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TRANSCRIPTOME-WIDE CHARACTERIZATION OF APOBEC1-CATALYZED 

RNA EDITING EVENTS IN MACROPHAGES  

Claire Ellen Hamilton, Ph.D. 

The Rockefeller University 2014 

 

RNA editing refers to the process by which the sequence of RNA is altered 

through the insertion, deletion or modification of specific nucleotides. Editing of 

mRNA transcripts can increase the informational complexity encoded by the 

genome by producing alternative protein isoforms through specific post-

transcriptional RNA editing events. Additionally, RNA editing in non-coding 

regions of mRNA transcripts has been shown to influence gene expression in a 

tissue-specific manner. In mammals, mRNA editing serves a diverse set of 

biological roles in neuronal function, host defense and lipid metabolism. The 

major mRNA editors acting in mammals include the adenosine deaminases 

acting on RNA (ADARs) and Apolipoprotein B mRNA Editing Catalytic 

polypeptide-1 (APOBEC1).  

 The ADARs and APOBEC1 were originally characterized as catalysts for 

previously characterized biologically important RNA-editing events that resulted 

in specific coding changes; study of additional editing activity was limited by 

standard sequencing techniques. APOBEC1 in particular was characterized in 

the small intestine as mediating a specific editing event in the coding region of 

Apolipoprotein B (Apob). APOBEC1-dependent RNA editing in Apob mediates the 

tissue-specific differential expression of Apob isoforms, a process important for 

intestinal lipid metabolism and transport. The development of next-generation 

sequencing has allowed for transcriptome-wide discovery of RNA editing 



	   	  

activity and has resulted in the identification of more than 10,000 RNA editing 

events, pointing to more biological functions for RNA editing than had been 

previously appreciated.   

 To search for additional APOBEC1 editing events, our lab developed a 

comparative RNA-Seq screen for the transcriptome-wide identification of 

enzyme-specific RNA editing events. Applying this technique to small intestine 

enterocytes, the site of known APOBEC1 activity, we identified over 30 novel 

APOBEC1 editing events in transcript 3’UTRs, which represents the first example 

of physiological APOBEC1 editing outside of the Apob transcript. These newly 

identified editing events were located in evolutionarily conserved regions of 

transcript 3’UTRs, suggesting that this editing activity may have functional 

relevance. The discovery of additional editing activity for APOBEC1, as well as 

the fact that it is expressed in a number of immune cell types, suggests that 

APOBEC1, like other members of the AID/APOBEC family, may contribute to 

cellular immune processes.  

 The focus of the work presented in this thesis is the identification and 

characterization of physiological APOBEC1 editing activity in bone marrow-

derived macrophages (BMDMs). Using a comparative RNA-Seq screen, I 

identified more than 100 novel APOBEC1 editing events in BMDMs. This 

APOBEC1 activity occurred in two distinct editing patterns and fell within 

evolutionarily conserved regions of transcript 3’UTRs. Luciferase reporter assays 

were utilized to assess the consequences of APOBEC1 3’UTR editing on protein 

expression and identified a number of combinations of editing events that affect 

translational outcomes. To determine if APOBEC1 editing could modulate 

protein expression by altering miRNA targeting, high-throughput sequencing of 



	   	  

RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) of the 

Argonaute (Ago) proteins was performed on wild-type and APOBEC1-deficient 

cells. HITS-CLIP yielded transcriptome-wide maps of Ago binding and potential 

miRNA seed regions. While there was considerable overlap between loci 

targeted by both Ago and APOBEC1, little evidence was found for APOBEC1 

disruption or creation of miRNA seed targets. Overall, this work characterizes 

abundant APOBEC1 activity in BMDMs that can modulate protein expression 

levels by a miRNA-independent mechanism. These results point to broader 

functions for APOBEC1 in transcript regulation and host defense.  
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Chapter 1: Introduction  

RNA editing describes the multiple processes by which an RNA sequence 

is altered from that encoded by its DNA, through the insertion, deletion or 

modification of specific nucleotides (reviewed in Gott and Emeson, 2000). The 

term RNA editing was coined in the 1980s specifically to describe the insertion 

and deletion of uridine in the mitochondrial RNA of kinetoplastids (Benne et al., 

1986). This type of RNA editing is termed insertion/deletion editing (reviewed in 

Gott and Emeson, 2000).  

 While the historical definition of RNA editing involves the insertion or 

deletion of mitochondrial nucleotides, the RNA editing field is currently 

predominantly focused on base-modification editing. Unlike uridine 

insertion/deletion editing, base modification occurs in all kingdoms of life and 

functions in a diverse set of biological processes. In base-modification editing, an 

adenosine or cytidine nucleotide is deaminated, resulting in its conversion to a 

substitute base. This reaction is catalyzed by two families of deaminase enzymes: 

adenosine deaminases convert adenosine to inosine (A to I) and cytidine 

deaminases convert cytidine to uridine (C to U). Adenosine and cytidine 

deaminases can act on a diverse set of RNA substrates including tRNAs, mRNAs 

and miRNAs.  

 

1.1 Base-modification editing of tRNAs 

One particularly important form of base modification editing contributes 

to the post-transcriptional modification of tRNAs. Inosine, the product of 

adenosine deamination, can base pair with U, C or A nucleotides. Therefore, the 

introduction of inosine into the first position of the tRNA anticodon (I34) 
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increases the base-pairing flexibility of the tRNA. Along with G:U base-pairing, 

this flexibility is the basis for the “wobble” hypothesis, by which a single tRNA 

can recognize multiple mRNA codons. Editing of tRNA anticodons is a process 

catalyzed by the adenosine deaminases acting on tRNAs (ADATs). In bacteria, 

the adenosine deaminase, TadA/ecADAT2 catalyzes formation of I34 in tRNAArg 

(Wolf et al., 2002). The homologous eukaryotic enzymes, which function as a 

heterodimer of Tad2p/ADAT2 and Tad3p/ADAT3, have a broader specificity 

and act on 7 or 8 tRNA substrates (Gerber and Keller, 1999). These enzymes are 

essential for cell viability in bacteria and yeast, underscoring the importance of 

this specific post-transcriptional modification of tRNA (Gerber and Keller, 1999; 

Wolf et al., 2002).  

The ADATs, although acting on adenosine, have considerable homology 

to cytidine deaminases, particularly in the zinc-dependent deaminase motif 

(Gerber and Keller, 1999). This motif is shared by an entire super-family of 

deaminases that include enzymes that act on free cytosine, cytidine and dCMP as 

well adenosine and cytidine in the context of a polynucleotide. The fact that the 

ZDD is shared by enzymes that can deaminate both C and A, underscores the 

biochemical similarities in the deamination reactions that converts A to I and C 

to U (reviewed in Conticello et al., 2007). Indeed, in trypanosomes, the ADAT2/3 

heterodimer was shown to be capable of catalyzing A-to-I editing in tRNA as 

well as C-to-U editing in a ssDNA substrate (Rubio et al., 2007). The ADATs have 

been proposed to be the evolutionary precursors of the polynucleotide 

deaminases, the ADARs and the AID/APOBEC family (Conticello, 2008; 

Conticello et al., 2007).  

2



	   	  

Although RNA editing also occurs in mitochondrial RNA, tRNA and 

ribosomal RNA, the focus of this work is mRNA editing. Editing events in 

mRNA serve diverse biological functions. Editing of mRNAs can increase genetic 

diversity by altering the genome-encoded transcript sequences, generating 

alternative protein isoforms. Additionally, editing in untranslated regions has 

been proposed to lead to altered gene expression. In higher eukaryotes, mRNA 

editing events are mediated by the adenosine deaminases acting on RNA 

(ADARs) that catalyze adenosine-to-inosine (A-to-I) editing (Figure 1.1), and 

apolipoprotein B-editing enzyme, catalytic polypeptide-1 (APOBEC1), a member 

of the AID/APOBEC family of polynucleotide cytodine deaminases that is 

responsible for cytidine-to-uridine (C-to-U) editing (Figure 1.2). 

 

1.2. Adenosine deaminases acting on RNA: ADARs 

The adenosine deaminases acting on RNA (ADARs) bind to dsRNA 

substrates and catalyze the conversion of adenosine to inosine (reviewed in Bass, 

2002; Keegan et al., 2004; Savva et al., 2012; Valente and Nishikura, 2005). Inosine 

is read as guanosine by translational and reverse transcriptional machinery. A-

to-I editing is the most common editing event in higher eukaryotes, occurring 

predominantly in RNA duplexes formed from inverted Alu or LINE repeats in 

the untranslated regions (UTRs) of primary mRNA transcripts (Athanasiadis et 

al., 2004; Kim et al., 2004; Levanon et al., 2004). The ADARs were first identified 

as dsRNA-unwinding enzymes in Xenopus laevis (Bass and Weintraub, 1987; 

Rebagliati and Melton, 1987) but were redefined shortly thereafter as dsRNA-

editing enzymes (Bass and Weintraub, 1988; Wagner et al., 1989). In mammals, 

three ADARs (ADAR1-3) have been identified, based on conservation in the C-

3
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terminal deaminase and double-stranded RNA-binding domains. ADAR1 and 

ADAR2 demonstrate deaminase activity (Gerber et al., 1997; Kim et al., 1994; Lai 

et al., 1997; Melcher et al., 1996b), but the function of the catalytically inactive 

ADAR3 remains elusive (Chen et al., 2000; Melcher et al., 1996a). ADAR1 is the 

best-characterized member of this gene family. Two differentially localized 

isoforms of ADAR1 have been identified. The larger form, ADAR1-L or ADAR 

p150, is present in both the cytosol and nucleus and is regulated by an interferon-

inducible promoter (George and Samuel, 1999b; 1999a; Patterson and Samuel, 

1995). The smaller form, ADAR1-S or ADAR1 p110, is exclusive to the nucleus 

and its transcription is driven by two constitutively active promoters (Kawakubo 

and Samuel, 2000). The ADAR proteins are highly conserved in metazoa; two 

ADAR proteins are expressed in C. elegans (Tonkin et al., 2002) while one ADAR 

functions in Drosophila (Palladino et al., 2000). However, while mammalian 

ADARs are essential for life (Higuchi et al., 2000; Wang et al., 2000), ADAR-

deficient Drosophila or C. elegans exhibit significant but non-fatal phenotypes 

(Palladino et al., 2000; Tonkin et al., 2002).  

The domain organization of mammalian ADARs consists of two or three 

amino-terminal dsRNA binding domains (dsRBDs) and a C-terminal catalytic 

zinc-dependent deaminase domain (ZDD). ADAR editing exclusively occurs in 

dsRNA structures and can occur as “selective” editing or “non-selective” editing 

determined largely by the size of the targeted dsRNA duplex. Smaller (15-40 

base-pairs) duplexes promote the deamination of a few “select” adenosines. 

These smaller duplexes, which typically contain additional structural features 

such as bulges, mismatched base-pairs and internal loops (Dawson et al., 2004; 

Lehmann and Bass, 1999), are characteristic of ADAR editing within the coding 
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regions of mRNA targets (Burns et al., 1997; Higuchi et al., 1993; Lomeli et al., 

1994).  

Larger structures (>50 base-pairs) support non-selective deamination 

(Nishikura et al., 1991; Polson and Bass, 1994). This non-selective editing 

predominantly occurs in the untranslated regions of mRNA transcripts, which 

have considerable secondary structure and can form long dsRNA duplexes via 

the pairing of inverted repetitive elements(Athanasiadis et al., 2004; Kawahara 

and Nishikura, 2006; Levanon et al., 2004). Other dsRNA duplexes found in 

ADAR-expressing cells, including viral double-stranded replication 

intermediates and pre-miRNA transcripts (Blow et al., 2006; Kawahara et al., 

2007b), are also well-characterized ADAR targets. Overall, ADARs can act on a 

diverse array of RNA targets and are implicated in many essential biological 

functions.  

The ADAR proteins and APOBEC1 are the only known mammalian 

mRNA editors. Over the last 20 years ADARs have been extensively 

characterized as important for neurological function, hematopoeisis, viral 

immunity and regulation of the interferon response (reviewed in Bass, 2002; 

Hamilton et al., 2010). Furthermore, since the advent of high-throughput 

sequencing technologies, the transcriptomes of ADAR-expressing organisms 

have been extensively deep sequenced, producing extensive sequence data and 

an ever-expanding list of novel RNA editing events in humans (Li et al., 2009b; 

Peng et al., 2012), mice (Cattenoz et al., 2013; Gu et al., 2012) and Drosophilia 

(Hughes et al., 2012; Rodriguez et al., 2012). In contrast, work on APOBEC1 has 

been predominantly focused on intestinal editing. The transcriptome-wide 

editing data has been limited to the work produced by our lab (Rosenberg et al., 
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2011b), identifying 32 novel RNA editing events catalyzed by APOBEC1 in 

intestinal enterocytes.  

ADAR and APOBEC1 editing activities closely resemble one another. Both 

ADAR and APOBEC1 were identified as catalysts of functionally important 

mRNA editing events within the transcript coding regions. Subsequent 

transcriptome-wide sequencing of both enzymes has revealed abundant RNA 

editing within transcript 3’UTRs, with mostly uncertain biological relevance. The 

following sections provide a comprehensive review of ADAR editing in 

mammals including the well-characterized functions of ADAR editing in coding 

regions as well as the more functionally elusive, but extensive, ADAR editing in 

mRNA UTRs.   

 

1.2.1 ADAR editing in the brain 

ADARs are highly expressed in brain tissue and are important for 

neurological function. Site-specific ADAR editing in the brain leads to codon 

changes and thereby protein products with altered physiological functions 

(reviewed in Bass, 2002; Keegan et al., 2004; Valente and Nishikura, 2005). ADAR2 

extensively edits the mRNA of multiple subunits of the glutamate receptor 

(GluR). One A-to-I event, termed the Q/R site, in the GluR-B subunit is essential 

(Higuchi et al., 2000). Upon translation, inosine at this position results in a 

protein with functional differences relative to the non-edited isoform, including 

decreased calcium permeability and altered channel kinetics (Higuchi et al., 1993; 

Lomeli et al., 1994). ADAR2 knockout mice exhibit seizures and premature 

mortality, a phenotype that is rescued by a single nucleotide change at the Q/R 

site of the GluR-B subunit (Higuchi et al., 2000), underscoring the importance of 
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this editing event. ADAR2 editing in the other GluR subunits is less well-

characterized and seems to impart more subtle effects on neurological function 

(reviewed in Bass, 2002).  

In mammals, ADAR editing also modulates the function of the serotonin 

receptor, 5-HT2CR. ADAR-catalyzed editing within the mRNA encoding 5-HT2CR, 

occurs at 5 different sites of the G-protein coupling domain (Burns et al., 1997; 

Niswender et al., 1998). These editing events allow for the expression of multiple 

isoforms of 5-HT2CR with different ligand binding and downstream signaling 

properties. Overall, the ADAR-dependent editing of the serotonin and glutamate 

receptors in the mammalian brain leads the production of multiple protein 

isoforms from one mRNA transcript, resembling APOBEC1 editing of Apob. 

These coding-region editing events underscore how RNA editing can increase 

biological diversity and functional plasticity, a process especially important in 

the brain.  

 

1.2.2. ADAR1 is essential for immune cell development 

Multiple observations demonstrate the importance of A-to-I mRNA 

editing in the immune system, starting with a requirement for ADAR1 in 

immune cell development. More specifically, knockout studies have defined a 

role for ADAR1 in fetal hematopoiesis. ADAR1-deficient mice are known to 

suffer from liver and bone marrow defects and typically die at embryonic day 

11.5–12.5 (Hartner et al., 2004). Using ADAR1 conditional knock-out models, 

Orkin and colleagues have further demonstrated that ADAR1 is necessary for the 

maintenance of both fetal liver-derived and adult bone marrow hematopoietic 

stem cells (HSCs) (Hartner et al., 2009). The authors propose that ADAR1 
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maintains HSC populations by protecting cells from early apoptotic events, 

possibly by regulating interferon signaling pathways (see below). Other recent 

work, however, suggests that ADAR1 activity is essential in the differentiation of 

hematopoietic progenitor cells (HPCs), rather than HSCs (XuFeng et al., 2009). 

Although the question remains as to which stage of hematopoiesis requires 

ADAR1, it is clear ADAR1-deficient precursors do not develop into mature 

immune cells.  

 

1.2.3. ADAR can restrict or enhance viral infection  

As an interferon-inducible gene, it is not surprising that ADAR1 has been 

implicated in antiviral defense. As described above, it appears to be a critical 

regulator of the interferon response, which implies activity on host RNA targets. 

However, as an RNA editing enzyme, ADAR1 could presumably edit viral 

RNAs in a process not unlike APOBEC3-family hypermutation of retroviral 

cDNA. Indeed, like HIV antagonism of APOBEC3G by the Vif protein, vaccinia 

virus and adenovirus have evolved ADAR1 inhibitors that specifically impair 

ADAR1 deaminase activity (Lei et al., 1998; Liu et al., 2001), suggesting an anti-

viral function for ADAR1. ADAR1 does edit a broad spectrum of viral targets but 

seems to play both pro- and anti-viral roles in infection. A-to-I editing has been 

observed in diverse viral RNAs, including influenza virus (Tenoever et al., 2007), 

parainfluenza virus (Murphy et al., 1991), lymphocytic choriomeningitis virus 

(LCMV) (Zahn et al., 2007), vesicular stomatitis virus (VSV) (O'Hara et al., 1984), 

measles virus (Li et al., 2009c; Toth et al., 2009; Wang et al., 2008), polyomavirus 

(Kumar and Carmichael, 1997), hepatitis D virus (HDV) (Luo et al., 1990) and 

hepatitis C virus (HCV) (Taylor et al., 2005). Despite an early recognition of A-to-
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I hyper-editing in viral transcripts during persistent and lytic infections 

(Cattaneo, 1994), the consequences of many of these editing events is still under 

investigation. A clear example of direct ADAR antiviral editing has been 

observed in LCMV RNA transcripts (Zahn et al., 2007). In vitro and in vivo studies 

of LCMV infection demonstrated high rates of ADAR1-specific A-to-I editing 

events, leading to dysfunctional glycoproteins and impaired viral infectivity. In 

addition, recent work on HCV infection identified an ADAR1 editing-dependent 

loss of HCV replicons (Taylor et al., 2005). Replicon loss was thought to be 

attributable to an inosine-specific RNase (Scadden and Smith, 1997; 2001) or to 

viral genome instability introduced by weakly base-pairing inosine nucleotides 

(Taylor et al., 2005). ADAR family members can also directly restrict viral 

replication independent of its editing function. ADAR1 associates with and 

activates transcription factors involved in anti-viral gene expression, including 

nuclear factor 90 (NF90) (Nie et al., 2005). ADAR1 interacts with NF90 via an 

undefined dsRNA bridge and leads to the upregulation of NF90-regulated genes, 

including IFN!.  

In contrast to these well-characterized anti-viral functions, ADAR proteins 

can also promote viral infection and replication. A recent screen for effectors of 

the type I interferon response identified ADAR as a pan-viral stimulatory factor; 

ADAR enhanced the replication of numerous viruses including HCV, yellow-

fever virus, West Nile virus and HIV-1 (Schoggins et al., 2011). While p110 

ADAR1 is the predominant isoform during embryogenesis (George et al., 2005), 

the p150 interferon-inducible form is more prevalent in hematopoietic stem cells 

of the adult (Hartner et al., 2004). Expanding on their work with the conditional 

knockout mice, Orkin and colleagues showed that ADAR1 acts as novel 
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suppressor of the type I interferon response. Specifically, gene signatures of 

uninfected ADAR1-deficient HSCs and erythroid precursors are highly similar to 

those of virus-infected or interferon-treated cells. Additionally, ADAR1 knockout 

embryos were found to have significantly higher levels of type 1 interferon in 

extracellular fluid. It remains to be explained how ADAR1 dampens the 

interferon response in the absence of viral infection. ADAR1 could be editing a 

microRNA molecule or target, neutralizing an unidentified immunostimulatory 

dsRNA or functioning in the regulation of interferon-induced gene expression. 

An intriguing hypothesis is that ADAR1 functions as a cytosolic dsRNA binding 

protein competing for substrates with the DNA-dependent activator of interferon 

regulatory factors (DAI). In sequestering immunostimulatory dsRNA (such as 

viral replication intermediates) from DAI, ADAR1 may impair downstream 

innate immune signaling (Wang et al., 2008). The absence of ADAR1 dsRNA 

binding activity could lead to aberrant activation of the innate immune response 

and a corresponding induction of interferon production.  

Perhaps related to its role in regulation of the interferon response, ADAR1 

has been observed to bind and impair host antiviral response elements. Work on 

measles viral infection has shown ADAR1 inhibition of protein kinase regulated 

by RNA (PKR) and interferon regulatory transcription factor-3 (IRF-3) (Toth et 

al., 2009). Other groups have observed similar ADAR1 regulation of PKR during 

infections by VSV (Li et al., 2009c; Nie et al., 2007) and HIV (see below) as well. 

Inhibition of these proteins compromises the host cell’s ability to respond to viral 

signals, potentially promoting persistent infection. Interestingly, hyper-editing of 

viral transcripts has been observed in patients suffering from a complication of 

persistent measles infection. This paradoxical situation, in which there is 
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evidence of ADAR1 activity both supporting and antagonizing viral infection 

suggests a nuanced role for ADAR1 in host-virus interaction. It appears that 

ADAR1 can dampen type I interferon signaling by several mechanisms. This 

function may have evolved to protect the host from an inappropriate (i.e., in 

uninfected cells) or overactive (i.e., disproportionate response to infection) 

interferon response. This regulation might serve to counterbalance the effector 

functions of ADAR1 as an antiviral enzyme. However, it seems that in certain 

infections, ADAR1 anti-viral activity is not only impaired but the enzyme itself 

may be co-opted by viruses to support infection. In this context, the significance 

of ADAR1 hyper-editing viral RNA remains unclear.  

Like its deaminase cousin APOBEC3G, ADAR1 has recently been found to 

target and edit HIV-1 sequences. However, unlike APOBEC3G, which edits 

retrotranscript cDNA and restricts viral infection, ADAR1 targets viral RNA and 

enhances HIV protein expression, replication and infectivity (Doria et al., 2009). 

These effects are mediated by both editing-dependent and editing-independent 

mechanisms. Over-expression of ADAR1 in HIV-1 producer cells dramatically 

enhances expression of several viral proteins irrespective of RNA editing, 

possibly due to ADAR inhibition of PKR (Clerzius et al., 2009). Active RNA 

editing may also regulate virus production as ADAR1, but not experimentally-

engineered catalytic mutants, increased the release of progeny virions 2-fold and 

enhanced HIV-1 infectivity 2.5-fold (Doria et al., 2009). Further investigation is 

needed to understand the regulation, impact and mechanism of ADAR1 editing 

in HIV-1 RNA.  

The best-characterized ADAR-mediated viral editing event occurs during 

HDV infection. HDV is a subviral pathogen that is dependent on a concurrent 
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infection with HBV; it requires HBV surface antigen to infect hepatocytes (Lai, 

1995; Taylor, 2003). The genome of HDV is an ideal substrate for ADARs, as its 

single-stranded negative sense circular RNA forms secondary structures with 

frequent duplex regions (Wang et al., 1986). In addition to co-opting the hepatitis 

B surface antigen, the HDV genome encodes its own HDV-specific surface 

antigen (HDVAg), the antigenome transcript of which is edited by ADAR1 in a 

site-specific manner (Casey and Gerin, 1995; Luo et al., 1990; Polson et al., 1996). 

The HDVAg occurs in two forms, both essential for the viral life cycle. The short 

form, HDVAg-S is required for viral RNA replication (Kuo et al., 1989) while the 

long form (HDVAg-L) directs viral genome assembly and packaging (Chang et 

al., 1991; Ryu et al., 1992). ADAR1 targets the HDV antigenome at a specific 

“amber/W site,” thereby converting a stop codon (UAG) to a tryptophan (UIG). 

This allows for the translation of the long form of the HDV surface antigen 

(Casey and Gerin, 1995; Luo et al., 1990; Polson et al., 1996). The HDVAg-L then 

restricts viral replication in a trans-dominant fashion by binding HDAg-S and 

interrupting HDAg-S homodimers (Chao et al., 1990; Glenn and White, 1991). In 

unstimulated cells, amber/W site editing occurs via the ADAR1-S isoform (Jayan 

and Casey, 2002; Wong and Lazinski, 2002) and serves to support viral assembly; 

HDVAg-L halts replication and mediates viral packaging by binding clathrin 

heavy chain (Huang et al., 2009). However, more recent studies have shown that 

ADAR1 can serve an anti-viral role when editing in a more promiscuous fashion. 

Over-expression of ADAR1 or ADAR2 (though ADAR2 is not induced in natural 

infection) leads to hyper-editing at non-amber/W sites, producing higher levels 

of HDAg-L as well as other HDAg mutants that can also bind HDAg-S and 

inhibit replication. In an interferon-stimulated system, which more closely 
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mimics both early natural infection (Hartwig et al., 2004) and IFN-treated 

infection, the large form of ADAR1 is highly expressed, is the predominant 

editor, and increases editing 2-fold (Hartwig et al., 2006). It is unclear, however, 

whether IFN stimulation would induce high enough levels of ADAR1-L to edit 

promiscuously or to significantly impair viral replication. In fact, while a 

replication-competent mutant virus with enhanced editing at the amber/W site 

displays increased levels of HDAg-L early in infection and impaired replication 

at a later time point, editing and replication seem to be coupled (Sato et al., 2004). 

Amber/W site editing ceases with replication, indicating a natural feedback 

mechanism controlling aberrant editing by elevated ADAR1 activity. 

 

1.2.4 ADAR editing and oncogenesis  

 As ADARs directly alter nucleotide sequences, it has been speculated that 

ADAR-catalyzed RNA editing could promote oncogenesis. There is some 

indirect evidence to support this, including altered editing profiles in tumor 

specimens, especially editing found in transcripts encoding tumor suppressors 

(reviewed in Skarda et al., 2009). Recently ADAR-catalyzed A-to-I editing was 

directly implicated in hepatocellular carcinoma (HCC), centered on increased A-

to-I editing in the antizyme inhibitor 1 (Azin1) transcript observed in a 

substantial set of human HCC specimens (Chen et al., 2013). The elevated editing 

in Azin1 led to a gain-of-function phenotype in the encoded protein, increasing 

its stability and allowing it to bind with greater affinity to antizyme. Antizyme 

typically functions to target growth-promoting proteins for degradation. 

Therefore by restricting the inhibitory activity of antizyme, edited AZIN1 

promoted cell proliferation and tumor progression. This work is the first well-

15



	   	  

characterized direct link between ADAR editing and oncogenesis and points to 

further functions for RNA editing in promoting cellular transformation.  

 

1.2.5 ADAR editing in untranslated regions  

In addition to the ADAR coding targets essential to neurological function, 

a few additional editing events within the translated regions of mRNA have been 

characterized (Levanon et al., 2005; Riedmann et al., 2008), but the overwhelming 

majority occur in untranslated regions (UTRs) of transcripts, introns or miRNA 

processing intermediates. Most of this untranslated editing occurs within Alu or 

LINE repeats, which through intramolecular base-pairing of inverted repeats, 

form long RNA duplexes ideal for extensive ADAR editing (Athanasiadis et al., 

2004; Blow, 2004; Kim et al., 2004; Li et al., 2009b). Alu elements are ~300nt 

repetitive transposable elements which make up ~10% of the human genome, 

occurring primarily in the UTRs or introns of transcribed mRNAs (Lander et al., 

2001). Alu elements can contain cryptic splice sites and can occasionally 

aberrantly incorporate into mature transcripts, a process termed exonization, 

posing a threat to transcriptome integrity. In one example, intronic ADAR 

editing in an Alu element prevented its exonization into the mature mRNA 

(Sakurai et al., 2010). However, the functional consequences for most of these A-

to-I editing events within Alu regions remain elusive, although they have been 

proposed to modulate gene expression. Specifically, examples of ADAR editing 

have been found to induce nuclear retention of the edited transcript, target the 

transcript for cleavage, and abolish or create miRNA target sites.  

Nuclear retention of inosine-containing transcripts occurs via association 

with a nuclear inosine-specific RNA binding protein p54nrb that sequesters these 
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mRNAs in nuclear paraspeckles (Chen and Carmichael, 2009; Prasanth et al., 

2005; Zhang and Carmichael, 2001). In an experimental system, introduction of 

inverted Alu elements into a GFP gene resulted in dramatic nuclear retention via 

ADAR editing and binding to p54nrb, underscoring the potential importance of 

this method of Alu and ADAR-mediated gene silencing (Chen et al., 2008). 

However, highly edited endogenous cytoplasmic mRNA transcripts have been 

identified, suggesting that nuclear retention may not be the fate of all ADAR-

targets (Chen and Carmichael, 2009; Chen et al., 2008; Hundley et al., 2008). 

Furthermore, p54rnb binding does not require inosines, suggesting that an 

additional feature may be targeting identified inosine-containing transcripts to 

the nucleus.  

Additional inosine-containing mRNA transcripts are targeted for mRNA 

cleavage by a specific nuclease. In vitro work suggests that Tudor Staphylococcal 

nuclease (Tudor-SN) binds stretches of I:U base-pairs and promotes the cleavage 

of the hyper-edited transcripts (Scadden, 2005), either through its own nuclease 

activity (Yang et al., 2006) or by another unidentified factor (Scadden, 2005). 

Although other endogenous inosine-containing mRNAs are shown to be cleaved 

upon stress conditions (Prasanth et al., 2005), the Tudor-SN cleavage mechanism 

has not been established in vivo.  

ADAR editing events have been shown to modulate miRNA silencing by 

editing of miRNA targets and double-stranded nuclear precursors. As ADAR 

editing predominantly occurs in conserved regions of 3’UTRs, it was postulated 

that ADAR editing could create or disrupt miRNA target sequences (Liang and 

Landweber, 2007). A few examples of ADAR editing creating miRNA seed 

targets have been characterized, but few disruptions could be identified 
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(Borchert et al., 2009). Other work additionally demonstrates that miRNA 

targeting is rare in Alu repeats, suggesting that overlap between ADAR editing 

and miRNA targeting machinery may be limited (Hoffman et al., 2013).  

Precursor miRNAs (pri-miRNAs and pre-miRNAs) can also be edited by 

ADARs, where introduction of I:U mismatches disrupts miRNA processing 

(Kawahara et al., 2008; 2007a; Yang et al., 2006) or changes the targeting 

specificity of the mature miRNA (Kawahara et al., 2007b). In one well-

characterized example, ADAR editing in the seed region of pri-miR-376 endowed 

the mature miRNA product with distinct binding properties, allowing the edited 

form to target an alternative transcript (Kawahara et al., 2007b). High-

throughput miRNA sequencing has shown that this ADAR-catalyzed pri-

miRNA editing does occur somewhat frequently (Alon et al., 2012; Vesely et al., 

2012), and that some edited miRNAs are differentially expressed in ADAR-

deficient embryos (Vesely et al., 2012). Intriguingly, very recent work 

demonstrated that ADAR promoted miRNA processing by a protein-protein 

association with DICER (Ota et al., 2013). The potential importance of this 

process is supported by Adar-/- embryos, which exhibit a global inhibition of 

miRNA expression and subsequent upregulation of targeted transcripts (Ota et 

al., 2013), suggesting that ADAR editing-independent modulation of DICER has 

as profound effect on global miRNA expression.  

Other in vitro experiments have additionally demonstrated that ADAR can 

compete with DICER for dsRNA substrates as part of siRNA gene silencing 

(Knight and Bass, 2002; Scadden and Smith, 2001). This work has primarily been 

observed in C. elegans and Drosophila knock-down experiments, but taken 

together with the catastrophic phenotype for ADAR1-null mice discussed above, 
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could point to an essential function for ADAR in suppressing potentially 

immunostimulatory dsRNA. All together, this work firmly suggests a role for 

ADAR editing in small RNAs, primarily in miRNA processing through both 

editing and editing-independent mechanisms.  

 

1.3. Polynucleotide cytidine deaminases: the AID/APOBEC family 

The AID/APOBEC family of zinc-dependent polynucleotide cytidine 

deaminases catalyze the conversion of cytidine to uridine in a strand of DNA or 

RNA, effectively altering the sequence of the targeted polynucleotide. The family 

was named for its founding member Apolipoprotein B mRNA Editing Catalytic 

polypeptide-1 (APOBEC1), identified as the catalyst for a well-characterized C-

to-U editing event in the mRNA transcript of apolipoprotein B. The other family 

members include Activation-induced cytidine deaminase (AID), APOBEC2, the 

subfamily of APOBEC3 (A-H) enzymes and the computationally predicted 

APOBEC4. AID/APOBEC deaminases all share a characteristic zinc dependent 

deaminase domain (ZDD). In the ZDD three conserved residues, two cysteines 

and a histdine, coordinate a zinc atom to activate a water molecule for hydrolytic 

cytidine deamination. Additional conserved glutamic acid and proline residues 

in the active site also play an essential role in the reaction, transferring a proton 

from the water molecule to the imino in the pyrimidine ring and ensuring the 

conformational integrity of the catalytic pocket, respectively (reviewed in Smith, 

2009). APOBEC1 was originally identified as a cytidine deaminase based on 

homology to zinc-dependent cytidine deaminases in yeast and E. coli, which act 

on a monomeric substrates as a part of the pyrimidine salvage pathway 

(Navaratnam et al., 1995; 1993). While the members of the AID/APOBEC family 
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share significant homology with these enzymes, particularly in the ZDD, they 

appear to act only on single-stranded polynucleotide substrates.  

  In contrast to the ancient family of cytidine deaminases acting on free 

cytidine found in all kingdoms of life, the AID/APOBEC family is a later 

evolutionary development and is restricted to the vertebrate lineage (Conticello 

et al., 2005). AID is thought to be the ancestral member of this protein family, 

which arose concurrently with vertebrates and the development of adaptive 

immunity. AID, APOBEC2, and APOBEC4 are all present in jawed vertebrates 

(Conticello et al., 2005). Phylogenetic analyses indicate that APOBEC4 may have 

evolved independently from AID but APOBEC2 is likely to have arisen by 

duplication of the AID locus (Conticello, 2008). APOBEC1 and APOBEC3 are 

derived from more recent AID gene duplication events and are restricted to 

mammals and placental mammals, respectively (Conticello et al., 2005). 

APOBEC3, a single locus in the mouse, has undergone a dramatic expansion 

process in primates into an array of 8 Apobec3 genes encoding APOBEC3A-H. 

The emergence of this APOBEC3 subfamily is most likely due to extensive 

selective pressure by the rapid evolution of its target retroviruses and 

retrotransposons (Sawyer et al., 2004).  

 Throughout primate evolution, the majority of the AID/APOBEC 

enzymes have evolved rapidly, displaying some of the strongest signals of 

positive selection in the human genome (Sawyer et al., 2004), an evolutionary 

pattern associated with host defense. Indeed, while members of AID/APOBEC 

family are implicated in a diverse set of biological processes, the majority 

function in immunity. AID drives antibody diversification in B cells through the 

processes of somatic hypermutation and class switch recombination. The 
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APOBEC3 subfamily acts directly on endogenous viral retrogenomes and 

restricts exogenous retroviral production. APOBEC2 and APOBEC4 are 

“orphan” deaminases with no well-established targets. The well-characterized 

function for APOBEC1, the subject of this discussion, is in lipid absorption and 

transport in the small intestine. However, the evolutionary history of the 

AID/APOBEC family and APOBEC1’s wide expression in immune cells suggest 

that this enzyme may have previously unappreciated roles in the immune 

system. The following sections will give a general overview of the biological 

functions of the members of the AID/APOBEC family of cytidine deaminases, 

concluding with a detailed discussion of the known activity of APOBEC1 and the 

growing evidence for its function beyond the intestine.  

 

1.3.1. Activation-induced cytidine deaminase: AID  

 AID is a key player in antibody-mediated adaptive immunity, mediating 

secondary antibody diversification through somatic hypermutation (SHM) and 

class-switch recombination (CSR) (Figure 1.3). In the decade since AID was 

identified, AID’s role in SHM and CSR has been extensively characterized 

(reviewed in Delker et al., 2009). In SHM, AID introduces point mutations in the 

recombined variable region of the immunoglobulin locus in germinal center B 

cells. These mutations are removed by uracil DNA glycosylase (UNG) and then 

repaired through the activities of error-prone base excision repair (BER) and 

mismatch repair (MMR) enzymes (Figure 1.3). The combined high editing rate of 

AID and error rate of these enzymes leads to the rapid introduction of genomic 

mutations in immunoglobulin (Ig) loci, some of which alter the affinity of the 

encoded antibody. B cells with improved antigen binding affinity are positivity 
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Figure 1.3. AID drives antibody diversity through two distinct mechanisms. 
(A) In SHM, AID deaminates cytidines within the variable region of Ig loci. 
Genomic deoxyuridine residues are then resolved by two pathways. Uridine is 
read as thymidine by replication machinery, leading to transition mutations. 
Alternatively, UNG excises the edited base, which is followed by abasic site 
repair via base-excision repair and mismatch-repair enzymes, leading to 
transversion mutations. (B) In CSR, AID deaminates cytidines within Ig switch 
(S) regions, leading to double strand breaks. Recombination replaces the 
primary constant switch region (Cµ) with one of several downstream constant 
regions (Cγ, Cε or Cα), altering the effector properties of the encoded antibody. In 
this representation, the primary Cµ region is replaced with a Cγ1 region, thereby 
causing a switch from the IgM to the IgG1 isotype.
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selected for, and cycles of mutation and selection lead to an optimized pool of B 

cells capable of initiating a highly specific immune response against a particular 

invading pathogen. In CSR, AID editing in the switch regions of the Igh locus 

mediates the formation of double-stranded breaks that lead to a recombination 

event, replacing the primary constant region with an alternative downstream 

constant region. These constant regions encode the Fc region of the antibody, 

which determines the isotype. Prior to class switch, all B cells express IgM; 

recombination events lead to the production of secondary isotypes (IgA, IgE, and 

IgGs in mammals). The processes of SHM and CSR are entirely dependent on 

AID; Aicda-/-- B cells express no secondary antibody isotypes and have no 

apparent somatic mutation in the variable region of the Ig loci (Muramatsu et al., 

2000). In humans, loss-of-function mutations in the gene encoding AID results in 

a comparable deficiency, termed hyper-IgM syndrome 2 (Revy et al., 2000).  

At its discovery, AID was proposed to function as an RNA editing 

enzyme because of its homology to APOBEC1 (Muramatsu et al., 1999). The 

subsequently developed “RNA-editing hypothesis” of AID function in SHM and 

CSR suggests that to mediate both processes AID edits the mRNAs of auxiliary 

factors. This proposal also reflected the APOBEC1 editing model, as it required 

the assistance of additional co-factors, resembling the relationship between 

APOBEC1 and its “editosome.” The alternative “DNA-editing hypothesis” 

proposed that AID itself was directly mutating the Ig loci, triggering SHM and 

CSR. The processes of SHM and CSR described above reflect the predominantly 

accepted AID DNA-editing model, but the RNA editing hypothesis has not been 

entirely discarded (Shivarov et al., 2009).  
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A large body of work has demonstrated the direct DNA editing capacity 

of AID in support of the DNA editing hypothesis. Endogenous AID is found to 

be directly bound to the Ig locus in activated splenic B cells (Vuong et al., 2009; 

Yamane et al., 2011) and ectopically expressed AID is capable of inducing DNA 

mutations in a diverse set of cell types, including both prokaryotic and 

eukaryotic cells (Martin and Scharff, 2002; Mayorov et al., 2005; Petersen-Mahrt 

et al., 2002; Poltoratsky et al., 2004; Yoshikawa et al., 2002). Furthermore, while 

AID can bind both RNA and DNA in vitro (Dickerson et al., 2003; Nonaka et al., 

2009), editing assays demonstrated that AID is only capable of deaminase 

activity on a DNA substrate (Besmer et al., 2006; Bransteitter et al., 2003; 

Chaudhuri et al., 2003). These in vitro studies additionally demonstrated that AID 

prefers to edit WRC ([A or T][A or G]C) motifs (Pham et al., 2003; Yu et al., 

2004a), a pattern also observed in SHM editing of the Ig locus (Rogozin and Diaz, 

2004). Finally, deep sequencing of the B cell transcriptome failed to identify any 

bona fide AID-mediated RNA editing events (Fritz et al., 2013). Additional 

support for the DNA-editing hypothesis was provided by the analysis of mice 

deficient in UNG, the glycosylase that cleaves mismatched uridines introduced 

by C-to-U editing. These animals exhibited an altered array of mutations in the Ig 

locus as compared to their wild-type littermates, with a bias toward C-to-T and 

G-to-A mutations (Rada et al., 2002). This suggests that the initiating event in 

SHM is a C-to-U conversion catalyzed by a cytidine deaminase. Error-prone 

repair of these mismatches, catalyzed by UNG and the base-excision and 

mismatch repair pathways, leads to accumulation of other transition and 

transversion mutations, pointing to the importance of both AID and the DNA 

repair enzymes in SHM. Taken together, this work strongly suggests that the 
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“RNA-editing hypothesis” is false and demonstrates that the predominant 

substrate for AID is ssDNA.  

As AID activity can mutate genomic DNA and introduce double-stranded 

breaks, aberrant AID activity has great oncogenic potential. To combat 

deleterious off-target mutations, while preserving essential immunological 

function, the transcription, translation, cellular localization and targeting of AID 

are tightly regulated (reviewed in Delker et al., 2009). The many modes of AID 

regulation are still under intensive investigation and are largely beyond the 

scope of this discussion. Below, I will briefly expand on the regulation of AID by 

miRNAs, post-translational modifications, and the targeting of AID to Ig loci. 

Aicda transcripts are targeted by two miRNAs, miR-155 and miR-181, which 

regulate Aicda transcript levels (de Yebenes et al., 2008; Dorsett et al., 2008; Teng 

et al., 2008). The importance of miRNA-regulation is demonstrated by mouse 

models. Mice lacking a miR-155 target sequence in the AID 3’UTR exhibit 

substantially elevated AID expression that is inappropriately sustained after B 

cell exit from the germinal center (Dorsett et al., 2008; Teng et al., 2008). In 

addition to the predictably elevated CSR, the disruption of miR-155 regulation 

leads to hypermutation in non-Ig loci (Teng et al., 2008) and chromosomal 

translocations (Dorsett et al., 2008), pointing to the importance of miRNAs in 

preventing promiscuous AID activity.  

 Post-translational modifications of the AID protein also seem to be 

essential for physiological AID function. In particular, phosphorylation of the 

Ser38 residue by the cAMP-dependent protein kinase A (PKA) is required to 

recruit replication protein A (RPA), an important AID co-factor; disruption of 

this phosphorylation event decreases SHM and CSR by 70% (Cheng et al., 2009; 
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McBride et al., 2008). Furthermore, complexes of phosphorylated AID, PKA and 

RPA are localized to switch regions of the Igh locus. When PKA is catalytically 

inactivated, preventing AID phosphorylation, RPA is not recruited to the switch 

region and CSR is impaired, highlighting the importance of the post-translational 

modification and additional targeting factors on the localization of AID activity 

(Vuong et al., 2009).  

The precise mechanism which targets AID activity to the Ig loci is largely 

unresolved. As highlighted above, PKA and AID are targeted to switch regions, 

and the phosphorylation of AID by PKA leads to the recruitment of RPA and the 

initiation of CSR. This finding was further underscored in a genome-wide 

analysis of RPA occupancy, in which RPA was associated mainly with the Ig loci, 

an interaction that was dependent on AID phosphorylation (Yamane et al., 2011). 

Extensive work has pinpointed AID activity to regions of active transcription, 

where the transcriptional machinery has exposed a ssDNA substrate for AID 

(reviewed in Di Noia and Neuberger, 2007; Nussenzweig and Nussenzweig, 2010; 

Peled et al., 2008). In a current model, AID is targeted to a stalled RNA 

polymerase II (Pol II) by the co-factor Suppressor of Ty 5 homolog (Spt5), a 

stalling factor (Pavri et al., 2010). While this work exemplifies the importance of 

certain co-factors and post-translational modification in targeting AID to stalled 

Pol II and actively transcribed genes in the Ig loci, there are many unanswered 

questions. This is particularly complex, as AID needs to act specifically at the 

V(D)J region during SHM and the switch region during CSR. How this intricate 

targeting occurs is especially important in context of the genome-wide non-Ig 

activity of AID.  
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Despite many modes of tight regulation, it is clear that AID has significant 

activity beyond the Ig loci and can contribute to oncogenesis. AID-catalyzed 

mutations can be found throughout the genome, and in a variety of oncogenes 

and tumor-suppressor genes (Gordon et al., 2003; Pasqualucci et al., 2001; Pavri 

et al., 2010; Robbiani et al., 2009; Shen et al., 1998; Yamane et al., 2011). In total, an 

estimated 25% of the genes expressed in germinal center B cells are mutated by 

AID, albeit at levels considerably lower than in the Ig loci (Liu et al., 2008). 

Additionally, deep sequencing identification of the genomic locations of AID 

places it at the promoters of over 5000 genes in association with its co-factor Spt5 

and a stalled RNA Pol II (Pavri et al., 2010; Yamane et al., 2011). While AID 

targeting seems to be extensive, much of the genome seems to be protected from 

deleterious AID-mediated mutation and chromosomal translocation. Mice 

deficient in mismatch and base-excision repair enzymes exhibit strikingly higher 

mutation rates at non-Ig loci than wild-type littermates, suggesting that 

physiological error-free base-excision and mismatch repair resolves the majority 

of aberrant deaminase activity (Liu et al., 2008). AID-mediated tumorigenesis, 

therefore, occurs more frequently when in concert with an additional pro-

oncogenic factor, such as deficient DNA repair or heightened AID activity. 

Indeed, mice exhibiting uncontrolled AID expression have increased mutation 

rates and develop tumors as a result of AID mutations in oncogenes and tumor 

suppressors (Okazaki et al., 2003).  

In humans, AID is expressed in some B cell lymphomas (Lenz et al., 2007; 

Wright et al., 2003), and double-stranded breaks introduced in CSR are proposed 

to lead to oncogenic chromosomal translocations, especially the c-myc/IgH 

translocation associated with Burkitt’s Lymphoma (Pasqualucci et al., 2001; 2008; 
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Shaffer et al., 2002). In mice, AID can induce double-stranded breaks throughout 

the genome (Hasham et al., 2010) and was shown to be essential for c-myc/IgH 

translocations (Kovalchuk et al., 2007; Ramiro et al., 2006; 2004; Takizawa et al., 

2008) as well as other translocations not involving the Ig loci or c-myc (Lin et al., 

2009; Robbiani et al., 2009). Interestingly, the dysregulation of AID alone is not 

sufficient to cause such chromosomal instability or B cell malignancy (Muto et 

al., 2006; Okazaki et al., 2003); tumors observed in AID transgenic mice were 

predominantly of epithelial and T cell-origin and not associated with a 

chromosomal translocation (Okazaki et al., 2003). However, compound p53-

deficient/AID transgenic mice rapidly succumb to a set of phenotypically 

diverse B cell lymphomas, harboring Ig and non-Ig chromosomal translocations 

(Robbiani et al., 2009). Additionally, exogenous introduction of a DSB at known 

AID targets, Myc or IgH, leads to AID-dependent translocations at these loci 

(Robbiani et al., 2008). Genome-wide profiling of these genetically manipulated 

translocations reveals a wide spectrum of possible AID-mediated translocations 

with particular abundance in transcribed genes and at transcription start sites 

(Chiarle et al., 2011; Klein et al., 2011). Overall, AID-mediated mutations and 

chromosomal translocations can occur throughout the genome, but 

physiologically, these unwanted AID-mediated events occur at an extremely low 

frequency.  

AID activity outside of the Ig loci may not always be pathological. AID is 

expressed in primordial germ cells and embryonic stem cells (Morgan et al., 

2004) and reports have implicated AID in vertebrate DNA demethylation 

(Bhutani et al., 2010; Popp et al., 2010; Rai et al., 2008). However, this result is not 

corroborated in B cells where genome-wide methylation profiles are unaffected 
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by AID-deficiency or over-expression (Fritz et al., 2013). Furthermore, specific 

AID-dependent demethylase activity has not been firmly established and may be 

only occurring in lower vertebrates. While the proposed model is intriguing, 

further studies are needed to characterize any bona fide role for AID and/or other 

cytidine deaminases in developmental reprogramming.  

 

1.3.2. The APOBEC3 family of anti-retroviral enzymes 

 The APOBEC3 subfamily predominantly function in the restriction of 

retrovirus and endogenous retro-elements. As described above, the APOBEC3 

cytidine deaminases have undergone a massive gene expansion in the primate 

lineage, presumably in response to their rapidly evolving pathogen substrates. 

The subfamily members, APOBEC3A-H, act on a diverse set of retroviral 

substrates and vary in their abilities to suppress certain viruses. The best-

characterized example is APOBEC3G restriction of HIV infection. The function of 

APOBEC3G was discovered during the characterization of a specific HIV 

protein, virion infectivity factor (Vif) and the infectious profile of Vif-deficient 

(ΔVif) HIV. ΔVif HIV produced in primary human T cells or macrophages (and 

certain other cell-lines) exhibited a significantly diminished infectivity that was 

absent from a wild-type HIV (Gabuzda et al., 1992; Schwedler et al., 1993). These 

cells were termed “non-permissive cells” and were subsequently determined to 

express a specific anti-viral factor that was normally inhibited by Vif (Madani 

and Kabat, 1998; Simon et al., 1998). A subtractive cDNA screen comparing the 

transcript expression profiles of closely related “permissive” and “non-

permissive” cell-lines identified this restriction factor as the cytidine deaminase, 

APOBEC3G (Sheehy et al., 2002).  
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The potent viral restrictive activity of APOBEC3G in a ΔVif HIV infection 

occurs partially through its cytidine deaminase activity, specifically in its ability 

to massively hyper-edit viral cDNAs (Harris et al., 2003; Lecossier et al., 2003; 

Mangeat et al., 2003). During a ΔVif HIV infection of non-permissive cells, 

APOBEC3G is incorporated into the budding virus core through an interaction 

with viral RNA (Khan et al., 2005; Svarovskaia et al., 2004) and the viral Gag 

nucleocapsid protein (Schäfer et al., 2004). In newly infected cells, APOBEC3G 

remains associated with reverse transcription machinery and actively deaminates 

the nascent retroviral (-) strand cDNA (Harris et al., 2003; Mangeat et al., 2003; 

Yu et al., 2004b; Zhang et al., 2003). Most of these modified retrotranscripts are 

subsequently degraded. The rest of the edited cDNAs are integrated as 

devastatingly mutated and therefore defective proviruses (Kieffer et al., 2005). 

Additionally, APOBEC3G association with viral genomic RNA is thought to 

inhibit the tRNA priming of reverse-transcription, pointing to both deaminase-

mediated as well as editing-independent mechanisms for the APOBEC3G 

inhibition of ΔVif HIV virion production (Bishop et al., 2006; Guo et al., 2006; 

2007).  

During wild-type HIV infection, Vif protects the virus from APOBEC3G 

activity by targeting the deaminase for degradation and preventing its 

incorporation into packaging virions (Conticello et al., 2003; Marin et al., 2003; 

Mehle et al., 2004; Sheehy et al., 2003). To accomplish this, Vif binds APOBEC3G 

and recruits a specific ubiquitin ligase complex that poly-ubquitinates 

APOBEC3G and targets it for proteosomal degradation (Kobayashi et al., 2005; 

Yu et al., 2003). The Vif:APOBEC3G interaction is quite specific-specific; human 
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Vif is unable to inhibit a simian APOBEC3G and simian Vif has no effect on 

human APOBEC3G (Mariani et al., 2003). Overall, the fact that a retrovirus 

developed a distinct factor to combat a specific host anti-viral enzyme points to 

the incredible importance of the APOBEC3s in viral restriction.  

Aside from HIV, APOBEC3 family members have been shown to suppress 

the activity of a diverse set of viruses including simian immunodeficiency virus, 

equine infectious anemia virus, murine leukemia virus (MLV), foamy virus 

adeno-associated virus (AAV) and HBV (reviewed in Rosenberg and Papavasiliou, 

2007; Smith, 2011; Smith et al., 2012 and many others). Overall, the APOBEC3s 

act predominantly on retroviruses and as described for APOBEC3G, deaminate 

the single-stranded DNA substrate initially reverse transcribed from the viral 

RNA genome. While HBV is not a true retrovirus it requires reverse-transcription 

to replicate its double-stranded DNA, providing the appropriate substrate for 

APOBEC3s. AAV is a small single-stranded DNA parvovirus that is restricted by 

APOBEC3A (Chen et al., 2006), suggesting that certain APOBEC3s may exhibit 

more broad antiviral activity and act on non-retroviral pathogens.  

 The APOBEC3G gene has exhibited high rates of positive selection 

throughout primate evolution, but this selection seems to have mostly occurred 

before the emergence modern primate lentiviruses (Sawyer et al., 2004). As such, 

the ancestral function of the APOBEC3 family was proposed to also involve the 

restriction of endogenous retroelements, which include the long terminal repeat 

(LTR)-containing endogenous retroviruses (ERVs), and non-LTR sequences such 

as the long interspersed nuclear element-1 (LINE-1). Indeed, human ERVs carry 

footprints of ancient APOBEC3G deamination (Armitage et al., 2008), and the 

expansion of the APOBEC3 gene into the eight-member subfamily seems to have 
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coincided with a marked reduction in active retroelements in humans. In 

contrast, murine genomes from which only one copy of APOBEC3 is expressed, 

contain abundant retroelements some of which are still mobile in vivo (reviewed in 

Schumann, 2007).  

The mechanism by which APOBEC3 cytidine deaminases would restrict 

these endogenous retroviruses is predominantly thought to mimic APOBEC3G 

restriction of HIV, but other editing-independent mechanisms have also been 

proposed. Regardless of mechanism, the majority of the human APOBEC3s have 

been shown to inhibit retrotransposition of ERVs (Esnault et al., 2005) and LINE-

1 elements (Muckenfuss et al., 2006). The APOBEC3s have varied specificities 

and combat retroelements on two subcellular fronts, suggesting that the 

expansion of the APOBEC3 lineage into a diverse arsenal of immune enzymes 

may have been required to restrict the threat of endogeous retroelements.  

As has been described for AID, the APOBEC3s have the potential to 

promote oncogenesis through DNA editing activities. Specifically the nuclear-

localized deaminases APOBEC3A and B pose an increased threat to genomic 

integrity (Bogerd et al., 2006; Landry et al., 2011). As such, APOBEC3B was 

recently identified as a source of oncogenic mutation in breast cancer (Burns et 

al., 2013). Presumably for both APOBEC3 and AID, their key host defense 

functions outweigh the risk they pose for cellular transformation. 

1.3.3. APOBEC2 and APOBEC4: orphan deaminases  

 APOBEC2 was originally identified through an expressed sequence tags 

(EST) database search for the APOBEC1 ZDD and was proposed to be an RNA-

editing enzyme based on its close homology to APOBEC1 (Anant and Davidson, 
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2000; Liao et al., 1999). However, mutator assays have revealed no deaminase 

activity on cytidine, either as a free nucleotide or as a part of a DNA strand (Mikl 

et al., 2005; Nabel et al., 2012). Despite its apparent catalytic inactivity, there is 

some evidence for a further function for APOBEC2. APOBEC2 is exclusively 

expressed in cardiac and skeletal muscle (Liao et al., 1999; Mikl et al., 2005) and 

APOBEC2-deficient mice exhibit a distinct skeletal muscle phenotype. 

APOBEC2-deficiency leads to a fast-to-slow twitch muscle switch in the soleus 

muscle and eventual myopathy (Sato et al., 2010). Similarly, in zebrafish, 

morpholino knockdown of the two APOBEC2 proteins leads to a dystrophic 

phenotype and diminished heart function (Etard et al., 2010). These studies point 

to a conserved function for APOBEC2 in muscle development.  

Further work in zebrafish has implicated both AID and APOBEC2 in 

DNA demethylation (Rai et al., 2008). And, APOBEC2 has been shown to be 

essential for left-right axis determination in Xenopus and zebrafish (Vonica et al., 

2011). While it is clear that APOBEC2 acts in skeletal muscle function in mice and 

may have additional functions in lower vertebrates, the particular targets and 

mechanisms of these roles remain uncertain. Furthermore, it has never been 

established that APOBEC2 is catalytically active, suggesting that the observed 

phenotypes are due to an editing-independent function or that APOBEC2 editing 

requires the assistance of a co-factor or auxiliary protein complex missing from in 

vitro conditions.  

 APOBEC4 is a computationally predicted member of the AID/APOBEC 

family and contains the characteristic ZDD domain, suggesting that it is likely a 

cytidine deaminase of RNA or DNA (Rogozin et al., 2005). APOBEC4 expression 
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is primarily restricted to the testis but no editing targets or functions for this 

enzyme have been defined in that tissue.  

 

1.4. APOBEC1 

   

1.4.1. APOBEC1 editing of the Apob transcript 

 The first polynucleotide cytidine deaminase, APOBEC1 was identified as 

the catalyst of a well-characterized RNA-editing event in the transcript of 

Apolipoprotein B (Apob). ApoB exists in two distinct, tissue-specific protein 

isoforms, translated from a single mRNA transcript (reviewed in Kane, 1983). The 

full-length isoform, apoB-100, is synthesized in the liver and is an essential 

component of very low-density lipoproteins (VLDL), intermediate-density 

lipoproteins (IDL) and low-density (LDL) particles. ApoB-100 is required for the 

generation of hepatic VLDL particles and for transport of endogenously 

produced triglycerides in the blood. Additionally, it remains associated with the 

lipoprotein during the conversion of VLDL to IDL and then LDL particles, and 

serves as the ligand that mediates the clearance of LDL cholesterol by the LDL 

receptor pathway. The truncated isoform, apoB-48 is named as such because it is 

comprised of the N-terminal 48 amino acids of apoB-100. It is solely expressed in 

the intestine, where it is incorporated into chylomicrons and functions in the 

absorption and transport of dietary lipid (reviewed in Chan, 1992). The translation 

of apoB-48 is the result of a site-specific deamination of the cytidine to uridine at 

nucleotide 6666 (C6666) of the Apob transcript, the first identified mRNA editing 

event in mammals. The C-to-U modification creates a pre-mature stop codon 

(UAA) from a glutamate codon (CAA) and leads to the synthesis of the truncated 
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apoB-48 isoform from a full-length Apob transcript (Chen et al., 1987; Powell et 

al., 1987) (Figure 1.4).  

As the catalytic component of a multi-protein editing complex, APOBEC1 

mediates the site-specific deamination of C6666 (Teng et al., 1993). APOBEC1 is a 

zinc-dependent polynucleotide cytidine deaminase and the founding member of 

the AID/APOBEC polynucleotide cytidine deaminase family (Barnes and Smith, 

1993; Navaratnam et al., 1993; 1995). In humans, APOBEC1 expression is 

restricted to the small intestine, correlating with the intestine-specific generation 

of the apoB-48 protein isoform (Lau et al., 1994). Notably, APOBEC1 is not 

expressed in the human liver, resulting in the exclusive production of apoB-100. 

As such, APOBEC1 mediates the tissue-specific differential expression of apoB 

isoforms. In mice, APOBEC1 is expressed in a variety of tissues including both 

the liver and the small intestine (Hirano et al., 1997; Nakamuta et al., 1995), and 

apoB-48 is produced in both cell tissues (Greeve et al., 1993). Both Apob editing 

and formation of the apoB-48 isoform are completely dependent on APOBEC1; 

APOBEC1-deficient mice display no C-to-U editing at C6666 and produce only 

apoB-100-containing lipoproteins (Hirano et al., 1996; Morrison et al., 1996; 

Nakamuta et al., 1996), a phenotype rescued by transgenic expression of 

APOBEC1 in the intestine (Blanc et al., 2012).  

 

1.4.2. Mechanism of APOBEC1 editing  

 Like the other members of the AID/APOBEC family, APOBEC1 is a zinc-

dependent cytidine deaminase and shares the common homologous cytidine 

deaminase domain (MacGinnitie et al., 1995; Navaratnam et al., 1995). However, 

it also has a distinct RNA-binding domain and is the only member of the 
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Figure 1.4. APOBEC1 editing of Apob transcript. APOBEC1 mediates the 
tissue-specific distribution of apoB isoforms. In the liver, Apob is translated into 
its full-length isoform, apoB-100, which contains two domains: lipoprotein 
assembly domain and LDL receptor binding domain. ApoB-100 is an essential 
component of hepatic LDL particles. In the small intestine, APOBEC1                
deaminates cytidine 6666 in the Apob transcript, converting a glutamine codon 
(CAA) into a stop codon (UAA). This leads to the translation of a truncated 
isoform of apoB, designated apoB-48, which is incorporated into chylomicrons 
along with dietary lipid absorbed from the small intestine. 
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deaminase family with a known RNA substrate (Anant et al., 1995; MacGinnitie 

et al., 1995; Navaratnam et al., 1995). The mechanism and localization of 

APOBEC1-mediated editing of the Apob mRNA transcript is well characterized. 

Apob editing is an intra-nuclear event; APOBEC1 shuttles from the cytoplasm to 

the nucleus (Chester et al., 2003; Yang et al., 1997) and edits Apob in a nuclear 

process coinciding with, or immediately following, splicing and polyadenylation 

(Lau et al., 1991). APOBEC1 functions as a homodimer to edit the Apob mRNA 

transcript (Lau et al., 1994; Oka et al., 1997); molecular modeling based on the E. 

coli cytidine deaminase ECCDA, suggests that one active site binds a 

downstream U, positioning the second functionally active deaminase at C6666 

(Navaratnam et al., 1998). 

 The predominant APOBEC1 editing event in the Apob transcript occurs at 

C6666. At 14kb, Apob is exceptionally large mRNA transcript and the precise 

targeting of the APOBEC1 “editosome” to this particular site is specified by the 

surrounding sequence elements. In general, APOBEC1 preferentially binds AU-

rich regions (Anant et al., 1995; Navaratnam et al., 1995) and is thought to target 

the conserved AU-rich sequences up and downstream of C6666. Specifically, a 

downstream 11nt “mooring sequence” (Shah et al., 1991) separated from the 

edited cytidine by a 4-6nt spacer element is absolutely required for Apob editing 

in vitro (Backus and Smith, 1992; Chen et al., 1990); even small deviations in the 

sequence or position of this “mooring” motif dramatically reduces or eliminates 

editing at C6666. In the context of the APOBEC1 editosome, introduction of a 

downstream mooring sequence is also sufficient to induce editing in a 

heterologous mRNA (Driscoll et al., 1993). Additional sequence features of Apob-

editing include 5’ and 3’ enhancer sequences which increase the efficiency of 
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editing (Backus and Smith, 1991; Driscoll et al., 1993; Hersberger and Innerarity, 

1998; Nakamuta et al., 1999). The importance of these sequence features was 

partially explained by secondary structure analysis of the Apob transcript. The 

mooring sequence and 5’ enhancer element comprise a conserved but imperfect 

stem, with the spacer element and edited cytosine forming an octa-loop. This 

stem-loop structure is essential for APOBEC1 editing; the loop positions C6666 at 

the APOBEC1 active site and the stem provides binding regions for the 

APOBEC1 editosome (Maris et al., 2005; Richardson et al., 1998). However, 

mutations to the mooring sequence which preserved the stem-loop also 

diminished editing efficiencies, pointing to both structural and sequence 

requirements for Apob editing (Richardson et al., 1998).  

 APOBEC1 edits Apob as a member of an incompletely characterized multi-

protein complex, the obligate components of which are APOBEC1 and its 

cofactor, APOBEC1 complementation factor (ACF) (Lellek et al., 2000; Mehta et 

al., 2000). ACF is a 64 kDa widely-expressed protein originally isolated from a 

baboon kidney extract found to “complement” APOBEC1 editing (Mehta et al., 

1996). The ACF protein exists in 4 major isoforms generated by alternative 

splicing events; each isoform has slightly differing abilities to mediate Apob 

editing (Dance et al., 2002; Sowden et al., 2004). The ACF protein contains three 

N-terminal RNA recognition motifs (RRMs), a C-terminal double-stranded RNA 

binding domain (RBD), and a nuclear localization sequence (Lellek et al., 2000; 

Mehta et al., 2000). During Apob editing, ACF binds the Apob transcript through 

its RRMs and forms a functional homodimer with an Apob mRNA bridge 

(Galloway et al., 2010). 
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 As a pair, recombinant ACF and APOBEC1 are necessary and sufficient to 

induce Apob editing in vitro (Lellek et al., 2000; Mehta et al., 2000). The 

established mechanism of APOBEC1 editing of C6666 in Apob is entirely 

dependent on ACF at multiple points. First, ACF binding of the mooring 

sequence targets APOBEC1 to C6666 and mediates the relative fidelity of this 

editing event (Mehta et al., 2000). As ACF binds to the mooring sequence it melts 

the stem loop secondary structure and exposes the target cytosine to the 

APOBEC1 (Maris et al., 2005). The newly edited transcript is transported from 

the nucleus as a part of the APOBEC1:ACF editosome, a complex that also 

protects the transcript from nonsense-mediated decay. Association with 

APOBEC1 alone is not sufficient to suppress degradation and also requires ACF 

binding to the Apob transcript (Chester et al., 2003). Finally, as the atypical NLS 

sequence in APOBEC1 is not sufficient to target a heterologous protein to the 

nucleus (Chester et al., 2003; Yang et al., 1997), there is some evidence that ACF 

may help drive the nuclear localization of APOBEC1, due to its strong NLS 

sequence (Blanc et al., 2001a; 2003). As such, ACF mediates many aspects of 

APOBEC1 editing in Apob save cytidine deamination: nuclear localization, 

position of the edited cytosine, substrate access and protection of the final edited 

product. Interestingly, the function of ACF seems to extend beyond this 

complementation of APOBEC1 editing; unlike APOBEC1, ACF-deficiency results 

in embryonic lethality in mice (Blanc et al., 2005). 

 Other than ACF, the distinct components of the APOBEC1 editosome 

remain poorly characterized. Some putative editosome factors have been 

identified based on their ability to bind APOBEC1, ACF or apoB (Harris et al., 

1993; Sowden et al., 2002). While they are not essential for editing, the majority 
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seem to function as regulatory factors. APOBEC1 binding proteins 1 and 2 

(ABBP1, ABBP2) have been shown to dramatically enhance editing at C6666 but, 

the majority of the identified editosome seem to function as negative regulators 

of C-to-U editing. Heterogeneous nuclear ribonucleoprotein C1 (hnRNP-C1), an 

mRNA splicing factor, was shown to be stringently bind to the Apob transcript 

around the edited C and function as an inhibitor of the APOBEC1 editing 

complex (Greeve et al., 1998). Two RNA-binding proteins with distinct homology 

to ACF also function to inhibit C-to-U editing events in Apob. CUG RNA-binding 

binding protein (CUGBP2) contains three RRMs and associates with APOBEC1 

in the cytoplasm and ACF and Apob in the nucleus. Anti-sense mediated 

knockdown of CUGBP2 dramatically increased the efficiency of Apob editing 

(Anant et al., 2001). Glycine-arginine-tyrosine rich RNA binding protein, (GRY-

RBP) can also bind to ACF, APOBEC1 and apoB and seems to inhibit C-to-U 

editing by sequestering ACF from the Apob transcript (Blanc et al., 2001b). 

However, immunodepletion of GRY-RBP abolished C-to-U editing in an 

APOBEC1-expressing human hepatoma cell-line, suggesting that this protein 

may function as both a positive and negative regulator of the APOBEC1 

editosome (Lau et al., 2001). The exact composition and action of the editosome 

remains unclear but the literature supports a model in which the assembled 

editosome works in concert to regulate APOBEC1 editing through inhibitory and 

stimulatory mechanisms.  

 

1.4.3. Additional APOBEC1 editing in the Apob transcript  

 Despite multiple modes of regulation, APOBEC1 editing of Apob is not 

entirely restricted to C6666. Sequencing of human Apob transcripts revealed a 
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secondary low-frequency APOBEC1 editing event at C6802. This editing event 

has the potential to cause a Thr to Ile substitution but, as it occurs concurrently 

with the upstream C6666 editing event that introduces a stop codon, has no 

consequence for the final protein composition (Navaratnam et al., 1991). 

Recently, a number of low frequency (~10%) promiscuous hyper-editing events 

were observed downstream of C6666 in mouse Apob transcripts (Blanc et al., 

2012). None of these editing events introduced a stop codon and the functional 

relevance of these additional edited sites is unclear. Likely, either through 

processive editing or low-affinity binding to AU-rich sequences, APOBEC1’s 

standard behavior includes some low-frequency “background” editing with little 

biological consequence.  

 More abundant hyper-editing of Apob was observed in vitro and in vivo 

during over-expression of APOBEC1 (Sowden et al., 1996a; Yamanaka et al., 

1996). This hyper-editing activity is proposed to be due to the altered 

stoichiometry between APOBEC1 and the editosome complex. In this model, 

abundant levels of APOBEC1 overwhelm the endogenous repertoire of the 

regulatory editosome and aberrantly edit as an independent enzyme in AU-rich 

regions.  

However, APOBEC1 has only been shown be capable of editing activity 

without ACF in elevated temperature environments, where the stem-loop 

structure of the Apob transcript is naturally disrupted (Chester et al., 2004; Maris 

et al., 2005). Furthermore, there is a dispute in the literature as to whether this 

hyper-editing is associated with mooring sequences, calling into question 

whether ACF mediates hyper-editing events (Hersberger and Innerarity, 1998; 

Yamanaka et al., 1996). Further investigation is needed to determine the 
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mechanism of APOBEC1-mediated hyper-editing and to elucidate the 

importance of ACF complementation of APOBEC1 editing in targets beyond the 

canonical C6666 event.  

 

1.4.4 Editing-independent roles for APOBEC1  

Independent of its catalytic activity, APOBEC1 has been demonstrated to 

bind AU-rich 3’UTRs, altering the transcript stability and modulating protein 

expression. APOBEC1 regulates the transcript 3’UTRs of Cox-2 (Anant et al., 

2004), Myc (Anant et al., 2000) and Cyp7a1 (Xie et al., 2009) in this manner with 

varying biological consequences. APOBEC1 stabilization of Cox-2 transcript 

serves a protective role after radiation injury (Anant et al., 2004) and may 

contribute to tumor formation in Apcmin/+ mice (Blanc et al., 2007). Aberrant 

regulation of Cyp7a1 in Apobec1-/- mice is proposed to lead to the gallstone 

susceptibility phenotype observed in these animals. However, the majority of 

work on APOBEC1 binding activity has come out from one specific group; 

alternative views in the field suggest that APOBEC1 has relatively poor RNA-

binding capabilities (Smith et al., 2012). Overall, these editing-independent 

functions of APOBEC1 suggest a broader role for this enzyme than had been 

previously appreciated but this work remains to be firmly established.  

 

1.4.5 Oncogenic APOBEC1 mRNA targets  

Transgenic over-expression mouse models have revealed potentially 

oncogenic APOBEC1 editing events that do not represent physiological targets. 

Mice with transgenic hepatic over-expression of APOBEC1 developed 

hepatocellular carcinomas, associated with the hyper-editing of the novel 
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APOBEC1 target-1 (Nat1) mRNA transcript (Yamanaka et al., 1997). An 

additional target, the mouse protein tyrosine kinase Tec, was also edited in a 

mooring sequence-dependent fashion. However, this editing resulted in a silent 

codon change that did not contribute to APOBEC1-mediated oncogenesis 

(Yamanaka et al., 1995). Nat1 editing occurs upstream of an imperfect mooring 

sequence, suggesting that the mechanism of this edited event was comparable to 

that established for Apob, albeit in a non-physiological system.  

Analysis of peripheral nerve-sheath tumors from patients with 

Neurofibromatosis type I (NF1) has revealed a C-to-U RNA-editing event 

attributable to APOBEC1 in the transcript of the tumor suppressor (also called 

NF1) whose loss-of-function is associated with development of the disease. This 

editing event introduces a premature stop codon, leading to the synthesis of an 

inactive protein. APOBEC1 is expressed in these NF1 tumors and the editing 

event occurs upstream of a mooring sequence, indicating that it is likely a true 

APOBEC1-catalyzed event (Mukhopadhyay et al., 2002; Skuse et al., 1996). 

However, editing was only apparent in a subset of patient samples and at a low 

editing frequency, suggesting that while this editing may contribute to NF1 

pathogenesis in some cases, it is not a physiologically significant APOBEC1 

target.  

A link between APOBEC1 and oncogenesis was further supported by 

studies implicating APOBEC1 in susceptibility to testicular germ cell tumors 

(TGCTs) (Nelson et al., 2012) and adenocarcinoma of the small intestine (Blanc et 

al., 2007) in tumor-susceptible mouse models. Most interestingly, APOBEC1-

deficiency reduced the small intestine tumor burden in compound Apcmin/+ 

;Apobec1-/- mice. Adenomas isolated from these mice had a marked reduction in 
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Cox-2 mRNA abundance that was not associated with any C-to-U editing (Blanc 

et al., 2007). While this points to an APOBEC1-mediated editing-independent 

mechanism of oncogenesis, there was no comprehensive search for APOBEC1-

mediated editing in these tumors. Transcriptome-wide sequencing of Apcmin/+ 

mice may reveal additional novel oncogenic APOBEC1 targets. 

 

1.4.6 Viral APOBEC1 targets  

There is some evidence supporting a role for APOBEC1 hyper-editing in 

the inhibition of viral transcripts. However, although viral restriction by other 

adenosine and cytidine deaminases (ADARs, APOBEC3s) is an abundant and 

widely investigated phenomenon, APOBEC1 editing of viral RNA and DNA is 

still poorly characterized. Mouse APOBEC1 has been shown to be capable of 

hyper-editing viral genomes and RNA during MLV infection. This hyper-editing 

activity was observed for in vitro and in vivo infections but occurred at an 

exceptionally low frequency and was not linked to viral restriction (Petit et al., 

2009). Similarly, in vitro infection assays suggested that both human and mouse 

APOBEC1 could hyper-edit HBV DNA, but patient samples revealed only 

negligible editing in a pattern attributable to APOBEC1 (Gonzalez et al., 2009). 

Although these studies suggest some viral editing by APOBEC1, the 

experimental techniques involved raise questions about the strength of the 

conclusions. First, the editing is detected using PCR techniques that selectively 

amplify edited products that naturally occur at an exceptionally low frequency. 

Also, the enzyme responsible for in vivo C-to-U editing in this work is 

determined by the enzyme preference for nucleotide 5’ to the edited cytosine, 

suggested to be TpC for APOBEC1. In Apob, C6666 is preceded by an A and 
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3’UTR targets of APOBEC1 are predominantly preceded by either an A or T(U), 

calling into question the validity of any exclusive preference for a 5’ T. However, 

more convincing studies have implicated APOBEC1 hyper-editing in the 

restriction of HSV-1 (Gee et al., 2011) and HIV (Ikeda et al., 2008) viruses. 

Overall, it is clear that APOBEC1 can edit viral ssDNA and RNA in vitro and 

some work points to a broader anti-viral function for APOBEC1 in certain viral 

infections. 

 

1.5. Transcriptome-wide discovery of RNA editing events  

 The field of RNA editing has been dramatically changed with the advent 

of high-throughput sequencing technology and the ability to search 

transcriptome-wide for novel RNA editing events. Much of the early work on 

RNA editing started with the identification of an important RNA modification, 

followed by the subsequent characterization of the enzyme responsible. With 

transcriptome-wide sequencing data, the number of known RNA editing events 

has dramatically expanded, but the characterization of the functional relevance 

of the majority of these novel sites has lagged behind. This is especially true for 

ADAR-catalyzed RNA editing events in mRNAs and miRNAs, which have been 

extensively profiled in humans, mice, C. elegans and Drosophila. Our lab has 

previously demonstrated the utility of a screen for cytidine deaminase-specific 

RNA editing in mice, which compares wild-type sequence to a deaminase-

deficient control to filter single-nucleotide variants (SNVs) for bona fide RNA 

editing (Rosenberg et al., 2011b). Here, I will focus on the many strategies 

employed in transcriptome-wide identification of A-to-I editing and C-to-U 

editing and the advantages and limitations of these techniques. 
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1.5.1 Transcriptome-wide strategies for identifying A-to-I editing 

 Initial transcriptome-wide discovery of RNA editing events involved 

mining publically available cDNA, EST, and DNA sequences for A-to-G 

mutations (Athanasiadis et al., 2004; Kim et al., 2004; Levanon et al., 2004). 

Another comparable study generated and sequenced a cDNA library, with 

similar results (Blow, 2004). As these publically available sequences have high 

error rates, the authors limited the search to likely ADAR targets, i.e. apparent 

ADAR clustering events or areas containing predicted RNA duplexes. These 

studies identified thousands of previously uncharacterized A-to-G(I) editing 

events, predominantly occurring in untranslated Alu repeats. This early work is 

additionally important as it set the stage for later high-throughput sequencing 

analyses and used many of the same bioinformatic techniques and strategies for 

sequence alignment and subsequent filtering of putative RNA editing events.  

 Next-generation sequencing technology allows for the massively parallel 

sequencing of whole genomes and transcriptomes. The majority of work 

searching for novel RNA editing has utilized transcriptome-wide sequencing 

(RNA-Seq). In classic mRNA-Seq, whole RNA isolated from a cell, tissue or 

organism of interest is subjected to a poly(A) selection, isolating polyadenylated 

mRNA transcripts, which are then fragmented, reverse transcribed and 

massively sequenced, yielding millions of reads that can be aligned to the 

reference genome or assembled de novo. Another permutation of RNA-Seq 

involving ribosomal RNA depletion in place of a poly(A)-selection, yields larger 

sequencing libraries as it includes non-poly(A) transcripts, such as many long 

non-coding RNAs (lncRNAs). Typically, to identify RNA editing events, single-

nucleotide variants (SNVs) between the RNA-Seq reads and the reference 
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genome are identified and massively filtered to remove false positives 

introduced by errors in DNA amplification, library sequencing, and read 

mapping. Additionally, many strategies involve the removal of single-nucleotide 

polymorphisms (SNPs) encoded in the genome.  

 The first example of the identification of RNA editing by high-throughput 

sequencing used a “target-capture” technique followed by massively parallel 

DNA sequencing of cDNA and gDNA derived from a single human individual 

(Li et al., 2009b). A set of ~35,000 padlock probes were designed based on 

previously identified RNA editing sites, excluding repetitive Alu elements. These 

padlocks probes are single-stranded primers containing two regions of 

complementarity designed to flank a specific region of interest in the target DNA 

strand. Once the complementary regions are hybridized to the target molecules, 

the gap between them is filled in by a polymerase and the subsequent pool of 

thousands of padlocks can be amplified and massively sequenced with an 

Illumina sequencer. This represented a landmark for the field of RNA editing as 

it demonstrated the utility of deep sequencing in the transcriptome-wide 

identification of RNA editing and identified over 200 novel RNA editing events. 

However, this technique has considerable limitations. First, it required the 

laborious generation of thousands of padlock probes. As the cost of oligo 

synthesis has subsequently fallen more slowly than that of high-throughput 

sequencing, it is now significantly less efficient than traditional RNA-Seq. 

Second, the padlock probe strategy was inherently biased as it relies on patterns 

established from previously identified editing events.  

 A subsequent technique was developed based on inosine cyanoethylation, 

termed inosine chemical erasing (ICE) (Sakurai et al., 2010). Cyanoethylated 
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inosines form N1-cyanoethylinosine (ce1I), which cannot base pair with C and 

therefore stalls reverse transcription machinery. In ICE, both cyanoethylated 

(Ce+) and un-cyanoethylated (Ce-) RNA samples from the same tissue were 

reverse transcribed, amplified and subjected to Sanger sequencing. The 

sequences of true RNA editing events would exhibit an A-to-G conversion in the 

Ce- sample that is absent from the Ce+ sample, due to inhibition of the reverse 

transcription machinery that occurred during cDNA conversion. False positives, 

such as A-to-G sequencing errors or SNPs, would be equally converted in both 

Ce- and Ce+ samples, and easily removed from the screen. The ICE technique 

was applied to hundreds of regions predicted to contain ADAR editing and led 

to the discovery of ~2500 novel editing events. ICE sequencing has been highly 

successful in identifying novel ADAR editing events and its strategy greater 

lowers false positive rates. However, like the padlock method, it is biased toward 

“likely” ADAR targets and can only identify A-to-I events, not the particular 

enzyme responsible.  

As the price of next generation sequencing has dropped, more groups 

were able to use RNA-Seq to search for RNA-editing events in an unbiased 

fashion across the transcriptome (Bahn et al., 2012). The major barrier for these 

techniques is differentiating bona fide RNA editing from SNPs or additional 

errors introduced during sequencing and mapping. A highly controversial study 

that identified widespread RNA and DNA differences (RDDs) across the 

transcriptome highlighted the challenge of this process and lead to follow-up 

work that defined more optimal practice for the identification of RNA editing. In 

their much discussed paper, Cheung and colleagues presented a transcriptome-

wide comparison of RNA and DNA sequences from human B cells, in which 
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they reported over 10,000 RDDs across the transcriptome, introducing 

tremendous informational complexity (Li et al., 2011). The most surprising part 

about this study was that many of these events were transversions incapable of 

being catalyzed by adenosine or cytidine deaminases, the only known enzymes 

to introduce RDDs. However, technical comments demonstrated that the 

majority of these events (>90%) were due to technical artifacts and genetic 

variation (Lin et al., 2012; Pickrell et al., 2012; Schrider et al., 2011). First, the 

Cheung group aligned reads to an incomplete transcriptome; although reads 

were aligned uniquely (i.e., discarding reads which aligned to more than one 

position), reads originating from gene paralogs missing from the incomplete 

reference aligned incorrectly, introducing apparent RDDs. Second, many of the 

identified RDDs displayed positional and strand biases, indicating that they were 

technical artifacts. A common place for these biases to be introduced was during 

first-strand cDNA synthesis, where 5’ mismatches can be introduced with the 

random hexamer, resulting in a 5’ end bias restricted to the negative strand (Lin 

et al., 2012). Finally, a substantial number were identified as genomic SNPs.  

The limitations of this report indicate that transcriptome-wide 

identification of RNA editing events must be employed with stringent alignment 

and filtering parameters. Reads must be uniquely and stringently mapped to the 

genome. Additional pre-alignment read trimming can remove end bias, but these 

can also be filtered later. After read alignment, a series of filters can reduce a 

false positives by eliminating strand-bias, low coverage sites, sites edited at 

100%, positional bias, repetitive regions, and known SNPs. A number of 

subsequent studies applying these more stringent alignment and filtering 

parameters to varying degrees have established a higher-confidence and ever-

49



	   	  

expanding inosome in introns, mRNAs, and miRNAs (Alon et al., 2011; Bahn et 

al., 2012; Danecek et al., 2012; Gu et al., 2012; Peng et al., 2012; Ramaswami et al., 

2012).  

 

1.5.2. Transcriptome-wide identification of APOBEC1 editing  

As discussed above, a major challenge in the identification of RNA-editing 

events is how to filter bona fide RNA editing events from genomically encoded 

SNPs. In 2009, I contributed to a manuscript from our lab describing a 

“comparative” RNA-Seq screen, which uses a deaminase-deficient control to 

partially overcome this barrier and identify bona fide deaminase-specific RNA 

editing events (Rosenberg et al., 2011b). However, this strategy is less effective in 

the identification of ADAR-specific events as Adar-/- mice are not viable. Some 

studies have been successful in siRNA-mediated knock-down strategies to 

identify ADAR editing events in certain cells lines, but this can be limited by the 

stringency of the knock-down (Bahn et al.). Applying the comparative RNA-Seq 

strategy to the transcriptome of small-intestinal enterocytes, we identified 32 

additional APOBEC1 editing targets, dramatically expanding the physiological 

editing repertoire of an editing enzyme previously reported edit one target.  

The comparative RNA-Seq strategy exploits the complete lack of 

APOBEC1-catalyzed Apob editing observed in Apobec1-/- mice. The transcriptomes 

of small intestine enterocytes derived from wild-type and APOBEC1-deficient 

mice were subjected to next-generation sequencing, yielding millions of 36nt 

reads. These reads were stringently aligned to the genome; after a series of 

quality filters, loci which contained a C-to-T mismatch in the wild-type sample 

that was absent from the APOBEC1-deficient sample were defined as APOBEC1-
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catalyzed RNA editing events. In this point, our technique exhibits a 

considerable advantage over many previously described A-to-I identification 

strategies in mice. The deaminase-deficient control greatly reduces the number of 

false positives introduced by genetic variation and sequencing errors and defines 

only deaminase-specific events. Furthermore, our screen was performed with 

highly stringent read quality, alignment and filtering parameters. Subsequently, 

further validation of the APOBEC1 editing events yielded a low false positive 

rate of ~15%.  

These newly identified APOBEC1 editing events were validated by 

standard Sanger sequencing of cDNA and gDNA from an additional pair of 

wild-type and Apobec1-/-mice. 33 of the 39 candidate sites were validated as bona 

fide APOBEC1 editing events. The edited frequencies of these sites were 

calculated from the RNA-Seq reads and ranged from 0.92 (in Apob) to 0.18. 

Additionally, analysis of Sanger sequences revealed some additional low-

frequency hyper-editing events surrounding certain identified editing sites. 

These resemble the low-frequency promiscuous editing observed in Apob (Blanc 

et al., 2012) and are of unknown relevance.  

Further analysis of these validated editing events revealed characteristic 

sequence features of APOBEC1 editing in Apob. Most prominently, a 

downstream mooring motif comparable to the 11-nucleotide mooring sequence 

was observed in most of the editing targets. This mooring motif, defined as 

WRAUYANUAU, is more flexible than the previously established mooring 

sequence (UGAUCAGUAU) essential for Apob editing and predominantly occurs 

4-6nt downstream of the targeted cytidine. A transcriptome-wide search for this 

mooring motif revealed that it is present in numerous transcripts, both in coding 
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and untranslated regions. We sequenced these transcripts with standard Sanger 

sequencing to look for APOBEC1 editing upstream of the putative mooring 

sequences. Although we identified 9 additional APOBEC1 3’UTR targets that 

had been missed by the original RNA-Seq screen, no editing was observed in 

coding regions. These results underscore the importance of the mooring 

sequence in directing APOBEC1 editing activity while also suggesting that 

APOBEC1 editing in coding regions may be a rare event regulated by auxiliary 

factors.  

Earlier analyses of APOBEC1 editing were essentially restricted to one 

target, so very little has been defined about the targeting and editing preferences 

of this enzyme. It has been demonstrated previously that APOBEC1 binds highly 

AU-rich regions and that the region flanking C6666 is AU-rich. To establish 

whether this was true for 3’UTR editing, we determined the nucleotide 

composition of the 100nt regions surrounding the validated APOBEC1 editing in 

3’UTRs. As a set, these were found to be substantially more AU-rich than 

random sets of 101nt. Additionally, the 101nt region within each 3’UTR that was 

edited by APOBEC1 was significantly more enriched in AU content than the 

surrounding sequence. Together, this suggests that, as in Apob, APOBEC1 binds 

AU-rich regions to promote efficient editing. The members of the AID/APOBEC 

family exhibit local preferences for the nucleotides flanking the targeted cytidine. 

To define similar preferences for APOBEC1, we assessed the nucleotide 

composition of the 4 nucleotides up and downstream of the edited cytidines. We 

found that there was a significant preference for A or U nucleotides at the 

positions immediately flanking the edited C.  
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Finally, we assessed whether the regions with observed APOBEC1 editing 

in 3’UTRs was conserved over evolution. We determined the phastCon scores for 

the 101nt windows centered upon edited cytidines and compared it to random 

101nt windows in the same 3’UTRs. Together, the APOBEC1 targeted regions in 

3’UTRs were significantly more conserved, suggesting that these regions may be 

of functional relevance.  

 Overall, this work established a highly-specific RNA-Seq screen for RNA 

editing and identified 32 novel APOBEC1 editing events in evolutionarily 

conserved regions of transcript 3’UTRs. While the functional importance of this 

untranslated RNA editing remains elusive, these results point to additional 

functions for APOBEC1 beyond its well-characterized role in lipid metabolism.  

 
1.6. Statement of problem  

Polynucleotide RNA and DNA editing function in a diverse set of 

biological processes in mammals. In particular, the activities of some well-

characterized cytidine and adenosine deaminases centers upon host defense, 

where editing events contribute to antibody diversification, restriction of 

retroviruses and endogenous retroelements, and suppression of the interferon 

response. Although much of this editing activity has also been linked to 

oncogensis, the essential immune functions imparted by this editing presumably 

outweigh the risk for cellular transformation. RNA editing is often additionally 

touted as a driver of transcriptome diversity, where post-transcriptional 

modifications increase the complexity of the genome (Bass, 2002). ADAR, the 

best characterized polynucletoide RNA editing enzyme, does seem to introduce 

some sequence diversity in targeted transcripts, especially in neurological tissue. 
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The majority of ADAR editing events, however, occurs within untranslated 

regions of targeted transcripts and may function to modulate gene expression 

rather than protein isoforms per se.  

Our lab has developed a comparative RNA-Seq screen to identify 

APOBEC1-specific RNA editing events transcriptome-wide. Application of this 

screen in small intestine enterocytes identified 31 novel APOBEC1-catalyzed 

editing events within transcript 3’UTRs. These newly identified targets were 

predominantly located in areas of high phylogenic conservation, implying 

functional relevance. Additionally, a subset overlapped with miRNA seed target 

regions, suggesting a role for APOBEC1 editing in modulating miRNA targeting. 

Overall, our work increased the known editing repertoire for APOBEC1 and 

points a broader function for APOBEC1 than previously established.  

Despite its expression in a variety of tissues (Hirano et al., 1996; 

Nakamuta et al., 1995), including secondary lymphoid organs and a number of 

immune cell types (Rosenberg and Papavasiliou, unpublished data), the study of 

APOBEC1 has remained focused on its roles in the digestive system. However, 

there is some evidence that APOBEC1 could also function in immune cells. 

Throughout primate evolution, members of the AID/APOBEC family have 

evolved rapidly, displaying some of the strongest signals of positive selection in 

the human genome (Sawyer et al., 2004), a pattern associated with host defense. 

Indeed, the majority of this family has well-conserved functions in the immune 

system. Furthermore, a role for RNA editing in immune function has been 

established for ADARs, who exhibit well-characterized functions in the 

interferon response, viral infection and the suppression of exogenous dsRNAs.  
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Here, I have used an adapted comparative RNA-Seq strategy to identify 

over 100 novel APOBEC1 editing events in transcript 3′UTRs of bone marrow-

derived macrophages (BMDMs), a cell type that express APOBEC1 without ACF 

or ApoB. Unlike APOBEC1 editing identified in the intestine, BMDM editing is 

only weakly associated with a mooring motif. These editing events occur 

predominantly in conserved regions of 3′UTRs and can be grouped into two 

distinct editing patterns: site-specific editing and hyper-editing. I further 

analyzed the downstream consequences of the newly identified APOBEC1 

editing events and found editing events that repressed protein expression in an 

experimental system. Finally, I assessed the interaction between APOBEC1 

editing and miRNA targeting and found little evidence that APOBEC1 was 

affecting miRNA binding. My results demonstrate dramatic physiological ACF-

independent APOBEC1 editing outside of the intestine and point to a role for 

these editing events in miRNA-independent transcript regulation in BMDMs. 
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Chapter 2: APOBEC1 mRNA editing in bone marrow-derived macrophages 

 

The development of high-throughput sequencing technology has led to 

the rapid identification of thousands of previously unknown RNA editing 

events, the majority of which fall within the untranslated regions of target 

transcripts. Although the functional relevance of most of these newly discovered 

editing events remain elusive, they point to a broader function for RNA editing 

than has been previously appreciated. In particular for APOBEC1, an enzyme 

whose activity was thought to be restricted to a lone target and a single role in 

lipid metabolism, the recognition that APOBEC1 can edit additional transcripts 

in enterocytes raises the possibility that its physiological activity may also not be 

constrained to the intestine. The hypothesis that APOBEC1 may edit transcripts 

in additional cell types was tested using an adapted comparative RNA-Seq 

strategy in bone marrow-derived macrophages (BMDMs), a cell-type which 

expresses APOBEC1 but lacks ACF or ApoB. Abundant APOBEC1 editing was 

identified in BMDM transcript 3′UTRs, occurring in two editing patterns: site-

specific editing and hyper-editing. These editing events represent the first 

example of physiological APOBEC1 editing outside of the intestine and point to 

further functions for APOBEC1 in the immune system. 
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2.1 Identification of APOBEC1 editing events in BMDMs 

  

2.1.1. APOBEC1 expression in BMDMs 

While APOBEC1 RNA editing activity has previously been identified only 

in the small intestine and liver, it is expressed in a diverse set of tissues, 

including a number of immune cell types (Rosenberg and Papavasiliou, 

unpublished data). Notably, microarray data has shown that APOBEC1 is 

expressed in macrophages and that in this cell type expression levels are 

regulated by LPS stimulation (Mabbott et al., 2010). As these results point to a 

function for APOBEC1 in macrophages, I reasoned that bone marrow-derived 

macrophages (BMDMs) were an ideal experimental system with which to 

explore APOBEC1 editing in the immune system. Bone-marrow precursors were 

incubated with macrophage-specific cytokines (M-CSF) to generate mature 

macrophage cells, confirmed by two typical macrophage-specific cell surface 

markers, F4/80 and CD11b. Notably, Apobec1-/- BMDMs have no maturation 

defects and final cultures are >97% mature macrophages in both wild-type and 

APOBEC1-deficent littermates (Figure 2.1).  

APOBEC1 expression was confirmed by RT-PCR of mRNA derived from 

wild-type BMDMs. Surprisingly, in contrast to small intestine enterocytes, 

BMDMs lack APOBEC1’s known cofactor, A1cf, and its canonical editing target, 

ApoB (Figure 2.2A). This finding was further supported by RNA-Seq performed 

on wild-type BMDMs; both A1cf and ApoB transcript expression (represented as 

FPKM; fragments per kilobase per million reads mapped) were calculated to be 

zero, while APOBEC1 was expressed with an FPKM of approximately 261 

(Figure 2.2B). Additionally, Apobec1 was confirmed to be differentially expressed 
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Figure 2.1.  Flow cytometry analysis of BMDM maturation. Bone marrow 
precursors were derived from wild-type and APOBEC1-deficient mice and 
matured into bone marrow-derived macrophags (BMDMs). The final
composition of the “mature” BMDM cultures was confirmed via flow cytometry 
analysis.  Live cells were gated based on forward and side-scatter and lack of 
7AAD staining. Mature macrophages were identified with two cell surface 
markers, Cd11b and F4/80.    
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Figure 2.2. APOBEC1 expression in BMDMs. (A) PCR amplification of Apobec1, 
A1cf and Apob cDNA from macrophage and enterocyte mRNA. (B) Transcript 
expression data for Apobec1, A1cf and Apob from polyA+ RNA-Seq as calculated 
by cuffdiff, representated as fragments per kiolobase per million reads mapped 
(FPKM). (C) APOBEC1 expression after LPS stimulation as assessed by qRTPCR.
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in BMDMs stimulated by LPS (100ng/mL). Apobec1 transcript levels drop to 20% 

of baseline after 2 hours of LPS stimulation, and subsequently recover at 24 

hours. Together these results further point to a role for APOBEC1 in BMDMs. 

 

2.1.2. RNA-Seq reveals abundant APOBEC1 editing in BMDMs.  

The Papavasiliou lab has previously established a comparative RNA-Seq 

strategy with high specificity for the identification of RNA-editing events, which 

utilizes an APOBEC1-deficient control to filter single-nucleotide variants (SNVs) 

for APOBEC1-dependent RNA editing events (Rosenberg et al., 2011b; 2011a). As 

described in section 1.5.2, this screen revealed 32 additional APOBEC1 editing 

events in enterocyte transcript 3′UTRs, pointing to further functions for 

APOBEC1. To investigate the extent of APOBEC1 deaminase activity in murine 

macrophages, we performed 75nt, single-end RNA-Seq on poly-A+ RNA from 

wild-type and Apobec1-/- BMDMs, yielding approximately 28 and 33 million 

reads, respectively. These reads were trimmed and then aligned to the reference 

genome (mm9). The alignment strategy was designed mindful of the fact that the 

edited population of reads in the wild-type could contain many mismatches to 

the reference genome, essential to the downstream editing analysis. With this in 

mind, moderately permissive alignment parameters were used that allowed for 

up to 6 mismatches within a 75nt read.  

To identify putative APOBEC1-catalyzed deamination events, C-to-T 

SNVs between the reads and the reference genome were identified. To do this a 

pileup file was generated using the SAMtools program (Li et al., 2009a). The 

strategy for identifying these APOBEC1-mediated mismatches differed slightly 

from previously established protocols. Previously, read to reference mismatches 
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were determined using the SNP-calling algorithm defined by the SAMtools 

program during the generation of a pile-up file. But, as RNA editing events can 

occur in different patterns from genomic SNPs, it was suboptimal to use this 

SNP-calling algorithm to assign a consensus base. Therefore, process was 

somewhat simplified and SNVs were identified purely by the ratio of nucleotides 

present at that position in aligned reads.  

These identified APOEC1-specific C-to-T SNVs were further filtered, 

identifying those that fell within known genes, were covered by at least 20 reads, 

had at least 20% apparent editing, were not located in regions that were non-

isogenic between the mice used, were not significantly strand biased, and were a 

minimum distance from non-C-to-T SNVs. Finally, we retained only those C-to-T 

mismatches that did not occur in the Apobec1-/- sample, isolating true APOBEC1-

dependent events (Figure 2.3). To increase both sensitivity and specificity, we 

lowered parameters for the APOBEC1-deficient sample, identifying a base as 

“edited” if it was covered by at least 10 reads and had an editing frequency of at 

least 5%. Based on this filtering strategy, 110 putative APOBEC1 editing events 

within 72 transcripts were established (Figure 2.4). A comparable analysis was 

performed in the Apobec1-/- sample as compared to wild-type to estimate an 

implied false positive rate (IFPR) of <1%.  

A subset of editing events were validated by standard Sanger sequencing 

or subclone sequencing of cDNA and genomic DNA (gDNA) derived from an 

independent littermate pair of wild-type and Apobec1-/- BMDMs (Figure 2.6 - 2.8). 

We confirmed 42 editing events of 48 screened, for a false positive rate of 12.5%. 

This false positive rate was moderately higher than the predicted IFPR. A 

number of factors contributed to this slightly higher FDR including the plasticity 
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Figure 2.3. Workflow for comparative mRNA-Seq strategy. The strategy for 
comparative RNA-Seq  read alignment and SNV filtering is depicted here.  After 
filtering, C-to-T mismatches identified in the sample wildtype sample that are 
absent from the APOBEC1-deficient BMDMs are designated as bona fide 
APOBEC1 editing events. The converse, C-to-T mismatches in the APOBEC1-
deficient sample that are absent from wild-type yields an implied false positive 
rate (IFPR). 
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Apobec1-/-

A 3’UTR: Aoah chr13:21115520-21115670

B 3’UTR: Sh3bgrl chrX:106355600-106357600

Figure 2.4. Examples of APOBEC1 editing events identified by RNA-Seq. 
(A/B) RNA-Seq reads from wildtype and Apobec1-/- libraries covering the 3’UTRs 
of Aoah (A) and Sh3bgrl (B) as visualized by the Integrative Genome Viewer. 
Nucleotides which match the reference genomic sequence are represented in 
grey and nucleotide mismatches to the reference genome are represented by a 
variety of colors with T mismatches in red.

wild-type

Apobec1-/-
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of the APOBEC1 editing repertoire within each transcript, the elimination of a 

genomic SNP filter and the moderately permissive read depth cutoffs. After 

validation, we compiled a list of 104 high-confidence APOBEC1 editing events 

within 68 transcript 3′UTRs (Figure 2.5;Table 2.1), representing the first example 

of physiological APOBEC1 editing outside of the intestine.  

 

2.1.3 Two patterns of APOBEC1 editing: site-specific and hyper-editing 

In contrast to physiological APOBEC1 RNA editing in enterocytes, we 

observed two distinct APOBEC1 editing patterns in BMDMs (Figure 2.5). In site-

specific editing, a single cytosine is edited consistently at high frequency, with 

negligible frequencies of editing events surrounding the targeted base. Site-

specific editing, comparable to previously established APOBEC1 editing in ApoB, 

was observed in 54 transcripts 3ʹ′UTRs (containing 60 identified editing events) 

(Figure 2.5-2.7). In hyper-edited transcripts the 3ʹ′UTR contained multiple (2-8) 

high frequency editing events (editing “hotspots”) and many scattered low-

frequency editing events surrounding each “hotspot” base. APOBEC1-

dependent hyper-editing was observed in 14 APOBEC1-targeted transcripts 

(containing 44 identified editing events) (Figures 2.4, 2.8, 2.9). Some 

“promiscuous” APOBEC1 hyper-editing activity has been previously observed 

in transgenic over-expressing mice or a viral infection model, but never in a 

physiological system. Therefore, in addition to identifying abundant APOBEC1 

editing in a novel cell type, this represents a previously uncharacterized 

physiological editing modality for APOBEC1. 
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Gene name Edited Site Ref base Read base Read depth Strand Edit Frequency Hyperedited

1110002B05Rik chr12:55747165 G R 127 - 0.43 no
2010106G01Rik chr2:126716570 G R 46 - 0.35 no
2210013O21Rik chrX:150163433 C Y 42 + 0.21 no
2610001J05Rik chr6:13819970 G R 65 - 0.25 no
4930579G24Rik chr3:79436318 C Y 22 + 0.23 no
6330578E17Rik chr1:37475131 G R 30 - 0.20 no
Acadl chr1:66877651 G R 20 - 0.20 no
ADAM10 chr9:70626825 C Y 62 + 0.21 no
Anxa5 chr3:36347952 G R 594 - 0.31 no
Aoah chr13:21115534 C Y 24 + 0.25 yes
Aoah chr13:21115538 C Y 23 + 0.30 yes
Aoah chr13:21115541 C Y 23 + 0.22 yes
Aoah chr13:21115616 C Y 24 + 0.21 yes
Aoah chr13:21115667 C Y 23 + 0.22 yes
App chr16:84954725 G R 50 - 0.20 yes
App chr16:84954758 G R 133 - 0.46 yes
App chr16:84955024 G R 304 - 0.24 yes
App chr16:84955039 G R 257 - 0.20 yes
App chr16:84955062 G R 241 - 0.21 yes
App chr16:84955086 G R 254 - 0.23 yes
App chr16:84955113 G R 311 - 0.32 yes
App chr16:84955194 G R 265 - 0.28 yes
Arih1 chr9:59239901 G R 22 - 0.23 no
Atp6ap2 chrX:12193513 C Y 157 + 0.27 yes
Atp6ap2 chrX:12193524 C Y 149 + 0.23 yes
Atp6ap2 chrX:12193607 C Y 126 + 0.40 yes
Atp6v1a chr16:44087436 G R 143 - 0.23 no
B2m chr2:121978476 C Y 2350 + 0.51 yes
B2m chr2:121978523 C Y 1863 + 0.28 yes
B2m chr2:121978638 C Y 1770 + 0.54 yes
BC013529 chr10:7487994 G R 20 - 0.25 no
Bcap31 chrX:70931693 G R 112 - 0.21 yes
Bcap31 chrX:70931742 G R 127 - 0.20 yes
Bcap31 chrX:70931744 G R 126 - 0.31 yes
Casp6 chr3:129616676 C Y 28 + 0.29 no
Ccni chr5:93611225 G R 51 - 0.27 no
Cd36 chr5:17288955 G R 47 - 0.77 no
Cybb chrX:9012852 G R 196 - 0.29 yes
Cybb chrX:9013719 G R 260 - 0.22 yes
Dpp8 chr9:64929147 C Y 36 + 0.25 no
Dpp8 chr9:64930384 C Y 29 + 0.29 no
Dynlt3 chrX:9232850 G R 23 - 0.35 yes

Table 2.1. APOBEC1 editing events in BMDMs 
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Gene name Edited Site Ref base Read base Read depth Strand Edit Frequency Hyperedited

Dynlt3 chrX:9233008 G R 31 - 0.26 yes
Eif4a2 chr16:23113791 C Y 20 + 0.20 no
Entpd5 chr12:85716971 G R 20 - 0.20 no
Epsti1 chr14:78402303 C Y 25 + 0.24 no
Fkbp1a chr2:151386579 C Y 34 + 0.21 yes
Fkbp1a chr2:151387062 C Y 22 + 0.32 yes
Fuca2 chr10:13235355 C Y 20 + 0.25 no
Gdbd1 chr11:86847804 G R 23 - 0.26 no
Hibadh chr6:52496349 G R 38 - 0.24 no
Hmgn3 chr9:83003686 G R 22 - 0.23 no
Impa1 chr3:10314195 G R 22 - 0.23 no
Itgb2 chr10:77028321 C Y 200 + 0.23 yes
Itgb2 chr10:77028356 C Y 144 + 0.38 yes
Lamp1 chr8:13174686 C Y 368 + 0.21 yes
Lamp1 chr8:13174689 C Y 363 + 0.29 yes
Lamp1 chr8:13174696 C Y 418 + 0.32 yes
Lamp1 chr8:13174720 C Y 383 + 0.29 yes
Lamp1 chr8:13174732 C Y 399 + 0.39 yes
Lamp2 chrX:35774512 G R 67 - 0.27 no
Lamp2 chrX:35774742 G R 81 - 0.30 no
Lypla1 chr1:4836242 C Y 37 + 0.30 no
Mbnl1 chr3:60432599 C Y 147 + 0.20 no
mcmbp chr7:135841366 G R 25 - 0.32 no
Mmd chr11:90139728 C Y 31 + 0.29 no
Mospd2 chrX:161374490 G R 23 - 0.43 no
Nptn chr9:58500000 C Y 150 + 0.36 yes
Nptn chr9:58500149 C Y 162 + 0.20 yes
Ola1 chr2:72931513 G R 27 - 0.22 no
Ola1 chr2:72931552 G R 22 - 0.23 no
Papss1 chr3:131306342 C Y 24 + 0.21 no
Papss1 chr3:131306346 C Y 23 + 0.22 no
Pla2g7 chr17:43749067 C Y 86 + 0.24 no
Prkacb chr3:146395143 G R 36 - 0.22 no
Ptma chr1:88427075 C Y 43 + 0.23 no
Rab18 chr18:6789843 C Y 25 + 0.28 no
Rac1 chr5:144266732 G R 207 - 0.29 no
Reep5 chr18:34506411 G R 44 - 0.21 no
Rpl15 chr14:19100950 G R 32 - 0.25 no
Rpl15 chr14:19101348 G R 21 - 0.29 no
Sdcbp chr4:6322479 C Y 45 + 0.56 yes
Sdcbp chr4:6322512 C Y 85 + 0.64 yes
Sep15 chr3:144259976 C Y 286 + 0.37 yes

Table 2.1. Continued. APOBEC1 editing events in BMDMs 
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Sep15 chr3:144260406 C Y 244 + 0.21 yes
Serinc1 chr10:57235791 G R 62 - 0.81 no
Serinc3 chr2:163450893 G R 109 - 0.23 no
Sgk3 chr1:9889105 C Y 30 + 0.37 no
Sgk3 chr1:9889140 C Y 21 + 0.29 no
Sh3bgrl chrX:106355759 C Y 112 + 0.28 yes
Sh3bgrl chrX:106356391 C Y 101 + 0.28 yes
Sh3bgrl chrX:106357513 C Y 182 + 0.25 yes
Spcs2 chr7:106987604 G R 31 - 0.26 no
Spp1 chr5:104869859 C Y 3284 + 0.22 no
Srgn chr10:61957357 G R 47 - 0.21 no
St8sia4 chr1:97484976 G R 20 - 0.25 no
Syap1 chrX:159295116 G R 20 - 0.20 no
Sypl chr12:33661093 C Y 45 + 0.20 no
Tes chr6:17055467 C Y 40 + 0.30 no
Tmed7 chr18:46747592 G R 26 - 0.31 no
Tmem30a chr9:79617629 G R 28 - 0.61 no
Tmem55a chr4:14841457 C Y 20 + 0.35 no
Tspan3 chr9:55983987 G R 34 - 0.26 no
Zfp871 chr17:32906699 G R 20 - 0.21 no

Table 2.1. Continued. APOBEC1 editing events in BMDMs 
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Figure 2.5. APOBEC1 site-specific editing and hyper-editing. Editing 
frequency of single-site edited (blue) and hyper-edited (green) sites. Inset: 
APOBEC1-targeted transcripts represented by editing pattern and number of 
events per transcript. 
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Figure 2.6 Representative example of APOBEC1 site-specific editing. 
(A) Sanger sequencing and (B) subclone sequencing of the Cd36 tran-
script 3’UTR in BMDM wild-type and Apobec1-/- genomic DNA (gDNA) 
and cDNA

3’UTR: Cd36
reference sequence 

69



T A A C A T T G T A G T C A T T T G T A C T T T G A T A T C A G T A T T T T C T T A A C

Subclone
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 11
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 12
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 14
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A A T A T G C A T T T T T G C T T G A A C T G C T T A C T G T A A T T T T A A C C T A A G

Subclone
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 7
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

reference sequence

wild-type

Apobec1-/-

cD
N

A

3’UTR: 1110002B05Rik 

wild-type

Apobec1-/-

gD
N

A

T C A C A G T T C T A A C T T A G C A A G T G C T T T T C T T T A G A A C C C C T T C T T

Subclone
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
. . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
. . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A C T C A G A G C T A G T T A G T G C T T C C T T A G T T T C C T A G C A A C T A G G T G

Subclone
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

reference sequence

wild-type

Apobec1-/-

cD
N

A

wild-type

Apobec1-/-

gD
N

A

chr12:55747185-5574142 chr4: 14841437-14841481

chr5:144266726-144266770 chr5:144266923-144266879

3’UTR: Tmem55a

3’UTR: Rac1

A

Figure 2.7. Additional examples of APOBEC1-mediated site-specific editing. 
Subclone sequencing of (C) 1110002B05Rik (D) Tmem55a (E) Rac1 3’UTRs. 

B

C

70



chr16:84955027-84955113

Figure 2.8. Representative example of APOBEC1 hyper-editing. Subclone 
sequences from the cDNA of wildtype and Apobec1-/-App transcripts aligned to 
the reference genomic sequence. C-to-T mismatches to reference are highlighted 
in yellow and editing events identified by RNA-Seq screen are indicated by 
arrows.
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2.2 Characteristics of APOBEC1 editing events in BMDMs 

High-frequency APOBEC1 editing events had been identified in a cell 

type that lacks the co-factor ACF, suggesting that APOBEC1 could be editing in a 

previously uncharacterized mechanism. Analysis of APOBEC1 intestinal editing 

events has revealed sequence characteristics for editing that include A or U 

flanking nucleotides (Rosenberg et al., 2011b) and a downstream mooring motif 

(Backus and Smith, 1991; Rosenberg et al., 2011b; Shah et al., 1991). In ApoB 

editing, ACF binds to the mooring sequence and directs APOBEC1 to C6666 with 

high fidelity. Intestinal 3′UTR editing events are largely associated with a similar 

mooring motif, suggesting that ACF binding to the target transcript may also be 

required. To gain insight into mechanistic difference for APOBEC1 editing 

without ACF, I performed analyses to determine whether macrophage-specific 

APOBEC1 editing events shared the features of 3′UTR editing in the intestine. 

 

2.2.1 Adjacent nucleotide analysis  

Other members of the AID/APOBEC family have been shown to have 

preferences for the nucleotides neighboring the targeted cytosine. In small 

intestine enterocytes, APOBEC1 was found to exhibit a strong preference for A or 

U nucleotides immediately flanking the edited C (Rosenberg et al., 2011b). 

Analysis of the flanking nucleotides in BMDM edited transcripts revealed that 

again the edited cytosine was flanked by A or U more often than would be 

expected by chance (Figure 2.10). This result suggests that factors leading to a 

flanking nucleotide preference remain consistent in ACF-independent APOBEC1 

editing in BMDMs.  
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Figure 2.10. APOBEC1 adjacent nucleotide preferences. Sequence log 
depicting the frequency of nucleotides in positions flanking the APOBEC1-
targeted cytosine. The height of the nucleotide depicts the relative frequency of 
each base at the specified position. 
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2.2.2 Mooring sequence analysis 

A downstream 11-nucleotide APOBEC1 mooring sequence was 

established in the intestine to be essential for ApoB editing (Shah et al., 1991) and 

was found to be strongly associated with 3ʹ′UTR editing (Rosenberg et al., 2011b). 

The sequence of the mooring sequence and the further refined “mooring motif” 

are depicted in Figure 2.12A. To further investigate features of ACF-independent 

APOBEC1 editing, the relationship of macrophage-specific APOBEC1 editing 

events with this mooring sequence was investigated. In contrast to enterocyte 

editing, only 33 APOBEC1-targeted transcripts (43% of hyper-edited transcripts 

and 54% of site-specific edited transcripts) were associated with a high-quality 

mooring sequence, defined as ≤ 2 deviations from the established mooring motif 

(Figure 2.11).  

To determine the correlation between mooring sequence strength and 

editing frequency, a mooring motif scoring system was defined based on 

sequence quality and position of the mooring motif in relation to the targeted 

cytosine (Figure 2.12A). For all APOBEC1 editing events identified, mooring 

sequence score was only weakly correlated (Pearson’s correlation coefficient r = 

0.39) with editing frequency (Figure 2.12B). However, hyper-editing events could 

skew these results, as only one mooring sequence may be associated with many 

editing events in one transcript 3ʹ′UTR. A comparable analysis limited to site-

specific editing events yielded only a slightly higher correlation (r = 0.55) (Figure 

2.12B). In hyper-edited transcripts, a very poor correlation was found between 

number of high-frequency edits (≥ 20%) in each transcript and mooring sequence 

stringency of the best mooring motif (r = 0.17) (Figure 2.12C). These data 
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Figure 2.11. Presence of mooring motif in APOBEC1-targeted transcripts. 
Quality of the mooring motif in hyper-edited and single-site edited transcripts. 
Mooring motifs are grouped by the number of mismatches (0, 1, 2, > 2) to the 
established motif and represented as a percentage of the total number of hyper-
edited or site-specific editing transcripts. In transcripts with more than one 
edited C and more than one mooring sequence, the best motif was chosen.
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Figure 2.12. APOBEC1 editing is weakly associated with mooring motifs. (A) 
Schematic of APOBEC1 mooring sequence essential for ApoB editing of C6666 
(grey) and consensus mooring motif established for APOBEC1 3’UTR editing in 
enterocytes (green). Edited cytidine is represented in red. The mooring sequence 
stringency score was based on the distance of the mooring sequence and the 
quality of the mooring motif. (B) APOBEC1 editing events (site-specific, blue; 
hyper-edited, green) plotted as a factor of the mooring sequence score and 
editing frequency. Best-fit lines were plotted for all editing events (red) and only 
site-specific events (blue) (r = Pearson’s correlation coefficient). (C) The mooring 
motif score for hyper-edited transcripts is plotted against the number of 
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Figure 2.13. Mooring sequence scores in BMDMs vs enterocyte editing 
targets. Edited transcripts were split into those only edited in BMDMs 
(purple) and those with editing events identified by RNA-Seq in both 
small-intestine enterocytes and BMDMs (blue).  Each transcript is plotted 
for the score of its mooring sequence. A score of 0 denotes the absence of a 
high-quality mooring sequence.  A score of 10 indicates a mooring sequence 
with no deviations from the established motif that occurs 4-6nt downstream 
of the edited cytosine. 
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demonstrate that ACF-independent APOBEC1 editing in BMDMs is occasionally 

associated with, but not absolutely dependent on, a downstream mooring 

sequence. Furthermore, this suggests that the requirements for APOBEC1-

dependent RNA editing in BMDMs may be substantially different than 

previously established for ApoB and points to an alternative editing requirements 

for these ACF-independent editing events. 

 

2.2.3 Comparison of APOBEC1 intestine and BMDM editing  

The editing of C6666 in the ApoB transcript remains the only example of 

true APOBEC1 editing in a coding region, but some APOBEC1 transcript 3ʹ′UTR 

substrates displayed similar editing in both enterocytes and BMDMs. In 

isolation, this result is not surprising; cis-acting sequence requirements for 

APOBEC1 editing in preferred substrates could “mark” the transcript for editing. 

However, one of these sequence requirements is the binding motif for a co-factor 

not expressed in BMDMs. As discussed, while half of the transcripts edited in 

BMDMs lack a downstream mooring sequence, some transcripts are associated 

with high quality mooring motifs. However, when the transcripts are grouped 

into those edited only in BMDMs and those also edited in the intestine, 

transcripts edited in both cell types tend to have higher mooring sequence scores 

(Figure 2.13). This finding points to additional uncharacterized sequence 

requirements or an alternative co-factor involved in APOBEC1-mediated 

transcript 3!UTR editing.  
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Chapter 3: Consequences of APOBEC1 editing events in 3’UTRs  

 

 Transcriptome-wide high-throughput sequencing has revealed thousands 

of previously uncharacterized ADAR and APOBEC1 RNA editing events in 

transcript 3′UTRs. The functional relevance of this untranslated region editing 

has remained largely unknown. Specific examples of ADAR editing in 3’UTRs 

have been shown to modulate genes expression through nuclear retention of 

ADAR target transcripts (Chen et al., 2008), mRNA cleavage (Osenberg et al., 

2009) or potential modification of miRNA target regions (Borchert et al., 2009; 

Liang and Landweber, 2007). For APOBEC1, the identification of additional 

editing events in enterocyte transcript 3’UTRs pointed to a broader role for the 

enzyme than had been previously appreciated. These additional editing events 

intestine enterocytes were shown to occur predominantly in evolutionarily 

conserved regions, suggesting that untranslated APOBEC1 may have functional 

importance. Furthermore, the majority of APOBEC1 editing events were shown 

to occur in sequences matching miRNA seed targets, suggesting that APOBEC1 

editing could alter gene expression by influencing miRNA targeting. However, 

as functional testing of APOBEC1 editing in enterocytes was complicated by 

APOBEC1’s role in lipid metabolism, the specific consequences of APOBEC1 

editing in 3’UTRs remained elusive.  

 Chapter 2 described the identification of abundant APOBEC1 editing 

events in BMDMs, the first example of physiological APOBEC1 editing outside 

of the digestive system. BMDMs are a preferable experimental system to test 

functional relevance of APOBEC1 editing in transcript 3’UTRs as:  
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1- BMDMs are a robust primary cell type, providing both a physiological 

milieu and abundant, easily culturable material.  

2- APOBEC1-deficient BMDMs are unaffected by the lipid defects that 

afflict Apobec1-/- small intestine enterocytes due to the loss of apoB-48. 

These apoB-mediated effects complicate analysis of small-intestinal 

enterocyte editing where it is impossible to differentiate apoB-mediated 

defects from those caused by alternative APOBEC1 editing events.  

3- As discussed, there is significant evidence that APOBEC1 may function 

in the immune system. As BMDMs have abundant APOBEC1 enzymatic 

activity, this cell type represents an appropriate system to assess roles for 

APOBEC1 in immunity.  

 Therefore, BMDM APOBEC1 editing events in 3’UTRs were assessed for 

consequences for transcript expression, gene expression and cell function. As a 

set, APOBEC1 editing events were found in evolutionarily conserved regions. 

Although transcripts found to be edited by APOBEC1 had no significant 

differences in overall protein expression between wild-type and APOBEC1-

deficient mice, certain editing events were shown to repress protein expression in 

a luciferase reporter assay. To test whether this protein repression was due to 

changes in miRNA processing, HITS-CLIP for the Argonaute (Ago) proteins was 

performed on wild-type and APOBEC1-deficient BMDMs. Although Ago and 

APOBEC1 seemed to target similar transcript substrates, there was little evidence 

for APOBEC1 altering miRNA binding. Overall, in BMDMs APOBEC1 editing 
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events in 3’UTRs can modulate protein expression in a miRNA-independent 

mechanism.  

3.1. BMDM APOBEC1 editing occurs in evolutionarily conserved regions.  

Intestinal APOBEC1-dependent 3′UTR editing, although located in a non-

coding region of the transcript, was identified be largely located in regions of 

substantial phylogenic conservation, implying functional importance to the cell 

(Rosenberg et al., 2011b). In BMDMs, transcript 3′UTRs have been identified 

which contain such a large number of C-to-T editing events; the composite edited 

sequence represents a dramatic change from the genomically-encoded DNA 

sequence. Such abundant editing if located in functional regulatory regions could 

have dramatic downstream consequences. To assess the conservation of BMDM 

APOBEC1 editing, the PhastCon scores of 101nt windows surrounding 

APOBEC1-edited cytosines were compared to random sets of 101nt windows 

located in 3′UTRs. On average, edited windows were significantly (p < 0.01, 

student’s t-test) more conserved than the random windows (Figure 3.1), 

suggesting that sequences edited by APOBEC1 may be functionally relevant. 

 

3.2. Consequences of APOBEC1 editing: luciferase reporter assay.  

As APOBEC1 editing events occur in such conserved regions of transcript 

3’UTRs, I sought to determine whether APOBEC1 editing events in non-coding 

3′UTRs can modulate transcript and protein expression. To assess the effects of 

APOBEC1 on the transcriptome, transcript expression profiles generated from 

RNA-Seq were analyzed, and transcript expression was highly correlated 

between the two genotypes (r > 0.99) (Figure 3.2). A small subset of unedited 
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Figure 3.1. APOBEC1 editing events occur in conserved regions of 3’UTRs. 
Mean PhastCon score of 100 sets of 68 random 101nt windows in 3’UTRs as 
compared to the mean PhastCon score of the 68 101nt windows surrounding 
APOBEC1 editing sites (red arrow). 
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Comparison of transcript expression levels as calculated by cuffdiff (represented 
as FPKM, fragment per kilobase per million reads mapped) from RNA-Seq for 
wild-type and Apobec1-/- BMDMs.

10

10

84



	   	  

transcripts were differentially expressed (Table 3.1), indicating that while 

APOBEC1 editing could be influencing transcript levels of a few downstream 

targets, there were no quantifiable changes in expression of edited transcripts.  

However, the effects of transcript regulatory processes may only be 

appreciable at the protein level. For example, translational repression has been 

shown to be the principal mechanism of miRNA-mediated gene expression 

changes and required for subsequent mRNA degradation (Meijer et al., 2013). 

Therefore, to directly assess the consequences of APOBEC1 editing events on 

protein expression, a standard luciferase reporter assay was utilized. APOBEC1-

targeted transcript 3ʹ′UTRs of interest were amplified from wild-type BMDM 

cDNA and a selection of clones with representative levels of C-to-U alterations 

(either single-site edited or with increasing amounts of hyper-editing) were 

cloned into a dual-luciferase reporter construct. “Edited” (with C-to-U change) 

and “unedited” (with no C-to-U change) luciferase constructs were transfected 

directly into Apobec1-/- BMDMs and the relative change in luciferase expression 

between “edited” and “unedited” constructs was determined (Figure 3.3A).  

A number of these constructs containing C-to-U changes showed 

significant repression of luciferase levels (Figure 3.3B, 3.4), suggesting that 

APOBEC1 editing events can occur in regions important to transcript regulation. 

Of the single-site “edited” constructs tested, only the C-to-U change in Cd36 

modulated luciferase levels (Figure 3.3B). However, the “hyper-edited” 

constructs tested (App, Lamp1, B2m) had a least one clone with a specific 

repertoire of C-to-U changes that reduces protein expression levels in a luciferase 

reporter assay, suggesting that hyper-edited events were more likely to alter 

translational outcomes of targeted transcripts (Figure 3.4). Importantly, these 
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Table 3.1. Genes differentially expressed between wild-type and Apobec1-/- 
BMDMs. Transcriptome-wide mRNA expression data (FPKM; fragments per 
kilobase per million reads mapped) was obtained from RNA-Seq of wild-type 
and Apobec1-/- BMDMs.  Genes listed have significantly lower (top) or higher 
(bottom) expression in APOBEC1-deficient BMDMs as compared to the wild-
type sample.  No significantly differentially expressed genes are edited by 
APOBEC1. 

Gene wild-type FPKM Apobec1    FPKM fold change, log p value
Clk1 37.7471 16.1321 -1.22643 0
Clec7a 58.1322 27.4597 -1.08202 0
Apoe 2576.81 1311.63 -0.974225 4.88E-11
S100a9 47.8244 25.1486 -0.927271 3.51E-08
Atp6v0d2 10.1526 5.40898 -0.908424 2.02E-07
Il7r 16.8209 9.01861 -0.899281 1.99E-10
Kcnj2 15.7805 8.83474 -0.836885 1.90E-10
Lyrm5 9.42068 5.49518 -0.777665 0.00028054
Cysltr1 9.18537 5.37057 -0.774262 1.76E-05
Plxdc2 18.4787 10.8933 -0.762425 1.59E-08
Hpgds 53.2339 31.4061 -0.761298 5.16E-11
Eif2s3y 19.8506 11.7219 -0.759981 1.27E-06
Mrps28 9.30101 15.7603 0.760832 0.000302543
Emp1 79.3218 134.575 0.762617 1.54E-11
Rhof 5.38609 9.20734 0.773546 1.68E-05
Clec4e 9.3831 16.1609 0.78437 5.24E-07
Gm5424 12.1444 21.9633 0.854808 2.22E-08
Smpdl3b 7.35261 13.3654 0.862171 3.18E-07
Hist1h2bc 16.7332 30.4343 0.862989 7.71E-07
Plxnd1 85.3102 159.429 0.902127 7.04E-14
Klf2 27.0208 51.6073 0.933504 5.24E-13
Hist1h1c 26.4887 51.1862 0.950378 2.68E-13
Rsc1a1 7.94624 15.3601 0.950842 2.17E-07
Osgin1 10.5094 20.4214 0.958395 2.07E-10
Fos 37.5034 76.4846 1.02815 0
Gdf3 20.1619 41.9364 1.05657 2.22E-15
Tnf 5.05998 10.5908 1.06561 1.55E-07
Clec4n 3.34772 7.20979 1.10678 3.32E-06
Scd1 3.80326 8.23143 1.1139 5.47E-12
Dusp1 15.8032 34.2969 1.11786 1.33E-15
Ccl2 4.01672 8.85682 1.14077 3.69E-05
Ier3 15.3149 33.8081 1.14243 4.25E-12
Asns 4.5777 10.5256 1.20121 1.39E-09
Apobec1 261.006 601.018 1.20333 0
Irg1 3.01941 8.19314 1.44015 2.10E-13
Dusp6 10.5318 29.5225 1.48707 0

-/-
2
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Figure 3.3. Consequences of APOBEC1 editing: luciferase reporter assay.
(A) Strategy for testing effects of APOBEC1 3’UTR editing on protein 
expression. (B) Luciferase levels for representative cDNA clones of site-specifc 
edited transcript 3’UTRs, normalized to unedited.
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hyper-edited transcripts tested were generated from cDNA cloning rather than 

targeted mutagenesis and so were reflective of the diversity of transcript 

sequences found in the cell. These results point to a role for APOBEC1 editing 

events, particularly hyper-editing in transcript regulation. However, some 

hyper-edited clones had no effect on protein expression and one singly edited 

clone significantly reduced luciferase levels, indicating that certain APOBEC1-

dependent C-to-U editing events or combinations of C-to-U changes can 

modulate mRNA stability or transcript regulatory factors, but not all C-to-U 

changes alter protein expression.  

 

3.3. Consequences of APOBEC1 editing on endogenous protein levels 

 As APOBEC1 was demonstrated to modulate protein levels in a simplified 

experimental system, I sought to verify this in vivo, looking for endogenous 

protein expression changes in APOBEC1-deficient BMDMs. First, protein levels 

were assessed by Western blot for a selection of targets with publically available 

antibodies. No apparent differences in protein levels could be observed between 

wild-type and APOBEC1-deficient samples. Representative immunoblots for 

APP and B2m proteins are shown in Figure 3.5. Protein level was then evaluated 

via flow cytometry for both cell surface (Figure 3.6A) and intracellular (Figure 

3.6B) APOBEC1 targets. Again, no significant changes in protein levels were 

observed for Apobec1-/- BMDMs. Representative flow cytometry plots are 

depicted in Figure 3.6. Finally, to attempt to detect any subtle changes within a 

specific population of cells that may be mediated by APOBEC1 editing, 

fluorescence-activated cell sorting (FACS) was used to isolate wild-type BMDMs 

that expressed the highest cell-surface levels (~top 10% of the population) or 
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Figure 3.5 Consequences of APOBEC1 editing: Western blotting. Immunoblot 
analysis of B2m (A) and App (B) protein expression in BMDM lysates reveals no 
appreciable differences between wild-type and APOBEC1-deficient samples.   
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Figure 3.6. Consequences of APOBEC1 editing: flow-cytometry. Flow-
cytometry was used to measure the surface expression of CD36 (A) and the 
internal expression of LAMP1 (B) in wild-type (blue) and APOBEC1-deficient 
(red) BMDMs. Two representative histograms are shown, depiciting negiglable 
differences appreciable between the two genotypes. 
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lowest levels (~bottom 10%) of the CD36 receptor. Editing frequencies of the 

Cd36 transcript were then quantified for CD36-high and CD36-low populations. 

However, both populations were approximately 100% edited (data not shown), 

suggesting that transcript editing abundance was not appreciably correlated to 

CD36 expression across a population of wild-type cells. Overall, no changes in 

endogenous protein expression in APOBEC1-deficient BMDMs could be 

observed by Western blot, flow cytometry or FACS analysis. These results 

suggest that APOBEC1-mediated expression changes observed by luciferase 

reporter assay are too subtle to be appreciated endogenously across a population 

of cells.  

 

3.4. Interaction between APOBEC1 editing and miRNA targeting.  

As APOBEC1 editing events in BMDMs occur within highly conserved 

regions of transcript 3′UTRs and can modulate protein expression levels, it is 

possible that APOBEC1 editing could be influencing miRNA targeting. Of note, 

both miRNA binding and APOBEC1 editing have been found to occur 

preferentially in regions of high AU nucleotide composition (Grimson et al., 

2007; Rosenberg et al., 2011b), suggesting that miRNAs and APOBEC1 target 

similar 3’UTR substrates and could be interacting on the same transcripts. To 

investigate the possible consequences of APOBEC1 editing for miRNA targeting, 

high-throughput sequencing of RNA isolated by cross-linking 

immunoprecipitation (HITS-CLIP) of the Argonaute (Ago) proteins (Chi et al., 

2009) was performed in BMDMs derived from wild-type and Apobec1-/- 

littermates (Figure 3.7). The HITS-CLIP protocol was performed in collaboration 

with Emily Conn Gantman of the Darnell lab. BMDMs were UV crosslinked, 
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Figure 3.7. HITS-CLIP workflow.  A schematic of HITS-CLIP library preparation 
and bioinformatic analysis is depicted. *CLIP reads are representative not 
quantitative. ***APOBEC1 editing events. 
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RNAse digested and subjected to Ago immunoprecipitation. The RNA in the 

Ago complexes was radiolabeled, purified by gel electrophoresis and then 

visualized by radiography, where two complex sizes were apparent at ~110kDa 

and ~130kDa, corresponding to miRNA and mRNA complexes respectively 

(Figure 3.8A). After proteinase digestion to remove Ago, previously Ago-bound 

mRNA and miRNA pools were reverse transcribed, PCR amplified and subjected 

to ultra high-throughput sequencing. A representative PCR amplification of 

mRNA and miRNA RNA pools is depicted in Figure 3.8B.  

Resultant high-throughput sequencing reads were separated by read 

length into mRNA (≥25nt) and miRNA (≤24nt) pools and aligned to the genome 

(mm9). Expression of miRNAs was highly correlated between wild-type and 

Apobec1-/- (r > 0.99) samples and a list of bound miRNAs was generated from the 

miRNA alignment (Figure 3.9). Ago clusters, or loci with abundant Ago binding, 

were defined as regions with ≥ 5 nucleotide overlap and a total of ≥ 8 mRNA 

reads. The Ago footprint (-30,+32; or more narrowly -24,+22) was extracted from 

the peak of the cluster, and these footprints were normalized to RNA-Seq 

transcript expression, defining the relative “Ago occupancy” of the Ago-bound 

region. High-confidence footprints were defined as occurring in at least 2 

replicates of one genotype (biological complexity of 2 for either wild-type or 

Apobec1-/-). These high-confidence footprints were predominantly located in 

coding regions of transcripts and transcript 3’UTRs (Figure 3.10), a pattern of 

Ago binding previously observed in other applications of Ago HITS-CLIP (Chi et 

al., 2009; 2012; Helwak et al., 2013; Loeb et al., 2012).  

 High-confidence Ago footprints were then intersected with APOBEC1 

editing events to identify regions of Ago-APOBEC1 overlap across the 
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transcriptome (Figure 3.11). APOBEC1 editing events were overrepresented in 

well-covered (20x) Ago footprints by a factor of 5.1 (odds ratio 6.48, 95% 

confidence interval (3.98, 10.21), p = 4.52 x 10-12). However, Ago occupancy levels 

were well correlated between wild-type and Apobec1-/- samples (r = 0.82), with 

negligible differences in occupancy levels between samples in APOBEC1-

targeted footprints, indicating that overall miRNA targeting was not 

dramatically influenced by APOBEC1 binding or editing.  

 

3.5. Consequences of APOBEC1 editing on miRNA targeting.  

To look for more subtle effects on specific miRNAs, I attempted to assign 

miRNAs to APOBEC1-edited footprints and identify regions where APOBEC1 

could create or destroy miRNA seed targets. As has been previously 

characterized in comparable HITS-CLIP experiments, the top-expressed miRNAs 

represented the majority of the miRNA pool (Figure 3.12A). However, when I 

tried to assign only these highly expressed miRNAs to high-confidence Ago 

footprints by canonical miRNA binding rules, many remained “orphan” (Figure 

3.12B). Therefore, to definitively assess APOBEC1:Ago interaction, it was 

necessary to include potential involvement of both lower-expressed miRNAs and 

non-canonical miRNA binding. Based on recent reports characterizing modes of 

miRNA non-canonical binding (Chi et al., 2012; Helwak et al., 2013; Loeb et al., 

2012), the search was expanded to include canonical miRNA seed matches 

(position 2-7 of the mature sequence), as well as non-canonical binding with an 

exact match to the target sequence (binding positions 1-8 or 3-9) and non-

canonical binding with mismatches to the target sequence (one nucleotide 
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Figure 3.12. Assigning miRNA targets to Ago footprints. (A) Abundance of 
miRNAs plotted as the fraction of the total miRNA reads mapped. The few 
highest “expressed” miRNAs (>1000RPM) make up ~98% of the total reads 
mapped. (B) Fraction of Ago footprints that were “orphan” (no canonical 
miRNA seed match) when searched for miRNA at various abundance (RPM) 
cut-offs. miRNA abundance levels were calculated as number of CLIP reads 
that mapped to the mature miRNA sequence per million mapped.  A series of 
lists of miRNAs were created based on abundance with cut-offs at 10, 50, 100, 
500, 1000, 2000 and 5000 RPMs, with decreasing numbers of miRNAs at each 
cut-off.  The footprints were scanned for the canonical miRNA target regions 
represented in each list. At 1000RPM ~45% of the footprints had no canonical 
seed match.
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mismatch or G-bulge insertion). From this analysis, an APOBEC1-targeted 

footprint map was created, identifying putative miRNA binding sites in each 

footprint, and identifying those, which overlapped with an APOBEC1 editing 

event (Figure 3.13). Using the narrowest definition of the Ago footprint (46nt), a 

set of putative miRNA target regions for each footprint was established after 

filtering for miRNAs which were expressed in 3 replicates and whose target 

regions was within a distance of 50 nucleotides from the center of the Ago peak. 

For each footprint we identified a set of likely miRNA targets, a number of which 

were disrupted or created by APOBEC1 editing events (Figure 3.13).  

I used a luciferase reporter assay to test the functionality of potential 

APOBEC1-altered miRNA binding sites. Identified 3ʹ′UTRs were cloned into a 

dual-luciferase construct and site-specific mutagenesis was performed at the 

location of APOBEC1 editing events that had been observed in Ago-CLIP to 

potentially disrupt or enhance miRNA binding (Figure 3.13, Figure 3.14A). 

Constructs containing five individual C-to-U mutations identified to disrupt a 

miRNA seed target were tested with luciferase reporter assay and failed to alter 

luciferase levels (Figure 3.14B). These results demonstrate that while APOBEC1 

editing events can modulate protein expression, this phenomenon is unlikely 

mediated by changes in miRNA targeting. 
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Chapter 4: Discussion  

 

The use next-generation sequencing has greatly expanded the editing 

repertoires of RNA editing enzymes, ADAR and APOBEC1. In particular for 

APOBEC1, our lab used a comparative RNA-Seq screen to identify 32 additional 

mRNA targets contained in transcript 3’UTRs, pointing to additional functions 

for APOBEC1 that had been previously unappreciated. Based on the observation 

that APOBEC1 was expressed in immune cell types, I decided to use 

comparative RNA-Seq to identify novel APOBEC1 editing events in BMDMs. 

The RNA-Seq screen revealed abundant APOBEC1 dependent mRNA editing in 

BMDMs in highly-conserved regions of transcript 3’UTRs. These newly 

identified APOBEC1 editing events occurred in two distinct patterns: site-specific 

editing and hyper-editing. Further analysis revealed that these editing events 

shared adjacent nucleotide preferences with intestinal APOBEC1 editing events 

but were only loosely associated with a downstream mooring sequence, 

previously demonstrated to be essential for APOBEC1 editing of Apob and 

associated with intestinal 3’UTR editing. Although differences in endogenous 

transcript and protein levels were not observed, certain patterns of editing 

resulted in altered luciferase activity via standard luciferase reporter assay, 

suggesting that in some cases editing can alter transcript fate. Finally, 

transcriptome-wide profiling of miRNA binding sites revealed little functional 

overlap between miRNA targeting and APOBEC1 editing events in 3’UTRs, 

pointing to a miRNA-independent mechanism for APOBEC1-mediated 

transcript regulation. Below I will discuss the questions remaining about the 
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implications for ACF-independent APOBEC1 site-specific and hyper-editing 

events in transcript 3’UTRs.  

 

4.1 Overestimation of false-positive rate 

Here we used a comparative RNA-Seq screen in BMDMs to identify the 

first examples of APOBEC1 physiological editing outside of the digestive system. 

We identified over 100 high-frequency editing events, more than tripling the 

number of previously established APOBEC1 substrates. A subset of these 

APOBEC1-dependent C-to-U changes was validated with standard Sanger 

sequencing with a false positive rate (FDR) of 12.5%. The implied false-positive 

rate was calculated at less than 1% based on the amount of C-to-U editing 

identified in the APOBEC1-deficient samples that was absent from the wild-type 

sample, indicating that this FDR may be an overestimate. This overestimation 

may have occurred for a few reasons. First, I chose to forgo a genomic SNP filter 

during the post-screen filtering process. This choice was based on an observation 

I made during the validation of the Rosenberg data early in my thesis work. One 

target, Cd36, was not identified in the initial comparative RNA-Seq screen. 

However, Cd36 was found to have a strong mooring sequence, and its mRNA 

transcript sequence was later determined to be highly (> 90%) edited by 

APOBEC1. I subsequently realized that this specific C-to-U edit was included in 

a SNP database, based on sequencing that had been performed on a cDNA 

substrate. As highly edited targets are more likely to have been previously 

identified as SNPs, I decided to abandon the SNP filter and validate a subset of 

the editing targets with close to 50% or 100% editing and throw out sites with 
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50% or 100% editing in coding regions. One site in a coding region, which was 

included in the FDR calculation, was thrown out.  

Additionally, analysis of the APOBEC1 editing events has revealed that 

there may be some plasticity in the editing repertoire, leading to unvalidated 

editing events. For example, the two identified sites within the Rhoa transcript 

3ʹ′UTR could not be confirmed via subclone sequencing, but further analysis of 

the transcript sequence revealed a set of additional low frequency APOBEC1-

dependent C-to-U editing events (data not shown). This result suggests that 

identification of the full spectrum of possible APOBEC1 editing events would 

require the compilation of transcript-wide sequencing of many samples. 

 

4.2 APOBEC1 editing is predominantly restricted to 3’UTRs  

Through an established RNA-Seq screen, I have identified over 100 novel 

APOBEC1 editing events in 3’UTRs, but no additional APOBEC1-catalyzed 

events within transcript 5’UTRs or coding regions. To date, the only 

physiological APOBEC1 editing event occurring in a coding region is the editing 

of C6666 in Apob transcript, where the majority of editing serves an important 

role for lipid metabolism and transport. Previously we established that while the 

APOBEC1 “mooring sequence” could be found in the coding region of a set of 

other expressed transcripts, but no APOBEC1 editing was observed at these loci. 

Taken together, these data suggest that Apob is the only known APOBEC1 

editing event that alters a codon, and the remainder of APOBEC1 editing is 

restricted to transcript 3’UTRs. The reasons for this remain elusive. Possibly, 

APOBEC1 editing in 3’UTRs is “sacrificial,” absorbing aberrant potentially 

harmful editing activity in a safe region of the transcript where editing will have 
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a minimal effect on final protein composition. This hypothesis is somewhat 

logical for intestinal APOBEC1 activity, in which there is one highly important 

editing event in a coding region. Theoretically other coding regions could be 

protected from APOBEC1-mediated editing by allowing 3’UTRs to be edited and 

limiting the amounts of free APOBEC1 not bound to Apob. However, in immune 

cells where there is no established role for APOBEC1 this is less plausible, 

making it more likely that 3’UTR editing fills an important role in this cell type.  

Prior to the identification of APOBEC1 editing in 3’UTRs, it was 

postulated that access to most coding exons for the large multi-protein editosome 

was blocked by RNA-splicing machinery. APOBEC1 editing in Apob occurs in 

the middle of an exceptionally large exon (> 7kb), perhaps avoiding the RNA 

splicing machinery localized to distant exon-intron boundaries (Sowden et al., 

1996b). This mechanism could explain the abundant APOBEC1 editing found in 

untranslated regions. Additionally, APOBEC1 could be recruited by an 

alternative RNA-binding factor, which is exclusively targeted to 3’UTRs. As 

3’UTR editing seems to occur most abundantly in a cell type that lacks ACF, a 

model in which APOBEC1 3’UTR editing occurs in the absence of ACF but under 

the influence of another auxiliary factor is appealing. Further analysis of specific 

targeting factors and the influence of exogenously introduced ACF on BMDM 

editing could provide insight into some of these questions.  

Additional mechanisms mediating APOBEC1 3’UTR editing might 

involve a specific cellular factor that protects coding exons from APOBEC1 

editing, potentially by targeting edited transcripts for degradation. Indeed, 

APOBEC1 editing of C6666 in Apob introduces a premature stop codon, making 

it a target for the nonsense-mediated decay (NMD) pathway. The edited 
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transcript escapes NMD by remaining in complex with the APOBEC1 editosome 

as it is exported from the nucleus. Interestingly, this process requires ACF 

involvement; edited Apob transcripts associated APOBEC1 alone are subject to 

NMD but transcripts bound to an APOBEC1:ACF complex are protected 

(Chester et al., 2003). As such, in ACF-deficient BMDMs, some catastrophic 

editing events occurring in coding regions may be degraded via NMD, and elude 

detection via RNA-Seq. However, silent or non-synonymous mutations that alter 

codon specificity but do not introduce a stop codon should be unaffected by 

NMD. As none of these types of mutations have been observed in BMDMs, 

NMD cannot be the only protective factor against APOBEC1 editing in coding 

exons.  

Lastly, APOBEC1 editing of the Apob transcript is associated with a 

specific transcript secondary structure, a conserved stem-loop that serves to 

introduce the edited cytidine into the APOBEC1 catalytic pocket. 3’UTRs are 

associated with abundant secondary structure, indicating that they might 

naturally serve as APOBEC1 substrates. This is reminiscent of ADAR editing 

where inverted repeats in 3’UTRs provide the optimal dsRNA substrate for 

ADAR editing. Duplexes in coding regions require more complex binding with a 

complementary intronic region and occur at much lower frequency, partially 

explaining why ADAR editing is overrepresented in transcript 3’UTRs. A similar 

mechanism could be influencing APOBEC1 editing, shifting the known 

repertoire toward highly structured untranslated regions of transcripts. 

 

 

 

108



	   	  

4.3. Implications for APOBEC1 hyper-editing  

Identification of BMDM-specific APOBEC1 RNA editing revealed two 

distinct editing patterns that I have termed single-site editing and hyper-editing. 

Single-site editing events are reminiscent of the canonical physiological ApoB 

editing and most APOBEC1-dependent editing events identified in the intestine 

transcript 3′UTRs: one major editing site, edited at a high frequency, occasionally 

associated with nearby low frequency C-to-U editing events. We were surprised 

to discover dramatic APOBEC1 hyper-editing activity in BMDMs, an unusual 

physiological behavior for APOBEC1. As discussed, there is some background 

activity for APOBEC1 observed in Apob (Blanc et al., 2012) and 3’UTR targets in 

enterocytes (Rosenberg et al., 2011b). This editing was typically very low 

frequency (< 10%) and occurred in association with one highly edited site. In 

contrast, there are a few previous examples of more high-frequency APOBEC1-

dependent promiscuous or hyper-editing activity observed in the ApoB transcript 

(Sowden et al., 1996b; 1998; Yamanaka et al., 1996) and in viral transcripts(Petit et 

al., 2009), but this editing behavior occurs in the context of APOBEC1 over-

expression or MLV infection and does not represent the physiological editing 

behavior of a steady-state cell. Is there a difference between this higher frequency 

“ hyper-editing” we observe and background editing found in Apob? Why in 

some transcripts is there one dominant site-specific event and in other transcripts 

targeting seems seem to be promiscuous and plastic? The mechanisms of 

APOBEC1 hyper-editing in BMDMs and how certain transcripts are targeted for 

site-specific editing versus hyper-editing remain elusive. The possible 

contribution of an additional co-factor in lieu of ACF is discussed below. 

Regardless of mechanism, APOBEC1 hyper-editing results in a dramatic shift in 
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the RNA sequence, increasing the likelihood that editing could be affecting 

important regulatory regions of the UTR.  

 

4.4. ACF-independent APOBEC1 editing  

APOBEC1 editing activity in BMDMs is especially intriguing because it 

occurs in the absence of ACF and is only loosely associated with the downstream 

11-nucleotide mooring sequence. These results suggest that the mechanism of 

APOBEC1 editing in BMDMs may differ considerably to that established for 

ApoB. Interestingly, while as a unit recombinant APOBEC1 and ACF were shown 

in vitro to be necessary and sufficient to induce C-to-U editing at C6666 in ApoB 

(Lellek et al., 2000; Mehta et al., 2000), no study has shown in vivo that ACF is 

essential for APOBEC1 editing. In the intestine, these studies have been 

complicated by the difficulties in generating an ACF-deficient mouse, as 

disruption of the ACF locus leads to embryonic lethality (Blanc et al., 2005). Our 

data definitively show that physiological APOBEC1 enzymatic editing activity 

occurs in 3′UTRs in the absence of ACF.  

Although we have shown that APOBEC1 can edit mRNA transcripts 

without ACF, the mechanism by which this occurs is still an outstanding 

question. Some in vitro studies suggest that under specific elevated temperature 

conditions APOBEC1 may be capable of ACF-independent editing (Chester et al., 

2004), indicating that in certain environments it could be the sole mediator of 

both RNA targeting and editing. Indeed, in transgenic APOBEC1-overexpressing 

mice, a proposed mechanism for the observed hyper-editing activity is that the 

ACF:APOBEC1 stoichiometry is shifted, and the abundant levels of free 

APOBEC1 aberrantly edits the Apob transcript (Blanc and Davidson, 2010; 
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Chester et al., 2004). Presumably, any alternative co-factor would also be 

overwhelmed by the over-expression of APOBEC1, pointing to independent 

APOBEC1 activity in this non-physiological system. Alternatively, APOBEC1 

editing in BMDMs could be happening in conjunction with another auxiliary 

factor, potentially one or more candidate members of the multimeric editosome, 

many of which are expressed in BMDMs based on RNA-Seq transcript 

expression, including ABBP-1, ABBP-2, CUGBP2, and GRY-RBP (data not 

shown). Furthermore, it is also a point of debate whether APOBEC1 is capable of 

nuclear import when not in complex with ACF (Yang et al., 2001), suggesting 

that APOBEC1 cytoplasmic-nuclear shuttling may need to occur in complex with 

an associated protein, underscoring the importance of some sort of associated 

editosome.  

Regardless of mechanism, the fact that APOBEC1 editing occurs without 

ACF in 3’UTRs brings up questions about the necessity of ACF involvement of 

other APOBEC1 targets. As described above, APOBEC1:ACF complexes were 

only shown to be essential for editing in vitro, and only for C6666 in the Apob 

transcript. Whether ACF is necessary for editing in alternative sites in apoB or 

intestinal 3’UTR targets is unclear. BMDMs and intestinal enterocytes share a 

number of APOBEC1 targets, indicating that at least some examples of 3’UTR 

editing in small-intestinal enterocytes might occur without ACF involvement.  

 A popular hypothesis in the field, based largely on the over-expression 

phenomenon observed in mouse models, is that ACF primarily acts as a 

“chaperone,” limiting aberrant APOBEC1 editing. This is somewhat supported 

by an increase in APOBEC1 editing frequency observed in heterozygous A1cf+/- 

mice (Blanc et al., 2005). The abundant APOBEC1-mediated hyper-editing in 
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BMDMs also lends support for the idea that APOBEC1 might edit more 

promiscuously without ACF. However, additional examples of site-specific, 

seemingly strictly targeted editing are also prevalent in BMDMs, complicate the 

idea that APOBEC1 would require ACF for targeted mutation. Overall, the 

discovery of high frequency APOBEC1 RNA editing in BMDMs dramatically 

expands the role for APOBEC1 beyond the digestive system and brings up many 

questions about precise mechanisms of APOBEC1 editing in 3′UTRs. As they 

express APOBEC1 and lack ACF, BMDMs provide an ideal experimental system 

to further investigate the influence of cofactors on APOBEC1-dependent RNA 

editing.  

 

4.5. APOBEC1 editing can modulate protein expression  

In BMDMs, APOBEC1 editing events occurred more frequently than 

expected by chance in regions conserved by evolution, suggesting functional 

relevance. When the specific translational outcomes of APOBEC1-dependent C-

to-U editing events in 3′UTRs were assessed via luciferase reporter assays, 

examples of C-to-U changes were observed that led to significant reduction in 

luciferase activity. As hyper-edited transcripts tested were generated from 

directly from cloned cDNA they reflected the variation in transcript sequences 

found in the cell. In general, the majority of clones with one or two C-to-U 

changes had no consequence for luciferase expression whereas hyper-edited 

transcript 3′UTRs were more likely to result in differential translation outcomes. 

However, some hyper-edited clones had no effect on protein expression and one 

singly edited clone, Cd36, significantly repressed luciferase levels. These results 

suggest that certain combinations APOBEC1-dependent C-to-U editing events or 
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combinations of C-to-U changes can affect protein expression but random C-to-U 

changes alone are not sufficient to yield altered translational outcomes. 

Importantly, these experiments were performed in APOBEC1-deficient cells and 

therefore only tested the effects of C-to-U changes on the transcript sequence 

itself, not other modes of APOBEC1-mediated regulation that could occur via 

RNA-binding.  

An important aspect of these luciferase reporter assays is that they were 

performed in the primary cell type of interest, BMDMs. As BMDMs are resistant 

to lipofectamine and similar transfection modalities, I used Amaxa 

“nucleofection” technology to introduce reporter constructs into the nucleus 

through electroporation. This efficiently (~20%) introduced luciferase constructs 

into BMDMs although led to substantial cell activation. Therefore, a caveat of 

these experiments is that they occur in an activated setting rather than a steady-

state cell where editing events were originally identified.  

Interestingly, a large part of my initial work in the lab involved luciferase 

reporter assays designed to test the translational outcomes of APOBEC1 

intestinal 3’UTR targets. These experiments were performed in 293Ts and 

yielded no significant luciferase expression differences in edited constructs as 

compared to unedited controls (data not shown). Of note, in establishing a 

BMDM system to look for luciferase changes, I used one of these previously 

cloned constructs, Cd36, a highly edited target in both the intestine and BMDMs. 

In contrast to the assays performed in 293Ts, the Cd36 edited construct when 

transfected into BMDMs, exhibited significant luciferase repression. This result 

highlights the limitations of luciferase reporter assays performed in unassociated 

cell lines, a commonly used experimental method. Cell-specific expression of 
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miRNAs, RNA-binding proteins, and other auxiliary factors that substantially 

affect transcript regulation and the specific expression profiles may vary widely 

between cell-types, especially for transformed cells with uncertain karyotypes.  

 Despite the ability of “edited” 3’UTRs to alter protein expression in a 

luciferase reporter assay, no transcript level differences were observed for 

targeted transcripts and no protein expression could be appreciated by standard 

assays. This is not completely surprising, as changes to translational efficiency or 

subtle changes in transcript stability may not be appreciable at the transcript 

level. Additionally, the predominantly two-fold protein expression differences 

we observe are likely below the threshold of Western blotting and flow-

cytometric analysis, the two techniques utilized.  

 

4.6. HITS-CLIP reveals little interaction between miRNA targeting and 

APOBEC1 editing. 

MiRNAs preferentially target phylogenically conserved regions of 3′UTRs, 

which are also the principle sites of APOBEC1 editing in BMDMs. To 

comprehensively assess the interaction of APOBEC1 editing with miRNA 

targeting, we used HITS-CLIP to generate both a list of miRNAs expressed in 

BMDMs and a transcriptome-wide map of Ago binding in wild-type and 

Apobec1-/- cells. As described above, we exhaustively searched for miRNA seed 

targets within regions of Ago-binding that might be affected by APOBEC1 

editing events. Even with such a comprehensive search for miRNA targets, Ago 

HITS-CLIP analysis revealed significant overlap between regions of Ago 

targeting and APOBEC1 editing events, but little evidence for miRNA target 

creation or disruption by APOBEC1 editing. Some editing events shown to 
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repress luciferase expression, such as the high frequency event in the Cd36 

transcript, did not overlap with a region of Ago binding, suggesting that 

APOBEC1 editing was affecting other mechanisms of transcript regulation. Other 

hyper-edited transcripts that repressed protein expression levels contained 

editing events that overlapped with sites of Ago binding, but no miRNA sites 

generated by APOBEC1 editing events could be identified. All other potential 

sites of APOBEC1:Ago interaction, including potential miRNA target generation 

in App, could not be validated by luciferase reporter assays, suggesting that the 

identified miRNA site was non-functional, or that the C-to-T change had 

negligible effect on the efficiency of miRNA repression. Despite this, we cannot 

definitively rule out a role for miRNAs in APOBEC1-mediated transcript 

regulation. Lower frequency combinations of events could lead to more subtle 

changes below the resolution of HITS-CLIP or unappreciated modes of miRNA 

binding could be mediating some of the protein expression differences. In 

particular, a recent study used an adapted HITS-CLIP technique to link and then 

sequence interacting mRNAs and miRNAs (Helwak et al., 2013). Although this 

process was quite inefficient, the authors are able to construct a profile of the 

many forms of predicted miRNA binding, the majority of which requires 

additional binding events beyond the canonical seed (positions 2-7 of the mature 

miRNA). This work has substantial limitations as it was performed using an 

ectopically expressed tagged Ago protein in a human cell line, but it points to the 

signficiant complexity in miRNA targeting.  
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4.7. Alternative mechanisms for APOBEC1-mediated transcript regulation  

While the majority of APOBEC1 editing events in BMDMs do not seem to 

affect miRNA targeting, the specific mechanism for APOBEC1 editing-mediated 

protein repression remains unclear. As has been discussed above with RNA 

editing, next-generation sequencing has greatly expanded the breadth of 

knowledge regarding the complexity of RNA modification and regulation. Most 

importantly for this discussion, cis-acting elements in transcript 3’UTRs and 

trans-acting factors that bind to them have been shown to contribute to transcript 

regulation through a variety of mechanisms, a number of which could be 

influenced by RNA editing.  

Specific ADAR editing events in 3′UTRs have been implicated in targeting 

transcripts for cleavage via a specific nuclease (Scadden, 2005) and inducing 

nuclear retention by promoting binding to a dedicated nuclear factor (Chen and 

Carmichael, 2009; Prasanth et al., 2005; Zhang and Carmichael, 2001). The caveats 

for these hypotheses have been discussed in Section 1.2.5, but they remain 

popular models for the regulation certain ADAR-targeted transcripts. Similarly, 

APOBEC1 editing in 3’UTRs could target the transcript for degradation or result 

in its retention in the nucleus. However, there seems to be negligible transcript 

expression differences between wild-type and APOBEC1-deficient samples, and 

no edited transcripts exhibit differential expression between the two genotypes. 

This result detracts from the degradation hypothesis, in which expression 

changes should be appreciable at the transcript level. Recent work in our lab also 

points against the nuclear retention of APOBEC1 edited transcripts. Transcripts 

isolated specifically from the nucleus tended to have lower editing frequencies 

than those extracted from the cytosol and there is no differences in nuclear of 
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cytosolic transcript expression between wild-type and APOBEC1-deficient 

BMDMs. This work is still in progress, but points to the efficient nuclear export 

of APOBEC1 edited transcripts. Together, these data suggest that unlike ADAR, 

APOBEC1-mediated transcript regulation is not occurring via nuclear retention 

or cleavage. Furthermore, as we have observed that edited transcripts are 

efficiently exported from the nucleus, the regulation of these transcripts most 

likely occurs in the cytoplasm and is not associated with changes in splicing, 5’-

capping and alternative polyadenylation. Indeed, analysis of RNA-Seq reads 

reveals no differentially expressed isoforms or alternative polyadenylation sites 

in edited transcripts between wild-type and APOBEC1-deficient samples, further 

underscoring this point.  

Alternatively, APOBEC1 editing could be altering transcript stability, 

potentially by modulating the binding properties of stabilizing or de-stabilizing 

RNA-binding proteins. AU Rich Elements (AREs), which consist of sets of 

AUUUA pentamers, are bound by a variety of RNA-binding proteins and the 

number of AREs in a transcript is inversely correlated with transcript stability 

(Hao and Baltimore, 2009). As APOBEC1 introduces C-to-U changes within AU-

rich regions of 3’UTRs, it seems likely that APOBEC1 editing could introduce 

AREs. However, none of the targets shown to be differentially expressed via 

luciferase reporter assay have AREs introduced by C-to-U editing events. This 

indicates that, while APOBEC1 editing could be influencing stability via another 

mechanism, AREs are not likely to mediate this control. Alternatively, APOBEC1 

itself has been shown to mediate transcript stability through its RNA-binding 

capabilities (Anant and Davidson, 2000; Anant et al., 2004), pointing to potential 
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editing and RNA-binding mechanisms involved in APOBEC1 regulation of 

transcript stability.  

There are a variety of other mechanisms in which APOBEC1 could be 

influencing transcript regulation but as in the above these mainly involve 

modifying 3’ UTR cis-elements and leading the altered functions of RNA-binding 

proteins (RBPs). In this way, structural elements within transcript 3’UTRs can 

also influence protein expression. For example, in response to environmental 

cues an RNA secondary structure in the Vegfa transcript 3’UTR undergoes a 

conformational change that regulates a RBP-mediated change in VEGFA protein 

expression (Ray et al., 2009). As Apob editing requires a stem-loop structure, it 

seems likely that 3’UTR editing occurs in the vicinity of secondary structure and 

that base-pairing within structural elements could be disrupted by editing. 

Additionally, mRNA subcellular localization can be mediated by specific “zip 

codes” within transcripts 3’UTRs; these motifs are bound by RBPs that mediate 

the targeting of the mRNA to a precise cytoplasmic environment. This 

asymmetric localization of mRNAs generates cell polarity by controlling the sites 

of translation. A zip code mechanism of subcellular localization has been 

specifically characterized in neurons and fibroblasts, where β-actin mRNA 

transcripts are localized to the fibroblast leading edge (Kislauskis et al., 1994) and 

neuronal growth cones (Bassell et al., 1998), promoting accumulation of β-actin 

protein and subsequent forward movement. Intriguingly, this subcellular 

localization is partially mediated by KSRP, a known inhibitor of APOBEC1 (Gu 

et al., 2002), but no further link between RNA editing and subcellular localization 

of this manner has been established.  
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While there are many modes of potential APOBEC1-mediated regulation 

of gene expression, the lack of observed transcript expression differences in 

APOBEC1-deficient cells points to a mechanism in which APOBEC1 editing 

more directly affects translational efficiency, potentially by modulating the 

binding properties of RBPs and repressing translation through a variety of 

potential mechanisms including de-adenylation, ribosome stalling or other 

modes of inhibition of translational machinery. To test this hypothesis, we plan 

to conduct ribosomal profiling of APOBEC1-deficient BMDMs.  

 

4.8 Closing remarks  

 This thesis presents a body of work that establishes abundant 

physiological APOBEC1 editing activity beyond the digestive system and 

demonstrates that these untranslated editing events can modulate protein 

expression. These findings are highly significant to the fields of RNA editing and 

transcriptional regulation. First, we demonstrate APOBEC1 catalytic activity in 

an immune cell type, the first time physiological APOBEC1 editing activity has 

been characterized outside of the digestive system. This editing also occurs in the 

absence of the “essential” APOBEC1 co-factor, calling into question the dogma 

regarding the regulation and editing mechanism of this highly characterized 

RNA-editing enzyme. Additionally, APOBEC1 hyper-editing, observed in a 

number of transcripts in BMDMs, represents a unique editing modality for 

APOBEC1. Finally, we establish a role for APOBEC1 editing in BMDM transcript 

3’UTRs in the regulation of transcript expression through a non-miRNA-

mediated mechanism.  
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Although we have definitively shown that C-to-T changes at the sites of 

APOBEC1 editing can led to protein expression differences in a simplified 

experimental system, analysis of the downstream consequences of APOBEC1 

editing in vivo presents a significant challenge. Targeted transcripts contain 

editing events with editing frequencies that range from 20-80% and hyper-edited 

transcripts can contain thousands of combinations of editing events and editing 

frequencies. The editing repertoire of APOBEC1-targeted transcript 3′UTRs 

present in a cell at any given moment could be vast, making the resolution of any 

specific event difficult to assess over a cell population. Therefore although it 

seems that APOBEC1 editing can have effect on individual transcript fate, 

further study is required to definitively assess the specific mechanisms behind 

APOBEC1 editing and its direct consequences for cellular function and host 

defense. 
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Chapter 5: Materials and Methods  

5.1. Materials and methods for the identification of mRNA editing in BMDMs 

5.1.1 Mice and isolation of BMDMs 

C57BL/6 littermate or age-matched mice were used at 6-12 weeks of age. 

Apobec1-/- mice were generated as previously described (Hirano et al., 1996) and 

provided by N. Davidson (Washington University School of Medicine, St. Louis, 

MO). Apobec1-/- mice are healthy, viable and need no specific husbandry. To 

isolate BMDMs, mice were euthanized by cervical dislocation and the hind leg 

removed and cleaned of hair, skin and muscle. The bare bone was cleaned with a 

70% EtOH. The two ends of the femurs were cut and the marrow was flushed 

with 22G needle with cold PBS onto a cell strainer. The cells were pelleted and 

resuspended in macrophage media (DMEM, 10% FBS, 1% Non-essential amino 

acids (Invitrogen), 0.1% BME, 20ng/mL M-CSF (Peprotech)) and plated onto one 

untreated 10cm and incubated in a Precursor cells were plated onto untreated 

10cm dishes and incubated in humidified 37°C/5% CO2 incubator overnight. On 

day 2, cells were counted and re-plated at a concentration of 2 million cells per 

10mL macrophage media onto untreated 10cm dishes. Cells were matured for 7 

days in, replacing half of the media (with macrophage media supplemented with 

40ng/mL M-CSF) every 3 days. Macrophage surface markers: F4/80 (Invitrogen) 

and Cd11b (BD biosciences) were confirmed via flow cytometry on a FACS 

Calibur flow cytometer after the 7-day maturation (described in detail in 5.2.6)  
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5.1.2. RNA extraction and amplification of Apobec1, A1cf and Apob.  

BMDMs were washed with cold PBS and RNA was extracted with either 

Trizol (Invitrogen) or an RNAeasy kit (Qiagen). RNA was normalized and then 

subjected to DNAse treatment with RQ1 RNAse-free DNAase (Promega). 

Reverse transcription was performed with SuperScript III (Invitrogen) and either 

oligo-dT primers, transcript-specific primers or random hexamers, depending on 

the experiment in question (described below).  

 

For RTPCR analysis of APOBEC1 expression: cDNA was generated using oligo-dT 

primers. Target specific primers were designed to amplify a 200bp region of 

APOBEC1, ACF, ApoB and GAPDH. PCR amplification was performed with a 

Hot-Start Taq Polymerase (Qiagen) and amplicons were run on a 1% agarose gel 

and visualized.  

 

For qRTPCR analysis of APOBEC1 expression: cDNA was generated using random 

hexamers. Target-specific primers were designed to amplify a 100bp exon-

spanning region of APOBEC1 and a 100bp exon-spanning region of an 

endogenous control, Rpl32 or GAPDH. qRTPCR was performed using the Sybr 

Green Master Mix (Life Technologies) and run on a Roche Life cycler 480 system.  

 

5.1.3. LPS stimulation.  

BMDMs were derived as described above and then plated onto untreated 

6-well plates. Cells were stimulated with 100ng/uL of LPS (Sigma) for 0, 2, 6, 12, 

and 24 hours. At each time-point, RNA was extracted with the RNAeasy 
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(Qiagen) kit and cDNA was derived as described above with random hexamer 

primers. qRTPCR was performed as described above.  

 

5.1.4. mRNA-Seq library preparation 

mRNA-Seq library preparation was adapted from standard Illumina 

protocols. RNA was extracted from macrophage cultures using the Ribopure kit 

(Ambien). DNAse treatment was performed with Turbo DNAse (Ambien). RNA 

quality was determined by Bioanalyzer analysis (Agilent Bioanalyzer) and only 

high quality RNA preps were used for sequencing. RNA was diluted to 10ug in 

50uL and poly-A+ selection was performed with Sera Mag oligo-dT magnetic 

beads (Thermo), RNA was eluted off the beads with 10mM Tris and analyzed for 

quality with a Bioanalyzer (Figure 5.1B). All eluted mRNA was fragmented with 

fragmentation buffer (final composition: 40 mM Tris acetate, pH 8.2, 100 mM 

potassium acetate, 30 mM magnesium acetate) in a PCR thermocycler at 94°C for 

4 min 45s. RNA was washed and concentrated by ethanol precipitation 

(performed with 5M sodium acetate, pH 5.2 and 100% ethanol) and was 

analyzed for quality on a Bioanalyzer (Figure 5.1C).  

First strand synthesis was performed using a SuperScript III first-strand 

synthesis system kit (Invitrogen) and was primed with random primers. Second 

strand synthesis was performed with the Superscript double-stranded cDNA 

synthesis kit (Invitrogen), which utilizes E. coli DNA ligase (10U/uL), E. coli 

DNA polymerase (10U/uL) and E. coli RNAse H (2U/uL). After double-stranded 

synthesis, ends were repaired using dNTPs, T4 DNA polymerase, Klenow DNA 

polymerase and T4 PNK (All provided by Illlumina). End-repaired cDNA was 

purified in a PCR purification kit (Qiagen) and eluted in provided EB buffer.  
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To facilitate PCR adaptor ligation, additional adenosines were added to 

the 3′ ends of the double-stranded cDNA (ds-cDNA) using Klenow exo (3′ to 5′ 

exo-) in the presence of dATP (both provided by Illumina). Illumina PCR 

adaptors were ligated to the ds-cDNA using T4 DNA ligase (Illumina) and 

cDNA templates were purified by gel electrophoresis on a 2% agarose gel and 

gel extraction. Fragments that ran from 275-325bp were excised from the gel and 

DNA was extracted using a gel extraction kit (Qiagen) and eluted in provided EB 

buffer.  

Purified cDNA templates were enriched with 15 cycles of PCR 

amplification using Illumina PE 1.0 and 2.0 primers and amplified with Phusion 

DNA polymerase (Qiagen). The concentration and quality of final amplified 

libraries was determined by Nanodrop spectrophotometer and Bioanalyzer 

analysis.  

 

5.1.5. RNA-Seq: sequencing, read processing and alignment  
 
 Single-end 75nt sequencing was performed on Illumina Genome Analyzer 

IIx (GAIIx) yielding 28-33 million reads. Initial read quality and trimming was 

performed with the Fastx toolkit software package (available at 

http://hannonlab.cshl.edu/fastx_toolkit/index.html). Read quality was 

analyzed with the Fastx quality stats tool, which revealed a C/T bias at the first 

base of the reads. Subsequently, the first base was trimmed using the Fastx 

trimmer tool.  

Trimmed reads were mapped to the C57LBL/6 mouse reference genome 

(NCBI37/mm9) using Tophat (v1.3.3) and Bowtie(v0.12.8) (Trapnell et al., 2009) 

with the parameters “--solexa1.3-quals -g 1 --coverage-search.” The details of the 
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alignment parameters are as follows: -g 1 suppresses alignments for reads that 

map to more than 1 location in the reference genome; --coverage-search enables a 

coverage-based search for junctions and it recommended for read 75bp or higher. 

The default number of mismatches to the reference genome was used, 2/25b 

segment or up to 6/ 75bp read.  

 

5.1.6. Identification of APOBEC1 dependent C-to-U mismatches from mRNA-

Seq  

Pileups were assembled using SAMtools (v0.1.7a). Filters for non-editing 

SNVs, as described in the text, were implemented with a custom Python script 

and editing events were visualized with IGV (Robinson et al., 2011; 

Thorvaldsdóttir et al., 2013). C-to-T (in positive transcripts) or G-to-A (in 

negative transcripts) mutations occurring at a frequency of 20% in at least 20 

reads in the wild-type sample or occurring at a frequency of 10% in 5 reads for 

the APOBEC1-deficient sample were first identified from SAMtools pileups. 

Then, these putative sites were put through a series of filters to remove false 

positives. Specifically, sites were retained if they occurred in the UCSC known 

gene database, did not occur exclusively in one strand, were more than 50nt from 

another non C-to-T mutation and were not in the non-isogenic region. The non-

isogenic region was determined as the range of putative “editing events” that 

occurred in the KO sample in chromosome 6. For this experiment is was defined 

as chr6:56829100-137411200. Real editing events occurring in this relatively large 

region would be removed from any screen, but as this region is highly variable it 

is impossible to discern true APOBEC1 editing events from SNPs without 

considerable standard Sanger sequencing validation. Finally, the SNVs identified 

125



	   	  

in both the wild-type and APOBEC1-deficient samples were compared and those 

editing events that also occurred in the knock-out sample were removed.  

 

5.1.7. Designation of single-site editing vs. hyper-editing 

 Initially some transcripts were identified to have numerous C-to-T 

changes at high frequency throughout the transcript 3’UTRs. However, some 

single high-frequency events were also associated with numerous low frequency 

events, comparable to the “ hyper-editing” noticed in enterocyte 3’UTR editing. 

From this, it was concluded that APOBEC1 editing is always associated with a 

few up- and down-stream editing events. To differentiate between true hyper-

edited and this associated editing, a set of hyper-editing rules were established.  

Transcripts with 3 or more high-confidence, high-frequency C-to-T changes 

(editing frequency ≥ 20%) or 2 high-frequency editing events and 3 or more 

moderate frequency events (editing fraction ≥ 0.09 and ≤ 0.19) were established 

as “hyper-edited”. All the remaining events were characterized as single-site 

edited, even those with 2 editing events. These rules resulting in a few transcripts 

with 2 editing events being designated as hyper-edited and a few as single-site 

edited based on the nature of the surrounding editing events.  

 

5.1.8. Validation of Editing targets  

Putative APOBEC1 editing events were validated with standard Sanger 

sequencing and subclone sequencing of cDNA and gDNA. cDNA was prepared 

from total RNA using Superscript III (Invitrogen) and oligo-dT priming. For 

Sanger sequencing, 3′UTRs were amplified from cDNA and genomic DNA using 
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Pfu Turbo high-fidelity polymerase (Stratagene). Sequencing was performed by 

GENEWIZ, Inc.. For subclone sequencing, amplicons were cloned into a 

Strataclone Blunt cloning vector and transformation colonies were selected by 

blue/white screening with Xgal. Individual colonies were picked and screened 

by GENEWIZ, Inc. One editing event occurring in a coding region with the 

frequency of approximately 50%, was thrown out under the presumption it was 

a genomic SNP. This event is included in the false positive calculation.  

 

5.1.9. Analysis of additional features of APOBEC1 editing  

Mooring sequences was identified using a custom python script, using 

tools in BioPython. In this script, genomic sequences were extracted for the 25bp 

downstream of the edited cytosine. Sequences of negative transcripts were 

reverse transcribed. These 25bp sequences were scanned for a perfect mooring 

motif (WRAUYANUAU) or a motif with 1 deviation (nucleotide mismatch or 

deletion) or a motif with 2 deviations. Scoring system for the mooring motif was 

based on mooring sequence distance from the edited cytosine and the sequence 

fidelity of the motif itself. Scoring system was a scale of 0 (no mooring motif) to 

10 (perfect mooring motif): -1pt for 2 bases beyond 4-6nt, -2 points for every 

mismatch.  

Flanking nucleotide analysis was performed as follows: the genomic 

sequence composition of the 5 nucleotides up and downstream of each edited 

cytosine was determined and submitted to the logo generating program found at 

http://weblogo.berkeley.edu/logo.cgi (Kohli et al., 2010).  
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5.2. Materials and methods specific to the characterization of the consequences 

of mRNA transcript 3’UTR editing in BMDMs 

5.2.1. Conservation analysis 

The conservation of APOBEC1 edited regions was calculated using a 

custom python script and the shuffleBed operation of BEDtools (Quinlan and 

Hall, 2010). 68 101nt windows surrounding APOBEC1 editing events were 

defined. For transcripts with more than one editing event, the highest frequency 

event (as defined from RNA-Seq) was used to eliminate bias. ShuffleBed was 

used to create sets of 68 101nt windows at random locations in 3′UTR regions of 

the UCSC known genes. PhastCons scores were obtained from the 

multialignment of mouse and 19 other placental mammals. The mean phastCon 

score for APOBEC1-edited windows and 100 random sets of 101nt windows was 

computed. If the window had no assigned PhastCon scores, it was thrown out. 

Based on this strategy, one edited window was eliminated from analysis. The 

mean phastCon score for 67 edit-containing windows was 0.47. The mean score 

for the random sets was never > 0.47, therefore we report a p value of < 0.01. 

Conservation analysis was performed with Python coding assistance from Eric 

Fritz, Papavasiliou lab.  

 

5.2.2. RNA-Seq transcript expression profiling  

Using aligned RNA-Seq data, transcript expression levels were calculated 

using the cuffdiff tool in the Cufflinks (v1.2.1) software package (Trapnell et al., 

2013) based on the Ensembl gene set.  
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5.2.3. Cloning dual-luciferase vectors  

For random cDNA cloning analysis: a series of edited and unedited 3′UTRs were 

amplified using a high-fidelity Pfu Turbo polymerase (Invitrogen) from wild-

type (“edited”) and Apobec1-/- (“unedited”) macrophage cDNA (cDNA was 

generated as descried in 5.1.2) and sub-cloned (Strataclone Blunt PCR cloning 

kit). Clones were sequenced (GENEWIZ) and representative clones for each 

degree of editing (single-site, number of hyper-edited events etc.) were inserted 

downstream of Firefly luciferase in a dual-luciferase vector (Promega pmirGLO 

dual-expression luciferase vector).  

 

For targeted miRNA analysis: “Un-edited” target 3’UTRs were amplified and 

cloned as described above. Site-specific mutagenesis was performed on unedited 

target 3′UTRs. Mutagenesis primers were designed using online tools provided 

by Agilent technologies (www.genomics.agilent.com). Mutated constructs were 

amplified with Pfu Turbo (Invitrogen) polymerase in the presence of 

mutagenesis primers followed by digestion with DpnI (New England Biolabs).  

 

5.2.4. Luciferase reporter assays 

Apobec1-/- BMDMs were transfected with dual-luciferase constructs and 

pmaxGFP transfection control vector using the Amaxa Mouse Macrophage 

Nucleofactor kit (Lonza). Renilla luciferase served as an internal control. Cells 

were incubated for 24 hours, lysed with passive lysis buffer by shaking at RT for 

15min and subjected to one freeze-thaw cycle at -80°C. Firefly and Renilla 

luciferase expression were measured using the dual-luciferase reporter system 

(Promega) and a FLUOstar Omega plate reader. Background luciferase levels 
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(pmaxGFP) were subtracted from experimental samples. Firefly expression was 

normalized to Renilla for each construct. Then, luciferase values measured for 

each “edited” construct was normalized to its “unedited” counterpart for 

graphical visualization. Significance for the difference between each “edited” 

and “unedited” pair was determined through a Student’s t-test (Excel).  

 

5.2.5. Immunoblotting 

 BMDMs were lysed in RIPA buffer (50mM Tris pH 8, 150mM NaCl, 0.5% 

deoxycholate, 0.1% SDS, 1% NP-40, 1mM DTT, protease inhibitor cocktail, 

0.5mM PMSF) on ice for 20 min. Protein concentrations were determined via 

Lowry assay (BioRad) and normalized lysates were run on pre-cast protein gels 

(BioRad Criterion, Tris-HCl) in running buffer (25mM Tris, 192mM glycine, 0.1% 

SDS). Proteins were transferred onto a nitrocellulose membrane by semi-dry 

transfer in transfer buffer (25mM Tris, 192mM glycine, 0.1% SDS, 20% methanol). 

Membranes were blocked in 5% milk in TBS-T and incubated with primary 

antibodies: App (clone 22C11, Millipore), B2m (Abcam), tubulin (Sigma, clone 

DM1A).  

 

5.2.6. Flow cytometry  

 BMDMs were removed from 10cm dishes by scraping or vigorous 

pipetting and pelleted by centrifugation (1000xg, 3 min). Cells were incubated 

with an Fc-receptor blocking antibody (BD Biosciences) for 10min at 4°C.  

 

For the staining of cell-surface markers: BMDMs were then incubated with the 

following fluorophore-conjugated primary antibodies:  
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1) Macrophage-specific cell surface markers: F4/80 (conjugated to AF-

488, Invitrogen), Cd11b (conjugated to PE, BD biosciences).  

2) Live:dead stain: 7AAD (BD Biosciences)  

3) CD36 antibody conjugated to APC; isotype control conjugated to APC 

(BD biosciences)  

For the staining of intracellular proteins: BMDMs were fixed and permeabilized 

according to parameters defined in the Cytofix/Cytoperm kit (BD biosciences). 

Lamp1 antibodies were conjugated to FITC and compared to a FITC isotype 

control (BD biosciences). No live/dead staining was used and the same Cd11b-

PE antibody from above and a comparable F4/80 conjugated to APC were used 

to isolate macrophages.  

 

5.2.7. FACS  

 BMDMs were stained for F4/80, Cd11b and CD36 as described above. 

Cells were sorted using a BD-FACS Aria machine for the top ~10% and bottom 

~10% cells expressing CD36. RNA was extracted, reverse transcribed, PCR 

amplified with CD36 specific primers and subjected to subclone sequencing as 

previously described.  

  

5.2.8. HTS-CLIP protocol  

HTS-CLIP analysis was performed as previously described (Chi et al., 

2009) with a few alterations. HITS-CLIP sample preparation was performed by 

Dr. Emily Conn Gantman in the Darnell lab. A brief summary of the CLIP 

protocol adapted from materials provided by Dr. Conn Gantman is described 

below. 

131



	   	  

BMDMs were prepared from 3 wild-type and APOBEC1-/- littermate pairs. 

BMDMs were matured as described above and crosslinked 3x at 200mJ/cm2 on 

the original maturation plates in 3mL of 1xPBS on a bed of ice. BMDMs were 

scrapped off the plates, flash-frozen and stored at -80C. Frozen cells were thawed 

and lysed in 1mL PXL lysis buffer (1x PBS, 0.1% SDS, 0.5% Na-DOC, 0.5% NP-40) 

with complete protease inhibitor. After lysing on ice with occasional vortexing, 

the cells were subjected to DNAse treatment with RQ1 RNAse-free DNAse 

(Promega) for 5 minutes at 37°C shaking in a Thermomixer. RNAse treatment 

performed with high (1:100) or low (1:10,000) RNAse A solutions and incubated 

for 5 minutes shaking at 37°C. Lysates were spun down (14,000RPM, 30minutes 

at 4°C) and the supernatant transferred to a new tube.  

Protein A beads were pre-loaded with rabbit anti-mouse IgG bridging 

antibody (Jackson ImmunoResearch, at 2.3 mg/mL), incubated for 35 minutes at 

room temperature. Beads were washed (in 0.02% Tween) and then loaded with 3 

uL Ago antibody (2A8 ascites provided by Dr. Zissimos Mourelatos- (Nelson et 

al., 2007)) per 400 uL of beads and rotated for 3 hours at 4°C. Cleared lysates 

were incubated with primary antibody-loaded beads for 2 hours at 4°C and 

washed in a series of washes: 1) 2x 1x PXL buffer; 2) 2x 5x PXL (5xPBS 0.1 % SDS, 

0.5% Na-DOC, 0.5% NP-40); 3) 2x with high stringency buffer (15mM Tris-HCl, 

pH 7.5, 5mM EDTA, 2.5mM EGTA, 1% Triton X-100, 1% Na-DOC, 0.1% SDS, 

120mM NaCl, 25mM KCl); 4) 1x with high salt buffer (15mM Tris-HCl, pH 7.5, 

5mM EDTA, 2.5mM EGTA, 1% Triton X-100, 1% Na-DOC, 0.1% SDS, 1M NaCl); 

5) 2x with low salt buffer (15mM Tris-HCl, pH 7.5, 5mM EDTA); 6) 2x NT-2 
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buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 1mM MgCl2, 0.05% NP-40); 7) 2x 

PNK buffer (50mM Tris-HCl, pH 7.5, 10mM MgCl2, 0.5% NP-40).  

Dephosphorylation of the 5’ phosphate was performed with calf intestinal 

phosphatase (Roche) with RNAsin Plus RNAse Inhibitor (Promega) at 37°C for 

20 minutes, shaking at 1000rpm for 15s every 2 min. Beads were then washed 1) 

1x PNK buffer 2) 2x PNK buffer supplemented with 20mM EGTA 3) 2x PNK 

buffer.  

The puromycin blocked linker was radio-labeled with T4 PNK (New 

England Biolabs) and 32P-γ-ATP for 30 min at 37°C. Radiolabeled linker was spun 

through a G-25 column to remove free-ATP. Labeled 3’RNA linker was ligated to 

the 3’ end of the RNA with T4 RNA ligase (Fermentas) incubated at 16°C for 1 

hour, shaking at 1000rpm for 15s every 4 min. After 1 hour, 80 pmole of cold L32 

RNA linker with 5’ phosophate was added. Sampels were incubated overnight 

and washed 3x with PNK buffer. 5’ ends were re-phosphorylated with with T4 

PNK for 20 min at 37°C shaking at 1000rpm for 15s every 4 min.  

Protein:RNA complexes were eluted off the beads in NuPAGE loading 

buffer (Invitrogen) at 70°C for 10 min shaking at 1000rpm. Supernatants were 

run on Novex NuPAGE 8% Bis-Tris gels (Invitrogen) in MOPS running buffer 

(Invitrogen) for 2hr at 175V and transferred onto Protran BA85 nitrocellulose 

(Whatman) and exposed to Biomax MR film (Kodak).  

Regions that corresponded to Ago:mRNA and Ago:miRNA complexes 

were excised from the membrane (Figure 3.8A), diced and treated with 

proteinase K (4mg/mL Roche) for 20 min at 37°C shaking at 1100rpm. RNA was 

then extracted via phenol-chloroform extraction and ethanol precipitation. 5’ 
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linkers with a degenerate nucleotide end were ligated to the extracted RNA with 

T4 RNA ligase (Fermentas) at 16°C for 5 hours. The ligated reaction was then 

subjected to DNAse treatement with RQ1 DNAse (Promega) for 20min at 37°C 

and extracted with phenol-chloroform and subjected to ethanol precipitation.  

Precipitated RNA was reverse transcribed with Superscript III 

(Invitrogen) and PCR amplified with Accuprime Pfx Supermix (Invitrogen) for 

20-35 cycles. PCR products were run on a 10% denaturing polacrylamide gel and 

visualized with SYBR Gold (Molecular Probes) staining. 60-100nt products were 

excised from the lowest cycle number with visual product and gel extracted. 

Additional PCR amplification followed by gel extraction was performed as 

described with fusion primers to provide the platform for Illumina sequencing. 

10-30uL of 10nM DNA was submitted for sequencing on Illumina HiSeq.  

 

5.2.9. Processing and alignment of HITS-CLIP reads  

HITS-CLIP reads were filtered by quality (the first 5 nucleotides had a 

minimum quality score of 15 and the next 45 had a minimum mean score of 15) 

and exact sequences were collapsed. The 5’ linker was stripped off and Illumina 

adapter sequences were clipped from the 3’ end (Fastx Toolkit). Reads were then 

parsed by size into mRNA (≥25nt) and miRNA(≥ 17nt and ≤ 24nt) fractions using 

a custom python script. miRNA reads were aligned to mm9 using bowtie 

(v0.12.8) with the following specifications: “-l 17 -v 2 --best --strata -m 12”. To 

determine the best alignment strategy for his highly duplicated dataset we 

determined that the mmu-miRNAs mapped to a maximum of 12 separate 

genomic positions, so therefore we allowed up to 12 alignments per read. Read 
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counts were quantified with SeqMonk 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) using 

miRNA intervals defined by miRBase (v18). miRNAs mapping to multiple 

positions in the genome were then collapsed.  

mRNA reads were uniquely aligned to mm9 using bowtie (v0.12.8) with 

the following options: “-v 2 --best --strata -m 1”. A second step of PCR duplicate 

removal was performed as previously described (Chi et al., 2012) in which reads 

with the same 5’ 5nt degenerate linker and the same coordinates were removed. 

This step eliminates true PCR duplicates, in which sequencing errors were also 

introduced, and would therefore be missed by an exact sequence collapser.  

 

5.2.10. Identifying Ago footprints 

Clusters were defined as regions with ≥ 8 reads that overlapped by at least 

5 nucleotides. The peaks of the clusters were identified as previously described 

(Chi et al., 2009). The “Ago footprint” around the cluster has been previously 

broadly defined as the region 32nt upstream and 30nt downstream from the peak 

(previously characterized in (Chi et al., 2009) as the region in which Ago in 

bound 95% of the time) or narrowly defined as the region 22nt upstream and 

24nt downstream (region in which Ago is bound 100% of the time). For this 

analysis, we identified APOBEC1:Ago overlap by looking at the broad definition 

of the footprint but identified potential miRNA target regions within the narrow 

footprint. The read depth of each footprint from HITS-CLIP and RNA-Seq was 

calculated using SeqMonk and CLIP depth was normalized to transcript 

expression (RNA-Seq read depth) to define the “Ago occupancy” (reads per 

million mapped CLIP/reads per million mapped RNA-Seq). This method should 
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provide accurate normalization, as it takes into account regions within each 

transcript that could be differentially expressed or differentially mapped, a 

phenomenon neglected when normalizing to total transcript expression. Ago 

footprints were filtered to 17,477 that were contained within “expressed” 

regions, defined as an RPM of greater than or equal to 1, as this provided 

reasonable coverage of these regions, and would eliminate the any problems 

with artifactually increasing Ago footprint occupancy values by normalizing to a 

value less than 1. The biological complexity (the number of replicates 

contributing to each Ago Footprint) was calculated based on the replicate 

contributing ≥2 reads to the footprint. “High-confidence” footprints (14,781) 

were defined as having a biological complexity of ≥ 2. As all APOBEC1 editing 

and most miRNA targeting happening within the 3′UTR of a given transcript, we 

narrowed our search to only 3′UTRs. We generated a permissive 3′UTR database 

from RefSeq by merging (Bedtools, mergeBed) overlapping 3′UTR regions, 

thereby defining a region as a 3′UTR if it was catalogued as such in any 

transcript isoform. 6,270 high-confidence footprints were contained within these 

merged 3′UTRs. To determine the additional genomic locations of footprints not 

located in 3’UTRs, a similar “merged” database of 5’UTRs and CDS were created. 

Footprints that do not occur in either 5’UTRs or CDS are listed as “other.”  

 

5.2.11 Identifying overlap between Ago and APOBEC1 targeting 

Overlap between Ago footprints and APOBEC1 editing was determined 

with the intersectBed function of Bedtools. The over-representation of APOBEC1 

editing events in CLIP footprints was calculated as follows. The fraction of the 
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total 3′UTR in which APOBEC1 editing could be identified (or “accessible 

3′UTRs”) was defined as regions of well-expressed 3′UTRs that were covered by 

≥ 20 reads. The number of nucleotides in the accessible 3′UTRs was calculated 

(A). The number of nucleotides in footprints that overlapped with accessible 

3′UTRs was also calculated (B). If we consider the number of editing events 

identified as C and the number of editing events within Ago footprints and D. 

Then the over-representation ratio of APOBEC1 editing events in footprints was 

calculated as (D/B)/(C/A). Odds ratio was calculated (D/B)/((C-D)/(A-B)) with 

significance and confidence intervals calculated in R.  

 

5.2.12 miRNA seed target search  

After the identification of high-confidence Ago footprints, we performed 

an exhaustive search to assign miRNA targets to those footprints and identify 

regions where APOBEC1 editing could create or destroy a miRNA target region. 

The search for miRNA target regions was performed with coding assistance from 

Dr. Dewi Harjanto, Papavasiliou lab. Using miRNA alignment data, we 

generated a list of bound miRNAs, defined as those that had a biological 

complexity of 3 in one of the two genotypes. Using a custom Python script, we 

scanned the footprint sequences for “canonical” matched miRNA 6mer seed 

regions (positions 2-7 of the mature miRNA sequence), as well as other non-

canonical matched 6mers from the 5’ end of the mature sequence (positions 1-6 

or 3-8). We also scanned the footprint sequences for “fuzzy” 6mers and 7mers (1 

nucleotide mismatch) and G-bulge seed regions (1 G insertion). Footprints were 

analyzed for the “best” miRNA target region fit, based on the sequence 

proximity to the footprint peak and the amount of the miRNA bound to Ago. We 
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identified a number of target regions that were either created or destroyed by 

APOBEC1 editing events and tested these with standard luciferase reporter assay 

(described above).  
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