards the preferred salt 

concentration. Computer simulations in that study suggest that klinokinesis may be 

more important in this paradigm, as simulation using only klinokinesis was more 

successful than simulations using only klinotaxis. It is likely that animals use different 

chemotaxis strategies depending on the identity of the stimulus as well as the absolute 

concentration and the steepness of the concentration gradient – one should exercise 

caution and note these factors when extrapolating results between paradigms.  

My experiments with AWC-induced turning show that adaptation affects the 

coupling of AWC to the downstream turning circuitry. This indicates that adaptation 

results in a change in the way sensory neuron activity is translated to motor output. 

Although in this case I used channelrhodopsin to activate AWC, something similar may 

occur during odor regulation of AWC when the animal is chemotaxing in a gradient. 
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AWC is presumably activated when the animal is going down the gradient, and naïve 

animals might respond to this with more turns than adapted animals.  

The latest technologies in the lab allow for increasingly fine-tuned real-time 

recordings of behavior and their analysis. Using these set-ups to record the chemotaxis 

performance of naïve and adapted animals in real time will allow us to dissect the 

details of chemotaxis strategy over space and time. It will be interesting to see whether 

the reduced chemotaxis index of adapted animals simply reflects a failure to execute 

chemotaxis strategies, or whether adapted worms are actively using a different strategy 

that takes animals down the odor gradient rather than up. Once adaptation-induced 

changes in chemotaxis mechanisms have been characterized for wildtype animals, 

further experiments should examine chemotaxis behavior in adaptation-defective 

mutants. This will help elucidate which strategies are dispensable for successful 

chemotaxis, and may also give clues as to how the mutations are linked to motor 

output.   

Additionally, recordings from the AWC-induced turning experiments show that 

there is a small but consistent change in the basal motor pattern of adapted animals 

even in the absence of AWC stimulation. This points to the possibility of adapted 

animals being in a fundamentally different internal state which affects their general 

motor output and not just their chemotaxis strategy. A more sensitive assay should be 

developed to study this in depth. 
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EXPERIMENTAL PROCEDURES 

 

Chemotaxis Assays 

Worms were grown at 20-22oC on 10cm round Nematode Growth Medium (NGM) 

plates spotted with 500ul of E. coli OP50. Chemotaxis plates are square plates 

containing 10mL of chemotaxis agar (1.6% agar, 5mM phosphate buffer pH6.0, 1mM 

CaCl2, 1mM MgSO4), which is poured the day before the assay and allowed to dry. 15 

minutes before the start of the assay, two 1ul spots of NaN3 is spotted at each end the 

plate. Adult worms are washed off food three times with S basal buffer and once with 

chemotaxis buffer (5mM phosphate buffer pH6.0, 1mM CaCl2, 1mM MgSO4), and 

100~300 worms are placed at the center of the square plate. Two 1ul drops of odor 

stimulus or control EtOH is spotted on each side of the plate (above the spot of NaN3), 

and worms are blotted with a kimwipe to start the assay. The odor concentration used 

as stimulus is typically 1ul of 1:1000 butanone, 1:100 isoamyl alcohol, or 1:200 

benzaldehyde. Worms are allowed to chemotax for 1~2 hours, then plates are moved to 

4oC to stop the assay. After all worms have been immobilized, the assay is quantified by 

manually counting the number of worms on each side of the plate (#ODOR, #CONTROL) 

and in the intermediate region outside the origin (#OUTSIDE). These values are used to 

calculate the chemotaxis index using the following formula:  

                                                                       #ODOR - #CONTROL               
                                                           #ODOR + #CONTROL + #OUTSIDE 
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Adaptation Assays 

Adaptation assays are based on the assay developed by Colbert and Bargmann (1995), 

with some modifications. 1-day old adults were washed three times with S basal buffer 

and placed on conditioning plates or vials. Initially, parafilmed plates with 20ul of 

butanone on the lid were used for this step, but I later adopted a liquid conditioning 

method which used 2ml vials (VWR) filled with 1.2*10^-4 butanone diluted in 1ml S 

basal. Conditioning vials were layed horizontally on their side to prevent anoxic 

conditions. Worms were conditioned for 30, 60 or 90 minutes, then washed twice with 

Sbasal and once with chemotaxis buffer (unless described otherwise) before being 

tested on chemotaxis assays.  

 For histamine-dependent inhibition during the conditioning phase, 10ul of 1M 

histamine dihydrochloride (Sigma) was added to the conditioning liquid. For histamine-

dependent inhibition during the test phase, the chemotaxis agar formula was modified 

to contain 10ul of 1M histamine free-base (Calbiochem) and 100mM phosphate buffer, 

1mM CaCl2 and 1mM MgSO4.  

 

Enhancement Assays 

Enhancement assays are similar to those described in Torayama et al, (2007). 1-day old 

adults were washed three times with Sbasal buffer and placed on conditioning plates. 

Conditioning plates were 10cm NGM plates seeded with 500ul of OP50, and 12ul of 

butanone was spotted on the lid and sealed with parafilm. Naïve control groups were 
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placed on seeded plates without butanone on the lid. After 90 minutes, worms were 

washed twice with S basal and once with chemotaxis buffer and assayed for chemotaxis 

to 1:10 butanone.  

 

Calcium imaging, standard chip 

1-day old adults containing the GCaMP transgene were picked off food and adapted in 

liquid as described under ‘Adaptation Assays’. After conditioning, worms were washed 

twice with S basal and loaded into the imaging chip. Polydimethylsiloxane (PDMS) 

imaging chips were fabricated as described in Chronis et al. (2007), using a custom-

designed silicon mold. PDMS chips were cured and holes were punched in fluid inlets, 

and the chip was then bonded to a glass cover slip. Worms were immobilized in the chip 

by adding 10mM tetramisole hydrochloride (Sigma) to the worm holding chamber. A 

time stack of images were captures using a CoolSnap HQ Photometrics camera and a 

Zeiss Axioskope upright microscope with a 40X objective. Stimulus was delivered using a 

three-way valve (The Lee Company, 778360) that allowed us to alternate delivery of 

odor and buffer stimuli near the worm’s nose. An automated Valvebank program was 

used for precise temporal control of the three-way valve. Fluorescence in each image 

was measured using a custom Metamorph script (Chronis et al., 2007).  

 

Calcium imaging, arena chip  

The chip design and stimulus delivery system is identical to that used in Larsch et al. 

(2013). PDMS chips with two-arenas were made using a custom mold. The chips were 
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flooded with S basal containing 10mM tetramisole hydrochloride, and 6~9 adult animals 

were loaded into each arena. Worms were conditioned for 90 minutes with butanone 

10-4 (or S basal, for naïve control groups) followed by 15 minutes of S basal to act as a 

wash buffer. Worms were then imaged on a Zeiss AxioObserver.A1 microscope with a 

2.5X objective, and Metamorph software was used for synchronized image capture with 

pulsed illumination. A three-way valve was used to switch between buffer and odor flow 

into the chip, and a Hamilton valve was used to switch between different concentrations 

of odor. The stimulation protocol was three 30-second alternations between odor and 

buffer followed by one minute of buffer, and then the sequence was repeated at 10-fold 

higher odor concentration for a total of six butanone concentrations, ranging from 10-9 

to 10-4, plus a buffer-to-buffer control. Fluorescence was measured using a custom 

imageJ script (Larsch et al., 2013).  

 

Imaging data analysis 

Custom Matlab scripts were written to analyze calcium imaging data generated by 

Metamorph or ImageJ tracking programs. For AWC baseline fluorescence comparisons, 

the raw fluorescence intensity was used. For all other quantifications, bleach-corrected 

integrated fluorescence values were used. The minimum fluorescence value was 

subtracted from the trace to generate dF values, which were subsequently normalized 

to the maximum fluorescence value.  

AWC response magnitude was measured as the magnitude of decrease in 

fluorescence during each odor pulse, and was calculated by subtracting the starting 
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fluorescence value from the minimum fluorescence value and then taking the absolute 

value. AWC response decay time is the time it takes for AWC response to odor removal 

to decay to 33% of its maximum value. AIY response magnitudes were quantified as the 

area under the curve for a given time region, and were calculated for both the odor and 

buffer periods. The differential magnitude is given by subtracting the response 

magnitude of buffer from that of odor. AIY response probability was calculated as the 

number of peaks divided by the number of odor pulses. Peaks were counted using a 

custom peak detection script that identified local maxima in each trace. 

 

EGL-4 nuclear translocation assay 

PSM vector containing the odr-3 promoter driving GFP::egl-4 fusion was a gift from 

Noelle L’Etoile. The construct was injected into wildtype animals at 5ng/ul, and I isolated 

transgenic progeny in which the array had spontaneously integrated. I back-crossed 4 

times into N2 and tested the line on butanone adaptation to ensure it had normal 

adaptation behavior.  

 1-day old adults were adapted as described under ‘Adaptation Assays’. After 

conditioning, worms were washed three times with Sbasal and mounted on a 2% agar 

pad containing 5mM NaN3. A glass coverslip was placed over the worms. Worms were 

imaged within 20 minutes to avoid effects of NaN3 on EGL-4 localization. Worms were 

imaged at 40x magnification. The proximal AWC cell was identified manually and a Z-

stack was taken through the cell using Zeiss axiovision software for image capture. From 

each stack, the image containing the central plane of the cell was selected for 
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quantification. Fluorescence values of the cytoplasmic and nuclear regions were 

quantified using ImageJ software and measurements were used in the following formula 

for fluorescence ratio: 

                                                                        Fin - Fout               
                                                                        Fin + Fout 
 

  25~30 worms from each group were imaged during each trial. Results were plotted as 

Kaplan-Meier survival curves, and statistical significance measured by log-rank test. It is 

reported that butanone adaptation results in EGL-4 translocation only in the AWCON cell 

(Lee et al., 2010). The strain used here did not have a marker to distinguish AWCON from 

AWCOFF, so it should be assumed that roughly 50% of the AWC’s that were imaged were 

AWCON while the other 50% were AWCOFF. Despite this factor, we were still able to see a 

significant effect of butanone adaptation on EGL-4 translocation.  

 

Channelrhodopsin-induced turning behavior 

L4-stage animals expressing channelrhodopsin under the str-2 promoter were picked 

the night before the assay and washed onto plates seeded with OP50 containing 50uM 

retinal. The following day, adult animals were adapted as described under ‘Adaptation 

Assays’. After conditioning, animals were washed twice with Sbasal and once with NGM 

buffer, and 15~25 animals were transferred to a 6cm NGM plate. The plate had a square 

filter ring soaked in 20mM CuCl2 to prevent animals from crawling out of the field of 

view. Animals were received 20-second pulses of blue light (455nm, 25uW/mm2) every 

two minutes, repeated ten times, during which behavioral responses were video-
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recorded. A Pixellink camera and Streampix software were used to generate recordings. 

Movies were analyzed using custom Matlab scripts that tracked animal locomotion and 

identified turning events (Gordus et al., 2015). Custom Matlab scripts were used to bin 

and plot the frequency of events over time.  

 

Whole genome sequencing of adp-1 (ky20) 

Genomic DNA was prepared from wildtype and the original adp-1 strain (CX2345), and 

whole genome sequencing was performed by the Rockefeller Genomic Resource Center. 

Sequence reads was analyzed using a custom program (McGrath et al., 2011). 31 unique 

SNPs unique to adp-1(ky20) were found on chromosome II, as well as a 7.5kb 

duplication of chrII:11745216 to 11752704. Genotyping primers were designed for the 

duplication as well as SNPs located at chrII: 3471501, 5835478, 13018912, 13487809, 

14226575 and 15167193. The duplication covers part of the gpb-1 coding region. Strains 

were independently back-crossed to wildtype to generate four lines which were 

genotyped for the SNPs above.  

  

Cloning of gpb-1 cDNA isoforms 

RNA was extracted from wildtype and adp-1 animals using standard protocls, and an RT-

PCR kit (Invitrogen) was used to generate cDNA pools. PCR cloning of cDNAs fragments 

shown in Figure 3.2 were performed using the following primer pairs:  

for Figure 3.2(a) 
5’  CCAGTTGTCGAGTGCAAGAA  3’ 
5’  CGTCCTCGGTGACTCCTAGA  3’ 

 



112 
 

for Figure 3.2(b) 
5’  GACAACATTTGCTCAATTT  3’ 
5’  ACTGTCTGATGCCCAGTGC  3’ 

 
 
 
 
Strain list 
 
Wildtype strain was Bristol N2. 

Strains introduced in Chapter 2 

CX14599 kyEx4747 kyEx4747 = gcy-28d::unc-103(gf)::SL2::mCherry 
30ng/ul, elt-2::mCherry 2ng/ul, pSM 70ng/ul 

   
CX14597 kyEx4745 kyEx4745 = gcy-28d::unc-103(gf)::SL2::mCherry 

30ng/ul, elt-2::mCherry 2ng/ul, pSM 70ng/ul 
   
CX16499 kyIs678  kyIs678= odr-3::GFP::egl-4 (5ng/ul), elt-2::nlsGFP 

(5ng/ul), pSM (90ng/ul). 
   
CX16500 kyIs678, kyEx4747 kyIs678= odr-3::GFP::egl-4 (5ng/ul), elt-2::nlGFP 

(5ng/ul), pSM (90ng/ul).  kyEx4747 = gcy-28d::unc-
103(gf)::SL2::mCherry 30ng/ul, elt-2::mCherry 
2ng/ul, pSM 70ng/ul 

   
CX14418 kyEx4605 kyEx4605 = 50ng/uL pNP406 (str-2::Chop2::GFP) + 

10ng/uL myo-3:mCherry 
   
CX16670 kyEx4605; 

kyEx4747 
kyEx4605 = 50ng/uL pNP406 (str-2::Chop2::GFP) + 
10ng/uL myo-3:mCherry.  kyEx4747 = gcy-
28dp::unc-103(gof)::SL2::mCherry 30ng/ul, elt-
2::mCherry 2ng/ul. 

   
CX15261 kyIs617  kyIs617= gcy-28d::HisCl1::SL2::GFP (5ng/ul), myo-

3::mCherry (5ng/ul). Integration of array in 
kyEx4921. 5x back-crossed into N2 post- integration. 
Line 2 of 2. 

   
CX14908 kyEx4924 kyEx4924 = inx-1::hisCl1::sl2::GFP (30ng/ul) and 

myo-3::mCherry (5ng/ul)  Line B 
   

CX14909 kyEx4925 kyEx4925 = ttx-3::hisCl1::sl2::GFP (50ng/ul) and 
myo-3::mCherry (5ng/ul)  Line B 
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CX15341 kyEx5161 kyEx5161 = 50ng/uL pNP448 (unc-
4::HisCl1::SL2::mCherry) + 1ng/uL elt2:mCherry 

   
CX15388 kyEx5178 KyEx5178 = tph-1(short)::HisCl1::SL2::mCherry PCR 

product (15ng/uL) 
   
CX16069 kyEx5493 kyEx5493=50ng/uL pNP443 (glr-

3::HisCl1::SL2::mCherry) + 1ng/uL elt-2:mCherry 
   
CX16040 kyEx5464 kyEx5464 =tdc-1::HisCl1::SL2::mCherry  = 50ng/ul.  

Some mCherry expression in gut as well 
   
CX16061 kyEx5485 kyEx5485= str-1::HisCl1::SL2::GFP (50ng/ul) 
   
CX15954 kyEx5402 kyEx5402= str-3::HisCl1::SL2::GFP (100ng/ul) 

   
CX16064 kyEx5488 kyEx5488= srxs-3::HisCl1::SL2::GFP (50ng/ul) + myo-

3::mCherry(5ng/ul).  line 2 of 2 
   
CX15870 kyEx5484 kyEx5484= str-3::HisCl1::SL2::GFP (50ng/ul) 

   
CX11935 kyEx3252 GCaMP3 expression using str-2 promoter. 

KyEx3252= str-2::GCaMP3 10ng/ul, coel::gfp 
10ng/ul 

   
CX16213 kyEx4747;  

kyEx5527 
kyEx4747 = gcy28d::unc-103(gf)SL2::mCherry 
30ng/ul, elt-2::mCherry 2ng/ul. kyEx5527 = str-
2::nlGCaMP6.0 (30ng/ul), elt-2::nlsGFP (5ng/ul) 

   
DCR2686 olaEx1621 olaEx1621=mod-1::GcAMP6s(25ng/ul); ttx-

3::mCherry(25ng/ul);unc-122::dsRed(40ng/ul) 
   
CX15257 kyEx5128 kyEx5128= gcy28d::GCaMP5(D381Y), coel::dsRed 

 
   
CX7155  ins-1(nr2091)  
   
JN1702  ins-1(nr2091); 

pyEx1702 
pyEx1702 = ins-1::ins-1::VENUS 

 
   
JN1704 ins-1(nr2091); 

pyEx1704 
pyEx1704 = ins-1(s)::ins-1::VENUS 
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Strains introduced in Chapter 3 
 

CX2345  adp-1 (ky20) II 2x backcrossed 
   
CX15861 adp-1(ky20) II 6X back-crossed ky20. This line retains the gpb-1 

duplication and snp but snps to the left of 
snp5835478 and to the right of snp12531795 
appear to be wildtype 

   
CX15863 adp-1(ky20) II adp-1(ky20) II 6X back-crossed. This line is 

wildtype for snp11188373 and everything to the 
left, and also wildtype for snp13487809 and 
everything to the right of that 

   
CX15871 adp-1(ky20) II  2X back-crossed, an unc-6 marker was removed 

during crossing.  Snps starting with snp11745130 
and everything to the left of it on chr II appear to 
be wildtype 

   
VC1506 gpb-

1(ok1875)/mln1[mIs14 
dpy-10(e128)] II 

Outcrossed 1X 

 
 

   
CX15715 unc-4(e120) /  gpb-

1(ok1875) 
heterozygotes for unc-4/gpb-1 can be maintained 
by picking for phenotypically non-unc animals 

   
CX15716 unc-4(e120) adp-

1(ky20) / gpb-
1(ok1875) 

heterozygotes for unc-4 adp-1 /gpb-1 can be 
maintained by picking for phenotypically non-unc 
animals 

   
CX15717 unc-104 (e1265)  adp-

1(ky20) /  gpb-
1(ok1875) 

heterozygotes for unc-104 adp-1/gpb-1 can be 
maintained by picking for phenotypically non-unc 
animals 

   

CX15749 unc-104 (e1265) /  
gpb-1(ok1875) 

heterozygotes for unc-104 /gpb-1 can be 
maintained by picking for phenotypically non-unc 
animals 

   
CX16209 adp-1(ky20) II;  

kyEx5527 
kyEx5527 = str-2p::nlsGCaMP6.0 (30ng/ul), elt-
2::nlsGFP (5ng/ul) 

   
FX02034 kvs-1(tm2034)  
   
JT236  egl-2(n693 sa236)  
   
BZ142 slo-1(eg142) V  
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MT2635 unc-103(e1597n1213) This is a null allele, intragenic revertant, wild-type 

phenotype. 
   
FX00846 kqt-1(tm0846)  

   
FX00542 kqt-3(tm0542)  
   
JT373 egl-2(n693sa373)  

   
CX12809 egl-2(rg4) Backcrossed 4X into N2 

   
CX13944 egl-2(sa236) V; 

kyEx4290 
KyEx4290=egl-2(sa236) animals were injected 
with fosmid WRM0641cC05(10ng/ul) and myo-
3::mCherry(5ng/ul) 

   
CX13943 egl-2(rg4) V; kyEx4289 kyEx4289=egl-2(rg4) animals were injected with 

fosmid WRM0641cC05(10ng/ul) and myo-
3::mCherry(5ng/ul) 

   
CX13941 egl-2(rg4) V; kyEx3252 contains str-2::GCaMP3.0.co-injection marker 

coel::GFP 
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