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CHARACTERIZATION OF HISTONE H2A DOMAINS IMPORTANT FOR 

REGULATION OF THE DNA DAMAGE RESPONSE 

 

 Elizabeta Gjoneska, Ph.D. 

The Rockefeller University 2010 

 

DNA double strand breaks represent deleterious lesions which can either 

be caused by environmental or endogenous sources of DNA damage.  Efficient 

DNA damage response which ensures repair of these lesions is therefore critical 

for maintenance of genomic stability.  The repair happens in the context of 

chromatin, a three-dimensional nucleoprotein complex consisting of DNA, 

histones and associated proteins.  As such, mechanisms that modulate chromatin 

structure, many of which involve the histone component of chromatin, have been 

shown to play a role in regulation of the DNA damage response.   In my thesis 

work I characterize two conserved histone H2A functional domains that are 

required for normal response to DNA damage.   

In the first part of my thesis, my collaborators and I demonstrate that 

Tetrahymena major histone H2A.S contains an H2A.X variant-specific SQ motif 

within its C-terminal tail, providing the first description of this region in ciliated 

protozoa.  The function of the SQ motif is mediated by post-translational 

phosphorylation of the conserved serine which is essential for normal 

progression through Tetrahymena life cycle, and in particular, meiosis.  This study 

provides the first evidence for the existence of meiotic DSBs in Tetrahymena and 

defines the time interval of meiotic recombination in this organism. 



In the second part of my thesis, I describe a functional domain which 

encodes a unique and previously unrecognized role for the histone H2A N-

terminal tail in the DNA damage response in S. cerevisiae.  A DNA damage 

survival property exists within the conserved SRS motif spanning residues 17-19 

of a single turn α-helical region in the H2A tail, known as the ‘knuckle’.  I 

demonstrate that the SRS motif is required for efficient checkpoint recovery 

following successful repair, a function independent of post-translational 

modifications. 

Another contribution of histone H2A in S. cerevisiae, specific to the MMS-

induced DNA damage response, is provided by the three amino-terminal lysines 

which appear to be functionally redundant.   My collaborators and I demonstrate 

that in vivo two of the lysines, H2A K4 and H2A K7, are acetylated individually 

as well as together, and identify the third lysine, H2A K13, as a novel acetylation 

site in S. cerevisiae.   
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

A fundamental question of biology is how eukaryotic cells maintain genomic 

integrity despite being subjected to many environmental and intrinsic sources of 

DNA damage.  The question becomes even more outstanding given the 

compaction of the extensive eukaryotic genome into a three-dimensional 

nucleoprotein complex known as chromatin which represents a physiological 

substrate for the DNA-templated transactions, such as replication, transcription, 

recombination and repair.  The packaging of DNA into chromatin therefore 

creates a number of significant barriers for detection of DNA lesions and their 

efficient repair.  In response, cells have developed various mechanisms that 

modulate chromatin structure and ensure a timely and accurate repair.  

In the following sections I will provide a general overview of chromatin 

organization and the mechanisms that govern its functions.  In particular, I will 

summarize the current knowledge about the roles of relevant histone variants, 

histone modifications, and ATP remodeling complexes in regulation of 

chromatin dynamics during DNA damage.  In that context, I will describe two 

distinct processes that elicit DNA damage response, meiotic recombination and 

DNA damage inflicted by exogenous agents, and point out outstanding 

questions which my research attempts to address.  Finally, I will introduce 

Tetrahymena thermophila, the ciliate model organism used for part of this work, 

and provide a general overview of its biology.   
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The nucleosome 

The fundamental building block of chromatin is the nucleosome core particle 

(NCP) which consists of 147 bp of DNA wrapped around an octamer containing 

two copies of each of the four core histone proteins H2A, H2B, H3 and H4.  

Various X-ray crystal structures of NCPs from different organisms (Davey et al., 

2002; Luger et al., 1997; White et al., 2001), or reconstituted with recombinant 

histones (Luger et al., 1999), including histone variants (Suto et al., 2000) have 

been solved under high resolution.  Based on the detailed information available 

from the three-dimensional structures and a wealth of biophysical analyses, the 

four core histones within the nucleosome core particle interact in pairs via a 

‘handshake motif.’   Two histone H3-H4 dimers associate together further to 

form a hetero-tetramer which interacts with the middle and both ends of the 

nucleosomal DNA (Luger et al., 1997).  The H3-H4 hetero-tetramer is flanked on 

each side by histone H2A-H2B dimers which are more weekly associated with 

the DNA (Oohara and Wada, 1987) and therefore more easily displaced from 

nucleosomes (Aragay et al., 1988; Kimura, 2005; Kimura and Cook, 2001; Kireeva 

et al., 2002; Vicent et al., 2004). 

 Protruding from the histone core are the largely unstructured N- and C- 

terminal tails which are only partially resolved in the structure of the nucleosome 

core particle (Luger et al., 1997).  These tails exit the nucleosome most frequently 

through the DNA minor groove and make contacts primarily to the surface of 

the histone octamer of neighboring particles. Of particular interest to my 

research is a structural motif within the histone H2A N-terminus designated as 

the ‘knuckle’ (Figure 1.2) (Luger and Richmond, 1998).  It is a single turn α-helix 

that precedes the histone H2A α1 helix and maps to the nucleosome surface in 

close proximity to the DNA.   Interestingly, immediately adjacent to the location 

of this H2A region, the tail of H2B passes through a minor groove channel and 

2



therefore it is plausable that the ‘knuckle’ might act to tether the H2A-H2B dimer 

to the nucleosome. 

 

               
 
Figure 1.1:  Histone H2A ‘knuckle’ localization within the NCP structure 
The histone octamer from the nucleosome core structure viewed along the DNA 
superhelical axis direction.  The first and last amino acid position of each histone 
tail observed in the crystal structure is labeled.  The regions of the tails and 
histone-fold extension which are in contact with the DNA are shown by dark 
solid lines.  The amino acids which could not be interpreted are shown in 
arbitrary positions (striped lines).  Acetylation sites within the observed structure 
are indicated by filled arrows and the others by empty arrows.  Ubiquitylation 
sites are marked as U’s.  The H2A ‘knuckle’ is indicated and boxed in red 
(adapted from Luger and Richmond, 1998). 

 

 

 

3



Histones 

Histones were first described in 1884 by Kossel when he isolated acid-soluble 

proteins from bird erythrocyte nuclei (reviewed by Van Holde, 1989).  The core 

of the nucleosome particle consists of four types of histones, H2A, H2B, H3 and 

H4, also known as ‘core’ or canonical histones (Luger et al., 1997).  They are 

small, basic proteins with molecular weights ranging from 11 to 16 kDa, 

exhibiting remarkable degree of sequence conservation throughout evolution.  A 

fifth histone, linker histone H1, interacts with the nucleosome core in a presence 

of a linker DNA and plays an essential role in the formation of compact higher-

order chromatin structure (Thomas, 1999).   

Structurally, all core histones are composed of a distinct motif known as 

the ‘histone fold’ or a globular domain, and a highly dynamic flexible histone tail 

extension (Arents et al., 1991).  The ‘histone fold’ domain is important for 

histone-histone interaction and nucleosome core formation.  It constitutes ~70% 

of the histone mass and is characterized by three α-helices and two intervening 

loops.  The remaining histone mass belongs to the tail extensions protruding 

from the nucleosome. These tail regions are enriched with charged residues 

which are thought to be important for DNA-histone interactions within the 

nucleosome, as well as histone-histone and DNA-histone interactions between 

the nucleosomes.   Indeed, in vitro evidence suggests that the N-tails are 

important for nucleosome positioning along the DNA (Yang et al., 2007) and can 

mediate internucleosomal contacts required for the formation of higher-order 

chromatin structures (Gordon et al., 2005; Zheng and Hayes, 2003).  

Importantly, the histone tail domains are primary sites of post-

translational modifications and it is now well appreciated that they are key 

determinants of chromatin fiber dynamics (Strahl and Allis, 2000). 
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The higher-order structure 

The fundamental level of DNA organization achieved by the nucleosome cannot 

fully explain the packaging of DNA observed in the nucleus (see 1, Figure 1.2).  

In fact, several successive levels of hierarchical organization are necessary to 

accomplish sufficient DNA compaction.  The arrangement of individual 

nucleosomes onto the DNA produces a nucleosome array known as 11-nm fiber 

or ‘beads on a string,’ both designations derived from electron micrographs (see 

2, Figure 1.2). This nucleosome array compacts the DNA ~six fold.  Subsequent 

association of the linker histone H1 brings about the next level of organization in 

which the 11-nm ‘beads on a string’ nucleosome array is folded into an irregular 

rod-like structures ~30 nm in diameter in which the DNA is condensed another 

six fold (see 3, Figure 1.2).  Two competing models have been proposed 

regarding the way in which the 30-nm fiber is organized.  A ‘solenoid’ (one-start 

helix) model whereby 6-8 nucleosomes are coiled around a central axis, or an 

alternative, more open, ‘zig-zag’ (two-start helix) model which forms a 

condensed ribbon of linker DNA that connects two parallel rows of nucleosomes.  

Considerable evidence, some based on a X-ray crystal structure of a four 

nucleosome model system, supports the existence of an asymmetric zig-zag 

model as a basic principle of chromatin folding (Khorasanizadeh, 2004; Schalch 

et al., 2005).  

The 30-nm fibers are subsequently further folded into higher-order 

structures by superhelical twisting of solenoid loops whose bases are attached to 

a non-histone protein scaffold (see 4, Figure 1.2).  These higher-order structures 

partition the eukaryotic genome into distinct functional domains that impact on 

cellular processes, such as gene expression and chromosome stability.   In 

particular, a combination of locally extended euchromatin associated with 

transcriptionally active regions and extensively condensed heterochromatin, or 
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Figure 1.2:  DNA compaction into higher-order chromatin structure 
Eukaryotic DNA is folded and packed in an efficient manner.  Several successive 
levels of the hierarchical organization of DNA packing in a chromosome are 
schematically shown top to bottom.  The basic level of DNA packaging into the 
chromatin structure is the mononucleosome, an octamer of histones (2 copies 
each of H2A, H2B, H3 and H4) with 147 base pairs of DNA wrapped nearly 
twice around. A short stretch of linker DNA connects the nucleosomes to one 
another to form a polynucleosome 10-nm ‘bead-on-a-string’ form of chromatin 
(see 2 in figure). A fifth histone, H1, binds to the DNA as it exits the nucleosome 
to bring about the next level of organization in which the string of nucleosomes 
is folded into a irregular rod-like structure to form a fiber about 30 nm in 
diameter (see 3 in figure).  These fibers are then further folded into higher-order 
structures by superhelical twisting of solenoid loops the bases of which are 
attached to a non-histone protein scaffold (see 4 and 5 in figure) (adapted from 
Pearson Education, Inc,. publishing as Benjamin Cummings, 2006). 
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               Figure 1.2 
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‘silent’ chromatin, which consists predominantly of transcriptionally inactive               

genes, can be observed within a single nucleus.  Finally, the most condensed 

DNA structure is observed during metaphase of mitosis and meiosis which 

brings about a massive 10,000-fold overall compaction to allow for faithful 

genome segregation (see 5, Figure 1.2).            

 

DNA damage 

The genome integrity is continuously challenged by numerous exogenous and 

endogenous DNA damaging factors which induce a variety of lesions with a 

diverse and adverse consequences.  Proper genome function therefore depends 

on the faithful maintenance of its integrity which is ensured by an intricate 

network of DNA damage response mechanisms.   

 There are at least four major damage repair pathways operational in 

eukaryotic cells depending on the type of DNA damage lesion: nucleotide 

excision repair (NER), base excision repair (BER), homologous recombination 

(HR) and non-homologous end joining (NHEJ) (reviewed by Hakem, 2008; 

Peterson and Cote, 2004).  Lesions repaired by NER and BER affect only one of 

the DNA strands.  Small types of base chemical alterations, such as alkylation or 

oxidation, are targeted by the BER pathway which is initiated by a large number 

of lesion-specific glycosylases that clip off damaged bases to create an abasic site.  

The NER pathway on the other hand, deals with large or bulky chemical adducts 

that destabilize the DNA double helix and potentially obstruct transcription and 

replication.  This includes major UV-induced photoproducts, such as cyclobutane 

pyrimidine dimers and 6-4 photoproducts, which cause helix-distorting single-

strand lesions detected by the xeroderma pigmentosum group C (XPC) complex 

and the UV damage DNA binding protein (UV-DDB) (Gillet and Scharer, 2006).  

Once bound, these complexes initiate NER by assembling repair factors such as 
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helicases as well as single strand DNA-binding proteins including XPA and RPA 

which stabilize the helicase-unwound DNA.  The unwound DNA containing the 

injury is excised, the resulting single-strand gap is filled by the DNA replication 

machinery and sealed by DNA ligase, resulting in an error-free DNA repair (de 

Laat et al., 1999; Evans et al., 1997; Moser et al., 2007).   

DNA double strand breaks (DSBs) affect both strands of the DNA and can 

lead to loss of genetic information and therefore are considered to be the most 

severe type of DNA damage.  In addition to DSBs produced as normal 

intermediates of physiological recombination events such as meiosis and 

immunoglobulin gene rearrangements, DSBs can be induced by two of the 

commonly used DNA damaging agents in the laboratory, methyl methane 

sulfonate (MMS) and hydroxyurea (HU).  The primary MMS-induced lesions are 

actually abasic sites, products of base excision repair removal of alkylated bases, 

however during replication these single-strand break-intermediates are 

converted into DSBs.  HU on the other hand, directly affects the DNA synthesis 

process through inhibition of ribonucleotide reductase thereby causing 

nucleotide depletion and DSB formation at stalled replication forks.   

In eukaryotic cells chromosomal DSBs are repaired by two conserved 

pathways: (1) homologous recombination (HR), which allows for error-free 

repair by using the genetic information from the undamaged sister chromatid or 

homologous chromosome as a template, and (2) the error prone non-homologous 

end joining (NHEJ) pathway, the predominant mode of DSB repair in mammals, 

which does not require any DNA sequence homology and involves direct 

ligation of broken DNA ends (Figure 1.3) (Pardo et al., 2009; van Attikum and 

Gasser, 2005).  Members of the MRN (Mre11-Rad50-Nbs1) or MRX (Mre11-

Rad50-XRS2) complex, in mammalian cells and yeast respectively, have an early 

role in the detection of DSBs during both HR and NHEJ.  These complexes bind 
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eukaryotic cells have evolved various mechanisms that regulate the packaging of 

DNA into higher-order chromatin structures and allow genome accessibility to 

proteins involved in DNA transactions, including DNA damage repair.  These 

include: (1) incorporation of histone variants into nucleosomes, (2) covalent 

histone post-translational modifications, and (3) ATP-dependent chromatin 

remodeling.  Each of these will be discussed separately with a focus on DNA 

repair. 

 

Histone variants 

Chromatin structure and function in vivo is influenced by specialized histone 

variants.  These variant or ‘replacement’ histones as they are commonly referred 

to, were identified based on differences in their primary amino acid sequence 

relative to the major, canonical histone species (Kamakaka and Biggins, 2005).  

They can also be distinguished from the canonical histones by their distinct 

expression and localization patterns.  Unlike canonical histones, histone variants 

are expressed from a set of single genes which are not subject to stringent 

regulation.  Instead, they are expressed throughout the cell cycle and assembled 

into chromatin independently of DNA replication.  Their incorporation into 

chromatin has been shown to be important for gene regulation, meiotic events 

and DNA repair.   

With exception of histone H4 which is invariant, variants have been 

identified for all of the remaining histones.  A few variants of H2B and H1 are 

known to date, which have been shown to play an important role in chromatin 

compaction, particularly during spermatogenesis (Brown, 2003; Parseghian and 

Hamkalo, 2001; Poccia and Green, 1992).  Histone H3 also has two major 

variants:  CENP-A (centromere protein A), an evolutionarily conserved variant 

that is specific for centromeric chromatin and essential for centromere function 

10



and process the broken DNA ends converting them into 3’ single strand (ss) 

DNA overhangs.  Generation of ssDNA overhang is a necessary binding 

platform for the RPA complex which helps load DNA repair proteins such as 

Rad52 and Rad51.  These proteins ensure that a homologous DNA sequence is 

found that would result in a successful strand invasion into a homologous 

chromosome. After strand invasion, DNA polymerase extends the invading 

strand using the homologous chromosome as a template thereby effectively 

restoring the strand that was displaced during the invasion.  Alternatively, 

single-strand annealing (SSA) is a form of homologous recombination that 

involves annealing of ssDNA tails at complementary sequences on both sides of 

the DSB and removal of the intervening DNA (Prado et al., 2003).  In each case, 

the repair event is completed by DNA ligation that seals the break.  During 

NHEJ the broken DNA ends are detected and bound by the Ku70/Ku80 

heterodimer which holds the ends together to facilitate their direct re-ligation by 

DNA ligase 4.  MRN (or MRX) complex resection of the DNA ends prior to the 

ligation generally results in an error prone repair of the break. 

Finally, organisms have developed checkpoint mechanisms that delay 

cell-cycle progression in response to DNA damage or replication stress, in order 

to ensure that a break has been repaired.  These checkpoint mechanisms rely on 

the activity of sensor proteins, adaptor kinases and effector kinases (Harrison 

and Haber, 2006).  Sensor proteins detect the presence of DNA damage and relay 

the signal to effector kinases which regulate the activity of downstream targets 

responsible for expression of repair and cell-cycle progression proteins.  
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Figure 1.3: Pathways for DNA double strand break repair 
A DNA double strand break can be repaired by homologous recombination (HR) 
or non-homologous end joining (NHEJ) pathway.  Shown are the mechanisms 
and the key protein factors involved in each pathway in S. cerevisiae (adapted 
from van Attikum and Gasser, 2005).    

Chromatin structure dynamics 

Although chromatin has long been viewed as a stable entity, an inert structural 

scaffold that protects and organizes the genetic information encoded in the DNA, 

as such it would represent a physical barrier to the accessibility of the relevant 

biological machineries to the DNA substrate.  It is now recognized that 

chromatin is much more dynamic than was previously understood.  Indeed, 
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(Black and Bassett, 2008; Howman et al., 2000; Palmer et al., 1987), and H3.3, 

which is deposited preferentially at transcriptionally active regions (Ahmad and 

Henikoff, 2002; Sarma and Reinberg, 2005).  Histone H2A has a largest family of 

variants documented to date.  There are five H2A proteins with considerably 

different sequences from the major H2A.  H2A.X and H2A.Z identified in the 

1980s, localize throughout the genome, whereas macroH2A.1 and macroH2A.2 

discovered in the 1990s, and H2A.Bbd (Barr body deficient) in 2001, localize to 

the inactive X or the autosomes, respectively (Chadwick and Willard, 2001, 2003; 

Costanzi and Pehrson, 1998).  Here I will focus on the H2A.X variant, as it has 

been shown to play an important role in the cell’s response to DNA damage. 

 

H2A.X  

H2A.X was first identified in human cells as an electrophoretic type of the 

core histone H2A (West and Bonner, 1980).  Upon its sequencing in the late 80s 

(Mannironi et al., 1989), H2A.X became defined by the presence of a conserved 

SQ motif, usually localized within the last 4 residues in the C-terminus, followed 

by a penultimate acidic residue (E/D) and a terminal hydrophobic residue 

(Y/F/I/L).  Another unique feature of H2A.X is its specific phosphorylation of 

the conserved serine within the C-terminal motif in response to DNA double-

strand breaks produced by ionizing radiation (Rogakou et al., 1998) or in the 

course of programmed DNA rearrangements (Chen et al., 2000; Rogakou et al., 

2000), including meiotic homologous recombination (Mahadevaiah et al., 2001).  

Interestingly, unlike other histone variants which have distinct chromatin 

localization patterns, H2A.X does not appear to be specifically targeted to DSBs 

as it accounts for different percent of the total H2A complement in various 

organisms (Rogakou et al., 1998).   Thus H2A.X is likely to be randomly 

distributed throughout the genome.  The phosphorylation of the conserved C-
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terminal serine however, is limited to the regions flanking DSBs in what has 

become known as nuclear foci (Rogakou et al., 1999), where it serves as an 

assembly platform for the components of the DNA DSB response machinery, 

including proteins involved in checkpoint signaling, DNA repair and chromatin 

remodeling (Downs et al., 2004; Fernandez-Capetillo et al., 2002; Kobayashi et al., 

2002; Lukas et al., 2004; Nakamura et al., 2004; Rappold et al., 2001; Strom et al., 

2004; Ward et al., 2003).   

Although it is not a primary recognition site for DNA damage response 

factors as it is dispensable for their initial recruitment to the DSB sites (Celeste et 

al., 2003), the phosphorylation of H2A.X at its C-terminal serine (S129 in S. 

cerevisiae and S139 in mammalian cells) also referred to as γH2A.X, is important 

for factor retention and accumulation.  Additionally, γH2A.X promotes 

chromatin reorganization around the lesion site (Fernandez-Capetillo et al., 2003; 

Kruhlak et al., 2006a; Kruhlak et al., 2006b).  Both of these functions which are 

likely related, serve to facilitate the synapsis of broken chromosome ends and are 

required for efficient DNA repair.  Indeed, disruption of the γH2A.X 

phosphorylation site in S. cerevisiae, causes mild sensitivity to DSB-inducing 

agents (Downs et al., 2000).  Moreover, heterozygous and homozygous null 

alleles of mammalian H2A.X in the absence of the p53 ‘gatekeeper’ protein, 

known to safeguard against genomic instability, lead to increased cancer 

susceptibility phenotypes associated with impaired recruitment of DNA repair 

factors to DSBs, repair defects and chromosomal abnormalities (Bassing et al., 

2002; Celeste et al., 2003; Celeste et al., 2002).  As a result, H2A.X has been 

dubbed the ‘histone guardian’ of the genome (Fernandez-Capetillo et al., 2004b).  

Although γH2A.X phosphorylation deficient mutants in S. cerevisiae have a 

relatively mild damage sensitivity phenotype, it has been reported that γH2A.X 

contributes to repair by both DSB repair pathways, NHEJ and HR (Downs et al., 
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2000).  Indeed, Downs and colleagues reported that sensitivity of strains carrying 

mutations that affect either NHEJ (ku70, ku80) or HR (rad52) is exacerbated by 

mutations in the γH2A.X phosphorylation site in S. cerevisiae.  Nevertheless, and 

intriguing hypothesis has been put forth suggesting a specific role for H2A.X in 

the HR repair pathway (Malik and Henikoff, 2003).  Namely, Malik and Henikoff 

argue that the number of H2A.X genes and their expression levels in different 

organisms seem to correlate directly with the extent the particular organism 

utilizes the homologous recombination mechanism.  For example, although 

absent in nematodes that use little homologous recombination, H2A.X is the 

‘major’ histone H2A in budding yeast which accordingly has high levels of 

homologous recombination.  Similarly, in humans and flies the copy number of 

the gene that encodes H2A.X is low, which correlates with the low levels of 

homologous recombination.  Interestingly, the ciliate Tetrahymena thermophila also 

appears to have an active homologous recombination mechanism (Yu et al., 

1988), however a Tetrahymena H2A.X homologue had not been identified prior to 

my studies described in Chapter 1 of this thesis.  

 

Post-translational modifications of histones 

The first evidence that histones are post-translationally modified dates back to 

1964 when Vincent Allfrey and colleagues’ discovered that histones were subject 

to post-translational acetylation and methylation (Allfrey et al., 1964).  It was the 

same study that first put forth the notion that histone modifications might be 

important regulatory elements of biological functions, based on the correlative 

relationship between histone acetylation levels and the rate of RNA synthesis.  

Ever since the pioneering studies of Allfrey and coworkers ~45 years ago, more 

than 70 different histone modification sites have been described, classified into 10 

different modification types.  They include, but are not limited to, 
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phosphorylation of serine and threonine residues, acetylation and ubiquitylation 

of lysines, mono- di- or tri- methylation of lysines and mono- or di- (symmetric 

or asymmetric) methylation of arginines (Kouzarides, 2007) (Figure 1.4).  The 

functional implications of these histone modifications have been explored since 

the initial finding by Allfrey and colleagues.  However, significant advances 

were only made within the past decade owing to the discovery of enzymes that 

regulate these modifications.  In  1996, simultaneous discoveries by two 

independent groups, demonstrated that two known transcriptional regulators, 

namely Gcn5 and Rpd3, function as histone modifying enzymes with opposing 

activities responsible for regulation of histone acetylation steady-state levels 

(Brownell et al., 1996; Taunton et al., 1996).  Thus, the first histone 

acetyltransferase (HAT) and deacetylase (HDAC) were identified, providing a 

direct connection between histone modifications and biological function.   Since 

then, considerable progress has been made in dissecting the enzyme systems that 

govern the steady-state balance of histone modifications revealing several 

enzyme classes that establish (‘write’) histone modifications together with their 

enzyme counterparts that remove (‘erase’) the modification.  For example, the 

histone kinase family of enzymes (Burma et al., 2001; Cheung et al., 2005) 

phosphorylate specific serines and threonines, and these phosphorylation marks 

are removed by phosphatases (PPTases) (Chowdhury et al., 2005; Keogh et al., 

2006).  In addition two general classes of histone methyltransferases (HMTases) 

have been described depending on whether their substrates are histone lysines 

(Lachner et al., 2003; Qian and Zhou, 2006) or arginines (Lee and Stallcup, 2009).  

Although until recently histone methylation was considered chemically stable, 

several classes of histone demethylating enzymes that catalyze the removal of 

specific histone methylation marks have been described in the last few years (Lan 

et al., 2008; Shi et al., 2004; Tsukada et al., 2006).   
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Figure 1.4:  Histone post-translational modifications 
The four histone proteins H2A, H2B, H3 and H4, and their variants are subject to 
post-translational modifications.  Tail sequences from core histones and their 
variants from various organisms are shown. Hum = human; Sce = S. cerevisiae;  
Spo = S. pombe; Tth = Tetrahymena thermophila.  The accession numbers are as 
follows: HumH2A, NP_254280; HumH2A.X, NP_002096; SpoH2A, NP_594421; 
SceH2A, NP_010511; TthH2A.S, AAC37291; TthH2A.F, AAC37292.  Sequences 
are aligned with ClustalW identity algorithm based on the homology in the 
histone fold region (boxed area, sequence not shown).  A suspected 
phosphorylation site in the Tetrahumena H2A.S SQ motif is bolded. The location 
of the H2A ‘knuckle’ region is noted and the residues are highlighted. For clarity, 
only the post-translational modifications with documented involvement in the 
DNA damage response are shown.  Modified amino acids with subscript 
numbers corresponding to their position are colored according to the 
modification.  Phosphorylation (red), methylation (orange), ubiquitylation (blue) 
and acetylation (green) are depicted. With exception of K56 and K79 which map 
to the histone-fold domain the remaining modification sites are localized within 
the N- and C-terminal tails.  
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Figure 1.5:  Molecular mechanisms of histone modifications 
The dynamic functional readout of histone modifications is mediated by two 
general mechanisms.  Covalent histone modifications can directly influence the 
state of chromatin compaction by charge-dependent alterations of 
internucleosomal interactions and histone-DNA contacts (‘cis’ mechanism).  
Examples of ‘cis’ mechanism include acetylation ‘charged patches’ associated 
with transcriptional activation, and phosphorylation patches that can potentially 
lead to chromatin condensation.  Alternatively, histone modifications are 
interpreted by specific recognition modules within nuclear proteins known as 
‘effectors’ which engage them in a context-dependent fashion to bring about 
distinct downstream events (trans’ mechanism).  Examples of histone 
modification-binding modules include tudor domains and PHD domains that 
bind methyl-lysines, BRCT and 14-3-3 domains that bind phosphorylated 
serines/threonines, and bromodomains that bind acetylated lysines.  Ac: 
acetylation, Me: methylation, P: phosphorylation, BD: bromodomain, BRCT: 
breast cancer susceptibility protein C-terminal domain, PHD: plant 
homeodomain. 
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While histone modifications and their respective enzyme systems have 

been extensively studied in the context of transcriptional regulation, evidence 

accumulated within the past decade indicates that they also play a direct role 

during DNA repair by (i) marking the lesion, (ii) recruiting components of the 

repair machineries and (iii) facilitating their action.  Two distinct, but certainly 

not mutually exclusive mechanisms, have been proposed to mediate the dynamic 

functional readout of histone modifications, both of which are relevant to the 

histone functions in DNA repair (Figure 1.5).  These include a ‘cis’ mechanism 

whereby covalent histone modifications directly influence the state of chromatin 

compaction by charge-dependent alterations of internucleosomal interactions 

and histone-DNA contacts.  Alternatively, the ‘trans’ mechanism proposes that 

histone modifications are interpreted by specific recognition modules within 

nuclear proteins known as ‘effectors’ which engage them in a context-dependent 

fashion to bring about distinct downstream events.  The significance of the two 

mechanisms in regulating chromatin dynamics in the context of the DNA 

damage response is discussed below. 

 

Phosphorylation 

Among the different histone modifications, phosphorylation appears to 

play a primary role in the DNA damage response.  All canonical histones, 

including H1 and some of the histone variants undergo phosphorylation on 

serine and threonine residues in vivo.  In fact, phosphorylation of the histone 

variant H2A.X at the C-terminal serine to produce a modified protein designated 

as γH2A.X in response to DNA damage is probably one of the better studied 

post-translational modifications to date (Rogakou et al., 1998). It is carried out by 

members of the phosphoinositol 3-kinase-like kinase (PIKK) family specifically 

ATM (Tel1 in S. cerevisiae), ATR (Mec1), and DNA-PK, which are recruited to 
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lesions through their association with DSB sensor and adaptor proteins (Burma 

et al., 2001; Stiff et al., 2004; Ward and Chen, 2001).  Once the break is repaired 

either by NHEJ or HR, the phosphorylation mark is removed and this has been 

shown to be important for turning off the DNA damage response (Keogh et al., 

2006).  

Multiple mechanisms for eliminating γH2A.X after repair have been 

described, including removal by histone exchange followed by 

dephosphorylation.  The enzymes that catalyze dephosphorylation of γH2A.X, 

namely PP2A in humans and the Pph3 subunit of the H2A phosphatase complex 

(HTP-C) in S. cerevisiae, have a high specific activity for their γH2A.X substrates 

in vitro and regulate γH2A.X status in vivo (Chowdhury et al., 2005; Keogh et al., 

2006).  However, S. cerevisiae Pph3 functions downstream of DNA repair, as it 

appears to target γH2A.X after its displacement from DNA (Keogh et al., 2006).  

Consistent with this observation, lack of functional pph3 does not affect repair 

efficiency.  Instead, Pph3 functions in checkpoint maintenance as pph3 deficient 

cells are defective in checkpoint recovery, suggesting that active 

dephosphorylation of γH2A.X is an important step in signaling successful DNA 

repair (Keogh et al., 2006).  It is also possible that rather than being a signaling 

event, dephosphorylation is simply necessary to restore native chromatin 

structure after repair, however the exact mechanism by which γH2A.X 

dephosphorylation contributes to checkpoint recovery is still unclear.  The 

studies of S. cerevisiae histone H2A described in Chapters 2 and 3 of this thesis 

are likely to shed some light on this process.  

In addition to γH2A.X, S122, another residue within the C-terminal tail of 

S. cerevisiae histone H2A, has also been linked to the DNA damage response.  

Indeed, mutation of this residue displays DNA damage sensitivity, and it 

functions independently from γH2A.X in mediating survival after damage 
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(Harvey et al., 2005).  While S122 phosphorylation has been observed, the kinase 

has not been identified, and it is not yet understood whether phosphorylation is 

important for the DNA damage role of S122 (Wyatt et al., 2003).  

Beside histone H2A.X, histones H2B and H4 are also subject to damage 

mediated phosphorylation events.  The amino terminal tail of H2B is 

phosphorylated at S10 by the Ste20 protein kinase in response to the hydrogen 

peroxide-induced cell death pathway (Ahn et al., 2005a) and meiosis (Ahn et al., 

2005b).  In mammalian cells the Ste20 kinase (Mst1) phosphorylates H2B S14 

instead, and this has also been implicated in apoptosis (Cheung et al., 2003).  

Additionally, Fernandez-Capetillo and colleagues reported that mammalian H2B 

S14 phosphorylation is also induced upon exposure to ionizing radiation or laser 

treatment, and it accumulates at DSBs following γH2A.X (Fernandez-Capetillo et 

al., 2004a).  Interestingly, the accumulation of H2B S14 phosphorylaton at 

radiation-induced foci is dependent on γH2A.X, although loss of γH2A.X does 

not affect H2B S14 phosphorylaton itself.  It is possible that S14 phosphorylation 

marks a subset of DSBs that are irreparable.  Alternatively, it might simply 

facilitate the chromatin condensation process.  Consistent with this function is 

the report that H2B N-terminal tail peptides have a property of self-aggregating 

when phosphorylated at S14 (Cheung et al., 2003).   

 The most recent DNA damage related phosphorylation event was found 

to occur on the N-terminal tail serine 1 of histone H4.  Serine 1 phosphorylation 

is performed by the complex casein kinase II (CK2) in a DNA damage dependent 

manner (Cheung et al., 2005).  Accordingly, CK2 subunits are also important for 

mediating survival after DNA damage as CK2-deficient cells are sensitive to 

damaging agents (Cheung et al., 2005).  
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Acetylation 

Acetylation is an abundant histone modification mainly associated with 

transcriptional activation.  Lysines within the N-terminal tail of histones H3 and 

H4 are the main targets for this modification which neutralizes the basic charge 

of the lysine, thereby potentially altering nucleosomal interactions.  Two decades 

ago it was shown that in response to UV irradiation histones become 

hyperacetylated facilitating more efficient repair, suggesting that acetylation 

induced changes in chromatin structure increase DNA accessibility to DNA 

repair machinery, and not just transcriptional factors (Ramanathan and Smerdon, 

1986, 1989).   

The earliest detectable acetylation event at DSBs is acetylation of 

conserved lysines within the N-terminal tails of histone H3 and H4.  Several 

histone acetyltransferases (HATs), including Nua4, Hat1 and Gcn5 have been 

shown to be responsible for these DNA-damage dependent modifications (Bird 

et al., 2002; Birger et al., 2005; Qin and Parthun, 2002; Tamburini and Tyler, 2005). 

Defects in H3 and H4 acetylaton have been associated with sensitivity to ionizing 

radiation and defective cell-cycle checkpoints. Interestingly, Nua4 dependent 

acetylation of the H4 tail is inhibited by serine 1 phosphorylation of the same tail 

(Utley et al., 2005).  However, temporally H4 acetylation precedes S1 

phosphorylation which in turn is correlated with deacetylation.  Consistent with 

these results the serine 1 kinase CK2 was found to be associated with the histone 

deacetylase complex Sin3/Rpd3 (Utley et al., 2005), which has also been linked to 

DNA DSB repair (Jazayeri et al., 2004).  Taken together, these data suggest that 

Nua4 substrates are deacetylated by the Sin3/Rpd3 complex recruited along 

with the CK2 kinase which then phosphorylates H4 S1 thereby preventing Nua4 

from using the H4 tail as a further substrate for reacetylation.  Additional 

support for this model comes from the report that waves of acetylation and 
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deacetylation of both the H3 and H4 have been observed during DSB repair in S. 

cerevisiae (Tamburini and Tyler, 2005).  Thus, the ability of the cells to survive 

DNA damage seems to be dependent on the temporal regulation of covalent 

modifications.  It has been suggested that the role of this dynamic regulation of 

histone modifications might be to restore chromatin to its original state and 

terminate checkpoint activity after the repair process has been completed 

(Downs and Cote, 2005; Downs et al., 2007).   

Acetylation of lysine 56 on newly synthesized histone H3 just upstream of 

its histone fold domain, is another abundant modification that plays an 

important role in DNA repair (Masumoto et al., 2005; Ozdemir et al., 2005).  

Accordingly, mutation of K56 leaves cells sensitive to genotoxic agents.  In S. 

cerevisiae the modification is mediated by the HAT Rtt109 together with the 

histone chaperone Asf1 and is incorporated throughout the genome during 

replication (Driscoll et al., 2007; Recht et al., 2006).  Although K56 acetylation 

normally disappears in G2, in the presence of DNA damage the H3 K56 

deacetylases Hst3 and Hst4 are downregulated and acetylation is maintained in a 

Rad9 dependent manner (Celic et al., 2006; Maas et al., 2006; Masumoto et al., 

2005).   It has been proposed that the DNA damage function of this modification 

is mediated through the key structural position of the lysine, which contacts the 

phosphodiester backbone at the entry and exit points of the nucleosome core.  

Consistent with this idea, it has been reported that incorporation of histones with 

acetylation mimicking mutation K56Q into nucleosomes renders chromatin 

hypersensitive to micrococcal nuclease digestion (Masumoto et al., 2005).  This 

argues that acetylation of K56 facilitates remodeling of chromatin structure by 

directly weakening histone H3-DNA interactions, thereby creating a chromatin 

environment suitable for efficient DNA damage repair. 
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Methylation 

Methylation of lysine and arginine residues is the third most abundant 

post-translational mark of histones.  Histones can be mono-, di- or tri- 

methylated on lysines and mono- and di- (symmetrically or asymmetrically) 

methylated on arginines (Lachner et al., 2003; Lee and Stallcup, 2009).  

Depending on the type of methylation and the residue involved, methylation has 

been correlated with both gene activation and silencing.  For example, 

methylation of H3 K4, H3 K36 and H3 K79 is often associated with 

transcriptional activation, while methylation of H3 K9, H3 K27 and H4 K20 is 

often involved in transcriptional repression.  Two of these modifications, 

methylation of H3 K79 and H4 K20, have also been implicated in the response to 

UV irradiation.  In contrast, arginine methylation has not been studied as well as 

lysine methylation and no involvement of this modification to the DNA damage 

response has been found to date.   

Methylation of lysine 79 of histone H3 by the S. cerevisiae 

methyltransferase Dot1 (disruptor of telomeric silencing 1), has been shown to 

have a role in the DNA-damage checkpoint regulation (Huyen et al., 2004).  

Mutations in dot1 and the modification site itself which disrupt methylation, 

result in G1 and intra-S phase checkpoint deficiency and hypersensitivity to UV 

(Bostelman et al., 2007; Wysocki et al., 2005).  Trimethylation of K79 by Dot1 

depends on prior ubiquitylation of histone H2B at K123 by the Rad6/Bre1 

complex, further demonstrating the intricate interplay between different histone 

modifications (Briggs et al., 2002).  In fact, the regulation of K79 methylation by 

H2B K123 ubiquitylation was one of the first demonstrations of a unidirectional 

‘trans-tail’ cross-talk where a covalent modification of one histone tail is 

dependent on a different histone tail. Accordingly, mutations involved in the 

K123 ubiquitylation pathway also cause checkpoint defects (Giannattasio et al., 
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2005).  Another unique aspect of K79 methylation is that among the several 

histone H3 methylation sites identified to date, it is the sole methylation site 

located in the histone fold domain.  Surprisingly, there is no evidence for either 

global or DSB–specific changes in H3 K79 methylation in response to DNA 

damage, suggesting that its DNA damage function is likely mediated by 

increased accessibility of this otherwise buried constitutively methylated site at 

DSB sites.  Indeed, DNA damage dependent exposure of the methylated K79 at 

DSBs facilitates recruitment of checkpoint and repair machinery.    

Methylation of histone H4 at K20 by the histone methyltransferases Set9, 

and Suv4-20h, has also been implicated in the DNA damage response in fission 

yeast and mammalian cells respectively (Sanders et al., 2004; Schotta et al., 2008).  

Similar to K79 methylation, disruption of H4 K20 methylation, by set9 or K20 

mutations, causes UV sensitivity and a mild impairment in DNA-damage 

checkpoints in fission yeast.  In particular, although mutant cells are capable of 

successfully initiating checkpoint arrest, they are unable to maintain the 

checkpoint.  Also, mice with conditional null alleles for the two Suv4-20h histone 

methyltransferase genes, which mediate K20 di- and tri- methylation in 

mammalian cells, are perinatally lethal and have lost nearly all H4K20 di- and 

tri- methyl states (Schotta et al., 2008).  The genome-wide transition to an H4 K20 

monomethyl state results in increased sensitivity to damaging stress, since in the 

chromatin is less efficient for DNA DSB-repair and prone to chromosomal 

aberrations. Like K79 methylation, the levels of H4 K20 methylation do not 

change in response to DNA damage arguing that similar mechanisms of 

exposing the modified region of the histone after DNA damage are likely to exist.  

Once exposed the methylated K20 presents a docking site for checkpoint 

proteins. 
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Ubiquitylation 

Conjugation of a one (monoubiquitylation) or multiple 

(polyubiquitylation) 8.5 kDA ubiquitin peptides to lysine residues is the largest 

post-translational modification of proteins.  It usually occurs via a three step 

enzymatic reaction carried out by ubiquityl –activating (E1), -conjugating (E2), 

and –ligating (E3) enzymes.  Ubiquitylation can either target its substrate for 

proteosomal degradation or serve to modify protein function, and only recently 

it has been linked to DNA repair.  Although all four core histones appear to be 

ubiquitylation substrates, ubiquitylation of histone H3 and H4 is least abundant.  

Nevertheless, a temporary H3 and H4 ubiquitylation is induced by UV 

irradiation, catalyzed by the CUL4-DDB-Roc1 complex.  It has been suggested 

that H3 and H4 ubiquitylation facilitates assembly of NER factors by modulating 

chromatin structure (Wang et al., 2006).  

The main histone ubiquitylation substrate in mammalian cells is histone 

H2A, and the modification is specifically induced during DNA damage in 

response to UV irradiation (Bergink et al., 2006).  In contrast to mammalian cells, 

mono-ubiquitylation of histone H2B at K123 by the Rad6/Bre1 E1/E2 complex is 

the most abundant histone ubiqutylation mark in S. cerevisiae (Robzyk et al., 

2000).  Although there is no evidence that H2B ubiquitylation is induced upon 

DNA damage, it is nevertheless required for proper response to several DNA 

damaging sources, including UV.  Indeed, absence of this modification affects 

activation of checkpoint kinases Rad53 directly, and Rad9 indirectly through its 

effect on H3 K79 methylation (Giannattasio et al., 2005).  

 

Recruitment of effector proteins 

In addition to their direct effect on chromatin structure by the ‘cis’ 

mechanism, histone modifications indeed play an important role in DNA repair 
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by facilitating chromatin association of DNA damage response proteins via the 

‘trans’ effector binding mechanism.  In the past decade, a number of conserved 

histone modification-specific binding domains have been identified, many of 

them found in proteins involved in the cellular DNA damage response.  

Bromodomains were the first protein modules shown to selectively interact with 

a covalent histone modification, and remain the only known protein fold that 

recognizes acetylated lysines in sequence-specific contexts (Dhalluin et al., 1999).  

These domains are present in many transcriptional regulators with histone 

acetyltransferase activity such as Gcn5, PCAF and TAFII250, and components of 

chromatin remodeling complexes such as RSC and Swi/Snf. 

In contrast to bromodomains, histone methylation targeting modules 

define a broader group of recognition modules, organized into different classes.  

The largest class of evolutionarily conserved methyl-binding protein folds 

known as the Royal superfamily, includes chromodomains, malignant brain 

tumor (MBT) domains and tudor domains (Maurer-Stroh et al., 2003; Taverna et 

al., 2007).  Increasing evidence within the past five years, has demonstrated a role 

for methylation-dependent tudor domain interactions in the DNA damage 

response.  For example, the mammalian checkpoint protein 53BP1 (53 binding 

protein 1) and Rad9, its functional homolog in budding yeast, contain tandem 

tudor domains that bind to methylated K79 on histone H3.  Interestingly, 53BP1 

has DNA damage sensor properties and localizes to DSBs in vivo in a K79 

methylation-dependent manner.  Indeed, mutations within the tudor domain 

which abrogate 53BP1 interaction with methylated lysines, as well as 

suppression of Dot1, the enzyme responsible for K79 methylation, abolish 53BP1 

recruitment to DSB sites in vivo (Huyen et al., 2004).   Recent experiments suggest 

that 53BP1 also binds dimethylated H4 K20 in vitro and methylation of this 

residue by the mammalian PR-SET7 methyltransferase which shows a preference 
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for carrying monomethylation, is required for irradiation-induced foci formation 

in mammalian cells (Botuyan et al., 2006).  Given that methylation of H3 K79 and 

H4 K20 localize to different chromatin domains, it is likely that they both 

contribute to 53BP1 recruitment depending on the specific chromatin context.  

Similarly, initial recruitment of the fission yeast checkpoint protein Crb2, which 

contains a noncanonical tudor fold related to that of 53BP1, is also dependent on 

recognition of the histone H4 K20 methylation, via the double tudor domains 

(Botuyan et al., 2006; Sanders et al., 2004).  

In addition to the royal superfamily class, several other methyl-binding 

folds have been identified including WD40 repeats (Wysocka et al., 2005) and 

plant homeodomain (PHD) fingers (Wysocka et al., 2006).  Although they 

primarily function in transcriptional regulation, there are few reports linking 

these modules to the DNA damage response.  For example, it’s been shown that 

the PHD finger protein ING2 tethers the repressive Sin3a-HDAC1 complex to 

highly active, proliferation specific genes after the exposure to DNA-damaging 

agents (Pena et al., 2006; Shi et al., 2006).  Similarly, the PHD finger of the ING1 

tumor suppressor is required for the DNA repair and apoptotic activities of ING1 

(Pena et al., 2008).  

Numerous phosphate-binding modules have also been described, 

however mainly for non-histone proteins.  In fact, this phosphate-mediated 

effector-recognition has been a paradigm for signal transduction pathways (Seet 

et al., 2006).  Phospho-histone dependent interactions on the other hand, have 

only been identified for two types of effectors and only one of them is directly 

involved in the DNA damage response.  The first phospho-serine histone 

binding module is the 14-3-3 family of proteins, which has seven distinct 

isoforms involved in regulation of signal transduction, chromosome 

condensation and apoptotic cell death (Dougherty and Morrison, 2004; Seet et al., 
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2006).  14-3-3 isoforms interact with histone N-terminal H3 tails in a 

phophorylation-dependent manner (Macdonald et al., 2005).   

BRCT (breast cancer susceptibility protein C-terminal) domains on the 

other hand, appear to be histone-specific γH2A.X binding modules.  They are 

found in several proteins involved in the DNA damage response including the 

53BP1 fission yeast homologue, Crb2. Although recruitment of Crb2 to damage 

foci is also dependent on the tudor domain interaction with H4 K20 methylation, 

the accumulation of Crb2 at damage foci is independently regulated by γH2A.X 

as well (Nakamura et al., 2004).  It is likely that BRCT γH2A.X-binding domain 

interaction with this damage induced phosphorylation site may be stabilized via 

the recognition of the H4 K20 methylation.  Mediator of DNA damage 

checkpoint protein 1 (MDC1, also known as NFBD1), is another BRCT domain-

containing protein that is a key regulator of the DNA damage response in higher 

eukaryotes (Stucki and Jackson, 2004).  Consistent with the BRCT being a γH2A.X 

phospho-recognition module, MDC1 localizes to DNA-damage induced foci in a 

γH2A.X-dependent manner (Peng and Chen, 2003).  Structural studies have 

accordingly revealed a direct interaction between the γH2A.X phospho-epitope 

and the tandem repeats of MDC1 (Lee et al., 2005; Stucki et al., 2005). 

Additional γH2A.X-dependent protein interactions have also been 

observed although the specific binding modules have not been identified.  For 

example, the Nua4 HAT complex associates specifically with γH2A.X-phospho 

peptides and this interaction is dependent on at least one Nua4 subunit, the actin 

related protein 4, Arp4 (Downs et al., 2004).  Arp4-dependent Nua4 complex 

recruitment to the DSBs in vivo is also established, however the structural basis 

for this Arp4-γH2A.X interaction remains unclear.  Interestingly, Nua4 

recruitment to chromatin as well as its histone acetyltransferase activity are also 

required and temporally precede recruitment of chromatin remodeling 
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complexes Ino80 and Swr1 to DSB sites (Downs et al., 2004).  However, specific 

bromodomain-containing factors potentially responsible for the Nua4-dependent 

recruitment of chromatin remodeling complexes have not been identified to date.   

 

ATP-dependent chromatin remodeling  

Histone modification-mediated effector recruitment can also target ATP-

dependent chromatin remodeling complexes as another mean of inducing 

function specific alterations of the chromatin fiber.  ATP-dependent chromatin 

remodeling complexes use the energy of ATP hydrolysis to physically 

manipulate chromatin structure, either by repositioning or removing 

nucleosomes, or by exchanging histone components and thereby altering 

nucleosome composition.  The catalytic subunits of these energy-dependent 

multi-subunit complexes are ATPases of the large superfamily of Swi2/Snf2 

helicases.  Based on the presence of a distinct motif outside the ATPase region, 

the superfamily is divided into the following four classes: (1) Swi/Snf class 

which contains a bromodomain, (2) Iswi, characterized by a DNA binding –

SANT domain, (3) Chd class has both a chromodomain and a DNA binding 

capacity, and (4) Ino80.  Members of the Ino80 class, which includes Swr1, do not 

possess any known domains and are characterized by an insertion that splits the 

ATPase domains in two segments.  Recent work has demonstrated that the ATP-

dependent remodeling complexes, such as NURF (nucleosome remodeling 

factor), are involved in transcriptional gene regulation.  In particular, through 

their association with histone post-translational modifications (Wysocka et al., 

2006), recent studies have revealed an additional, transcription-independent role 

for four chromatin remodeling complexes in the DNA damage response.  Indeed, 

Ino80, Swr1, as well as the Swi/Snf class members Rsc and the founding member 

Swi/Snf itself, have been shown to mediate large-scale reconfiguration of 
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chromatin surrounding the break site thereby facilitating access to repair and 

checkpoint proteins to DNA lesions (Bennett et al., 2001; Mizuguchi et al., 2004; 

Shen et al., 2000; Shim et al., 2005).  Consistent with their role in the DNA 

damage response, mutations in several of the subunits belonging to these 

complexes render cells hypersensitive to DNA break-inducing agents. 

The DNA damage response function of the chromatin remodeling 

complexes appears to be mediated by their recruitment to DNA DSBs.  Chai and 

colleagues found that Rsc and Swi/Snf remodelers localize to DNA DSB sites in 

vivo, suggesting that they play a direct role in DNA repair (Chai et al., 2005).  In 

their study, Rsc was found to appear very early after DSB induction, followed by 

the appearance of Swi/Snf.  The DNA repair proteins Mre11 and Ku70 are 

recruited with the same kinetics as two of the Rsc members, Rsc8 and the 

catalytic subunit Sth1.  The Sth1 recruitment is dependent on the presence of Mre 

11 and Ku70, as absence of Mre11 abolishes Rsc recruitment to the break.  

Accordingly, a physical interaction has been seen between the Rsc subunit Rsc1 

and the Mre11 and Ku80 proteins (Shim et al., 2005).  Swi/Snf has also been 

associated with NER as its in vitro activity is dependent on the presence of NER 

factors XPC, XPA and RPA (Hara and Sancar, 2002).  In vivo, two of the S. 

cerevisiae Swi/Snf subunits, Snf5 and Snf6 have been shown to enhance NER and 

the silent locus after UV irradiation.  Interestingly, Snf5 and Snf6 copurify with 

NER factor Rad4 (S. cerevisiae homologue of XPC) and Rad23, and this binding to 

the Rad4-Rad23 complex is the likely a mechanism for Swi/Snf recruitment to 

DNA lesions (Gong et al., 2006). 

Components of the Ino80 and Swr1 complexes were found to accumulate 

at HO-induced DSBs in S. cerevisiae in a γH2A.X-dependent manner (Downs et 

al., 2004).  This observation represents a wonderful example that the mechanisms 

that modulate chromatin dynamics, namely histone variants, histone post-
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Accordingly, absence of a functional Tip60 complex, leads to failure to acetylate 

H2Av and accumulation of phosphorylated H2Av in response to DSBs induced 

by ionizing radiation.  Based on these findings it is likely that in budding yeast 

acetylation of γH2A.X by Nua4 near DSBs may stimulate replacement of γH2A.X 

with H2A.Z through the recruitment of the chromatin remodelers Ino80 and 

Swr1. 

Interestingly, S. cerevisiae Swr1, essentially a subcomplex of Drosophila 

Tip60, has been shown to preferentially associate with Htz1, a homologue of the 

mammalian histone variant H2A.Z and catalyze nucleosomal histone exchange 

of H2A/H2B dimers with Htz1/H2B dimers in vitro.  In vivo Swr1 catalyzes the 

incorporation of Htz1 into chromatin in order to prevent heterochromatin 

spreading (Krogan et al., 2003; Mizuguchi et al., 2004).  A report by the Peterson 

and colleagues indicates that Swr1 functions in a similar fashion during DNA 

damage by depositing Htz1 into chromatin near an HO-induced DSB 

(Papamichos-Chronakis et al., 2006).  Indeed, nucleosomes displacement has 

been observed from regions flanking HO breaks in order to facilitate DNA break 

processing and efficient repair (Tsukuda et al., 2005).  This eviction however, is 

independent of swr1, which appears to antagonize Ino80 function by replacing 

Ino80 evicted nucleosomes with their Htz1 containing counterparts to 

presumably restore chromatin structure after repair.  Nevertheless, the Swr1 

dependent Htz1 enrichment in DSB regions is only observed in strains lacking a 

functional Ino80 and it is correlated with depletion of γH2A.X at sites of DSB.   

Given that Ino80 also shares subunits with Tip60, taken together, these results 

strongly indicate that Ino80, Swr1 and Nua4 complexes function together to 

facilitate Htz1 and γH2A.X exchange at lesions, mimicking the larger Tip 60 

complex in mammalian cells.  In summary, the current chromatin remodeling 

model holds that during DNA damage in budding yeast, Nua4 acetylation of 
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histones at DSBs facilitates downstream displacement of γH2A.X by Ino80 

followed by the Swr1 dependent replacement with H2A.Z at sites of DNA 

damage. 

 

Meiosis 

The information obtained from DNA damage DSB-repair studies, has 

implications on other biological processes involving physiological DSBs, such as 

meiosis.  Meiosis is a cellular division program characterized by a single round 

of genome duplication followed by two successive rounds of chromosome 

segregation to produce haploid gametes from diploid germ cells.  The key to this 

reductional nuclear division is the reciprocal exchange of genetic information 

between the homologous parental chromosomes that occurs during prophase of 

the first meiotic division, a process that requires the recognition and alignment of 

the homologues, formation of synaptonemal complex – a protein assembly that 

connects the homologues, and subsequent meiotic recombination.   

Meiotic recombination is initiated through the introduction of 

programmed DNA DSBs by a topoisomerase-like protein known as Spo11, which 

is conserved from yeast to humans (Keeney et al., 1997).  In most organisms these 

DSBs are crucial for initiating the intimate pairing of the parental chromosomes, 

termed synapsis, which in turn facilitates their subsequent repair (Mahadevaiah 

et al., 2001; Roeder, 1997).  During repair, the DSBs are processed in a 5′–3′ 

direction, resulting in the formation of 3′ single-stranded DNA overhang that 

invades an intact nonsister chromatid homologous donor template for its repair, 

a process referred to as crossover.  Ultimately, the successful resolution of the 

crossover intermediates results in a reciprocal exchange of chromatid arms.                     

DSBs therefore appear to be an early step in the meiotic recombination process 
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and a prelude to the reshuffling of the maternally and paternally derived 

genomes during meiosis. 

As such, it is not surprising that histone post-translational modifications 

that mediate the damage DSB response might also play critical roles in 

facilitating meiotic recombination.  Indeed, Spo11-dependent γH2A.X formation 

associated with meiotic DSBs on all chromosomes has been observed in mouse 

spermatocytes during early stages of meiotic prophase I (Mahadevaiah et al., 

2001).  However, the same study also identified a second wave of sex 

chromosome-specific Spo11-independent γH2A.X accumulation during later 

stages of meiotic prophase revealing a novel meiotic role for γH2A.X.   An 

interesting feature of the sex chromosome, or the X-Y body as it is commonly 

referred to, is the remarkable condensation that occurs during meiotic prophase 

to form macrochromatin body within which X- and Y- linked genes are 

transcriptionally repressed (Solari, 1974).   The kinetics of the massive Spo11-

independent accumulation of γH2A.X throughout the X-Y chromatin closely 

correlates with the chromatin condensation of the X-Y body arguing that γH2A.X 

plays a causal role in heterochromatinization of the sex body during meiosis.  

Evidence for such physiological role of the γH2A.X association with sex 

chromosomes, came from a subsequent study whereby the X and Y 

chromosomes of histone H2A.X-deficient spermatocytes failed to condense to a 

sex-body, did not initiate meiotic sex chromosome inactivation and exhibited 

severe defects in X-Y pairing (Fernandez-Capetillo et al., 2003).  While the sex-

body-specific γH2A.X function is independent of Spo11 meiotic recombination-

associated DSBs, it remains a mystery whether Spo11-independent DSBs are 

involved in triggering the γH2A.X-mediated heterochromatinization of the XY-

chromosome.  Several recent reports argue that the γH2A.X-mediated chromatin 

condensation of the sex-body might be actually a response to unpaired 
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translational modifications and ATP-dependent chromatin remodeling, are 

functionally linked.  Accordingly, the recruitment of Ino80 and Swr1 is impaired 

in strains lacking the γH2A.X kinases Mec1 and Tel1, as well as the phospho-

acceptor site itself (Morrison et al., 2004; van Attikum et al., 2004).  The 

association of Ino80 and Swr1 complexes with the chromatin surrounding DSBs 

has been show to occur through their Nua4-shared subunit, Arp4, which directly 

interacts with γ-H2A.X (Downs et al., 2004).  However, localization of Ino80 and 

Swr1 subunits is delayed relative to Nua4 appearance at DNA DSBs, suggesting 

that the Arp4 - γH2A.X interaction is not the sole mechanism by which these 

complexes accumulate at sites of DNA damage.  In fact, Morrison and colleagues 

found that another Ino80 specific subunit, Nhp10, is also necessary for stable 

Ino80 association with γH2A.X in vitro and for the recruitment of Ino80 to DNA 

DSBs in vivo (Morrison et al., 2004).  Given that Ino80 complexes isolated from 

nhp10 mutants lack both Nhp10 and Ies3 subunits, it is likely that Nhp10 and Ies3 

subunits facilitate the Arp4-mediated Ino80 - γH2A.X interaction.  

Although γH2A.X has emerged as a central player in assembly of 

chromatin remodeling complexes at DSBs, Ino80 and/or Swr1 enrichment at 

DNA lesions is not solely influenced by γH2A.X interactions. As already 

mentioned, Nua4 mediated histone acetylation has also been shown to play a 

role in the process (Downs et al., 2004).  Indeed, the DSB association of the Rvb1 

component of Ino80 and Swr1 is impaired by mutations in the Nua4 catalytic 

subunit Esa1, arguing that chromatin needs to be acetylated before remodelers 

can be efficiently recruited to the break.  Also consistent with this hypothesis is 

the fact that the Drosophila HAT/chromatin remodeling complex Tip60, an 

orthologue of both S. cerevisiae Swr1 and Nua4, preferentially binds and 

acetylates a phosphorylated histone H2A.Z/H2A.X fusion variant in Drosophila, 

known as H2Av, and exchanges it for unmodified H2Av (Kusch et al., 2004).  
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chromosomes i.e. asynapsis of the non-homologous sex chromosomes, to ensure 

transcriptional silencing of asynapsed chromosomes or chromosome regions 

(Baarends et al., 2005; Sciurano et al., 2007; Turner et al., 2006; Turner et al., 2005). 

There is already a precedent for heterochromatin element involvement in 

meiosis, such as the role of centromeres and telomeres in controlling the position 

of meiotic recombination events (Loidl, 1990; Scherthan, 2001; Yamamoto and 

Hiraoka, 2001).  Moreover, numerous studies in different organisms have 

identified an increasing number of repressive histone modifications that play a 

critical role in the meiotic process.  For example, the C. elegans HIM-17 protein, 

which is required for H3 K9 methylation, was shown to be necessary for the 

formation of DSBs that initiate meiotic recombination (Reddy and Villeneuve, 

2004).  Additionally, histone H2A ubiquitylation, was found to localize to 

unpaired and silenced chromatin regions, including the X-Y body in male 

meiotic prophase of mouse, rat and human (Baarends et al., 2005).  It would be 

interesting to find out whether additional histone modification might be playing 

a role in meiosis.  Such studies would also help define the events of meiotic 

prophase and shed some light on the mechanism of synapse formation and the 

importance of DSBs in the process.  For my thesis I chose to study DSBs and their 

involvement in meiosis in the ciliate Tetrahymena thermophila, especially because 

synaptonemal complexes have not been observed in this organism and otherwise 

very little is known about the process in this system.  

 

Tetrahymena thermophila  

Tetrahymena is a member of the ciliated protozoa, a group of unicellular 

eukaryotes that inhabit freshwater environments.  It is a motile, relatively large 

organism, about 50 µm long and 20 µm wide.  Although unicellular, Tetrahymena 

exhibits evolutionary features similar to multicellular organisms.  These features 
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include a clear separation of the germ-line and soma, exemplified by the 

possession of two related but functionally distinct genomes.  One of the most 

distinctive features of ciliates and therefore Tetrahymena is that the two genomes 

are carried in separate nuclei present within a single cell, a phenomenon referred 

to as nuclear dimorphism. The germ-line in Tetrahymena is stored in the smaller 

diploid micronucleus, whereas the somatic genome is contained within the 

polyploid macronucleus.  The transcriptionally inert micronucleus, which is 

capable of both mitosis and meiosis, contains two complete haploid genome sets 

arranged on 5 chromosomes.  In contrast, the macronuclear genome is made up 

of multiple (~45) copies of rearranged micronuclear subset of genes and is 

responsible for all gene expression thus determining the cell’s phenotype.  In 

addition to germ-line/soma separation, Tetrahymena possesses a typical 

eukaryotic life cycle, including a vegetative stage limited to the diploid phase of 

the cell cycle, and conventional meiosis followed by internal fertilization through 

union of exchanged haploid gamete nuclei, which is restricted to the sexual stage 

of the life cycle. 

 

Tetrahymena life cycle 

During the asexual, vegetative stage of the life cycle, Tetrahymena cells reproduce 

exclusively by binary fission, as long as they are maintained in rich media (see 

stage 7, Figure 1.6).  The doubling time is ~2 hours, during which the 

micronucleus divides by conventional mitosis and the macronucleus divides 

amitotically by elongating and pinching into two during cytokinesis.  

Conjugation is the sexual stage of Tetrahymena life cycle and can be 

induced with high efficiency and synchrony by mixing sexually mature cells of 

complementary mating types which have been nutritionally starved for several 

hours.  Citologically, conjugation consists of meiotic prophase, three prezygotic 
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nuclear divisions, two post-zygotic nuclear divisions and macronuclear 

development.  The nuclear events of conjugation (Orias, 1998), depicted in Figure 

1.5, can be readily visualized by fluorescent staining with DNA-specific dye 

DAPI.  Under stationary conditions the cells begin to pair within 30 min after 

mixing, and achieve 85-90% pairing efficiency within 2 hours post initiation (see 

1, Figure 1.6).  As soon as stable pairs are formed, the micronuclei in each 

conjugating partner move away from the macronucleus and meiotic prophase I is 

initiated.  During this stage the micronuclei begin to elongate, increase in length 

over 50-fold and adopt a semi-circular crescent shape.  This stage is similar to the 

horsetail stage of meiosis in S. pombe (Nimmo et al., 1998; Yamamoto and 

Hiraoka, 2001) when homologous chromosomes are aligned and presumably 

undergoing meiotic crossing over.  The crescent micronucleus features a side-by-

side alignment of the ten bivalent chromosomes as parallel bundles, and this 

polarized arrangement resembles a classical bouquet with most of the telomeres 

assembled near one end (Loidl and Scherthan, 2004) and centromeres occupying 

the opposite end (Mochizuki et al., 2008).  This parallel arrangement of the 

chromosomes is stabilized through the spatial constraints imposed by the 

elongated meiotic micronuclear shape.  The crescent also ensures juxtaposition of 

homologous regions and facilitates homologous recombination in the absence of 

synaptonemal complex which has not been observed in Tetrahymena.  Based on 

the stage of elongation or contraction of the micronucleus, the meiotic prophase I 

has been divided into six stages (Cole et al., 1997; Martindale et al., 1982; Sugai 

and Hiwatashi, 1974).  Stage I begins when the micronucleus moves away from 

the macronuclear pocket where it resides during interphase.  During stage II the 

micronucleus begins to elongate, with the maximum micronuclear elongation 

into full crescent represented by stage IV when the five bivalent chromosomes 

are in parallel arrangement.  After stage IV the micronucleus begins to contract 
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back to its original shape and the bivalent chromosomes begin to separate which 

is accomplished during the last stage of meiotic prophase I, stage VI. 

Following meiotic prophase I the micronuclei complete two meiotic 

divisions to yield four haploid nuclei (see 2, Figure 1.6).  The nuclei undergo a 

process referred to as ‘nuclear selection’ in which three of the haploid nuclei 

disintegrate and the only remaining functional nucleus divides mitotically, 

producing two genetically identical gametic pronuclei.  One of the pronuclei, 

designated as the ‘stationary pronucleus’ remains in the cell of origin, while the 

other, ‘migratory pronucleus’ is reciprocally exchanged between the cells of the 

mating pair (see 3, Figure 1.6). The migratory pronucleus fuses with the 

stationary micronucleus of the recipient cell forming a diploid zygotic nucleus 

(see 4, Figure 1.6).  The new zygote nucleus is the progenitor of both the 

micronucleus and the macronucleus of the developing cell.  Following the fusion 

event, the nucleus immediately undergoes two rounds of mitosis, giving rise to 

four genetically identical diploid nuclei (see 5, Figure 1.6).  In the last stage, 

defined as macronuclear development, the two posterior nuclei are maintained 

as micronuclei, whereas the two anterior nuclei differentiate into macronuclei.  

At this stage the developing macronuclei, also referred to as anlagen, undergo 

extensive DNA rearrangements of the germ-line-derived chromosomes whereby 

~15% of the micronuclear genome is eliminated.  Meanwhile, the old parental 

macronucleus is destroyed by an apoptotic-like mechanism, characterized by the 

production of oligonucleosome-sized DNA fragments (Davis et al., 1992).  

Finally, conjugation is completed by exconjugates’ separation and restoration of 

normal nuclear composition through one round of binary fission.   
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Figure 1.6:  Ciliate life cycle 
(0) Vegetative cells.  Small and large circles are micronucleus (MIC) and 
macronucleus (MAC) respectively.  (1) Two paired cells, homozygous for 
alternative alleles at one locus.  (2) MICs undergo meiosis, and four haploid 
nuclei are produced.  Only the anterior meiotic product remains functional; the 
other three disintegrate.  This is the stage at which meiotic crossing-over, used 
for genetically mapping the MIC genome, occurs.  (3) Mitotic division of 
functional meiotic product yields genetically identical migratory (anterior) and 
stationary (posterior) gamete pronuclei.  (4) Migratory pronuclei are reciprocally 
exchanged and fuse with stationary pronuclei of the recipient cell, forming the 
zygote nucleus, which is diploid and, in this instance, heterozygous.  (5) The 
zygote nucleus undergoes two mitotic divisions, giving rise to four genetically 
identical diploid nuclei.  (6) Two of those nuclei (checkerboard-filled) have 
differentiated into macronuclei; the other two (solid and white halves) remain 
diploid micronuclei.  The old MACs (at the bottom of each conjugant) are being 
resorbed and will be lost.  This is the stage at which chromosome fragmentation 
and other site-specific DNA rearrangements occur in the differentiating MAC.  
The two exconjugants have separated and undergo their first binary fission, 
restoring the normal nuclear composition (back to stage 0).  (7) Vegetative cell 
dividing by binary fission.  The diploid MIC has divided mitotically; the 
polyploid MAC is undergoing “amitotic division,” pinching off into roughly 
equal halves.  This life cycle scheme is highly conserved among ciliates, although 
differences of detail occur in particular groups and species (adapted from Orias, 
1998). 
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Tetrahymena as a model organism 

Tetrahymena offers several advantages that make it a specially useful 

experimental system for biological research.  Its large size facilitates detailed 

morphological investigations and its rapid doubling time of ~2.5 hours at 30°C 

allows for quick culturing to high population densities (106 cells/ml). 

Tetrahymena genome has also been recently sequenced providing additional 

utility for the use of this organism in genetic research. 

As a result, Tetrahymena has offered many insights into general features of 

eukaryotic biology such as the discovery of dynein (Gibbons and Rowe, 1965), 

self-splicing RNA (Kruger et al., 1982) and telomerase (Collins et al., 1995; 

Greider and Blackburn, 1985, 1989).  Additionally, the macronuclear 

differentiation process has revealed a role for small RNAs in whole-genome 

rearrangements (Mochizuki et al., 2002; Taverna et al., 2002) which are 

mechanistically similar to the RNA-directed establishment of silent chromatin 

(Volpe et al., 2002).  The compartmentalization of the gene expression states 

reflected by the two distinct nuclei in Tetrahymena has also provided a fertile 

ground for the study of the function of chromatin proteins and their 

modifications in epigenetic regulation.  In fact, new chromatin regulators such as 

the first histone acetyltransferase (HAT) type A (Brownell and Allis, 1995; 

Brownell et al., 1996) as well as some of the histone variants were first identified 

in Tetrahymena by comparative analyses of the germline and somatic nuclei (Allis 

et al., 1980; Allis et al., 1979).   

Specifically, transcriptionally active macronuclei in Tetrahymena contain 

two primary sequence variants absent from the micronuclei.  One of them is the 

minor histone H2A variant, hv1, encoded by a single gene, HTA3.  Evidence 

suggests that this variant performs an essential function (Liu et al., 1996) 

presumably through its association with transcriptionally competent chromatin 
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(Allis et al., 1982; Stargell et al., 1993).  The other macronuclear specific minor 

histone variant, hv2, is also encoded by a single gene, HHT3, and differs in 16 

amino acids from the major histone H3 proteins.  Much like the H3.3 replacement 

variants of multicellular eukaryotes, which it closely resembles, hv2 is 

constitutively expressed i.e. it is synthesized and deposited in macronuclei of 

non-growing as well as growing cells (Bannon et al., 1983).   

The most striking differences in the histone proteins between the 

Tetrahymena macronuclei and the micronuclei are in the linker histones.  The only 

macronuclear histone H1, encoded by a single gene, HHO, is a highly positively 

charged, 163 amino acid small protein, missing its central, hydrophobic domain.  

The micronuclear linker histones however, consist of 4 proteins, α, β, γ and δ, a 

proteolytic processing products of a polypeptide precursor X, also encoded by a 

single gene, MLH. 

As opposed to the minor variants and the linker histones, biochemical 

analyses of purified histones and of cloned histone genes demonstrate that a 

standard complement of highly conserved core histones, each encoded by two 

genes, is present in both Tetrahymena nuclei. Both of the primary histone H3 

proteins as well as histone H4 proteins encoded by their respective dual gene 

copies are identical.  The two histone H2B genes however, encode for somewhat 

divergent proteins. Similarly, the two major histone H2A proteins encoded by 

their respective genes, HTA1 and HTA2, also slightly differ from each other, 

with H2A.S being the larger, slower migrating form on SDS gels, and H2A.F, a 5 

amino acid shorter, faster migrating form.  Neither of the two genes encoding the 

major H2A histones is essential, and each can substitute for the other during 

vegetative growth (Liu et al., 1996).  Intriguingly however, although both major 

H2A histones are expressed in roughly equimolar amounts in the macronucleus, 

the steady-state levels of the two histones show enrichment of H2A.S in the 
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micronucleus (Allis et al., 1980).  Given the unique role of the otherwise 

transcriptionally silent micronucleus in the conjugation process described above, 

it is plausible that the differences in relative levels of the two H2A proteins 

between nuclei could reflect a conjugation-specific functional role for H2A.S, a 

hypothesis I explored in my thesis research covered in Chapter 2.  
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CHAPTER 2 

 

PHOSPHORYLATION OF HISTONE H2A.S AT THE SQ MOTIF 

IS REQUIRED FOR DNA REPAIR AND MEIOSIS 

IN TETRAHYMENA THERMOPHILA 

 

Introduction 

DNA double strand breaks (DSBs) represent deleterious lesions which can either 

be caused by extrinsic sources such as ionizing radiation and mutagens; or 

produced endogenously by stalled replication forks, oxygen radicals, and as 

intermediates of programmed cellular events including meiosis, V(D)J 

recombination, mating type switching and apoptosis.  Inefficient repair of these 

lesions can lead to mutations, aberrant chromosomal rearrangements, or loss of 

genetic information, which ultimately can result in diseases such as cancer.  As 

such, the repair of DNA DSBs is critical for maintenance of genomic stability and 

cells have evolved mechanisms for detecting the presence of the break and 

restoring the integrity of the DNA.  Since DNA repair functions in the context of 

chromatin, it is not surprising that histone modifications have been found to play 

an important role in this process.     

 One of the earliest chromatin-associated events that occurs at DSBs is 

phosphorylation of the histone H2A variant H2A.X on a serine within a 

conserved C-terminal SQ motif, producing a modified protein designated as 

γH2A.X (Rogakou et al., 1998).  Within minutes of DSB, γH2A.X spreads over 50-

100 kilobase domains flanking DSB in budding yeast, where H2A.X is the major 

form of H2A (Shroff et al., 2004).  Likewise, in mammalian cells where the H2A.X 

variant represents ~10% of the total H2A population, ATM/ATR induced 

γH2A.X extends over megabase regions surrounding the DNA break induced by 
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ionizing radiation (Rogakou et al., 1999).  γH2A.X is involved in processes 

involving programmed DNA DSBs intermediates such as V(D)J rearrangement 

during lymphocyte development in mammals (Chen et al., 2000), as well as 

meiotic recombination in mice germ cell development (Mahadevaiah et al., 2001). 

Therefore γ-H2A.X is thought to serve as a general signal for the presence of a 

DSB and has been shown to be required for efficient DNA repair in budding 

yeast and mammalian cells (Bassing et al., 2002; Downs et al., 2000; Redon et al., 

2003) where it mediates localization of numerous break-recognition and repair 

factors to the DSB sites (Downs et al., 2004; Fernandez-Capetillo et al., 2002; 

Nakamura et al., 2004; Strom et al., 2004). 

 Despite the significant progress in defining the function of γH2A.X in 

higher eukaryotes, the presence of this variant has not been well studied in lower 

eukaryotes.  Interestingly, a sequence analysis of the H2A family members of the 

ciliated protozoa Tetrahymena thermophila, revealed that the slower-migrating 

isoform of the two major types of Tetrahymena histone H2A, hereafter referred to 

as H2A.S, contains a C-terminal SQ motif reminiscent of the conserved H2A.X 

motif in other organisms (Figure 2.1A).  I then sought to investigate whether the 

Tetrahymena histone H2A.S is phosphorylated at the suspected SQ motif, and if 

so, whether this phosphorylation event is functionally important in processes 

that involve this isoform, but not the faster migrating form, H2A.F.  Indeed, 

using a γH2A.X-specific monoclonal antibody, I established that Tetrahymena 

H2A.S is phosphorylated at the SQ serine 134 in response to DSBs induced by 

chemical agents and during meiosis.  In collaboration with Qinghu Ren and 

Xiaoyuan Song in the laboratory of Dr. Martin Gorovsky at the University of 

Rochester, NY, we found that H2A.S S134A mutation abolishes the 

phosphorylation of the SQ motif and although not lethal, it leads to meiotic 

defects in Tetrahymena cells.  These results demonstrate that one of the 
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Tetrahymena major histone H2As functions as a typical H2A.X and for the first 

time establish its presence in ciliated protozoa.  In addition, they establish that 

γH2A.X is important for maintaining genomic stability during different stages of 

Tetrahymena life cycle.  Most importantly, this study provides the first evidence 

for the existence of meiotic DSBs in Tetrahymena and defines the time interval of 

meiotic recombination in this organism. 
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Results 

Tetrahymena thermophila H2A.S is phosphorylated in response to induced DSBs 

 Conservation of the C-terminal SQ H2A.X sequence motif within the C-tail of 

histone H2A.S, one of the two major histone H2As in the ciliate Tetrahymena 

thermophila, prompted an investigation into whether Tetrahymena H2A.S is 

phosphorylated in response to DSBs.  For that purpose, DNA damage was 

induced by a 4-hour treatment of Tetrahymena cultures with 5 mM methyl 

methanesulfonate (MMS), an alkylating agent that introduces DNA lesions, 

subsequently converted to DSBs.  A species cross-reactive mouse monoclonal 

antibody (Upstate Biotechnology, cat. # 05-636) raised against mammalian γ-

H2A.X epitope, was then used for immunofluorescence (IF) analysis of the MMS 

treated Tetrahymena cells. The antibody specifically detected a signal in 

micronuclei, and to a lesser extend, also macronuclei of MMS treated cells 

(Figure 2.1B).  The difference in γH2A.X staining intensity in micronuclei versus 

macronuclei from MMS-treated cells could reflect differential activities of the 

phosphorylation machinery in different nuclei, or else it could be due to 

previously observed enrichment of H2A.S in the micronucleus (Allis et al., 1980).  

In contrast, micronuclear γH2A.X staining was absent in untreated cells, 

demonstrating that the antibody signal is specific to DSBs induced by the DNA-

damaging agent. 

 

Tetrahymena thermophila H2A.S is phosphorylated during meiosis 

As previously observed histone steady-state levels in Tetrahymena show 

enrichment of H2A.S in the micronucleus (Allis et al., 1980), it is plausible that 

these differences in relative levels of the two H2A forms between nuclei reflect 

distinct functional roles for the different H2As.  In particular, higher levels of 

micronuclear H2A.S could be due to the specialized function of the micronucleus 
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Figure 2.1: Double strand break (DSB)-induced phosphorylation of the 
conserved C-terminal SQ motif in Tetrahymena thermophila detected by anti 
γH2A.X specific antibody  
A. Amino acid sequences of histone H2A from various organisms were obtained 

from GenBank (http://www.ncbi.nlm.nih.gov).  The accession numbers are 
as follows: human_H2A.1, NP_254280; human_H2A.X, NP_002096; 
mouse_H2A.1, NP_783591; mouse_H2A.X, NP_034566; D. 
melanogaster_H2AvD (H2A.Z homologue), NP_524519; S. pombe_H2A.2, 

NP_594421; S. cerevisiae_H2A.1, NP_010511; S. cerevisiae_H2A.2, NP_009552; 
S. cerevisiae_H2A.Z, NP_014631 (also known as htz1; T. thermophila_H2A.S 
(also known as H2A.1), AAC37291; T. thermophila_H2A.F (also known as 
H2A.2), AAC37292, T. thermophila_H2A.Z (also known as hv1), CAA33554.  
Only the C-terminal regions are shown.  Alignment was generated with 
ClustalW identity algorithm.  The conserved SQ motif is highlighted.  The 
suspected phosphorylation site in the SQ motif is labeled in red.  The putative 
Tetrahymena H2A.X homologue is enclosed by a red box.  Alignment gaps are 
indicated with a hyphen (-).   

B. Immunofluorescence (IF) analysis of wild type vegetatively growing 
Tetrahymena cells treated with 5 mM MMS for 4 hrs to induce double strand 
breaks (DSBs). Shown are the macronucleus (MAC) and the micronucleus 
(MIC) stained with a specific monoclonal antibody (Upstate Biotechnology, 
cat. # 07-636) raised against the phosphorylated C-terminal peptide 
KATQA[pS]QEY of human H2A.X (red signal).  

 
 
 
 
 
 

49



        
 
                Figure 2.1 
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To investigate whether H2A.S phosphorylation functions during 

Tetrahymena meiosis, the γH2A.X specific antibody was used to immunostain 

Tetrahymena cells fixed at the meiosis-specific stage of conjugation.  Indeed, 

strong γH2A.X signal was detected in the elongated micronuclei during the 

crescent stage, at ~2.5 hours of conjugation, which corresponds to meiotic 

prophase I (Loidl and Scherthan, 2004; Sugai and Hiwatashi, 1974) (Figure 2.2A). 

These observations were supported by immunoblotting analysis of acid extracted 

histones from micronuclei and macronuclei purified by sucrose sedimentation at 

unit gravity, isolated from either vegetative cells or cells undergoing meiotic 

prophase I.  Only micronuclear histones from cells undergoing meiotic prophase 

I, collected around 2.5 hours of conjugation, contained substantial amounts of 

γH2A.X (Figure 2.2B).  The signal was absent from macronuclear histones 

derived from cells collected during the same conjugation time point, consistent 

with the fact that meiosis in Tetrahymena is a micronuclear-specific 

developmental process.  When histones from meiotic micronuclei were resolved 

on a longer SDS gel containing higher percentage polyacrylamide which allows 

separation of the two H2A isoforms, the γH2A.X signal was consistent with the 

slower migrating H2A isoform corresponding to histone H2A.S (Figure 2.2C).   

Based on the morphological division of Tetrahymena meiotic prophase into 

six stages, immunofluorescence analysis of various stages during Tetrahymena 

conjugation, showed that γH2A.X signal appears in the meiotic micronucleus as 

early as stage II of meiotic prophase when the micronuclei just begin to elongate 

(Figure 2.3b).  Taken together these results suggest that the γH2A.X signal is 

specific to histone H2A.S and this phosphorylation event marks early stages of 

meiotic chromatin in Tetrahymena.  Moreover, these observations have greater 

implications for the understanding of the specific events of Tetrahymena meiosis, 

a process not well studied in this organism.  Given the documented association 
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during conjugation i.e. its potential to undergo homologous recombination 

during meiosis. 

 

 
 
Figure 2.2:  Anti- γH2A.X antibody detects meiotic DSB phosphorylation in 
Tetrahymena thermophila 
A. Immunofluorescence (IF) analysis of Tetrahymena during meiotic prophase I 

stage of conjugation.  Shown are the macronucleus (MAC) and the 
micronuclear crescent (MIC) stained with anti- γH2A.X antibody (red).  

B. Immunoblotting analysis of differentially purified nuclei from vegetative and 
meiotic prophase I conjugation stage of Tetrahymena separated on a short 10 x 
8 cm 12% SDS-PAGE and probed with anti- γH2A.X and anti-H2A antibodies. 

C. Immunoblotting analysis of differentially purified micronuclei from the 
meiotic prophase I conjugation stage.  The two different Tetrahymena H2A 
isoforms are separated on a longer 10 x 12 cm 15% SDS-PAGE and probed 
with anti- γH2A.X and anti-H2A antibodies. 
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of γH2A.X with DSBs (Rogakou et al., 1998), and the fact that DSBs are 

considered to be essential intermediates in the meiotic recombination process 

(Cao et al., 1990; Mahadevaiah et al., 2001; Sun et al., 1989), the observed meiotic 

prophase I-specific γH2A.X signal presents a first evidence for existence and 

temporal regulation of meiotic DSBs and meiotic recombination in Tetrahymena.  

 

H2A.S is phosphorylated in developing macronuclei undergoing DNA 

rearrangement, but not during programmed nuclear death of parental 

macronuclei   

DNA DSBs are also known to occur during two additional stages of Tetrahymena 

conjugation: during chromosome fragmentation and DNA elimination in the 

developing macronucleus (Yao and Chao, 2005), and also during breakdown of 

the parental macronucleus, a process thought to be related to apoptosis whereby 

the DNA is degraded producing oligonucleosome-sized DNA fragments (Davis 

et al., 1992).  Since γH2A.X has been shown to accompany other DNA DSB-

mediated events in eukaryotes such as with V(D)J recombination (Chen et al., 

2000) and apoptosis in mouse cells (Lu et al., 2006), the presence of γH2A.X 

staining during DSB-associated stages of Tetrahymena conjugation was examined 

using the γH2A.X specific antibody.  Interestingly, γH2A.X signal was very 

abundant in late-stage developing macronuclei at a time when programmed 

DNA rearrangements were taking place (Figure 2.3e,f).  In contrast, the parental 

macronucleus was devoid of γH2A.X throughout all stages of conjugation 

including late stages of DNA fragmentation corresponding to nuclear 

breakdown. 
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Figure 2.3:  Tetrahymena histone H2A.S is phosphorylated in developing 
macronuclei undergoing DNA rearrangement, but not during programmed 
nuclear death of parental macronuclei 
Immunofluorescence (IF) analysis of H2A.S phosphorylation during various 
stages of Tetrahymena conjugation probed with anti- γH2A.X antibody (red). 
Conjugation stages scored include:  Initiation – before cell pairing (a); Meiotic 
prophase I stage II – micronucleus begins to elongate (b); Meiotic prophase I 
stage IV – full crescent  (c); Meiosis II completed – 4 micronuclei stage (d); 
Macronuclear development II (e); Pair separation (f). 

 

H2A.S phosphorylation occurs on the C-terminal S134 

The γH2A.X phosphorylation site was then mapped in collaboration with 

Qinghu Ren and Xiaoyuan Song in the laboratory of Dr. Martin Gorovsky at 

University of Rochester, NY.  To that end a site directed mutagenesis approach 

was used followed by a separation of charged histone isoforms on acid-urea 

(AU) acrylamide gel.  AU gels developed by Panyim and Chalkley (Panyim and 

Chalkley, 1969), cleanly separate histones, histone variants and differently 

modified histone isofoms (such as acetylated and phosphorylated histones) on 

the basis of differences in their charge (Shechter et al., 2007).  Since wild-type 
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H2A.S in Tetrahymena is known to exhibit phosphatase resistant isoforms due to 

charge-altering N-terminal lysine acetylations (Allis et al., 1980; Ohba et al., 1999; 

Ren and Gorovsky, 2003), an H2A.X 5R mutant strain in which these acetylation 

sites were eliminated was used for this study.  In addition, S1, a potential 

phosphorylation site in H2A.S which can also be blocked by N-terminal 

acetylation, a conserved process that adds an acetyl group to the first amino acid 

of many histone peptides, was replaced with alanine in order to further reduce 

the complexity of the charged isoforms observed (Figure 2.4A).  AU acrylamide 

gel analysis of histones isolated from this low complexity H2A.S S1A+5R strain, 

exhibited only three phosphatase-sensitive isoforms (Figure 2.4B), suggesting 

that three phosphorylation sites exist in growing cells under normal conditions.  

These isoforms disappeared when phosphorylation was abolished by mutation 

of four potential H2A.S C-terminal phosphorylation sites, namely S122, S124, 

T127 and S129, to their non-phosphorylatable alanine analogues.  The resulting 

H2A.S S1A+5R+(AAAAS)c strain produced viable progeny and developed 

normally, indicating that although three of the four mutated sites in H2A.S are 

phosphorylation targets under normal conditions, this phosphorylation is 

dispensable for growth and its function is yet to be determined.  However, when 

the histone H2A.S S1A+5R+(AAAAS)c strain was treated with 5 mM of MMS for 

4 hours, a novel, single phosphatase-sensitive isoform was detected upon AU gel 

analysis, suggesting a presence of additional, DNA-damage dependent, 

phosphorylation site in H2A.S (Figure 2.4B).  Interestingly, S134 within the 

highly conserved SQ motif is the only remaining phospho-acceptor in the C-

terminus of the H2A.S S1A+5R+(AAAAS)c strain, suggesting it might be 

responsible for the observed DSB-induced phosphorylation event.  To test this 

possibility, an HTA.S S134A point mutation was introduced in a double 

Tetrahymena H2A knockout heterokaryons, to produce a viable progeny in which 
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Figure 2.4: Histone H2A.S C-terminal S134 is the substrate for the γH2A.X –
detected DSB-induced phosphorylation in Tetrahymena  
A. N- and C-terminal tail sequences of Tetrahymena histone H2A.S.  The lysines 

within the N-terminal tail, known acetylation  substrates, are labeled green. 
The serine in the conserved SQ motif, and the four serine/threonine residues 
upstream of the SQ motif, are labeled in red.  Denoted below are the two 
strains carrying mutations of the N-terminal tail that eliminate acetylation in 
an otherwise wild type background, or in the presence of alanine 
substitutions (in blue) of the four C-terminal serines/threonines.  All of the 
mutations generated viable transformants.  

B. Western blot of an AU-PAGE separating nuclear histones from wild type 
strains and strains containing indicated H2A.S point mutations, probed with 
anti-H2A antibody.  The figure is courtesy of Dr. Qinghu Ren from the 
laboratory of Dr. Martin Gorovsky at the University of Rochester, New York. 

C. Immunofluorescence (IF) analysis of wild type and S134A mutant cells 
during meiotic prophase I of conjugation probed with anti-γH2A.X antibody 
(red).  The arrows point to the macronucleus (MAC) and the micronucleus 
(MIC) in each mating pair. 
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both major H2A genes are deleted from the genome, and the mutated S134A in 

the somatic macronucleus is the only source of H2A.S.  

 Immunofluorescence analysis of the S134A mutant cells during 

conjugation using the γH2A.X specific antibody strongly supported the 

conclusion that S134 is likely the exclusive site for DSB-induced phosphorylation 

of H2A.S.  The single S134A point mutation specifically abolished the γH2A.X 

staining in meiotic prophase crescent micronucleus (Figure 2.4C), confirming 

that S134 in H2A.S is the major, if not the exclusive, site of meiotic DSB 

phosphorylation. 

 

Absence of H2A.S S134 phosphorylation leads to meiotic defects 

The γH2A.X deficient S134A strain was next used to determine the functional 

significance of meiotic S134 phosphorylation of histone H2A.S during 

conjugation.  For that purpose, conjugation was initiated with either a wild-type 

H2A.S or S134A somatic heterokaryon strains and the process was examined in 

order to establish whether absence of S134 phosphorylation during homologous 

recombination results in conjugation defects.  The different developmental stages 

during Tetrahymena conjugation, derived from the changes in nuclear 

morphology depicted in Figure 2.5B, were visualized by staining of the 

conjugating cells with DAPI.  The cell fractions at different developmental stages 

were then scored during various time points after initiation of conjugation.  

 Wild-type H2A.S somatic heterokaryons advanced through all stages of 

conjugation to the final pair separation to give 34% of exconjugants 24 hours 

after the process was initiated, showing they were able to complete conjugation 

with a transformed wild-type H2A.S gene in the macronucleus.  In contrast, 

matings between S134A mutant cells were unable to complete conjugation.                                       

o  
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Figure 2.5:  Disruption of S134 phosphorylation leads to premature 
termination of conjugation after meiosis II 
The figure is courtesy of Dr. Qinghu Ren and Dr. Xiaoyuan Song from the 
Laboratory of Dr. Martin Gorovsky at the University of Rochester, New York. 
A. Developmental profiles of wild type and mutant H2A.S S134A during 

conjugation.  Seven different stages of conjugation (depicted in panel B) were 
scored by DAPI staining of samples removed at 3.5, 6.5, 11 and 24 hours after 
mixing.   

B. Conjugation stages scored in panel A above include: 1. Pair formation; 2. 
Meiotic prophase I – crescent stage; 3. Chromosome condensation; 4.  Meiosis 
I completed – two micronuclei stage; 5. Meiosis II completed – 4 micronuclei 
stage; 6. Developing macronuclei (anlagen); 7. Pair separation.   
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Discussion 

Phosphorylation of the C-terminal SQ motif that defines H2A.X variants is 

required for efficient DNA DSB repair in diverse organisms (Redon et al., 2002), 

but has not been studied in ciliated protozoa.  This study for the first time 

establishes the presence of a typical H2.X in lower eukaryotes such as the ciliate 

Tetrahymena thermophila.  It shows that Tetrahymena histone H2A.S can be 

phosphorylated at S134 within the conserved SQ motif in response to DSBs 

induced by damaging agents and during micronuclear meiosis.  It also 

demonstrates that S134 phosphorylation is important for normal micronuclear 

meiosis as S134A mutation that abolishes phosphorylation, causes meiotic 

defects.  These results clearly establish that Tetrahymena H2A.S can function like 

histone H2A.X in vertebrates. 

 Interestingly however, although γH2A.X is essential for proper meiosis in 

Tetrahymena and it appears very early in the crescent meiotic prophase I stage, its 

absence in the S134A mutant cells only leads to premature cessation of 

conjugation after meiosis II and contrary to expectations there was no evidence 

of cell arrest directly at meiotic prophase I.  The observed cell cycle delays 

following meiosis II suggest it is unlikely that the lack of prophase I arrest could 

be due to an adaptation mechanism.  Otherwise operational in S. cerevisiae 

(Malkova et al., 1996; van Vugt and Medema, 2004; Xie et al., 2005), the 

adaptation process permits cells to entirely escape checkpoint arrest and allows 

unimpeded cell cycle progression despite unrepaired DSBs.  Instead, in the 

S134A mutant, the cell cycle block indeed exists, albeit at later stages of 

conjugation following meiosis II, and is likely due to activation of a mitotic DNA 

damage checkpoint in response to unrepaired breaks that persist past meiosis II.  

This observation suggests that unlike other organisms, the recombination 

checkpoint (Hochwagen and Amon, 2006) that monitors meiotic DSBs and 
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allows for break repair by delaying the cell cycle progression in prophase I, is 

either weak or non-existent in Tetrahymena, and instead, cells arrest in response 

to a later mitotic checkpoint.  This checkpoint mechanism ensures proper meiosis 

before the fertilization process can occur.  

In vegetative S134A cells however, the mitotic checkpoint must be subject 

to adaptation as the cell growth is unimpeded in the mutant cells despite visible 

defects in micronuclear mitosis during the vegetative cycle (data not shown, 

(Song et al., 2007).  In fact, the S134A mutant strain is viable suggesting that 

Tetrahymena can tolerate unrepaired DSBs during vegetative growth.  Consistent 

with this observation, mutations that abolish SQ phosphorylation or knock out 

H2A.X in other organisms are also not lethal (Celeste et al., 2002; Downs et al., 

2000).  In addition, most previously described mutations that affect Tetrahymena 

micronuclei are not lethal as well (Mochizuki and Gorovsky, 2005; Wei et al., 

1999), which is likely due to the lack of micronuclear transcriptional activity 

during vegetative growth.  At this stage of the life cycle the micronuclei are 

transcriptionally inert and therefore the damage accumulated in the vegetative 

micronucleus will not have a major phenotypic effect until the next round of 

conjugation when the germline micronucleus gives rise to both, the 

macronucleus and the micronucleus of the daughter cells.  In fact, it might have 

been evolutionary advantageous to eliminate the mitotic DNA damage 

checkpoints in vegetative cells to allow Tetrahymena to indefinitely replicate even 

in the absence of functional micronucleus. 

The macronuclei on the other hand, are transcriptionally active and 

responsible for the phenotype of the vegetative cells.  However, the macronuclei 

of S134A mutant cells are capable of compensating for DSBs because of the gene 

redundancy, namely there are ~45 copies of each chromosome enabling cells to 

survive unrepaired breaks because other copies of the gene might still be intact. 
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This study also sheds new light on the unique nature of the programmed 

degradation of the parental macronucleus during conjugation.  Previous studies 

suggested that the parental macronucleus is destroyed by a process that 

resembles apoptosis in higher eukaryotes and is accompanied by the production 

of oligonucleosome-sized DNA ladders (Davis et al., 1992).  However, apoptosis 

in higher eukaryotes is also accompanied by H2A.X phosphorylation, which was 

clearly absent from Tetrahymena degenerating parental macronuclei.  

Finally, the results demonstrate a timeline for meiotic recombination in 

Tetrahymena.  Meiotic recombination events in mouse and yeast are well 

established and γH2A.X appearance in these organisms precedes and is spatially 

distinct from synapsis (Mahadevaiah et al., 2001; Roeder, 1997; Zenvirth et al., 

1992).  In Tetrahymena, micronuclei undergo meiosis during conjugation adopting 

a highly elongate crescent shape, which then shortens and condenses at 

metaphase I.  The crescent stage is thought to be analogous to most of meiotic 

prophase I because it precedes the meiotic divisions and it also exhibits some 

other features of meiotic prophase found in other organisms, such as bouquet-

like clustering of both telomeres (Loidl and Scherthan, 2004) and centromeres 

(Cui and Gorovsky, 2006).  However, unlike other organisms, synaptonemal 

complexes (SCs) have not been identified (Loidl and Scherthan, 2004; Wolfe et al., 

1976) in Tetrahymena making it difficult to correlate stages of micronuclear 

meiotic prophase to key events in meiosis such as chromosome pairing and 

homologous recombination.  The results in this study show that despite the lack 

of observed SCs, Tetrahymena γH2A.X follows a similar timeline as DSB-

associated meiotic H2A.X phosphorylation in higher eukaryotes because it 

appears early before the micronucleus starts elongating and before pairing of 

homologous chromosomes in the crescent stage (Figure 2.3b).  As such, this 
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study provides the first evidence for the existence of meiotic DSBs in Tetrahymena 

and defines the time interval of meiotic recombination in this organism by 

demonstrating that DSBs occur in the very early prophase of meiosis I, and 

persist until the end of the crescent stage, when meiotic crossing-over is likely 

completed. 
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CHAPTER 3 

 

THE AMINO-TERMINAL SRS MOTIF OF SACCHAROMYCES 

CEREVISIAE HISTONE H2A IS IMPORTANT FOR PROPER DNA 

DAMAGE RESPONSE 

 

Introduction 

To accommodate the length of the DNA and its proper segregation during cell 

division, eukaryotic cells package their genomes in a nucleoprotein complex 

known as chromatin.  The basic unit of DNA compaction within chromatin is the 

nucleosome which consists of 147 base pairs of DNA wrapped around an 

octamer composed of two copies of each of the four core histones H2A, H2B, H3 

and H4 (Luger et al., 1997; Richmond and Davey, 2003).  Even at this level of 

lowest compaction, the DNA is relatively inaccessible to the factors required for 

gene transcription, DNA replication, recombination and repair.  In order to 

surmount the repressive compaction barrier eukaryotes have developed 

mechanisms that regulate chromatin accessibility.  These mechanisms include: (1) 

ATP-dependent chromatin remodeling, (2) incorporation of histone variants into 

nucleosomes and (3) covalent histone modifications, such as phosphorylation, 

methylation, acetylation and ubiquitylation.  Histone modifications have thus far 

been extensively studied mainly in the context of transcriptional regulation.   

Lately however, there’s been a growing body of evidence linking an increasing 

number of histone modifications to DNA repair, their functions ranging from (1) 

lesion markers, (2) recruitment of repair machinery components to (3) facilitating 

the action of these components reviewed by (Downs et al., 2007).  An overview of 

all histone modifications associated with DNA damage detection and repair is 

given in Table 1. 
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Although they were able to enter meiosis II and the micronuclei of each pair 

were able to divide and produce four meiotic products, these nuclei were not 

able to undergo further divisions, nuclear exchange and fertilization.  

Conjugation of the S134A mutant cells was aborted at the meiosis II stage and the 

pairs separated prematurely with four or fewer meiotic micronuclei (Figure 2.5A 

and 2.5B, stage 5’).  S134A cells appeared cytologically normal through meiotic 

prophase I, however abnormalities such as DNA fragmentation and chromosome 

loss as well as chromosome segregation defects were observed during metaphase 

I and anaphase I (Song et al., 2007).  These results demonstrate that loss of H2A.S 

S134 phosphorylation leads to meiotic defects and premature termination of 

conjugation and suggest that phosphorylation of the H2A.S SQ motif is required 

for proper meiosis in Tetrahymena. 
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In order to assess the contributions of additional histone residues in DNA 

damage recognition and repair, I surveyed S. cerevisiae cells lacking specific N- 

and C-terminal histone tails for survival in the presence of a range of DNA 

damaging agents, such as the alkylating agent methyl methanesulfonate (MMS), 

hydroxyurea (HU), and following exposure to ultraviolet (UV) radiation.  I found 

that deletion of the H2A amino terminus imparts significant sensitivity to all 

DNA damaging agents tested.  Specifically, a DNA damage survival property 

exists in a conserved SRS region spanning residues 17-19 of the H2A tail.  This 

region lies within a domain previously identified as a Histone H2A Repression 

(HAR) domain (Parra and Wyrick, 2007) or a ‘knuckle’ (Luger and Richmond, 

1998) which is a single turn α-helix preceding the H2A α1 helix (Figure 1.1).  

Here, I show that point mutations within the SRS region that change the surface 

charge of residues, such as H2A S17E and H2A S19E phospho-mimics which 

introduce a negative charge, as well as H2A R18A which neutralizes the positive 

charge of arginine, render cells sensitive to all DNA damage agents tested and 

account for the broad spectrum of damage sensitivity of the H2A N-terminal 

deletion strain. 

Finally, a subtle DNA damage sensitivity to MMS only, was contributed 

by the three lysines present in the H2A N-tail.  Using mass spectrometry (MS) in 

collaboration with Hillary Montgomery in the laboratory of Dr. Donald Hunt at 

the University of Virginia, we demonstrate that in vivo two of the lysines, H2A 

K4 and H2A K7, are acetylated individually as well as together, and identified 

the third lysine, H2A K13, as a novel acetylation site.   
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Results 

Deletion of the amino-terminal tail of S. cerevisiae histone H2A confers 

sensitivity to DNA damaging agents 

Given the increasing number of histone covalent modifications recently 

associated with DNA damage recognition and repair, it is plausible that there are 

additional histone contributions to the DNA damage response.  To determine 

whether other histone residues play a role in the cell’s ability to cope with DNA 

damage, a ‘plasmid shuffle’ strategy was used to introduce mutations within the 

histone genes of interest.  The strategy developed by Boeke and colleagues, is a 

genetic method which allows mutagenesis of essential genes in S. cerevisiae 

(Boeke et al., 1984).  It relies on expression of a wild type copy of a gene of 

interest from a ‘resident’ plasmid to support viability of strains carrying a 

deletion of the respective gene.  Upon introduction of a plasmid-born mutant 

copy of the gene maintained by a different selectable marker, the URA3 

auxotrophic marker-containing ‘resident’ plasmid is lost by counter-selection 

with the pyrimidine analogue, 5-fluoro-ortic acid (5-FOA).  The method offers an 

experimental advantage over lengthy procedures required for introducing 

genomic mutations and has already proven to be a useful approach for histone 

genetic studies (Bird et al., 2002; Megee et al., 1990; Recht et al., 1996; Sun and 

Allis, 2002). 

A schematic illustration of the histone shuffle experimental system used in 

this study is depicted in Figure 3.1.  In particular, a plasmid-borne copy of 

various histone H2A and H2B tail deletions was introduced in a haploid S. 

cerevisiae ’shuffle’ strain in which both copies of the chromosomal H2A and H2B 

loci had been disrupted.  The histone deletion strains were then analyzed for 

their ability to survive in the presence of a range of genotoxic factors, such as 

methyl methanesulfonate (MMS), hydroxyurea (HU) and ultraviolet (UV) 
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radiation, which inflict different types of DNA damage repaired by distinct 

mechanisms.  At the concentrations used, 0.05% and 150 mM respectively, both 

MMS and HU, create replication-dependent double strand breaks repaired 

primarily by homologous recombination.  Alternatively, UV irradiation produces 

intrastrand photoproducts through crosslinking of adjacent cytosine and 

thymine bases.  The resulting pyrimidine dimers are substrates for nucleotide 

excision repair pathways, which create single-strand lesions.   

              
Figure 3.1:  S. cerevisiae H2A-H2B histone plasmid-shuffle strain 
Both copies of the chromosomal H2A and H2B loci are disrupted in a haploid S. 
cerevisiae strain in which survival is supported by a ‘resident’ URA3 plasmid-
borne wild type copy of histone H2A and H2B.  The strain is useful for testing 
histone point mutations and tail truncations in vivo by counter-selecting against 
the ‘resident’ URA3 plasmid after introduction of a plasmid-born mutant copy of 
histone H2A and H2B maintained by a different selectable marker, in this case 
TRP1.  The strain and figure are courtesy of Dr. Judith Recht. 
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Figure 3.2:  N-terminus of histone H2A, but not histone H2B is required for 
growth during DNA damage 
A. Schematic representation of the amino acid sequence of the S. cerevisiae 

histone H2A N-terminal tail 1-20 truncation.  All potentially modifiable 
residues are underlined and represented in larger case.  The conserved SRS 
motif within the tail is shown in blue.  DNA damage associated-serine 
phosphorylation sites contained within the other tail deletions constructs 
tested are also indicated in the diagram. 

B. Five fold serial-dilutions of cells containing the indicated histone tail 
deletions or were spotted on YPD plates containing the indicated 
concentration of methyl-methane sulfonate (MMS) and hydroxyurea (HU).  A 
third set of YPD plates was exposed to ultraviolet (UV) irradiation.  All plates 
were incubated at 30°C and photographed after 3 days.  Strains exhibiting 
DNA damage sensitivity are labeled red. 
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When the growth of the histone ‘shuffle’ strains carrying tail deletions (Figure 

3.2A) was examined on plates containing MMS, HU or after UV radiation, only 

the histone H2A 20 amino acid-terminal tail deletion strain was found to be 

markedly hypersensitive to all three DNA-damaging factors tested (Figure 3.2B). 

An H2A carboxy-tail deletion strain, containing the hallmark DNA damage 

γH2A.X site, S129, as well as a longer C-tail deletion strain which also included 

S122, another phosphorylation site linked to DNA repair (Harvey et al., 2005) 

showed a subtle, but increasingly more sensitive phenotype as a function of the 

increasing length of the tail removed.  In contrast, the growth and survival of the 

histone H2B amino-terminal deletion strain, which removes a ‘cell death’-

inducible phosphorylation mark within the tail, was unaffected during DNA 

damage.  The observed sensitivity of the H2A N-tail deletion strain to all 

damaging conditions tested did not appear to be an indirect effect of general 

growth deficiencies of the strain as its growth rate in the absence of damage is 

indistinguishable from the wild-type.  These results suggest that the histone H2A 

amino-terminus or residues within it are important for survival in the presence 

of DNA damage.   

 

Histone H2A N-terminal acetylation mapped by mass spectrometry confers 

subtle sensitivity to MMS 

The observed DNA damage hypersensitivity imparted by the deletion of the 

H2A N-terminus could be a consequence of its effect on histone modification 

status of residues within the N-tail.  To that end, the histone post-translational 

modifications within the H2A amino-terminal tail were mapped by mass 

spectrometry (MS) in collaboration with Hillary Montgomery in the laboratory of 

Dr. Donald Hunt at the University of Virginia.  Acid extraction from cultured 

wild type cells before and after 2-hour treatment with 0.05% MMS was used to 
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Figure 3.3: Purification of S. cerevisiae histone H2A for mass spectrometry 
analysis of the post-translational modification profile 
Acid extracted proteins from wild type cerevisiae strains before (A) and after (B) 
treatment with 0.05% MMS for 2 hrs were separated by RP-HPLC on an 
acetonitrile gradient and the resulting traces are shown.  (C) Fractions containing 
histone H2A were identified by immunoblotting after separation on a 15% SDS-
PAGE.  Arrow heads denote, and fraction numbers labeled red contain histone 
H2A.  
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                      Figure 3.3 
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isolate endogenous histone H2A which was subsequently purified by separation 

on a reversed phase HPLC.  Histone H2A containing fractions were run on SDS-

PAGE gel and the protein was identified by immunoblotting (Figure 3.3).  The 

MS analysis of the RP-HPLC purified histone H2A, detected acetylation on all 

three tail lysines: K4, K7 and a novel acetylation site previously not observed in 

S. cerevisiae, K13.  Acetylation was present in both the MMS treated and the 

untreated sample and there were no significant changes in abundance before and 

after MMS treatment.  To ensure DNA damage conditions induced a proper 

response, C-terminal H2A tryptic peptides were examined for the presence of the 

DNA damage γH2A.X mark.  Indeed, a γH2A.X peptide was observed in the 

MMS-treated sample.  The analysis also revealed presence of coexisting 

modifications within the intact N-terminal 18 amino acid peptide, product of the 

tryptic digest of H2A.  Interestingly, ~1% of the sample population contained a 

dual K4/K7 acetylation species  (Figure 3.4) which has not been observed before.  

  To test the requirement for H2A N-terminal lysine acetylation in the DNA 

damage response, each of the three tail lysines was mutated individually and in 

combination to either arginine (R) or an acetyl-mimic glutamate (Q), and survival 

was scored on plates containing the same set of DNA damaging reagents: MMS, 

HU and after UV radiation.  Only strains carrying K4,7R and K4,7Q double 

mutations, as well as strains with triple mutations, K4,7,13R and K4,7,13Q 

displayed modest sensitivity to MMS, but not the other DNA damage agents 

tested (Figure 3.5).  These results argue that the requirements for lysine 

acetylation during DNA damage are likely dynamic.  However, the damage 

phenotype observed with the lysine mutants was not strong enough to attribute 

for the severity of the N-tail deletion phenotype indicating that other tail 

segments are responsible for the role of H2A in cellular viability during damage. 
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Figure 3.4:  Tandem mass spectrum of a doubly acetylated S. cerevisiae histone 
H2A amino-terminal peptide 
Tandem mass spectrum (MS/MS) of a doubly acetylated (Ac) wild-type S. 
cerevisiae histone H2A N-terminal peptide, residues 1-18, prior to treatment with 
methyl-methane sulfonate (MMS), fragmented by collision activated dissociation 
(CAD).  The N-terminal N-acetylated peptide was generated from an in-solution 
digest with trypsin after derivatization of unmodified or monomethylated lysine 
residues with propionic anhydride (Pr).  A fraction of the resulting peptide 
mixture was analyzed by online nanoflow high performance liquid 
chromatography micro-electrospray ionization tandem mass spectrometry 
(nHPLC-µESI MS/MS) on a Finnigan LTQ –FT mass spectrometer operated in a 
data-dependent manner.  The instrument cycled through the acquisition of a full-
scan mass spectrum (MS) and the top 10 most abundant masses in this initial MS 
scan were sequentially chosen for MS/MS.  The spectrum shows that the H2A 
peptide is acetylated at both lysines 4 and 7 together.  It also confirms the 
existence of acetylation at the N-terminal serine in vivo.  b and y fragment ions 
are denoted in blue and red, respectively.  Doubly-charged fragment ions are 
designated as 2+, and ions corresponding to the neutral loss of water are denoted 
with asterisks (*).  (Figure courtesy of Hillary Montgomery).   
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Figure 3.5:  Amino-terminal lysine point mutations in S. cerevisiae histone 
H2A confer subtle sensitivity to MMS 
Five fold serial-dilutions of cells containing the indicated histone H2A N-
terminal lysine point mutations to either arginine (R) or acetylation-mimic 
glutamate (Q), were spotted on YPD plates containing the indicated 
concentration of methyl-methane sulfonate (MMS) and hydroxyurea (HU).  A 
third set of YPD plates was exposed to ultraviolet (UV) irradiation.  All plates 
were incubated at 30°C and photographed after 3 days. Strains exhibiting DNA 
damage sensitivity are labeled red. 

The DNA damage-survival property of histone H2A amino-terminal tail is 

encoded in the ‘knuckle’ region 

To assess the contributions of each residue within the H2A N-terminal tail to the 

damage sensitivity of the N-tail deletion, a series of H2A mutant strains were 

next generated by site directed mutagenesis of the remaining modifiable residues 

within the H2A amino-terminus.  For that purpose, each of the five potential 
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serine (S) phospho-acceptors in the H2A N-terminal tail, was individually 

replaced with either alanine (A) to eliminate the phosphorylation potential of the 

serine, or glutamic acid (E), a constitutive phospho-mimic.  Strains carrying 

single serine to alanine substitutions showed no obvious sensitivity to any of the 

damaging conditions tested (Figure 3.6).  Similarly, the growth of most of the   

k

 
 
Figure 3.6:  DNA damage sensitivity survey of S. cerevisiae strains containing 
H2A amino-terminal serine point mutations 
Five fold serial-dilutions of cells containing the indicated H2A N-terminal tail 
serine point mutations to either the unphosphorylatable alanine (A) or the 
phospho-mimic glutamic acid (E), were spotted on YPD plates containing the 
indicated concentration of methyl-methane sulfonate (MMS) and hydroxyurea 
(HU).  A third set of YPD plates was exposed to ultraviolet (UV) irradiation.  All 
plates were incubated at 30°C and photographed after 3 days. Strains exhibiting 
DNA damage sensitivity are labeled red. 
 

77



      
Figure 3.7:  The conserved amino-terminal SRS region of within the histone 
H2A ‘knuckle’ is important for survival after DNA damage 
A. Amino acid sequence alignment of histone H2A N-terminal tails from various 

organisms. Sequences were obtained from GenBank.  The accession numbers 
are as follows: human_H2A.1, NP_254280; human_H2A.X, NP_002096; D. 
melanogaster_H2AvD (H2A.Z homologue), NP_524519; S. pombe_H2A.2, 

NP_594421; S. cerevisiae_H2A.1, NP_010511; S. cerevisiae_H2A.2, NP_009552; 
S. cerevisiae_H2A.Z, NP_014631 (also known as htz1); T. thermophila_H2A.S, 
AAC37291; T. thermophila_H2A.F, AAC37292, T. thermophila_H2A.Z, 
CAA33554. Alignment was generated with ClustalW identity algorithm.  The 
conserved SRS motif is labeled in red.  Residues that comprise the Histone 
H2A Repression (HAR) domain are highlighted.  Residues that comprise the 
‘knuckle’ single turn α helix are underlined. Alignment gaps are indicated 
with a hyphen (-). 

B. Five fold serial-dilutions of cells containing the indicated H2A N-terminal tail 
deletions were spotted on YPD plates containing the indicated concentration 
of methyl-methane sulfonate (MMS) and hydroxyurea (HU).  A third set of 
YPD plates was exposed to ultraviolet (UV) irradiation.  All plates were 
incubated at 30°C and photographed after 3 days. Strains exhibiting DNA 
damage sensitivity are labeled red. 
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glutamic acid phospho-mimic strains was unaffected by any type of DNA 

damage.  However, when either S17 or S19 were individually replaced with 

glutamic acid, the resulting strains were severely impaired for growth on MMS- 

or HU- containing plates, as well as following UV radiation.  The observed 

phenotypes of the S17E and S19E strains, correlate with the location of these 

residues in the nucleosome, namely both of them map within the H2A N-tail 

structured region designated as the ‘knuckle’ (Luger and Richmond, 1998) 

(Figure 3.7A).  Indeed, when an H2A N-tail deletion spanning ‘knuckle’ residues 

17 through 19 was introduced into the ‘shuffle’ strain, it fully recapitulated the 

broad  DNA-damage  hypersensitivity of the H2A 1-20 tail deletion (Figure 3.7B). 

 

 
 
Figure 3.8:  Histone H2A ‘knuckle’ region charge-altering point mutations 
confer DNA damage sensitivity 
Five fold serial-dilutions of S. cerevisiae cells containing the indicated H2A 
‘knuckle’ point mutations of serines (S) to either alanine (A), or glutamic acid (E), 
and arginine to either alanine (A) or lysine (K) were spotted on YPD plates 
containing the indicated concentration of methyl-methane sulfonate (MMS) and 
hydroxyurea (HU).  A third set of YPD plates was exposed to ultraviolet (UV) 
irradiation.  All plates were incubated at 30°C and photographed after 3 days. 
Strains exhibiting DNA damage sensitivity are labeled red. 
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The sensitivity to DNA damage is not only limited to the S->E ‘knuckle’ point 

mutations, as R18 ‘knuckle’ substitution to a charge-neutralizing alanine, but not 

lysine had a similar, although more subtle effect (Figure 3.8).  These observations 

land further support to the idea that the DNA damage survival property of the 

H2A N-terminal tail is encoded almost entirely by the ‘knuckle’ region.  The 

property, although broad in its effect as it mediates response to DNA damage 

inflicted by various mechanisms, seems to be indeed DNA damage specific, as no 

obvious growth phenotypes were seen in under normal conditions. 

 

Expression of wild-type histone H2A suppresses damage sensitivity of strains 

containing ‘knuckle’ point mutations 

In the context of the nucleosome, the histone octamer contains two H2A copies.  

Although structurally each H2A component of the octamer constitutes a dimer 

with histone H2B, functionally the nucleosome can be viewed as a homozygous 

H2A dimer.  In circumstances where a mutant H2A histone can be incorporated 

into the nucleosome in the presence of a wild-type H2A copy, it is possible that it 

might adversely affect the normal function of the wild-type component.  In such 

cases, the mutation in one of the H2A constituents of the histone octamer might 

cause a dominant negative phenotype, as nucleosomes would be missing one of 

its functional H2A components.  To examine whether H2A proteins carrying 

‘knuckle’ mutations can still efficiently incorporate into nucleosomes together 

with the wild-type H2A gene product and whether this incorporation interferes 

with the normal DNA damage function of the wild-type nucleosome, sensitivity 

to the previously used palette of genotoxic agents was assayed in H2A ‘knuckle’ 

heterozygous strains.   
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Heterozygous ‘knuckle’ strains were generated in the ‘shuffle’ 

background by keeping the wild-type resident plasmid histone H2A copy along 

with the newly introduced plasmid carrying the H2A ‘knuckle’ mutations.  

When the growth of these strains heterozygous for either S17E, R18A or S19E, 

was examined on plates containing either MMS, HU or after UV exposure, each 

of the strains was able to grow as well as the homozygous wild-type strain 

(Figure 3.9).  These results demonstrate a lack of a dominant negative phenotype 

of ‘knuckle’ mutations as the presence of a wild-type histone H2A copy is able to 

suppress the DNA damage sensitivity of each ‘knuckle’ point mutant.  A likely 

interpretation of this observation is that wild-type histone H2A is a preferred 

nucleosomal component and in its presence histones with ‘knuckle’ mutations 

are not incorporated into chromatin or their incorporation is simply less efficient. 

 
Figure 3.9: Expression of wild-type histone H2A suppresses damage sensitivity 
of S.  cerevisiae strains with ‘knuckle’ point mutations 
Five fold serial-dilutions of cells containing the indicated H2A ‘knuckle’ point 
mutations in the presence of a wild-type histone plasmid, were spotted on YPD 
plates containing the indicated concentration of methyl-methane sulfonate 
(MMS) and hydroxyurea (HU).  A third set of YPD plates was exposed to 
ultraviolet (UV) irradiation.  All plates were incubated at 30°C and 
photographed after 3 days. Strains exhibiting DNA damage sensitivity are 
labeled red. 
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If indeed incorporation efficiency of the mutant H2A is only reduced and 

not completely suppressed in the heterozygous strains, then the results suggest 

that presence of a wild-type H2A component in each nucleosome, or some 

fraction of them, is sufficient for the normal DNA damage function of H2A and 

can fully compensate for the sensitivity conferred by the ‘knuckle’ mutations. 
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Discussion 

Post-translational modifications of all core histones have been implicated in the 

cellular response to DNA damage in eukaryotes (Bird et al., 2002; Downs et al., 

2004; Harvey et al., 2005; Qin and Parthun, 2002; Tamburini and Tyler, 2005; 

Wyatt et al., 2003; reviewed by (Downs et al., 2007).  Here, I uncover a unique 

and previously unrecognized role for the H2A N-terminal tail in the DNA 

damage response in S. cerevisiae.  This function is limited to the conserved SRS 

motif spanning residues 17-19 within the H2A ‘knuckle’ region and is broad in 

its effect as it mediates response to DNA damage inflicted by various 

mechanisms.  A lesser contribution, specific to MMS inflicted damage, is 

provided by the three H2A amino-terminal lysines which appear to be 

functionally redundant as sensitivity to MMS is observed only with double 

K4,7R/Q as well as triple, but not individual tail lysine mutations.  Using a mass 

spectrometry (MS) approach to map post-translational modifications of the H2A 

amino terminus, we demonstrate that in vivo two of the lysines, H2A K4 and 

H2A K7, are acetylated individually as well as together, and identified the third 

lysine, H2A K13, as a novel acetylation site in S. cerevisiae.   

It is unclear however, whether the DNA damage sensitivity imparted by 

the H2A amino-terminal lysine mutations is mediated through the MS detected 

acetylation of these sites.  The broad substrate specificity of many histone 

modifying enzymes, including histone acetyltransferases and deacetylases, 

makes it difficult to discern specific contributions of individual modifications.  In 

this particular case, both H2A K4 and K7 are substrates for the catalytic subunit 

of the Nua4 histone acetyltransferase complex, Esa1 (Clarke et al., 1999; Roth et 

al., 2001; Suka et al., 2001).  Interestingly, Esa1 also acetylates N-terminal lysines 

in histone H4 (Allard et al., 1999; Bird et al., 2002), and it has been previously 
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established that the Esa1-dependent H4 lysine acetylation is required for DNA 

repair in S. cerevisiae (Bird et al., 2002).  The broad range of Esa1 substrates, some 

of which have already been linked to the DNA damage response, makes an 

enzyme-targeting strategy an unfeasible approach when evaluating whether 

Esa1-dependent acetylation of individual histone H2A target sites contributes to 

DNA damage sensitivity.  Nevertheless, if the DNA damage function of the 

histone H2A tail lysines is indeed mediated through acetylation, its overall 

contribution to cell viability during DNA damage appears to be minor as the 

observed phenotype of even triple H2A N-tail lysine to glutamate substitutions is 

subtle.  It is therefore reasonable to speculate that the mild DNA damage 

sensitivity of the triple H2A N-tail lysine mutation is likely due to a redundant 

function of the H2A and H4 lysine acetylation during the DNA damage 

response.  In fact, in addition to the pairwise preference of Esa1 for histones H2A 

and H4 there are other pairwise similarities between the N-terminal tails of these 

two histones, providing further support for the functional redundancy 

hypothesis (Cheung et al., 2000).    For example, the N-terminal tails of both 

histone H2A and H4 are shorter than those of H3 and H2B and as opposed to H3 

and H2B, both H2A and H4 have a serine at the N-terminal starting position.  

Consistent with the functional redundancy prediction for histone H2A and H4, 

deletion of both H2A and H4 amino-terminal tails in S. cerevisiae is lethal (Arthur 

Hsu unpublished results).  Nevertheless, the functional redundancy hypothesis 

can be tested by monitoring progression of DNA damage sensitivity phenotypes 

when individual, pairwise double or triple histone H2A N-tail lysine mutations 

are combined with histone H4 N-tail deletion or H4 N-tail lysine mutations.  

The DNA damage sensitivity of the strains carrying ‘knuckle’ mutations 

could also be mediated by altering modification states of ‘knuckle’ amino acids.                     

Alternatively, ‘knuckle’ mutations might have a direct effect on nucleosome and 
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chromatin structure.  The former doesn’t seem very likely as the MS analysis of 

the post-translational modification status of the conserved SRS motif within the 

S. cerevisiae histone H2A ‘knuckle,’ before and after MMS treatment, did not 

reveal phosphorylation of the serines or methylation of the arginine within this 

region.  In addition, acid-urea electrophoresis separation of S. cerevisiae H2A 

isoforms before and after MMS treatment did not reflect a damage-dependent 

loss of histone H2A charged species in the strains containing non-

phosphorylatable amino acid analogues in ‘knuckle’ positions (data not shown).  

Although it is possible that transient modification states might not have been 

captured by these methods, the damage sensitivity phenotype imparted by the 

charge-altering mutations within the ’knuckle’ region is likely a direct 

consequence of changes in chromatin structure rather than changes in 

modification states of residues in this region.   

Interestingly, Boeke and colleagues recently screened a systematic library 

of individual histone alanine substitutions for mutations that impair response to 

DNA damaging agents camptothecin (CPT), methyl methanesulfonate (MMS), 

hydroxyurea (HU) and ultraviolet radiation (UV) (Dai et al., 2008; Huang et al., 

2009).  Unfortunately, phospho-mimic mutations such as serine to glutamic acid 

substitutions were not included for histone H2A in their study.  Nevertheless, 

consistent with their results, the serine to alanine substitutions mapping to the 

‘knuckle’ region did not elicit a DNA damage phenotype in my experiments (Dai 

et al., 2008; Huang et al., 2009).  The only phenotypic discrepancy pertains to the 

R18A mutation which  appears to have a subtle DNA damage sensitivity in my 

hands as opposed to the absence of a phenotype in the published data, however 

this could be due to differences in the assay protocol, or different methods used 

for scoring for the severity of the phenotype.    
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The hypothesis that ‘knuckle’ mutations might have a direct effect on 

nucleosome and chromatin structure is supported by the location of the ‘knuckle’ 

residues within the nucleosome crystal structure, namely S17 and R18 face the 

DNA minor and major grooves respectively, whereas the S19 is oriented toward 

the central axis of the α1 helix and likely serves to stabilize the structure by 

‘capping’ the helical dipole (Figure 3.10).  Substitution of S17 with the negatively 

charged glutamic acid might simply pose a charge interference problem with the 

like, negatively charged DNA, in addition to the steric hindrance issue 

introduced by the bulkier replacement.  Alanine point mutation of the arginine at 

position 18 that neutralizes its positive charge might destabilize nucleosome 

structure as well, by eliminating favorable long distance interactions with the 

negatively charged DNA.  In the case of S19, the polarity of the serine is directly 

responsible and necessary for its ‘capping’ role and it is reasonable to expect that 

a bulkier charged glutamic acid can interfere with the normal helix stabilizing 

function of the serine.  The proposed effect of ‘knuckle’ mutations on nucleosome 

stability underscores the importance of the ‘knuckle’ structure preservation, 

specifically for the cell’s capacity to cope with DNA damage.  Based on the 

absence of a dominant negative phenotype, this effect of the ’knuckle’ mutations 

on the nucleosome structure likely reduces the efficiency of ‘knuckle’ histone 

incorporation into chromatin, an event that might have specific consequences 

during processes that require extensive chromatin remodeling, such as DNA 

repair, replication or transcription.  Otherwise, once incorporated these 

mutations might further interfere with the favorable chromatin environment that 

promotes DNA repair and checkpoint signaling through binding of protein 

factors, or they might indirectly influence these processes through an effect on 

repair and checkpoint gene expression. 
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Figure 3.10: Localization and orientation of the conserved SRS ‘knuckle’ 
residues within the crystal structure of the nucleosome core particle  
Shown are nucleosome crystal structure views (A) perpendicular to the DNA 
superhlical axis, (B) partial side view rotated roughly 30° around the pseudo-axis 
passing through the dyad and (C) partial front view through the superhelical 
axis.  The DNA superhelix, shown in brown, is wound around the central histone 
octamer.  Each core histone is represented as a ribbon (H2A blue and purple, 
H2B yellow and orange, H3 green and pink, H4 white and turquoise).  The 
location of the H2A ‘knuckle,’ a single turn α-helix shown in purple is indicated.  
The side chains of each residue within the conserved SRS motif of the ‘knuckle’ 
are shown as sticks. S17 and R18 face the DNA minor and major grooves 
respectively, whereas the S19 is oriented toward the central axis of the α1 helix 
and likely serves to stabilize the structure by ‘capping’ the helical dipole. 
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The exact mechanism by which the ‘knuckle’ structure mediates DNA 

damage sensitivity is the focus of the studies described in the next chapter.  It is 

safe to speculate that it either involves recognition by a yet unknown histone-

binding factor necessary for damage detection and repair, such as a checkpoint 

protein or a chromatin remodeling histone exchange factor (trans’ mechanism), 

or in contrast, chromatin structure effects resulting from ‘knuckle’ mutations 

might directly influence expression of repair and checkpoint genes (‘cis’ 

mechanism). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89



CHAPTER 4 

 

FUNCTIONAL ANALYSIS OF  

HISTONE H2A ‘KNUCKLE’ REGION 

 

Introduction 

The ‘knuckle’ region of H2A is a histone-fold extension spanning residues 17-22 

within the amino-terminal tail (Figure 3.10).  In contrast to the remainder of the 

histone H2A tail which shows considerable divergence across eukaryotes, the 

residues comprising the ‘knuckle’ region, especially the S/T-R-S segment, show 

remarkable sequence conservation suggesting that they might have important 

function (Figure 3.7A).  Structurally the ‘knuckle’ represents a single turn α-helix 

exposed on the surface of the nucleosome.  Although not directly involved in 

histone-DNA interactions it has been proposed that it acts to tether the H2A-H2B 

dimer to the nucleosome and aids its dissociation from the nucleosome, 

presumably through recognition of a specific histone-binding factor (Luger and 

Richmond, 1998).   

Initially, the ‘knuckle’ was functionally defined as a cluster region for a 

class of H2A mutations causing transcriptional defects of SNF/SWI-dependent 

genes, such as SUC2 (Hirschhorn et al., 1995).  However, not all of the SNF/SWI-

regulated promoters are affected by the ‘knuckle’-clustering mutations, 

suggesting these mutations are phenotypicaly different from the SNF/SWI 

mutations.  Consistent with the distinct transcription promoting function of the 

‘knuckle,’ the defects caused by the mutations are not ameliorated by the 

suppressor of snf/swi mutations, spt6, and unlike the snf/swi mutations, the 

chromatin structure of the SUC2 promoter is in an active conformation in the 

histone H2A ‘knuckle’ mutants (Hirschhorn et al., 1995).  
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A subsequent study (Lenfant et al., 1996) monitoring basal transcription 

by GAL1 promoter-driven URA3 reporter construct, ascribed an opposite, 

repressive transcriptional role for the ‘knuckle.’  Namely, the ‘knuckle,’ described 

as a short region adjacent to the structured α-helical core, was shown to be 

required for repression of basal, uninduced transcription.  Those observations 

are consistent with a recent genome-wide expression profiling study (Parra and 

Wyrick, 2007) which confirmed that under standard growth conditions a subset 

of (~4.8%) genes in the yeast genome is indeed repressed by the H2A N-

terminus, and this repression is likely mediated by the ‘knuckle’ domain as it is 

largely independent of residues in the remaining portions of the tail.  In fact, the 

'knuckle' domain of the H2A N-terminal tail, specifically two residues within it, 

S17 and R18, were shown to be required for the transcriptional repression of the 

three reporter genes examined, BNA1, BNA2 and GCY1.  As a result, the 

‘knuckle’ region was designated as a Histone H2A Repression (HAR) domain. 

Interestingly, the same study also reported that deletion of the ‘knuckle’ 

domain imparts sensitivity to UV irradiation (Parra and Wyrick, 2007).  Likewise, 

a parallel study (Moore et al., 2007) reported that the strain carrying a specific 

‘knuckle’ S17A mutation exhibited significantly reduced survival after UV 

treatment, and this phenotype is even more pronounced in the H2A amino-

terminal tail deletion strain.  However, the mechanism by which the ‘knuckle’ 

mutations compromised recovery from UV-induced DNA lesions has not been 

identified. 

In the previous chapter I described that a DNA damage survival property 

indeed exists in the H2A ‘knuckle’ region, and this property is not only limited to 

UV damage, but is broad in its effect as it affects response to DNA lesions elicited 

by various means.  The damage specific function of the ‘knuckle’ is mediated 

through its structure rather than ‘knuckle’ post-translational modifications, as it 
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is appears to be dependent on the charge of each individual residue within the 

conserved 17-19 SRS sequence.  The possible mechanisms by which the ‘knuckle’ 

structure regulates DNA damage survival are addressed in this chapter.  

Consistent with the transcriptional role of the H2A ‘knuckle,’ a screen for high-

copy suppressors of the hydroxyurea (HU) damage phenotype of the S17E 

mutant revealed genes with metabolic and ribosomal function.  In terms of 

transcription of damage-specific targets, gene expression analysis of a subset of 

MMS-dependent damage response genes, established opposing ‘knuckle’-

mediated transcriptional effects for two genes responsible for DNA repair, RNR2 

and LIG4.  Using HO endonuclease strain background to generate synchronously 

induced DSBs, it was determined that homologous recombination repair 

pathway is not affected in strains carrying ‘knuckle’ mutations.  However, 

consistent with their sensitivity to DNA damage, S17E, R18A and S19E strains 

exhibit subtle delays in checkpoint termination after repair.  Additionally, both, 

S17A and S17E, as well as the ‘knuckle’ deletion mutation, impair the efficiency 

of the NHEJ pathway, by ~40% relative to the wild type strain.  
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Results 

Damage sensitivity to HU conferred by S17E mutation is suppressed by 

overexpression of genes involved in cellular metabolism and protein synthesis 

Suppressor screen, first invented in yeast to identify functions involved in 

morphogenesis (Bender and Pringle, 1991), is a powerful tool for uncovering 

more information about a gene or mutation, and identifying other interacting 

components in a pathway.  Therefore, a non-biased screen for high copy 

suppressors of the hydroxyurea (HU) damage sensitivity of the S17E mutant was 

performed in an effort to define the pathway that might be affected by HU-

dependent damage in the ’knuckle’ mutants.  For that purpose a high copy ADH 

promoter-driven cDNA library expressing a URA3 selection marker, was 

generously provided by the Laboratory of Dr. Mitchell Smith at the University of 

Virginia.  The library was used to screen ~60,000 colonies for their ability to 

promote survival of the otherwise defective S17E mutant on plates containing 

200 mM HU.  

The screen yielded 98 positives, out of which ~50% encode a wild type 

copy of histone H2A which confirms the validity of the method.  Contrary to the 

expectations none of the remaining ‘hits’ were genes involved in DNA damage 

detection or repair (Table 2).  Instead the isolated suppressors fell in two main 

categories, metabolic and ribosomal, which is consistent with the role of the 

‘knuckle’ in transcriptional regulation of metabolic genes, such as SUC2 for 

example. 
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Table 2:  High copy gene candidates for suppression of HU sensitivity of H2A 
S17E mutant  

Type of gene Protein encoded 

RPS14B ribosomal protein 59 in the small subunit 

RPS19A protein component of the small (40S) ribosomal 
subunit 

RPS9B protein component of the small (40S) ribosomal 
subunit 

RPL25 primary rRNA binding protein of the large 
subunit 

RPL41A & B ribosomal protein L47 of the large (60S) 
subunit 

SSB 1&2 cytoplasmic ATPase that is a ribosome 
associated molecular chaperone 

RPL43A protein component of the large (60S) ribosomal 
subunit 

EFB1 translation elongation factor 1 beta 

Ribosomal (9) 

RPPO conserved ribosomal protein PO 

PDC5 (x2) minor isoform of the pyruvate decarboxylase 
TDH3 (x2) glyceraldehydes 3-phosphate dehydrogenase 
PFK1 alpha subunit of heterooctameric phosphofructo 

kinase involved in glycolysis 
BCP1 essential protein involved in nuclear export of 

Mssp4 lipid kinase 
ENO2 enolase II 

Metabolic  
(6->8) 

GPM1 tetrameric phosphoglycerate mutase 
Retrotransposons (1) Ty1 LTR 

Chaperones (1) SSA1 ATPase involved in protein folding and 
NLS-directed nuclear transport 

CDC5 polo-like kinase that has multiple functions in 
mitosis and cytokinesis Others (2) 

YLR257W uncharacterized hypothetical protein 

WT H2A (53)  
No insert  (24)  

Total (98) All 
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Transcription of several DNA damage response genes is affected by mutations in 

the ‘knuckle’ region 

Considering the documented role of the ‘knuckle’ in transcriptional regulation, 

also supported by the results from the suppressor screen, it is possible that 

mutations that map to this region affect expression of DNA damage response 

genes and thereby indirectly contribute to the observed DNA damage sensitivity 

of the histone H2A ‘knuckle’ mutant strains.  Interestingly, the reported subset of 

the yeast genome repressed by the H2A amino-terminal domain deletion in the 

Parra and Wyrick study did not include genes known to be involved in the DNA 

damage response.  However, the study was conducted in the absence of 

damaging agents and therefore it did not evaluate whether deletion of the 

‘knuckle’ region affected damage-dependent expression changes of damage 

response genes.   

To explore the role of histone H2A ‘knuckle’ region in transcriptional 

regulation of damage response genes during DNA damage, a small-scale gene 

expression analysis was conducted before and after 2 hr of 0.02% MMS-induced 

DSBs in the strains carrying S17E and S19E ‘knuckle’ mutations.  Quantitative 

PCR was used to assess expression levels of a subset of genes selected based on 

their previously documented response to 0.02% MMS treatment in a genome-

wide expression study of wild-type cells (Gasch et al., 2001).  The genes 

examined in this assay along with their functional description are listed in Table 

3. The group includes genes involved in repair by either homologous 

recombination (HR) or non-homologous end-joining (NHEJ), in addition to 

damage activated kinases, and damage dependent transcription factors.  In wild 

type cells, all of the genes represented, except ROX1, which was repressed, were 

induced in response to MMS in the Gasch et al study.  SUC2 expression levels 

were used as a control, based on the established transcriptional defects conferred 

95



by ‘knuckle’ mutations on this gene (Hirschhorn et al., 1995).  The expression 

values plotted for each gene represent an average of three independent 

experiments.  

 
Table 3:  DNA damage response genes used for gene expression analysis 

Gene Description 

RAD51 
Strand exchange protein involved in homologous 

recombination (HR) repair of double strand breaks (DSBs) 
in DNA during vegetative growth and meiosis, forms a 
helical filament with DNA that searched for homology 

RNR2 
Small subunit of ribonucleotide-diphosphate reductase 
(RNR) complex which catalyzes the rate-limiting step in 

dNTP synthesis and is regulated by DNA replication and 
DNA damage checkpoint pathways 

RNR3 
Large subunit of ribonucleotide-diphosphate reductase 
(RNR) complex which catalyzes the rate-limiting step in 

dNTP synthesis and is regulated by DNA replication and 
DNA damage checkpoint pathways 

ROX1 Heme-dependent repressor of hypoxic genes, contains an 
HMG domain responsible for DNA bending activity 

PHR1 
DNA damage-induced photolyase involved in 

photoreactivation and repair of pyrimidine dimers in the 
presence of visible light 

DUN1 
Cell-cycle checkpoint serine-threonine kinase required for 

DNA damage-induced transcription of target genes, 
phosphorylation of Rad55p and Sml1p, and transient G2/M 

arrest after DNA damage 

YAP1 
Basic leucine zipper (bZIP) transcription factor required for 

oxidative stress tolerance, mediates pleiotropic drug and 
metal resistance 

KU80 
Subunit of telomeric Ku complex involved in telomere 

length meintenance, structure and telomere position effect, 
relocates to sites of double-strand break (DSB) to promote 

nonhomologous end-joining (NHEJ) during DSB repair 

LIG4 
DNA ligase required for nonhomologous end-joining 

(NHEJ), forms stable heterodimer with required cofactor 
Lif1p and catalyzes DNA ligation as a part of a complex 

with Lif1p and Nej1p  

SUC2 (txn control) 
Invertase i.e. sucrose hydrolyzing enzyme which consists of 

two forms: a secreted, glycosylated form regulated by 
glucose repression, and an intracellular, nonglycosylated 

enzyme produced constitutively 
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 Based on the gene expression analysis, transcriptional levels of two out of 

the nine damage response-related genes examined were consistently affected by 

both S17E and S19E 'knuckle' mutations (Figure 4.1 and 4.2).  Namely, the 

'knuckle' region appears to be required for damage specific induction of RNR2, a 

small subunit of the ribonucleotide-diphosphate reductase complex which 

catalyzes the rate-limiting step in dNTP synthesis required for damage repair.  

Interestingly, the 'knuckle' region seems to have an opposite effect on the 

expression of the NHEJ ligase, LIG4, as it appears to be necessary for its 

transcriptional repression, although only in the absence of DNA damage.  

Surprisingly, LIG4 was not among the genes reported by Parra and Wyrick as 

being repressed in a ‘knuckle’-dependent manner, possibly because its 

transcriptional levels were below the arbitrary expression change cut-off 

imposed in their study.  There were no detectable differences in the induction of 

the remaining genes examined in response to MMS treatment of the ‘knuckle’ 

mutants relative to the wild type.  These results suggest that the 'knuckle' region 

is indeed required for transcription regulation of damage response genes, 

however this effect is rather subtle (less than two fold difference) and limited to a 

specific set of repair promoters. 

 

H2A “knuckle’ is required for efficient DSB repair by the NHEJ pathway 

Given the subtle, and opposing effects of the ‘knuckle’ residues on a limited 

subset of repair gene expression, it was important to establish whether the 

defects leading to DNA damage sensitivity of the ‘knuckle’ mutants are indeed at 

a level of DNA repair.  For that purpose, the repair efficiency of the two major 

DSB repair pathways, namely homologous recombination (HR) and non-

homologous end joining (NHEJ), was examined in the strains carrying ‘knuckle’ 

mutations. 
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Figure 4.1:  MMS-dependent expression profile of DNA damage response 
genes in the S17E and S19E strain 
The expression of nine DNA damage-regulated genes was analyzed by 
quantitative PCR in the wild type and the (A) S17E or (B) S19E strain before and 
after 2 hr treatment with 0.02% methyl-methane sulfonate (MMS).  The genes 
were selected based on their previously documented response to 0.02% MMS 
treatment in a genome-wide expression study of wild-type cells conducted by 
(Gasch et al., 2001) belong to several classes, including repair by both 
homologous recombination (HR) and non-homologous end-joining (NHEJ), 
damage activated kinases, and damage dependent transcription factors.  The 
expression was normalized to actin and calculated relative to the levels of the 
same gene in the untreated wild type control which was set to 100%.  Observed 
expression changes in the mutant strain relative to the wild type, are denoted 
with a red and blue arrow, for repression and induction respectively.  The graph 
values and standard errors represent an average of three separate experiments. 
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A standard plasmid recircularization assay (Boulton and Jackson, 1996) 

was used in order to determine whether NHEJ pathway was indeed affected by 

the ‘knuckle’ mutations.  The URA3-containing pRS416 plasmid utilized in this 

assay had no homology to yeast chromosomes and therefore was incapable of 

using homologous recombination as a repair mechanism for the DSB generated 

by linearization of the plasmid by XhoI restriction enzyme digestion.  Thus, the 

break encountered when the linearized plasmid was introduced into cells could 

only be repaired by NHEJ.  To ensure expression of the plasmid-encoded URA3 

auxotrophic marker, cells had to successfully repair i.e. recircularize the 

transformed linear plasmids.  The efficiency of the NHEJ repair mechanism was 

then monitored by growth of URA3 expressing colonies, products of 

recircularized plasmids, on appropriate selective plates.  The NHEJ efficiency, 

scored as a ratio of colony number produced by transformation of linearized vs. 

intact plasmid, in all strains carrying H2A N-tail or ‘knuckle’ deletions, as well as 

S17 mutations, was reduced by ~40% relative to the wild-type (Figure 4.2), 

suggesting that these mutants were indeed deficient in NHEJ repair.   

 

H2A ‘knuckle’ residues are not required for DNA DSB break repair by a 

homologous single strand annealing mechanism 

In order to examine whether the homologous repair pathway was also affected 

by ‘knuckle’ mutations, each of them was introduced into an HO endonuclease 

background strain which provides a way to study not only DSB recognition and 

repair dynamics, but also monitor checkpoint kinetics in S. cerevisiae.  The 

advantage of the HO endonuclease system is that synchronous DSBs can be 

created in nearly all cells of the population by the endonuclease expressed from a 
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Figure 4.2:  Histone H2A ‘knuckle’ region is required for efficient NHEJ  
The indicated H2A S. cerevisiae strains carrying a ‘knuckle’ deletion and S17 point 
mutations were transformed with uncut or XhoI-digested plasmid pRS416.  
Repair efficiency is expressed as a percentage of colony formation after 
transformation with linear versus uncut plasmid and normalized to the 
appropriate wild type control which was set to 100%.  The graph values and 
standard errors represent an average of three separate transformation 
experiments. 
 

galactose-inducible promoter.  In this particular system the endonuclease 24-

base-pair recognition cut site is inserted in the Leu2 gene and the break is 

repaired by single strand annealing (SSA) from a partial duplication of the Leu2 

gene located 30 kb away (Fishman-Lobell et al., 1992).  The kinetics of DSB repair 

efficiency in these strains was visualized by a PCR based assay which directly 

monitors DNA integrity using primers flanking the cut and the repair 

homologous sequences (Figure 4.3).   
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Figure 4.3:  Repair dynamics of HO-induced DSB by a single strand annealing 
(SSA) mechanism  
A. Diagram for repair of HO-induced DSB by single strand annealing (SSA) 

mechanism: (i) Galactose-induced HO cuts at its recognition cut site inserted 
in the Leu2 locus (leu2::cs) on chromosome III.  (ii) Processive 5’->3’ resection 
generates single strand DNA (ssDNA) and eventually reaches a partial Leu2 
gene duplication (leu2::∆N) located 30 kb upstream.  (iii) The two homologous 
single strand regions anneal in a Rad52 and Rad1/10-dependent fashion and 
the non-homologous sequences are excised.  (iv) The break is successfully 
repaired. (adapted from Keogh et al, 2006).  Primer sets designated P1-P2, P1-
P4 and P3-P4 can be used to monitor the physical integrity of the DNA in the 
break region by a PCR-based assay. Their location is indicated in the diagram.  

B. PCR analysis of genomic DNA from wild type strain with primers P1-P4 was 
used to monitor HO-induced DSB repair.  A primer set amplifying across the 
cdc13 genomic locus which is on chromosome IV and thereby is not affected 
by the HO-induced DSB, was used as a DNA loading control.  Genomic DNA 
was collected at each indicated time point following HO induction. 
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The DSB homologous recombination repair efficiency as determined by 

PCR did not appear to be affected in any of the strains carrying ‘knuckle’ 

mutations as repair products appeared at the same time and developed with the 

same dynamic in all of the ‘knuckle’ mutant strains as in the wild type strain 

(Figure 4.4).  This observation indicates that the DNA damage sensitivity of the 

strains carrying ‘knuckle’ mutations is not due to defects in the homologous 

DNA repair pathway.   

 

 
Figure 4.4: H2A ‘knuckle’ residues are not required for DNA DSB break repair 
by a homologous single strand annealing (SSA) mechanism 
PCR analysis of genomic DNA isolated from S. cerevisiae strains containing 
‘knuckle’ point mutations at indicated time points during HO-induced DSB 
repair.  Primer pair P1-P4 flanking the break site and the partial duplication was 
used for the PCR analysis.  A primer set amplifying across the cdc13 genomic 
locus which is on chromosome IV and thereby is not affected by the HO-induced 
DSB, was used as a DNA loading control. 
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Mutations in the H2A ‘knuckle’ region have checkpoint termination defects 

In eukaryotic cells DNA damage generates a checkpoint signal that prevents 

further cell cycle progression to allow time for DNA repair prior to chromosome 

segregation.  Following repair however, cells need to extinguish the checkpoint 

arrest signal in order to reenter the cell cycle.   

Considering that the DNA damage sensitivity imparted by the ‘knuckle’ 

mutations is not related to homologous repair directly, it likely results from a 

defect in downstream signaling processes required for cell cycle resumption after 

checkpoint arrest.  The mechanism of the HO-induced single-strand annealing 

repair involves a 5’ to 3’ resection to form a ssDNA which normally triggers a 

DNA damage checkpoint-mediated G2/M arrest and phosphorylation of the 

yeast checkpoint kinase Rad53.  To assess whether the ‘knuckle’ region were 

indeed required for cell cycle checkpoint responses following DSB repair, cell 

cycle kinetics of strains carrying ‘knuckle’ mutations was monitored by flow 

cytometry during HO-induced DSB repair.  The observed dynamics of 

checkpoint activation in all H2A ‘knuckle’ mutant strains was comparable to the 

wild type strain.  There was a rapid accumulation of cells with an G2/M phase 

DNA content within the first few hours.  Interestingly however, unlike the wild 

type strain, which appeared to proceed through M into G1 phase after 7 hours, 

subtle checkpoint recovery delays of ~1.5 hrs were observed only in the S17E, 

R18A and S19E mutant strains, consistent with their sensitivity to DNA damage 

(Figure 4.5).  Also consistent with the previously documented requirement for 

γH2A.X dephosphorylation in checkpoint termination (Keogh et al., 2006), delays 

were not observed in the non-phosphorylatable H2A S129A mutant strain 

(Figure 4.6).  
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Figure 4.5: Structure-altering mutations of the H2A ‘knuckle’ region delay 
efficient cell cycle progression following HO DSB-induced arrest 
Cell cycle progression was monitored in response to HO-induced DSBs in 
indicated S. cerevisiae strains containing H2A ‘knuckle’ structure-altering point 
mutations.  FACS analysis was performed on cells collected at each indicated 
time point following HO induction and profiles are shown for each individual 
strain.  Time points enclosed in a red box have a delayed cell cycle distribution in 
the strains with ‘knuckle’ mutations relative to the wild type strains.  The two 
peaks in the profiles represent cells with 1N or 2N DNA content, corresponding 
to cells in G1 phase or G2/M phase, respectively.    
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Figure 4.6: Normal cell-cycle progression following HO DSB-induced arrest in 
strains with non-disruptive ‘knuckle’ point mutations 
Cell cycle progression was monitored in response to HO-induced DSBs in 
indicated S. cerevisiae strains containing H2A ‘knuckle’ point mutations.  FACS 
analysis was performed on cells collected at each indicated time point following 
HO induction and profiles are shown for each individual strain. Arrows indicate 
peaks in the profiles that represent cells with 1N or 2N DNA content, 
corresponding to cells in G1 phase or G2/M phase, respectively.    
 

The early phosphorylation kinetics of the yeast checkpoint kinase Rad53 

after DSB induction is also similar in the ‘knuckle’ S17 point mutants relative to 

the wild type.  However, whereas Rad53 activity decreased in the wild type 

strain after 6 hrs, the S17E ‘knuckle’ mutation prolonged Rad53 activity for ~1.5 

hrs (Figure 4.7).  The sustained Rad53 phosphorylaton is correlated with the 

maintenance of G2/M phase arrest observed by FACS, arguing that checkpoint 

recovery is indeed delayed by DNA damage sensitive mutations in the ‘knuckle’ 

106



region.  Similar Rad53 checkpoint deactivation delays are observed in strains 

carrying γH2AX phospho-mimic S129E, consistent with the observation that 

γH2A.X dephosphorylation is necessary for efficient checkpoint recovery. 

         
Figure 4.7:  S17E mutation has a checkpoint recovery defect 
Delayed checkpoint termination in S. cerevisiae strains with S17E mutations was 
monitored by Rad53 checkpoint-dependent autophosphorylation.  Whole cell 
extracts were collected at indicated time points following HO-induction and 
Rad53 autophosphorylation dynamics was detected by immunoblotting.  
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Discussion 

The conserved SRS motif of histone H2A, spanning residues 17-19 within the 

‘knuckle’ region, encodes a unique and previously unrecognized role for the 

H2A N-terminal tail in the DNA damage response in S. cerevisiae.  This study 

sheds light on the potential mechanisms involved in this function by 

demonstrating that the H2A ‘knuckle’ is required for efficient DSB-repair by the 

NHEJ pathway, but has no effect on the dynamics of homologous single strand 

annealing (SSA) repair pathway.  The ‘knuckle’ region is also required for 

efficient recovery from cell cycle arrest following successful repair.  The 

mechanism therefore, by which the H2A ‘knuckle’ structure mediates the DNA 

damage response impinges on multiple aspects of chromatin function.   

One aspect, which likely indirectly contributes to the DNA damage 

sensitivity of the ‘knuckle’ mutations, involves transcriptional regulation.  

Indeed, transcription of a subset of genes, including some, but not all of the 

genes involved in DNA repair, such as RNR2 and LIG4, is affected in strains with 

‘knuckle’ mutations.  This effect on gene expression is consistent with the model 

whereby ‘knuckle’ mutations directly affect nucleosome stability and chromatin 

structure required for efficient transcription.  However, given that histones 

containing ‘knuckle’ mutations are the only source of H2A in the cells, and H2A 

is distributed throughout the genome, it is surprising that the transcriptional 

effect is specific, and only the expression of a limited subset of promoters is 

affected in a situation where global ‘knuckle’ dependent chromatin structure 

perturbations are expected.  Additionally, the effects of the ‘knuckle’ mutations 

on the expression of the two affected DNA repair genes are opposing in nature 

i.e. the ‘knuckle’ seems to be required for induction of RNR2 upon damage, but it 

normally represses expression of LIG4.  This observation is also consistent with 

the previously documented contrasting transcriptional role of the ‘knuckle’ as 
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both, a repressor of basal uninduced transcription, as well as a region necessary 

for transcription of SNF/SWI-dependent genes (Hirschhorn et al., 1995; Lenfant 

et al., 1996; Parra and Wyrick, 2007).  A likely explanation for the observed 

contrasting and limited effects of the ‘knuckle’ on gene expression, lies within the 

chromatin environment required for the transcriptional state of a particular gene.  

In particular, a gene that would require extensive chromatin remodeling for its 

induction or suppression might be unable to reach its optimal chromatin state 

necessary for the appropriate transcriptional output in the absence of the 

‘knuckle’ region.  These results indicate that chromatin remodeling is at the heart 

of the transcriptional defects imposed by the ‘knuckle’ structure perturbations.  

The chromatin remodeling model can also explain the difference in 

observed effects of the ‘knuckle’ mutations on the repair efficiency of the two 

distinct repair pathways.  Namely, NHEJ repair efficiency appears to be reduced 

in strains carrying ‘knuckle’ mutations whereas repair by homologous single 

strand annealing is not affected.  The difference can be explained by the different 

DNA repair readouts used by the NHEJ and SSA assays.  While the SSA repair 

assay is a PCR-based assay that directly examines the DNA integrity to detect 

repair, the NHEJ plasmid recircularization assay relies on gene expression as an 

indirect measure of repaired DNA template.  However, repair i.e. efficient 

physical ligation of DNA ends is not the only prerequisite for normal gene 

expression, and transcriptional output as already discussed, is directly 

dependent on the chromatin state of the template after the DNA has been 

repaired.  Thus, it is difficult to discern the specific contributions of DNA repair 

to the gene expression in the NHEJ assay.  If the ‘knuckle’ mutations are indeed 

disruptive to chromatin structure and transcription-related chromatin 

remodeling of the template, gene expression will be affected even after successful 

DNA repair, which normally happens on naked DNA.  Therefore, it is plausible 
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that NHEJ repair efficiency is not affected by the ‘knuckle’ mutations, and 

instead, the results likely reflect reduction of gene expression due to defects in 

chromatin remodeling required for transcription from the otherwise repaired 

template.  

Finally, the transcriptional defects observed in the strains carrying 

‘knuckle’ mutations are small in magnitude.  In other words, the differences in 

expression levels of the affected promoters are less than two fold, which begs the 

question whether those changes are sufficient for the observed DNA damage 

sensitivity of the ‘knuckle’ mutant strains.  It is likely, that is not the case.  

Although both affected genes RNR2 and LIG4, are involved in DNA repair, there 

is no clear correlation between the expression and the repair, as SSA and likely 

NHEJ repair pathways function quite efficiently in these mutants.  Instead, the 

defect in the DNA damage response appears to be downstream of the repair 

process and at a level of checkpoint signaling after repair has been completed.  In 

particular, delays in checkpoint termination, rather than repair defects per se, 

seem to be responsible for the DNA damage sensitivity of the strains carrying 

‘knuckle’ mutations, arguing that repair of the DNA lesions itself is not sufficient 

signal for turning of the DNA damage checkpoint.  At this point, it is not clear 

what the exact signal for checkpoint termination is and while it is possible that 

‘knuckle’ transcriptional defects might indirectly be involved at a level of 

checkpoint gene expression, it is unlikely that is the case, given the subtle effect 

the ‘knuckle’ had on expression of repair genes and on the repair process itself. 

One intriguing possibility is that the observed delays in checkpoint 

termination might be a consequence of the inability of cells carrying ‘knuckle’ 

mutations to reinstate an appropriate chromatin structure necessary for 

checkpoint signaling after repair.  There are two, possibly overlapping 

mechanisms, that might contribute to efficient chromatin reassembly at sites of 
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DNA lesions.  First, ‘knuckle’ mutations might impose direct structural 

constrains on efficient chromatin reassembly following DSB repair.  Otherwise, 

and possibly because of the structural constraints, the ‘knuckle’ mutations might 

disrupt regulation of histone post-translational modifications necessary for 

checkpoint termination, such as dephosphorylation of γH2A.X, a process 

previously linked to checkpoint recovery (Keogh et al., 2006).  The misregulation 

of histone modifications, in turn may prevent efficient restoration of chromatin 

structure following DSB repair.  So again, chromatin remodeling which is 

required for successful restoration of chromatin structure after DSB repair, is the 

mechanism likely to be responsible for the observed checkpoint termination 

defects of the ‘knuckle’ mutants.   

Taken together, the results in this study indicate that in addition to its 

subtle effect exhibited through transcriptional regulation, the other aspect 

affected by the ‘knuckle’ structure mediated modulation of chromatin 

remodeling, and the one that is likely to be mainly responsible for the DNA 

damage sensitivity of the strains carrying ‘knuckle’ mutations, is the efficient 

chromatin reassembly following DSB break repair.  
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CHAPTER 5 

 

GENERAL DISCUSSION 

 

The focus of my thesis research has been on histone H2A and its 

functional domains required for normal response to DNA damage.  My work has 

characterized two conserved regions located within the two different histone 

H2A tails that play an important role in regulation of the DNA damage response.  

In particular, I identified an H2A.X variant-specific SQ motif within the C-

terminal tail of Tetrahymena major histone H2A.S providing the first description 

of this region in ciliated protozoa.  The function of the SQ motif is mediated by 

post-translational phosphorylation of the conserved serine which is essential for 

normal progression through Tetrahymena life cycle, and in particular, meiosis.  I 

also described another conserved functional domain of histone H2A in budding 

yeast which also functions in the DNA damage response.  This region, also 

known as the ‘knuckle,’ is located within the H2A N-terminal tail, and its 

function appears to be independent of post-translational modifications.  

Below I will discuss the significance of these findings in the context of 

already published results and address their implications for future research. 

 

Carboxy-terminal SQ domain of Tetrahymena histone H2A.S   

Recombination of the maternal and paternal genomes during the meiotic 

specialized division cycle requires extensive self-inflicted DNA damage in the 

form of DNA DSBs.   In most organisms these DSBs are crucial for initiating 

intimate chromosome pairing (synapsis), which facilitates their subsequent 

repair.  A role for the histone variant γH2A.X has been shown in this process in 

mammalian cells (Fernandez-Capetillo et al., 2003; Mahadevaiah et al., 2001), 
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however its function has not been closely examined in lower eukaryotes.   My 

studies of this H2A variant in Tetrahymena thermophila have revealed a presence 

of this variant and its hallmark DSB-induced γH2A.X modification for a first time 

in a ciliate, specifically during the meiotic prophase stage of ciliate development.  

Here, I will discuss several studies that have expanded on my results in an effort 

to further characterize the mechanisms by which γH2A.X contributes to 

Tetrahymena meiosis.    

 

Is γH2A.X required for efficient DSB repair in Tetrahymena? 

The experimental results presented in Chapter 2 are consistent with a DSB-

associated function for γH2A.X in Tetrahymena.  Nevertheless, the question still 

remains whether this modification is required for the repair process itself or 

functions downstream of repair at a level of checkpoint recovery.   One way to 

address this question would be to look directly at the DSB repair machinery and 

examine its function in the absence of γH2A.X.   The limitation of this approach is 

that there are only a few DSB repair genes characterized in Tetrahymena.  One of 

them is Rad51, a recombinase involved in homologous DNA pairing and 

exchange reaction.  Rad51 foci normally emerge soon after the meiotic 

micronucleus begins to elongate and are maintained beyond the stage of 

maximal elongation (Loidl and Scherthan, 2004). Preliminary 

immunofluorescence results, however, looking at the appearance and 

distribution of Rad51 in  γH2A.X mutant S134A in Tetrahymena revealed a normal 

Rad51 dynamics in the absence of γH2A.X (data not shown).   Nevertheless it is 

possible that the distribution rather than kinetics of Rad51 foci is the more 

accurate read-out for this purpose, and that has yet to be examined.  Evidence 

from other organisms exists however, that Rad51 accumulation at DSB is 

independent or only partially dependent on γH2A.X (Celeste et al., 2002), 
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arguing that Rad51 might not be the best choice of repair protein to look at.  

Proteins such as Nsb1, 53BP1 or Brca1 are more suitable for this analysis 

however homologues would first have to be identified by searching the 

Tetrahymena genome database. 

Dr. Xiaoyuan Song in the laboratory of Dr. Martin Gorovsky, and my 

collaborator on this project, has been able to address the question with some 

success, by taking advantage of another approach based on a unique feature of 

Tetrahymena biology, a phenomenon of conjugation-mediated transfer of protein 

and/or mRNA between mating cells.  In this assay a mutant cell is able to receive 

a wild type protein from its wild type mating partner during the process of 

conjugation.  When γH2A.X S134A mutant cells were used in a mating with a 

wild-type partner, the γH2A.X staining was observed in the mutant in both 

nuclei, indicating that DSBs had accumulated prior to conjugation and protein 

transfer (Figure 5.1).  These results indeed unequivocally demonstrate that 

γH2A.X functions in DSB repair as defects in γH2A.X formation result in 

inefficient break repair and lead to accumulation of DNA damage.   

 

Is the DSB repair function of γH2A.X required for meiosis in Tetrahymena? 

Studies of γH2A.X distribution in mouse spermatocytes have demonstrated two 

distinct patterns of staining: an early meiotic prophase Spo11-dependent γH2A.X 

formation associated with meiotic DSBs on all chromosomes, and a later, Spo11-

independent staining highly specific for the condensed sex-chromosome 

(Mahadevaiah et al., 2001).  These results, together with the observation that 

γH2A.X is indeed required for sex-chromosome condensation in mouse 

spermatocytes, have suggested an additional role for γH2A.X in meiosis, one that 

is independent of its function in DNA repair (Fernandez-Capetillo et al., 2003).  

In fact, it’s been proposed that γH2A.X might function in transcriptional silencing  
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Figure 5.1:  H2A.S S134A mutation in Tetrahymena macronucleus causes DSB 
repair defects in both macronucleus and micronucleus 
The figure is courtesy of Dr. Xiaoyuan Song from the Laboratory of Dr. Martin 
Gorovsky at the University of Rochester, New York. 
A. Diagram of conjugation-mediated transfer of protein (or mRNA) between 

two mating partners. 
B. Immunofluorescence (IF) analysis of conjugation between wild type and 

H2A.S rescued cells (rows a, c, e, g) or wild type and S134A rescued cells 
(rows b, d, f, h) stained with anti-γH2A.X to detect DSB repair defect and 
damage accumulation.  In each mating pair, the wild type cells are on the 
left. 
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of unpaired i.e. asynapsed meiotic chromosomes, a function mediated through 

chromosome condensation (Baarends et al., 2005; Sciurano et al., 2007; Turner et 

al., 2006; Turner et al., 2005).   

It is therefore curious to speculate as to the role of γH2A.X during meiosis in 

Tetrahymena, especially in the light of the fact that synaptonemal complexes (SCs) 

as a required meiotic recombination intermediates or sequences with obvious 

homology to genes for SC structural proteins, have not been observed in this 

organism (Loidl and Scherthan, 2004; Wolfe et al., 1976).   Is it possible that the 

function of γH2A.X during Tetrahymena meiosis is independent of its function in 

DNA repair and meiotic recombination? 

Here, I will present several lines of evidence that point to the contrary. 

First, although Tetrahymena micronuclei are transcriptionally silent in 

vegetatively growing cells, nongenic micronuclear transcription has been 

detected early during conjugation, when meiotic prophase nuclei adopt the 

elongate crescent shape (Martindale et al., 1985; Martindale and Bruns, 1983; 

Sugai and Hiwatashi, 1974).  This argues against the role of γH2A.X in meiotic 

transcriptional silencing, as the only stage marked by micronuclear 

transcriptional activity is the one that exactly temporally coincides with γH2A.X.  

A more recent set of experiments further exclude DSB-independent functions for 

γH2A.X during Tetrahymena meiosis.  For example, Mochizuki and colleagues 

have demonstrated that γH2A.X signal during meiotic prophase in Tetrahymena is 

dependent exclusively on the presence of DSBs, meiotic or otherwise (Mochizuki 

et al., 2008).  Namely, the absence of Spo11, a conserved meiosis-specific 

endonuclease which is required for meiotic DSB formation, abolished γH2A.X 

during meiotic prophase.  In addition spo11 knockout mutants display aberrant 

micronuclear elongation, reduced pairing of homologous chromosomes, a 

complete failure to form chiasmata and exhibit chromosome missegregation.  
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Interestingly, artificial induction of DSBs by treatment with cisplatin, restores 

γH2A.X in spo11Δ cells, arguing that γH2A.X is indeed dependent on DSB 

formation, although not Spo11 per se.   Taken together these results support the 

notion that DSBs are the sole requirement for γH2A.X formation during meiotic 

prophase in Tetrahymena, and accordingly, its meiotic function is linked to DSB 

repair.   

 

Amino-terminal ‘knuckle’ domain of S. cerevisiae histone H2A 

A current model for the DNA damage response in the context of chromatin is the 

concept of ‘access-repair-restore’ (ARR).   The original three-step ARR model was 

put forth by Smerdon and colleagues to explain how NER might function in the 

complex chromatin environment of a nucleus (Smerdon, 1991).  The model, 

which has been subsequently extended to other repair systems by studies in S. 

cerevisiae from many laboratories, posits that at sites of DNA damage, chromatin 

structure is altered to expose DNA lesions to repair factors.  Figure 5.2 presents 

the ‘aces-repair-restore’ model for DSB repair in S. cerevisiae. 

In the context of DSB-repair, during access, a Mec1/Tel1 checkpoint– 

dependent H2A.X phosphorylation at the C-terminal SQ motif following DNA 

damage, serves as a binding platform for recruitment of histone acetyltransferase 

Nua4 via its Arp4 subunit.  Subsequent Nua4 dependent histone acetylation of 

H4 N-tail lysines, further assists in recruitment of chromatin remodeling 

complexes Ino80 and Swr1 to the DSB.  Based on my studies of histone H2A in S. 

cerevisiae, it is possible that acetylation of H2A N-terminal lysines, including the 

novel acetylation site at K13, likely contributes to this step of the damage 

response in a similar and redundant fashion as H4 acetylation given the shared 

Nua4 specificity for the substrates (Figure 5.3).  
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Figure 5.2: The ‘access-repair-restore’ model for DSB-initiated chromatin 
dynamics in budding yeast 
Functional interplay between histone phosphorylation and acetylation events 
and different chromatin modifying activities during DSB repair: 
1. Access:  Mec1/Tel1 – dependent H2A.X phosphorylation at the C-terminal SQ 
motif following DNA damage serves as a binding platform for recruitment of 
histone acetyltransferase Nua4.  Subsequent Nua4 dependent histone acetylation 
further assists in recruitment of chromatin remodeling complexes Ino80 and 
Swr1 to the DSB. 
2. Repair: Ino80 dependent nucleosome depletion around DSBs allows for DNA 
repair followed by Swr1-dependent incorporation of Htz1 containing 
nucleosomes.  γH2A.X is dephosphorylated by the Pph3 phosphatase after 
nucleosome displacement. 
3. Restore: Ino80 dependent histone exchange of Htz1 with dephosphorylated 
histone H2A.X and subsequent Rpd3 dependent deacetylation of Nua4 
substrates in newly assembled chromatin around the DSBs.  Rpd3 associated 
CK2 phosphorylates deacetylated H4 at S1 preventing further reacetylation and 
restoring chromatin to its original state. 
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Figure 5.3:  Functional redundancy of histone tails 
Striking pairwise similarities between the N-terminal tails of histone H2A and 
H4 (shown are the tails from S. cerevisiae histones).  For example, both H4 and 
H2A are the preferred substrates for Esa1p, the catalytic component of the NuA4 
complex.  Also, the N-terminal tails of both histone H2A and H4 are shorter than 
those of H3 and H2B, and both, H2A and H4 have a serine at the N-terminal 
starting position.  Ac: acetylation, P: phosphorylation. 

During the next stage of the DNA damage response, Ino80-dependent 

nucleosome depletion around DSBs allows for DNA repair possibly followed by 

Swr1-dependent incorporation of Htz1 containing nucleosomes.  Following 

nucleosome displacement, γH2A.X is dephosphorylated outside of chromatin by 

the Pph3 phosphatase.  Finally, Rpd3 dependent deacetylation of Nua4 

substrates and Ino80 dependent histone exchange of Htz1 with 

dephosphorylated histone H2A.X restore chromatin around DSB sites.  Rpd3 

association with the H4 S1 kinase CK2, enables subsequent phosphorylation of 

deacetylated H4 at S1 preventing further reacetylation until the initiation of the 

next DNA damage response.  
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Once DSB repair is complete, cells must extinguish the checkpoint and 

resume cell cycle progression.  This process of turning off the checkpoint has 

been dubbed ‘checkpoint recovery.’  There has been a great deal of focus on how 

the checkpoint is initiated and functions in response to DNA damage, however 

very little is known regarding its recovery.  Here, I show that histone H2A 

‘knuckle’ region is specifically required for efficient checkpoint recovery.  In 

contrast, DNA repair of DSBs by either homologous recombination or non-

homologous end joining pathways is not affected, clearly establishing that 

successful repair is not sufficient for checkpoint recovery.  Nevertheless, many 

questions remain regarding the regulation of checkpoint termination after repair 

and specifically the mechanism by which the ‘knuckle’ mediates this process.  

Below I will discuss some of the possible mechanisms by which ‘knuckle’ region 

contributes to checkpoint recovery after DNA repair and the implications that 

these findings have on the overall understanding of how checkpoint is restored 

following repair.   

 

Is nucleosome structure affected by ‘knuckle’ mutations? 

In the absence of detectable ‘knuckle’ modifications by the mass spectrometry 

methods used, it is probably safe to speculate that charge-altering mutations of 

the ‘knuckle’ region affect nucleosome and chromatin structure rather than 

histone modification status.  Consistent with this hypothesis, are observations 

from Hirschhorn and colleagues where they examined the chromatin structure of 

SUC2 promoter in an H2A S19F mutant in relation to the transcriptional state of 

the gene (Hirschhorn et al., 1995).  In this study, they looked at MNase sensitivity 

of H2A S19F mutant DNA by performing an indirect labeling analysis with a 

SUC2 specific probe on MNase digested chromatin or naked DNA.  Their 

conclusion was that under specific transcriptionally repressing conditions, 
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chromatin in the S19F mutant fails to adopt a fully repressed structure relative to 

the wild type.   

 It would therefore be interesting to test the MNase sensitivity pattern of 

DNA from strains with ‘knuckle’ disrupting mutations by running MNase 

digested genomic DNA on agarose gels.  The other assay commonly used for this 

purpose makes use of a superhelical density pattern of endogenous plasmid.  

Namely, wrapping of DNA around a histone octamer introduces a negative 

supercoil into a closed circular plasmid and running the plasmid DNA isolated 

from either wild type or ‘knuckle’ strains on a chloroquine-containing gel can 

provide information about the global chromatin structure based on a difference 

in degree of plasmid supercoiling in different strains. 

 

Transcriptional regulation - is expression checkpoint recovery genes affected by 

‘knuckle’ structure? 

Given that residues within the ‘knuckle’ region have been shown to function in 

the transcriptional regulation of certain promoters it is sensible to assume that 

there is an indirect effect of ‘knuckle’ mutations on checkpoint gene expression.   

 One approach to address transcriptional regulation is either a selective 

checkpoint gene expression study by quantitative PCR, or a microarray analysis 

of global gene expression levels before and after DNA damage in wild type and 

‘knuckle’ disrupted strains.  However, checkpoint gene regulation is not the most 

favored mechanism for the observed DNA damage sensitivity of ‘knuckle’ 

mutations as ‘knuckle’ effects on repair gene regulation have been subtle and not 

completely consistent with repair defects.  Therefore it is best to examine 

alternative mechanisms for histone H2A ‘knuckle’ function in checkpoint 

recovery.  
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Is chromatin assembly after repair affected by ‘knuckle’ structure?  

One intriguing hypothesis about the checkpoint function of the ‘knuckle’ is that 

mutations that disrupt the structural integrity of the ‘knuckle’ region reduce the 

efficiency of nucleosome reassembly after successful repair of double strand 

breaks (Figure 5.4). 

 
 
Figure 5.4:  Reassembly versus restoration model for checkpoint recovery 
Depicted are two potential mechanisms for checkpoint recovery following repair.   

A. The chromatin reassembly mechanism posits that nucleosome deposition 
onto repaired DNA is sufficient to turn off checkpoint signaling.  
Chromatin reassembly can either signal checkpoint recovery directly or 
alternatively, histone deposition can displace DNA repair and checkpoint 
signaling machinery from the vicinity of the repair site resulting in 
checkpoint inactivation. 

B. The chromatin restoration model, suggests that the signal to turn off the 
checkpoint is a consequence of the entire histone modification pattern 
established as a result of successful chromatin reassembly following 
repair. 
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This kind of scenario would argue that chromatin reassembly, rather than 

checkpoint gene expression, is the required signal for checkpoint termination.  

One way this could be accomplished is if nucleosome incorporation following 

repair directly disrupts the association of checkpoint signaling proteins from the 

repaired DNA. 

Consistent with the chromatin reassembly hypothesis, is the recent 

demonstration that asf1 and K56 mutant strains, which are defective in chromatin 

assembly, display sensitivity to DNA damage, even in the absence of repair 

defects (Chen et al., 2008; Kim and Haber, 2009).  The sensitivity appears to be a 

consequence of the inability of these strains to recover from DNA damage 

checkpoint (Kim and Haber, 2009).  These results support the hypothesis that in 

addition to successful repair, efficient nucleosome reassembly on the repaired 

DNA is required for deactivation of the checkpoint signal and therefore cell 

survival after DNA damage. 

 To confirm whether ‘knuckle’ mutations indeed interfere with the 

chromatin reassembly efficiency after DSB repair it would be necessary to 

examine the dynamics of histone incorporation, especially histone H2A-H2B 

dimer re-deposition, at sites of DSBs.  For that purpose, chromatin 

immunoprecipitation (CHIP), a quantitative method for assaying protein-DNA 

interactions, has been successfully used to assay kinetics and spatial distributions 

of chromatin changes and recruitment/deposition of proteins at DSBs (Shroff et 

al., 2004; Tsukuda et al., 2005).  This is best done in a strain where synchronized 

DSB repair can be induced, such as the HO endonuclease strain previously used 

for monitoring repair dynamics.   CHIP protocol, derived from methodologies 

originally described by O’Neill and Turner (O'Neill and Turner, 1995), is a useful 

tool as it gives an in vivo snapshot of the protein-DNA interactions by using 

protein-specific antibodies to precipitate the protein of interest, in this case 
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histones, that have been cross-linked to the DNA.  The DNA can then be 

amplified by quantitative PCR method to provide information about the level of 

DNA and accordingly DNA-associated protein represented.  The only limitation 

of the method is availability of protein-specific antibodies.  When such 

antibodies are unavailable, strains can be generated carrying epitope tagged loci.  

Epitope-tagged histone strains have already been successfully used in S. 

cerevisiae HO-inducible strains to study chromatin remodeling at DSB sites by 

CHIP (Tsukuda et al., 2005).  DNA association of checkpoint signaling molecules 

following repair can also be monitored by this method. 

 

Reassembly versus restoration - is reinstatement of histone modifications after 

repair affected by ‘knuckle’ structure perturbations?   

Another possibility for the observed checkpoint recovery defects of the ‘knuckle’ 

disrupting mutations, is that the ‘knuckle’ region might be required for 

restoration of chromatin to the state that existed prior to DNA damage.   In other 

words, the signal to turn off the checkpoint might be a consequence of ‘knuckle’-

dependent misregulation of a particular histone modification or entire 

modification pattern rather than just a problem with chromatin reassembly 

(Figure 5.4).  Of course, both processes are likely related i.e. if the modification is 

normally established after chromatin is assembled the modification status might 

depend directly on the chromatin assembly process.   It could also be true that 

histone modification status upstream i.e. before its chromatin incorporation 

could be affected and important for chromatin assembly downstream, which in 

turn can affect reinstatement of remaining modifications on the assembled 

chromatin.  This would be true if for example the ‘knuckle’ disrupting mutations 

affect the function of the Rtt109 enzyme responsible for K56 acetylation and its 

subsequent chromatin deposition. 
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Another potential candidate for pre-deposition modification-associated 

event is the required dephosphorylation of disassembled H2A.X for checkpoint 

recovery (Keogh et al., 2006).  Although it might be that dephosphorylation is 

simply necessary for replenishing the unmodified pool of H2A.X in the cell 

necessary for incorporation into and restoration of chromatin structure after 

DNA repair, it is also possible that dephosphorylation itself can act as a 

prerequisite signal for checkpoint recovery.  Either way, it would be interesting if 

‘knuckle’ structure is indeed required for the activity of histone modifying 

enzymes off and on the chromatin after repair. 

Testing this model would prove easier if looking at modification levels 

after chromatin assembly as chromatin immunoprecipitation assays will enable a 

quantitative measure for modification dynamics around the DSB.  Indeed CHIP 

with histone modification specific antibodies in the HO DSB-inducible S. 

cerevisiae system can be used to monitor the dynamics of individual 

modifications after repair in the ‘knuckle’ mutant strains.   On the other hand, 

monitoring of pre-deposition histone modification dynamics might prove more 

difficult since CHIP method cannot be used for events that are not associated 

with the DNA.  As the checkpoint delays are subtle and the methods available 

are not quantitative the change in modification levels off chromatin might not be 

very well resolved.  For example, preliminary immunoblotting results 

monitoring γH2A.X levels during HO-induced DSB repair did not show 

interpretable delay of γH2A.X dephosphorylation in the S17E ‘knuckle’ mutant 

(Figure 5.5). 
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Figure 5.5:  Effect of S17E ‘knuckle’ mutation on γH2A.X dynamics during 
repair of HO-inducible DSBs 
γH2A.X dynamics was monitored in S. cerevisiae strains with S17E ‘knucke’ 
mutations.  Whole cell extracts were collected at indicated time points following 
HO-induction and γH2A.X was detected by immunoblotting with anti-γH2A.X 
specific antibody.  A γH2A.X point mutant S129A was used as a control for 
antibody specificity. 

How is chromatin reassembly or restoration regulated by ‘knuckle’ structure? 

If the ‘knuckle’ structure is important for efficient chromatin assembly and/or 

reinstatement of histone modification patterns after repair, it would be curious 

how these functions are mediated and interpreted.  Binding of chromatin 

modifying or remodeling ‘effector’ activities is one of the key mechanisms of 

controlling chromatin function.  And indeed, a ‘trans’ mechanism of function, 

whereby the H2A ‘knuckle’ region might be recognized by a histone-binding 

factor, has already been proposed, yet the factors have not been identified (Luger 

and Richmond, 1998).    

 The HO endonuclease DSB-inducible system can again provide a good 

method to address ‘knuckle’-dependent protein associations at specific time 

points during checkpoint recovery in S. cerevisiae strains carrying ‘knuckle’ 

mutations.  Histone H2A immunoprecipitation (IP) experiments from either wild 

type strains or strains with ‘knuckle’ mutations can provide a differential 
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snapshot of H2A-associated proteins in vivo.  Identity of the ‘knuckle’-specific 

protein depletion (or enrichment) can then be examined by mass spectrometry 

(MS). 

In summary, my thesis studies have helped establish a requirement for the 

conserved SRS motif within the histone H2A N-terminal ‘knuckle’ region in 

efficient DNA damage response and define its function in checkpoint recovery in 

S. cerevisiae.   However, as with all exciting new work, my results raise many new 

questions about the exact mechanism of how histone H2A ‘knuckle’ residues 

function to maintain a proper DNA checkpoint recovery.  It will be very 

interesting to see how this aspect of DNA damage responses develops and 

hopefully the experiments proposed in this section will further contribute to the 

understanding of this process.  In addition, given the great conservation of the 

region throughout evolution, it will be interesting to examine its function in 

mammalian cells and its implications on checkpoint recovery and disease. 
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CHAPTER 6 

 

MATERIALS AND METHODS 

 

Tetrahymena reagents and media 

Proteose peptone and yeast extract were purchased from Difco (DB).  Dextrose 

was from Fisher.  Reagents and chemicals purchased from Sigma include 

common lab chemicals, phenylmethylsulfonyl fluoride (PMSF), and sequestrine.  

The commonly used Tetrahymena media were prepared as described previously 

by Gorovsky et al, 1975.  Super proteose peptone media contains 0.2% dextrose, 

1% proteose peptone, 0.1% yeast extract and 0.003% sequestrine. 

 

Tetrahymena strains and culture conditions 

Tetrahymena wild-type strains CU427 and C428 (provided by P. J. Bruns, 

Tetrahymena Stock Center, Cornell University) were grown in 1% super proteose 

peptone (SPP) medium at 30°C.   For conjugation, log-phase cultures of two 

different mating types were washed and starved while stationary in 10 mM Tris-

HCl buffer (pH 7.5) for 16-24 hrs at 30°C.  Conjugation was then induced by 

mixing equal numbers of starved cells of opposite mating types at a 

concentration of 2x105 cells/ml and allowed to proceed at 30°C without shaking. 

 

Tetrahymena transformation and gene replacement 

XhoI and BamHI digested constructs of wild-type or mutated HTA.X genes were 

transformed into 15-17 hr conjugating HTA double knockout heterokaryons (for 

somatic transformation).  Selection was performed by serial dilutions every 2-3 

days into fresh medium containing increasing concentrations of paramomycin 
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sulfate (Sigma) starting with 60 µg/ml.  The genotypes of all transformants were 

confirmed by sequencing PCR with gene specific primers. 

 

Tetrahymena nuclear isolation and histone extraction 

Cells were collected at the appropriate time point during conjugation and 

pelleted for 5 min at 3,000 rpm.  All the procedures hereafter were performed at 

4°C.  The pellet was resuspended in cold medium B (0.5 M sucrose, 4% gum 

arabic, 0.002 M MgCl2, 10 mM sodium butyrate, 1 mM phenylmethylsulfonyl 

fluoride and 0.1% octanol) to a final density of 2x103 cells/ml followed with 

homogenization by blending for 30 sec at high speed Waring Blendor.  Nuclei 

were collected by differential centrifugation steps at increasing speeds followed 

by rehomogenization of the supernatant.   Appropriate nuclear fractions were 

pulled together, aliquoted and stored at -20°C.  In some cases when better purity 

of isolated nuclei was required, total nuclei were further fractionated by sucrose 

sedimentation at unit gravity.   Histones were extracted from nuclei with 0.4 N 

H2SO4 for 2-24 hrs at 4°C and precipitated with 20% trichloroacetic acid for 1hr at 

4°C.  For alkaline phosphatase treatment, histones were incubated with 10 U/µl 

of γ protein phosphatase for 5 hrs at 30°C.  

 

Indirect immunofluorescence microscopy 

6 ml of cells (2x105 cells/ml) were fixed for 5 min at room temperature after 

addition of 20 µl partial Schaudin’s fixative (2 parts saturated HgCl2  to 1 part 

90% EtOH v/v).  Cells were gently pelleted (250g for 2 min), resuspended in 6 ml 

MeOH, repelleted and resuspended in 2 ml MeOH.  20 µl of cells were spread 

onto a cover slip and allowed to air dry for 30 min.  Staining was done for 1 hr at 

room temperature with anti-phospho H2A.X MAb (Upstate) at a 1:70 dilution, 

followed by an incubation with Cy3-conjugated second secondary antibody 
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(1:1,000; Jackson ImmunoResearch, 111-165-144) for 1 hr.  DAPI was applied at 

1µg/ml in H2O to facilitate visualization of nuclei.  Immunostaining was 

visualized on a Zeiss Axioskop 2 Plus microscope and images were captured 

using SPOT software. 

 

AU-PAGE 

Histones were separated on a long acid-urea polyacrylamide gels (15% 

acrylamide, 6M urea and 5% acetic acid) as described (Allis et al, 1980) followed 

by a wet transfer in 0.7% acetic acid for 15 min at 0.5 A onto Immobilon-P PVDF 

membrane (Millipore).   

 

Immunoblotting 

Nuclear extracts or acid-extracted histones were separated on a 15 % SDS-PAGE 

followed by a semi-dry transfer with Towbin buffer (192 mM glycine, 25 mM 

Tris-Cl, 0.1% SDS and 20% methanol, final pH 8.0) onto Immobilon-P PVDF 

membrane (Millipore).  The membrane was blocked for 1 hr at room temperature 

(or 4°C overnight) with 5% non-fat dry milk in TBS (20 mM Tris-Cl, pH 7.6 and 

137 mM NaCl) and subsequently incubated for 1 hr at room temperature with α-

H2A (1:5,000), α-γ-H2A.X (1:1,000, Upstate) or α-Rad53 (1:500, sc-6749 Santa Cruz 

Biotechnology, Inc).  All primary and secondary antibody dilutions were in 5% 

milk dissolved in TBS-T buffer (TBS with 0.1% Tween-20).  The membrane was 

washed with TBS-T for 10 min three times, followed by incubation with 

appropriate HRP-conjugated secondary antibody (1:5,000, Amersham 

Pharmacia).  Blots were washed with TBS-T again and developed using ECL 

Western blotting detection kit (Amersham Pharmacia) according to the 

manufacturer’s instructions. 
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Yeast reagents and media 

Yeast extract, peptone, Bacto-Agar, dextrose, and yeast nitrogen base were 

purchased from Fisher Scientific Co.  Galactose was purchased from Acros 

Organic.  Amino acid drop out mix and 5-FOA were purchased from Bio101 

systems.  Restriction enzymes Dpn I and XhoI were from New England Biolabs 

(NEB).  SuperScript III First Strand Synthesis System for RT-PCR and Platinum 

SYBR Green qPCR SuperMix were purchased from Invitrogen.  High copy cDNA 

library was a generous gift from Dr. Mitchell Smith at the University of Virginia. 

Reagents and chemicals purchased from Sigma include common lab chemicals, 

phenylmethylsulfonyl fluoride (PMSF), methylmethane sulfonyl methyl ester 

(MMS), hydroxyurea (HU).  Complete EDTA-free protease inhibitor cocktail was 

purchased from Roche Diagnostincs GmbH.  Phosphatase inhibitor cocktails 

were purchased from Calbiochem.  Zymolyase 100T was purchased from 

USBiological.  PfuTurbo DNA polymerase (for DNA mutagenesis) was 

purchased from Stratagene.  Frozen-EZ Yeast Transformation II kit is a Zymo 

research product.  

The commonly used yeast media were prepared as described previously 

(Sherman et al, 1979).  Rich media YPD consists of 1% yeast extract, 2% peptone 

and 2% dextrose.  The synthetic complete (SC) medium consist of 0.36% yeast 

nitrogen base without amino acids, 2% dextrose and amino acid drop out mix.  

YEP-lactate media consist of 1.2% NaOH adjusted to pH 5.5 with appropriate 

volume of 85% lactic acid, before addition of 1% yeast extract and 2% peptone. 

 

Plasmids 

Plasmid pJH64 (CEN TRP1 HTA1-HTB1) was used to generate histone mutant 

plasmids pEG2-60 by QuickChange site-directed mutagenesis.  pJH64 contains 
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an HTA1-HTB1 genomic fragment incorporated in a pRS314 (Sikorski and 

Hieter) backbone. 

 

Mutation of histone genes 

QuickChange site-directed mutagenesis protocol by Stratagene was used to 

generate histone site-specific mutated versions of plasmid pJH64 (CEN TRP1 

HTA1-HTB1).  Histone mutations were introduced in pJH64 by PCR, using the 

wild-type histone plasmid as a template together with two complementary 

oligonucleotides containing and centered around the desired mutation site.  The 

PCR reactions was carried out in a 50 µl total reaction volume with 10 ng of 

plasmid DNA, 250 µM dNTPs, 20 µM mutation specific oligonucleotides, 1 x Pfu 

Turbo DNA polymerase buffer and 1 unit of Pfu Turbo polymerase.  The cycling 

parameters included 1 cycle at 95°C for 30 sec, followed by 16 three-step cycles 

(95°C for 30 sec, 55°C for 1 min and 68°C for 14 mins) and concluded with 1 cycle 

at 75°C for 10 min after which the PCR reaction was stored at 4°C.  Following 

temperature cycling, the product was treated for 2 hrs at 37°C with 1 µl of Dpn I 

endonuclease to digest the parental (wild-type) plasmid template and select for 

the PCR plasmid product containing the desired mutation.  7 µl of the digestion 

reaction were then transformed into E. coli DH5α competent cells to amplify and 

purify the mutation-containing plasmid.  Mutations were subsequently 

confirmed by DNA sequencing. 

 

Yeast transformation 

Yeast transformation was performed either by a commercially available Frozen-

EZ Yeast Transformation Kit II (Zymo research) using manufacturer’s 

instructions or using the lithium acetate method described by Gietz et al. 1992.  

Briefly, for the lithium acetate method, 10 ml cell cultures were grown in YPD at 
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30°C to late log phase and harvested by centrifugation at 2,000 g for 3 min.  Cells 

were washed in 10 ml lithium acetate in TE buffer twice and resuspended in 50 

µL residual supernatant after it was decanted.  10 µl of single stranded salmon 

sperm DNA carrier (previously boiled for 5 min and chilled on ice) was added to 

the yeast cell suspension, followed by addition of 1 µg transforming DNA and 

500 µL of sterile 50% PEG 3350 solution (in 1 x LiOAc-TE).  The suspension was 

mixed by vortexing gently and incubated at 30°C for 30 min with agitation, 

followed by a heat shock at 42°C water bath for 15 min.  10 ml of YPD was added 

and cells were allowed to rest for 10 min after which the cells were collected by 

centrifugation at 2,000g for 3 min and resuspended in residual supernatant.  ~250 

µL of cells were plated on the appropriate SC selection plates.  

 

Yeast strains 

Strains used in this study are listed in Table 4.  All strains are derivatives of 

W303C (BY4741; Research Genetics) background.  The histone shuffle strain Y131 

which contains a resident wild-type histone plasmid, was used to generate cells 

with mutations in histones H2A and H2B.  Briefly, plasmids with histone gene 

mutations were transformed into Y131 and selected for on SC-TPR plates.  

Individual transformants were then grown in SC-TRP medium at 30°C for 3 

days, and plated on 5-FOA plates to select for cells that have lost the resident 

URA3 histone plasmid.  Cells that retained the histone mutations were screened 

by plasmid rescue followed by DNA sequencing. 

The strains used in the single strand annealing (SSA) assay and analysis of 

checkpoint kinetics are also listed in Table 4.  All the strains were derivatives 

from the parental strain (DD1260), which contains the HO-endonuclease gene 

under a galactose inducible promoter.  The parental strain also lacks HO sites 

within MAT, HMLa or HMRa on Chr III, but has a cut-site within a centromere-
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proximal LEU2 gene (leu2::cs) on Chr III.  The HTA1 gene in this strain is 

disrupted by replacement with the G418 resistance-conferring gene, KAN-MX6.  

Site specific and HA epitope tagged mutations were introduced in the genomic 

copy of the HTA2 gene by recombination after transformation with an 

appropriate DNA containing a desired mutation.  DNA was generated by 

overlapping PCR of two products, one generated by amplifying a HA-TRP1 

cassette from pFA6-3HA-TRP1 and the other by amplifying the genomic 

fragment of HTA2 with mutation specific oligonucleotides.  Correct integration 

of the epitope tagged HTA2 mutation and marker cassette was confirmed by 

DNA sequencing of PCR amplified regions from isolated genomic DNA from 

mutant strains. 
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Table 4.  Genotypes of yeast strains 
 

Strain                                                 Genotype                                                Source 
 
Y131 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   M. A. Osley  

trp1-1 ura3-1 ade2-1 can1-100 ssd1 [2µ, URA3, HTA1-HTB1] 
EG2 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  

trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG2[CEN, TRP1,  
hta1-Δ1-20-HTB1] 

EG3 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG3[CEN, TRP1, 
 hta1-K4R K7R-HTB1] 

EG4 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG4[CEN, TRP1, 
 hta1-S17A S19A-HTB1] 

EG7 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG7[CEN, TRP1,  
hta1-S129A-HTB1] 

EG11 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG11[CEN, TRP1, 
hta1-S17A-HTB1] 

EG12 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG12[CEN, TRP1,  
hta1-S19A-HTB1] 

EG14 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG14[CEN, TRP1,  
hta1-K13R-HTB1] 

EG15 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG15[CEN, TRP1,  
hta1-K4R K7R K13R-HTB1] 

EG16 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG16[CEN, TRP1,  
hta1-K4R-HTB1] 

EG17 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG17[CEN, TRP1,  
hta1-K7R-HTB1] 

EG18 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG18[CEN, TRP1,  
hta1-K4Q K7Q-HTB1] 

EG19 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG19[CEN, TRP1,  
hta1-K13Q-HTB1] 

EG21 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG21[CEN, TRP1,  
hta1-K4R K13R-HTB1] 

EG22 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG22[CEN, TRP1,  
hta1-K7R K13R-HTB1] 
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Strain                                                 Genotype                                                Source 
 
EG23 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  

trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG23[CEN, TRP1,  
hta1-K4Q-HTB1] 

EG24 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG24[CEN, TRP1,  
hta1-K7Q-HTB1] 

EG25 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG25[CEN, TRP1,  
hta1-K4Q K13Q-HTB1] 

EG26 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG26[CEN, TRP1,  
hta1-K7Q K13Q-HTB1] 

EG35 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG35[CEN, TRP1,  
hta1-S1E-HTB1] 

EG36 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG36[CEN, TRP1,  
hta1-S10E-HTB1] 

EG37 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG37[CEN, TRP1,  
hta1-S19E-HTB1] 

EG38 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG38[CEN, TRP1, 
hta1-S15E-HTB1] 

EG39 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG39[CEN, TRP1,  
hta1-S17E-HTB1] 

EG40 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG40[CEN, TRP1,  
hta1-K4Q K7Q K13Q-HTB1] 

EG41 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG41[CEN, TRP1,  
hta1-R18A-HTB1] 

EG42 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG42[CEN, TRP1,  
hta1-Δ1-16-HTB1] 

EG43 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG43[CEN, TRP1,  
hta1-Δ17-19-HTB1] 

EG44 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG44[CEN, TRP1,  
hta1-R18K-HTB1] 

EG45 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG45[CEN, TRP1,  
hta1-S17E S19E-HTB1] 
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Strain                                                 Genotype                                                Source 
 
EG49 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study 

trp1-1 ura3-1 ade2-1 can1-100 ssd1 pJH64[CEN, TRP1,  
HTA1-HTB1] 

EG60 MATa hta1-htb1::LEU2 hta2-htb2Δ leu2-3,-112 his3-11,-15   This study  
trp1-1 ura3-1 ade2-1 can1-100 ssd1 pEG60[CEN, TRP1,  
HTA1-htb1-Δ1-32] 

DD1260 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   D. Durocher 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX 
DD983 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   D. Durocher 
  his4::ura3::TRP1-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S129A 

EG81 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S17A-HA::TRP1 

EG82 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S17E-HA::TRP1 

EG83 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S19A-HA::TRP1 

EG84 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S19E-HA::TRP1 

EG85 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-R18A-HA::TRP1 

EG86 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-R18K-HA::TRP1 

EG87 MATaΔ::hisG hoΔ hmlΔ::ADE1 hmrΔ::ADE1 ade1 lys5   This study 
  his4::URA3-leu2 (Xho1-to Asp718)-pBR322-his4 ura3-52  

trp1::hisG leu2::HOcs ade3::GAL::HO hta2Δ::KanMX  
hta1-S129A-HA::TRP1 
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Yeast nuclear isolation and histone extraction 

1 L yeast cultures were grown overnight in YPD at 30°C to mid-log phase (cell 

density of 1.5-3 x 107 cells/ml, corresponding to OD600 of 0.8).  Cells were 

harvested by centrifugation at room temperature for 5 min at 3,000 rpm (JA-10 

rotor).  Cell pellet was washed once with 100 mls ice-cold water and resuspended 

in 40 mls of cold SPheroplasting buffer (1 M Sorbitol, 50 mM potassium 

phosphate pH 6.5, and fresh 14 mM β-mercaptoethanol).  Spheroplasting was 

initiated by addition of 0.4 mg/ml of zymolyase (USBiological) and allowed to 

proceed at 30°C with mild agitation (~120 rpm) for ~30 min or until 90% of the 

cells were spheroplasted.  Efficiency of spheroplasting was monitored by OD600 

readings of 5 µl of cells in 1 ml 1% SDS.  When OD600 values dropped to ~0.05, 

spheroplasted cells were pelleted by centrifugation in a tabletop clinical 

centrifuge at 3,000g and washed once with equal volume of SPheroplasting 

buffer.  All the procedures hereafter were carried out on ice or at 4°C.  Pelleted 

spheroplasts were resuspended in 40 mls of lysis buffer (18% ficoll 400, 20 mM 

potassium phosphate pH 6.5, 1 mM MgCl2, 0.5 M EDTA pH 8, plus protease and 

phosphatase inhibitors) and lysed by douncing with ~100 strokes using pestle B.  

Lysed cells were diluted with 40 mls of lysis buffer and nuclei were separated 

from debris and harvested by centrifugation in a clinical centrifuge for 20 min at 

3,200 rpm.  The nuclei-containing supernatant was transferred to an 

ultracentrifuge tube (14 x 95 mm, Beckman) and nuclei were pelleted by 

ultracentrifugation at 50,000g for 30 min (SW-40 rotor).  Nuclei were either 

resuspended in ~5 ml of NP buffer (0.34 M sucrose, 20 mM Tris-Cl pH 7.4, 50 

mM KCl, 5 mM MgCl2, plus protease and phosphatase inhibitors), aliquoted and 

stored at -80°C or used to extract histones. 

For histone extraction, nuclei from 1 ml NP buffer were washed once with 

1 ml of buffer A (10 mM Tris-Cl pH 8, 0.5% NP-4, 75 mM NaCl and protease and 
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phosphatase inhibitors) and collected by spinning at microfuge for 5 min at 

maximum speed (14,000 rpm).  The nuclear pellet was then resuspended in 100 

µl of buffer B (10 mM Tris-Cl pH 8, 0.4 M NaCl, plus protease and phosphataase 

inhibitors) to which 10 µl of 4N H2SO4 was gradually added.  The histones were 

extracted by gentle agitation at 4°C for ~30 min and precipitated by 20% TCA for 

1 hr on ice followed by microfuge centrifugation for 10 min at maximum speed.  

Precipitated histones were washed with acetone containing 0.1% HCl followed 

by another wash with acetone and dissolved in appropriate amounts of H2O. 

 

DNA damage sensitivity assay 

Strains grown overnight at 30°C in non-selective medium, were diluted to a 

density corresponding to an absorbance of 0.1 at 600 nm (OD600) and grown for 

another 3 hrs at 30°C.  Cultures were diluted to equivalent densities and five fold 

serial dilutions were spotted onto medium containing the indicated DNA 

damaging agent.  The plates were incubated for 3 days at 30°C. 

 

Yeast whole-cell extraction 

Cultures were grown in YPD medium at 30°C to an OD600 of 0.6-0.8.   10-15 ml 

cell aliquots were harvested by centrifugation at 2,000g in a tabletop centrifuge 

for 3 min and washed once with 0.5 ml of 20% TCA.  Cell pellets were then 

stored at -80°C for up to a week or processed immediately.  All purification steps 

were carried out on ice or at 4°C.   The pellets were resuspended in 200 µl of 20% 

TCA and transferred into an O-ring tube containing ~500 µl acid-washed glass 

beads (500 µm in diameter).  Cells were disrupted by bead beating in a Mini-

Beadbeater (Biospec Products) for 1 min at 4°C.  The beads were then flushed 

with 1 ml of 5% TCA, and the liquid was collected into a separate eppendorf 

tube.  Proteins were precipitated on ice for 10 min and collected by a 20 min 
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centrifugation at maximum speed.  The supernatant was removed and the pellets 

were solubilized in ~100 µl of 80% 2X SDS-PAGE loading buffer (60 mM Tris pH 

6.8, 2% SDS, 10% glycerol, 0.2% bromophenol blue) with 10% β-mercaptoethanol 

(BME) and 10% unbuffered 2M Tris base.   Insoluble material was removed by 

centrifugation after 5 min boiling at 95°C and the soluble extract was analyzed by 

SDS-PAGE.  

 

MMS time course 

Yeast cultures were grown in YPD at 30°C to OD600 density of ~0.5.  An aliquot of 

each culture was collected for analysis.  0.05% MMS (Sigma) was added to the 

remainder of the cultures and treatment was extended for 2 hrs at 30°C after 

which the cells were pelleted at 2,000g for 2 min and washed once with fresh 

YPD.  After the wash, the cells were resuspended in YPD and allowed to recover 

from MMS treatment at 30°C for indicated lengths of time, at which point 

aliquots were collected for analysis by appropriate assays. 

 

Flow cytometry 

Aliquots corresponding to 1 ml of cell density equivalent to exponentially 

growing cells (~1x107cells/ml) were collected at appropriate time points before, 

during, and after MMS treatment or induction of HO endonuclease and pelleted 

at 2,000 rpm for 5 min.  The supernatant was removed and cells were washed 

once with 1 ml H2O followed by a 15 sec spin.  Cells were then fixed with 1 ml 

70% cold ethanol and stored at 4°C.  For staining, 0.3 ml of fixed cells were spun 

once for 10 sec in a microcentrifuge to remove the ethanol and rehydrated by 

resuspending in 1 ml 50 mM Na citrate which was removed following another 10 

sec spin.  The pellet was then resuspended in 0.5 ml 50 mM Na citrate containing 

0.1 mg/ml RNase A (Qiagen) and incubated at 37°C overnight (or at least 2 hrs).  
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The next day, 0.5 ml 50 mM Na citrate containing 4 µg/ml propidium iodide (PI) 

was added to the cells to bring the final concentration of PI to 2 µg/ml.  The cells 

were then either stored in the dark at 4°C or processed immediately.  Before 

processing, the cells were briefly sonicated (5 sec constant pulse on medium 

setting) to prevent clumping.  Cells were analyzed for DNA content with the use 

of a BD FACSCalibur system.  

 

NHEJ plasmid repair assay 

H2A mutant and wild-type strains were grown at 30°C in YPD to OD600 density 

of 0.5.  The cultures were harvested and subjected to Frozen-EZ Yeast 

Transformaton II (Zymo research) with either XhoI restriction-enzyme-digested 

pRS416 or its mock-digested counterpart.  Transformations were plated onto 

selective SC-TRP medium and colonies were counted after 3 days at 30°C. 

 

Galactose-HO sensitivity assay 

Strains containing the galactose-inducible HO endonuclease were grown at 30°C 

in lactic acid media to mid-log phase.  Galactose (2% final) was added to induce 

HO.  20 ml aliquots were removed at appropriate time points and genomic DNA 

as well as whole cell proteins were extracted. 

  

DNA extraction and repair analysis 

Genomic DNA was extracted from ~5 ml cultures collected at different time 

points before and after galactose induction of HO endonuclease.  Cells were 

harvested by a 3 min centrifugation at 2,000 g and washed once with 0.5 ml of 

distilled H2O.  The cell pellet remaining after the H2O wash was resuspended in 

0.2 ml of DNA extraction buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM 

Tris-Cl pH 8, 1 mM EDTA) and transferred to a screw-cap O-ring tube containing 
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~200 µl of acid-washed glass beads (500 µm in diameter).  0.2 ml of 

phenol:chloroform:isoamyl alcohol (25:24:1) was added to the tube and cells were 

disrupted by vortexing at maximum speed for 5 min.  Insoluble material and 

beads were removed by a 5 min centrifugation in a microfuge.  The upper, 

aqueous DNA containing layer was then transferred to a fresh tube and DNA 

was precipitated with 2.5 volumes of 100% cold ethanol using 1/10 volumes of 

3M sodium acetate pH 5.2 as a carrier.  The DNA was pelleted by a 5 min 

centrifugation and the pellet was washed once with 70% cold ethanol, after 

which the pellet was solubilized in 200 µl of TE containing 2 µl of 10 mg/ml 

RNase A (Qiagen) followed by incubation at 37°C for 30 min to remove RNA 

contaminants.  Pure DNA was then precipitated and washed with 70% ethanol as 

before, the pellet was air dried for 5 min and solubilized in 20 µl of H2O.  100 ng 

of thus purified DNA was subsequently used as a template in a PCR reaction 

with DNA repair specific oligonucleotides.  Oligonucleotide sequences used for 

the repair analysis are listed in Table 5.  PCR products were analyzed on a 1.2% 

agarose gel. 
 
Table 5.  Oligonucleotides for single strand annealing (SSA) repair assay  
Primer or 

pair  Location Orient Primer Sequence 

SSA P1 Chr III F GCT GGG AAG CAT ATT TGA GAA GAT GCG 
SSA P2 Chr III R TGG GTT GAA GGC TCT CAA GGG CAT C 
SSA P3 Chr III F GGT GAC CAC GTT GGT CAA GAA ATC A 
SSA P4 Chr III R GCA TTA GCC CAT TCT TCC ATC AG 

SSA 
Control Chr IV CDC13 F 

CDC13 R 
CGA CGG AAA TTC GAT CAG GC 
CCA AAT AGA CTA GGG ATA CCT TAC 

 

High copy suppressor screen 

10 ml cell culture of the S17E HTA1 histone plasmid strain (pEG39) were grown 

in YPD at 30°C. 0.75 µl of cDNA library was transformed using the lithium 

acetate method described above.  Transformants were plated on SC-TRP-URA 
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plates containing 200 mM hydroxyurea and surviving colonies were counted 

after 6 days at 30°C.  

 

Sample collection and RNA isolation 

Cultures were grown in YPD medium at 30°C to OD600 density of ~0.5.  10-15 ml 

cell aliquots of each culture, before and after 2 hr treatment with 0.02% MMS 

(Sigma) at 30°C, were harvested for analysis by centrifugation at 2,000g in a 

tabletop centrifuge for 3 min. The cells pellets were resuspended in 400 µl of TES 

buffer (10 mM Tris-Cl pH 7.5, 10 mM EDTA and 0.5% SDS).  400 µl of acid 

phenol was added and the solution was mixed by vortexing.  RNA was isolated 

by incubation at 65°C for 30 min with occasional vortexing, followed by a 5 min 

incubation of ice and 5 min maximum speed spin in a microfuge.  The RNA-

containing top aqueous layer was transferred to a clean eppendorf tube and re-

extracted with 400 µl of acid phenol as above.  RNA was precipitated from the 

final aqueous layer with 1 ml (2.5 volumes) 100% ethanol, using 40 µl (1/10 

volume) NaOAc pH 5.2 as a carrier.  The pellet was washed with 70% ethanol, air 

dried and resuspended in appropriate amount of H2O.  Purity and concentration 

of the RNA was determined by OD260 measurements. 

 

RT-PCR 

RT-PCR reaction was performed according using SuperScript III First-Strand 

Synthesis System (Invitrogen) according to the manufacturer’s instructions.  

Briefly, up to 5 µg of RNA was mixed with 50 µM oligo(dT)20, 10 mM dNTP mix, 

and DEPC-treated water to a total 10 µl reaction volume, and incubated at 65°C 

for 5 min and placed on ice for at least 1 min.  10 µl of cDNA synthesis mix ( 1X 

final concentration of RT buffer, 25 mM MgCl2, 0.1 M DTT, 1 µl of RNaseOUT 

(40U/µl) and 1 µl of SuperScript III RT enzyme) was added to the RNA/primer 
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mixture and cDNA was extended by incubation at 50°C for 50 min.  The reaction 

was terminated by heating to 70°C for 15 min and remaining RNA was removed 

by incubation for 20 min at 37°C after addition of 1 µl of RNase H (2U/µl).  The 

cDNA was either stored at -20°C or immediately used in a real-time quantitative 

PCR using a Platinum SYBR Green qPCR SuperMix (Invitrogen) according to the 

manifacturer’s protocol.  
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