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VISUALIZING SYNAPTIC SPECIFICITY WITH GRASP 

Evan H. Feinberg, Ph.D. 

The Rockefeller University 2010 

 

 A maxim of modern neuroscience holds that the structures of neural circuits 

dictate their function. Circuit assembly requires each neuron to exercise remarkable 

precision as it selects a unique ensemble of synaptic partners from a vast array of 

potential targets. Visualization of individual synapses in the central nervous system is 

difficult in some contexts and impossible in others, and the ability to rapidly monitor 

connectivity in living animals would greatly facilitate deeper understanding of synaptic 

specificity. In this thesis, I describe the development of a method, GFP reconstitution 

across synaptic partners (GRASP), that allows visualization of defined synapses in vivo, 

and apply this method at one set of synapses in the brain of the nematode C. elegans. 

 The principle of GRASP relies on bimolecular assembly of two GFP fragments 

expressed on two cells at a synapse. To this end, I appended fragments of green 

fluorescent protein (GFP) to the extracellular portions of transmembrane carrier proteins 

in apposing cells. When complementary CD4-tethered GFP fragments were brought into 

proximity at sites of cell contact, GFP fluorescence was observed both in vitro and in 

vivo. Split GFP fragments fused to the presynaptic phosphatase PTP-3A labeled 

synapses when expressed in connected neurons. This method detected known mutations 

that alter synaptic connectivity, such as syg-1 and syg-2, which affect development of 

synapses between HSN neurons and their postsynaptic nerve and muscle partners. These 

observations suggest that GRASP could aid efforts to trace behavioral circuits and 

investigation of the mechanisms of synaptic specificity. Additional tools based on Cre 

recombinase were developed to confine labeling to single cells and synapses of interest. 

 The ability of GRASP to detect known specificity mutants prompted an 

investigation of synapse formation in the central nervous system of C. elegans.  I 



generated a transgenic strain, kyIs501, in which GRASP labels synapses formed by the 

ASH sensory neuron onto the AVA interneuron. A genetic screen in kyIs501 identified 

one promising mutation, ky957, that causes loss of GRASP labeling. However, 

subsequent analyses revealed that ky957 is not a bona fide specificity mutant, and appears 

instead to be associated with alterations in the integrated kyIs501 transgene. Potential 

solutions to the problems raised by transgene-based approaches as well as further 

refinements of GRASP are discussed.	  
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Chapter 1 

 
Introduction 

 

 Synapses are specialized cell-cell junctions that allow information to propagate 

through neural circuits to generate behavior.  Within the human brain, more than 100 

billion neurons form more than 100 trillion synapses with remarkable precision.  The 

ability of each neuron to identify and form synapses with a unique subset of the cells that 

it contacts is termed synaptic specificity.  Specificity requires neurons to avoid 

inappropriate targets while identifying suitable subcellular regions on appropriate target 

cells.  The synapses that form then must differentiate into excitatory or inhibitory 

synapses, and presynaptic neurotransmitters and postsynaptic neurotransmitter receptors 

must be matched.    

 Synaptic specificity requires the orchestration of multiple spatial processes.  First, 

neurons must target their axons and dendrites to the appropriate anatomical regions.  

Within their target areas, neurons then make fine-scale decisions with regard to synapse 

formation.  Some neurons must identify the appropriate neural laminae (layers) in which 

to synapse (Yamagata et al., 2002).  Finally, neurons may discriminate amongst a pool of 

possibilities to identify their cognate synaptic partners.  In Caenorhabditis elegans, for 

example, an average neuron is presynaptic to only fifteen percent of the neurons it 

contacts (White et al., 1986).  Analyses in the fly eye and mammalian cortex suggest that 
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cellular and subcellular selectivity are general features of synapse formation  (Clandinin 

and Zipursky, 2002; Yoshimura and Callaway, 2005).  However, few molecules or 

mechanisms are known to regulate the selection of a specific target cell in the central 

nervous system.   

 

A genetic blueprint specifies synaptic targeting 

 Neurons can undergo significant morphological changes such as axon turning and 

arborization and dendritic spine growth in response to both genetic cues and circuit 

activity.  Similarly, both genetic mechanisms and circuit activity play roles in synaptic 

specificity.  Studies in the mammalian visual system have found that a genetic blueprint 

specifies an initial connectivity map subject to activity-dependent refinements.  Evidence 

for a genetic blueprint comes from many experiments showing that an approximately 

accurate synaptic connectivity is established in the absence of neuronal activity in 

salamanders, flies, mice, and zebrafish (Harris, 1980, Clandinin and Zipursky 2002, 

Verhage et al., 2000, Nagiel et al., 2009).  However, activity does play important roles as 

well, both in invertebrates and vertebrates.  In C. elegans, reduced activity at early stages 

of development leads to increased elaboration of presynaptic varicosities at 

neuromuscular junctions in SAB neurons (Zhao and Nonet, 2000).  In mammals, 

pharmacologic inhibition of action potentials during development disrupts proper 

segregation of retinal ganglion cell inputs in the thalamus (Shatz and Stryker, 1988; 

Sretavan et al., 1988) The emerging picture from several decades of investigation is that 

neurons use a genetic blueprint to identify their synaptic partners during development, 
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while activity serves to refine these connections, changing their number, strength, and 

other properties to generate a functional brain.    

In the introduction below, I will discuss molecular mechanisms and functional 

strategies implicated in synapse formation.  As a result of this parallel structure, some 

molecules will be discussed more than once.   

 

Combinatorial coding in synaptic specificity 

The notion that synaptic selection stems from a genetic template poses an 

intriguing problem: the number of synapses in the human brain exceeds the number of 

genes in the human genome by many orders of magnitude.  Generation of a vast yet 

precise synaptic map with a comparatively small repertoire of molecules is likely to 

require the integration of several cues.  Therefore, it is likely that synapses are specified 

combinatorially.  Several candidate recognition molecules have been implicated in 

synapse formation, including adhesion molecules, secreted attractants and repellents, and 

guidepost molecules.  The combinatorial code for synaptogenesis is likely to involve the 

integration of positive and negative inputs, as observed in Drosophila melanogaster 

neuromuscular junction formation, where neurons  select target muscles by integrating 

attractive cues such as Fasciclin II and Capricious, negative cues such as Semaphorin II, 

and molecules that attract some neurons and repel others, such as Netrin B (Winberg et 

al., 1998; Shishido et al., 1998).  Moreover, synaptogenic molecules may be arrayed in 

gradients in pre-and post-synaptic cells.  Gradients of Ephrin/Eph molecules are used to 

generate topographic maps in the retinotectal projection on a tissue-wide scale, while 

intracellular gradients of neurofascin in cerebellar Purkinje cells regulate subcellular 
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synaptic targeting (Lemke and Reber, 2005; Ango et al., 2004).  Within the central 

nervous system, any or all of these mechanisms working in concert may enable a few 

molecules to specify many synapses.   

Synaptic specificity is likely to involve transsynaptic adhesive interactions 

between pre- and postsynaptic recognition molecules.  Drosophila Capricious, a member 

of a family of leucine-rich repeat (LRR) proteins, is coordinately expressed on at least 

two sets of synaptic pairs: body wall muscle 12 and the motor neurons that innervate it, 

and the R8 photoreceptor and its synaptic target lamina (Shishido et al., 1998; Shinza-

Kameda et a., 2006).  Other LRR proteins are expressed on other Drosophila body wall 

muscles, and recent analyses suggest that some of these LRR proteins are also required 

for innervation of muscle 12 (Kurusu et al., 2008).  Vertebrate LRR proteins such as 

LRRTM1 can induce synaptogenesis in cultured neurons, and LRRTM knockout mice 

display altered distribution of the synaptic vesicular glutamate transporter VGLUT1, 

suggesting that LRR proteins have a conserved synaptogenic role (Linhoff et al., 2009).   

Specific cadherins have also been localized to synapses in many contexts.  In the 

Drosophila eye, loss of N-cadherin causes R7 photoreceptors to target the synaptic layer 

normally innervated by R8 cells, while R1-6 cells fail to extend their axons to the 

appropriate target cartridges (Lee et al., 2001).  Vertebrate N-cadherin is concentrated at 

the synaptic sites in retinorecpient laminae of the chick optic tectum, and its intracellular 

tail can interact with alpha-catenin to recruit the cytoskeletal machinery (Yamagata et al., 

1995).  A related family of molecules, the protocadherins, display a striking genomic 

organization, with various splice isoforms arrayed tandemly on the same chromosome. 

Their expression pattern, with distinct subsets of neurons expressing individual 
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molecules, suggests a potential adhesive code (Sano et al., 1993; Wu and Maniatis, 

1999). Mice lacking protocadherins appear to have normal synaptic targeting but 

abnormal synaptic function and increased neuronal apoptosis (Wang et al., 2002).   

The immunoglobulin superfamily (IgSF) includes many proteins that have been 

suggested to be synaptogenic.  Sidekicks and DSCAMs appear to specify laminar 

targeting in the chick retina, while DSCAMs in other contexts appear to regulate self-

avoidance (Yamagata et al., 2002; Yamagata and Sanes 2008; Wang et al., 2002). The 

IgSF family members synCAMs, with intracellular PDZ domains, can promote synapse 

formation in vitro through homotypic interactions (Biederer et al., 2002).  An important 

challenge in studying these molecules will be to understand how a symmetric adhesive 

interaction results in asymmetric pre- and postsynaptic differentiation.   

A number of heterotypic adhesive interactions have been observed at synapses as 

well.  Presynaptic neurexins paired with postsynaptic neuroligins are sufficient to induce 

synapse formation in vitro, although in vivo Neurexins and Neuroligins are mainly 

required for synapse differentiation (Scheiffele et al., 2000; Graf et al., 2004; Varoqueax 

et al., 2006).  Ephrins and Eph receptors are also localized to synapses, where they play 

largely regulatory roles (Torres et al., 1998; Dalva et al., 2000).  Other heterotypic 

adhesion molecules promote synaptogenesis without directly interacting with the 

postsynaptic cell.  The IgSF molecule SYG-1, expressed in the HSNL neuron, and 

interactions with its ligand SYG-2, expressed in the vulval epithelial cells, promote 

synapse formation between HSN and the adjacent VC neurons and vulval muscle (Shen 

and Bargmann, 2003; Shen et al., 2004).  Other unknown factors likely direct HSNL to 

innervate the VC neurons and vulval muscle within this region.  Adhesive interactions 
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through molecules such as Semaphorins and Integrins have also been documented at 

synapses (Godenschwege et al., 2002; Yamagata et al., 1995), and additional receptors 

are likely to be identified.  

In addition to adhesive interactions, numerous secreted proteins can induce 

synaptogenesis.  A classical example is Agrin, a protein secreted by motor neurons that 

binds to a receptor complex containing MuSK and LRP4 on muscle cells to induce 

postsynaptic localization of acetycholine receptors at neuromuscular junctions (Smith et 

al., 1987, Zhang et al., 2008).  Wnt-7a and FGF22 both promote synaptogenesis in the 

cerebellum, with Wnt-7a signaling through an unknown mechanism and FGF22 binding 

its receptor FGFR2 on mossy fiber neurons (Hall et al., 2000, Umemori et al., 2004).  

WNTs can also inhibit synapse formation by motor neurons in Drosophila and C. elegans 

(Inaki et al., 2007; Klassen and Shen, 2007).  In addition, members of the BMP family 

and Netrins can promote or inhibit synaptogenesis (McCabe et al., 2003, Colon-Ramos et 

al., 2007, Poon et al., 2008).  The identification of these and other secreted factors and 

adhesion molecules has begun to elucidate the components of the combinatorial synaptic 

code, but the syntax of the code remains elusive.    

 

 

Recycling and flexibility of cues 

One source of diversity in the synaptic code is the ability of individual molecules 

to generate diverse responses.  unc-6/Netrin was first identified in genetic and 

biochemical screens for its role in promoting circumferential axon guidance (Hedgecock 

et al., 1990; Serafini et al., 1994)  UNC-6/Netrin binding to UNC-40/DCC receptors 
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elicits attraction (Chan et al., 1996, Keino-Masu et al., 1996), while UNC-6/Netrin 

binding to UNC-5 receptors elicits repulsion (Hamelin et al., 1993,  Leonardo et al., 

1997.)   Recently, Netrin signaling through these receptors has been shown to play a role 

in specifying synaptic regions of axons.  UNC-6 signaling through UNC-40 stimulates 

synaptogenesis in a segment of the AIY axon in the C. elegans nerve ring, and UNC-6 

signaling through UNC-5 excludes presynaptic sites from the dendrite of DA9 motor 

neurons (Colon-Ramos et al., 2007; Poon et al., 2008).  In general, receptor expression 

appears to dictate whether a response to Netrin is attractive or repulsive, but whether this 

signaling affects cell migration, guidance, or synaptogenesis likely depends on the 

expression of additional coreceptors and intracellular signaling components.    

Another well-studied family of secreted molecules, WNTs, provide positive and 

negative regulation of axon polarity, axon guidance, and synaptogenesis in different 

contexts. In C. elegans, LIN-44/WNT signaling through the LIN-17/Frizzled receptor 

determines axodendritic polarity in the PLM neuron (Hilliard et al., 2006).  WNT4 directs 

anterior growth of vertebrate commissural axons through the canonical WNT receptor 

Frizzled3 (Lyuksyutova et al., 2003), and Drosophila Wnt5 signals through the atypical 

receptor tyrosine kinase Derailed, a non-canonical WNT receptor, to repel anterior 

commissure neurons from the posterior commissure (Yoshikawa et al., 2003).  WNTs can 

similarly promote or inhibit synaptogenesis.  In the cerebellum, WNT7a promotes the 

formation of mossy fiber synapses in a manner believed to required canonical WNT 

signaling (Hall et al., 2000).  In C. elegans, LIN-17/WNT signaling through LIN-

44/Frizzled inhibits synaptogenesis in a portion of the axon of DA9 motor neurons 
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(Klassen and Shen, 2007).  Overall, these data suggest that WNTs, like Netrin, act at 

multiple steps in circuit formation through multiple signaling pathways.     

Perhaps one of the most striking examples of the diverse responses that can be 

generated by a single molecule have been observed with the DSCAM family of 

molecules.  Dscam molecules have been well characterized in Drosophila, where 

alternative splicing of Dscam gives rise to 38,016 distinct isoforms (Schmucker et al., 

2000).  Each isoform undergoes homotypic binding that elicits repulsion, and each cell is 

believed to express between 15 and 50 distinct splice isoforms, such that every cell 

expresses a unique complement of Dscam isoforms to ensure specific self-repulsion and 

proper axon and dendrite patterning (Wojtowicz et al., 2004, Wang et al., 2002).  

DSCAM may also serve as an attractant receptor for Netrin during commissural axon 

growth at the midline in flies and mice (Ly et al., 2008, Andrews et al., 2008).  DSCAM 

paralogs in other organisms, as well as other Drosophila Dscam homologs, do not 

undergo extensive alternative splicing, but the theme of homophilic repulsion is 

conserved.  Drosophila Dscam2 mediates tiling of L1 neuron axons in the eye (Millard et 

al., 2008), and mouse DSCAM and DSCAML1 mediate self-repulsion to promote proper 

cell placement and process arborization in ganglion cells, rod bipolar cells, and AII 

amacrine cells in the retina (Fuerst et al., 2009).  Remarkably, synapse-localized DSCAM 

and its homologs, Sidekicks, appear to promote laminar targeting of chick amacrine, 

bipolar, and and retinal ganglion cells via adhesive homophilic interactions (Yamagata 

and Sanes 2008).  R-cadherin-positive ganglion cells express DSCAM and synapse in 

sublamina 5 (S5) of the inner plexiform layer, and depletion of DSCAM led to 

mistargeting of their processes but not the processes of other neurons.  Ectopic expression 
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of DSCAM in other ganglion cells types diverted their processes to S5, suggesting that 

DSCAM is necessary and sufficient for targeting S5.  Moreover, DSCAM expression in a 

cultured human neuroblastoma line promoted cell adhesion and synaptogenesis.  These 

data are in contrast to the results observed in mouse DSCAM knockouts, in which 

laminar targeting was believed to be largely normal, but these analyses may have focused 

on different cell types. (Fuerst et al., 2009, Yamagata and Sanes, 2008).  Echoing the 

effects observed with Netrins and WNTs, DSCAM appears to serve attractive and 

repulsive roles at multiple steps in circuit formation.     

In light of the diversity of responses a single molecule can elicit, it is clear that 

individual cells must rely on expression of appropriate receptors and intracellular 

signaling pathways to generate the appropriate responses.  In particular, the ability of 

DSCAM to serve as a putative attractant along one axis and a repellant along orthogonal 

axes in the developing vertebrate retina suggests the complexity of this regulatory 

problem, as responses to each cue may be dynamic in both space and time in a single cell.  

The regulatory logic that governs receptor expression, localization, and coupling to 

intracellular signaling components is likely to be highly complex.   

 

Cell identity and transcriptional control of synaptic specificity 

 As described above, neurons are able to generate a diverse array of responses to 

single guidance factors.  To do so, neurons must express the appropriate complement of 

receptors, ligands, and intracellular signaling molecules at the appropriate time and place 

to ensure that they reach and synapse with the correct targets.  Connectivity is an integral 

feature of a cell’s function, and studies in numerous systems have explored this 
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phenomenon.  In C. elegans, the unc-4 and unc-37 transcription factors promote proper 

innervation in the VA neurons by repressing the factors that specify the synaptic 

connectivity of VB neurons (Von Stetina et al., 2007).  Similarly, in the fly eye sensory 

receptor choice and synaptic laminar targeting are controlled by the same transcription 

factors, ensuring proper matching of cellular function to cellular connectivity (Morey et 

al., 2008).  In the vertebrate spinal cord, a transcription factor code of Hox genes, LIM 

homeodomain proteins, and other factors dictate cell identity and motor neuron target 

innervation through regulation of guidance cues such as EphA4 (Dasen et al., 2005, 

Kania and Jessell, 2003).  Interestingly, in some instances innervation of muscle targets 

appears to reinforce motor neuron identity and expression of ETS transcription factors 

(Arber et al., 2000, Livet et al., 2002), suggesting that synaptic connectivity can also feed 

back onto cell identity.  As with adhesion molecules, there are many fewer transcription 

factors than synapses, and how transcriptional control is orchestrated remains unknown.   

Studies in Drosophila have identified a few candidate means by which a single 

transcription factor can specify different connectivity in different cells.  In the Drosophila 

olfactory system, each projection neuron (PN) has a unique projection pattern determined 

through lineage-dependent and age-dependent mechanisms.  Early-born PNs express high 

levels of the transcription factor Chinmo, while later-born PNs express lower levels of 

Chinmo (Zhu et al., 2006).  Loss of Chinmo causes early-born cells to acquire the 

glomerular projection patterns of late-born neurons, suggesting that graded Chinmo 

expression specifies multiple distinct projection patterns, although the molecular 

mechanism is unclear.  PNs innervate these glomeruli prior to arrival of olfactory neurons 

through the activity of Chinmo and additional transcription factors (Komiyama et al., 
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2003), which may provide a combinatorial code. N-cadherin and Dscam are required for 

glomerular targeting and elaboration of dendrites, respectively, but appear to do so 

permissively (Zhu and Luo, 2004, Zhu et al., 2006).  A spatial gradient of Semaphorin-1a 

appears to provide additional targeting information, as loss of Semaphorin-1a partially 

disrupts glomerular targeting, particularly for later arriving axons (Komiyama et al., 

2007).  In this way, small numbers of adhesion molecules and transcription factors can 

define the complex glomerular map.   

An intriguing study in the fly eye documented another form of temporal control 

by transcription.  Both the R7 and R8 photoreceptors target distinct synaptic laminae in 

an N-cadherin-dependent manner, and how a single adhesion molecule could direct 

formation of adjacent specific synapses is unclear.  A potential solution involves 

sequential expression of the transcription factor Sequoia, which dictates N-cadherin 

responsiveness, in R8 and R7 to promote orderly innervation of the appropriate synaptic 

layers (Petrovic and Hummel, 2008).  This mechanism allows a single transcription factor 

and adhesion molecule to direct multiple distinct recognition events.  These phenomena 

offer a glimpse into the logic of synaptic specificity, although numerous additional 

mechanisms are likely to be involved as well.   

 

Guidepost cells promote or inhibit synaptogenesis 

 Transsynaptic interactions through adhesion molecules such as cadherins, 

Sidekicks, synCAM, neurexins and neuroligins facilitate direct interactions between pre- 

and postsynaptic cells.  Third-party cells other than the pre- and postsynaptic cells also 

play significant roles at several steps in synapse development.  Guidepost interactions 
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with glia and other non-neuronal cells can facilitate and reinforce targeting decisions by 

narrowing the search for synaptic partners.  In the mouse brain, immature astrocytes 

secrete Thrombospondins 1 and 2 to promote synaptogenesis, and mice lacking 

Thrombospondins 1 and 2 show a 40% reduction in synapses (Christopherson et al., 

2005).  Interestingly, astrocyte-conditioned medium can induce formation of functional 

synapses in vitro, but the synapses induced by purified Thrombospondins 1 and 2 are 

silent due to a failure to recruit post-synaptic AMPA receptors.  This result suggests that 

astrocytes secrete factors in addition to Thrombospondins to stimulate synapse 

maturation.  Astrocytes play similar roles in eliminating synapses, inducing postnatal 

neurons to secrete complement factor C1q, which is used to eliminate synapses (Stevens 

et al., 2007).  Mice lacking C1q or the downstream effector C3 show defects in 

refinement of retinogeniculate projections, suggesting that these factors may be 

molecular mediators of remodeling in this system.   C1q and C3 are synapse localized, 

suggesting that they may tag individual synapses for elimination.  In C. elegans, the axon 

guidance and synaptic guidepost molecule UNC-6/Netrin is secreted by the glial sheath 

cell in the nerve ring where it promotes synaptogenesis, supporting a conserved role for 

glial cells in promoting synaptic interactions.  Moreover, in the C. elegans egg-laying 

circuit, receptor-ligand guidepost interactions between SYG-1 expressed on the HSNL 

neuron and SYG-2 expressed on vulval epithelial cells target HSNL synapses to the 

adjacent VC neurons and vulval muscle (Shen and Bargmann, 2003, Shen et al., 2004).  

These results support a conserved role for permissive and instructive guidepost signals 

from glia and other non-neuronal cells.   
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 While orchestrating their own guidance decisions, neurons can assist their 

neighbors.  In a classical example, vertebrate subplate neurons provide guidepost signals 

for thalamocortical afferents in the visual system (Ghosh et al., 1990).  Cajal-Retzius 

cells secrete reelin to promote entorhinal innervation of hippocampal pyramidal cells 

(Del Rio et al., 1997).  Interactions between neurons in the same function class are also 

observed in many cases.  Vertebrate olfactory neurons expressing the same olfactory 

receptor coalesce into glomeruli in the olfactory bulb (Mombaerts et al., 1996), and pre-

target sorting of axons is believed to aid in the establishment of the proper topographic 

map in the olfactory bulb (Imai et al., 2009).  These results indicate that target 

identification often involves the collaborative efforts of many cells, a strategy that may 

provide a form of proofreading to increase the fidelity of target recognition.   

 

Subcellular targeting of synapses 

 Guidepost molecules such as SYG-1 and SYG-2 couple specification of synaptic 

partners to identification of appropriate subcellular regions.  In the cerebellum, the 

adhesion molecule Neurofascin 186 localizes pinceau synapses from basket cells to the 

axon-initial segment (AIS) of Purkinje cells (Ango et al., 2004).  Neurofascin is localized 

to the AIS through intracellular interaction with Ankyrin G.  Mislocalized Neurofascin 

186 can direct basket cells to innervate other regions of the Purkinje cell.  This 

mechanism couples target selection to subcellular position.  Similarly, Cajal-Retzius-

secreted reelin ensures proper subcellular positioning of entorhinal inputs onto 

hippocampal pyramidal neurons (Del Rio et al., 1997).  In other instances, a negative 

guidepost signal is used to prevent synapse formation in inappropriate regions.  In C. 
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elegans, LIN-44/WNT signals through LIN-17/Frizzled to excludes synapses from a 

portion of the axon of the DA9 neuron (Klassen and Shen, 2007), and UNC-6/Netrin 

signaling through UNC-5 excludes presynapses from dendrites of DA9 neurons (Poon et 

al., 2008).  These data suggest that target identification and subcellular targeting are 

often, but not always, coupled processes.   

 

Hierarchical targeting of synapses 

 Some insight into how neurons interpret the combinatorial synaptic code can be 

garnered from studies of mutants with altered synaptic specificity.  In C. elegans lacking 

syg-1 or syg-2, the HSNL neuron fails to synapse with appropriate targets and forms 

ectopic synapses with inappropriate targets such as body wall muscle (Shen et al., 2004). 

SYG-1 promotes formation of presynapses in the correct region of the HSNL axon by 

locally inhibiting an E3 ubiquitin ligase to prevent synapse elimination, stabilizing the 

deposition of synaptic machinery at appropriate presynaptic sites (Ding et al., 2007).  

Loss of localized SYG-1 leads to synapse elimination at this site and the appearance of 

ectopic synapses at other sites (Ding et al., 2007).  Similarly, loss of the correct target 

cells in the Drosophila ommatidium causes R1-6 cells to synapse with available 

secondary synaptic targets (Hiesinger et al., 2006).  These data suggest that the 

combinatorial code of synaptic specificity may not be all-or-none, and that neurons may 

compare options to identify the best available.  This would be consistent with the 

explorations performed by neuronal growth cones at Drosophila neuromuscular junctions 

and retinal ganglion cell axons within laminae of the mouse tectum (Shishido et al., 1998, 

Huberman et al., 2009), suggesting that neurons sample their environments to identify 
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suitable partners. By contrast with HSNL and R1-6 photoreceptors, loss of the proper 

synaptic targets causes GABAergic interneurons in the mouse spinal cord to retract their 

axons, indicating that these neurons may demand a minimum suitability from their targets 

(Betley et al., 2009).  These results offer some insight into different strategies for 

combinatorial coding, suggesting that cells do not always identify their targets through a 

cognate, all-or-none recognition event, and that neurons may differ in the reliance on 

classes of positive and negative cues.  

 

Synapse differentiation 

 Once two partners have identified each other, they must recruit the appropriate 

machinery for synaptic transmission.  For example, a presynaptic neuron could release 

excitatory transmitters such as glutamate or inhibitory transmitters such as GABA, and 

for the synapse to be functional the postsynaptic cell should express the appropriate 

receptor type.  The full details of this process are not clear, but it appears that some of the 

factors implicated in target recognition can serve parallel or independent roles in synapse 

differentiation and maturation.  The transynaptic adhesion molecules Neurexins were 

identified as the target for the spider venom alpha-Latrotoxin, and were found to localize 

to presynaptic sites (Ushkaryov et al., 1992).  Beta-Neurexins were subsequently shown 

to interact with postsynaptic Neuroligins (Ichtchenko et al., 1995). Neuroligin expressed 

in non-neuronal cells can induce the formation of presynaptic structures in co-cultured 

neurons (Scheiffele et al., 2000), while Neurexin expressed in non-neuronal cells can 

induce the formation of post-synaptic structures in co-cultured neurons (Graf et al., 

2004).   These synaptogenic abilities and the existence of multiple genes and splice 
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isofoms for Neurexins and Neuroligins suggested the possibility of a Neurexin-

Neuroligin code for synapse formation.  However, mice lacking the three brain-expressed 

Neuroligins were analyzed and found to have normal synaptic number and ultrastructure 

but impaired synaptic function, suggesting that Neurexin-Neuroligin interactions are 

required for functional maturation and differentiation of synapses (Varoqueax et al., 

2006).  Biochemical studies have identified signaling components downstream of both 

molecules.  Neurexins bind presynaptic components such as CASK to recruit presynaptic 

machinery (Hata et al., 1996).  Interestingly, the cytosolic tails of Neuroligins bind the 

third PDZ domain of the post-synaptic scafolding protein PSD-95 and may thereby 

recruit NMDA-type glutamate receptors to postsynaptic sites (Irie et al., 1997), while 

Neuroligin 2 selectively localizes to inhibitory synapses where it binds Gephyrin, which 

activates Collybistin to recruit an inhibitory postsynaptic scaffold and GABA and 

possibly glycine receptors (Graf et al., 2004, Poulopoulos et al., 2009).  In this way, 

neurexins and neuroligins can link transsynaptic adhesion to synapse differentiation and 

maturation. 

Several secreted molecules can also promote synapse formation.  WNT7a 

promotes synapse maturation and growth in cerebellar mossy fibers (Hall et al., 2000), 

and Wg and the bone morphogenetic protein homolog Gbb signaling at Drosophila 

neuromuscular junctions promote synaptic maturation (Packard et al., 2002; McCabe et 

al., 2003).  The abilities of synaptic adhesion molecules and synaptogenic factors to 

function in synapse maturation and differentiation suggest that target selection and 

acquisition of function are often coordinated processes.    

 

16



Figure 1.1.  Molecular regulators of synaptic specificity.  This schematic illustrates the 

diversity and cellular sources of extracellular signaling molecules that guide synaptic 

target selection.   
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Chapter 2

GFP reconstitution across synaptic partners (GRASP) defines cell contacts and

synapses in living nervous systems

Summary:

The identification of synaptic partners is challenging in dense nerve bundles,

where many processes occupy regions beneath the resolution of conventional light

microscopy.  To address this difficulty, I have developed GRASP, a system to label

membrane contacts and synapses between two cells in living animals.  Two

complementary fragments of GFP are expressed on different cells, tethered to

extracellular domains of transmembrane carrier proteins.  When the complementary GFP

fragments are fused to ubiquitous transmembrane proteins, GFP fluorescence appears

uniformly along membrane contacts between the two cells.  When one or both GFP

fragments are fused to synaptic transmembrane proteins, GFP fluorescence is tightly

localized to synapses.  GRASP marks known synaptic contacts in C. elegans, correctly

identifies changes in mutants with altered synaptic specificity, and can uncover new

information about synaptic locations as confirmed by electron microscopy.  GRASP may

prove particularly useful for defining connectivity in complex nervous systems.
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Introduction:

After axons have been guided to their targets by long-range and short-range cues,

they choose a subset of the available cells as synaptic partners.  This process involves

identification of appropriate partners, avoidance of incorrect partners, and selection of

subcellular regions for synapse formation (Shen, 2004).  Current knowledge of synaptic

connectivity has been obtained largely by powerful but labor-intensive methods:

electrophysiology of coupled cells, or electron microscopy and ultrastructural

identification of connected cell types (White et al., 1986; Katz and Dalva, 1994; Reid and

Alonso, 1995; Briggman and Denk, 2006).  Because of the skill and time required for

these experiments, the overall connectivity of most nervous systems remains a mystery.

A near-complete ultrastructural analysis has been performed only on the nematode

Caenorhabditis elegans, where reconstructions of serial-section electron micrographs

defined the ~7000 synapses in the entire nervous system in a project spanning two

decades (White et al., 1986).  Perhaps the next best-understood circuit described by

physiology and anatomy is the vertebrate retina, where ~50 cells types are interconnected

in complex patterns that are still not fully mapped (Wassle and Boycott, 1991; Vaney and

Taylor, 2002).  A faster method for analyzing synaptic circuitry would be a great asset for

establishing synaptic maps – the anatomical framework for nervous system function.

In recent years, the analysis of synaptic specificity has been accelerated by the use

of light microscopy and synaptic labels (Ahmari and Smith, 2002).  A synapse is a stable

cell junction with vesicles and active zone proteins localized to the presynaptic site,

receptors and a scaffolding matrix localized to the postsynaptic site, and adhesion

proteins such as cadherins that can bridge both cells.  Double-labeling with antibodies to
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presynaptic and postsynaptic proteins can define their sites of colocalization at synapses

(Ahmari and Smith, 2002).  Genetically encoded fluorescent synaptic proteins such as

VAMP::GFP can improve resolution by labeling synaptic structures in a subset of cells or

a single cell type (Nonet, 1999).  However, these approaches lose resolution in locations

like the mammalian cortex that contain 100,000 synapses or more per cubic millimeter

(Binzegger et al., 2004), a density at which the nearest neighbor of a synaptic marker is

ambiguous.  Thus in regions where many synapses coexist in a small area, light

microscopy fails to provide the resolution needed to identify exact synaptic partners.

Other markers that cross synapses such as lectins or rabies or pseudorabies viruses are

useful for long-range pathway mapping, but some trans-cellular tracers are toxic, many

have some degree of cell type-specificity, and most cross to multiple cells in a region, not

just synaptic partners (Schwab and Thoenen, 1976; Card et al., 1990; Peschanski and

Ralston, 1985; Cabot et al., 1991; Yoshihara et al., 1999; Maskos et al., 2002;

Wickersham et al., 2007).

Here I describe GRASP, a generalizable method to label a synapse based on the

proximity of the presynaptic and the postsynaptic plasma membranes.  In CNS synapses,

the membranes of two synaptic partners are typically separated by less than 100 nm of

extracellular space, a distance that can be spanned by transmembrane proteins expressed

by the two cells.  I detect proximity by the stable, extracellular assembly of the green

fluorescent protein from two complementary fragments expressed on different cells, in

the context of transmembrane protein carriers that are either broadly distributed on the

plasma membrane or narrowly localized to synaptic regions.  Using these different

carriers, GRASP can be used to assess nearest neighbors across the cell membrane, or the

nearest neighbor at a synapse.  I confirm the effectiveness of GRASP in vivo using the
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defined connectivity of the Caenorhabditis elegans nervous system as a guide, and

demonstrate that GRASP can identify synaptic defects in mutants as well as previously

uncharacterized details of synaptic locations.

Results

Development of Cre-loxP intersectional gene expression methods in C. elegans

The ability to restrict transgene expression to a few or single cells is essential for

any approach to labeling specific synapses in vivo, but many well-studied cells lack

unique promoters.  However, many cells could be uniquely identified by their expression

of two overlapping promoters.  An intersectional method that exploits this promoter

overlap might be of use in restricting transgene expression to single cells.  A widely

validated system for intersectional gene expression exploits the bacteriophage P1 site-

specific recombinase Cre, which catalyzes recombination between two repeats of a 34

base-pair loxP sequence (Abremski and Hoess, 1984). When two such sequences are

arranged in tandem on a single piece of DNA, Cre-mediated recombination leads to

excision of the intervening sequence (Figure 3.1A).  This approach is best known for its

applications in conditional knockouts (Gu et al., 1994), but the ability to conditionally

excise a DNA sequence can also be exploited to generate intersectional transgene

expression.  In this approach, a transgene is created in which a cDNA of interest is

located 3’ of a transcriptional and translational stop sequence that is flanked by loxP sites

(Srinivas et al., 2001).  In the absence of Cre, these stop sequences preclude expression of

that transgene.  When a Cre recombinase is expressed, the stop sequence is excised and
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Figure 2.1 Cre-mediated recombination allows intersectional control of transgene

expression. (A) Schematic of loxP-LacZ-stop-loxP constructs.  Black triangles indicate

loxP sites.  In the absence of Cre, this transgene should express LacZ but not GFP.  (B)

Detection of LacZ expression in 3 pairs of dopaminergic neurons in the head of a dat-

1::loxP-LacZ-stop-loxP::GFP animal.  (C) No GFP is detected in the dat-1::loxP-stop-

loxP::GFP animal.  (D) Double transgenic strain carrying dat-1::nCre and tag-168:: loxP-

stop-loxP::GFP strain displays GFP expression in the dopaminergic cells only.  No GFP

was observed in either single strain.  Scale bars, 10 µm.
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the transgene is expressed.  By controlling the site of Cre expression, this system provides

conditional control of transgene activity.

I reasoned that this approach could be used to confine promoter expression to a

single cell or group of cells.  To apply this method to C. elegans, I generated a loxP-stop-

loxP cassette with two loxP sites flanking the bacterial lacZ gene followed by a stop

sequence.  The loxP sites were placed in the antisense orientations to avoid spurious

translational initiation from an internal ATG site on the sense strand.  The lacZ sequence

was included as a spacer to allow DNA bending during recombination.  The stop

sequence consists of two stop codons following the lacZ gene, three repeats of an

AATAAA translational stop sequence (Srinivas et al., 2001), and two repeats of an

mRNA cleavage and polyadenylation site (Kuersten et al., 1997).  This construct was

inserted downstream of the dat-1 promoter, which drives expression in four pairs of

dopaminergic neurons (Carvelli et al., 2004), and upstream of GFP.  Animals carrying

this transgene showed detectable beta-galactosidase activity in the 4 pairs of

dopaminergic neurons, but GFP expression was undetectable (Figure 2.1B-C).  These

data confirm that the transgene was present in these animals and that the synthetic stop

sequence prevents expression of the downstream GFP protein.

I next asked whether Cre was able to excise the stop sequence to yield GFP

expression.  Although Cre has been shown to be active in a variety of heterologous

systems, its activity at the C. elegans cultivation temperature (15-25 degrees Celsius, as

compared to 37 degrees Celsius for E. coli and most vertebrates) was unknown.  Cre

activity in worms was tested with two transgenic strains.  In the first strain, a pan-

neuronal promoter was used to drive expression of the loxP-stop-loxP::GFP construct. In

the second strain, the dat-1 promoter was used to drive expression of nuclear-localized

Cre (nCre), which is more active in many contexts than wild-type Cre (Sato et al., 2000),
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in dopaminergic cells.  GFP expression was not detected in either strain.   The two strains

were crossed, and GFP expression was observed exclusively in the dopaminergic

neurons, indicating that Cre recombinase can be active in somatic cells in C. elegans, and

that its activity can be restricted to cells of interest with suitable promoters.  Taken

together, these data indicate that Cre-lox technology can be used for intersectional control

of gene expression in C. elegans.

 Subsequent experiments have demonstrated limitations of this tool.  First, GFP

expression in the RMG neuron following Cre-mediated recombination is much dimmer

than expected from a multi-copy array (E. Macosko, personal communication).  This may

reflect successive recombination events between loxP sites within the multicopy array

that reduce transgene copy number.  Second, many C. elegans researchers use

polycistronic transgenes with cDNAs separated by SL2 splice acceptor sites, which allow

splicing of a single pre-mRNA to separate mRNAs.  When a polycistronic transgene

containing an SL2 followed by GFP is placed downstream of the loxP-stop-loxP

sequence, weak GFP expression was observed in the absence of Cre (E. Macosko,

personal communication).  These data suggest that the transcriptional stop sequence

permits some readthrough transription, and that the lack of GFP expression observed in

earlier experiments is due to the translational stop sequence.  Future conditional

expression of SL2 vectors or RNAi transgenes may require development of improved

transcriptional stop sequences may be needed.

Split GFP reconstitutes in the extracellular space

To label synapses, or more generally to label adjacent cells, I used complementary

fragments of GFP tethered to plasma membrane carrier proteins to detect the proximity of

two cell membranes (Figure 2.2A).  The individually non-fluorescent split GFP
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Figure 2.2. GRASP strategy and demonstration of extracellular GFP reconstitution in

vitro and in vivo.

(A) Schematic diagram of GRASP with (left) delocalized CD4 tethers, (center)

presynaptically localized PTP-3A and a delocalized CD4 tether, and (right) pre- and post-

synaptically localized NLG-1 tethers.  Asterisk symbolizes presynaptic site; arrowhead,

postsynaptic site.

(B-G) Extracellular GFP reconstitution in culture. Three cells express mCherry and

CD4::spGFP11 and one cell expresses nuclear CFP and CD4::spGFP1-10. (B) Schematic

diagram. (C) Differential interference contrast microscop.y (D) mCherr.y (E) nuclear

CFP. (F) GRASP GFP signal. (G) Merge.  Body wall muscle cells were labeled using the

myo-3 promoter.

(H-L) Extracellular GFP reconstitution in vivo.  (H) Schematic drawing of two rows of

dorsal body wall muscles. Medial muscle cells express mCherry and CD4::spGFP11, and

lateral muscle cells express nuclear CFP and CD4::spGFP1-10.  (I) mCherry. (J) nuclear

CFP. (K) GRASP GFP signal; yellow arrowhead marks CFP bleed-through. (L) Merge.

Medial dorsal body wall muscle cells were labeled using the ace-4 promoter, and lateral

body wall muscle cells using the him-4 promoter.  Scale bars are 5 µm in C-G, 10 µm in

I-L.
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fragments assemble into a fluorescent form only when the membranes are sufficiently

close to permit carrier proteins to bridge the intercellular gap.  This approach is

conceptually similar to split-GFP methods for determining intracellular protein-protein

interactions in living cells (Zhang et al., 2004), but modifications were necessary for

extracellular GFP assembly.  Most split GFP proteins used for intracellular assembly

require exogenous dimerization domains to fold, and indeed that is the basis of their

usefulness as protein interaction monitors (Zhang et al., 2004).  In membrane proteins,

however, unfolded protein domains activate quality-control pathways in the endoplasmic

reticulum and therefore destabilize the protein before it reaches the cell surface.  A split-

GFP system that addresses this concern has been developed and applied in cells and cell

lysates (Cabantous et al., 2005).  One fragment of the split GFP contains the first 214

residues of the exceptionally stable, fast-folding “superfolder” GFP protein (Pedelacq et

al., 2006), further evolved to be stable as a protein fragment.  This fragment includes ten

of the eleven strands of the beta-barrel structure of GFP and will be called spGFP1-10.

The second split-GFP fragment consists of just 16 residues, 215-230, which make up the

11th strand of the GFP beta-barrel.  This second fragment, spGFP11, acts as a small

protein tag that can be inserted into many different proteins without affecting their

solubility (Cabantous et al., 2005).  Thus each of these fragments should be soluble,

nonfluorescent, and relatively inert in the absence of its complementary fragment.

Moreover, superfolder GFP crystallizes as a monomer, suggesting that it should not serve

as a nucleation site for further protein aggregation (Pedelacq et al., 2006).

 For GRASP to act as a transmembrane proximity detector, both fragments should

be tethered to the plasma membranes of the test cells.  As a potentially inert tether
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protein, I began with the human T cell protein CD4, a structurally characterized protein

whose natural extracellular ligand, the MHC class II protein, is not present in C. elegans.

To minimize intracellular interactions, cytosolic domains of CD4 that interact with

signaling molecules were deleted, leaving a seven amino acid cytosolic tail; the

extracellular domain was also truncated to include only one or two of its four

immunoglobulin domains. spGFP1-10 and spGFP11 were separately inserted into

extracellular loop regions defined by the crystal structure of CD4 (Ryu et al., 1990), with

GFP11 followed by a glycine-serine linker (Figure 2.2A).  Neither of these CD4::spGFP

fragments resulted in detectable GFP fluorescence when individually expressed in C.

elegans neurons or muscle (Figure 2.2).

As a stringent test for the extracellular assembly of the tethered split-GFP

proteins, cultured cells expressing complementary CD4::spGFP fragments were mixed in

vitro.  Two different transgenic C. elegans strains were generated; one strain expressed

CD4::spGFP1-10 and a nuclear CFP protein under the muscle-specific myo-3 promoter,

and the second strain expressed CD4::spGFP11 and a soluble mCherry protein under the

myo-3 promoter.  Primary myocytes and neurons from both strains were isolated after

dissociation of embryos, mixed together, and cultivated overnight (Christensen et al.,

2002).  GFP fluorescence was undetectable in myocytes from either transgenic strain,

although the mCherry and nuclear CFP were readily detectable, but strong GFP

fluorescence was observed at the interface of myocytes that expressed mCherry and

myocytes that expressed nuclear CFP (Figure 2.2B-G).  This experiment established that

the CD4-tethered spGFP fragments were able to associate, fold, and fluoresce in the

extracellular space.
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To determine whether tethered CD4::spGFP molecules could assemble at

extracellular sites in vivo, complementing fragments were expressed in nonoverlapping

but adjacent sets of body wall muscle cells.  In all CD4::spGFP in vivo GRASP

experiments, the two spGFP fragments were individually injected into different strains,

along with mCherry or nuclear CFP markers for the cells of interest, and the single strains

were examined to ensure that they did not produce detectable GFP fluorescence.  The

transgenic strains were then crossed together to generate strains bearing both spGFP

transgenes, which were examined for GFP fluorescence.  This double-transgenic

approach was used because the DNA fragments in a single transgenic array sometimes

recombine with each other (Mello and Fire, 1995), and recombination or interactions

between promoters in a single transgenic array had the potential to generate spurious GFP

fluorescence.  C. elegans body wall muscle is arranged in four quadrants, with each

quadrant consisting of two interdigitated rows of medial and lateral myocytes.  The him-4

promoter is expressed only in lateral myocytes, while the ace-4 promoter is expressed

only in dorsal medial myocytes (Combes et al., 2003; Vogel and Hedgecock, 2001).

Differential expression of CD4::spGFP fragments from the him-4 or ace-4 promoters

would be predicted to allow GFP assembly only in the dorsal quadrants, at the contacts

between the lateral and medial muscle cells.  Indeed, in animals expressing both ace-

4::CD4::spGFP1-10 and him-4::CD4::spGFP11, GFP fluorescence appeared at the

junctions of dorsal medial and lateral muscle cells (Figure 2.2H-L).  As observed in

culture, the GRASP GFP signal in vivo was restricted to sites of cell contact, suggesting

that the membrane tethers were intact.
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The ace-4 promoter is strongly expressed in L1 larvae, and downregulated in

adults (Combes et al., 2003).  The muscle cell GRASP GFP signal followed a similar

time course, with a strong larval signal that disappeared in adult animals.  Although GFP

assembly is thought to be irreversible once it occurs (Kerppola, 2006), this observation

suggests that the normal turnover of the CD4 tether protein can disrupt the refolded GFP

or release it from cells.  Weak GFP signals were sometimes observed in internal vesicles,

suggesting the internalization of the refolded proteins.

GRASP can label synapses in wild-type animals

To generate markers for synapses, at least one of the two spGFP tether proteins

should be localized to synaptic regions.  The best-characterized presynaptic

transmembrane protein in C. elegans is PTP-3A, a member of the LAR/receptor tyrosine

phosphatase family with extracellular Ig repeats and Fibronectin type III repeats (Ackley

et al., 2005).  PTP-3A and related proteins affect synaptic development and morphology

in C. elegans, Drosophila, and vertebrates (Ackley et al., 2005; Dunah et al., 2005;

Kaufmann et al., 2002).  C. elegans PTP-3A is expressed in many neuronal cell types,

and in motor neurons is tightly localized to presynaptic active zones through interactions

with the extracellular matrix component nidogen and the active zone protein SYD-

2/liprin-alpha (Ackley et al., 2005).  PTP-3A::spGFP was generated by inserting the

small spGFP11 tag immediately after an artificial signal peptide followed by full-length

PTP-3A (Figure 2.2A).  In GRASP experiments, PTP-3A in presynaptic neurons was

paired with the delocalized CD4::spGFP1-10 tether on postsynaptic partners.
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Another potential way to visualize specific synapses between two neurons is to

target both GRASP carriers to pre- and postsynaptic sites.  To construct such a marker,

Miri VanHoven and Kang Shen searched for transmembrane molecules that are targeted

to synapses.  In the vertebrate central nervous system, neuroligins are preferentially

localized to postsynaptic sites, where they interact with presynaptic neurexins to affect

synaptic maturation and function (Craig and Kang, 2007; Varoqueaux et al., 2006).  C.

elegans has a single neuroligin homolog, C40C9.5 (nlg-1), that is widely expressed in the

nervous systems (www.wormbase.org).  A full-length NLG-1 cDNA was tagged with

intact YFP and expressed in different neuronal cell types.  Consistent with vertebrate

findings, bright punctate staining was observed in dendritic (postsynaptic) regions

(Figure 2.3).  Surprisingly, clear punctate staining was also observed in presynaptic

regions of each neuronal type.  For example, in the DA9 motor neuron, bright NLG-

1::YFP puncta were present in the ventral postsynaptic domain and dimmer puncta were

present in the dorsal presynaptic region (Figure 2.3A-B).  Puncta were excluded from the

synapse-poor region between the cell body and dorsal presynaptic region, and from the

anterior asynaptic region of the dorsal process.  To further study the punctate staining in

the presynaptic region, NLG-1::YFP localization was examined in animals expressing the

tagged synaptic vesicle protein mCherry::RAB-3 in DA9.  In the dorsal axon, NLG-

1::YFP puncta partially colocalized with puncta containing mCherry::RAB-3, suggesting

that NLG-1::YFP localization is perisynaptic (Figure 2.3C-E).

Like DA9, AVE interneurons and VA motor neurons have distinct presynaptic

and postsynaptic regions.  AVE interneurons have a dense postsynaptic region in the

nerve ring and a sparse presynaptic region in the ventral nerve cord.  VA motor neurons
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Figure 2.3.  C. elegans neuroligin localizes to both pre- and postsynaptic regions of

neurons.

 (A, B) NLG-1::YFP localizes to pre- and postsynaptic regions of DA9 motor neurons,

but is more prominent in the postsynaptic region.

(C-E) NLG-1::YFP colocalizes with the synaptic vesicle marker mCherry::RAB-3 in

DA9. (C) NLG-1::YFP. (D) mCherry::RAB-3. (E) Merge. Yellow arrowheads indicate

colocalizing puncta, white arrows indicate RAB-3-only puncta.  In A-E, DA9 expression

was directed by the mig-13 promoter.

(F, G) NLG-1 localizes to pre- and postsynaptic regions of AVE interneurons, labeled

using the opt-3 promoter.  P, Pharynx.

(H, I) NLG-1 localizes to pre- and postsynaptic regions of VA motor neurons, labeled

using the unc-4 promoter.

Known synaptic domains (White et al., 1986) are indicated in schematic diagrams (A,

F, H).  Anterior is at left in all panels.  Scale bars are 10 µm.
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have cell bodies in the ventral nerve cord and extend short dendrites posteriorly and

longer axons anteriorly.  NLG-1::YFP was present in both presynaptic and postsynaptic

regions of each of these neuronal classes, but absent from asynaptic zones of the

processes (Figure 2.3F-I).  NLG-1 thus has the potential to label all synapses made by a

single cell, both at presynaptic and at postsynaptic sites.

The activities of three different GRASP pairs – CD4:CD4, PTP-3A:CD4, and

NLG-1:NLG-1 – were compared in a common set of synaptic partners.  The AVA

command neurons of C. elegans form synapses and gap junctions with VA and DA motor

neurons along the entire length of the ventral nerve cord (Figure 2.4A-C) (White et al.,

1976; White et al., 1986).  One member of a GRASP pair was expressed in AVA neurons

under either the rig-3 promoter or the flp-18 promoter, which are unique to AVA neurons

in the ventral nerve cord (www.wormbase.org), and the other GRASP partner was

expressed in VA and DA neurons using the unc-4 promoter, which is limited to VA, DA,

and VC motor neurons in the ventral nerve cord (Lickteig et al., 2001).

When AVA or VA/DA neurons were labeled with the complementary CD4:CD4

GRASP pair, GFP fluorescence was observed along the entire ventral nerve cord (Figure

2.4D-F).  Labeling appeared uniform along most of the ventral cord, suggesting that the

signal resulted from general proximity of axons and not from synapses or gap junctions,

which should appear more punctate.  No GFP fluorescence was detected with the

individual AVA or VA/DA spGFP transgenes.

When the PTP-3A:CD4 GRASP pair or the NLG-1:NLG-1 GRASP pair  (M.

VanHoven and K. Shen) were used to label AVA and VA/DA neurons, discrete puncta of

GFP fluorescence were visible along the mCherry-labeled VA/DA axons, in contrast with
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Figure 2.4. GRASP labels neuronal contact sites and synapses in vivo.

(A) Schematic diagram of AVA neuron and VA and DA motor neurons. (B) mCherry-

labeled VA neuron. (C) mCherry-labeled AVA neuron.

(D-F) CD4 GRASP smoothly labels AVA-to-VA/DA axon contacts. AVA expresses

CD4::spGFP11, VAs and DAs express CD4::spGFP1-10 and mCherry. (D) mCherry. (E)

GRASP GFP signal. (F) Merge.

(G-I) PTP-3A:CD4 GRASP labels punctate AVA-to-VA/DA synaptic contacts. AVA

expresses PTP-3A::spGFP11, VAs and DAs express CD4::spGFP1-10 and mCherry (G)

mCherry. (H) GRASP GFP signal. (I) Merge.

(J-L) NLG-1 GRASP requires both spGFP fragments. (J) NLG-1::spGFP1-10 expressed

in AVA. (K) NLG-1::spGFP11 expressed in VA and DA. (L) Combined expression of

NLG-1::spGFP1-10 in AVA and NLG-1::spGFP11 in VA and DA.  Arrowheads flank

GRASP GFP puncta.

(M-N) NLG-1 GRASP in a mosaic animal. (M) mCherry-labeled VA axons and cell

bodies. (N) GRASP GFP signal.  Anterior VA and DA neurons lacking NLG-

1::spGFP11 are devoid of GRASP signals (white arrows), in contrast to posterior VA

and DA neurons expressing NLG-1::spGFP11 (yellow arrowheads).

(O-Q) NLG-1 GRASP colocalizes with synaptic markers. (O) NLG-1 GRASP between

AVA and VA and DA neurons. (P) Presynaptic mCherry::RAB-3 marker in AVA. (Q)

Merge. Yellow arrowheads indicate colocalizing puncta, white arrows indicate RAB-3-

only puncta.  AVA was labeled using rig-3 or flp-18 promoters, VA and DA using the

unc-4 promoter.  Anterior is at top center in C and at left in all other panels.
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the uniform fluorescence seen with CD4:CD4 GRASP (Figure 2.4G-L).  The GRASP

signals appeared as clusters of ~10 puncta separated by gaps, as expected if a single

cluster represents AVA connections with one motor neuron (White et al., 1976).  Thus,

synaptic localization of either one or both spGFP carriers can localize the reconstituted

GFP signal to specialized membrane domains.

To confirm that GRASP signals were at synapses, and to distinguish between the

chemical synapses and the gap junctions made between AVA and VA/DA neurons, a

labeled RAB-3 synaptic vesicle protein was expressed in AVA neurons together with the

NLG-1 GRASP partner.  Most NLG-1 GRASP signals colocalized with RAB-3::mCherry

puncta, suggesting that the GRASP signal corresponds to chemical synapses and not gap

junctions (Figure 2.4M-O).  However, some AVA RAB-3::mCherry puncta were not

associated with NLG-1 GRASP signals, consistent with the fact that AVA makes

synapses onto other neurons in the ventral nerve cord that do not express unc-4.

GRASP detects synaptic specificity mutants

AVA-to-VA synapses have been the subject of extensive genetic studies.  A

paired-type homeodomain protein, UNC-4, and a Groucho corepressor, UNC-37, are

required in VA2-VA10 neurons to specify the correct pattern of presynaptic input from

AVA neurons (White et al., 1992; Miller et al., 1992; Pflugrad et al., 1997).  Other

properties of VA neurons, including their morphologies, ability to express unc-4, axon

guidance, and fasciculation are not affected by unc-4 and unc-37 mutations, nor are

synapses from AVA onto the DA neurons affected.  In the posterior C. elegans nerve

cord, synapses from AVA to VA10 are localized between the VA10 cell body and the
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DA7 cell body (Figure 2.5A-C)(White et al., 1976)(E. Chen, D. Hall, and D. Chklovskii,

personal communication).  The majority of synapses between AVA and unc-4-expressing

neurons in this small region should be from AVA onto VA10 neurons.  A small cluster of

NLG-1 GRASP GFP signals was reliably present between VA10 and DA7 in wild-type

animals, but was systematically lost in unc-4 and unc-37 mutants, consistent with the loss

of AVA-to-VA synapses (M. VanHoven and K. Shen, Figure 2.5).  A nearby cluster of

GFP puncta behind the VA11 cell body was intact in mutants, as expected based on EM

data showing that the unc-4 mutation spares synapses between AVA and VA11 neurons

(Figure 2.5C-G).  These results indicate that GRASP labeling can be used to visualize

differences in synaptic connectivity in the ventral nerve cord of wild-type and mutant

animals.

A different set of genetically characterized synapses, those associated with the

egg-laying motor neuron HSN, was analyzed using PTP-3A: CD4 GRASP in

collaboration with Andres Bendesky.  HSN forms synapses onto vulval muscles and VC4

and VC5 neurons in the middle of the body near the vulval opening (Figure 2.6A)(White

et al., 1986).  To examine HSN synapses onto muscles, the tph-1 promoter was used to

express PTP-3A::spGFP11 in HSN, and the myo-3 promoter was used to express

CD4::spGFP1-10 in vulval muscles and body wall muscles.  Discrete GFP puncta were

observed on HSN branches near the vulva, where HSNs synapse onto vulval muscles

(Figure 2.6B-E).  Although body wall muscles lie near HSN in the ventral nerve cord,

HSN does not synapse onto them and no GFP signals were observed there (Figure 2.6B-

E).
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Figure 2.5. NLG-1 GRASP reveals synaptic defects in unc-4 and unc-37 mutants. (A)

mCherry-labeled VA and DA neurons.  (B) Schematic diagram of posterior VA and DA

neurons shown in (A). (C) AVA-to-VA/DA NLG-1 GRASP of the animal in (A),

showing GFP puncta at sites of AVA-to-VA/DA synapses. (D-G) unc-4 and unc-37

mutations disrupt AVA to VA10 synapses but not AVA to VA11 synapses.  (D)

Schematic diagram.  (E,F) NLG-1 GRASP of unc-4 (E) and unc-37 (F) animals. (G)

Quantification of GFP fluorescent puncta, as shown in C,E,F.  Scale bars are 10 µm.
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Figure 2.6.  PTP-3A:CD4 GRASP identifies synaptic defects in syg-1 mutants.

 (A-I) PTP-3A:CD4 GRASP between HSN and muscles. HSN expresses PTP-

3A::spGFP11 and mCherry, and muscles express CD4::spGFP1-10. (A) Schematic

diagram of positions of HSN neuron, vulval muscles (VM), VC neurons, select body

wall muscle (BWM), and normal and ectopic synapses.  (B-E) PTP-3A:CD4 GRASP in

wild-type animal. (B) mCherry-labeled HSN axon. (C) GRASP GFP signal. (D) Merge.

(E) Schematic diagram.  White arrows mark GRASP-labeled synapses. Asterisks

indicate vulval autofluorescence. (F-I) PTP-3A:CD4 GRASP in syg-1(ky652) mutant

animal (F) mCherry-labeled HSN axon. (G) GRASP GFP signal. (H) Merge (I).

Schematic diagram.  Yellow arrowheads mark GRASP-labeled ectopic synapses.  (J)

Quantification of GRASP signals in the anterior HSN axon (dotted box in A) (n=11-12,

P < 0.01, unpaired t-test).  (K) Quantification of GRASP signal in the segment of the

HSN axon near the vulva (dashed box in A)(n=11-12, P<0.01, unpaired t-test).  HSN

was labeled using the tph-1 promoter, vulval and body wall muscles using the myo-3

promoter.  Anterior is at left and ventral is at bottom in all images. Scale bars are 10 µm.
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The synaptic specificity of HSN is disrupted by mutations in the genes syg-1 and

syg-2, which encode transmembrane proteins that are expressed in HSN and in guidepost

cells that localize HSN synapse formation, respectively (Shen and Bargmann, 2003; Shen

et al., 2004).  In syg-1 and syg-2 mutants there is a partial loss of HSN synapses near the

vulva and the ectopic appearance of anterior synapses onto body wall muscle.  Both

missing and ectopic synapses were reflected in the pattern of fluorescence using PTP-

3A:CD4 GRASP in syg-1 and syg-2 mutants (Figure 2.6F-I).  Quantification of signal

intensity demonstrated a six-fold increase in anterior GRASP fluorescence and a four-

fold decrease in vulval GRASP fluorescence in the syg-1 strain compared to wild type

(Figure 2.6 J-K).  These results suggest that GRASP accurately recapitulates the

underlying synaptic connectivity in wild-type and mutant HSN neurons.

GRASP detects the subcellular positions of specific synapses

HSN synapses onto VC neurons were visualized by pairing the presynaptic PTP-

3A partner in HSN with unc-4::CD4::spGFP1-10, which labels VC, VA, and DA

neurons.  VC axons defasciculate dorsally from the ventral nerve cord near the vulva, so

unc-4 signals in this loop are exclusively from VC and not from VA or DA (Figure 2.6A).

As expected from HSN connectivity, GRASP GFP fluorescence was observed only in

this loop near the vulva, although HSN runs near many unc-4-expressing neurons in the

ventral nerve cord.  To my surprise, the GRASP pattern was different from that observed

with the vulval muscle myo-3::CD4::spGFP1-10 transgene (Figure 2.7A-F).  Whereas

HSN-to-vulval-muscle fluorescence was strongest at the two branch points or branches of

the HSN axon that flank the vulval opening, HSN-to-VC fluorescence was concentrated
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Figure 2.7.  GRASP identifies subcellular locations of specific synapses

(A-C) PTP-3A:CD4 GRASP between HSN expressing PTP-3A::spGFP11 and mCherry,

and vulval muscles expressing CD4::spGFP1-10.  (A) mCherry-labeled HSN axon. (B)

GRASP GFP signal. (C) Merge. (D-F) PTP-3A:CD4 GRASP between HSN expressing

PTP-3A::spGFP11 and mCherry and VC neurons expressing CD4::spGFP1-10. (D)

mCherry-labeled HSN axon. (E) GRASP GFP signal. (F) Merge. White arrows mark

GRASP signal, asterisk indicates vulval autofluorescence.

(G) Location and postsynaptic partner of individual HSN synapses from a wild-type L4

animal, reconstructed from 2000 serial electron micrograph sections (Shen et al., 2004).

The vulva is approximately 10 µm long.

(H-K) NLG-1 GRASP signals at synapses between AIY and RIA interneurons (H, I) and

AIY interneurons and AFD sensory neurons (J, K).  Schematic diagrams in H and J

show cell positions and locations of specific synapses (White et al., 1986). AIY

expresses NLG-1::spGFP1-10, and RIA (I) or AFD (K) express NLG-1::spGFP11.  AIY

was labeled using the ttx-3 promoter, RIA using the glr-3 promoter, and AFD using the

gcy-8 promoter.  Scale bars are 10 µm. Anterior is at left and ventral is at bottom in all

images.

46



HSN to VM

HSN to VC

*

*

*

*

HSN::mCherry HSN::mCherry

HSN::PTP-3A::spGFP11, 
muscle::CD4-2::spGFP1-10

HSN::PTP-3A::spGFP11, 
VC::CD4-2::spGFP1-10

Overlay Overlay

B

A

C

D

E

F

G

PosteriorAIY::nlg-1::spGFP1-10, 
RIA::nlg-1::spGFP11

AIY::nlg-1::spGFP1-10, 
AFD::nlg-1::spGFP11H JI K

Anterior border of vulva 1 µm

AIY AIY

RIA
AFD

AIY to RIA synapses

AFD to AIY synapses

47

Figure 2.7



in the central axon region between the branches.  Previous electron microscopic studies

of wild-type HSN synapses were consistent with muscle synapses flanking central VC

synapses, but only one animal had been reported and the effect was not absolute (White

et al., 1986).  Richard Fetter therefore examined 2000 serial-section electron micrographs

of a second wild-type HSN, scoring the location of 20 synapses onto vulval muscles and

VC neurons separately (Figure 2.7G).  This analysis confirmed that HSN-to-VC synapses

are centrally located around the vulva and are flanked by HSN-to-vulval muscle

synapses.

This unexpected detail of HSN connectivity offers a glimpse of the potential of

GRASP.  Previous experiments in which HSN synapses were labeled with the synaptic

vesicle protein SNB-1::GFP were sufficient to show the aberrant anterior synapses and,

to a lesser extent, the loss of vulval synapses in syg-1 and syg-2 mutants (Shen and

Bargmann, 2003; Shen et al., 2004).  Electron microscopy was needed to detect the

change in postsynaptic partners in syg-1 and syg-2 mutants, but using GRASP, it was

possible to infer the change in partner choice by light microscopy.  In addition, the fine

structure of wild-type HSN synapse localization onto vulval muscles and VCs had been

overlooked, but was revealed by GRASP.

To confirm that GRASP could differentially label distinct subsets of synapses

made on one process, two classes of AIY interneuron synapses were labeled with NLG-1

GRASP by Miri VanHoven and Kang Shen.  In the nerve ring, the AIY interneuron sends

synapses to the RIA interneuron in a small ventral region of its axon, and receives

synapses from the AFD sensory neuron in the dorsal part of its axon (White et al., 1986).

To examine these synapses, NLG-1::spGFP1-10 was expressed in AIY neurons using the
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ttx-3 promoter, and NLG-1::spGFP11 was expressed either in the RIA neuron using the

glr-3 promoter, or in the AFD neuron using the gcy-8 promoter (Figure 2.7H-K).  NLG-1

GRASP exclusively labeled the regions where synapses were expected based on EM

reconstruction of AIY (White et al., 1986).  Thus NLG-1 GRASP between AIY and RIA

labeled only the ventral region of the AIY axon, whereas NLG-1 GRASP between AIY

and AFD labeled only the dorsal region.  The localized GRASP signal between AIY and

RIA is distinct from the signal with a generic presynaptic marker for AIY; GFP::RAB-3

labels all AIY synapses, and therefore forms puncta along the entire AIY process (Colon-

Ramos et al., 2007).

Discussion:

GRASP has the potential to greatly increase the ease of synaptic mapping.  In

these studies, I used a genetically accessible system with a well-defined synaptic map to

establish the feasibility and accuracy of the method, but the greatest possibilities lie in

more complex systems.  Drosophila is the most straightforward system for extending this

approach, because many promoter elements and GAL4 lines are available to direct GFP

fragments to known cell types (Armstrong et al., 1995).  Drosophila also provides one of

the greatest opportunities for anatomical discovery, because the anatomy of the major

brain centers is highly complex, with many branched processes packed into small

regions, and CNS connectivity is virtually unknown.  The application of this system to

the optically transparent zebrafish should also be straightforward.

In vertebrates, the existence of large-scale projects for gene expression analysis

should provide promoter elements to drive GRASP in many specific cell types (Lein et
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al., 2007).  Long-range connectivity in the vertebrate CNS can be analyzed with lectins

and viruses, but local connectivity might be better defined using GRASP and promoters

for individual excitatory or inhibitory cell types.  Although detecting small GFP signals

in vertebrate brains may prove optically challenging, GRASP should be immediately

applicable in dissociated cells or slice cultures.  GRASP fragments should act dominantly

and noninvasively upon viral delivery or transfection, methods that are established in

many experimental animals.  Therefore, GRASP should be useful to study connectivity in

animals that are not accessible to traditional genetic approaches.

Any transgene has the potential to be disruptive, and with GRASP it is possible

that the trans-cellular association of GFP could promote cell adhesion.  However, the

ability of GRASP to detect normal and mutant synapses in C. elegans suggests that it

reports existing intercellular connections, rather than creating new ones.

Even in C. elegans, where the synaptic map is known, GRASP should provide

new information about synaptic variation, development, and remodeling.  The molecular

basis of synaptic specificity in HSN was already accessible to genetic studies because

HSN makes synapses in a precise and anatomically simple region, but most C. elegans

synapses are in more complex environments.  In the nerve ring, a single neuron often

forms groups of closely clustered synapses with multiple target cells in a small area.

These connections represent only ~15% of the dozens of cells that one neuron contacts

(White et al., 1986).  GRASP-based genetic screens are an attractive future approach to

discovering molecules that promote or prevent synapse formation in these complex

environments.
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Although my primary interest is in the nervous system, the ability to identify sites

of muscle-muscle contact shows that GRASP could be used to probe cell contacts in

many tissues.  Cell migration, organogenesis, and other physiological processes require

cells to form specialized contacts with appropriate target cells.  Light microscopy can

reveal cell adjacency, but the closer association required for GFP assembly may help

identify bona fide recognition events.  As shown here for synaptic labeling, the use of

localized markers allows the selective visualization of specialized attachments and

subcellular domains.  I hope that variations of GRASP will be useful to probe many

aspects of cell recognition.
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Chapter 3 

 

Identification and characterization of ky957, a mutation that disrupts ASH-to-AVA 

GRASP labeling  

 

Summary  

 To probe mechanisms of synaptic specificity, I analyzed the formation of 

synapses between the ASH sensory neuron and AVA interneuron in the GRASP 

transgenic strain kyIs501.  kyIs501 was generated and characterized in wild-type animals, 

and found to provide robust GRASP labeling of ASH-to-AVA synapses consistent with 

predictions from serial section electron microscopy.  A genetic screen was used to seek 

factors that govern synaptic target identification.  A semi-clonal screen identified a 

recessive mutant, ky957, with a partially penetrant loss of ASH-to-AVA GRASP labeling 

in the absence of other obvious defects.  ky957 initially mapped to regions on both 

chromosomes IV and V, but subsequent analysis suggested a location on chromosome V 

with a possible modifier polymorphism on chromosome IV.  Transgene rescue assays 

identified several genomic regions capable of suppressing ky957.  However, both targeted 

sequencing of these fragments and whole-genome sequencing of ky957 failed to identify 

a causative mutation.  Whole-genome sequencing did identify the insertion site of 

kyIs501 within the interval to which ky957 mapped.  Subsequent analysis suggests that 
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ky957 is a mutation that affects the multicopy integrated transgene itself, reducing its 

associated GRASP signal. 

 

Introduction 

C. elegans, with invariant cell lineage and a known synaptic wiring diagram, is an 

ideal system in which to apply the GRASP method.  GRASP can reliably detect synaptic 

connectivity in wild-type and mutant animals, and therefore was applied to label synapses 

formed between the ASH sensory neuron and AVA interneuron in the C. elegans central 

nervous system, while all presynaptic sites in ASH were labeled with an additional 

fluorophore, mCherry, fused to the vesicle-associated GTPase RAB-3.  In these animals, 

a forward genetic screen was performed to identify mutations that specifically disrupt 

GRASP labeling of ASH-to-AVA synapses.  Mutagenesis was performed with ethyl 

methanesulfonate (EMS) because of its potency, relative lack of sequence specificity, and 

potential to create hypomorphic alleles.  These features were expected to expedite 

screening and increase representation of genes that are transcribed at low levels or are 

essential or pleiotropic.   

Following mutagenesis, GRASP labeling in F2 progeny of EMS-mutagenized 

animals was monitored in an attempt to identify mutants with altered ASH-to-AVA 

GRASP labeling.  This screen was performed semi-clonally to enrich for mutants with 

reduced growth rates or fecundity.  Several candidate classes of phenotypes could have 

been observed in this screen.  Increased GRASP labeling could occur if ASH and AVA 

formed additional synapses, and the subcellular location of the GRASP labeling could 

shift if positional information for synaptic specificity is altered or if cell morphology 
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changed.  In this screen, which was not performed to saturation, mutants with those 

phenotypes were not isolated.  Instead, mutants were identified in which GRASP labeling 

is reduced or lost, and mCherry::RAB-3 labeling and other means were used to 

characterize candidate causative mechanisms.  Mutations in genes involved in cell 

polarity or synaptogenesis, such as SAD-1, would perturb the synapse of interest and 

other synapses, leading to altered distribution of mCherry::RAB-3 (Crump et al., 2001).  

Axon guidance mutations that prevent the two cells from extending their axons to the 

appropriate sites could be distinguished by altered axonal morphology.  Mutations that 

affect the differentiation of or gene expression in ASH or AVA could be identified 

through analysis of transgenes expressed in those cells.  In this screen, four mutants with 

reduced ASH-to-AVA GRASP labeling were identified and characterized.  One mutant, 

ky957, displayed reduced or absent GRASP labeling yet grossly normal ASH and AVA 

morphology, gene expression, and mCherry::RAB-3 localization, as would be expected 

in a mutant with altered synaptic specificity.  Further characterization revealed that this 

mutation more likely affects GRASP transgene expression rather than synaptic 

specificity.   

 

Results 

 

Generation of kyIs501 

 Candidate neuronal pairs for using GRASP to study synaptic specificity in the 

central nervous system were identified by examining the C. elegans wiring diagram.  The 

ASH sensory neuron forms three or four synapses onto the AVA command interneuron in 
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Figure 3.1. Identification of ASH-to-AVA synapses. (A) Schematic diagram showing an 

en face view of ASH-to-AVA synapses in the nerve ring   AVA is black, ASH is gray, 

and ASH-to-AVA synapses are green.  (B) Schematic diagram showing a sagittal view 

ASH-to-AVA synapses in the nerve ring   AVA is black, ASH is gray, and ASH-to-AVA 

synapses are green. (C) DIC image of the head of a kyIs501 L4 animal.  (D) Presynaptic 

sites in ASH labeled with mCherry::RAB-3.  Arrowheads indicate mCherry::RAB-3 

puncta. (E)  Wild-type ASH-to-AVA synapses labeled with GRASP in kyIs501.  Synaptic 

puncta (arrowheads) are located in the lateral nerve ring.  (F) Merge of C-E.  Arrowheads 

indicate sites of GRASP colocalization with mCherry::RAB-3.  Scale bar, 10 µm. 
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the lateral portion of the nerve ring, proximal to the AVA soma (White et al., 1986; 

Figure 3.1A-B).  The relatively few synapses formed between ASH and AVA in wild-

type animals might facilitate identification of perturbations that disrupt ASH-AVA 

synapse formation, alter the subcellular locations of those synapses, or increase the 

number of ASH-AVA synapses. In addition, sensory stimuli that activate ASH are 

known, and ASH and AVA responses to ASH stimuli have been recorded using 

electrophysiology and genetically encoded calcium indicators that measure intracellular 

calcium levels as a proxy for neuronal activity (Kahn-Kirby et al., 2004, Mellem et al., 

2002).  As synapses are fundamental units of interneuronal communication, the 

opportunity to relate changes in anatomy detected by GRASP to changes in 

neurophysiology was highly attractive.  For these reasons, ASH-to-AVA synapses were 

selected for further investigation.   

 To study the ASH-to-AVA synapses, a suitable GRASP transgenic strain was 

required.  Transgene expression in ASH was driven with the sra-6 promoter, which is 

expressed in ASH and more weakly in ASI and PVQ neurons (Troemel et al., 1995), and 

expression in AVA was driven with the flp-18 promoter, which is expressed in AVA and 

more weakly in the AIY, RIG, and RIM interneurons, and pharyngeal neurons (Rogers et 

al., 2003).  Importantly, although expression driven by these promoters is not confined to 

single cells, both promoters are expressed most strongly in the cells of interest, and none 

of the more weakly expressing cells form synapses with ASH, AVA, or each other. In 

addition to GRASP labeling the ASH-to-AVA synapses, presynapstic regions in ASH 

were labeled with an additional fluorophore, mCherry fused to RAB-3, a small GTPase 

that associates with the readily-releasable pool of synaptic vesicles (Licktieg et al., 2001).  



  

This marker could detect changes in ASH polarity, axon guidance, and overall synapse 

distribution in future studies.  Post-synaptic sites in AVA were not labeled, mainly due to 

the paucity of proteins known to be exclusively postsynaptic in C. elegans and a lack of 

fluorescent proteins that could be distinguished from both GFP and mCherry..  

ASH-AVA GRASP extrachromosomal arrays were generated by injection of 

dilution series of sra-6::mCherry::RAB-3, sra-6::PTP-3A::spGFP11 or sra-6::NLG-

1::spGFP11, and flp-18::nlg-1::spGFP1-10 or flp-18::CD4-2::spGFP1-10.  These 

plasmids were coinjected with ofm-1::dsRed2, a co-transformation marker expressed in 

coelomocytes, and bulk plasmid DNA to facilitate array formation.  Coinjection of 

postsynaptic flp-18::CD4-2::spGFP1-10 with presynaptic sra-6 PTP-3A or NLG-1 

plasmids led to intracellular accumulation of cis-reconstituted spGFP throughout the 

ASH or AVA axons and in perinuclear regions.  This may occur because of 

recombination between plasmids or transactivation across promoters that cause both 

spGFP fragments to be expressed in the same cell; under these circumstances, 

intracellular GFP reconstitution is too bright to permit visualization of the transcellular 

GRASP signal of interest.  Intracellular GFP reconstitution was not observed with the 

postsynaptic NLG-1 GRASP carrier, in agreement with published findings (Feinberg et 

al., 2008).    In several transgenic strains with postsynaptic NLG-1, the GRASP signal 

observed was bright and localized to the lateral nerve ring, consistent with the ASH-to-

AVA synapses determined from serial-section electron microscopy (White et al., 1986).  

As expected, the GRASP puncta co-localized with a subset of the mCherry::RAB-3-

labeled presynaptic sites in the ASH axon.   
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Like most transgenes in C. elegans, the high copy extrachromosomal GRASP 

arrays were subject to mosaic patterns of inheritance and variable expression levels. To 

address these problems, integrated arrays were generated from four extrachromosomal 

arrays displaying GRASP labeling ranging from dim to bright, two with presynaptic PTP-

3A carriers and two with presynaptic NLG-1 carriers, using trimethyl psoralen (TMP) 

mutagenesis.  Twenty integrated strains, several from each parental extrachromosomal 

array, were backcrossed to N2 four times to remove TMP-induced mutations unlinked to 

the transgene.   

The outcrossed integrated strains were assessed for the brightness and specificity 

of the GRASP and mCherry labeling at the L4 stage in animals cultivated at 20 degrees.     

One strain with presynaptic PTP-3A and postsynaptic NLG-1 GRASP carriers, kyIs501, 

displayed the most consistent and bright GRASP labeling together with bright, punctate 

axonal mCherry::RAB-3 (Figure 3.1C-F).  In kyIs501 animals, bilateral GRASP labeling 

was observed in the lateral portion of the nerve ring, the predicted location of the ASH-

to-AVA synapses (Figure 3.1C-F, White et al., 1986).   Occasional animals displayed 

GRASP signal in the ventral portion of the nerve ring.  This may reflect internalized 

GRASP-labeled protein complexes trafficking within the cell, or bona fide synapses that 

occasionally form between ASH and AVA in the ventral nerve ring.  

 

Characterization of kyIs501 in candidate developmental mutants 

As a first-stage characterization of kyIs501, candidate mutants were used to 

identify phenotypes that might be observed in a genetic screen.  Candidates were chosen 

from developmental regulators of cell differentiation, axon guidance, synaptic active zone 
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formation, and synaptic guidepost signals that might affect the formation of ASH-to-

AVA synapses.   

unc-42 encodes a homeodomain transcription factor that regulates the expression 

of multiple genes in both ASH and AVA, among other cells (Baran et al., 1999; Brockie 

et al., 2001).  unc-42 is required for sra-6 expression in ASH but not other cells (Baran et 

al., 1999), and in agreement with these results, ASH-AVA GRASP labeling and ASH 

mCherry::RAB-3 were undetectable in kyIs501;unc-42(e270) animals.  unc-42 is 

believed to have developmental effects and might be required for ASH-to-AVA synapse 

formation, but this effect cannot be detected with kyIs501 because of the defects in ASH 

gene expression.   

kyIs501 was also examined in mutants that alter the cell biology of neurons and 

synapses by disrupting the polarized sorting of factors and the organization of the 

synaptic machinery (Zhen and Jin, 1999; Crump et al., 2001; Hallam et al., 2002).  PTP-

3A is known to interact with one of these factors, syd-2, via its intracellular domain, and 

loss of syd-2 leads to a reduction in synaptic localization of PTP-3A (Ackley et a., 2005).  

In kyIs501;syd-2(ju37) animals, GRASP labeling was slightly dimmer than wild-type but 

detectable, and mCherry::RAB-3 labeling was reduced in some animals.  Similar effects 

were observed in kyIs501;sad-1(ky289) and syd-1(ju82);kyIs501 animals.  These data 

indicate that syd-1, syd-2, and sad-1 are not required for ASH-to-AVA recognition or 

trafficking of PTP-3A and NLG-1 to synapses in ASH and AVA, respectively.   

Several guidance cues and cell-surface molecules regulate the specification of 

synaptic regions; therefore, kyIs501 was examined in these mutants as well.  The axon 

guidance receptor sax-3(ROBO) regulates nerve ring morphogenesis and axon guidance 
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(Zallen et al., 1998), but ASH-AVA GRASP labeling in sax-3(ky123);kyIs501 animals 

was largely intact.  In instances in which GRASP labeling was not detected, this could 

reflect misguidance of the axons of ASH or AVA.  ASH misguidance was observed in 

many of these animals, but the morphology of unlabeled AVA axons could not be 

assessed in these animals.   Interestingly, some animals with ventrally misguided ASH 

axons were GRASP labeled, suggesting that AVA accompanied ASH to form synapses at 

an ectopic site.   

The guidance cues unc-6/Netrin and unc-40/DCC promote axon guidance and can 

provide synaptic guidepost signals (Hedgecock et al., 1990; Colon-Ramos et al. 2007).  

GRASP signals were lost from a few kyIs501;unc-6(ev400) and unc-40(e271);kyIs501 

animals, but most animals were largely normal.  Labeling of AVA axons in these mutants 

could help to determine whether the moderate defects in unc-6, unc-40, and sax-3 arise 

from changes in ASH-to-AVA axon guidance, target selection, or both processes. 

syg-1 and syg-2 guidepost signals specify formation of synapses along a portion 

of the HSNL axon (Shen and Bargmann, 2003; Shen et al., 2004).   GRASP and 

mCherry::RAB-3 labeling in kyIs501;syg-1(ky652) and kyIs501;syg-2(ky671) were 

indistinguishable from those of wild-type animals.  These data indicate that syg-1 and 

syg-2 synaptic guideposts are not required for ASH-to-AVA synapse formation.  

To explore the requirement for synaptic activity in ASH-AVA target recognition, 

kyIs501 was examined in mutants with defects in synaptic transmission. unc-13 encodes a 

factor that docks synaptic vesicles in classical neurotransmitter exocytosis, and unc-

13(e450) hypomorphs are paralyzed (Hammarlund et al 2008).  Nevertheless, ASH-to-

AVA GRASP labeling in unc-13(e450);kyIs501 animals appeared normal, suggesting  
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that classical neurotransmission is not required for ASH-to-AVA synapse formation.  

unc-104 encodes a kinesin required for anterograde traffic of classical synaptic vesicles 

and dense-core vesicles into axons (Hall and Hedgecock, 1991; Zahn et al., 2004).  As 

expected, mCherry::RAB-3 was absent from the axons of unc-104(e1265);kyIs501 

animals,  but GRASP labeling was intact.  With the qualification that unc-13(e450) and 

unc-104(e1265) are hypomorphic alleles that do not completely abrogate 

neurotransmitter release, these results suggest that classical synaptic activity is likely not 

required for the specification of ASH-to-AVA synapses, although other forms of neural 

activity could be involved.  

 

A genetic screen for synaptic specificity mutants identifies ky957 

In principle, GRASP offers a means to identify mutants with altered fine-scale 

synaptic connectivity, so I performed a forward genetic screen to seek molecules that 

regulate ASH-to-AVA synapse formation.  kyIs501 P0 animals were mutagenized with 

ethyl methane sulfonate (EMS) and their F1 progeny screened semi-clonally to increase 

the likelihood of including mutations with low penetrance or reduced viability.  Five 

mutagenized F1 hermaphrodites were placed on a culture plate, allowed to self fertilize, 

and three days later the available L4 F2 (on average, between twenty and fifty) progeny 

were examined under the compound microscope.  Any animals displaying an abnormal 

GRASP phenotype were recovered and their progeny maintained and examined.  

Roughly 2000 F1 animals, or approximately 4000 haploid genomes, were screened.  In a 

screen of this size, there was an 86% probability that a loss of function mutation in a 

given gene was present in an F1.  If an average of four F2s per F1 were scored, there was 

62



  

a ~63% chance that one was homozygous for new mutation; if ten F2s were screened per 

F1, this rose to roughly 90%.  Therefore, if a homozygous mutation in a gene of interest 

causes a 100% penetrant GRASP phenotype, there was a 59-80% chance of identifying 

that mutant in the screen.  If a homozygous mutation in a gene of interest causes a 50% 

penetrant phenotype, there was a 35%-64% chance of identifying that mutant.  ~130 

abnormal animals were picked, of which only four displayed a heritable phenotype.  

These strains were backcrossed to kyIs501 four times to remove background EMS 

mutations.  The mutant alleles from this screen were ky957, ky958, ky959, and ky960.  

ky957 will be discussed below.  ky958 animals display a variable loss of either or both 

GRASP and mCherry::RAB-3 labeling, while ky959 animals display faint GRASP and 

mCherry::RAB-3 labeling.  ky960 animals were subviable and could not be propagated to 

allow characterization.   

 

Characterization of ky957 

After backcrossing, ky957 showed a reproducible abnormal GRASP phenotype in 

the absence of any noticeable mCherry::RAB-3 or ofm-1::dsRed2 defects.  ky957 animals 

have grossly normal growth rate, morphology, fecundity, mating capacity, and 

locomotion.  ky957 is a recessive mutation causing complete loss of GRASP labeling in 

approximately thirty percent of animals and unilateral GRASP labeling in approximately 

forty percent of animals (Fig. 3.2 A-D, I).  Among animals in which GRASP labeling 

was detectable, three broad phenotypic classes were observed (Figure 3.2J).  One fourth 

of the GRASP labeling observed was wild-type in pattern and brightness.  Another fourth 

of the GRASP labeling was confined to a much smaller area than in wild-type animals, 
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Figure 3.2.  ky957 alters GRASP labeling of ASH-to-AVA synapses in kyIs501. (A) DIC 

image of the head of a ky957 kyIs501 L4 animal.  (B) Presynaptic sites in ASH labeled 

with mCherry::RAB-3 are indicated with arrowheads. (C) GRASP-labeled ASH-to-AVA 

synapses are not detected in this animal.  (D) Merge of B-C.  Scale bar, 10 µm. (E) DIC 

image of the head of a ky957 kyIs501 L4 animal.  (F) Presynaptic sites in ASH labeled 

with mCherry::RAB-3 are indicated with arrowheads. (G) Reduced area of ASH-to-AVA 

GRASP labeling (arrowhead) in ky957 kyIs501.  (H) Merge of F-G.  Scale bar, 10 µm. (I) 

Quantification of ASH-to-AVA GRASP labeling phenotypes in ky957 kyIs501 (n=100).  

Labeling was bilateral in 100% of wild-type kyIs501 animals examined. (J) 

Quantification of different forms of ASH-to-AVA GRASP labeling in ky957 kyIs501  

(n=200).  WT, wild-type.  Labeling was 100% wild-type in the kyIs501 animals 

examined. 
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often a single punctum (Fig. 3.4 E-H), and the remaining half of the GRASP labeling was 

faint or barely detectable.  The GRASP phenotype on the two sides of each animal were 

not correlated, and no obvious lateral biases were observed for any of these phenotypes.   

To determine whether ky957 altered ASH or AVA cell fate, like unc-42, ky957 

animals were injected with sra-6::GFP and flp-18::mCherry plasmids.  Bright expression 

of both promoters was seen in ky957 animals, indicating that a large-scale change in cell 

identity had not occurred for either cell.  To determine whether ky957 altered the 

morphology, migration, or axon guidance of ASH or AVA, the ky957 sra-6::GFP and 

ky957 flp-18::mCherry lines were examined under the compound microscope; no 

significant defects were observed.   

 

Mapping ky957 on chromosome IV 

 ky957 was mapped with an approach based on polymorphisms between the 

laboratory strain N2, in which kyIs501 was generated, and the wild strain CB4856 (Davis 

et al., 2005).  During mapping with candidate mutants, kyIs501 heterozygotes and their 

progeny displayed variable silencing of the transgene that was stronger than expected 

from a two-fold reduction in transgene copy number.  To avoid this problem, kyIs501 was 

introgressed and homozygosed in all strains used for mapping, and specifically was 

introgressed into CB4856 for ten successive crosses, after which greater than 99% of the 

DNA unlinked to kyIs501 should be derived from CB4856.  This strain was subsequently 

crossed to kyIs501;ky957 animals, and hermaphrodite F1 cross progeny were allowed to 

self-fertilize to produce recombinant F2 animals.  Due to the partially penetrant nature of 

ky957, F2 animals were assessed in a manner similar to that used in the genetic screen.  
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Individual animals displaying a strong loss of the GRASP phenotype were identified 

under 630x magnification and recovered, and their F3 progeny scored clonally to confirm 

that the isolated F2 was a homozygous mutant.  Genomic DNA was isolated from 30 F2 

mutant animals and 30 non-mutant F2 animals.  DNA from wild-type and mutant animals 

were combined into separate pools, and SNP genotyping was performed to determine 

polymorphisms at which the mutants showed relative enrichment for N2 DNA. This 

analysis found strong enrichment of N2 DNA on the left arm of chromosome IV, and 

weak enrichment on the left arm of chromosome V in ky957.  No linkage was observed to 

other regions of chromosomes, with the important caveat that kyIs501 is located on the 

right arm of chromosome V, and as such the kyIs501;CB4856 animals were homozygous 

for N2 DNA and uninformative for mapping in this region.   

Although linkage to two chromosomes was observed, ky957 was inherited in a 

simple, monoallelic pattern suggesting that a single locus was mutated.  Clonal F2 

progeny of a cross between ky957;kyIs501 and kyIs501 were isolated and phenotypes 

scored in F3 progeny.  6/20 animals were homozygous wild-type, 9/20 were 

heterozygous, and 5/20 were homozygous mutants.  Based on the strong linkage to the 

left arm of chromosome IV, which was strongest between –24 and –17 map units (cM), 

interval mapping was performed by genotyping individual F2 ky957 recombinants at 

these and intervening SNPs.  In this manner, a ~300kb interval over which 49/49 

recombinants carried homozygous N2 DNA was found between 1.3 and 1.6 Mb (Figure 

3.3 A).   

Linkage of ky957 to chromosomes IV and V was tested directly.  Previous 

members of the Bargmann laboratory had found that an olfaction mutant phenotype 
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Figure 3.3.  Interval mapping of ky957 and a potential modifier on chromosomes IV and 

V.  (A) Identification of an interval linked to ky957 in mapping of ky957;kyIs501 with 

kyIs501;CB4856.  Red and blue indicate DNA with CB4856 or N2 SNPs, respectively.  

Brackets indicate the interval of the mutation deduced from the recombinants.   Number 

of animals carrying recombination breakpoints between  two SNPs are shown above each 

class of recombinant.  (B) Identification of an interval linked to ky957 in mapping of 

ky957 kyIs501 with kyIs501.  Red and blue indicate DNA regions with kyIs501 or ky957 

kyIs501 EMS SNPs, respectively.  Brackets indicate the interval deduced from the 

recombinants.   Number of animals carrying recombination breakpoints between  two 

SNPs are shown above each class of recombinant.  (C) Breakpoints in recombinant 

animals identified by genotyping.  140 animals were screened to identify 4 ky957 kyIs501 

F2 animals with recombination breakpoints between 17.9 Mb and 18.7 Mb. 
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identified in N2 could be suppressed in a CB4856 background (M. Tsunozaki, personal 

communication).  Mapping of this mutant with CB4856 showed linkage to two 

chromosomes, one containing the mutation and the other containing the modifier 

polymorphism.  Therefore, it was possible that a modifier polymorphism could explain 

the observed linkage of ky957 to chromosomes IV and V.  Although ky957 had appeared 

most strongly linked to chromosome IV in CB4856 mapping, linkage to the left arm of 

chromosome V was observed, and linkage to the right arm of chromosome V could not 

be ascertained.  To examine these regions further, ky957 was mapped in an N2 

background with dominant visible markers on chromosomes IV and V, dpy-13 and unc-

70, respectively.  ky957 was crossed with kyIs501;dpy-13 and kyIs501;unc-70 animals, F1 

hermaphrodites were allowed to self-fertilize, and individual non-Dpy or non-Unc F2 

progeny were isolated.  The F3 progeny of each F2 were scored to determine whether the 

F2 animal was homozygous ky957, heterozygous, or homozygous wild-type.  dpy-13 is 

located 19 map units from the region identified in CB4856 mapping; if ky957 were 

located 19 map units from dpy-13, 23/35 non-dpy F2s should be homozygous ky957.  

However, only 6/35 non-dpy-13 animals were homozygous ky957, suggesting that ky957 

is not linked to dpy-13 and therefore not located on chromsome IV (χ2 >30, P<.0001).  

By contrast, 26/35 non-unc-70 animals were homozygous ky957, suggesting that ky957 is 

linked to unc-70 on chromosome V at a distance of 14 cM.  To determine on which arm 

of chromosome V ky957 resides, similar experiments were performed with the recessive 

mutants unc-34 and rol-9, located at the far left and right ends of chromosome V, 

respectively.  11/29 non-Unc F2 progeny were homozygous for ky957, while 27/34 non-

Rol F2 progeny were homozygous for ky957.  These data were in good agreement and 



  

assigned ky957 to the right arm of chromosome V between 14 and 18 cM.  Overall, these 

data indicated that ky957 is located on V and that the linkage to chromosome IV seen in 

CB4856 mapping likely reflects a modifier polymorpism.  

A new approach was needed to map ky957 on V.  The right arm of chromosome 

V carries few visible markers that could be used for three-point crosses.  Integrated 

transgenes inhibit recombination when placed in trans with wild-type chromosomes 

(Hammarlund et al., 2005), and the insertion of kyIs501 on this arm of chromosome V 

precluded interval mapping with commonly used polymorphic strains such as CB4856.  

Illumina sequencing (see below) identified many polymorphisms between ky957;kyIs501 

and kyIs501, and I reasoned that these polymorphisms could be could be used for 

mapping, much like single-nucleotide polymorphisms between N2 and CB4856.  This 

approach would permit interval mapping, and recombination suppression due to the 

transgene should not arise between ky957;kyIs501 and kyIs501.  GRASP-defective 

mutant F2 progeny of a ky957;kyIs501 x kyIs501 cross were isolated, and after their 

phenotypes were confirmed in the F3 progeny, animals were genotyped at SNPs along 

chromosome V.  17/17 GRASP-defective isolates were homozygous for the ky957 alleles 

of SNPs on the right arm of V, with a few animals heterozygous for SNPs at the center 

and extreme right end of chromosome V.  This mapping placed ky957 between 13.8 and 

18.7 megabases (Mb) on chromosome V (Figure 3.3B).  To generate additional 

recombinants, F2 animals were cloned blind to phenotype and genotyped at SNPs at 9.8 

and 18.7 Mb.  GRASP phenotypes were scored in the F3 progeny of F2 animals carrying 

recombinant chromosomes.  This analysis identified two animals that were heterozygous 

for ky957 SNPs at 17.1 Mb, one of which was also heterozygous at 17.9 Mb.  Several 
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recombinants were heterozygous at 18.7 Mb.  To confirm these boundaries, recombinants 

between 17.9 and 18.7 Mb were identified as above and phenotyped.   These 

recombinants confirmed that ky957 lies in the ~800kb region between 17.9 and 18.7 Mb 

(Figure 3.3C).  This physical position corresponds to 13.3 to 17.3 cM, a close match to 

the position of 14 to 18 cM deduced from mapping with visible markers. 

 

Transgenic rescue of ky957 

Rescue experiments were undertaken on chromosomes IV and V in the intervals 

identified above.  A few fosmids were available for the intervals on IV and V, but most 

of the injection rescue was attempted with long PCR products.  PCR products 12 

kilobases (kb) in length, each overlapping the next by 2 kb, were amplified from N2 

DNA to cover this interval and injected into ky957 kyIs501 animals in contiguous pools 

spanning 50 kb of genomic sequence.  Each pool overlapped the next pool by 20-30 kb.  

Two overlapping pools out of ten tested from chromosome IV rescued the ky957 GRASP 

mutant phenotype.  These fragments overlapped by ~20 kb, and included two complete 

predicted genes, clp-7 and Y77E11A.3, and a portion of another gene, clp-6 (Figure 

3.4A).   

Surprisingly, sequencing failed to identify any differences in these genes between 

ky957 and kyIs501, but did identify one mutation common to both strains and absent in 

the reference N2 DNA sequence.  The mutation was present in some but not all wild-type 

N2 strains in use in the Bargmann laboratory, suggesting that it arose spontaneously 

during ongoing lab cultivation.  This mutation, now called ky982, affected the coding 

region of the clp-6 gene, which encodes an atypical calpain (Figure 3.4B).  Calpains are 
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Figure 3.4. Suppression of ky957 by transgenic rescue with three non-overlapping 

genomic regions.  (A) Region of chromsome IV containing clp-6 that can suppress ky957 

when overexpressed.  Green line indicates DNA fragment contained in array in E. Image 

from www.wormbase.org. (B) Structure of clp-6 and location of ky982 G to R missense 

mutation at a conserved site.  Alignment to nearest C. elegans homologs in this region, 

clp-3 and clp-4, shown.  Mutated residue marked with gray box and asterisk.  (C) Region 

of chromsome V between 18.168 and 18.20 Mb that can suppress ky957 when 

overexpressed.  Green line indicates DNA fragment contained in array in E. Image from 

www.wormbase.org. (D) Region of chromsome V between 18.168 and 18.20 Mb that can 

suppress ky957 when overexpressed.  Green line indicates DNA fragment contained in 

array in E. Image from www.wormbase.org. (E) Quantification of ASH-to-AVA GRASP 

labeling in ky957 kyIs501 carrying transgenic arrays containing three different genomic 

regions.  Data are summed for three separate extrachromosomal arrays corresponding to 

each region.  Asterisks, significantly different from ky957 (two-tailed P<.001, Fisher’s 

exact test) (F) Quantification of ASH-to-AVA GRASP labeling in kyIs501 and ky957 

kyIs501 animals carrying the clp-6 alleles clp-6(ky982) and clp-6(ok1779). 
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calcium-dependent intracellular proteases that have been implicated in a variety of 

cellular processes in both health and disease.  clp-6(ky982) substitutes arginine for 

glycine in an N-terminal domain believed to be involved in substrate recognition.  The 

CB4856 strain used for mapping does not bear the clp-6(ky982) allele, so this sequence 

variant could lead to chromosome IV linkage in crosses with CB4856 strains but not all 

N2-derived strains, the result observed in the genetic crosses described above. 

Injection of a PCR product containing the wild-type clp-6 gene rescued GRASP 

signals in ky957 kyIs501 mutants.  To determine more rigorously whether expression of 

the ky957 phenotype was affected by clp-6, kyIs501 and ky957 kyIs501 animals were 

crossed to N2 animals carrying wild-type alleles of clp-6 and to animals carrying a 

presumed null allele of clp-6 identified in the C. elegans knockout project, clp-6(ok1779).  

The clp-6 genotype was determined using standard PCR-based genotyping, and ky957 

animals were identified by genotyping with SNPs at 17.9 and 18.7 Mb on chromosome 

V.  Surprisingly, replacement of clp-6(ky982) with either the wild-type clp-6 allele or the 

clp-6(ok1779) allele had no effect on GRASP signals, either in the kyIs501 strain or the 

kyIs501 ky957 strain (Figure 3.4F).  Moreover, crossing clp-6(ky982) back into the N2 

strain did not reconstitute the phenotype (Figure 3.4F).  These results suggest that clp-

6(ky982) is not a modifier polymorphism of ky957, although a modifier polymorphism 

between ky957 kyIs501 may be present on IV.  The rescue observed is best explained as 

second-site suppression of the ky957 GRASP phenotype, and not complementation of the 

mutant with the wild-type allele. 

Similar rescue experiments were conducted using DNA from chromosome V 

between 17.9 and 18.7 Mb.  21 Pools of genomic DNA spanning fifty to sixty kb were 
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injected into ky957 kyIs501 animals, and several transgenic lines were isolated and scored 

for each injection pool.  These injections identified three pools capable of rescuing the 

GRASP phenotype of ky957.  One pool of PCR products located between 18.17 and 

18.20 Mb rescued significantly, but exon sequencing failed to identify any mutations 

(Figure 3.4 C, E).  The other rescuing DNA pools spanned 18.35 to 18.40 Mb and 18.38 

to 18.43 Mb.  Their region of overlap, 18.38 to 18.40 Mb, significantly rescued ky957, as 

did the 12 kb from 18.388 to 18.40 Mb, containing the genes Y51A2B.5, Y51A2B.6, and 

Y51A2B.9 (Figure 3.4 D-E, Figure 3.5 B).  The 22 kb region from 18.378 to 18.40 Mb 

was fully sequenced but no coding or non-coding mutations were found.  

Although no mutations were identified in Y51A2B.5, Y51A2B.6, or Y51A2B.9, 

Illumina sequencing (see below) identified another mutation located in an intron of the 

lipase ZK262.3, approximately twenty kb from Y51A2B.5, Y51A2B.6, and Y51A2B.9 

(Figure 3.5 A).  Fosmids containing ZK262.3 did not rescue the GRASP phenotype of 

ky957, indicating that ky957 is not an allele of ZK262.3 (Figure 3.5 B).  This non-coding 

mutation could have disrupted an enhancer and reduced expression of Y51A2B.5, 

Y51A2B.6, or Y51A2B.9, in which case high-copy transgenes carrying additional copies 

could have restored expression of Y51A2B.5, Y51A2B.6, or Y51A2B.9 to wild-type levels.  

This explanation would predict that expression of one or more of Y51A2B.5, Y51A2B.6, 

and Y51A2B.9 is altered in ky957 mutants.  This possibility was explored by quantitative 

reverse-transcription PCR (qRT-PCR), which failed to identify any significant changes in 

mRNA levels of either gene in ky957 animals (Fig 3.5C).  It is possible that the ZK262.3 

SNP could alter tissue-specific expression of one of these genes in a manner that would 

be below the detection threshold for RT-PCR.  Overall, however, these experiments 
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Figure 3.5.  A SNP in a ZK262.3 intron is likely not the causative mutation in ky957 

kyIs501.  (A) Genomic region containing ZK262.3.  The arrow indicates the location of 

the ZK262.3 SNP.   Green line indicates the nearby minimum genomic DNA fragment 

that suppresses ky957 as a transgene.  Image from www.wormbase.org. (B) 

Quantification of suppression of ky957 by the genomic DNA indicated by the green line 

in A or a fosmid encompassing ZK262.3.  Asterisk, significantly different from ky957 

(two-tailed P<.001, Fisher’s exact test).  n.s., not significantly different from ky957. (C) 

Quantitative RT-PCR expression analysis of genes contained in area indicated by green 

line in A.   
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further suggested that rescue reflected second-site suppression of ky957 by the rescuing 

array rather than complementation of the mutation, a conclusion similar to that obtained 

with clp-6 rescue.   

These results indicate that several genes or genomic regions are able to suppress 

ky957 when introduced as high-copy transgenes.  However, they failed to identify a 

candidate for the underlying mutation in ky957, which would require the combination of 

a biologically significant mutation present in ky957 and a rescuing fragment.  It was 

possible that a mutation was hidden in the corresponding DNA for one of these regions 

but was somehow undetected.  Alternatively, it was possible that although these rescue 

experiments could identify overexpression suppressors of ky957, rescue by 

complementation was not possible.  Rescue could fail due to dosage sensitivity, for 

example, or lack of adequate cis-regulatory regions in the injection pools. 

 

Genome sequencing of ky957;kyIs501 

Whole-genome sequencing was undertaken as an unbiased approach to identify 

mutations in ky957.  In the first experiment, Illumina sequencing was performed to 

generate approximately fourteen-fold coverage of the genome.  Thirty-two bp sequence 

reads were aligned to the reference N2 genome using Maq (mapping and assembly with 

quality) to identify point mutations (Li et al., 2008).  These data were compared to that 

obtained for other mutants generated in the Bargmann laboratory to subtract background 

SNPs present in Bargmann laboratory N2.  New mutations were verified by PCR 

amplification and Sanger sequencing.  This analysis identified eight point mutations on 

chromosome V that changed the coding sequence of predicted genes (Table 3.1), none of 
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which fell between 17.9 and 18.7 Mb.  (These point mutations were the SNPs used in the 

section on genetic mapping, above, to localize ky957 to the 17.9-18.7 Mb interval.) 

Roughly one quarter of EMS mutations can be small deletions, which are not 

detected through the alignment approach.  If small deletions included unique sequences, 

they would likely be reflected as gaps in sequencing coverage.  At 14x coverage, over 

100 such gaps were present between 17.9 and 18.7 Mb, of which three fell within 

predicted coding regions.  PCR amplification and sequencing of ky957 genomic DNA 

determined that the three coverage gaps in coding regions were not deletions.   Therefore, 

Illumina sequencing failed to identify any verified point mutations or deletions between 

17.9 and 18.7 Mb, although ky957 should have been found.  

The standard Maq analysis of Illumina whole-genome sequencing is based on 

alignment of 32 bp reads with a reference genome (Li et al., 2008).  Non-unique 

sequences are aligned randomly, precluding identification of mutations in sequences that 

are duplicated in the genome.  New inserted sequences are not identified at all; they 

simply fall into pool of unaligned sequence reads.  Deletions of one base pair are 

detectable, deletions of more than one base pair are not detected efficiently (Li et al., 

2008).  To provide tools to seek deletions and insertions, paired-end sequencing was 

attempted, in which thirty-two bp reads are generated from both ends of a ~200 bp 

genomic DNA fragment.  The additional information provided by this approach can 

facilitate alignment of ambiguous reads and uncover insertions, deletions, and other 

rearrangments.  The paired-end sequencing failed due to faulty reagents from Illumina, 

but as a result approximately forty-fold single-end coverage was generated.  The 

increased coverage enabled identification of two additional non-coding SNPs between 
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17.9 and 18.7 Mb, one in an intron of ZK262.3 (see above).  The increased coverage also 

drastically reduced the number of gaps in coverage.  To validate the gaps and address the 

possible sequence changes mentioned above, I worked with Patrick McGrath to develop 

an algorithm to improve deletion and insertion identification.  Reads that Maq could not 

align along their full length to the C. elegans genome were examined to determine 

whether portions align with the DNA within the ky957 interval.  Sequence reads spanning 

a newly created junction at the site of a deletion or insertion would be expected to align 

perfectly to reference sequence on one side of the junction, but should not align to the 

reference sequence on the other side.  In this manner, reads spanning a putative junction 

were identified and aligned to create contiguous sequence representing DNA unique to 

ky957.  

When this approach was applied to the ~800 kb ky957 interval, reads meeting 

these criteria could be identified at a single location, 18.35 MB.  The algorithm was able 

to assemble a fifty bp sequence on one end of the gap, reflecting the need for further 

refinement of the parameters.  Detailed analysis found that this sequence corresponded to 

the site of the kyIs501 insertion.  Basic local alignment search tool (BLAST) found that 

22 bp of this sequence corresponded to the genomic sequence at this position on 

chromosome V, while the remaining sequence derived from chromosome I, in the ofm-1 

promoter (Figure 3.6A).  A larger fragment could be amplified from kyIs501 and ky957, 

but not N2, to confirm the predicted junction and identify additional unique flanking 

sequence.  Sequencing of this fragment confirmed the juxtaposition of the ofm-1 

promoter with chromosome V DNA at this site (Figure 3.6B).  These data indicate that 
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Figure 3.6.  Identification of the kyIs501 integration site on chromosome V.  (A) 50 bp 

sequence assembled from Illumina sequence reads.  22 bp derive from chromosome V 

(red), and 28 bp derive from the ofm-1 promoter on chromosome I (blue).  One 

nucleotide (purple) at this junction could not be unambiguously assigned to chromosome 

V or ofm-1.  (B) Sequencing of an extended PCR product that spans the junction of 

chromosome V (red) and the kyIs501 transgene (blue) confirms the identification of the 

insertion site.   
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kyIs501 fell within the interval to which kyIs957 mapped.  No other deletions or 

insertions were found. 

 

Chromosomal rearrangments in ky957 

Illumina sequencing failed to identify mutations between 17.9 and 18.7 Mb on 

chromosome V.   This could reflect a rearrangement on chromosome V caused by TMP 

or EMS mutagenesis.  Chromosomal rearrangments such as inversions or translocations 

could have moved the DNA carrying one or both of the mapping SNPs at 17.9 and 18.7 

Mb, or could have inserted a segment of DNA between these SNPs (Yandell et al., 1991; 

Herman et al., 1976).  If this were true, one of the SNPs identified on Chromosome V 

that fall outside of the ~800 kb ky957 interval with in the reference genome could be 

translocated between these SNPs in ky957.  In this way, one of these SNPs could be the 

causative mutation.  This possibility was first explored through rescue experiments.  

Fosmids and long PCR products spanning coding regions and several kb of flanking cis-

regulatory sequence for each of the coding SNPs on V were injected into ky957 kyIs501 

animals, but no rescue was observed (Table 3.1).  Although these results suggest that 

ky957 is not one of the identified coding SNPs on chromosome V, it did not exclude the 

possibility that an unidentified mutation fell within a rearrangment. 

The possibility of a rearrangement on chromosome V was also consistent with the 

relatively low number of silent EMS-induced mutations near the predicted site of ky957.  

EMS mutagenesis of C. elegans by the standard protocol has been shown to induce an 

average of one point mutation per twenty to forty kilobases in previous whole-genome 

sequencing studies.  Although ky957 was backcrossed to kyIs501 four times to remove 
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most unlinked mutations, recombination in C. elegans generates only one crossover per 

chromosome pair per meiosis.  Therefore, the area tightly linked to ky957 was unlikely to 

have recombined with wild-type chromosomes, and should retain these densely packed 

mutations.  Based on these predictions, within the ~800 kb interval defined by mapping, 

ky957 and an additional twenty to forty mutations should have been observed, instead of 

the two discovered here.  The absence of these predicted mutations could reflect one or a 

few of several possibilities.  First, it is possible that after four backcrosses to kyIs501, 

EMS-induced mutations near ky957 were lost.  For example, the integrated transgene 

kyIs501 is linked to ky957, and the repetitive nature of the transgene could promote 

recombination in this interval (both strains in the backcross carried the transgene, 

allowing free recombination). Second, the mutagenesis performed that yielded ky957 

could have been substantially less potent than the mutageneses used to calibrate the 

published mutation frequency.  Both of these possibilities would explain the low 

mutation frequency observed between 17.9 and 18.7 Mb, but would not explain the 

failure to identify ky957 in this interval.  Third, chromosome V could be rearranged in 

ky957 animals in a way that provides misleading linkage data.  If that were the case, one 

would expect to observe more densely clustered mutations at another region in the 

genome.  We examined this possibility by aligning all potential mutants in ky957 mutants 

with the reference genome, in a way that allowed easy assessment of mutation density 

(Figure 3.7A).  One region with an increased density was found on V far from ky957, but 

no other region of the genome of the backcrossed ky957 strain showed a mutation 

frequency approaching 1/20,000 bp (Figure 3.7A).  
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Figure 3.7.  Distribution of EMS-like mutations in the ky957 genome.  Illumina 

sequencing data from two mutants, ky777 and ky957, were compared to identify unique 

single-base changes in each strain that would be consistent with EMS mutagenesis. The 

slope of the gray lines corresponding to each chromsome indicates the density of 

mutations in that area, likely reflective of genetic drift or sequencing errors. (A) A graph 

of unique SNPs in ky957 against genomic position.  Two regions (red lines) with higher 

density of EMS mutations are observed in the ky957 genome, one short region on II and 

another on V.  Neither region corresponds to the ky957 interval. The slope of the right 

arm of V indicates that theoverall density of mutations along this region is higher than 

that of the remainder of the genome.(B) The unique mutations in the genome of ky777 are 

graphed against their positions on the chromosome. The red line indicates a region on X 

with a slope indicative of a high density of mutations.  The causative mutation in ky777 

lies in this region of increased density (B. Lesch, personal communication).    
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A large rearrangement would interfere with identification of recombinants along 

that chromosome, but many recombinants between ky957 kyIs501 and kyIs501 were 

observed using markers along chromosome V.  If there were a large rearrangement, 

therefore, it would be present in kyIs501.  Alternatively, a small deletion, insertion, or 

translocation could have arisen in ky957.   Recombination between visible mutants or 

SNPs and kyIs501 was observed with markers distributed across most of chromosome V, 

including a few markers spanning the region with the highest EMS mutation frequency 

(Figure 3.8).  A region of recombination suppression was observed near the predicted 

ky957 region (Figure 3.8), in keeping with the recombination suppression observed 

surrounding transgene integration sites (Hammarlund et al., 2005).  These data suggested 

that no large rearrangements are present on chromosome V in kyIs501, although smaller 

rearrangments remained possible. 

To search for small rearrangments such as deletions, duplications, or DNA 

insertions, microarray comparative genomic hybridization (array CGH) was performed in 

collaboration with the Moerman laboratory at the Univeristy of British Columbia.  In this 

approach, DNA from kyIs501 and ky957; kyIs501 were hybridized to microarrays 

containing roughly 400,000 50-mer oligonucleotides, located on average once every 250 

bp (Maydan et al., 2007).  Relative binding intensities at each position were measured to 

determine the relative copy number. Array CGH found one significant copy number 

variation between N2, kyIs501, and ky957 on chromosome V, a ~16 kb deletion in ky957 

encompassing multiple cytochrome P450 family members and the seven-transmembrane 

olfactory receptor str-247 (Figure 3.9A).  This deletion is located at 3.95 Mb, almost 14 

Mb from where ky957 mapped, but it was possible that through a rearrangement this 
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Figure 3.8.  Recombination map of V indicates the absence of any large rearrangements 

of chromosome V in kyIs501.  Black line indicates chromosome V sequence.  Open 

diamonds indicate locations of EMS SNPs.  Green triangles represent mutations in N2 

background and SNPs in a CB4856 background that recombined with kyIs501.  Red 

triangles indicate the positions of SNPs and visible markers that did not recombine with 

kyIs501.  Gray bar indicates the region shown in figure 3.7 with the highest density of 

EMS SNPs.  Arrowheads indicate EMS SNPs flanking the ky957 genetic interval.   The 

region of recombination suppression is consistent with that caused by an integrated 

transgene (Hammarlund et al., 2005). 
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Figure 3.9.  Array CGH identifies a 16 kilobase deletion that is likely not the causative 

mutation in ky957 kyIs501. (A) Genomic location of 16 kb deletion.  Red line indicates 

extent of deletion. (B) Quantification of ASH-to-AVA GRASP labeling in ky957 animals 

carrying extrachromosomal arrays containing fosmids spanning the deletion. n.s., not 

significantly different from ky957.  
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deletion was the causative mutation.  Fosmids spanning the deletion failed to rescue, 

however, indicating that it is probably not the causative mutation in ky957 (Figure 3.9B).  

Array CGH data was examined to determine whether a duplicated genomic region 

could have masked an important mutation in one of the two copies.  An existing example 

of this problem in the N2 strain involves the gene rpm-1, which consists of one complete 

copy accompanied by one perfect duplication of most of the gene (Zhen et al., 2000; 

Schaefer et al., 2000).  This genomic arrangement complicated efforts to identify the 

causative mutation in alleles that overlapped the duplicated region.  Similarly, if a gene in 

the ky957 interval were present in two copies and only one copy of the gene was mutated, 

this could give rise to a phenotype but would be difficult to identify by sequencing.  

Array CGH data on V identified no duplications among the selected probes, suggesting 

that this explanation is unlikely, although small duplications or insertions could be 

present.  

 

ky957 affects kyIs501 rather than ASH-to-AVA synapse formation 

The identification of kyIs501 within the region containing ky957 raised the 

possibility that ky957 was a mutation associated with kyIs501 itself.  Array CGH found 

no significant difference in the copy number of any of the transgenes in ky957 as 

compared to kyIs501, indicating that ky957 is not a deletion within kyIs501(Don is 

assembling this data for me, but they were having software problems and said I might 

have to wait until after the holidays, it’ll be good to have this, and to present what you 

find out about the structure of the integrant).  Alternatively, point mutations within 

kyIs501 could alter expression or function of the transgenes contained therein, by 
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repressing expression or by creating a dominant-negative form of one of the transgenes.  

Alignment of Illumina sequencing reads to the sequences of the plasmids in kyIs501 

found numerous potential point mutations at abundances that correspond to that expected 

for mutations in a single copy of that plasmid in the array.  The functional significance of 

any of these potential SNPs is difficult to ascertain.  Therefore, I sought to perform 

functional assays to address whether ky957 is associated with kyIs501. 

If ky957 affects kyIs501 rather than ASH-to-AVA synapse formation, GRASP 

labeling of ASH-to-AVA synapses by other transgenes might be unaffected in a ky957 

background.  kyIs491, like kyIs501, is an integrant of the extrachromosomal array 

kyEx2718.   kyIs491 is integrated at an unknown site in the genome, but inheritance 

patterns indicate that it is unlinked to kyIs501.  It is expected that 1/4 of the ky957 

kyIs501 F2 progeny of a ky957 kyIs501 by kyIs491 cross will be homozygous for 

kyIs491, and 1/2 will be heterozygous for kyIs491.  92 F2 progeny from a ky957 kyIs501 

by kyIs491 cross were genotyped at EMS SNPs on chromosome V to identify 20 strains 

homozygous for ky957, and their F3 progeny were scored.  In four of twenty strains, 

ASH-AVA GRASP labeling was wild-type in greater than ninety percent of animals.  

These four strains are probably derived from kyIs491 homozygous F2 animals.  In eleven 

of twenty strains, ASH-AVA GRASP labeling was wild-type in over fifty percent of 

animals, but some ky957-like labeling was observed.  These animals are likely the 

progeny of kyIs491 heterozygous F2 animals.  The nearly Mendelian observed frequency 

of GRASP phenotypes, 4:11:5, is consistent with two interpretations:  kyIs491 was 

inherited as expected and labeling from this transgene is normal in ky957 kyIs501 

animals, or an unlinked synthetic mutation was segregating in these crosses.  To address 
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this possibility, ky957 kyIs501 was crossed to a different integrated strain that does not 

carry GRASP transgenes, kyIs479 (Saheki and Bargmann, 2009), and kyIs501 

homozygous F2s were identified.  All homozygous kyIs501 F2 progeny displayed the 

ky957 phenotype.  Therefore, the kyIs491 strain segregates a suppressor of ky957 that it is 

not present in the kyIs501 strain that derived from the same integration event that yielded 

kyIs491.  This suppressor is most likely to be kyIs491 itself.  

To further explore whether ky957 specifically affects kyIs501, extrachromosomal 

arrays carrying the intestinal marker elt-2::mCherry and the GRASP plasmids sra-

6::PTP-3A::spGFP11 and flp-18::nlg-1::spGFP1-10 were generated to label ASH-to-

AVA synapses in N2.  These arrays were crossed into ky957 kyIs501, F1 animals were 

allowed to self-fertilize, and mutant F2 animals were isolated.  ky957 animals bearing the 

arrays displayed bright bilateral GRASP labeling similar to kyIs501 controls, in contrast 

to their array-negative siblings that resembled ky957 kyIs501 controls (Figure 3.10A,C).  

This results supports the conclusion that the defect in ky957 is specifically associated 

with the kyIs501 array.  To alleviate the potential concern that overexpression of GRASP 

transgenes might result in non-specific, extrasynaptic labeling throughout the ASH and 

AVA axons, extrachromosomal arrays providing dim GRASP labeling were used for 

these experiments.  In array-bearing ky957 kyIs501 animals, labeling was confined to the 

lateral nerve ring, where GRASP labeling occurs in kyIs501 (Figure 3.10E).  As an 

additional control, the arrays were crossed into kyIs501 animals.  GRASP labeling in 

these animals was similar to that of array-negative siblings, suggesting that the combined 

expression of GRASP transgenes from kyIs501 and the arrays does not produce an 

obvious overexpression effect (Figure 3.10F).  These results indicate that the observed 
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Figure 3.10.  Suppression of ky957 by extrachromosomal arrays carrying coding and non-

coding GRASP constructs similar to those in kyIs501.  (A) Schematic of coding GRASP 

transgenes used in C.  These transgenes are identical to those in kyIs501, and encode a 

signal sequence (SS) followed by split GFP fragments and GRASP carriers.  Signal 

sequence cleavage generates the mature GRASP spGFP-carrier molecules.  (B) 

Schematic of non-coding GRASP transgenes used in (D).  Stop codons were inserted 

between the signal sequence and the spGFP fragments in the GRASP transgenes.  

Translation of the resultant mRNA yields a signal sequence but no GRASP proteins.  (C) 

Transgenes described in (A) suppress ky957 kyIs501.  For each array, array-bearing 

animals and their array-negative siblings were scored to control for ky957 genotype.  

Asterisk, significantly different from array-negative siblings (two-tailed P<.001, Fisher’s 

exact test) (D) Transgenes described in (B) suppress ky957 kyIs501.  For each array, 

array-bearing animals and their array-negative siblings were scored to control for ky957 

genotype. (E) GRASP labeling (arrowheads) of ASH-to-AVA synapses in ky957 kyIs501 

animals carrying array 3 from (C). (F) GRASP labeling (arrowheads) of ASH-to-AVA 

synapses in kyIs501 animals carrying array 3 from C. (G) GRASP labeling (arrowheads) 

of ASH-to-AVA synapses in ky957 kyIs501 animals carrying array 3 from (D).  Scale 

bars, 10 µm.  
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labeling reflects intact ASH-AVA synapses in ky957 animals, and that ky957 reduces 

GRASP signals by its effects on kyIs501 itself.   

These results, combined with the overexpression rescue observed with several 

DNA fragments from Chromosome IV and V, raised the possibility that ky957 could be 

suppressed by interactions between kyIs501 and other arrays.  To test this possibility, sra-

6::PTP-3A::spGFP11 and flp-18::NLG-1::spGFP1-10 transgenes were each modified by 

the introduction of a single nucleotide to generate a frameshift and premature stop codon 

immediately prior to the the spGFP; the only protein expressed from these transgenes 

should be a signal peptide (Figure 3.10B).  These transgenes were injected into N2 

animals, and as predicted did not display any GRASP labeling.  However, these arrays 

were able to suppress the ky957 GRASP defect (Figure 3.10D,G).  This result indicates 

that ky957 is associated with kyIs501, and that its effects can be suppressed through 

interactions with other DNA sequences.   

The association of ky957 with kyIs501 could reflect decreased expression of the 

GRASP transgenes.  Silencing of repetitive transgenes occurs in several classes of 

mutants such as tam-1 and involves the RNA interference (RNAi) pathway, a process 

termed RNAi transcriptional gene silencing (RNAi-TGS) (Hsieh et al., 1999., B. Lesch, 

personal communication).  I had previously observed reduced or absent GRASP and 

mCherry::RAB-3 labeling in kyIs501 in the RNAi-hypersensitive mutant eri-

1(mg366);lin-15b(n744).  Although this phenotype was not as specific to the GRASP 

label as ky957, it seemed possible that the ky957 GRASP phenotype might be caused by 

RNAi-TGS-like silencing of kyIs501.  RNAi of chromatin remodeling factors such as 

mes-4 and mrg-1 or pharmacologic inhibition of histone deacetylases (HDAC) can 

99



  

relieve RNAi-TGS  (Cui et al., 2006; Grishok and Sharp, 2005).  In preliminary 

experiments, ky957 was not suppressed by RNAi of mes-4 or mrg-1, although this 

negative result might reflect the neuronal refractoriness to RNAi (Wang et al., 2005), or 

the HDAC inhibitors n-butyrate and trichostatin A.  These results, although not 

conclusive, suggest that ky957 may exert its effects on kyIs501 through a mechanism 

distinct from RNAi-TGS.   

 

Discussion 

 In this work, I found that several regulators that act at earlier steps or other cells 

during neural development are dispensable for ASH-to-AVA synapse formation.   For 

example, the syg-1 and syg-2 guidepost molecules are required for synaptic specificity in 

the HSN neuron (Shen et al., 2004), and syg-1 is expressed in other neurons as well (Shen 

and Bargmann, 2003).  However, syg-1 and syg-2 are not required for ASH-to-AVA 

synapse formation, suggesting that other guidepost signals might aid in the formation of 

ASH-to-AVA synapses.    Mutations of the axon guidance molecules unc-6/Netrin and 

sax-3/ROBO disrupted ASH-to-AVA synapse formation in some animals, but often the 

ASH axon appeared misguided, which could preclude interaction with AVA.  A 

systematic analysis of GRASP labeling in animals with labeled AVA axons could allow 

determination of whether unc-6 and sax-3 play roles outside of axon guidance in ASH-to-

AVA synapse formation. 

SNPs identified with Illumina sequencing proved useful for multiple steps in 

mapping beyond mere mutation identification.  First, Bluma Lesch’s work showed that 

whole-genome sequencing was able to identify a region of increased mutation density to 
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which a relevant mutation, ky777, maps.  This mutation rate approach may be of general 

use and could expedite mapping of future mutants.  Second, a concern when mapping any 

mutant is that mapping strains might alter the mutant phenotype, particularly the highly 

polymorphic CB4856 strain used in many studies.  SNPs identified with Illumina 

sequencing allowed mapping of ky957 kyIs501 against the parental strain kyIs501, 

minimizing any background-dependent effects.  

 The mutant described here, ky957, alters ASH-to-AVA GRASP labeling.  ky957 

appears to be associated with kyIs501, and does not appear to affect ASH-to-AVA 

synapse formation. GRASP depends on transgene expression, and mutations that increase 

or decrease transgene expression or alter expression patterns may alter GRASP labeling 

without altering synaptic connectivity.  Future studies using GRASP will need to address 

this problem, perhaps by incorporating additional markers into GRASP transgenes to 

minimize the identification of these mutants, or by secondary screens for behavioral or 

physiological phenotypes.    

 The molecular basis of the ky957 phenotype appears to be associated with 

kyIs501, but the exact lesion is unclear.  Transgene silencing has been described in 

several genetic backgrounds, and is often observed in the mutants that increase the 

sensitivity of neurons and other cells to RNAi (Hsieh et al., 1999; Grishok et al., 2005; 

Wang et al., 2005).  Interestingly, when kyIs501 was introduced into an RNAi sensitized 

strain, eri-1(mg366);lin15(n744) (Wang et al., 2005), a variable phenotype was observed 

in which GRASP labeling was reduced in some animals without a loss of 

mCherry::RAB-3 signal, a phenotype reminiscent of ky957.  Whether ky957 affects 

kyIs501 expression in a similar way remains to be seen.   
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 ky957 may represent one of many possible mutants that could affect GRASP 

phenotypes without affecting ASH-to-AVA synapse formation.  Altered GRASP labeling 

in the absence of ASH-to-AVA synapse defects might also be caused by mutations that 

alter expression of the promoters used in the GRASP transgenes, such as unc-42, or 

mutations that alter the function or localization of the GRASP carriers.  In future screens, 

the GRASP carriers could be tagged with fluorophores, such as mCherry or uv-GFP, to 

monitor their expression and localization.  Mutants with altered GRASP labeling could 

be rescreened to exclude mutants with obvious defects in carrier expression or 

localization.  In addition, after initial mapping a new GRASP transgene, as used in figure 

3.10, could allow determination of whether the GRASP signal is truly disrupted.     
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Chapter 4 

Discussion and future directions 

 
 This work establishes a new approach to the longstanding question of how 

neurons identify their synaptic targets.  GRASP enables the visualization of specific 

synapses in live animals, permitting analyses on a scale that was previously unattainable.  

In these studies, GRASP was applied to the study of one set of synapses in the CNS, the 

synapses between ASH sensory neurons and AVA interneurons.  These experiments 

illustrate the potential of GRASP for future studies of the mechanism of synapse 

formation, including the discovery of molecules and mechanisms of synaptogenesis.  

However, new approaches and methodologies may need to be merged with further 

refinements of GRASP to solve the problem of synaptic specificity.   

 

Intersectional gene expression with Cre recombinase 

 Despite years of intensive study, unique promoters are lacking for many of the 

120 neuron classes in C. elegans.  To fully harness the power of C. elegans genetics in 

the study of neural circuits, a method to produce single-cell expression of transgenes for 

rescue, gain of function, and functional imaging methods was needed.  In this thesis, I 

developed a Cre-loxP based toolkit for confining gene expression to single cells 

(Macosko et al., 2009).  Cre-based methods are likely to be useful for a number of other 

applications.   However, expression of transgenes after Cre-mediated stop excision was 
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weaker than expression of comparable transgenes in multicopy arrays.  This reduced 

expression suggests that several iterations of Cre-mediated recombination within an array 

result in reduced copy numbers of plasmids within the transgene, or that recombination 

between distal loxP sites excises several intervening copies of that plasmid (Figure 4.1A). 

The problem of successive recombination events might be minimized through the use of 

mutant loxP sites.  Distinct mutations could be introduced into the 5’ and 3’ loxP sites 

flanking the stop sequence to generate a substrate that is competent to undergo only one 

recombination event because the resultant hybrid loxP site cannot be recognized by Cre 

(Arakawa et al., 2001, Figure 4.1B).  This method would extend the utility of Cre-loxP 

expression tools to applications requiring higher transgene expression levels.   

 Cre-loxP tools could be used to facilitate genetic rescue experiments in C. 

elegans.  In typical transgene rescue experiments, sites of expression sufficient for rescue 

can be identified by injecting C. elegans mutants with wild-type cDNA driven by cell-

specific promoters.  More rarely, the converse experiment has been performed by 

identifying sites of expression necessary for rescue using mosaic analysis with unstable 

genetic elements.  Genetic mosaic analysis can be slow for single-worm assays and 

prohibitive for population assays, and as this method is lineage-based, it is hard to use in 

the nervous system where the left and right members of a neuronal pair are usually 

unrelated by lineage.  In other organisms, tissue-specific conditional knockouts can be 

generated using site-specific recombinases such as Cre (Gu et al., 1994).  Similarly, 

worm conditional knockouts could be made through rescue of a mutant with a loxP-

flanked transgene driven by a broadly expressed promoter (Figure4.1C).  Cre expression 
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Figure 4.1. Applications of Cre-loxP technology.  (A) Effects of Cre-mediated 

recombination on multicopy transgenes.  A loxP-stop-loxP transgene construct is 

contained in a multicopy array.  Cre expression leads to successive rounds of Cre-

mediated recombination that result in reduced copy number and corresponding reduced 

transgene expression.  Triangles represent loxP sites.  (B)  Modified loxP sites (truncated 

triangles) recombine to generate a non-functional hybrid loxP site that is not competent 

for subsequent recombination.  In this way, Cre removes fewer copies of the transgene to 

maintain strong transgene expression.  (C) Cre-mediated conditional knockout in C. 

elegans.  Wild-type cDNA corresponding to a gene of interest is flanked by loxP sites 

and introduced into the mutant in that gene.  Cre-mediated recombination deletes the 

cDNA in cells of interest.   
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in cells of interest should delete the transgene in those cells so that necessity can be 

assessed.   

Finally, Cre-loxP tools could be useful in the study of essential genes.  Many 

pleotropic mutations cause phenotypes such as embryonic lethality that preclude their 

study in the adult nervous system.  The use of conditional knockouts would allow 

investigation of the functions of these essential genes in the adult nervous system.   

 

Applications of GRASP  

In C. elegans, the classical analysis of the nervous system by serial section 

electron microscopy (EM) and synaptic reconstruction of a few animals discovered a 

striking but not absolute connectivity stereotypy.  First, although most of the CNS is 

bilaterally symmetric, systematic comparison of EM data from two animals measured 

substantial variation within bilateral neuron pairs in each animal (Durbin, 1987).  The 

probability that two neurons were connected by a chemical synapse if their contralateral 

homologs were connected was 79% in one animal and 87% in the other animal, with a 

slightly higher likelihood for gap junctions.  Second, animal-to-animal variation was 

found.  When two neurons formed multiple synapses in one animal, those neurons were 

95% likely to synapse in the second animal.  However, if two neurons formed one 

synapse in one animal, they were only 75% likely to be connected in the other animal.  In 

137 instances, chemical synapses were observed between two cells on one side in one 

animal and not observed on either side of the other animal, while in 32 instances two 

neurons were connected bilaterally in one animal and unilaterally in the other.  These and 

other measurements suggest that C. elegans synaptic connectivity is not fully invariant, 
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and that the wiring diagram derived from these serial section EM reconstructions samples 

a portion of the synaptic spectrum that animals display.  Relevant to my work, ASHL 

formed two synapses onto AVAL in one animal and one synapse in the other, and ASHR 

formed four synapses onto AVAR in both animals.  This variability is consistent with the 

range of GRASP labeling observed in kyIs501 animals.  However, GRASP signal was 

also present in the ventral portion of the nerve ring in occasional kyIs501 animals.  This 

signal may reflect an artifact of the GRASP method, such as internalized GRASP-labeled 

protein complexes, or alternatively bona fide synapses that may occasionally form 

between ASH and AVA in the ventral nerve ring.  The rare presence of this ventral signal 

in the absence of labeling in the lateral nerve is consistent with the latter possibility, 

which could be tested by examining additional pre- and postsynaptic markers.   

A comprehensive picture of the range of connectivity patterns in a circuit of 

interest could be developed with GRASP.  Variability could be compared within 

laboratory wild-type and mutant strains, and among wild strains isolated from different 

environments. This system could also be used to assess how environmental experience, 

such as dauer development, impacts the structure of the mature nervous system.  It is 

possible that this approach could identify molecules that function to constrain variability.  

The variability observed with GRASP labeling might offer a means to explore 

how connectivity determines function.  Synapses of interest could be GRASP labeled, 

and animals displaying different GRASP patterns could be sorted and assayed by 

behavior.  This approach might be a useful way to determine the roles of classes of 

synapses or numbers of synapses, and more generally to probe the question of how 

neuroanatomy dictates function.   
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 The studies described here focused on synapses at a defined point in development, 

but synapses can be highly plastic in living nervous systems.  Numerous studies have 

identified alterations in neural architecture as result of activity (Shatz and Stryker, 1988; 

Zhao and Nonet, 2000), and the ability to monitor changes in synaptic connectivity 

dynamically would be of great use for studies of learning and memory as well as aging 

and disease models.  My results suggest that GRASP labeling should appear as synapses 

form and disappear as synapses are lost.  spGFP reconstitution is rapid but is believed to 

be essentially irreversible, which could lead to a persistent signal long after a synapse is 

lost (G. Waldo, personal communication).   However, the disappearance of muscle 

GRASP labeling as the ace-4 promoter was extinguished in late larval stage animals 

suggests that cells are able to degrade GRASP complexes in the course of normal protein 

turnover.  GRASP signal may disappear as a result of transcytosis of the transcellular 

GRASP complexes, proteolytic liberation of the reconstituted GFP from one of its linkers 

and subsequent dissociation, or GFP dissociation or degradation.  This result may be 

carrier-dependent, and further examination is needed.  The stability of GRASP labeling 

could be measured in HSN, where wild-type early L4 animals form synapses anterior of 

the vulva that are eliminated in a syg-1-dependent manner (Ding et al., 2007), or in DD 

motor neurons, which remodel their axons to shift from innervating ventral muscles to 

innervating dorsal muscles in late L1 stage animals (White et al., 1978).  Should GRASP 

signals prove highly stable, dynamic gain and loss of synapses might be studied by 

photobleaching and recovery experiments (Jacobson et al., 1976), or through the 

development of split, superfolding versions of the fluorescent timer protein E5, which 
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spontaneously shifts its emission from green to red with defined kinetics (Terskikh et al., 

2000).   

 The intersectional approach used in GRASP might point to a way to manipulate 

individual synapses.  For example, reconstitution of a split molecule that modifies 

synaptic signaling synaptic components might be used to suppress activity at a single 

synapse.  An attractive target for synaptic manipulation is the presynaptic voltage-gated 

calcium channel (VGCC), through which calcium influx triggers vesicle exocytosis.  

Nature has provided numerous protein-based inhibitors of these channels, such as the 

conotoxins from snails, but perhaps the most attractive comes from the clinic.   Lambert-

Eaton myasthenic syndrome (LEMS) is an autoimmune disorder in which autoantibodies 

target and inhibit presynaptic VGCCs to cause progressive weakness (Lang and Vincent, 

2009).  These antibodies form a bipartite extracellular toxin, with antigen binding 

requiring the interaction of the separately encoded heavy chain (HC) and light chain 

(LC).  Although HC and LC are typically co-expressed and assembled in the secretory 

pathway in B cells, in pathological conditions like multiple myeloma, B cells secrete free 

HC or LC, and LC can be secreted from fibroblasts in the absence of HC, suggesting that 

single chains can fold and exit the ER (Gonzalez et al., 2007; Dul et al., 1996).  In theory, 

PTP-3A::HC expressed in a presynaptic cell and NLG-1::LC expressed in a postsynaptic 

cell would culminate in formation of a tethered antibody at sites of intersection and 

silencing of that synapse through interference with presynaptic VGCCs.   This is just one 

example of how intersectional protein reconstitution methods hold the potential to change 

how individual synapses are labeled and manipulated in vivo.    
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A systematic approach to synaptic specificity in C. elegans 

 GRASP permits monitoring of only one set of synapses per anatomical region in 

each animal.  Faster and more systematic assessment of synaptic connectivity would 

require the ability to monitor several synapses at once.  Existing split superfolding cyan 

and yellow fluorescent proteins could expand the GRASP palette to allow simultaneous 

and independent visualization of two sets of synapses. spYFP1-10 and spCFP1-10 

reconstitute with spGFP11, so that one pre- or post-synaptic cell, and two or synaptic 

partners, could be differentially labeled in one strain. For example, differential labeling of 

HSN-to-VC and HSN-to-vulval muscle cells synapses could allow screens for mutations 

that differentially regulate one of two sets of synapses. 

 Comprehensive analysis of synaptic connectivity in C. elegans will require a suite 

of strains in which different synapses are labeled.  Titrating the expression of both pre- 

and post-synaptic GRASP carriers in extrachromosomal arrays is a tedious process that 

must be repeated for each synapse of interest.  Moreover, repetitive extrachromosomal 

arrays are subject to silencing and other phenomena that could produce spurious signals.  

To create a modular GRASP system, a set of two newly developed single-copy 

transgenesis techniques could be of use.  One method, MosSCI, enables single-copy 

transgene insertion at defined chromosomal loci (Frokjaer-Jensen et al., 2008).  MosSCI 

could be used to insert a transgene containing a pan-neuronal promoter driving a loxP-

STOP-loxP presynaptic GRASP construct carrier, and a second transgene containing a 

pan-neuronal promoter driving a FRT-STOP-FRT::postsynaptic GRASP line (Davis et 

al., 2008).  Expression of Cre in a presynaptic cell of interest and FLP in a postsynaptic 

interest should lead to excision of the stop sequences in those cells and expression of the 
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corresponding GRASP markers.  Different Cre and FLP lines could be crossed into the 

GRASP strains to label different sets of synapses.  Importantly, the catalytic activity of 

Cre and FLP has an all-or-none quality, so that these transgenes might not need to be 

titrated.  The second potentially useful transgenic method, MosTIC, enables modification 

of genes at their endogenous loci (Robert and Besserau, 2007).  LoxP- and FLP-

dependent expression constructs could be introduced at the PTP-3A and NLG-1 loci to 

enable conditional expression of GRASP transgenes under the control the endogenous 

promoters of the carrier molecules, reducing concerns of overexpression artifacts.  A 

potential limitation of these techniques is that expression from single transgenes can be 

dim.  This issue could be addressed through the use of strong constitutive promoters with 

MosSCI transgenes.  Signal amplification could also be accomplished through 

incorporation of several tandem spGFP fragments per carrier molecule, as has been 

performed with the dim pH sensor phluorin (Zhu and Stevens, 2008).  Should single-copy 

expression methods fail to provide a sufficiently bright signal, multicopy transgenesis 

using the variant loxP sites described above could prove a viable approach.   

 

The genetics of synaptic specificity in C. elegans   

The problem of synaptic specificity has been recognized for decades, yet our 

understanding of this process is incomplete.  Identifying specific synapses in vivo is 

challenging, and it is difficult to perturb those synapses.  The studies presented here offer 

a potential solution to the former, and it is worth considering whether they are 

informative with regard to the latter.  The genetic screen in which ky957 was identified 

was not saturated, but it is still notable that only a few mutants were identified.  In 
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Figure 4.2 Single-copy transgenic toolkit for GRASP. (A) MosSCI allows insertion of 

single copies of loxP-stop-loxP and FRT-stop-FRT GRASP transgenes driven by strong 

constitutive promoters.  Expression of Cre or FLP leads to excision of the corresponding 

stop sequence and expression of the GRASP transgenes in the cells of interest.  Black 

triangles represent loxP sites, and purple triangles represent FRT sites.  (B) MosTIC 

allows modification of the endogenous locus for the GRASP carriers.  In this case, the 

ptp-3a locus is modified by insertion of a copy of exon 1 with spGFP11 inserted at the 

appropriate position in an inverted orientation with respect to the gene.  Exon 1 and the 

spGFP11-fused exon 1 are flanked by mutant loxP sites in opposite orientations.  In the 

absence of Cre, PTP-3A is expressed normally.  In the presence of Cre, a single 

recombination event occurs to invert the exon 1 cassette, placing the spGFP11 form on 

the same strand as ptp-3a.  This results in expression of PTP-3A::spGFP11 in those cells 

driven by the endogenous ptp-3a promoter.  Truncated triangles indicate mutant loxP 

sites.   
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addition to cell surface recognition molecules required for targeting, transcription factors, 

RNA binding proteins, non-coding RNAs and other factors that shape a cell’s repertoire 

of connectivity determinants could have been identified in this screen, along with 

intracellular components involved in signaling downstream of target recognition.   This 

screen identified four mutants with heritable phenotypes out of ~4,000 genomes, only one 

of which, ky957, displayed wild-type mCherry::RAB-3 labeling and mutant GRASP 

labeling.   These results suggest that subsequent screening may need to be made more 

sensitive. 

A concern when performing a new screen is that the phenotype scored may not 

reflect the underlying biology.  In particular, GRASP labeling could be artificially robust 

in a manner that masked bona fide specificity mutants.  The analyses of HSN-to-VC and 

vulval muscle synapses and AVA-to-VA synapses found that GRASP labeling detected 

specificity mutants in these test cases, but in the absence of a similar mutant it is difficult 

to validate the sensitivity of a GRASP strain that labels a different set of synapses.  At 

present, comparison of the observed labeling to that found in serial section EM remains 

the best means to identify suitable GRASP strains, but it is possible that strains meeting 

these visual criteria could suffer from overexpression artifacts nonetheless.  

Overexpression artifacts might produce spurious GRASP labeling at extrasynaptic 

contacts between ASH and AVA, so that only mutants with loss of ASH to AVA 

fasciculation would be identified.  This phenotype is worth studying independently, using 

CD4 GRASP, but was not the goal of the screens described here.   The use of single-copy 

transgenesis methods described above could reduce overexpression effects and increase 

the sensitivity of GRASP screens. 
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 This screen also could have failed to identify mutants due to two commonly 

observed genetic phenomena, redundancy and pleiotropy.  Redundancy, reduced 

penetrance defects in single mutant due to overlapping gene function, and pleiotropy, 

defects in multiple processes, can interfere with identification of mutants of interest.  

Modifications of screen design could address these concerns. 

If ASH-to-AVA synapse formation involves redundant factors, identification of a 

mutant phenotype would require simultaneous loss of several recognition factors.  

Although redundancy is frequently observed in genetic pathways, the historical success 

of forward genetics argues that at least some non-redundant factors in a pathway can 

usually be identified.  Significant redundancy would reflect the presence of parallel 

recognition molecules that signal through distinct pathways. The best-characterized 

examples of redundant parallel pathways in C. elegans are the synthetic multivulval 

(synMuv) pathways.  Generation of a synMuv phenotype requires the loss of at least two 

factors from independent pathways that inhibit ras signaling (Jorgensen and Mango, 

2002).  Genes with redundant loss-of-function mutations can sometimes be identified by 

gain-of-function mutations.  Gain-of-function mutations are induced more rarely than 

loss-of-function mutations, but could be identified in an F1 GRASP screen. 

 Limited candidate mutant analysis did not identify any factors with highly 

penetrant defects in ASH to AVA synapse formation, but it is possible that the mutants 

with mild defects or other untested mutants in various signaling pathways could be used 

as a sensitized background for a GRASP screen.  Among previously analyzed candidate 

mutants, double and triple mutant analysis may uncover redundant interactions that could 

be studied and used to generate sensitized strains.   
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 Another reason that this screen failed to identify mutants may be pleiotropic 

effects of the genes involved in synaptic specificity.  As described earlier, specificity 

mutants in genes that function at several steps in circuit formation, or in essential genes, 

may not be identified in a stringent specificity screen.  Temperature-sensitive alleles can 

be used for temporal control of gene activity, and this approach allowed identification of 

new roles of glp-1, which in null mutants causes sterility due to impaired germ cell 

production, in later steps in embryogenesis (Priess et al., 1987).  However, temporal 

segregation of early stages in development at which embryonic-lethal genes act from 

stages at which synapses form may be minimal.  Therefore, a temperature-sensitive 

screen might be of greater use in studying synapse formation by neurons that are born 

post-embryonically, such as the PQR sensory neuron or HSN.  Mutant animals could 

undergo embryonic development at a permissive temperature and be shifted to a 

restrictive temperature shortly after hatching and for the remainder of development.   

Although this approach may prove fruitful, temperature-sensitive alleles are less common 

than standard null alleles and are not obtainable for all genes. 

To facilitate identification of synthetic GRASP mutants, temperature-sensitive 

alleles, or rare dominant alleles, increased screening throughput is essential.  The current 

throughput of GRASP-based screening is roughly 200 genomes per day.  At this 

throughput, a synthetic mutant likely would not be identified for years.  Therefore, 

technologies such as microfluidic devices and a commercially available worm sorter, 

which can increase screening throughput by a few orders of magnitude (Crane et al., 

2009; Pulak, 2006), should be investigated.  The low sensitivity of these automated 

approaches may require extensive optimization, but the potential benefits make this a 
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worthwhile investment of effort.  Alternatively, a bipartite labeling system such as Tango 

might be used to detect cell contact and provide signal amplification for an initial 

automated screen for mutants with reduced cell contact (Barnea et al., 2008), which could 

be followed with a GRASP-based secondary screen. 

 Another way to increase the throughput of a GRASP-based screen for rare 

mutants would be through a behavioral prescreen.  The ultimate purpose of synaptic 

connections is to permit neurons to communicate and generate behavior.  Therefore, it 

would be reasonable to assume that perturbation of these synapses would result in 

behavioral deficits.  ASH detects noxious stimuli, and AVA generates avoidance 

responses, yet previous screens for mutants defective in ASH-mediated avoidance failed 

to identify factors required for the formation of these synapses.  This may reflect the 

difficulty of predicting the function of a synapse from wiring or redundancy in the 

function of individual synapses in a circuit.  For example, syg-1 and syg-2 synaptic 

mutants have milder defects in egg laying than those seen after ablation of HSN (Shen 

and Bargmann, 2003; Shen et al., 2004).  Moreover, animals in which HSN fails to reach 

the vulva have similarly mild defects in egg-laying (C. Bargmann, personal 

communication).  For this reason, syg-1 and syg-2 may not have been identified in 

behavioral screens.  Circuit redundancy may hinder further efforts to identify specificity 

mutant through behavioral screens, but more detailed analysis may identify subtle but 

quantifiable behavioral consequences of the loss of a certain synapses.  In this context, a 

high-throughput, quantitative behavioral screen might allow prescreening of mutant 

animals for a GRASP screen.   
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  Reverse genetics can facilitate the study of both pleiotropic and redundant genes.   

This approach might be focused by conducting gene expression analysis of the cells of 

interest, such as ASH and AVA, through RNA sequencing methods (Wilhelm and 

Landry, 2009).  Genes enriched in those cells could be studied with loss-of-function 

alleles or RNAi.  This approach would considerably reduce the pool of genes from which 

to generate double or triple mutants, aiding in the discovery of redundant interactions.  

Candidate genes with pleiotropic effects such as embryonic lethality could be rescued 

with conditional loxP alleles of the wild-type gene, then characterized for their roles in 

specificity through Cre-mediated deletion in those cells or at developmental times of 

interest.   Another reverse genetic approach that may be of use in studying these 

phenotypes is RNAi.  RNAi has proven difficult in some neurons, and RNAi-sensitized 

strains are sensitive to transgene silencing, but the use of these sensitized strains in a 

single-copy GRASP transgenic strain should minimize silencing (Hsieh et al., 1999).   

To minimize pleiotropic effects, RNAi can be initiated through feeding, soaking, 

injection, or hairpin transgene induction at the developmental time point of interest.  

Pleiotropic effects could be further rescued by confining RNAi to neurons by conducting 

RNAi in an rde-1 mutant background in which rde-1, which functions cell autonomously 

(Tabara et al., 1999), is rescued in neurons. Each of these approaches to studying 

redundancy and pleiotropy may facilitate identification of certain forms of mutants and 

prevent identification of other mutants, and as such should be viewed as complementary.    

 Finally, it is possible that different assumptions or screening strategies should be 

used.  In axon guidance, more repulsive than attractive cues are known (Tessier-Lavigne 

and Goodman, 1996).  By analogy, there might be many more repulsive than attractive 
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cues in synaptic specificity.  As an alternative approach to the GRASP screen done here, 

a genetic screen could be performed to identify factors that prevent synaptogenesis.  

Analysis of serial-section EM has identified many fasciculated neurons that do not 

synapse (Durbin, 1987).  In wild-type animals, GRASP should fail to identify synapses 

between these cells, but in mutants in which the cells synapse, a GRASP label would 

appear.  A search for a signal in an unlabeled strain allows investigators to screen more 

quickly.  In a more fanciful analysis, this approach might be partnered with a behavioral 

screen for mutants that acquire a new behavior consistent with the functions of those 

cells. 

The genetic nature of the ky957 mutation  

The ky957 mutation was identified in a genetic screen as a mutation that disrupts 

ASH-to-AVA GRASP labeling.   ky957 maps to a small region that contains kyIs501, and 

the ability of different ASH-to-AVA GRASP transgenes to suppress ky957 suggests that 

it is associated with kyIs501.  The ky957 phenotype of reduced GRASP labeling would be 

consistent with reduced functionality of the protein products in the transgene or reduced 

expression of the GRASP transgenes.   

An EMS mutation in one or several of the GRASP transgenes in kyIs501 could 

cause a loss-of-function allele that reduces GRASP labeling at ASH-to-AVA synapses.  

kyIs501 carries multiple copies of the pre- and post-synaptic PTP-3A::spGFP11 and 

NLG-1::spGFP1-10 transgenes, so the ky957 GRASP phenotype could require loss-of-

function mutations in several copies of that transgene or a mutation in the most highly 

expressed copy.  In this model, other GRASP arrays restore GRASP labeling through 

functional replacement of the mutated forms.  The effects of the non-coding GRASP 
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transgenes may be explained by alterations in transgene expression.  Transgene 

expression in kyIs501 is likely dictated by a balance of transcriptional activators recruited 

to promoters in the array and repressors that target repetitive DNA non-selectively.  If 

repressors are present in limiting qualities, as has been proposed in other contexts 

(Grewal et al., 1998), the presence of an additional non-coding repetitive array may titrate 

away the repressor activity and boost expression of the intact GRASP transgenes in 

kyIs501 to suppress ky957.   

A dominant-negative mutation in a single copy of either PTP-3A::spGFP11 or 

NLG-1::spGFP1-10 could interfere with the function of other wild-type copies of that 

carrier.  The partial penetrance of ky957 suggests that if there is a dominant-negative 

form of one of the GRASP carriers present in ky957 kyIs501, it is not a complete 

suppressor.  Therefore, wild-type GRASP constructs could suppress such a mutatiotn by 

titrating the effects of the dominant negative allele.  As described above, increased 

expression of kyIs501 due to titration of repressive factors to this array could increase 

expression of the GRASP transgenes and GRASP labeling.     

Another genetic mechanism by which ky957 could affect kyIs501 is through 

reduced expression of the GRASP transgenes.  Array CGH suggests that ky957 is not a 

large deletion in kyIs501, but ky957 could be a mutation that creates a binding site for a 

transcriptional repressor such as a chromatin remodeling factor that binds and represses 

kyIs501.  Alternatively, ky957 might disrupt a promoter element in kyIs501.  Suppression 

by other GRASP arrays or titration of repressors by non-coding arrays is easily 

reconciled with this model. In this model, GRASP carriers expressed from other arrays 

can functionally substitute for the silenced copies in kyIs501 to suppress ky957.  
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Repetitive transgenes are particularly susceptible to transcriptional silencing, and non-

coding GRASP arrays might recruit away limiting repressive factors to derepress kyIs501 

and suppress ky957.    

Illumina sequencing identified many point mutations in coding and non-coding 

sequences of the single copies of the GRASP plasmids present in kyIs501, but the 

functional consequences of any of these mutations remains unclear.  Determining which, 

if any, of these point mutations causes ky957 may not be possible with current methods.  

Instead, characterization of the functional mechanism might be possible through antibody 

staining of GRASP carrier protein localization and quantitative RT-PCR of the GRASP 

carrier expression.  

Although ky957 was identified in a genetic screen, ky957 could represent an 

epigenetic allele that silences only the integrated kyIs501 transgene.  Heritable epigenetic 

mutations have been identified in numerous systems, including plants and mice, in a 

phenomenon termed paramutation.  Paramutation has been observed at repetitive 

endogenous and transgenic loci, and involves stably transmitted repression of genomic 

regions (Suter and Martin, 2009).  Paramutation in several organisms is known to involve 

short template-derived RNAs and silencing through CpG methylation of DNA .  

Although C. elegans is believed to lack the ability to methylate DNA, RNA-based gene 

silencing in C. elegans is well documented.  RNA interference (RNAi), in which double-

stranded RNAs initially induce gene silencing through degradation of homologous 

mRNAs, can also trigger transcriptional gene silencing (RNAi-TGS) (Grishok and Sharp, 

2005).  C. elegans RNAi-TGS is propagated for >80 generations in the absence of the 

trigger dsRNA (Vastenhouw et al., 2006).  RNAi-TGS-like silencing of transgenes in the 
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absence of exogenous dsRNA triggers has been observed in several mutants such as tam-

1 (Hsieh et al., 1999; Wang et al., 2005).  tam-1 contains a RING finger motif, which in 

Drosophila are found in transcriptional repressors, and belongs to the synMuvB class of 

genes that have been shown to mediate transcriptional repression.  Some, but not all, 

repetitive transgenes expressed in numerous somatic tissues, including neurons, are 

silenced in tam-1 mutants.   SynMuvB mutants such as tam-1 can enhance RNAi in 

somatic tissues, including neurons, and this enhancement may potentiate RNAi-TGS of 

repetitive transgenes (Wang et al., 2005). 

Subsequent studies of RNAi-TGS have begun to elucidate pathways downstream 

of small RNAs that enact silencing in numerous organisms.   In fission yeast, RNAi-TGS 

of centromeric regions involves dicer- and argonaute-dependent generation of small 

interfering RNA (siRNA) that leads to Clr-4-dependent methylation of Histone 3 lysine 9 

which is recognized by Swi6, a chromodomain protein (Hall et al., 2002; Volpe et al., 

2002).  The C. elegans argonaute rde-1 is required for RNAi-TGS (Cui et al., 2006), and 

the C. elegans Swi6 homolog, hpl-2, is a synMuvB gene, suggesting that these 

components of the RNAi-TGS pathways are shared in C. elegans (Couteau  et al., 2002).  

RNAi-TGS in C. elegans is dependent on mes-4 and mrg-1 and histone deacetylases 

(HDAC) (Grishok and Sharp, 2005; Cui et al., 2006), but ky957 is not suppressed by mes-

4 or mrg-1 RNAi, although neurons are often refractory to RNAi.  ky957 is also not 

suppressed by the HDAC inhibitors n-butyrate and Trichostatin A.  Importantly, studies 

of the effector mechanism of RNAi-TGS were performed on transgenes expressed in 

non-neuronal tissues, and it is possible, given the different RNAi activity observed in 
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neurons, that tam-1-dependent silencing in neurons involves a different but unknown 

mechanism.  

Exogenous ASH-to-AVA GRASP transgenes and three distinct genomic DNA 

fragments from Chromosomes IV and V were able to suppress the ky957 mutant 

phenotype in kyIs501.  In the former case, the DNA sequence of the GRASP transgene 

alone appears sufficient to suppress ky957.  The role of DNA sequence in suppression by 

the genomic DNA from Chromosomes IV and V could be tested with arrays carrying null 

mutations in the genes such as clp-6 that are located in these genomic DNA fragments.  

BLAST alignment did not identify any large regions of DNA sequence homology in 

these genomic regions, but motif identification software may identify short sequences 

enriched in those areas that could be used to identify binding proteins and the mechanism 

by which these arrays suppress ky957.       

 

Summary 

 Neuroscientists have marveled at the intricate and exquisitely precise architecture 

of neural circuits for over a century.  Our understanding of how these circuits form and 

function is incomplete; moreover, the connectivities of many circuits remain elusive.  A 

significant hurdle in the study of these circuits has been the scarcity of methods to allow 

rapid and fine-scale mapping of circuits.  This thesis describes the GRASP method, a 

genetic tool that enables visualization of specific synapses in the central nervous systems 

of live animals.  GRASP is able to detect altered connectivity in C. elegans, and has 

proven useful in circuit mapping in other nervous systems (Gordon and Scott, 2009).   
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GRASP and related applications should enable insights into fundamental questions in 

many areas of neuroscience.     
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Chapter 5

Methods

Strains

Nematodes were cultured according to standard techniques at 20-25°C (Brenner et al.,

1974). The following mutations were used: LGI, unc-40(e271), unc-37(e262), unc-

13(e450)); LGII, unc-104(e1265),syd-1(ju82), unc-4(e120); LGV, unc-42(e270), him-

5(e1490); LGX, sax-3(ky123), unc-6(ev400), syg-1(ky652), syd-1(ju37), sad-1(ky289),

syg-2(ky671). Transgenes were kyEx1833[myo-3::nls::CFP::lacZ (10 ng/µl), myo-

3::CD4-1::spGFP1-10 (50 ng/µl), myo-3::CD4-2::spGFP1-10 (50 ng/µl)];

kyEx1834[myo-3::mCherry (10 ng/µl), myo-3::GFP11::CD4-1 (50 ng/µl), myo-3::CD4-

2::spGFP11 (50 ng/µl)]; kyEx1904[ace-4::mCherry (10 ng/µl), ace-4::CD4-1::spGFP11

(50 ng/µl), ace-4::CD4-2::spGFP11 (50 ng/µl), odr-1::DsRed2 (20 ng/µl)];

kyEx1905[him-4::nls::CFP::lacZ (50 ng/µl), him-4::CD4-1::spGFP1-10 (25 ng/µl), him-

4:CD4-2::spGFP1-10 (25 ng/µl), rol-6 (100 ng/µl)]; kyEx1731[rig-3::PTP-

3A::spGFP11 (10 ng/µl), rol-6 (100 ng/µl)] kyEx1718[unc-4::CD4-2::spGFP1-10 (50

ng/µl), unc-4::mCherry (5 ng/µl), odr-1::dsRed (15 ng/µl)]; kyEx1710[rig-3::CD4-

2::spGFP11 (50 ng/µl), rol-6 (100 ng/µl)]; kyEx1935[unc-4::CD4-2::spGFP1-10 (50

ng/µl), odr-1::dsRed2 (20 ng/µl)]; kyEx1939[myo-3::CD4-2::spGFP1-10 (50 ng/µl),

odr-1::dsRed2 (20 ng/µl)];
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kyEx1941[myo-3::CD4-2::GFP1-10 (50 ng/µl), odr-1::dsRed2 (20 ng/µl)];

kyEx2003[tph-1::SL2::PTP-3A::spGFP11 (50 ng/µl), tph-1::SL2::mCherry (5 ng/µl),

flp-17::mCherry (2 ng/µl)]; kyEx2004[tph-1::SL2::PTP-3A::spGFP11 (50 ng/µl), tph-

1::SL2::mCherry (5 ng/µl), flp-17::mCherry (2 ng/µl)]; kyEx2005[tph-1::SL2::PTP-

3A::spGFP11 (50 ng/µl), tph-1::SL2::mCherry (5 ng/µl), flp-17::mCherry (2 ng/µl)].

wyEx1346[mig-13::nlg-1::YFP (5 ng/µl), odr-1::DsRed2 (50 ng/µl)], wyEx1957[mig-

13::nlg-1::YFP (5 ng/µl), mig-13::mCherry::rab-3 (5 ng/µl), odr-1::DsRed2 (50

ng/µl)], wyEx1345[opt-3::nlg-1::YFP (20ng/µl), odr-1::DsRed2 (5 ng/µl)], wyEx1955-

1956[unc-86::nlg-1::YFP (1ng/µl), unc-86::mCherry:rab-3(0.5 ng/µl), odr-

1::DsRed2(50 ng/µl)], wyEx1915[unc-4::nlg-1::YFP (25 ng/µl), unc-4::mCherry (5

ng/µl), odr-1::DsRed2 (50 ng/µl)], wyEx1973[flp-18::mCherry (5 ng/µl), unc-122::GFP

(20 ng/µl)], wyEx1334-1344[flp-18::nlg-1::spGFP11 (30ng/µl), odr-1::DsRed2 (50

ng/µl)], wyEx1968-1972[unc-4::nlg-1::spGFP1-10 (20ng/µl), odr-1::DsRed2 (50

ng/µl)], wyEx1845[unc-4::nlg-1::spGFP1-10 (20ng/µl), flp-18::nlg-1::spGFP11 (30

ng/µl), unc-4::mCherry (5 ng/µl), odr-1::DsRed2 (50 ng/µl)], wyEx1914[unc-4::nlg-

1::spGFP1-10 (20 ng/µl), flp-18::nlg-1::spGFP11 (30ng/µl), flp-18::mCherry::rab-3

(10 ng/µl), odr-1::DsRed2 (50 ng/µl)], wyEx1733[ttx-3::nlg-1::spGFP1-10 (80 ng/µl),

glr-3::nlg-1::spGFP11 (40 ng/µl), unc-122::DsRed2 (20 ng/µl)], wyEx1503[gcy-8::nlg-

1::spGFP11 (10 ng/µl), ttx-3::nlg-1::spGFP1-10 (60 ng/µl), unc-122::DsRed2 (20

ng/µl)], kyIs491[sra-6::ptp-3a::spGFP11 (6 ng/µl), flp-18::nlg-1::spGFP1-10 (15

ng/µl), sra-6::mCherry::rab-3 (1ng/µl), pSM (40 ng/µl), ofm-1::DsRed2 (7 ng/µl)],

kyIs501[sra-6::ptp-3a::spGFP11 (6 ng/µl), flp-18::nlg-1::spGFP1-10 (15 ng/µl), sra-

6::mCherry::rab-3 (1ng/µl), pSM (40 ng/µl), ofm-1::DsRed2 (7 ng/µl)], kyEx3587 [sra-
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6::ptp-3a::spGFP11 (6 ng/µl), flp-18::nlg-1::spGFP1-10 (15 ng/µl), flp-18::mCherry

(1ng/µl), pSM (40 ng/µl), elt-2::mCherry (7 ng/µl)], kyEx3587 [sra-6::stop::ptp-

3a::spGFP11 (6 ng/µl), flp-18::stop::nlg-1::spGFP1-10 (15 ng/µl), flp-18::mCherry

(1ng/µl), pSM (40 ng/µl), elt-2::mCherry (7 ng/µl)],         .

Cell Culture

Primary cell culture of embryonic C. elegans muscles and neurons was performed

essentially as described (Christensen et al., 2002).  Briefly, gravid hermaphrodites were

lysed with 0.5M NaOH and 0.5% NaOCl to release embryos, which were digested with

~2 U/mL Serratia marcescens chitinase (Sigma, St. Louis, MO) to dissolve the eggshell.

Cells were separated by trituration and passed through a 5 µm Durapore syringe filter

(Millipore, Bedford MA).  The cell preparation was rocked overnight in microcentrifuge

tubes at room temperature to allow differentiation and aggregation.  The next day, cells

were transferred to poly-L-lysine-coated glass slides (Polysciences, Warrington, PA) and

allowed to adhere for at least one hour in humidified chambers before coverslips were

added and sealed with clear nail polish.

Molecular biology

Split GFP fragments

For CD4 GRASP and PTP-3A:CD4 GRASP, spGFP1-10 cDNA was synthesized from

published sequences (Cabantous et al, 2005), using cDNA codons optimized for C.

elegans (BioBasic, Toronto, Canada). spGFP11 was generated from complementary

oligonucleotides with the sequences 5’-
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GCTAGCCGTGACCACATGGTCCTTCATGAGTATGTAAATGCTGCTGGGATTAC

AGGTGGCGGCGGAAGTGGAGGTGGAGGCTCGGTCGAC-3’ and 5’-

GTCGACCGAGCCTCCACCTCCACTTCCGCCGCCACCTGTAATCCCAGCAGCAT

TTACATACTCATGAAGGACCATGTGGTCACGGCTAGC-3’.  For NLG-1 GRASP,

fragments of spGFP1-10 and spGFP11 were kind gifts of L. Looger.

To ensure that this split GFP would function properly in C. elegans, which is

cultivated at a lower temperature than mammalian cells or bacterial cells, spGFP1-10 and

spGFP11 were coexpressed under the muscle cell-specific myo-3 promoter in transgenic

strains.  Strong fluorescence was observed within the cytoplasm of muscle cells

expressing both fragments, but no detectable GFP fluorescence was observed when either

spGFP1-10 or spGFP11 was expressed on its own (data not shown).

CD4 carriers

CD4 cDNA was a gift from P. Dhadialla.  CD4-1 and CD4-2 were amplified with the

oligonucleotides 5’-ATCATCGTCGACAGAGCCACTCAGCTCCAG-3’ and 5’-

ATCATCGTCGACTTCCAGAAGGCCTCCAGC-3’, respectively, with the common

reverse oligonucleotide 5’-ACTCACGATATCCTAGCGCCTTCGGTGCCGGCACCT-

3’.  These fragments were inserted into the SalI-EcoRV sites of pSM-PAT-3, a variant of

the C. elegans expression vector pSM containing a 5’ signal sequence.  To generate this

plasmid, the PAT-3 signal sequence and signal peptide cleavage signal from pPD122.39

were amplified with oligonucleotides 5’-

TCGTATGTTGTGTGGAATTGTGAGCGGATA-3’ and 5’-

TATAGCTAGCAGTGACTTCTCCAGTCTTCC-3’ and ligated as an XmaI/NheI

fragment into the XmaI-NheI sites of pSM, with the signal peptide peptide cleavage site

129



immediately followed by an in-frame NheI site.  CD4-1::spGFP1-10, CD4-2::spGFP1-

10, CD4-1::spGFP(11), and CD4-2::spGFP11 were generated by cloning spGFP1-10

and spGFP11 sequences into the NheI-SalI sites of pSM-PAT-3::CD4-1and pSM-PAT-

3::CD4-2.

For experiments in neurons, CD4 transgene expression was increased by codon-

optimizing the CD4 sequence for C. elegans and adding synthetic intron sequences.  A

CD4-2::spGFP11 construct was synthesized from ~50-mer oligonucleotides according to

the GeneDesign protocol (Richardson et al., 2006) with the substitution of PfuTurbo

polymerase (Stratagene, La Jolla, CA) for ExTaq polymerase.  Two ~500 bp products

were fused by overlap-extension PCR, cloned into TopoBlunt (Invitrogen, Carlsbad, CA),

and recloned into pSM-PAT-3. Introns were introduced into the spGFP1-10 cDNA by

overlap extension PCR, and this product fused to codon-optimized CD4-2 by another

round of overlap extension PCR.

PTP-3A carriers

An Asp718/AvrII fragment containing the ptp-3a minigene and 3’ untranslated region (a

kind gift of B. Ackley and Y. Jin) were cloned into the Asp718 and SpeI sites of pSM.

An AscI-SpeI fragment containing the pat-3 signal sequence, spGFP11, a glycine-serine

linker, and a short 5’ segment of the ptp-3a minigene was cloned into the AscI and SpeI

sites of this vector to generate the pat-3 signal sequence::spGFP11::ptp-3a chimeric

minigene. This construct was subsequently modified to remove intron sequences that

could modify transgene expression using quickchange to generate ptp-3aΔI.
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NLG-1 carriers

An nlg-1::GFP construct was generated by M. VanHoven and K. Shen (Stanford) in two

steps.  First, the GFP in pSM-GFP was replaced with a fragment generated by amplifying

the nlg-1 signal sequence predicted by SMART and GFP, using a 5’ primer adding an

NheI site and a 3’ primer adding an EcoRI site.  The remainder of nlg-1 cDNA was

amplified with primers adding 5’ EcoRI and SacI sites and a 3’ EcoRI site and subcloned

into the EcoRI site.  nlg-1::spGFP1-10 and nlg-1::spGFP11 were generated by replacing

the NheI-SacI fragment in nlg-1::GFP with a fragment generated by amplifying spGFP1-

10 or spGFP11 using primers that added 5’ NheI and 3’ SacI sites.

Promoters for GRASP:

Most promoters were cloned into pSM vectors using standard methods.  To generate flp-

18::nlg-1::spGFP1-10, unc-4::nlg-1::spGFP1-10, ttx-3::nlg-1::spGFP1-10, glr-3::nlg-

1::spGFP11, and gcy-8::nlg-1::spGFP11 SphI-SmaI fragment containing the flp-18, ttx-

3, or gcy-8 promoter, or SphI-AscI fragments containing the unc-4 or glr-3(a gift of M.

Margeta) promoter were subcloned into the multiple cloning site in nlg-1::spGFP1-10 or

nlg-1::spGFP11.

To create a tph-1 promoter expressed in HSN, ~3kb of tph-1 promoter and the

first four exons and three introns of the tph-1 gene were amplified from N2 genomic

DNA, a stop codon was introduced by PCR, and this fragment was fused to an SL2

sequence by overlap-extension PCR.  This plasmid creates a bicistronic mRNA in which

the SL2 element initiates an inserted RNA of interest (Coates and de Bono 2002).

nlg-1::YFP
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cDNAs in attL-containing pDONR201 vector (OpenBiosystems, Huntsville, AL)

encoding NLG-1 (C40C9.5) were recombined (K. Shen) into the C-terminal YFP pSM

Gateway Destination vector with LR Clonase (Invitrogen, Carlsbad, CA) containing the

mig-13 promoter (Klassen et al., 2007), opt-3 promoter, or unc-86 promoter (Patel et al.,

2006).  The unc-4::nlg-1::YFP plasmid was created by replacing an SphI-AscI fragment

containing the opt-3 promoter in opt-3::nlg-1::YFP with an unc-4 promoter fragment

from unc-4::mCherry (a gift from V. Poon).

mCherry::rab-3, mCherry, and nuclear CFP clones

mig-13::mCherry::rab-3 (Klassen et al., 2007) and unc-86::mCherry::rab-3 (Patel et al.,

2006) were previously described.  To generate the flp-18::mCherry::rab-3 construct, the

flp-18 promoter (Rogers et al., 2003) was amplified from N2 genomic DNA, adding 5’

SphI and 3’ SmaI sites, and subcloned into the SphI-SmaI fragment from ttx-

3::mCherry::rab-3 (a gift from D. Colón-Ramos), replacing the ttx-3 promoter.

The flp-18::mCherry construct was made by replacing the ttx-3 promoter in ttx-

3::mCherry (a gift from D. Colón-Ramos) with the flp-18 promoter.  Other mCherry

constructs were generated by introducing promoters into pSM-mCherry (a gift of N.

Pokala).

Nuclear CFP plasmids were generated from pPD133.45, a plasmid containing

myo-3::nls::CFP::LacZ.  The ttx-3 promoter was introduced into this plasmid as a

HindIII/XbaI fragment, replacing the myo-3 promoter, to create a nuclear CFP vector

suitable for FseI-AscI promoter fragments.
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Non-coding GRASP transgenes

Non-coding GRASP transgenes were made by inserting a single A immediately 5’ to the

NheI site after the pat-3 signal sequence in sra-6::ptp-3a::spGFP11 and flp-18::nlg-

1::spGFP1-10.  These mutations create a stop codon and place the GRASP carriers out of

frame with the signal sequence.

Cre-Lox transgenes

A NcoI-SacI fragment containing nCre (gift of R. Axel) was introduced into the NcoI and

SacI sites of pSM to generate pSM-nCre.

To generate pSM loxP, a ~3.5 kb LacZ cDNA fragment from pJM67 was

amplified with oligonucleotides 5’-

TACCGTTCGTATAGCATACATTATACGAAGTTATATGGTCGTTTTACAACGTC

GTG-3’ and  5’-

AGTAGTGGATCCTATTATTTTTGACACCAGAC-3’ and 5’-

GAGAGAGCTAGCTACCGTTCGTATAGCATACATTATACG-3’.  The stop sequence

was amplified using oligonucleotides 5’-

GCGCAGAGATCTAATAAAGAATAAAGAATAAATTT-3’ and 5’-

GAGAGAGCTAGCTACCGTTCGTATAATGTATGCTAT-3’ from template

oligonucleotides with the sequence 5’-

GATCTAATAAAGAATAAAGAATAAATTTTTTTTGAAACATGAAACATAACTT

CGTATAGCATACATTATACGAAGTTATA-3’ and 5’-
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CCGGTATAACTTCGTATAATGTATGCTATACGAAGTTATGTTTCATGTTTCAA

AAAAAATTTATTCTTTATTCTTTATTA-3’ .  The LacZ and stop fragments were

digested with BglII, ligated with T4 DNA ligase, and used as template for PCR

with oligonucleotides 5’-GAGAGAGCTAGCGATAACTTCGTATAGCATACAT-3’

and 5’-GAGAGAGCTAGCGATAACTTCGTATAATGTATGC-3’. The resulting PCR

product was digested with NheI and ligated into the NheI site of pSM-GFP.

Germline transformation and analysis of transgenes

Transgenic strains were generated as previously described (Mello and Fire, 1995).

Transgenic arrays were generated in either N2 or him-5 backgrounds.

In CD4::spGFP and PTP-3A::spGFP GRASP experiments, presynaptic transgenes

and postsynaptic transgenes were injected separately, demonstrated not to generate GFP

fluorescence individually, and then crossed to each other at the F3 generation or later.  In

some NLG-1::spGFP GRASP experiments, both transgenes were injected together, and

mosaic analysis of transgenic animals was used to ensure that GFP was only observed

when both pre-and post-synaptic cells carried the transgenes.  These controls indicated

that GFP signals were not artefactually caused by recombination between plasmids

during generation of the transgenes.

Light microscopy

Animals were mounted on 2% or 4% agarose pads containing 0.01% tetramisole or 1 mM

levamisole.  Most images were collected with a 63x objective on a Zeiss Axioskop or

Axioplan2 equipped with DIC and epifluorescence and a Hamamatsu C2400 CCD

camera.  Experiments in Chapter 3 were performed on a Zeiss AxioimagerZ.1 with a
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Axiocam MRm camera and analyzed with Axiovision software.  Images of HSN-to-VC

and HSN-to-vulval muscle GRASP labeling were acquired on a DeltaVision Image

Restoration Microscopy system on an Olympus IX-70 microscope with a 60x objective.

For quantification, a sub-stack that included all synaptic puncta was thresholded to yield

the best signal to noise ratio by an investigator blind to the animal’s genotype. The total

area of fluorescence of each region of the HSN axon was then quantified using ImageJ

1.37v.  Images were processed in Metamorph and Adobe Photoshop.

Electron microscopy

Electron microscopy was performed by Richard Fetter (Janelia Farms Research

Campus). An N2 L4 hermaphrodite was prepared for conventional transmission electron

microscopy as described (Shen et al., 2004) by fixation in 0.8% glutaraldehyde, 0.8%

osmium tetroxide in 0.1M Na-cacodylate buffer, pH 7.4, postfixation with 0.5% osmium

tetroxide in 100 mM Na-cacodylate buffer at 4º C, and staining en bloc with 1% aqueous

uranyl acetate prior to debydration and embedding in Eponate 12 resin.  Serial 50 nm

sections were cut with a Leica Ultracut T microtome, collected on Formvar coated slot

grids and stained with uranyl acetate and Sato's lead, and photographed with a JEOL

1200 EX/II TEM operated at 80 kV.

Mutagenesis

kyIs501 was generated by psoralen/UV integration of synchronized L4 kyEx2718.  EMS

mutagenesis was performed according to standard procedures (Brenner, 1974).  Several

hundred mutagenized kyIs501 P0 animals were placed at high density on seeded 6cm
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Petri dishes to lay eggs.  Animals exhausted available food before their progeny hatched,

so that F1 progeny arrested L1s 24 hours later.  F1 L1 progeny were collected,

resuspended in freezing medium (Brenner, 1974), aliquoted in cryovials containing >100

animals each, and frozen at –80 degrees.  For screening, 1-2 vials were thawed each day

animals allowed to recover and grow.  Two days later,  5 independent adult F1 animals

were picked to each of 20-30 plates.  L4 F2 progeny were screened 72 hours later.

Mapping

SNP mapping with CB4856 was performed according to standard procedures (Davis et

al., 2005) SNP mapping of ky957 with kyIs501 was performed using validated  SNPs

identified in whole-genome sequencing.  For identification of recombinants blind to

ky957 phenotype, F2 progeny of a ky957 kyIs501 x kyIs501 cross were plated singly and

allowed to lay eggs for 48 hours.  F2 animals were then removed and genotyped at EMS

SNPs on chromosome V.  The ASH-to-AVA GRASP phenotypes were scored in the F3

progeny of F2 animals with recombination breakpoints in the ky957 interval.

Genomic complementation rescue

Olignucleotides were designed with Primer3 (http://frodo.wi.mit.edu) and used to

amplify 12 kb PCR products from purified N2 genomic DNA with Expand DNTPack

Long Template (Roche).  PCR products were analyzed on 1% agarose gels stained with

ethidium bromide to confirm amplification of the desired products.  PCR products were

purified with Zymospin columns (Zymo) and concentrations were determined with a

Nanodrop 1000 spectrophotometer (Thermo Scientific).  Fosmid clones (Geneservice)
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were cultured and fosmids were induced with CopyControl (Epicentre) and prepared by

Miniprep (Qiagen).  Fosmids and PCR products were combined in pools spanning 50-60

kb with each 12 kb of DNA at 5-10 ng/µl, along with 1-3 ng/µl elt-2::mCherry

coinjection marker and 40-50 ng/µl pSM as bulk DNA, and injected into ky957 kyIs501

animals. For each pool, ASH-to-AVA GRASP labeling was scored in at least three

generations in at least three and typically five or more independent lines.

Whole-genome sequencing

Genomic DNA was isolated from several thousand mixed-stage ky957 kyIs501 animals

and purified through 3 phenol-chloroform extractions followed by ethanol precipitation.

Purified genomic DNA was then sheared and ligated to adapters to generate a paired-end

library. Whole-genome sequencing was performed in the Rockefeller Genomics

Resource center using Solexa-Illumina Genome Analyzer technology.  Fastq sequences

were aligned to the WormBase refersence sequence WS195 and single-base changes

were predicted with the MAQ program (http://maq.sourceforge.net).  Predicted

mutations were validated by PCR and conventional sequencing in ky957 kyIs501 and

kyIs501 DNA.

Identification of kyIs501 integration site

Each of the single end Illumina reads was mapped to the WS195 version of the C.

elegans genome using MAQ 0.7.1. To identify possible structural changes between

ky957 and the reference N2 genome within the rescuing interval, such as insertions,

deletions, inversions, and translocations, we queried the set of reads that MAQ was
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unable to align to the C. elegans reference genome for partial matches to the ky957

genetic interval. Partial matches were defined as reads with unique exact matches of 18

or more nucleotides starting from the beginning or end of the read, which were then used

as anchors to assemble the rest of the read.  Partially matched reads were then aligned

and regions with more than 3 partial matches were manually inspected. If the majority of

the reads aligned outside of the anchor region, the consensus sequence was aligned to

the C. elegans reference by BLAST. This inspection identified one region that matched

the ofm-1 promoter.  Subsequent analyses revealed a smaller region that matched the flp-

18 promoter, suggesting that both ends of kyIs501 have been determined.

Quantitative RT-PCR

Total RNA was extracted from ~1000 mixed-stage kyIs501 and ky957 kyIs501 on two

successive days using Trizol (Invitrogen).  RNA was reverse transcribed with iScript

(BioRad).  Oligonucleotides predicted to amplify 70-120 bp sequences from spliced

mRNA were designed for Y51A2B.5, Y51A2B.6, Y51A2B.9 with Primer3

(http://frodo.wi.mit.edu). Reactions were prepared with Fast SYBR Green kit (Applied

Biosystems) and prepared in 96-well plates and analyzed on a LightCycler 480 System

(Roche).  Specificity of each oligonucleotide pair was determined with dilution series

and dissociation curves.  Expression of each gene relative to act-3 controls was

calculated with SDS2.3 and RQManager1.2 software (Applied Biosystems).

RNAi

Oligonucleotides corresponding to several hundred bases of exon sequence of unc-22,
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mes-4, and mrg-1 were designed with primer3 (http://frodo.wi.mit.edu) and the T7

polymerase promoter sequence (TAATACGACTCACTATAGGG) was placed at the 5’

end of each oligonucleotide.  These olignucleotides were used to amplify transcription

templates from N2 genomic DNA and were purified with Zymospin columns (Zymo)

and quantified with a Nanodrop 1000 (Thermo Scientific) spectrophotometer.

Approximately 1 µg of template DNA was used as template for the T7 RiboMAX

Express RNAi System (Promega).  dsRNA was annealed by heating to 75 degrees and

slow cooling to room temperature.  dsRNA concentration was determined and each

dsRNA was diluted to 1µg/µl.  Gonads of ky957 kyIs501 hermaphrodites were injected

with each dsRNA and progeny of injected animals were scored for ASH-to-AVA

GRASP phenotypes 72 hours later.

HDAC inhibitors

HDAC inhibitor experiments were performed as described (Grishok and Sharp, 2005).

N-butyrate and Trichostatin A (TSA) (Sigma-Aldrich) were diluted in DMSO and added

to E. coli OP50 food that was used to seed growth plates.  24-48 hours later, adult ky957

kyIs501 and kyIs501 animals were picked to plates containing n-butyrate, TSA, or

DMSO.  ASH-to-AVA GRASP labeling was scored in L4 progeny 72 hours later.
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