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HAIR BUNDLES OF A JAWLESS VERTEBRATE EMPLOY TETRAPOD-LIKE 

TUNED MECHANICAL AMPLIFICATION 

Katherine J. Leitch, Ph.D. 

The Rockefeller University 2015 

In the hearing and balance organs of tetrapod vertebrates, mechanical signals are 

transduced by an elegant organelle called the hair bundle. Deflections of this structure 

apply forces to mechanically gated ion channels. Hair bundles are not passive receivers of 

stimuli, but are instead active participants in the process of sensory transduction. They 

expend chemical energy to exert mechanical work, and can harness this active process to 

amplify their mechanical response to stimuli. Furthermore, the active process is tuned, 

allowing a given hair bundle to preferentially amplify a particular frequency; this feature 

is valuable in the analysis of complex sounds. Hair bundles can also enter an unstable 

regime in which their active process drives spontaneous oscillations. Studying this 

epiphenomenon can reveal mechanisms underlying the amplifying abilities of hair 

bundles.   

Despite the importance of amplification in hearing, little is known regarding the 

evolution of the active process; it is unclear if the active process is exclusive to tetrapods. 

It would be instructive, for instance, to know whether the active process predates the 

array of auditory specializations seen throughout vertebrates. Here, we approach this 

problem by investigating the mechanical activity of the hair bundles from the inner ears 

of two jawless vertebrates, the sea lamprey Petromyzon marinus and the American brook 



	
  

lamprey Lampetra appendix. We observe spontaneous oscillations in both of these 

animals. In the latter species, we also show evidence that their oscillations stem from 

mechanisms similar to those driving the spontaneous oscillations of tetrapod vertebrates. 

Furthermore, we found that hair bundles exhibiting these movements can entrain to and 

mechanically amplify particular stimulus frequencies. Taken together, our findings from 

a group distantly related to the tetrapods suggest that the active process of hair bundles is 

trait ancestral to all vertebrate ears. 
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1. Introduction 

1.1. Why study sensory evolution? 

 Determining the sensory capabilities of a long-extinct animal is difficult. Many 

structures that would inform this quest are too small or soft to be observed in any but the 

rarest of fossils (Poinar and Hess, 1982), and of course fossils do not yield to direct 

physiological assay. But the question can be approached, and the answers are important 

for understanding the history of animals and ecosystems on our planet (Nilsson, 2009). 

Furthermore, understanding the evolutionary history of any physiological process can 

shed light on its modern manifestations. Making comparisons across groups of animals – 

needed to infer the physiological attributes of an ancestor – can underscore what is 

fundamental to a process and can help us disentangle the adaptive from the 

architecturally, developmentally, or phyletically constrained. 

1.1.A. Sensory systems drive diversity 

 Why are there so many songbird species? Why are some frog families especially 

diverse? Speciation of animal subpopulations can be driven by pre-mating isolation, and 

in some cases this rift in gene flow is mediated by divergence in courtship displays. There 

is evidence that the degree of this divergence can be influenced by the range of sensory 

stimuli interpretable to an animal: the animal’s “sensory bandwidth.” Between groups of 

frogs, there is extensive variability in an auditory organ termed the amphibian papilla; in 

its ancestral state, the papilla hosts only a small field of receptor cells, thought to be tuned 

to a narrow range of frequencies; in the most derived anuran ear, the papilla is much 

larger and consists of two separately innervated fields encoding a broader range of 

frequencies (Lewis, 1981). Knowing mating calls are variable in anurans and that females 
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prefer the calls of conspecifcs (Blair, 1964; Ryan and Rand, 1995; Pfennig, 2000),  it is 

intriguing to see a correlation between amphibian papillar complexity and speciation 

rates (Ryan, 1986) (Figure 1.1). It may be that wider auditory bandwidths loosen a 

constraint on male calls, permitting greater spectral variability among subpopulations’ 

calls. By blunting gene flow between those subpopulations, this would in turn facilitate 

speciation (Blair, 1964; Richards, 2006). 

A causal link between sensory systems and speciation is clearly seen in cichlid 

fishes of Lake Victoria. Cichlid species often reside in overlapping habitats, and females 

have been shown to mate preferentially with conspecifics on the basis of males’ nuptial 

coloration alone. Anthropogenic disturbance of nutrients in the lake has imposed a filter 

on the wavelengths of penetrating light, but only in some regions of the lake. In the 

murkiest environs populations of fish display, and confer to their laboratory-reared 

progeny, far duller colors than do their conspecifics in clearer water. This accidental 

experiment, ongoing since the early 1900s, has shown that narrowing the available 

sensory bandwidth can affect the processes leading to species divergence (Seehausen et 

al., 1997). 

The effect of sensory abilities on evolution extends to other kingdoms of life. In 

flowering plants, species with overlapping habitats may be “ethologically isolated” due to 

the fidelity with which animal pollinators visit one type of flower (Grant, 1949). 

Although it is thought that pollinators cannot serve as primary drivers of plant speciation 

(Chittka et al., 1999), pollinator behavior seems to play a key role; in groups of flowering 

plants, transitions from abiotic to animal-mediated pollination are consistently correlated 

with an uptick in diversification (Kay and Sargent, 2009). Furthermore, shifts between 



3 

pollinator species, each with their particular sensory biases, can drive divergence within a 

species complex, generating angiosperm “ecotypes” that differ dramatically in scent, 

morphology, and flowering timing (Peter and Johnson, 2014; Newman et al., 2014). 

Because present-day diversity stems from rifts in the past, and because animal senses can 

influence gene flow, understanding today’s ecosystems requires understanding the 

sensory systems of ancestral, long-fossilized animals. 

Figure 1.1. Anurans have derived 

increasingly large, complex 

amphibian papillae, correlating 

with the number of species in each 

group. A. The four general states 

of the amphibian papilla in 

anurans. N, transected papillar 

branch of the VIIIth nerve; CM, 

contact membrane dividing the 

papillar chamber from the periotic canal. B. This color-coded amphibian phylogeny 

indicates which groups of anurans possess which papillar state. The number of species 

within each group is noted at far right. Phylogeny not to scale; convergence times of 

sister groups cannot be read from this diagram. Figure adapted from Ryan (1986); 

amphibian papilla morphology from Lewis (1981). 

1.1.B. Comparisons yield mechanistic insights 

Comparing function across extant animals is a fundamental tool of the evolutionary 

physiologist. When considered in a trusted phylogenetic framework, this information 

helps us infer ancestral physiological traits. But this act of comparison can also shed light 

on the mechanisms of modern animals. Teeming with detail, the complexity of a living 
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animal can frustrate attempts to understand functionality: which of these details are 

adaptively significant, and which are better understood as byproducts of constraint, or of 

phyletic inertia (Gould and Lewontin, 1979)? Here, comparing similar systems across 

taxa can help by drawing our attention to key tissues, cells, organelles, or molecules. This 

was true in the puzzle of the mammalian kidney. Mammals, unlike most other tetrapod 

vertebrates, are capable of producing urine that is hyperosmotic to blood plasma, a feat 

particularly useful when freshwater is scarce. Examining the organ responsible for this, 

we see that nephrons in the mammalian kidney include hairpin-like segments termed 

loops of Henle. That these loops are not strikingly homogeneous and are tightly packed 

amidst convoluted tubules and collecting ducts, gives the viewer an overall impression of 

spaghetti. For a long time, no researchers queried the physiology of this tangle; where to 

start? However, in the 1940s Sperber performed a comparative study of mammalian 

kidneys (reviewed by Hill et al., 2012), grouping the animals into three environmental 

categories: freshwater, mesic, and arid species. These categories served as a proxy for the 

presumed selective pressures on urine-concentrating abilities. He found that the renal 

layer into which particularly long loops of Henle penetrate was by far the thickest in the 

arid species, suggesting a lengthening of Henle’s loops in response to high demands on 

urine concentration. More recent work directly confirmed this correlation, accounting for 

body size (Beuchat, 1990). Intrigued, physiologists turned to these loops, eventually 

showing that their long hairpin structure is instrumental to mammals’ production of 

highly concentrated urine. Specifically, the closely apposed, oppositely oriented flows of 

the loop drive a countercurrent multiplier effect, concentrating interstitial solutes in the 

deep layers of the kidney to an extent not thought possible by ion pumps alone (Hargitay 
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and Kuhn, 2001). Knowing this countercurrent mechanism in the kidney guides efforts to 

engineer functional kidneys in vitro (Chang and Davies, 2012), and unveils an elegant 

functional analogy between disparate processes: urine concentration in dehydrated desert 

mammals, heat retention in the swimming muscles of tuna (Carey and Teal, 1966), brain 

cooling in some mammals (Baker, 1982; Johnsen et al., 1985), and gas transfer in some 

placentas (Adamson et al., 2002). 

This comparative approach, instrumental to advancements in kidney physiology, 

can also clarify mechanisms of sensory systems. In vertebrates, two similar G-protein-

coupled receptors mediate the perception of sweet and umami ligands. Birds lost the 

vertebrate sweet receptor, raising the question how hummingbirds – specialized nectar 

feeders – taste sweet compounds. Comparing the genomes of many birds revealed 

signatures of positive selection on the hummingbird umami receptor; physiological 

recordings revealed that this receptor had been repurposed to bind sweet ligands. 

Experimental chimeras of chicken and hummingbird receptors revealed a mere handful of 

amino acid residues responsible for this dramatic switch in ligand specificity. Thus, not 

only does this study offer insights into the hummingbird trophic niche, but it also 

advances our mechanistic understanding of the binding of sweet and umami ligands in all 

vertebrates (Baldwin et al., 2014). 

Comparative studies may prove fruitful in outstanding problems in sensory biology, 

for example, in the study of magnetoreception. For decades, we have seen a wealth of 

behavioral evidence for a magnetoreceptive sense in members of all major vertebrate 

taxa, as well as in arthropods – but we have yet to find the cell type responsible for 

transducing this stimulus (Lohmann, 2010). For most other sensory modalities, 
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conspicuous antennae such as auditory pinnae or visual lenses have evolved to collect 

and modify the stimulus on its way to transducing elements; the curiosity of 

neurophysiologists is conveniently guided along this same path. Such obvious antennae 

have not evolved in magnetoreception, perhaps because magnetic fields are unaltered by 

biological tissue. Moreover, magnetotransduction could theoretically occur through three 

quite distinct processes, further complicating this search (Johnsen and Lohmann, 2005). 

Perhaps it will be helpful to compare the nervous systems of many related animals, 

grouping them by the degree to which their fitness is thought to rely on magnetoreception 

and allowing adaptive variability to focus our attention. 

1.2. Auditory and vestibular mechanoreceptors 

Mechanical forces sculpt life. The extraordinary tensile strength of the mussel 

holdfast reflects the onslaught of waves endured by intertidal organisms (Harrington and 

Waite, 2007) and developmental processes such as angiogenesis (Ingber, 2002) and 

neural-tube formation (Odell et al., 1981) are guided by shear forces and tissue tension. 

But animals are not passively battered; they exploit external forces for their rich 

information content, thus learning about the immediate and distant environments with a 

wide variety of mechanoreceptive systems. Touch mechanoreceptors inform animals 

about objects directly impinging on their bodies, integral to escape responses (Low et al., 

2011), navigation (Arkley et al., 2014), object manipulation, and social interactions 

(Lumpkin et al., 2010). A sense of “distant touch,” or near-field hearing, can be achieved 

by analyzing flows or vibrations in the nearby air, water, or substrate; this sense mediates 

fish schooling, mosquito and spider courtship (Rovner and Barth, 1981; Cator et al., 

2009; Aisenberg and Barrantes, 2011), and parasitoid wasp hunting (Kroder et al., 2006). 
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Far-field hearing allows for detection and analysis of even more distant stimuli; in this 

modality, the animal senses pressure fluctuations emanating from, for instance, a 

conspecific courtship song. Finally, mechanoreceptors in the vestibular system are 

sensitive to linear and angular accelerations, providing an animal with feedback about its 

position relative to gravity and about its own motion in space.  

1.2.A. Hair cells in vertebrates 

In vertebrates, sound and acceleration are sensed by mechanoreceptors called hair 

cells, so named for their transducing organelle, a cluster of hair-like, actin-filled, apical 

projections called stereocilia (Figure 1.2 A). Vertebrate hair bundles contain tens to a few 

hundred stereocilia, in an ordered array displaying height gradation. Mature hair bundles 

also contain from zero (Jensen-Smith et al., 2003) to two (Lowenstein and Thornhill, 

1970) true cilia termed kinocilia. Stereocilia adjoin their neighbors by a variety of 

proteinacious linkages; one well characterized connection is termed the tip link (Figure 

1.2, arrowhead). Upon external forcing, all of the stereocilia pivot about their insertions 

such that the bundle remains coherent (Karavitaki and Corey, 2010). Deflection of the 

bundle toward its tallest edge, defined as the positive direction, shears adjacent 

stereociliary tips with respect to one another (Figure 1.2 B). This tenses a putative gating 

spring, a component of which is the tip link. As each gating spring’s tension increases, so 

increases the open probability of transduction channels in series with the gating spring 

(Corey and Hudspeth, 1983). Thus, transduction is direct and fast: mechanical stimuli 

gate a large cationic conductance (Crawford et al., 1991) without sluggish chemical 

intermediates. The fastest characterized transduction system mediated by a second 

messenger, that operating in Drosophila photoreceptors, responds to a pulse of light with 
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a latency of 20 ms (Hardie et al., 2002) and reaches its peak response after about 75 ms 

(Hardie et al., 2002). In contrast, the hair cells of tetrapod vertebrates display a response 

latency of merely 40 µs (Corey and Hudspeth, 1983) and their peak transduction current 

requires less than 5 ms to evolve (Ricci et al., 2000). 

Figure 1.2. Hair-bundle 
form and transduction. A. 

Bullfrog cochlear hair 

bundle with typical height 

gradation. From Kozlov 

(2007). B. Model of 

transduction; stereocilia 

pivot about their tapered 

bases in response to external forcing, increasing tension in the gating spring, in turn 

raising the open probability of the transduction channel. Positive or excitatory forces are 

rightward in this figure. Note this schematic conflicts with data suggesting the channel 

attaches at the bottom of a tip link (Beurg et al., 2009). Figure adapted from Hudspeth 

(2008). 

With respect to tetrapods, the jawed fishes are the most distant vertebrate relatives 

whose auditory and vestibular systems have been extensively studied. Their hair cells 

reside in the inner ear, or labyrinth, where they can detect linear and angular accelerations 

of the fish’s head as well as the near-field component of sounds (Lowenstein and 

Compton, 1978). In some fishes, coupling of the labyrinth to a gas-filled structure permits 

the detection of the far-field component (pressure) of sounds (Enger and Andersen, 

1967). Other hair cells reside superficially, grouped in neuromasts of the lateral-line 

system. All the hair bundles of a neuromast project into a common gelatinous encasement 

termed a cupula, which extends into the water around the fish. As detectors of local fluid 
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flow (Engelmann et al., 2000), lateral-line hair cells provide fishes with a sense of 

“distant touch,” aiding them in behaviors including schooling and prey capture (Schwarz 

et al., 2011). The morphology of hair bundles in jawed fish is similar to that of tetrapods: 

each bundle consists of a single kinocilium at the tallest edge of a beveled array of 

stereocilia (Popper, 1981) and bears tip links (Söllner et al., 2004). In accordance with 

their morphological polarization, the hair bundles of jawed fishes are directionally 

sensitive in their transduction of mechanical stimuli (Obholzer et al., 2008). 

The hair cells of jawless fishes, or cyclostomes, reside in organs thought 

homologous to those described above (Figure 1.3 A). This homology is supported by 

morphological, developmental, and molecular characters (Hammond and Whitfield, 

2006). Nerve recordings suggest that hair cells of the lamprey labyrinth have sensory 

functions similar to those of jawed fishes; they are sensitive to linear and angular 

accelerations as well as to vibrations (Lowenstein, 1970). To our knowledge there have 

been no indications that lampreys or hagfish can detect the far-field component of sound; 

the apparent absence of air-filled chambers in the cyclostome head seems to obviate the 

potential for pressure reception (Figure 1.4). Nerve recordings from the labyrinth of the 

hagfish Myxine glutinosa indicate abilities similar to those of lampreys, barring the 

detection of vibrations (Lowenstein and Thornhill, 1970). Some hair bundles of the 

hagfish also differ from all other vertebrate hair bundles in their morphology; some bear 

two kinocilia, others bearing kinocilia positioned in the center of the stereociliary bundle 

(Lowenstein and Thornhill, 1970) (Figure 1.3 B). This inspires curiosity about 

transduction in these cells: are they omnidirectionally excitable? This and many similar 

questions are unexplored; no single-cell recordings of cyclostome hair cells are reported. 
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Figure 1.3. The inner ears, or labyrinths, of jawless fish. A. Labyrinth anatomy of 

representatives of the two clades of jawless fishes - hagfish and lampreys – compared 

with a teleost fish. Dark gray shading denotes patches of hair cells in sensory maculae, 

which tend to have dense overlying otolithic structures; light gray denotes patches of hair 

cells in sensory cristae, which respond to the flow of fluid in the semicircular canals. In 

hagfish, the macula is not reported to be differentiated into separate structures, as in 

lampreys and jawed vertebrates. The ciliated chambers are likely unique to the lamprey 

clade and are of unknown function. AH, anterior horizontal macula, here considered 

homologous to the utricule of jawed vertebrates, or gnathostomes (Hammond and 

Whitfield, 2006; Maklad et al., 2014); V, vertical macula, here considered homologous to 

the gnathostome saccule (Lowenstein et al. 1968); PH, posterior horizontal macula, here 

considered homologous to the gnathostome lagena (Lowenstein et al. 1968). Figure from 

Hammond (2006). B. Transmission electron micrographs of two hagfish hair bundles. 

Left, a hagfish hair bundle with two kinocilia (arrowheads). Right, a hair bundle whose 

kinocilium (arrowhead) is surrounded by stereocilia. Images from Lowenstein (1970). 
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Figure 1.4. Near-field and far-field sound detection. Blue highlights the first structure 

to move in response to sound. A. The vestibular ear of fishes can detect the near-field 

component of sound because the entire body moves in response (broken blue line 

emphasizes the motion of the fish; top, the position of the fish at t = 0 seconds; bottom, 

the position of the fish at t = 1/2f seconds, with f = sound frequency in hertz). The motion 

of the relatively dense otolith (o) lags that of the rest of the fish, deflecting hair bundles in 

contact with the otolith. Adapted from (Fay and Popper, 1999). B. Neuromast organs of 

the fish lateral line consist of hair cells whose kinocilia project into a gelatinous cupula 

(c), which moves in response to water flow, deflecting hair bundles. C. The third antennal 

segment (a3)  of insects such as Drosophila melanogaster can rotate about a flexible joint 

when the branched arista is vibrated by near-field sound. This rotation deflects processes 

of sensory neurons housed in scolopidia (s) in the second antennal segment (a2). Adapted 

from Boekhoff-Falk (2005). D. The far-field component of sound, pressure waves 

propagating through the surrounding medium, can be detected by fishes whose swim 

bladder (b) is mechanically coupled to the inner ear. The gas in the swim bladder expands 

and contracts in response to pressure waves; the resulting motion of the swim bladder’s 

wall is propagated to hair cells. E. The tympanum of the mammalian ear (blue) vibrates 

in response to the far-field component of sound due to the oscillating pressure differential 

between the air on either side. This vibration is transmitted to hair cells in the inner ear 

through the bones of the middle ear (h, a, and s). From Gray (1918). F. Some insects can 

detect the pressure component of sound. A tympanum (t) made of thinned cuticle 

vibrates, in a manner analogous to that of the mammal tympanum. Tips of scolopidia (s) 

can be directly stimulated by this tympanum. 
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Figure 1.4. Near-field and far-field sound detection
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1.2.B. Hair cells in other chordates 

Ascidians are marine invertebrate chordates in the clade tunicata, thought to be the 

sister group to the vertebrates (Ayala et al., 1998). This close alliance is belied by their 

adult form; ensconced in a tough polysaccharide tunic, adult ascidians live humbly as 

sessile filter feeders. The interior walls of the incurrent feeding siphon bear a crown of 

tentacles projecting into the lumen of the siphon (Figure 1.5 A). These tentacles have 

multiple rows of cells, here called hair cell-like cells (HCLCs) (Figure 1.5 B), with 

tantalizing structural similarities to vertebrate hair cells: HCLCs have a secondary 

sensory-cell morphology, with synapses at their basal aspect (Burighel et al., 2003; 

Caicci et al., 2010). They sport an apical tuft of actin-filled villi which, in a few of the 

species examined, displays height gradation. Finally, within or at the edge of this bundle 

are one or two tubulin-filled cilia (Figure 1.5 C). In a baffling twist on the vertebrate 

theme, some species have a HCLC type whose long kinocilium sprouts from the shortest 

edge of an otherwise monotonically beveled bundle (Manni et al., 2004). This 

arrangement contrasts with a fundamental concept of hair-bundle function, that deflection 

toward the tallest edge induces shearing and therefore tenses gating springs - how does 

one even identify a “tallest edge” in these bundles? Ascidian HCLCs are proposed to be 

homologous to vertebrate hair cells based on structure, position, and ontogenetic 

expression of transcription factors (Manni et al., 2004). Although behavioral work 

indicates that coronal tentacles mediate the rejection of incoming particles (Mackie et al., 

2006), no single-cell physiological recordings have been conducted on ascidian HCLCs 

to confirm their assumed role as mechanoreceptors. 
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Figure 1.5. The coronal 

organ of ascidians bears 
hair-cell-like cells. A. 

The incurrent oral siphon 

(os) hosts a ring of 

tentacles projecting into 

the incurrent flow, in 

contrast with the atrial 

siphon, through which 

water is ejected. From 

Mackie  (2006). B. A 

scanning electron image 

of one such tentacle from the ascidian Molgula socialis. The coronal organ (co) runs 

along the tentacle edge. Scale bar 8 μm. C. Detail of the tentacle in (B), showing hair-

cell-like cells with two kinocilia (c) and a collar of stereocilia (s). Scale bar 1.5 μm. Both 

scanning electron micrographs from Burighel (2010). 

1.3. Active processes in hearing 

In the aqueous environment of the inner ear, energy dissipation due to 

hydrodynamic drag poses a major problem. At this scale, the drag impeding the motion of 

a structure is proportional to its velocity of motion (Vogel, 1996), painting a particularly 

grim picture for the detection of high-frequency sounds. Yet animals can be superbly 

adept at this: echolocating bats and whales have driven their respective targets, some 

insects and teleosts, to also hear in the ultrasound (Wilson, 2013), and some species of 

frogs can hear up to 30 kHz (Arch et al., 2009). Hearing high frequencies relies in part on 

adaptations in passive structures; for example, the tympanal ears of some katydids feature 

a lever arm, providing a mechanical advantage to combat impedance mismatch at the air-
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liquid interface (Montealegre-Z et al., 2012). But in all these groups of animals, the task 

of hearing also relies on the contribution of mechanically active, energy-consuming 

amplifiers. 

Curiously, auditory amplification occurs in the same energy modality as the 

stimulus; that is, the hearing apparatus mechanically amplifies mechanical signals. 

Imagine analogs of this feat in other sensory systems: it is fantastic to consider a retina 

producing photons to brighten an image. Yet the hearing organs of some insects, many 

tetrapods, and a few bony fishes display evidence of active mechanical amplification, or 

gain, of their inputs (Ruggero et al., 1997; Martin and Hudspeth, 1999; Nadrowski et al., 

2008; Rabbitt et al., 2010). Broadly speaking, among animals three general forms of 

mechanical amplification have been characterized. In the chordotonal organs of some 

insects, the auditory receptors perform dynein-based mechanical amplification (Warren et 

al., 2010; Nadrowski et al., 2008). In a subset of mammalian cochlear hair cells and avian 

auditory papillar hair cells, proteins called prestin are situated in the basolateral 

membrane, where it performs mechanical work in response to changes in membrane 

voltage (Fisher et al., 2012; Beurg et al., 2013). Finally, the auditory and vestibular hair 

bundles of tetrapod vertebrates display an active process that is driven by myosin motors 

(Hudspeth and Gillespie, 1994; Le Goff et al., 2005) and is well-described by the general 

form of a Hopf bifurcation (Hudspeth, 2008). It is this last process, widespread among 

the tetrapod vertebrates, that this thesis considers. 
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1.3.A. The hair-bundle active process 

The active process of tetrapods, more succinctly referred to as “the active 

process,” harnesses chemical energy to counter the effects of viscous drag in the inner 

ear. In addition to performing amplification, the active process displays three prominent 

traits: frequency tuning, compressive nonlinearity, and spontaneous activity. This 

mechanical amplification is also tuned; a given hair cell’s gain can be highest for a 

specific frequency (Martin and Hudspeth, 1999). Using an array of receptors thus tuned, 

tetrapod ears can perform a Fourier analysis, decomposing complex sounds into their 

constituent tones. Furthermore, the active process facilitates the detection of weak 

sounds; smaller-amplitude stimuli are amplified to a greater degree than are larger 

stimuli. Through this nonlinear gain, a million-fold range of stimulus amplitudes can 

drive a mechanical response compressed to a manageable two orders of magnitude 

(Martin, 2008; Ruggero et al., 1997). Finally, we see that active hair bundles, under 

specific conditions, can undergo spontaneous oscillations (Crawford and Fettiplace, 

1985; Martin and Hudspeth, 1999). This spontaneously oscillating state is considered a 

by-product, or an epiphenomenon, of the active process; in itself, it does not seem to have 

sensory utility to an animal. But because spontaneous oscillations stem from the same 

fundamental mechanisms as does the active process, these unruly movements provide an 

excellent subject for exploring the basis of mechanical amplification by tetrapod hair 

bundles. Below we will outline how the interaction of two hair-bundle processes, 

transduction and adaptation, can together give rise to spontaneous oscillations. We will 

then consider the relationship between spontaneous oscillations and the amplifying 

abilities of the active process. 
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1.3.B. Transduction generates negative stiffness 

We earlier described that hair bundles can directly transduce mechanical stimuli, 

allowing very rapid responses. Direct transduction gives rise to another important feature 

of hair bundles: nonlinear stiffness. In its most striking form, this nonlinearity is so strong 

that the bundle displays a region of negative stiffness. Negative stiffness defies intuition 

derived from everyday physics; if one pushes a negatively stiff object, the object does 

more than comply: it pulls the pusher along! This behavior is sometimes exhibited by hair 

bundles. Displacement-force relations of frog saccular hair bundles (Martin et al., 2000) 

display a region of negative slope, or negative stiffness (Figure 1.6). Turtle cochlear 

bundles also display nonlinearity; however, the kink in their stiffness profile has been 

shown to have a greatly reduced, but not quite negative, slope (Ricci et al., 2002). Most 

objects follow Hooke’s law for such modest deformations, so this unusual behavior begs 

an explanation. Negative bundle stiffness emerges from transduction mechanics; because 

channel gates and gating springs affect one another reciprocally, a bundle’s channels gate 

with positive cooperativity. That is, one channel’s opening increases the probability that 

the other channels will open. Thus, the bundle will not reside stably – it is negatively stiff 

– through the range of deflections over which gating occurs.
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Figure 1.6. Gating of hair-cell transduction 

channels generates negative stiffness. A. Three 

mechanotransduction channels (blue) gating in 

parallel with one another are, for simplicity, drawn 

in the same membrane. Each channel is in series 

with its own elastic gating element, fixed to an 

adjacent stereocilium (pink line). These three 

gating springs are initially relaxed. B. A constant 

force F is applied, stretching all three gating 

springs. Increased tension in each of the springs 

elevates the probability that the associated channel 

will open. C. One channel yields first, and opens. 

The swing of the channel gate (red) relieves the 

associated spring of some extension, so it 

relinquishes some of its load-bearing duties; under 

the constant force, the motion of the stereocilia 

increases further (emphasized by dotted lines). The 

other two gating springs thus suffer a further 

increase in tension, increasing their associated 

channels’ open probabilities even more. D. 
Another channel opens, allowing its gating spring, 

too, to shorten. The stereociliary movement 

increases even more. E. This burdens the last 

gating spring with even greater tension, assuring a very high probability of the last 

channel quickly opening. Thus the concerted, parallel gating of transduction channels can 

make a group of gating springs appear more compliant to a constant force. F. Using a 

flexible fiber, one can hold a hair bundle at displacements along its axis of sensitivity 

while recording the force exerted by the fiber at each displacement. In force-displacement 

relations of healthy bullfrog hair bundles, there is a region of negative slope, or negative 

apparent stiffness. This corresponds to the range of displacements over which 

transduction gating occurs. Figure from Hudspeth (2008). 
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1.3.C. Myosin motors power adaptation 

A sufficient displacement in the positive direction snaps open all the transduction 

channels, generating a saturated receptor current. In the face of sustained stimuli, such as 

gravitational forces conveyed by overlying structures, this saturation could overwhelm 

the bundle, preventing faithful transduction of small oscillatory stimuli. As an apparent 

solution, hair cells, like most other sensory cells, are able to adapt. Their hair bundles 

orchestrate mechanical rearrangements to adjust the relationship between bundle 

displacement and channel open probability (Po). Adaptation occurs in fast and slow 

phases whose underlying mechanisms seem functionally distinct. Fast adaptation causes 

the receptor current to decay exponentially with a time constant of several milliseconds 

or less. Although investigators agree that fast adaptation stems from negative feedback on 

channel Po by the Ca2+ component of the transduction current, the specific feedback 

mechanism is unresolved (Benser et al., 1996; Cheung and Corey, 2006; Bozovic and 

Hudspeth, 2003). In the slow-adaptive phase, the receptor current exponentially decays 

from its initial response with a time constant of roughly 30 ms. Simultaneous monitoring 

of the bundle’s motion reveals a mechanical correlate at the same timescale: after the 

onset of a force step, the bundle relaxes further in the direction of the stimulus. It was 

proposed that molecular motors move along stereociliary actin to adjust gating spring 

tension, and thus adjust the range of bundle deflections over which channels gate (Figure 

1.7) (Holt et al., 2002; Hudspeth and Gillespie, 1994). 
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Figure 1.7. Adaptation in hair cells.  This figure depicts hair-bundle displacement and 

transduction current in response to forces along the bundle’s axis of sensitivity. Also 

shown are schematized snapshots in time of the hair bundle’s transduction complex. A. 

Before the application of an external force (orange), the hair bundle’s displacement is 

steady. Most of the transduction channels are closed at rest, yielding only a small inward 

current. A force toward the bundle’s taller edge first causes the bundle to abruptly jump 

forward (yellow), tensing the gating springs (shown here as tip links), opening 

transduction channels, and allowing a large inward current. Ca2+ carried by this inward 

current influences the adaptation motor, causing the insertional plaque to slip downward 

(black downward arrows). As a result, the hair bundle slowly relaxes farther in the 

direction of the stimulus (green); concomitant with this, the channels reclose, accounting 

for the declining inward current. B. When forced toward its shorter edge, a hair bundle 

initially jumps in that direction (yellow), which slackens the gating springs beyond their 

resting state and reduces the inward current to zero. This eliminates a source of Ca2+ entry 

into the stereocilia, allowing adaptation motors to climb (black upward arrows) and 

increase the tension in tip links, which slowly draws the hair bundle farther in the 

direction of the stimulus (green). This accounts for a reopening of channels, allowing the 

inward current to approach its resting level. Figure slightly adapted from Hudspeth 

(2014). 
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Myosin Ic is presumed to serve as the adaptation motor in nonmammalian 

tetrapods; its transcript is found in bullfrog hair bundles (Metcalf et al. 1994) and the 

protein can be immunolocalized at stereociliary tips, the site of mechanoelectrical 

transduction (García et al. 1998). The number of myosin Ic molecules estimated by that 

structural study, as well as by biochemical studies (Gillespie et al. 1993, Walker et al. 

1996) agree with predictions of motor number based on observed hair-cell physiology 

(Gillespie and Cyr, 2004). By introducing a single point mutation in myosin Ic that 

confers susceptibility to inhibition by an ADP analog, Holt and colleagues (2002) showed 

that myosin Ic is a necessary adaptation motor in mouse hair bundles. 

To perform adaptation, a motor should have some way of relating its activity to 

the state of the transduction apparatus. There is a wealth of evidence that the Ca2+ 

component of the transduction current feeds back on the rate of adaptation (Hudspeth and 

Gillespie, 1994; Walker and Hudspeth, 1996; Martin et al., 2003; Manley et al., 2004; 

Ricci et al., 2002), but the exact mechanism by which Ca2+ alters the climbing and 

slipping rates of myosin Ic is debated (Gillespie and Cyr, 2004). 

1.3.D. Negative stiffness and adaptation yield spontaneous oscillations 

Under certain conditions, hair bundles can spontaneously undergo low-frequency, 

large-amplitude, periodic movements (Figure 1.8 A). The canonical waveform of 

spontaneous oscillations – slow movements interspersed with catastrophic leaps – is 

suggestive of a “relaxation oscillation.” This term is used to describe a wide range of 

processes, from temperature fluctuations in a thermostat-controlled home to chalk 

squeaking on a blackboard (Pippard, 2007 p. 42). Uniting these examples is that some 

variable in the system (e.g., air temperature) is actively driven toward a steady state (e.g., 
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by fuel combustion), but before this state is reached, the system crosses an instability 

(e.g., the temperature hits the thermostat’s set point), triggering an abrupt change in the 

system’s behavior. With this analogy in mind, it is attractive to consider that spontaneous 

hair-bundle oscillations are powered by the work of myosin motors striving to bring 

gating-spring tension to a steady state, at some point triggering the all-or-nothing gating 

of transduction channels. Indeed, by measuring the displacement-force relations at 

different points in a hair bundle’s spontaneous oscillations, we see that these oscillations 

emerge when slow adaptation vainly attempts to place the bundle where it cannot stably 

reside: in its region of negative stiffness (Figure 1.8 B) (Le Goff et al., 2005). This model 

is also supported by ionic and pharmacological perturbations of spontaneously oscillating 

bullfrog hair cells. High concentrations of external Ca2+ can halt spontaneous oscillations 

(Martin et al., 2003) by biasing the hair bundle toward its shorter edge, consistent with 

this cation inhibiting the adaptation motor’s force production. Furthermore, 

pharmacological blockade of myosins can reversibly freeze oscillations (Martin et al., 

2003). The mechanical instability wrought by channel gating is also apparently necessary 

for spontaneous oscillations. An aminoglycoside antibiotic, gentamicin, can blunt the 

inward currents normally evoked by deflection of hair bundles, indicating that this drug 

blocks conductance through transduction channels (Kroese et al. 1989) by locking them 

in their “open” configuration. Gentamicin was also shown to remove the kink in the 

displacement-force relation of bullfrog hair cells (Howard and Hudspeth, 1988). In the 

original description of amphibian hair-bundle spontaneous oscillations, these movements 

were reversibly inhibited by gentamicin (Martin et al. 2003). 
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Figure 1.8. Spontaneous hair-bundle 

oscillations emerge from negative stiffness 
and slow adaptation. A. The motion X of a 

spontaneously oscillating hair bundle over 

time (t) often shows two timescales: slow 

relaxations (1 ! 2 and 3 ! 4) interrupted by 

abrupt jumps (2 ! 3). B. Theoretical 

displacement-force relations of a hair bundle. 

This bundle’s stiffness curve has a region of 

negative slope. We consider here a situation 

in which bundle motion is spontaneous; that 

is, with no application of external force. The 

bundle’s state (colored dot) is therefore 

constrained to the horizontal axis. Four 

curves, successive snapshots in time 

corresponding to the points in (A), show that 

myosin-based adaptation slowly shifts 

displacement-force curves along the line 

whose slope is set by the stiffness KSP of the 

stereociliary pivots. The bundle initially lies 

to the right of its nonlinear region (orange), 

indicating that nearly all transduction 

channels are open. Responding to Ca2+ influx 

through open channels, myosin Ic slips, 

relieving gating-spring tension, and brings the bundle closer to its nonlinear region 

(yellow). When myosins slip enough to bring the bundle into its region of negative slope, 

in which channels cooperatively slam shut, the bundle jumps to a much more negative 

position (green). Without the Ca2+ influx through open channels, myosin Ic is free to 

climb, building tension in the gating springs, until the channels are just on the cusp of 

cooperatively snapping open (blue). Figure drawn from Martin (2000).  
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1.3.E. Spontaneous oscillations 

If we grant that ears are for listening to the outside world, what is the relevance  

of spontaneous oscillations? It is clear that a hair bundle undergoing these unprompted 

movements can be coaxed into usefulness: when stimulated with a sinusoidally driven 

flexible fiber, the bundle entrains its motion to the stimulus (Martin and Hudspeth, 1999); 

in so doing, its amplitude can exceed, and its phase can lead, that of the fiber. This 

amplification is not uniformly applied to all stimuli, but is most prominent at specific 

frequencies and for small stimuli. These interrelated traits – amplification, frequency 

tuning, compressive nonlinearity, and spontaneous oscillations – are all indicative of a 

system operating near a dynamical instability termed a Hopf bifurcation (Strogatz, 1994; 

Martin, 2008). This categorization, rather than pinpointing the exact mechanism of the 

hair-bundle active process, is useful in describing its behavior. Viewing the active 

process as governed by Hopf dynamics helps us predict, for instance, how inter-

taxonomic differences in hair-bundle stiffness might impinge on their amplifying 

abilities. 

1.4 Evolution of the hair bundle’s active process 

Hair bundles are far from passive receivers of mechanical stimuli, but are instead 

active participants in the processes of transduction. This understanding draws from 

findings in the tetrapod clade, including frogs, turtles, lizards, birds, and mammals. But is 

this trait unique to the tetrapods, or did it evolve before the emergence of this clade 

(Figure 1.9)? We have a burgeoning understanding of hair-cell physiology in the jawed 

fishes, revealing some intriguing evidence for an active mechanical process in their 

hearing organs. Imaging cupulae in the semicircular canals of the oyster toadfish, 
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Opsanus tau, reveals one hallmark of the active process, termed compressive 

nonlinearity, wherein small-amplitude stimuli elicit greater gain than do large-amplitude 

stimuli (Rabbitt et al., 2010). A similar study of the African knifefish, Xenomystus nigri, 

lateral line indicates nonlinear cupular mechanics (van Netten and Khanna, 1994). 

Finally, a study of inner-ear hair cells in eels revealed spontaneous and electrically 

evoked kinociliary movements, but it is unclear whether these motions are related to the 

myosin-based active process of tetrapod hair cells (Rüsch and Thurm, 1990). 

Figure 1.9. The 
interrelationships of major 

chordate groups. Blue 

circumscribes all vertebrates, 

including the jawless fishes and their 

most recent ancestor in common 

with jawed vertebrates. Green 

highlights all jawed vertebrates, also 

termed gnathostomes. Yellow 

highlights the tetrapods. Divergence 

times of sister groups drawn here 

come from fossil evidence summarized by Blair (2005), representing a minimum 

boundary. The split between jawless/jawed vertebrates is accordingly drawn at 520 

million years ago (Shu, 1999), but could be as ancient as 650 million years ago according 

to a Baysian analysis of amino acid divergence (Blair and Hedges, 2005).  

In contrast, from jawless vertebrates and ascidians come no reports on the 

physiological properties of single hair cells. This gap in our knowledge makes it very 

difficult to consider the evolution of the hair-bundle active process in chordates. As a first 
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step in exploring the evolution of mechanical amplification, we characterized the 

mechanical behaviors of hair bundles from the inner ears of two jawless vertebrates, the 

sea lamprey Petromyzon marinus and the American brook lamprey Lampetra appendix. 

To our surprise, we observed robust spontaneous hair-bundle oscillations in both of these 

animals. To address whether these movements are homologous to those seen in tetrapod 

vertebrates, we studied the mechanisms driving spontaneous oscillations in L. appendix. 

One set of experiments suggested that Ca2+ serves as a signal by which the state of 

transdution channels can feed back on the activity of adaptation motors, a finding 

consistent with the oscillation mechanism known from tetrapods. Application of 

gentamicin, a drug known to block hair-cell transduction channels in tetrapods, reversibly 

halted spontaneous oscillations in L. appendix, suggesting their channels, too, are 

sensitive to this drug. Furthermore, we found spontaneous oscillations in the L. appendix 

ear to be sensitive to a broad-spectrum myosin inhibitor called butanedione monoxime, a 

result mirroring that seen in tetrapod hair bundles. To more precisely probe the 

mechanistic underpinnings of L. appendix spontaneous oscillations, we employed 

pentachloropsuedilin, an inhibitor specific to class-I myosins. These experiments, in 

contrast to all the others, suggested a possible difference between bullfrog and lamprey 

spontaneous oscillations. Finally, we demonstrated that L. appendix hair bundles 

exhibiting these movements can entrain to and mechanically amplify particular stimulus 

frequencies. 
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2. Materials and methods

2.1. Ca2+-sensitive microelectrode recordings 

We made Ca2+-sensitive microelectrodes from double-barreled theta glass 

(Warner Instrument Corp.). We pulled the glass on a coil-filament, solenoid-assisted  

vertical pipette puller, yielding electrodes with a taper length of approximately 25 mm. 

At the unpulled end of the electrode, we chipped away 5 mm of one barrel’s rounded 

wall; this would aid in later differentiating the reference from the ion-sensitive barrel and 

in providing electrical insulation between the two. We then broke the tip of the electrode 

against a glass slide to an outer diameter of 5 μm. We filled the Ca2+-sensitive barrel with 

150 mM CaCl2 and the reference barrel with 150 mM NaCl, each filtered through a 

0.22 μm syringe filter (Millipore). To prevent formation of salt bridges between the two 

barrels, we passed the unpulled end of the electrode through a flame. We inserted a 

Teflon tube in the Ca2+-sensitive barrel and a Ag/AgCl electrode in the other, and sealed 

both in with melted dental wax. The Teflon tube served as an adaptor for a plastic 

syringe. 

We prepared a solution for silanizing the Ca2+-sensitive barrel: 4% (by volume) 

trimethylchlorosilane (Sigma) in xylene. All steps performed with silane took place in a 

fume hood. Mounted on a manipulator and under microscopic guidance (30 X total 

magnification), the electrode was lowered into the silane solution. Using the syringe, we 

pressure-ejected a small bubble of CaCl2 solution. We drew in the silane solution to a 

height of roughly 2 mm, then repeated the steps of ejection and filling several times. 

After a final ejection of the silane solution, we maintained positive pressure on the pipette 

and moved the electrode to a vial of calcium ionophore I, cocktail A (Sigma) in xylene, at 
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which point the syringe was removed and the barrel allowed to equilibrate to ambient 

pressure, drawing some ionophore into its tip. This created a liquid “membrane” with 

selective permeability to Ca2+ mediated by the ionophore. We then threaded an Ag/AgCl 

wire through the Teflon tubing and sealed this with dental wax. We calibrated the  

electrodes in a series of solutions ranging in two-fold steps from 10 μM to 160 μM Ca2+, 

with an additional solution of 1.3 mM Ca2+. All these solutions contained either 150 mM 

NaCl or KCl. Initially we employed NaCl as this background salt, but we changed this to 

KCl in accord with an assumption that some compartments in the lamprey ear are 

endolymph-like with K+ as the dominant cation. If an electrode displayed no Ca2+ 

sensitivity or a sub-Nernstian slope, we could sometimes salvage the electrode by again 

flaming its blunt end. 

We then decapitated a lamprey and pinned its head ventral side up in a Sylgard-

coated dish in ice-cold perilymph solution. We split the head laterally along the midline. 

One half of the head went immediately into a 4 °C refrigerator for later use. The other 

half we dissected and pinned with the medial face of the otic capsule directed upward. 

We ensured the ear was higher than the rest of the tissue, permitting us to wick saline 

solution away from the point of microelectrode entry without flooding the ear with the 

artificial saline solution. We placed a pelleted Ag/AgCl ground electrode in this saline 

solution bathing the ear. We then positioned the Ca2+-sensitive microelectrode in the ear 

and continuously monitored the voltage in both microelectrode barrels with a chart 

recorder. When steady voltages were achieved for roughly a minute, we used those    
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values to calculate the voltage and the extracellular Ca2+ concentration C (Nicholson, 

1993): 

€

C =  (C0 +  K) •10
V −V0

M  -  K; 
(1) 

with M the slope of the Ca2+-sensitive barrel, V the voltage of the Ca2+-sensitive barrel 

minus the voltage of the indifferent barrel, C0 a reference Ca2+ concentration, V0 the 

voltage of the Ca2+-sensitive barrel minus the voltage of the indifferent barrel in that 

reference solution, and K the calculated interference from background ions. 

After noting a compartment of interest, we performed an experiment to label this 

site. The indifferent barrel of the electrode was filled with 150 mM NaCl as usual, but the 

second barrel was filled with 50 mg/mL Alcian blue (Electron Microscopy Sciences) in 

150 mM NaCl. When the signal from the indifferent barrel indicated that it had reached 

the site of interest, we pressure-ejected the dye. The ear was then fixed in 4% 

formaldehyde in perilymph solution overnight, rinsed in normal perilymph solution, 

dissected from its cartilaginous capsule, and visualized.  

2.2. Physiological saline solutions 

We prepared all saline solutions as Ca2+-free 10X stocks that were stored in frozen 

aliquots. After thawing an aliquot and diluting it to working concentration, we 

oxygenated the solution on ice, added CaCl2, and ensured its pH was 7.2 – 7.3. Lamprey 

perilymph solution contained 109 mM Na+, 2.1 mM K+, 1.8 mM Mg2+, 1 mM Ca2+, 

116 mM Cl-, 4 mM D-glucose, and 2 mM HEPES. Bullfrog perilymph solution contained 

114 mM Na+, 2 mM K+, 2 mM Ca2+, 118 mM Cl-, 5 mM HEPES, and 3 mM D-glucose. 

For both species’ perilymph solutions we made pH adjustments with HCl or NaOH. 
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Lamprey and bullfrog endolymph solutions contained 117.5 mM K+, 2 mM Na+,

118 mM Cl+, 3 mM D-glucose, and 5 mM HEPES; we made pH adjustments with HCl

or KOH. The concentration of Ca2+ in lamprey endolymph solution differed between 

experiments; when Ca2+ was iontophoretically controlled, the endolymph solution 

contained baseline concentration of 40 μM Ca2+. For all other studies of lamprey 

spontaneous oscillations the endolymph solution contained 50 μM Ca2+. In experiments 

with bullfrog hair cells the concentration of Ca2+ in the endolymph solution was 250 μM.  

2.3. Dissecting the lamprey ear 

We procured lamprey larvae of both species, Lampetra appendix and Petromyon 

marinus, which were caught from streams in the lower peninsula of Michigan by 

Lamprey Services (Ludington, MI). We housed the lampreys according to animal 

protocol number 13605 of The Rockefeller University IACUC in species-specific, 

aerated aquaria at 4 °C . These aquaria were lined with several inches of sand to satisfy 

one of the strongest behavioral preferences of these animals, burrowing (Francis and 

Horton, 1936). We netted lampreys to be used for an experiment and transported them in 

a smaller container of ice water, which was also lined with sand. 

We decapitated a lamprey with a scalpel just anterior to third gill opening and 

pinned the head ventral side up in lamprey perilymph solution. With coarse iridectomy 

scissors, we cut along the ventral midline. We pinned out the ventral body wall so that the 

pharynx and cranial cavity were visible. Being careful not to damage the otic capsules, 

we cut through the cartilaginous brain-case with coarse iridectomy scissors to destroy the 

brain. 



31 

All solutions were kept on ice unless otherwise noted. We removed both otic 

capsules from the head, keeping a significant length of anterior brain-case cartilage 

attached to each capsule. Because the ears are otherwise nearly symmetrical about the 

anteroposterior axis, this aids in distinguishing left from right ears. With fine iridectomy 

scissors, we gently nicked the membrane covering the medial window into the ear, 

providing a pressure outlet to prevent later damage to the ear. Using coarse iridectomy 

scissors, we removed a small area of the cartilaginous capsule on the dorsal aspect, 

allowing visualization of the anterior and posterior semicircular canals and ciliated 

chambers. Using fine iridectomy scissors, we cut open the semicircular canals and 

ciliated chambers. 

We then bathed the ears in 50 μg/mL protease XXIV (Sigma) in lamprey 

perilymph solution and rotated the otic capsules so the windowed area of their dorsal 

aspect faced down. We balanced on a dissection pin the brain-case cartilage projecting 

from the anterior end of the ear, elevating the anterior portion of the ear. This orientation 

promoted detachment of the large utricular otolith during the protease incubation. We 

allowed the incubation to proceed at room temperature for five minutes or until we could 

visually confirm the loosening of the utricular otolith.  

After returning both otic capsules to regular lamprey perilymph, we stored one 

ear, to be used later, in this solution on ice. The other ear we removed from the outer 

cartilaginous capsule and pinned down at its posterior half with its dorsal side facing up. 

Using fine iridectomy scissors, we removed the ciliated chambers and semicircular 

canals, then trimmed the margins of the utricle. 
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We next mounted the utricle in a two-chamber apparatus, allowing the hair cells’ 

apices to project into endolymph solution while their basolateral surfaces were bathed in 

perilymph solution. We first fashioned discs onto which the utricle would be glued. 

These were made from 7 μm-thick polymer shrink-wrapping into which a hole of 200-μm 

diameter was cut with a CO2 laser. Using a glass pipette with its tip broken to easily 

accommodate the utricle, we transferred this tissue to the top of a disc and positioned it, 

apical side down, over the disc’s hole. With a corner of a Kimwipe we carefully removed 

fluid from the basolateral side of the utricle. Using a Teflon spatula, we then applied 

n-butyl cyanoacrylate glue (Vetbond, 3M) to the margins of the epithelium, aiming for a 

complete seal without allowing the glue to creep over the epithelium. Finally, we 

transferred the disc, apical side up, to a two-chamber apparatus with perilymph solution 

in the bottom compartment and endolymph solution in the top compartment. 

2.4. Recording the motion of hair bundles 

We observed the utricular epithelium with an upright microscope (Olympus 

BX51WI) equipped with differential-interference-contrast optics and a 60X water-

immersion objective lens (LUMPlan FL N, ∞/0/FN26.5). For viewing hair bundles by 

eye, we illuminated the preparation by white light (Olympus TH4-100). For making high-

resolution recordings of the motion of hair bundles, we illuminated the preparation with a 

red light-emitting diode (Prizmatix ultra high-power LED, Givat-Shmuel, Israel). The 

light followed a path yielding an optical gain of 1500 before reaching the dual-

photodiode circuit (Sanjee Abeytunge) whose output signal was linearly related to the 

displacement of a shadow along its sensitive axis. This output signal was low-pass 

filtered at 2 kHz (Kemo BM8) before being digitally converted (National Instruments 
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BNC-2090A) at 100 µs intervals. We translated this signal into the magnitude of hair-

bundle displacement by calibrating the sensitivity of the photodiode: between successive 

recordings we displaced the shadow a known amount with a mirror mounted on a closed-

loop piezoelectric actuator (Piezosystem Jena 87959).  For recording the motion of free 

hair bundles, we lowered the condenser lens to maximize optical contrast of the hair 

bundle’s shadow at the level of the photodiode. For recording the motion of hair bundles 

that were attached to a flexible force-fiber, the fiber provided the shadow whose motion 

was recorded. 

2.5. Iontophoresing Ca2+ and gentamicin 

To observe the response of lamprey hair bundles to Ca2+, we controlled the 

concentration of this ion in the vicinity of a hair bundle using iontophoresis from a 

pipette. As the migration of ions in a voltage gradient, this process would ideally be 

controlled by the Hittorf equation (Purves, 1981): 

€

q =
−n • I
z • F

(2) 

where q is the efflux of the ion, in this case Ca2+, and n is the transference number 0.12 

(Tinevez et al., 2007), I is the current, z is the charge number of the ion, and F is 

Faraday’s constant. However, at least two other processes can affect the discharge of ions 

from a iontophoretic pipette. The first of these processes is the diffusive release of the 

ion, which can be approximated by (Purves, 1981): 

€

qD = π • D • C0 • θ • a
(3) 
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with D the diffusion coefficient of the ion in water, a the internal radius of the pipette tip, 

2θ the pipette tip’s included angle, C0 the initial concentration of the ion inside the pipette 

tip, and qD the steady-state diffusive release of the ion. Another process affecting the 

release of an ion from the pipette is bulk flow, driven by gravity; the release attributable 

to this is governed by (Purves, 1981): 

€

qH =
3π • θ • ρ • g • h • C0 • a3

8η
(4) 

in which g is the gravitational attraction, ρ the density and η the viscosity of the filling 

solution, and h the height of the liquid column. To determine the range of ejection 

currents we would apply, we considered that the steady-state concentration of an ion x at 

a given distance r from the iontophoretic pipette can be approximated by (Tinevez et al., 

2007): 

€

x(r) = x0 +
n • I

4π • D • z • F • r
(5) 

in which x0 is the concentration of the ion in the extracellular medium before the onset of 

iontophoresis. 

Because the processes governed by equations (3) and (4) are independent of the 

ejection current I, at low values of I the relationship between q and I is markedly 

nonlinear. This was problematic, for we wanted to precisely command relatively small 

changes in Ca2+ concentration. To overcome this, we attempted to achieve the set of 

conditions allowing the iontophoretic release q to dominate over qD and qH. This effort 

was aided by the similar dependency of qD and qH  on C0, a, and θ. Reducing the values of 
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these three parameters should decrease the nonlinearity in the I-q relationship. Lower 

values for these three parameters also increase the electrical resistance of a pipette; 

pipette resistance therefore served as our proxy for estimating how linearly a pipette 

would behave when commanded to iontophorese miniscule doses of Ca2+. 

Purves (1979) analyzed this exact problem and determined that iontophoretic 

ejection voltages exceeding 100 mV position the system at an approximately linear 

region of the I-q relationship. Knowing this minimum ejection voltage (Vmin) and the 

resistance of the iontophoresis pipette (Rpipette), we calculated the minimum ejection 

current (Imin) : 

€

Imin =
Vmin
Rpipette

(6) 

using the value of Imin, our desired minimum increase in Ca2+ concentration (ΔCa2+
min),

and equation (4), we calculated r with the following relation, with SI units for all 

variables: 

€

r =
0.52 • n • Imin
ΔCa2+

min
(7) 

With desired ΔCa2+
min values ranging from 10 μM to 50 μM, and a range of 1 μm to

10 μm considered practical for r, ideal values for Rpipette were bounded by 25 and 100 

MΩ. We  found that pipettes whose Rpipette values exceed 80 MΩ are susceptible to 

clogging.  

We filled iontophoresis pipettes with 120 mM CaCl2. Using this filling solution, 

we tested the Rpipette values of pipettes pulled on a Sutter P-80 programmable pipette 
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puller from 1.2 mm outer diameter borosilicate glass (WPI, 1B120F-3). We empirically 

determined a program that consistently delivered an appropriate range of Rpipette values. 

During an experiment, we positioned the iontophoretic pipette at the distance r 

from a lamprey hair bundle. For baseline recordings, we applied a negative current of 

-4 nA to restrict diffusive release of Ca2+. All commands sent to the iontophoresis 

electrode were generated in LabView and delivered by an Axoclamp 2B amplifier (Axon 

Instruments) in bridge mode. 

To iontophorese controlled amounts of gentamicin, we used the same protocol for 

pipette fabrication. The pipette filling solution was 120 mM gentamicin sulfate with 

20 mM KCl added to prevent electrode polarization. We then lowered the pH of this 

filling solution below 5 to promote protonation of gentamicin’s amino groups, thus 

promoting the molecule’s iontophoretic ejection. When filled with this solution, the 

pipettes had an electrical resistance of 10 – 100 MΩ. When not intending to eject 

gentamicin, we retained the drug in the pipette using a holding current of – 2 nA. In 

calculating the gentamicin concentration evoked by a given iontophoretic current, we 

assumed the ratio of gentamicin’s transference number to its valence was 0.013 

(Jaramillo and Hudspeth, 1991). 

2.6. Mechanically stimulating hair bundles 

We fabricated flexible stimulus fibers from the same borosilicate glass used to 

manufacture iontophoresis pipettes. We introduced an initial taper to each fiber with an 

electrode puller, melted this tapered end onto a heated platinum filament, and used a 

solenoid to pull a glass wisp perpendicular to the long axis of the taper. This procedure 

yielded a glass wisp of about 1 μm diameter cantilevered out from the glass shaft. To 
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enhance the optical contrast of this thin fiber, we coated each stimulus fiber with a layer 

of gold-palladium (Hummer 6.2, Anatech). We aimed to achieve fibers with stiffnesses 

KSF of 50 – 300 μN·m-1 and hydrodynamic drag coefficients  ξSF of 40 – 300 nN·s·m-1. We 

calculated these values by fitting to a Lorentzian relation the power spectrum of each 

probe’s Brownian motion in water (Benser et al., 1996; Howard and Hudspeth, 1988). 

To facilitate adherence of the stimulus fiber to the kinocilium of a lamprey hair 

bundle, we immersed the tip of the fiber in a solution of 1 mg/mL concanavalin A 

(Sigma) in water for ten minutes. We allowed the fiber to air-dry for several minutes 

before introducing it into the endolymph solution in the experimental chamber. The fiber 

was mounted to the end of a piezoelectric actuator (Piezosystem Jena, 94182). We sent 

displacement commands of magnitude Δ to this actuator, resulting in a displacement of 

the base of the fiber by that same magnitude. We generated the commands in LabView 

and produced an analog signal with a National Instruments board (BNC-2090A). We 

made a thermal insulation sleeve for this piezoelectric actuator to limit low-frequency 

drift. 

2.7. Analyzing spontaneous oscillations 

All data analysis was performed in Matlab. To analyze the spontaneous 

oscillations of a lamprey’s hair bundle, we calculated various metrics of the oscillation 

waveform. For oscillations whose fast and slow timescales of motion were sufficiently 

distinct, we were able to calculate the positive and negative residence times. These values 

describe the average duration an oscillating hair bundle spent residing in the slowly 

relaxing states punctuated by abrupt lurches. We employed a jump-detecting algorithm to 

calculate these residence times. We smoothed the displacement data X(t) with a 
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rectangular moving average whose duration was equal to one-tenth the period of 

oscillation, as determined by a local peak in the power spectrum of hair-bundle motion. 

We then calculated dX/dt and smoothed these data with another rectangular moving 

average. When dX/dt remained above or below empirically determined thresholds for a 

empirically determined duration, the algorithm declared a positive or negative jump, 

respectively. A stretch of data preceded by a positive-going jump and followed by a 

negative-going jump was considered a positive residence event, and its duration was 

recorded. We followed this same logic to calculate negative residence times. If the 

oscillation was particularly irregular, our algorithm occasionally reported jumps of the 

same polarity adjacent to one another; we discarded the intervening data. For a set of 

recordings whose residence times were to be compared, we employed the same 

empirically determined analysis parameters. 

When an oscillation was too irregular to be reliably analyzed by the above 

procedure, we employed a different algorithm to analyze the relative times spent in the 

positive and negative states. We first used a rectangular moving average with a duration 

of several seconds to calculate the slow drift on which the spontaneous oscillations were 

superimposed. After eliminating this slow drift, we quantified the fraction of time that X 

was found to be greater than the median value of X. 

Hair bundles of the bullfrog’s sacculus sometimes undergo multimodal 

oscillations, characterized by periods of oscillatory bursting interspersed with slow 

relaxations. We wrote an algorithm to calculate the average duration spent in these two 

states. Over a sliding bin of empirically determined width, the standard deviation of X 
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was measured. When the standard deviation exceeded an empirically set threshold, a 

period of oscillatory bursting was declared and its duration recorded.  

2.8. Calculating work exerted by a hair bundle 

Data analysis, all performed in Matlab, consisted of first smoothing X for each 

discrete driving frequency and amplitude with a rectangular moving average, the width of 

which was equal to one-tenth the period of the driving frequency. We then interpolated 

these data to allow for an integer number of data points per period of motion. For each 

driving frequency and amplitude, we calculated X over an average period of motion then 

performed this same process for the recorded motion of the fiber’s base, Δ. These data 

were then used to calculate on an average-cycle basis the amount of work performed by 

the stimulus fiber (WSF), as well as the amount of energy dissipated by viscous drag (WD). 

In a passive condition, these two values should sum to zero; when they sum to a negative 

value, we infer that the hair bundle has actively contributed work (WA) to account for the 

difference (Martin and Hudspeth, 1999):  

(8) 

To estimate WSF, we first calculated the force FSF exerted by the stimulus fiber as its 

calibrated stiffness KSF multiplied by its flexion (Martin and Hudspeth, 1999): 

€

FSF = KSF • (Δ − X)
(9) 

€

W SF +W D +W A = 0
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Multiplying FSF by the velocity of the hair bundle yields the power delivered by the fiber, 

PSF (Martin and Hudspeth, 1999): 

€

PSF = FSF •
dX
dt

(10) 

Integrating PSF with respect to time over the entire average cycle of motion, or integrating 

the area within the curve FSF(X), results in WSF (Martin and Hudspeth, 1999): 

(11) 

Calculating the work performed by hydrodynamic drag, WD, followed a similar 

procedure but took into account higher modes of motion of the stimulus fiber. The two 

hydrodynamic drag coefficients ξSFTip and ξSFBase related the velocities of respectively, the 

fiber’s tip X and base Δ to the expected drag force FD exerted on the hair bundle 

(Bormuth et al., 2014): 

   and     

(12) 

These two coefficients were used to calculate FD as follows (Bormuth et al., 2014): 

(13) 

Multiplying FD by the velocity of the hair bundle yields the power of hydrodynamic 

dissipation, PD (Martin and Hudspeth, 1999): 

(14) 

€

W SF = FSF • dX = PSF • dt∫∫

€

ξSFTip =
33
35

• ξSFLorentzian

€

ξSFBase =
39
70

• ξSFLorentzian

€

FD = −
dX
dt

• (ξSFTip + ξHB ) −
dΔ
dt

• ξSFBase

€

PD = FD •
dX
dt
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Integrating PD with respect to time over the entire average cycle of motion, or integrating 

the area within the curve FD(X), results in WD (Martin and Hudspeth, 1999): 

(15) 

3. Results: spontaneous oscillations by hair bundles of the lamprey

3.1. Introduction 

Spontaneous hair-bundle oscillations – being unprompted by the external 

environment – are not thought to assist turtles in listening for the approach of a predator, 

skinks in eavesdropping on alarm calls, or bullfrogs in assessing their neighbors’ 

locations. There is no evidence that these movements, in themselves, are adaptive. 

Instead, spontaneous hair-bundle motility is an epiphenomenon of the active process that 

allows tetrapod vertebrates to spectrally analyze faint sounds amidst background noise. In 

this way, spontaneous oscillations are tremendously useful to the biologist seeking to 

study an animal’s auditory system. First, because spontaneous oscillations stem from the 

same mechanism that drives active amplification of sounds, studying these movements 

can identify the molecular structures responsible for amplification. Second, because 

spontaneous hair-bundle oscillations derive from the complex interaction of structures in 

the hair bundle, these movements provide a rich indicator of a hair cell’s health in vitro. 

These movements require intact tip links, which are easily broken during dissection; they 

reflect the cell’s capacity for extruding and buffering Ca2+, which can be overwhelmed if 

the cell is bathed in an inappropriate saline solution; and they suggest the cell is 

producing ATP sufficient to power the cycling of myosin motors. Therefore, we were 

€

W D = FD • dX = PD • dt∫∫
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eager to learn whether lamprey hair bundles can undergo spontaneous oscillations – if so, 

these movements would form the subject of our mechanistic studies. 

3.2. Physiological preparation 

Visualizing and manipulating hair bundles of the lamprey’s inner ear required 

opening the ear, obliterating the ionic microenvironment therein. We needed, therefore, 

physiological saline solutions that  sufficiently emulated native ionic conditions. 

Because the extracellular concentration of Ca2+ bears critically on adaptation, 

transduction, and spontaneous motility in tetrapod hair cells (Crawford et al., 1991; 

Walker and Hudspeth, 1996; Lumpkin et al., 1997; Martin et al., 2003; Manley et al., 

2004), we presumed the concentration of this cation might be similarly important for 

lamprey hair cells. Furthermore, tetrapod hair cells in vivo separate two distinct ionic 

compartments: their apical hair bundles project into a high-K+, low-Na+, low-Ca2+ 

endolymph, and their basolateral aspect contacts a low-K+, high-Na+, high-Ca2+ 

perilymph (Bosher and Warren, 1968; Bosher and Warren, 1978; but see Runhaar and 

Manley, 1987). Only through experimental mimicry of this arrangement do tetrapod hair 

bundles reliably undergo spontaneous oscillations (Martin and Hudspeth, 1999). 

Therefore, we needed to determine if lamprey hair cells require an analogous “two-

chamber” system. 

To directly measure the concentration of Ca2+ bathing lamprey inner-ear hair cells 

in vivo, we made recordings from L. appendix ears with Ca2+-sensitive microelectrodes. 

Recordings from seven ears revealed the presence of a low-Ca2+ compartment, which 

always bore a positive voltage relative to the external solution bathing the ear. 

Furthermore, in many cases repositioning the electrode revealed a distinct compartment 
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containing a Ca2+ concentration 3-40 times greater than that seen in the low-Ca2+ 

compartment and very little voltage difference relative to the bath (Table 3.1). To 

preserve any delicate partitions in the ear, we performed these measurements without 

removing the opaque cartilaginous capsule encasing the ear, directing the electrode 

through a small hole made in the capsule. This precluded direct visualization of the sites 

from which each measurement was made. To address this uncertainty, we performed an 

additional experiment in which one barrel of the electrode, normally dedicated to 

measuring Ca2+, was filled with Alcian blue, while the other barrel remained dedicated to 

its usual task of recording the extracellular voltage at its tip. Upon detection of a 

significant positive voltage, we presumed to have hit the low-Ca2+ compartment and 

proceeded to pressure-inject Alcian blue (Table 3.1, last row). After fixation, we saw 

faint blue labeling of structures in the ventral macula, specifically the structures thought 

homologous to the lagena (Figure 3.1 A) and saccule (Figure 3.1 B). 

Observations of L. appendix ears in various states of dissection assured us that the 

spaces overlying the lagena, saccule, and utricle in vivo are continuous with one another, 

providing our working assumption that a low concentration of Ca2+ is appropriate for the 

physiological saline solution, termed endolymph, that bathes the apical surfaces of ex 

vivo utricular hair cells. Furthermore, we decided to mimic the compartmentalization 

apparent in our measurements by mounting the dissected utricular epithelium in a two-

compartment system, filling the basolateral compartment with a higher-Ca2+ saline 

solution, termed perilymph. Starting with the Ca2+ concentration ranges provided by the 

ion-sensitive microelectrode recordings, we empirically settled on 40 – 50 μM Ca2+ 



44 

endolymph and 1 mM Ca2+ perilymph. With this established, we set out to characterize 

the mechanical activity of lamprey hair bundles. 

Table 3.1. Ca2+-sensitive microelectrodes indicate the presence of a low-Ca2+ 

compartment in the lamprey ear that always displayed a positive voltage relative to the 

external solution bathing the ear. A distinct compartment was found bearing a Ca2+  

concentration 3 – 40 times greater than that seen in the low-Ca2+  compartment, and very 

little voltage difference relative to the bath. There is no linear correlation between Ca2+  

concentration and voltage in the positive voltage compartment (R2 = 0.003) and no linear 

correlation between Ca2+  concentrations in the two compartments of a given ear  (R2 = 

0.01). 

Low-Ca2+  compartment High-Ca2+  compartment 
arbitrary 

ear # 
Ca2+ 
(μM) 

voltage re bath 
(mV) 

Ca2+ 
(mM) 

voltage re bath 
(mV) 

1 40 + 17 1.6 0 
2 50 + 9 0.8 + 2 
3 58 + 6 1.1 0 
4 88 + 6.5 - - 
5 320 + 11 0.8 + 0.5 
6 330 + 15 - - 
7 420 + 5.5 1.3 0 
8 - Alcian injection- + 8 - - 
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Figure 3.1. Alcian Blue staining suggests the low-Ca2+, high-voltage compartment is 

bounded by the ventral macula. A. Medial view of a fixed right ear. Staining is most 

apparent on the ventral surface of the lagena (arrowhead). B. Dorsal view of the same ear 

after dissecting away dorsal structures. Staining is most apparent on medial wall of 

saccule (arrowhead). Utricle (U), saccule (S), lagena (L), anterior and posterior ciliated 

chambers (ACC and PCC respectively), dorsal aspect of the anterior (ASC) and posterior 

(PSC) semicircular canals. The ear is approximately 1mm long along its anteroposterior 

axis.  
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3.3. Spontaneous oscillations and their underlying basis 

Given that lamprey hair cells had never been studied physiologically, we began 

our work with no expectation of whether their hair bundles would undergo spontaneous 

oscillations. In the face of this uncertainty, it was helpful to have direct knowledge of the 

native Ca2+ concentrations in the lamprey ear. We next needed to determine which 

population of inner-ear hair cells on which to focus our observations. 

The utricle was chosen for physiological studies because its epithelium is flatter 

than that of the sacculus and because it is larger than the lagena, containing more than a 

thousand hair cells (Figure 3.2 B). These hair cells have an apical surface about 2 μm in 

diameter, and their bundles can be up to 10 μm tall (Figure 3.2 B). 

Figure 3.2. The lamprey hair bundles on which this study focuses. A. A scanning 

electron micrograph of the anterior-most endorgan of the Petromyzon marinus macula 

communis. We consider this endorgan homologous to the gnathostome utricle 

(Lowenstein et al., 1968; Hammond and Whitfield, 2006). Portions of the otolithic 

membrane remain atop these hair bundles, at the anterior portion of this organ. B. A 

scanning electron micrograph of one P. marinus utricular hair bundle, its tallest edge 

oriented toward the top left of the figure. 
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After establishing appropriate endolymph and perilymph recipes, we observed 

large-amplitude spontaneous oscillations in L. appendix (Figure 3.3). These oscillations 

were qualitatively similar to the spontaneous oscillations of bullfrogs: they consisted of 

abrupt transitions between slowly varying states, with their dominant frequency of 

oscillation below 20 Hz and their root-mean-square amplitudes roughly 100 nm (Figure 

3.4 A). As the consistency of the dissection efforts improved, we often saw preparations 

in which hundreds of utricular hair bundles oscillated for tens of minutes. Using the same 

physiological saline solutions as for L. appendix, we also observed spontaneously 

oscillating hair bundles in the utricles of P. marinus (Figure 3.4 B). 

Figure 3.3. Spontaneous oscillation of hair 

bundles from the L. appendix utricle. The middle 

panel B shows a frame from a video of four hair 

bundles; as in figure 3.2, the epithelium is viewed 

along its apical-basal axis. All four hair bundles’ 

taller edges are oriented toward the top of the 

image. Subtracting from this frame the preceding 

frame yields the false-color image in A, revealing 

that the two left-most hair bundles each moved 

toward their shorter edges, while the right-most 

hair bundle moved toward its taller edge. C. 
Subtracting that same frame from its following 

frame then revealed a movement of the right-most 

hair bundle toward its shorter edge. This method 

of analyzing still frames of hair-bundle 

oscillations is taken after Martin (2003).      
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Figure 3.4. Displacement records of two spontaneously oscillating utricular hair bundles, 

from A. L. appendix and B. P. marinus. Upward deflections denote movements toward 

the bundle’s taller edge. 

3.3.A. Sensitivity to external Ca2+ concentration 

After demonstrating that lamprey hair cells oscillate spontaneously, we 

considered whether hair-bundle motility evolved before the split between jawless and 

jawed vertebrates. Specifically, we hypothesized that lamprey spontaneous oscillations 

stem from molecular mechanisms homologous to those underlying spontaneous 

oscillations in tetrapods: stereociliary myosin motors interacting with the gating of 

transduction channels. To test this, we focused our efforts on one lamprey species, L. 

appendix. 

Given the established effects of Ca2+ on the hair-bundle adaptation motors of 

some tetrapod species (Eatock et al., 1987; Crawford et al., 1991; Walker and Hudspeth, 

1996; Cyr et al., 2002), we predicted that iontophoretic control of the Ca2+ concentration 

in the vicinity of an oscillating lamprey hair bundle would alter the residence time in the 

positive state of these oscillations. Indeed, we consistently found in 11 utricular cells that 

the mean positive residence time could fall roughly twofold over a physiological range of 

tested Ca2+ concentrations, with slight or variable effects on the negative residence time 
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(Figure 3.5). This effect held whether the iontophoretic currents were presented in 

ascending (Figure 3.5, left) or descending order (Figure 3.5, right). 

It seemed possible that the effect described above could be due to the passage of 

current by the iontophoresis electrode, rather than the increase of Ca2+ delivered by that 

current. To address this, we performed a control in which the iontophoresis pipette was 

filled with 120 mM KCl rather than the usual 120 mM CaCl2. The expected result of 

passing positive current in this condition is a local increase in K+ concentration, with no 

significant change in Ca2+. Because the concentration of K+ in the artificial endolymph 

bathing the bundles is more than 100 mM, an increase of a few tens of micromolar should 

yield negligible effects on a hair bundle. We found that the waveform of lamprey 

spontaneous oscillations was not appreciably affected by the mere passage of positive 

iontophoretic currents (Figure 3.6). 
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Figure 3.5. Increasing extracellular Ca2+ by iontophoresis shortens the positive 

residence time of L. appendix spontaneous oscillations. A hair bundle oscillated 

throughout a series of incremental changes in iontophoretically applied Ca2+. From ten 

seconds of motion at each iontophoresis step, the mean positive residence time (open 

circles) and mean negative residence time (filled circles) were calculated. Error bars 

denote SEM; for many points, the size of the symbol exceeds that of the error bar. The 

series of iontophoresis steps was first delivered in ascending order, then several minutes 

later in descending order. For baseline measurements, a holding current of -4 nA was 

applied to prevent diffusive release of Ca2+. In view of the strongly nonlinear relationship 

between holding currents and cation release, the abscissse are broken between the 

holding current and positive ejection currents. The floating abscissa denotes the estimated 

steady-state Ca2+ concentrations achieved by each current magnitude. This hair bundle 

was in the anterolateral region of the utricle, with its taller edge oriented medially. The 

iontophoresis pipette was positioned 3 μm from the shorter edge of the hair bundle.  
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Figure 3.6. The effect of Ca2+ on L. appendix positive residence time is not an artifact 

of passing current. A. Iontophoresing Ca2+ onto a hair bundle shows that higher 

extracellular Ca2+ concentrations reduce the positive residence time of this lamprey hair 

bundle’s spontaneous oscillations. B. Several minutes later, iontophoretic currents borne 

by a different cation, K+, yielded no such effect on the same hair bundle. In each case, the 

tip of the iontophoresis pipette was 4 μm from the hair bundle. Each data point was 

calculated from ten seconds of spontaneous oscillation. Error bars denote SEM; for many 

points, the size of the symbol exceeds that of the error bar. A holding current of -4 nA 

was applied to prevent diffusive release of each cation; in view of the strongly nonlinear 

relationship between holding currents and cation release, the abscissa is broken between 

the holding current and positive ejection currents. The floating abscissa denotes the 

estimated steady-state Ca2+ concentrations achieved by each current magnitude. 
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The key strength of iontophoresis is the temporal control it affords, permitting our 

presentation of many Ca2+ concentrations in a short amount of time, before slower-

timescale processes such as the exhaustion of the hair cell’s ATP stores could appreciably 

alter the data. The primary weakness of iontophoresis is a slight uncertainty in the steady-

state concentrations achieved, especially for minute ejection voltages (Purves, 1981). 

Though vastly slower than iontophoresis, manual exchange of the solution provides more 

accurate control of the Ca2+ concentration bathing the hair bundles. Using this mode of 

Ca2+ manipulation, the same effect of Ca2+ on spontaneous oscillations was seen in 

12 cells (Figure 3.7). 
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Figure 3.7. Manual exchange of endolymph solutions corroborates iontophoretic 

data. Shown are data from four representative cells from the L. appendix utricle. At each 

concentration tested, 30 seconds of spontaneous oscillations were recorded, from which 

were calculated the mean positive residence time (open circles), and mean negative 

residence time (filled circles). Bars describe S.E.M. and red numbers accompanying open 

data points indicate the order of solution presentation. Consecutive recordings were taken 

approximately three minutes apart. 
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3.3.B. The effects of myosin inhibitors 

The above results with Ca2+ are consistent with a myosin powering the 

spontaneous oscillations of lamprey hair cells. However, myosins are certainly not the 

only molecular motors known to be regulated by this cation; dynein, which ultrastructural 

studies suggest is present in the kinocilia of some lamprey hair cells (Katori et al., 1994), 

can also be regulated by intraciliary Ca2+ levels (Smith, 2002). To further test our 

hypothesis of molecular homology between lamprey and tetrapod spontaneous 

oscillations, we examined the effects of two known myosin inhibitors – one broadly 

acting, the other targeted to a specific myosin class. In both cases, we predicted the 

inhibitor to attenuate or halt spontaneous oscillations. 

First, we tested the effect of butanedione monoxime (BDM) on lamprey 

spontaneous oscillations. With a relatively high IC50 of 5 mM, BDM inhibits force 

production by class II myosins by impeding phosphate release, biasing these ATPases 

toward their weak actin-binding state (Herrmann et al., 1992). Despite uncertainty about 

its action on class I myosins, it is clear that BDM can reduce the open probability of the 

transduction channels of turtle cochlear hair bundles (Wu et al., 1999). This is consistent 

with BDM inhibiting the myosin(s) responsible for adjusting the resting tension in gating 

springs. This drug was later shown to reversibly inhibit spontaneous oscillations of 

bullfrog saccular hair cells (Martin et al., 2003). Despite this drug having uncharacterized 

effects on class I myosins, as well as potential off-target effects at its effective dose, the 

historical use of this drug in tetrapod hair cells provided a rationale for testing its effects 

on lamprey in this comparative study. 

Spontaneous oscillations were inhibited by the application of BDM in 13 of the 

14 hair cells studied. Of these 13, four cells resumed oscillating after BDM washout 
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(Figure 3.8). Our finding that lamprey hair-bundle oscillations are halted by BDM, and 

often reversibly so, agrees with that from the bullfrog (Martin et al., 2003). 

Figure 3.8. Butanedione monoxime reversibly interferes with spontaneous 
oscillations of L. appendix utricular hair bundles. Shown are three one-second 

recordings of hair-bundle motion; upward deflections correspond to the bundle moving 

toward its taller, positive edge. A. A control recording in regular endolymph reveals a 

bundle initially oscillating at 9.6 Hz. B. While bathed in 5 mM BDM, oscillations were 

attenuated, with no peak detectable in the power spectrum of hair-bundle motion. C. 
After washout of BDM, the oscillations returned to a frequency of 9.1 Hz with an rms 

magnitude of 19 nm. This result is representative of 4 cells.  

The results with BDM further supported the role of a myosin in powering lamprey 

spontaneous oscillations. To query the involvement of class I myosins in particular, we 

tested the effect of extracellularly applied pentachloropseudilin (PClP) on these 

movements. PClP reversibly inhibits the in vitro ATPase activity of class I myosins with 

an IC50 of 1-5 μM while affecting the activity of other myosins (families II and V) with 

an IC50 of greater than 90 μM (Chinthalapudi et al., 2011). To our knowledge, the present 

study marks the first experiments with PClP on hair cells, so it was reassuring that the 

drug has already been shown in cultured HeLa cells to disrupt functions known to rely on 

myosin Ic in the late endosomal pathway. 
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To our surprise, four of four lamprey hair cells bathed in 10 μM PClP continued 

their spontaneous oscillations for more than 30 minutes (Figure 3.9 A). Any subtle 

changes in their waveform were not differentiable from those evoked by exposure to 

DMSO alone. To place this result in a comparative framework, we then tested this drug 

on spontaneously oscillating bullfrog hair cells. In 32 of 35 bullfrog hair cells bathed in 

2.5 – 5 μM PClP, spontaneous oscillations were halted within minutes. Of these, 14 cells 

provided at least one recording of spontaneous oscillations before their eventual arrest. 

These recordings displayed an increased residence time in the bundles’ negative position 

(Figure 3.9 B). 

To compare all the cells’ responses to PClP, we calculated the average negative 

and positive residence times (Figure 3.10). Plotting these values with respect to time 

exposed to the drug underscored the fact that most bullfrog hair cells cease oscillating in 

PClP much more rapidly than do those of the lamprey. Second, this analysis showed that 

bullfrog hair cells often underwent a 10 – 60 fold increase in their oscillations’ negative 

residence time in less than 10 minutes. On the other hand, lamprey hair cells displayed at 

most a 2-fold increase in their negative residence time over the tens of minutes they 

continued oscillating in the drug (Figure 3.10A). Bullfrog hair cells generally 

experienced a decrease in the average positive residence time of their oscillations, 

whereas only one of the four lamprey hair cells showed this effect (Figure 3.10 B). 
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Figure 3.9. L. appendix spontaneous oscillations, in contrast to bullfrogs’, are not 

halted by PClP, an inhibitor specific to class-I myosins. A. Recordings from a 

spontaneously oscillating lamprey hair cell in 1% DMSO (top) and after 23.5 and 43.4 

minutes in 10 μM PClP carried by 1% DMSO (middle and bottom respectively). 

Representative of 4 of 4 lamprey hair cells whose oscillations persisted for more than 30 

minutes during exposure to PClP. B. Recordings from a spontaneously oscillating 

bullfrog saccular hair cell in 0.5% DMSO (top) and after 3.0 and 3.7 minutes in 5 μM 

PClP carried by 0.5% DMSO (middle and bottom respectively). Representative of 32 of 

35 bullfrog hair cells whose oscillations were arrested in PClP, and of the subset of 14 

cells whose oscillations persisted long enough to be recorded in the presence of the drug. 

Because PClP has been shown to reduce the coupling of class I myosins to actin, 

we surmised that bullfrog hair cells treated with the drug may display an inverse 

correlation between the fold changes of their positive and negative residence times. When 

we plotted the change in positive residence time as a function of the change in negative    
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Figure 3.10.  Prior to their arrest in PClP, spontaneous oscillations by bullfrog hair 
bundles undergo a change in waveform, an effect not apparent in L. appendix. A. 

Fold change in the negative residence time of lamprey (black, 4 cells) and bullfrog (blue, 

10 cells) spontaneous oscillations as a function of time spent in PClP.  Note log scaling of 

ordinate. Arrows indicate the two cells whose raw data were shown in Figure 3.8. Shown 

for comparison is a lamprey hair cell in 1% DMSO alone (gray). B, Fold change in the 

positive residence time from the same 11 recordings depicted in (A); note change in 

ordinate.  
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residence time we indeed saw that, for most oscillating bullfrog hair cells, lengthening of 

the negative residence time was related to an abbreviation of their mean positive 

residence time (Figure 3.11 A). Lamprey hair cells, on the other hand, showed no 

correlation between these two aspects of their spontaneous oscillations. For instance, the 

cell that showed the most shortening of its positive residence experienced almost no 

change in its negative residence time (Figure 3.11 B). 

We were curious about the two bullfrog hair cells that defied the trend by showing 

an unexpected positive correlation between the change in negative and positive residence 

times (Figure 3.11 A). Unlike the others, these two cells retained a high degree of 

multimodality throughout their exposure to this drug (Figure 3.11 C). Multimodal 

oscillations are characterized by periods of oscillatory bursting, interspersed with 

relaxations toward the bundle’s shorter edge (Shlomovitz et al., 2013). We realized that 

the calculation of positive and negative residence times does not reveal the duration of 

oscillatory bursts (Figure 3.11 C, dark green). Furthermore, we wanted to analyze the 

long periods of quiescence at negative displacements (Figure 3.11 C, dark purple) 

separately from the brief negative excursions within oscillatory bursts (Figure 3.11 C, 

magenta). Therefore, for the two bullfrog cells whose oscillations remained multimodal, 

we performed an additional analysis, calculating the mean durations of quiescence and 

oscillatory bursting before and during exposure to PClP. For both cells, the oscillatory 

bursts became shorter in the presence of the drug, falling to about 25% of the duration in 

DMSO alone (Figure 3.11 D, dark green). Also, for both cells the quiescent phases 

lengthened, reaching about three times the length of their duration in DMSO alone 

(Figure 3.11 D, dark purple). 
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Figure 3.11. For bullfrog hair cells whose spontaneous oscillations are multimodal, 

PClP shortens the duration of oscillatory bursting even when it fails to shorten the 
positive residence time. A. Each line depicts data from a single oscillating bullfrog hair 

bundle over time; the fold change in positive residence time is plotted as a function of 

fold change in negative residence time. The recordings were those considered in Figure 

3.10. Two cells (marked with arrowheads) displayed a positive correlation between these 

quantities. Log-log scaling was used to better convey the more densely populated areas of 

the plot. B. The same analysis of four lamprey hair bundles, with the same scaling but a 

truncated abscissa. C. Several seconds of multimodal oscillation from the hair bundle 

whose data is marked with an open arrowhead in (A), showing three bouts of oscillatory 

bursting (dark green) interrupted by periods of quiescence (dark purple). Oscillatory 

bursts are comprised of abrupt transitions between positive (“p,” light green) and 

negative (“n,” magenta) states. D. For two bullfrog hair cells whose oscillations were 

multimodal, the changes in duration of quiescence (dark purple) and of oscillatory 

bursting (dark green) are plotted as functions of the time spent in 5 μM PClP. 

Arrowheads (filled and open) indicate these cells’ corresponding analyses in (A). Error 

bars denote SEM; each point was calculated from 30 seconds of spontaneous oscillation. 
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Figure 3.11 
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3.3.C. Sensitivity to a transduction-channel blocker 

The active process of tetrapods requires the interaction of two general 

components: stereociliary myosin motors and mechanotransduction channels. By 

adjusting the tension in gating springs, myosin-based adaptation can set the range of 

displacements over which transduction channels gate. In tandem with the nonlinearity 

caused by cooperative channel gating, this slow, active adjustment can generate 

spontaneous oscillations (Le Goff et al., 2005). By exploring the effects of Ca2+ and 

myosin blockers on lamprey spontaneous oscillations, as described above, we probed one 

of the two components of the hair-bundle active process. We next studied the second 

component, the gating of transduction channels, with the use of gentamicin. This 

aminoglycoside antibiotic has long been known to block the hair-cell transduction 

channels of tetrapod vertebrates (Howard and Hudspeth, 1988). 

In L. appendix, gentamicin halted or perturbed (Figure 3.12) spontaneous 

oscillations in 19 of 21 cells tested. One of these non-responding cells had been 

oscillating irregularly in an ageing preparation, and the other was treated only with a very 

weak pulse of gentamicin. Some subtler effects were also apparent from these recordings. 

Hair bundles routinely displayed slow movements toward their negative edge during the 

blockade of their oscillations (Figure 3.12 A). This has been seen in bullfrog hair 

bundles’ response to gentamicin (Martin et al., 2003) and is consistent with gentamicin 

blocking Ca2+ entry. We also noted that, when gentamicin halted oscillations, it did so by 

freezing the hair bundle in a positive position. When some spiky oscillations persisted 

(Figure 3.12 A, second and third recordings), they involved only brief excursions to a 

negative position; most of the time was spent in a positive position. These related 
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findings are consistent with gentamicin wedging transduction channels into their open 

configuration, as is thought to occur in tetrapod hair bundles. 

Because gentamicin seemed to bias oscillating hair bundles toward their taller 

edges, we further studied this by incrementally increasing concentrations of gentamicin, 

recording ten seconds of hair-bundle motion during exposure to each dose (Figure 3.12 

B). The apparent effect was quantified by calculating the fraction of time the oscillating 

hair bundle spent at displacements more positive than its median displacement. By this 

metric, gentamicin’s concentration-response relation of a given hair bundle was stable 

over many minutes (Figure 3.13 A). All hair bundles displayed a monotonically 

increasing relationship between the concentration of gentamicin and the fraction of time 

spent above the median displacement (Figure 3.13 B). 
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Figure 3.12. Gentamicin reversibly attenuates spontaneous oscillations in L. 

appendix hair bundles. A. Twelve continuous seconds of five hair bundles’ spontaneous 

oscillations are shown. Upward deflections always denote motion toward the bundle’s 

taller edge. Hair-bundle motion during two bouts of 10-20 μM gentamicin iontophoresis 

(highlighted in gray) is displayed for each cell. The rapid excursions after each 

gentamicin bout are calibration pulses (*). B. Gentamicin was iontophoresed in finely 

graded increments, during each of which hair-bundle motion was recorded. In these 

recordings from one hair bundle, each continuous recording is vertically offset from the 

others by an arbitrary amount. The top trace represents the response in the absence of 

gentamicin, and successively lower traces depict spontaneous oscillations in higher 

concentrations of this drug. 
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Figure 3.13. Gentamicin halts spontaneous oscillations by L. appendix hair bundles 
through concentration-dependent biasing toward the taller edge. The effect of 

gentamicin on spontaneous oscillation waveform was quantified by calculating 

“P(positive),” the fraction of time spent by an oscillating hair bundle at displacements 

more positive than its median displacement. A. Shown are three dose-response datasets 

from a single hair bundle, each measured several minutes apart. These data come from 

the same hair bundle featured in Figure 3.12 B. At sufficiently high concentrations, 

oscillations were halted, precluding a meaningful calculation of P(positive). B. To 

facilitate comparison across multiple hair bundles, we show here the change in 

P(positive) with respect to the value measured in the absence of gentamicin. The data 

from ten hair bundles are each plotted in a distinct color. In cases in which multiple 

recordings were made from one cell, the second recording is plotted with circles at each 

data point. Two recordings from (A) are plotted in green, with the third omitted for 

clarity. 



66 

4. Results – amplification by hair bundles of the lamprey ear

4.1 Introduction 

We have shown that spontaneous oscillations occur in the utricles of two lamprey 

species, vertebrates quite distantly related to the tetrapods. We have also shown that in L. 

appendix these movements stem from mechanisms largely similar to those driving 

tetrapod spontaneous oscillations. Curious about the adaptive significance of spontaneous 

oscillations in lampreys, we hypothesized that these unprompted movements are a 

byproduct of a process used to mechanically amplify sinusoidal stimuli. To test this, we 

calculated the amount of mechanical work contributed by a lamprey hair bundle when its 

motion was entrained to periodic stimuli of different frequencies and amplitudes. Further, 

if we observed any hair bundles exerting positive work, we would then test whether this 

amplifying ability was altered by gentamicin. 

4.2. Frequency-tuned mechanical work 

When we adhered a stimulus fiber to a spontaneously oscillating hair bundle 

(Figure 4.1 A), the oscillation’s amplitude was reduced and its frequency increased, but 

its waveform retained a pronounced limit-cycle character with fast and slow timescales of 

motion (Figure 4.1 B, top two traces). When the base of the probe was driven 

sinusoidally, the hair bundle’s motion entrained to that of the stimulus; in the presence of 

gentamicin, this entrainment persisted, but the amplitude of motion was dramatically 

reduced (Figure 4.1 B, bottom two traces).    
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Figure 4.1. Sinusoidal stimulation of a spontaneously oscillating L. appendix hair 
bundle. A, A schematized hair bundle with the tip of a stimulus fiber attached to the 

kinocilium at the bundle’s tallest edge (top). When a displacement command of 

magnitude Δ is imposed on fiber’s base, the hair bundle’s resultant displacement X along 

its axis of height gradation is measured (bottom). B, Four displacement recordings from a 

single lamprey utricular hair bundle. When unloaded, its motion showed a peak 

frequency of 3.8 Hz (top). The vertical scaling from this top recording differs from that of 

the subsequent three recordings. Attaching a stimulus fiber of stiffness 50 μN/m and drag 

coefficient  125 nNs/m elevated the oscillation frequency to 5.1 Hz (second from top). 

The base of the fiber was then driven sinusoidally (third from top). To emphasize the hair 

bundle’s entrainment to the stimulus, broken lines guide the eye up from each period of 

driving stimulus to the previous, undriven, recording. The same stimulus protocol was 

applied to the hair bundle in the presence of gentamicin (bottom). The hair bundle’s 

motion is depicted in black, and the motion of the probe’s base in cyan. All data in 

Figures 4.2 and 4.3 derive from this hair bundle.  
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The motion of the hair bundle led that of the stimulus fiber during most cycles of 

motion (Figure 4.1 B, third from top), suggesting that the hair bundle was actively 

contributing to the system’s periodic movement. To quantify this impression, we then 

calculated for an average cycle the active mechanical work contributed by the hair 

bundle, termed WA, by calculating the work performed by the stimulus fiber (WSF) and the 

energy lost to dissipation by  hydrodynamic drag (WD). This approach is described in 

greater detail in the Methods. This experiment revealed that, for the 3 Hz, 56 nm stimulus 

featured in Figure 4.1, WSF was not only insufficient to have countered WD, but it was 

negative – meaning the stimulus fiber actually impeded the motion of the bundle – for 

almost the entire displacement range (Figure 4.2 A, top).  This result confirmed our 

impression that the hair bundle was actively performing mechanical work to counter 

viscous dissipation. At the same stimulus amplitude but a higher frequency, WSF was 

equal and opposite to WD, indicating that WA was negligible under this condition (Figure 

4.2 A, bottom). When WA was similarly calculated for all frequencies and amplitudes 

tested, we found that this active process displays frequency tuning (Figure 4.2 B) with the 

highest values of work production around 3-5 Hz. The stimulus frequency evoking the 

highest value of WA shifted to lower values with increasing stimulus amplitude. 
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Figure 4.2. Summing the work performed by the stimulus fiber and by viscous drag 
reveals frequency-tuned work production by L. appendix hair bundles. A. For an 

average cycle of hair-bundle motion we plotted the force exerted by viscous drag (FD, 

gray line) and the force exerted by the stimulus fiber (FSF, black line) as functions of X. 

Because the motion was periodic the lines form loops, the enclosed areas of which show 

respectively the energy lost to viscous dissipation, WD, and the work contributed by the 

stimulus fiber, WSF. Because drag forces always oppose motion, drag loops progress 

counter-clockwise, lending a negative sign to the work calculated from their 

circumscribed area (gray shading). In contrast, forces exerted by the flexible probe may 

either contribute work to, or dissipate energy from, the system; black arrows denote the 

direction of travel around the cycle. Areas denoting positive work contributed by the 

probe are shaded in magenta, and those denoting dissipation from the probe are shaded in 

stippled green. For a driving stimulus of 3 Hz and 56 nm (top), WSF = -217 zJ, with the 

stimulus fiber contributing positive work only at the positive extreme of the bundle’s 

position (magenta area). WD = -112 zJ, making WA = +329 zJ. When the driving 

frequency was increased to 18 Hz (bottom), WSF = +273 zJ, WD = -270 zJ, giving WA = -3 

zJ. B. WA calculated in response to 11 discrete stimulus frequencies at six amplitudes. The 

closed black arrow indicates the WA value calculated from (A, top) and the open black 

arrow indicates that calculated from (A, bottom). 
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Finally, we observed that iontophoretic application of gentamicin impeded this 

frequency-tuned production of mechanical work. While the hair bundle was bathed in this 

drug and for all stimulus frequencies and amplitudes, we saw a striking absence of hair-

bundle work production (Figure 4.3 A, B). Several minutes after turning off the 

iontophoretic current, WA returned almost completely to baseline values, and frequency 

tuning resumed (Figure 4.3 C, D). In the hair bundle’s recovery from the drug, we were 

surprised to see the development of negative values of WA at higher frequencies of 

stimulation (Figure 4.3 D, right two-thirds of graph).  

Including the cell whose data are shown in Figures 4.1 – 4.3, we obtained 

recordings from seven L. appendix hair cells that performed positive mechanical work 

comparable to, but often several-fold greater than, that produced by bullfrog saccular hair 

bundles (Martin and Hudspeth, 1999). Additionally, we successfully iontophoresed 

gentamicin onto four of these cells and observed their work production vanish; in three of 

these cells we were able to record a post-gentamicin recovery of work production. 

Furthermore, all seven recordings showed frequency dependence of work production; 

when driven more than a few hertz above their oscillation frequency, positive work 

production sharply declined. 
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Figure 4.3. Frequency-tuned work production by L. appendix utricular hair bundles 

is reversibly abolished by gentamicin. A. During iontophoretic application of 

gentamicin, driving the stimulus fiber at 3 Hz and 56 nm yielded WSF = +4 zJ, WD = -6 zJ, 

giving WA = -2 zJ (left). At 18 Hz and 56 nm, WSF = +29 zJ, WD = -22 zJ, making WA = +7 

zJ (right). B. WA calculated for each driving frequency and amplitude in the presence of 

gentamicin. The closed black arrow indicates the WA value calculated from (A, left) and 

the open black arrow indicates that calculated from (A, right). C. Several minutes after 

ceasing gentamicin iontophoresis, stimulation at 3 Hz and 56 nm gave WSF = -147 zJ, 

WD = -97 zJ, making WA = -+244 zJ (top). The 18 Hz, 56 nm stimulus yielded 

WSF = +238 zJ and WD = -150 zJ, yielding WA = -88 zJ (bottom). D. WA calculated for 

each driving frequency and amplitude after gentamicin removal. The closed black arrow 

indicates the WA value calculated from (C, top) and the open black arrow indicates that 

calculated from (C, bottom). 
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5. Discussion

Hair bundles are active participants in the process of sensory transduction. They 

expend chemical energy to perform work, and can harness this capability to amplify their 

mechanical response to a stimulus – loosely analogous to a child on a swing working to 

amplify an external push. The hair-bundle active process preferentially amplifies low-

amplitude stimuli, compressing a million-fold range of sound amplitudes into a hundred-

fold range of mechanical response (Hudspeth, 2008). This ability to entrain to and 

selectively amplify the weakest of tones allows an animal to detect vibrations of an 

amplitude comparable to that of thermally fluctuating water molecules. The active 

process is also tuned: for a given hair cell, a particular frequency elicits a mechanical gain 

much higher than do its flanking frequencies, a feature valuable in the analysis of 

complex sounds. Under some conditions, the hair bundle’s state can cross a bifurcation 

into an unstable regime, at which point it undergoes spontaneous oscillations. All these 

traits, characteristic of an amplifier operating near a Hopf bifurcation, are seen in the 

behavior of the hair cells of tetrapod vertebrates. Although some tetrapod groups have 

derived an additional amplifying process (Fisher et al., 2012; Beurg et al., 2013) and 

some insects appear to have independently evolved an analogous amplifier (Warren et al., 

2010), the hair-bundle active process is currently presumed unique to tetrapod 

vertebrates. 

Every vertebrate, however, does have an inner ear populated with hair cells. 

Although some mechanical studies of teleost fish ears have suggested nonlinear 

amplification (Rabbitt et al., 2010), the question of amplification by the hair cells of non-

tetrapod vertebrates has been largely ignored. We have therefore inquired whether the 
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active process had already evolved before the emergence of the tetrapods, and even the 

emergence of teleosts; is this perhaps a trait ancestral to all vertebrates? 

When studying vertebrate “inventions,” we often gain insights from the vertebrate 

group most distantly related to us: the jawless vertebrates, a clade whose extant members 

are hagfish and lampreys (Figure 1.9) (Blair and Hedges, 2005; Janvier, 2011). For 

example, the adaptive immune system is fundamentally similar among all jawed 

vertebrates, with the genes for T-cell receptors and B-cell receptors separated into the 

canonical rearranging segments, with common recombinase genes, and with conserved 

genes employed for antigen presentation. These similarities, maintained from sharks to 

chickens, imply that the origin of our adaptive immune system predates the radiation of 

jawed vertebrates (Cooper and Alder, 2006). Yet taking the smallest possible step in the 

basal direction, examining extant lampreys and hagfish, reveals a radically different but 

functionally analogous adaptive immune system. In jawless vertebrates, different genes 

are used to generate the staggeringly diverse antigen receptors forming the basis of 

adaptive immunity. But further investigations revealed that, despite these differences, 

jawless and jawed vertebrates both develop three lineages of immune lymphocytes 

(Hirano et al., 2014). Immunologists now face the surprising possibility that the 

fundamental organization of the immune system is ancestral to all vertebrates, with two 

independent strategies for antigen recognition that evolved later. 

Because hair cells occur in all vertebrates, and even in members of their sister 

group (Burighel et al., 2003), we inquired whether the hair-bundle active process is 

ancestral to the entire vertebrate clade by investigating lampreys. If we found their hair 

cells to employ an amplifying ability, we wanted to know whether it was homologous or 
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analogous to the active process of tetrapods. Given that jawed and jawless vertebrates 

each radiated and evolved for 520 – 650 million years (Blair and Hedges, 2005) after 

their divergence, we accepted that even a homologous active process could have differing 

manifestations between these two groups. 

We found that the utricular hair bundles of two lamprey species, L. appendix and 

P. marinus, displayed robust spontaneous oscillations. For both species, the oscillations 

bore a striking similarity to those from the bullfrog’s sacculus in their regularity and in 

their display of two timescales (Figure 3.4). In other words, they resembled “relaxation 

oscillations,” implying that something in these lamprey hair bundles slowly adjusts an 

internal parameter, driving the hair bundle to an instability that provokes a rapid lurch. 

Because we next wished to ascertain the likelihood that lamprey oscillations are 

homologous with tetrapod spontaneous oscillations, this initial mechanistic hint was 

heartening and instructive. 

We focused on one species, L. appendix, and first explored the slow-timescale 

component of its spontaneous oscillations. Applying the model of tetrapod hair-bundle 

motility, we predicted that the slow, active driver of lamprey hair-bundle motility might 

be a form of myosin. As a potential effector of adaptation, this protein might be sensitive 

to feedback from the transduction channels. Not knowing the channels’ conductance 

properties, we held a working assumption that as in tetrapods Ca2+ enters through 

channels and serves as this feedback signal. Our experimental manipulation of Ca2+ 

supported this; higher concentrations of extracellular Ca2+, which increase the flux of this 

ion through open transduction channels, abbreviated the time an oscillating hair bundle 

spent deflected toward its taller edge. Furthermore, this effect was limited to the states 
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when transduction channels were expected to be open; extracellular Ca2+ had little effect 

on the time a hair bundle spent deflected toward its shorter edge (Figure 3.5). This result 

is consistent with intracellular Ca2+ feeding back on a myosin motor, promoting its 

slippage down stereociliary actin. 

Our work with Ca2+ provided two general insights. First, the key role played by 

this cation in regulating hair-bundle dynamics is likely to be conserved throughout 

vertebrates. Second, the effects of this cation were consistent with a myosin acting as the 

driver of spontaneous oscillations in the lamprey. To further test the latter proposition, we 

employed known myosin blockers. Butanedione monoxime consistently abolished 

lamprey spontaneous oscillations in a manner that was often reversible. This drug has 

classically been used in studies of the bullfrog’s hair cells, with a similar effect. Because 

tetrapod hair cells almost certainly employ myosin Ic as their adaptation motor, we also 

treated oscillating hair bundles from lamprey with a selective inhibitor of class I myosins 

called PClP. Although extracellular application of this drug rapidly halted spontaneous 

oscillations of hair bundles from the bullfrog, to our surprise it failed to halt these 

movements in the lamprey. Further work remains to be done to assure us that the drug 

indeed enters lamprey hair bundles. The adaptation motor of bullfrog hair bundles is 

affected dramatically within several minutes of applying 2.5 μM PClP, whereas lamprey 

hair bundles continue oscillating in four-fold higher concentrations of the drug for 

upwards of 30 minutes. It seems very unlikely that membrane permeabilities to this drug 

vary so extremely between these species. That lampreys and tetrapods seem to employ 

different classes of myosin as their adaptation motors affects the evolutionary 

interpretations of our study. This will be discussed in greater detail below. 
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Our findings at this point indicated that, as in tetrapods, the hair bundles of 

lampreys possess mechanotransduction channels whose collective gating creates negative 

bundle stiffness (Figure 1.6). The rapid jumps seen in lamprey spontaneous oscillations 

suggested this (Figure 1.8). And more specifically, that altering extracellular Ca2+ 

affected only the positive residence time suggests that these rapid jumps correlate with 

transitions between states of differing Ca2+ conductance. This finding implied that the 

rapid jumps were the mechanical result of concerted channel gating: jumps toward the 

positive edge represented channels snapping open, and negative-going jumps stemmed 

from channels slamming shut. To pursue this further, we employed a known blocker of 

tetrapod mechanotransduction channels, gentamicin. Applying this drug extracellularly 

reversibly halted lamprey spontaneous oscillations and did so in a concentration-

dependent manner, biasing the hair bundle toward its taller edge. This result agreed with 

the mode of gentamicin’s action on bullfrog hair bundles, in which the drug wedges 

channels in their open configuration while occluding their conductance pathway. Thus we 

gained evidence that the lamprey hair-cell mechanotransduction channels generate the 

mechanical instability required for relaxation oscillations and are sufficiently similar to 

gnathostome transduction channels to afford a sensitivity to gentamicin. 

Spontaneous hair-bundle oscillations arise as an epiphenomenon of an active 

process that is capable of mechanically amplifying sinusoidal stimuli, endowing hair 

bundles with the ability to respond to weak inputs in a frequency-tuned manner (Martin 

and Hudspeth, 1999). Knowing this, we sought to determine whether spontaneous hair-

bundle oscillations in the lamprey are associated with an ability to mechanically amplify 

sinusoidal stimuli. Indeed, we found that lamprey hair bundles can entrain to a periodic 
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stimulus and in so doing, contribute hundreds of zeptojoules of mechanical work to each 

cycle of motion. Comparing responses to stimuli of the same amplitude and of 

frequencies just below the preferred frequency of each bundle, we were intrigued to see 

that lamprey hair bundles could perform five times the mechanical work exerted by 

bullfrog hair bundles (Martin and Hudspeth, 1999). Perhaps a further investigation of the 

lamprey transduction apparatus can help explain the apparent brawn of lamprey hair 

bundles. As our understanding of energy dissipation in hair bundles continues to improve, 

we could alternately re-calculate work production by lamprey and bullfrog hair bundles 

with improved estimates of hydrodynamic drag coefficients. These improved estimates 

can be calculated from the Brownian motion of both species’ hair bundles after cleaving 

tip links; after decoupling bundle motion from internal viscoelastic elements, non-

hydrodynamic sources of dissipation can be ignored. Viscoelastic contributions were 

originally considered to be dwarfed by hydrodynamics (Denk et al., 1989; Martin and 

Hudspeth, 1999), but recent analyses of bullfrog hair bundles (Bormuth et al., 2014) 

suggest that the hydrodynamic drag coefficient used in the calculation of active work by 

sinusoidally driven bullfrog hair bundles had been overestimated by roughly 50%. 

Addressing this in both bullfrog and lamprey will facilitate direct comparison between 

work production in these disparate species. 

Given these data, our view is that the active process likely existed in the ancestor 

to all vertebrates. However, an alternate scenario remains possible – that the active 

process evolved more than once in the vertebrates, and the lamprey active process can be 

regarded as analogous to that of tetrapods. We consider this explanation less 

parsimonious, especially in light of the functional similarities between this trait in the two 
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groups. But there are reasons to maintain the possibility of convergent evolution. First, 

our findings with the class I myosin inhibitor PClP suggest that different classes of 

myosins are employed as the adaptation motors in the two groups. With this mechanistic 

difference in mind, we can imagine a stepwise evolution of the active process (Hudspeth, 

2008). Maybe hair cells in the ancestor to jawed and jawless vertebrates lacked one 

ingredient of the active process, having no adaptation motors, or having adaptation 

motors that were insensitive to Ca2+ entry from transduction channels (Choe et al., 1998). 

We could grant that this ancestral hair cell possessed the second ingredient of the active 

process, negative stiffness (Figure 1.6). Though not obviously adaptive on its own, 

negative stiffness can emerge from the gating of mechanotransduction channels. It seems 

possible that the hair bundles of jawless and jawed vertebrates retained this 

plesiomorphic state, but at some point each independently incorporated a Ca2+-sensitive 

myosin motor into its transduction apparatus. 

A second reason to not reject the possibility of convergent evolution between the 

two clades is that we could have more widely sampled the extant members of these 

groups. The two species of lamprey we examined, L. appendix and P. marinus, share a 

relatively recent common ancestor that existed 10 – 40 million years ago (Kuraku and 

Kuratani, 2006), whereas the rift between jawed and jawless vertebrates occurred in the 

much more distant past, around  600 million years ago (Blair and Hedges, 2005). 

Although describing spontaneous oscillations in two lamprey species bolsters our claim 

that the active process is ancestral to all vertebrates, the relative closeness of these 

species is a weakness. The 550 million years between the jawed-jawless node and the 

Lampetra-Petromyzon node afforded considerable time for evolutionary change to take 
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place, reducing the utility of the parsimony employed in the preceding paragraph. To 

address this, we suggest examining the inner-ear hair bundles of the pouched lamprey 

Geotria australis, a resident of the southern hemisphere. This species diverged from the 

two species used in this study 220 – 280 million years ago (Kuraku and Kuratani, 2006). 

Another valuable pursuit would be looking for hair-bundle motility in a species of the 

hagfish, whose most recent ancestor shared with the lamprey existed 430 – 520 million 

years ago (Blair and Hedges, 2005; Kuraku and Kuratani, 2006). 

In jawed fish, the ancestral mode of acoustic perception is thought to be near-field 

hearing, or the perception of oscillating hydrodynamic flows from a vibrating source 

(Figure 1.4, left column). Because the spatial extent of the acoustic near field is 

proportional to the wavelength of a sound, low-frequency tones are the most useful 

stimuli emanating from a distant sound source for these hearing “generalists.” Our 

finding that the lamprey’s utricular hair bundles preferentially amplify tones below 10 Hz 

may be related to this fact. Furthermore, the sound amplitude in the acoustic near field 

decays as steeply as 1/r3 in relation to the distance r from the source (Fay and Popper, 

1999). We might therefore expect amplification of very faint vibrations to be of use when 

an animal must detect a distant stimulus, as might be the case for an adult parasitic 

lamprey seeking a teleost host. 

It may also be important for lamprey to detect self-generated movements of their 

own body to provide feedback to motor systems. For example, swimming by lampreys 

entails significant oscillations of the head in the horizontal plane, and their ocular 

muscles are capable of adjusting eye position in the same plane (Maklad et al., 2014). 

The detection of head motion may therefore influence the activity of these muscles. 
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Loaded with an overlying otolithic mass, the utricular hair cells may be poised to detect 

head vibrations through the same mode posited for near-field sound detection: vibrations 

of the fish are lagged by vibrations of the inertial mass, deflecting hair bundles (Figure 

1.4). Furthermore, the periodic horizontal motion of the head of a swimming lamprey 

occurs at several hertz, near the stimulus frequency provoking peak work production by 

utricular hair cells (Figure 4.2). It would be interesting to further explore this issue, which 

could represent the first time the active process has been implicated in sensorimotor 

feedback. 

Our finding that the active process likely evolved before the evolution of jaws 

may help us better understand the evolutionary history of vertebrates. This observation 

suggests that, in the absence of secondary losses, the hair bundles of cartilaginous fish, 

sturgeons, and ray-finned fish probably all display this active process. This may 

especially inform our view of the hearing “specialists,” such as catfish, that have evolved 

peripheral mechanisms for detecting far field sound in water (Figure 1.4, right column). 

In this group, far-field hearing is thought to have evolved under pressures to detect high-

frequency sounds, the sensory transduction of which is particularly antagonized by 

hydrodynamic drag (Hudspeth, 2014). Our study is the first to afford an initial 

presumption that the ancestors to these hearing specialists had an active process to 

counter the dissipative effects of drag, giving high-frequency sounds some chance to be 

transduced. Against the backdrop of this symplesiomorphy, it is easier to imagine how 

peripheral mechanisms of far-field reception could have been selectively advantageous. 

This speculative extension of our findings into the teleost group indicates how the new 

insights of our study can be applied to studying the history of vertebrates and their ears. 
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