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The emergence of antibiotic-resistant bacterial pathogens and the discovery of 

new bacterial pathogens have motivated the development of novel antibacterials. One 

recently proposed strategy is to target pathogenic bacteria specifically by inhibiting 

virulence mechanisms as opposed to killing bacteria indiscriminately, which includes 

commensal strains. Due to the increased appreciation for the role commensal bacteria 

play in the immune response and the importance for maintaining a healthy microbiota, 

specifically targeting pathogenic bacteria is a desirable goal to attain. Genetic and 

biochemical studies have highlighted type III secretion systems (T3SSs) as essential 

components for infection of host cells by Gram-negative bacterial pathogens. Small 

molecules that target type III protein secretion may therefore represent a new class of 

antibacterial agents and provide a platform for evaluating an anti-virulence approach. 

The salicylidene acylhydrazides (SAHs) are a class of compounds that prevent 

secretion of bacterial effector proteins through the T3SS and attenuate infection from 

various species of Gram-negative pathogens; however, the molecular target(s) of these 

compounds remains unknown, and the potency of these compounds is not optimal. To 

discover the molecular target(s) of the SAHs in Salmonella typhimurium and determine 

their mechanism of action, I synthesized several alkynyl SAH analogs and employed 

bioorthogonal labeling techniques for proteomic analysis of their 



protein-binding partners. Through structure-activity relationship (SAR) analysis of the 

alkynyl analogs, I discovered important features for the inhibitory activity of the SAHs 

and observed that they covalently modify many S. typhimurium proteins; however, the 

protein targets responsible for the inhibitory activity of SAHs remains to be determined. 

Repurposing chemical inhibitors to target host enzymes required for infection has 

emerged as an alternative approach to subvert rapid antibiotic resistance in bacterial 

pathogens. Towards this goal, the isoquinolinesulfonamide H-89 was reported to limit 

Salmonella replication in macrophages through inhibition of Akt, a host kinase that is 

activated during infection. However, more potent Akt-specific inhibitors are less effective 

at inhibiting bacterial replication, suggesting an alternative mechanism of action for H-

89. I discovered that H-89 does not target Akt in host cells to restrict bacterial replication, 

but more likely prevents bacterial replication by inhibiting the expression of S. 

typhimurium T3SS components and effector proteins required for bacterial invasion and 

replication in host cells. As H-89 does not interfere with bacterial growth in liquid 

culture, these results highlight isoquinolinesulfonamides as a new class of lead 

compounds for targeting bacterial virulence. 
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CHAPTER 1 – Introduction 

 

1.1 Targeting virulence as an alternative strategy to antibiotics 

The emergence of multidrug-resistant bacterial strains and new microbial 

pathogens necessitates that novel antimicrobial strategies are developed to replenish our 

waning antibiotic arsenal [1,2]. The rate at which bacteria acquire resistance to antibiotics 

is faster than we are developing new ones. The widespread use of antibiotics over the 

years has applied selective pressure that gives a competitive advantage to bacteria 

containing resistance mechanisms [3]. Despite the increase in antibiotic-resistant strains, 

unfortunately there has been a decrease in the number of new drugs to combat them (Fig. 

1.1). Over the last 40 years, there has been a major lull in the deployment of new 

antibiotics, and antibiotic resistance has quickly developed. A new approach to 

antibacterials is necessary if we hope to keep up with the ever-evolving bacteria. The 

discovery of antibiotics has been one of the most impactful events to benefit human 

health [4], but currently we are regressing towards the pre-antibiotic era.  

Not all bacteria are harmful; however, as an increasing number of studies have 

been begun to reveal specific beneficial mechanisms of commensal bacteria on host 

immunity [5-9]. Thousands of bacterial species make up the microbiota that inhabit the 

gastrointestinal tract of humans [7]. These bacteria establish colonization resistance to 

infection by pathogenic bacteria and are crucial for the proper development of the 

immune system [6]. They stimulate intestinal epithelial cells to secrete antimicrobial 

peptides [7], affect the number and activity of dendritic cells [10], and even single 
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bacterial species are capable of restoring the balance of T helper cells in germ-free mice 

[11,12].  

Antibiotic disruption of bacterial communities can alter host immunity and 

exacerbate microbial infections [13]. Most antibiotics indiscriminately kill bacteria, 

including beneficial commensals. Since they play a large role in homeostasis of the 

immune system, antibiotic treatment depletes many of the beneficial effects commensals 

bestow onto their hosts. Treatment with antibiotics completely changes the composition 

of the normal microbiota, and these effects are long-lasting [13,14]. This not only paves 

the way for opportunistic pathogens to establish infection [15] but also renders the host 

more susceptible to other enteric infections [16,17]. 

Therapeutic strategies that target bacterial virulence rather than growth have thus 

received considerable attention [1,2], as these approaches are proposed to selectively 

disarm pathogens while preserving the integrity of the host microbiome. It is also 

hypothesized that anti-virulence compounds could apply less selective pressure to 

develop resistance mechanisms, but as of now it is unsubstantiated. 
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Antibiotic deployment 

Antibiotic resistance observed  

Figure 1.1 Antibiotic deployment and resistance. Taken from [2], this timeline shows 

the relationship between when an antibiotic was first deployed (top) and when resistance 

to that antibiotic was first observed (bottom). 

 

1.2 Bacterial virulence mechanisms can be targeted with small molecule inhibitors 

The discovery of many bacterial virulence mechanisms including virulence gene 

regulation, adhesins, protein secretion systems, and associated toxins are new targets for 

anti-virulence strategies [1,2] (Fig. 1.2). At the start of infection, bacteria sense their 

environment and up-regulate the expression of virulence genes, which primes the bacteria 

for establishing infection. This leads to the production of toxins and effector proteins that 

disrupt host cell functions and cause disease. Bacteria then use specialized secretion 

systems to deliver these toxins and effectors into the host cells to which they have 

adhered. Disrupting any one of these aspects of pathogenesis can lead to attenuated 

infection.  
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Figure 1.2 Bacterial virulence mechanisms to target. Taken from [2], bacterial 

virulence mechanisms can be targeted with small molecule inhibitors. Inhibition of 

virulence gene regulation, bacterial adhesion to host cells, delivery of toxins, or toxin 

function could lead to decreased infection. 

 

Bacteria themselves are not inherently harmful; the toxins they produce are what 

cause disease. Inhibiting toxin activity is therefore a direct method for inhibiting 

virulence. This is the principle behind antitoxin development. This approach can be 

achieved by inhibiting toxin activity directly or altering the host response [18]. One 

difficulty with this approach is that many bacterial effectors exert their function by 

mimicking host factors; blocking this interaction could also block the endogenous 
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activity of host proteins [19]. Anthrax lethal factor can be inhibited by a small molecule 

(Fig. 1.3A) that binds its active site or by adding soluble Anthrax receptors that compete 

for binding [20,21].  

Many bacterial species sense their environment and communicate to each other on 

a population level through a process called “quorum sensing” [22]. It is a method for 

bacteria to communicate between species and also to evaluate its own population density. 

The external environment and population density regulate virulence gene expression. 

When pathogens sense they are in an appropriate situation to cause infection, they can 

up-regulate expression of virulence genes. Many Gram-negative pathogens use acyl-

homoserine lactones (AHLs) as the signaling molecules that mediate quorum sensing 

[22,23]. Though many species share a similar pathway, the receptors can be selective for 

their specific signaling molecule [22]. Halogenated furanones (Fig. 1.3B) are analogs that 

have been used in vitro to inhibit the signaling process stimulated by AHLs [24], and in a 

mouse model of P. aeruginosa infection, they were shown to inhibit quorum sensing and 

increase survival from a lethal dose of bacteria [25], validating the potential of this 

approach.  
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Figure 1.3 Structures of anti-virulence compounds. A) Structure of compound that 

inhibits Anthrax lethal factor. B) Halogenated furanones disrupt quorum sensing. C) 

LED209 inhibits QseC two-component signaling. D) Bicyclic 2-pyridones inhibit pilus 

assembly, preventing adhesion. 

 

Bacteria also utilize two-component signaling pathways to sense their 

environment and respond accordingly [22]. Targeting two-component sensory systems 

led to the discovery of a compound that inhibits QseC-dependent virulence gene 

activation in enterohemorrhagic Escherichia coli [26]. QseC is a histidine kinase sensor 

that is conserved amongst several pathogens and regulates transcription of virulence 

genes. The compound LED209 (Fig. 1.3C) prevents transcription of virulence genes and 

secretion of effectors without inhibiting bacterial growth. It also increased the lifespan of 

mice infected with S. typhimurium and F. tularensis [26]. 

For bacteria to establish infection, they first attach to host cells. They do so with 

adhesins that recognize cell surface receptors on the host cells [27]. Small molecule 

inhibitors could be developed to prevent either the formation of the adhesins or the 

binding to host cell receptors. The bicyclic 2-pyridones are a class of compounds that 

prevents the formation of the adhesins that recognize and bind to host cells [28,29] (Fig. 
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1.3D). They were shown to prevent adhesion of E. coli in an ex vivo model of infection 

[28]. 

 

1.3 Type III secretion systems (T3SSs) are essential to infection 

After bacteria adhere to host cells, they use specialized secretion systems to 

deliver the toxins and effector proteins into the host cell. One example is the type III 

secretion system (T3SS), which is a molecular syringe that is common to many Gram-

negative pathogens including Chlamydia, E. coli, Pseudomonas, Salmonella, Shigella, 

and Yersinia [30]. These pathogens use the T3SS to inject effector proteins from the 

bacteria into the host cytosol. Amongst the many bacterial virulence mechanisms that 

have been discovered, protein secretion systems appear to be prime targets for small 

molecule inhibition of infection [31-33]. 

The highly conserved T3SS is central to the virulence of many human Gram-

negative pathogens [30,34,35]. Mutants defective in T3SS activity are attenuated in their 

ability to cause infection [36]. These two aspects make targeting T3SSs an attractive 

strategy; inhibitors can have a marked effect on infection with the potential for broad-

spectrum activity. The T3SS is a transmembrane machine comprised of about 20 proteins 

that assemble into a needle-like complex (Fig. 1.4A) that spans the bacterial membranes 

and functions in a highly regulated manner to transport effector proteins from the 

bacterial cytoplasm directly into host cells (Fig. 1.4B) [37-40]. Construction of T3SSs 

requires both structural components and ancillary proteins for the assembly process 

[41,42]. The basal body spans the inner (IM) and outer (OM) membranes of the bacteria 

[41,42]. The rings that span the IM are brought to the envelope by a Sec-dependent 
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pathway and anchored by N-terminal lipidation [34]. A short rod connects the IM rings to 

the OM components, which belong to the secretin family of pore-forming proteins [42]. 

The needle, which varies in length between species and strains, is a polymer of helical 

proteins that protrudes from the bacterial surface and delivers protein effectors outside 

the bacteria [41,42]. The tip of the needle is composed of a complex known as the 

“translocon,” which can insert itself into the host cell membranes [30,41]. The T3SS is 

activated by environmental cues, and upon contact with host cells, secretes and 

translocates protein effectors into the host cytoplasm (Fig. 1.4B) [30]. T3SSs thus 

facilitate highly coordinated and regulated secretion of specific bacterial protein effectors 

during infection [43]. 

 

 

 

 

 

 

 

Figure 1.4 T3SS needle apparatus. A) Electron micrograph and models of T3SS needle 

apparatus. B) Diagram for translocation of effector proteins into host cells. Figures taken 

from [30]. 

 

 

!
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Hundreds of effector proteins among diverse bacterial pathogens have been 

identified as potential substrates of T3SSs, with as many as 30 different effector proteins 

being secreted from a single pathogen [35]. Several bacterial effectors can directly induce 

host cell death to facilitate bacterial pathogenesis [44,45]. Other bacterial effectors mimic 

host signaling proteins and enzymes to alter cellular signaling pathways. This allows 

bacteria to enter and replicate within the host cells while evading detection and 

destruction by the host immune system [46]. Depending on the bacterial pathogen, T3SSs 

can thus facilitate bacterial entry and replication in host cells or cause host cell death 

directly. Even though many detailed molecular mechanisms regarding the biogenesis of 

T3SSs and bacterial effector functions are still under investigation, genetic and 

biochemical studies of many Gram-negative bacterial pathogens have revealed that 

effector translocation by T3SSs is crucial for infection [42]. Despite normal in vitro 

growth rates, T3SS bacterial mutants can not deliver protein effectors into host cells, 

which renders the pathogens avirulent and significantly attenuated in their ability to cause 

disease in animals [42]. Moreover, directly blocking the injection of protein effectors into 

host cells through active or passive immunization using specific antibodies further 

supports T3SSs as key virulence mechanisms for infection. 

T3SSs have emerged as attractive targets for small molecule anti-virulence 

therapeutics and have motivated several high-throughput screens (HTSs) in search for 

specific chemical inhibitors that block the secretion and translocation of bacterial effector 

proteins [31-33]. As T3SSs have not been reconstituted in vitro, the search for small 

molecule inhibitors has largely employed cell-based assays for protein secretion coupled 

to sensitive and high-throughput readouts (Fig. 1.5) or targeted screens against the 
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enzymatic activity of the ATPase required for protein secretion. Several classes of small 

molecules have now been identified from these screens (Tables 1.1, 1.2, and 1.3), which 

are summarized below with their potential mechanisms of action and prospects for 

clinical development [47]. 
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Figure 1.5. Assays for bacterial effector secretion and HTSs. A) Whole cell HTS 

using a Yersinia pseudotuberculosis (yopE:luxAB) strain [48] that utilizes a 

transcriptional readout linked to secretion. B) Whole-cell HTSs were performed using an 

effector-enzyme fusion where the enzymatic activity can be monitored by fluorescence 

[49,50]. C) A bacterial effector is fused with β-lactamase (βla) that cleaves a βla-

sensitive FRET probe, CCF2-AM, in the host cells [51]. D) GFP-labeled chaperones were 

used as probes to visualize translocation of bacterial effectors by imaging effector 

accumulation in the cytosol of the host cells [52]. E) Upon T3SS effector translocation, 

the association of the two fragments, the small 13-amino-acid 11th strand of the GFP β-

barrel and the complementary fragment of the first 10 GFP strands, leads to GFP 

fluorescent-tagging of the effector population in the host cells [53]. F) The fluorescein-

based biarsenical dye FlAsH in the host cells allows the labeling of effectors with a 

genetically encoded sequence containing the tetracysteine repeat motif as the tag [54-56]. 
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Figure 1.5 
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1.4 Inhibitors of T3SSs in Gram-negative pathogens 

 

1.4.1 Salicylidene acylhydrazides 

The salicylidene acylhydrazides (SAHs) were the first class of small molecules 

identified from a T3SS effector screen [48]. Kauppi et al. developed a whole cell HTS 

using a Yersinia pseudotuberculosis reporter strain that utilizes a transcriptional readout 

linked to secretion (Fig. 1.5A) [48]. They engineered the luciferase luxAB gene under the 

control of the effector yopE promoter. When grown at 37 °C in Ca2+-rich media, LcrQ 

prevents T3SS gene expression. Upon contact with a eukaryotic cell or depletion of Ca2+, 

LcrQ is secreted via the T3SS, thus releasing transcriptional repression of type III 

secretion genes such as yopE [57]. Under these conditions, this strain will then express 

luciferase and luminescence can be used to monitor yopE expression. Using this assay, 

Kauppi et al. screened 9,400 compounds for their ability to block expression of luciferase 

activity. Luminescence was measured after bacteria were incubated with compound in 

Ca2+-depleted media. In wells with inactive compounds, LcrQ would be secreted and 

luciferase would be expressed. For compounds that block T3S, LcrQ would remain in the 

cell and repress expression of the luciferase gene. Since this assay monitors loss of signal 

on a transcriptional level, follow-up assays are required to assess the activity of 

compounds on type III secretion directly. Compounds that affect the growth of the 

bacteria are excluded, and compounds with effects on transcription would also result in 

hits by indirectly affecting type III secretion. 

Three notable classes of compounds were discovered to prevent type III secretion 

at low micromolar concentrations without affecting growth of the bacteria: the 
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sulfonylamino-benzanilides, salicylanilides, and salicylidene acylhydrazides. Incubation 

of bacteria with each class resulted in decreased levels of secreted effectors into culture 

supernatant, confirming the transcriptional readout. The individual compounds have 

varying effects on transcription and motility, which suggests they have different targets 

and mechanisms of action. The flagellar system is related to the type III secretion 

machinery, so compounds that affect one could also target the other. The sulfonylamino-

benzanilides did not affect motility or general transcriptional regulation of the T3SS, but 

only one follow-up study has been done, potentially due to their limited solubility [58]. 

The salicylanilides have no effect on motility and likely work upstream of a 

transcriptional activator of the Yops, potentially by affecting two-component signaling, 

thus indirectly affecting type III secretion. There are other reports confirming their effect 

on transcription [59,60]. The salicylidene acylhydrazides, specifically INP-0007 from this 

study, affected both secretion and motility without generally affecting transcription 

(Table 1.1, entry 1). This suggests a conserved component between the two systems as a 

potential target. Inhibiting secretion and motility is advantageous for an anti-virulence 

compound, making this class a good candidate for follow-up studies. 

Since the initial discovery of the salicylidene acylhydrazides displaying T3SS 

inhibitory activity in Yersina, follow-up studies in Yersinia demonstrated INP-0007 

blocks secretion in a constitutively secreting mutant and prevents bacterial invasion of 

HeLa cells [61]. Compounds in this class have since been shown to have T3SS inhibitory 

activity in several Gram-negative pathogens including E. coli [62,63], Chlamydia [64-

69], Salmonella [50,70-72], and Shigella [73], which results in an attenuation of 

infection. Various INP-0007 derivatives were shown to prevent invasion of Yersinia, 
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Salmonella, and Shigella, disrupt the infectious cycle in Chlamydia, and decrease the 

number of attachment and effacement lesions in a bovine epithelial cell line when 

infected with E. coli [62]. INP-0007 and INP-0403 were shown to inhibit T3SS-induced 

hemolysis in erythrocytes and decrease the secretory and inflammatory responses in vivo 

with a bovine intestinal ligated loop model when infected with Salmonella (Table 1.1, 

entries 1 and 5), but the caveat for drug development is that these protective effects were 

only observed when the bacteria were pre-treated with inhibitor [70]. In Chlamydia, 

however, even when inhibitor was added 24 hours post-infection to HeLa cells, it still had 

a significant impact on bacterial replication [68]. This led to some pre-clinical studies and 

in vivo experiments with Chlamydia-infected mice [74]. Gylfe et al. used mice injected 

with compound to analyze the pharmacokinetics of two of the most potent inhibitors of 

Chlamydia replication. The most potent compound displayed poor pharmacokinetic 

parameters, so they applied it topically to mice inoculated intravaginally with C. 

trachomatis. They saw a significant decrease in the number of inclusion forming units 

(IFUs) for compound-treated mice over the 4 weeks monitored. Moreover, they did not 

observe any noticeable effect on strains of lactobacilli: commensals that are essential for 

maintaining the balance of the vaginal microflora. These results demonstrate the utility of 

the SAHs to be used in vivo to treat Chlamydia infection. 

More recently, the SAHs have been shown to have antiviral effects as well [75]. 

Forthal et al. screened 25 SAHs for anti-HIV-1 activity and focused on 4 that had IC50 

values in an infection assay in the single-digit micromolar range and were not cytotoxic 

to cells. They were effective against several strains of HIV-1 and were active in a vaginal 

and semen simulant, demonstrating their potential as a topical applicant for inhibiting the 
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transmission of sexually transmitted diseases. 

While there is variability in the exact structure of active SAHs between species, 

there is a common core scaffold. One study used statistical molecular design (SMD) and 

quantitative structure-activity relationships (QSAR) on 50 compounds tested in Yersinia 

to make predictions about untested compounds [76]. Of eight candidate compounds, they 

were able to correctly predict that three would be inactive, but only three of the five 

predicted to be active demonstrated inhibitory activity. Though there was no obvious 

consensus motif that confers activity, the authors found that the pKa of the phenol was 

the most important property in the model and that the electrostatic potential of the carbon 

atoms in that aromatic ring may play a key role. 

Though there have been several studies using the salicylidene acylhydrazides in 

various bacterial species, the precise target(s) and mechanisms of action remain unclear. 

Since these compounds have broad-spectrum inhibitory activity, it is likely that they 

target something conserved among the species. It was initially proposed that the 

compounds act directly on the T3SS machinery, and one report in Shigella suggests that 

incubation with INP-0400 affected needle assembly [73] (Table 1.1, entry 4). Further 

support for this notion is that the T3SS needle complex is related to the flagellar 

assembly, and motility is affected in Yersinia [48] and Salmonella [71]. Several reports 

have examined the effects these compounds have on transcription. In Chlamydia, Wolf 

and co-workers found that INP-0007 down-regulates some virulence genes, and while 

levels of needle components are unaffected, effectors accumulate intracellularly [66]. 

Another study performed RT-PCR of virulence genes during infection of HeLa cells 

where compound was added at the time of infection [68]. They also observed that only 
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some virulence genes are down-regulated when incubated with active compound, and 

importantly, they used an inactive compound as a negative control and saw no differences 

between that and the DMSO sample. In E. coli, four compounds with varying potency all 

down-regulated genes in the locus for enterocyte effacement, but there was large 

variation between strains [62]. When the transcriptome in Salmonella incubated with 

various inhibitors was examined, the needle complex ATPase InvC and the HilD 

regulator were down-regulated, but no major effects on HilA or the effectors themselves 

were observed [72]. Taken together, it is clear the salicylidene acylhydrazides have some 

transcriptional effects; however, it is not obvious if this is a direct effect and the cause of 

secretion inhibition or the result of a feedback loop. 

In Chlamydia [68] and Salmonella [72], it has been reported that adding 

exogenous iron to the cultures can prevent the inhibitory effects of the SAHs 

acylhydrazides, suggesting iron restriction as a potential mechanism of action. Iron 

transport and acquisition genes are up-regulated in Salmonella upon treatment with 

several inhibitors, however, neither the up-regulation of iron-related genes nor an effect 

from adding exogenous iron is observed in Yersinia. Also, an inactive compound was 

shown to bind iron to the same extent as an active compound [68], thus casting doubt on 

an iron-restriction mechanism. 

Roe and co-workers attempted to identify the targets of the salicylidene 

acylhydrazides using a biochemical approach [63]. They synthesized two analogs of 

ME0052 (Table 1.1, entry 2) and ME0055 (Table 1.1, entry 3) for affinity purification of 

binding partners from E. coli lysate. After trypsinization and LC-MS/MS analysis, 16 

proteins were identified, and three were suggested binding partners by Far Western 
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analysis using a biotinylated version of a much less active compound: Tpx (thiol 

peroxidase), WrbA (NAD(P)H quinine oxidoreducase), and FolX (dihydroneopterin-tri-

P-epimerase). Knockouts of each gene results in down-regulation of flagellar components 

and up-regulation of T3SS genes, the opposite of what is observed with compound 

treatment. Deletion mutants of Tpx and WrbA secrete more effectors, and they are as 

virulent in infecting macrophages, but adding ME0052 can still inhibit both processes. 

The authors thus suggest the inhibition of T3SS activity is due to a polypharmacological 

effect on proteins involved in metabolism, which then results in a dis-regulation of 

bacterial virulence. Given the diverse pharmacological effects of salicylidene 

acylhydrazides that have been reported, the precise mechanism of action for these 

compounds remains unclear. 
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Table 1.1 Compound structures of salicylidene acylhydrazides and assays tested. 
 

C trachomatis: 
Down-regulates 
transcription of 
late-cycle 
virulence genes 

C. trachomatis: Prevents 
IncA secretion during 
infection 
 
S. typhimurium 
 
Y. pseudo-tuberculosis  
 
Y. pseudo-tuberculosis: 
Prevents YopH 
translocation into HeLa 
 

~15 µM 
 
 
~5 µM 

C. trachomatis: Inhibits 
replication in HeLa 
S. typhimurium: 
Reduces hemolysis of 
erythrocytes, invasion 
of HeLa, and immune 
response in bovine 
ligated loop model  
Y. pseudo-tuberculosis: 
Inhibits invasion of 
HeLa 

Y. pseudo-
tuberculosis: 
Inhibits motility 

48, 
50, 
61, 
66, 
70,  

EHEC: Down-
regulates 
transcription of 
LEE but not 
iron-related 
genes 
C. pneumoniae, 
S. typhimurium: 
Down-regulates 
transcription of 
some virulence 
genes 

EHEC: Inhibits Tir and 
EspD secretion 
 
S. typhimurium 
 

~25 µM C trachomatis: Inhibits 
replication in 
mammalian cell lines 
S. typhimurium: Inhibits 
invasion of MDCK cells 
and replication in 
macrophages 
Y. pseudo-tuberculosis: 
Reduces macrophage 
cytotoxicity 

62, 
67, 
71,  

EHEC: Down-
regulates 
transcription of 
LEE but not 
iron-related 
genes and up-
regulates 
flagellum 
expression 

EHEC: Inhibits Tir and 
EspD secretion 

~25 µM EHEC: Reduces number 
of A/E lesions on 
bovine epithelial cells 

62 

S. flexneri: 
Affects needle 
complex 
assembly 

S. typhimurium 
 
S. flexneri 

C trachomatis: Inhibits 
replication in HeLa and 
McCoy cells 
S. typhimurium: 
Reduces HeLa 
cytotoxicity 
S. flexneri: Reduces 
invasion of HeLa and 
macrophage 
cytotoxicity 

65, 
68, 
71, 
73 

S. typhimurium: 
Down-regulates 
transcription of 
invC and hilD 
but not hilA or 
effectors 

S. typhimurium ~25 µM S. typhimurium: 
Reduces hemolysis of 
erythrocytes, invasion 
of HeLa, and immune 
response in bovine 
ligated loop model 

S. typhimurium: 
Effects reversed 
with exogenous 
iron 

70, 
71, 
72,  
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1.4.2 2-Imino-5-arylidene Thiazolidinones 

A whole-cell HTS in Salmonella identified the 2-imino-5-arylidene 

thiazolidinones as broad inhibitors of T3S [49]. The screen was performed by 

engineering a Salmonella strain where the secreted effector SipA was fused to a portion 

of a Yersinia protein YplA, that contained phospholipase A2 activity (Fig. 1.5B). The 

phospholipase A2 activity could then be measured with a fluorogenic substrate. Using 

this strain, they screened 92,000 small molecules from natural and synthetic libraries. 

After ruling out compounds that affected growth or were unsuitable for drug 

development, they followed up on 25 compounds. Excluding compounds that had an 

effect on general transcription, translation, or Sec-dependent secretion left seven 

molecules for follow-up studies. Six of these were found to affect T3SS gene expression, 

leaving one that might specifically target the T3S process or assembly directly. 

The one compound Felise et al. pursued was a 2-imino-5-arylidene thiazolidinone 

(TTS29) (Table 1.2, entry 1), and it was shown to have T3SS inhibitory effects in 

Yersinia, Pseudomonas aeruginosa, and Francisella novicida, demonstrating broad-

spectrum inhibitory activity. By purifying the needle complexes of Salmonella, they 

found that compound-treated samples had lower levels of needle components, but whole-

cell and membrane fraction levels were unchanged, suggesting that the compound 

disrupts needle complex assembly. No effect was observed on motility or the levels of 

flagellar components, suggesting the effect was specific to the T3SS. They also 

discovered that TTS29 affects type II secretion (T2S) and the related type IV pili 

assembly. After examining what is common to all of the affected systems and not present 

in the flagellar system, it was proposed that TTS29 acts by disrupting secretin 
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interactions, thus affecting needle complex assembly or stability but not the flagellar 

system. These effects on the T3SS carried over into an infection setting, as the compound 

was able to prevent Salmonella-induced lysis of macrophages and the hypersensitivity 

response in tobacco plants from the plant pathogen Pseudomonas syringae. 

One major drawback is the low potency of TTS29, as several hundred micromolar 

is required to have an inhibitory effect. Subsequent SAR analysis demonstrated the 

importance of the imino nitrogen, its aryl group, and the substitution pattern on the 

arylidene ring while the amido nitrogen tolerated modification. A TTS29-analog in this 

study displayed higher potency in every assay tested without affecting bacterial growth 

(Table 1.2, entry 2). This led to further modification of the amido nitrogen, with several 

analogs containing a dipeptide chain displaying low micromolar IC50 values for inhibition 

of SipA [77]. Tethered thiazolidinone dimers (Table 1.2, entry 3), some of which are 

linked with a peptide, displayed similar potencies [78]; however, no follow-up studies 

have been reported with these compounds. 
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Table 1.2 Compound structures of 2-imino-5-arylidene thiazolidinones and assays tested. 

IC50 values are reported based on the inhibition of SipA secretion as determined by 

Western blot. 

S. typhimurium: 
Inhibits needle 
complex 
assembly, No 
effect on general 
transcription 

S. typhimurium 
 
Y. enterocolitica 
 
F. tularensis 

83 µM 
 

P. syringae: 
Prevents HR 
response in 
tobacco leaves 
S. typhimurium: 
Reduces 
macrophage 
cytotoxicity 

S. typhimurium: No 
effect on flagellar 
system or motility 
P. aeruginosa: 
Inhibits T4-
dependent motility & 
T2S 

49, 
77, 
78 

S. typhimurium: 
No effect on 
general 
transcription 
 

S. typhimurium 3 µM S. typhimurium: 
Reduces 
macrophage 
cytotoxicity 

P. aeruginosa: 
Inhibits T2S 

49, 
77, 
78 

S. typhimurium: Inhibits 
secretion of SipA 

5 µM 78 
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1.4.3 Other chemotypes from HTSs 

A few other HTSs have revealed several other classes of T3SS inhibitors. Janssen 

Pharmaceuticals employed an assay which measures levels of the secreted effector 

protein ExoU from P. aeruginosa and SipA and SopE from S. typhimurium as the 

readouts of T3SS inhibition [79]. The majority of the inhibitors that exhibited low 

micromolar potencies were comprised of a common N-acyl p-Cl phenylalanine moiety 

(Table 1.3, entry 1). However, this class of compounds lacks the broad-spectrum anti-
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T3SS activity across different Gram-negative pathogens, and no further development has 

yet been reported. 

Microbiotix Pharmaceuticals has identified five inhibitors from a library of 

80,000 compounds through two distinct functional bioassays [80]. First, compounds were 

screened against a transcriptional fusion of the Photorhabdus luminescens luxCDABE 

operon to the P. aeruginosa exoT effector gene. The compounds were then selected based 

on the inhibition of the secretion of a P. aeruginosa ExoS effector-β-lactamase fusion 

protein (Fig. 1.5C) and also of native ExoS by the SDS-PAGE analysis of culture 

supernatants. To demonstrate the broad-spectrum efficacy of the compounds, they were 

found to also antagonize Yersinia T3S and one compound, MBX1641, also targeted 

Chlamydia T3S (Table 1.3, entry 2). Interestingly, contrary to typical HTS hits, 

Microbiotix compounds contained chiral centers and through a series of synthetic efforts, 

it was shown that the R enantiomer was the preferred stereochemistry. With a stringent 

structure activity relationship, these compounds might see many obstacles moving 

forward; however, other scaffolds identified in the screen could be explored in the future. 

Harmon et al. devised a HTS to identify compounds that inhibit the T3S-

dependent translocation of Yersinia effector proteins, Yops, into host cells [51]. This 

translocation-monitoring FRET-based system employed a chimeric protein, E-TEM, 

which encodes the first 100 amino acids of YopE, containing the secretion and 

translocation signals, fused to a fragment of β-lactamase (TEM) (Fig. 1.5C). The 

substrate, CCF2-AM, consists of two fluorophores conjugated by a lactam ring. 

Normally, the substrate fluoresces green due to FRET between the fluorophores. TEM 

can cleave the lactam ring between the fluorophores, leading to the loss of FRET and 



 24 

resulting in blue fluorescence. If Y. pseudotuberculosis translocates E-TEM into host 

cells, the substrate will be cleaved and the cells will fluoresce blue. The green-to-blue 

ratio was measured to determine whether the compounds could block the translocation of 

E-TEM. Notably, they have identified six compounds that specifically inhibit 

translocation of Yops into mammalian cells but not Yop synthesis or secretion (Table 

1.3, entry 3). These six diverse compounds lacked a consensus pharmacophore, yet they 

inhibited translocation of effectors into the host cell while not affecting the synthesis of 

T3SS components or effectors, assembly of the T3SS, or secretion of effectors. 

Interestingly, C20 reduced adherence of Y. pseudotuberculosis to target cells. 

Additionally, the compounds were shown to cause leakage of Yops into the supernatant 

during infection and reduced polarized translocation. Furthermore, several molecules also 

inhibited P. aeruginosa ExoS-mediated cell rounding, suggesting that the compounds 

target factors that are conserved between these two pathogens.  

Similar to the reported yopE:luxAB strain [48], Pan et al. screened a collection of 

70,966 compounds using a Y. pestis luciferase reporter strain [81]. Four new compounds 

were identified to inhibit secretion of Y. pestis T3SS effector proteins YopD, YopH, and 

YopM at micromolar concentrations without affecting bacterial growth. Moreover, two of 

the four compounds (Compounds 1 and 2, Table 1.3, entry 4) also attenuated T3SS-

mediated secretion of EPEC effector proteins. In all, compounds discovered from this 

library are likely to have different mechanisms of action and targets from each other.  

Li and co-workers adopted a cell-based assay that measures the T3S-dependent 

secretion of a chimeric SopE-β-lactamase fusion and identified a class of triazine-based 

compounds (Table 1.3, entry 5) as inhibitors of T3S [82]. Active compounds can 



 25 

selectively reduce the level of SipB in the supernatant fraction of Salmonella culture 

without affecting the production of SipB intracellularly. Moreover, these compounds also 

diminished the level of ExoU in the supernatant of P. aeruginosa cultures. No further 

development has been reported since the patent.  

In an effort to identify compounds that protect Chinese hampster ovary (CHO) 

cells against the T3S-depedent cytotoxic effects of the P. aeruginosa effector ExoU, Lee 

et al. reported pseudolipasin A as a specific inhibitor for the phospholipase A2 activity of 

ExoU with an IC50 of 7 µM (Table 1.3, entry 6) [83]. They found that pseudolipasin A 

did not prevent the type III secretion of ExoU or its transolocation into CHO cells but 

inhibited the phospholipase A2 activity of ExoU directly and specifically. A collection of 

structural analogs was used to demonstrate a conserved pharmacophore for phospholipase 

A2 inhibitory activity. 

Starting with an in silico screen, a number of N-hydroxybenzimidazole-based 

scaffolds was synthesized to block the binding of the Yersinia transcription factor LcrF to 

DNA (Table 1.3, entry 7) [84]. LcrF regulates the expression of the Yersinia T3SS. With 

more detailed SAR studies, a number of novel compounds potently inhibited the 

secretion of Yops. They also demonstrated that these compounds were capable of 

protecting macrophages from Y. pseudotuberculosis-induced cytotoxicity, decreasing the 

bacterial burden in a mouse infection model, and increasing survival from a lethal dose of 

bacteria [85].  

Swientnicki et al. has recently reported in silico studies to identify inhibitors to 

target the Yersinia pestis T3SS ATPase YscN (Table 1.3, entry 8) [86]. The authors 

validated YscN as a therapeutic target by deleting the catalytic domain of the yscN gene 
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in Y. pestis CO92 and showed a reduction of over three million-fold of bubonic plague in 

the Swiss-Webster mouse model. The validated but diverse inhibitors had IC50 values 

below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous 

BsaS protein from the Burkholderia mallei animal-like T3SS at similar potency. 

Moreover, these compounds inhibited YopE secretion and attenuated Y. pestis toxicity in 

mammalian cells. These data demonstrate the possibilities of targeting and inhibiting 

ATPases of T3SSs in other pathogens. 

 

1.4.4 Natural Products 

In addition to synthetic chemical libraries, natural product extracts have been 

surveyed for compounds with T3SS inhibitory activity. Bioassay-guided fractionation of 

the extracts from the marine sponge Caminus sphaeroconia led to the isolation of a series 

of lipidated pentasaccharides that possess potent anti-T3SS activity (Table 1.3, entry 9) 

[87,88]. Analysis of EPEC culture supernatants showed that caminoside A selectively 

diminished the level of a T3S-dependent effector protein EspB while not affecting the 

level of EspC, a type V-dependent effector. The potency of caminoside A is 

approximately 20 µM without affecting the growth of the pathogens [87], yet further 

development of the caminosides has not been reported. Alternatively, guadinomines 

isolated from Streptomyces sp. K-01-0509 were reported to inhibit EPEC T3S-dependent 

lysis of sheep blood erythrocytes with an IC50 value of 20 nM in a whole cell assay 

(Table 1.3, entry 10) [89,90]. Even though this class of natural products might be the 

most potent inhibitors to date, major synthetic efforts are needed to produce pure material 

for further studies [91]. 
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From a screen of monitoring T3SS-mediated hemolysis from enteropathogenic E. 

coli (EPEC), Abe and co-workers identified aurodox, a linear polyketide from 

Streptomyces, as a specific T3SS inhibitor [92]. Aurodox potently inhibited T3SS-

mediated hemolysis with an IC50 value of 1.5 µg/ml without affecting bacterial growth 

(Table 1.3, entry 11). By Coomassie blue staining and Western analysis of the 

supernatant fraction, aurodox specifically diminished the levels of effector proteins such 

as EspB, EspF, and Map without affecting the expression of the housekeeping protein 

GroEL. Moreover, aurodox allowed mice to survive a lethal dose of Citrobactor 

rodentium, a model bacterium for human pathogens such as EPEC. Beyond the 

antibacterial drug development, the discovery of aurodox highlights the possibility that 

microbes may produce small molecules that can antagonize T3SSs in chemical ecology. 

Without the use of a HTS, Li et al. discovered that cytosporone B (Table 1.3, 

entry 12) and its analogs can effectively prevent the secretion of SPI-1 effectors without 

affecting growth or the levels of the flagellar proteins in Salmonella typhimurium [93]. 

Cytosporone B is a reported agonist for the nuclear orphan receptor Nur77 [94]. This 

group scanned their library for compounds that could inhibit SPI-1 secretion by SDS-

PAGE analysis. Treatment of bacteria with cytosporone B also prevented the SPI-1-

dependent invasion of HeLa cells. Its potency was in the low micromolar range, 

comparable to most other reported T3S inhibitors. By RT-PCR analysis, they found that 

it acted upstream of HilD and HilA, up-regulating the nucleoid proteins Hha/H-NS that 

inhibit their expression. By up-regulating inhibitors of the SPI-1 regulators, cytosporone 

B down-regulated the expression of SPI-1 genes to inhibit type III secretion in 

Salmonella. 
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Table 1.3 Summary of other T3SS inhibitors and their reported inhibitory activities. 

Specific bacterial effectors antagonized by the inhibitors are noted in parentheses.  

1 S. typhimurium (SipA, 
SopE) 
 
P. aeruginosa (ExoU) 

44 

2 P. aeruginosa: 
Inhibits exoT 
transcription 
 

P. aeruginosa 
 
Y. pestis (YopE-βla) 
 

12.5 µM 
for 
ExoS 
 
22 µM 
for 
YopE  

P. aeruginosa: Inhibits 
ExoU-dependent CHO 
cytotoxicity 
 
C. trachomatis: 
Inhibits growth in 
Hep-2 cells 

P. aeruginosa: 
No effect on 
type II-
mediated 
elastase 
secretion 

80 

3 

 
 
 
                                 
 
 
 

Y. pseudo-
tuberculosis: 
No effect on 
needle 
assembly 

Y. pseudo-tuberculosis: 
Prevents translocation of 
YopE-βla 
 
P. aeruginosa 

P. aeruginosa:  
Reduces Hep-2 cell-
rounding by 

Y. pseudo-
tuberculosis: 
Increases Yop 
leakage, and 
C20 reduces 
adherence of 
Hep-2 cells 

51 

4 EPEC: No 
effect on 
OmpA level 

Y. pestis  
 
Y. pestis: Prevents 
translocation of YopE-βla 
 
EPEC (Tir) 

10 - 15 
µM for 
Yops 
 

Y. pestis: Reduces 
HeLa cell toxicity 

81 

5 S. typhimurium (SipB) 
 
 
 
P. aeruginosa (ExoU) 

20 - 80 
µM for 
SipB 
 
>100 
µM for 
ExoU  

82 

6 P. aeruginosa: No effect on 
T3S  secretion 
 

P. aeruginosa: 
Protects CHO cells 
and Dictyostelium 
discoideum, from 
ExoU cytotoxicity  
  
Inhibits ExoU-
mediated killing of 
Saccharomyces 
cerevisiae 
 

83 

7 Y. pseudo-tuberculosis 
 

Y. pseudo-
tuberculosis: Reduces 
macrophage 
cytotoxicity and 
increases mouse 
survival 

85 
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Table 1.3 continued. 

8 Y. pestis (YopE) 20 µM  Y. pestis: Reduces 
mammalian cell 
cytotoxicity 
 

Inhibits 
ATPase 
activity of 
BsaS protein 
from 
Burkholderia 
mallei 
 

86 

9 EPEC: No effect 
on type-V 
effector EspC  

EPEC (EspB) 20 µM  87, 
88 

10 EPEC 
 

20 nM in 
hemolysis 
assay 

EPEC: Prevents 
hemolysis of 
erythrocytes  
 

89, 
91 

11 EPEC: No effect 
on  expression of 
GroEL  
 

EPEC (EspA, EspB, 
EspD) 
 

1.5 µg/ml in 
hemolysis 
assay 

EPEC: Prevents 
hemolysis of 
erythrocytes  
 
Citrobactor 
rodentium Protects 
mice from 
infection  
  
 

92 

12 S. typhimurium: 
down-regulates 
HilD, HilA, and 
effectors 

S. typhimurium S. typhimurium: 
Prevents invasion 
of HeLa cells 

93 
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1.5 Additional assays for monitoring T3SSs 

To facilitate the analysis of T3SSs and small molecule inhibitor discovery, new 

assays have been developed to more efficiently and precisely visualize protein secretion 

and translocation. Our laboratory recently described a carboxypeptidase G2 (CPG2)-

based reporter system for fluorescence and visible detection of type III protein secretion 

from Salmonella (Fig. 1.5B) [50]. The orthogonal specificity of CPG2 presents an 

attractive enzyme-reporter system to monitor bacterial protein secretion. CPG2 is a 43 

kDa metalloprotease found in rare Pseudomonas syringae strains that selectively cleaves 

glutamate (Glu) from small molecule metabolites [95]. Importantly, the glutamyl-

carboxypeptidase activity of CPG2 is not present in most species of bacteria or higher 

eukaryotes. The ability of CPG2 to hydrolyze urea analogues of Glu provides a unique 

enzymatic activity to uncage fluorogenic dyes. Based upon the tunable, photostable, and 

fluorescent properties of 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (CyFur) 

fluorophores [96-98], a Glu-modified derivative of CyFur (Glu-CyFur) was synthesized 

as a potential fluorogenic substrate for CPG2. The time-dependent uncaging of Glu-

CyFur with CPG2 can be readily observed by the naked eye with or without UV-

excitation. In S. typhimurium, SopE2-CPG2-HA was cloned into the pWSK29 plasmid 

driven by the SopE2 promoter. S. typhimurium deficient in a structural component of the 

SPI-1 T3SS needle complex (∆invΑ) did not secrete SopE2-CPG2-HA and, 

consequently, did not exhibit CPG2 activity in the growth media, confirming that this 

assay measures secretion through the T3SS.  

The SopE2-CPG2-HA:CyFur reporter system can differentially measure the 

activity of T3SS inhibitors. An INP-0007 analog lacking the dibromophenol motif 
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showed no inhibitory activity as compared to INP-0007, which suggests that the 

dibromophenol motif of INP-0007 is crucial for potent inhibition of T3SSs. Moreover, 

INP-0007 is ~4 times more potent in blocking SopE2-CPG2-HA secretion than 2-imino-

5-arylidene-thiazolidinone with IC50 values of 5.5 and 22.6 µM, respectively. These 

experiments highlight the utility and sensitivity of the CPG2:Glu-CyFur reporter system 

in measuring differential inhibitory activity of small molecules targeted at T3SSs. The 

CPG2:Glu-CyFur reporter system provides a robust and sensitive method for monitoring 

protein expression and secretion. This system is complementary and orthogonal to other 

enzyme reporter systems such as luciferase and β-lactamase, making it potentially useful 

for dual-imaging applications in the future. 

Green fluorescent protein (GFP)-based systems have been employed to monitor 

type III protein secretion. While direct translational fusions of GFP to bacterial effectors 

have not been successful, GFP-labeled effector chaperones can be used as probes to 

visualize translocation of bacterial effectors into the host cells (Fig. 1.5D). This approach 

allows the imaging of effector accumulation in the cytosol of the host cells by detecting 

clustering or accumulation of the fluorescently labeled chaperones. Schlumberger et al. 

used this strategy to monitor the injection of the Salmonella effector SipA into the host 

cytosol and concurrent depletion from the bacterial cytosol in real time [52]. 

Alternatively, Palmer and co-workers recently reported a split GFP system to image T3S. 

They fused the small 13-amino-acid 11th strand of the GFP β-barrel to Salmonella 

effectors and expressed the complementary fragment of the split GFP in trans in the host 

cells (Fig. 1.5E) [53]. Upon T3SS effector translocation, the association of the two split 

GFP fragments leads to fluorescent tagging of the effector population in the host cells. 
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The authors used this method to directly label and visualize the dynamics of the T3SS-

dependent SPI-2 effectors PipB2, SteA, and SteC during bacterial replication in host 

cells. Rather than GFP-based systems, smaller protein tags such as tetracysteine 

sequences can also be used with fluorescein-based biarsenical dye FlAsH to image 

bacterial effector translocation into mammalian cells (Fig. 1.5F) [54-56]. It would be 

interesting to employ these assays to evaluate the precise effects of the reported T3SS 

inhibitors on bacterial effector translocation into mammalian cells. 

 

1.6 Identifying the target of the SAHs in Salmonella typhimurium 

Though there has been much focus recently on T3SSs as potential therapeutic 

targets, clear mechanisms of action for inhibitors of T3S are still lacking. The SAHs were 

the first class of T3SS inhibitors reported and are one of the most potent to have broad-

spectrum inhibitory activity (Table 1.1). There are several reports on the activity of 

SAHs in various pathogens and reports on in vivo activity, but though target identification 

is an important step for drug development, no clear mechanism of action exists. The 

potential for the SAHs makes them an attractive class to study, so we set out to identify 

their molecular targets and determine their mechanism of action in Salmonella 

typhimurium. 

Salmonella is a Gram-negative pathogen that affects millions of people each year 

[71,99-102] and causes gastroenteritis in a variety of hosts and typhoid fever in humans 

[99]. Hosts become infected after ingesting contaminated food or water. Pathogenic 

strains of Salmonella are able to establish infection by evading host defenses in the gut 

and invading intestinal epithelial cells [99]. Once the bacteria have successfully invaded 
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the host, they migrate to macrophages and reside in a special compartment called the 

Salmonella containing vacuole (SCV). While in the SCV, the bacteria are able to avoid 

degradative enzymes and gather nutrients to replicate and disseminate to other tissues 

[99]. There are two Salmonella pathogenicity islands (SPI-1 and SPI-2) that encode for 

virulence factors required for bacterial invasion and subsequent replication, respectively 

[99]. Both loci encode proteins for type III secretion systems (T3SSs), which are essential 

components of bacterial infections in vivo [30]. Upon contact with host cells, Salmonella 

injects effector proteins through the T3SS into the host cytosol, where these bacterial 

effector proteins alter host cell signaling to establish and propagate infection. 

 

1.7 Strategies for target identification of small molecules 

 Given the potential utility of inhibiting T3SSs, our aim was to identify the targets 

and determine the mechanism of action of the SAHs, one of the most potent classes of 

inhibitors of T3S with broad-spectrum reactivity. The gold standard for target 

identification of antibacterials is selecting for mutants that are resistant to small molecule 

treatment and using sequencing techniques to discover what confers resistance [103,104]. 

Since anti-virulence compounds do not affect bacterial viability, there is no easy way to 

select for resistant mutants because resistance does not confer any competitive advantage. 

So although genetic strategies are very powerful for target identification, sequencing 

resistant mutants does not apply in this case due to the inability to select for them. 

Another commonly used approach for target ID of small molecules is affinity 

chromatography [105,106]. Small molecules are attached to an affinity matrix and 

immobilized. The matrix is then exposed to cell lysate so that the protein targets can bind 
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the small molecule. Proteins that do not bind will be washed away, and the protein-

binding partners can be eluted by competition with active compound or a physical 

perturbation such as heating. The eluted proteins can be identified by MS-based methods, 

including quantitatively [107-109], to generate a list of potential targets. The targets must 

be validated as binding-partners and confirmed to play a role in the phenotype observed. 

For example, Ito and co-workers used an affinity chromatography strategy to identify the 

target(s) of the drug thalidomide [105]. Thalidomide is a drug used to treat leprosy and 

multiple myeloma, but it is also the causative agent of birth defects. They chemically 

modified it and conjugated it to beads to pull down its targets from HeLa cell extracts. 

After washing, they eluted the bound proteins by adding free thalidomide and separated 

them by SDS-PAGE. Two proteins were identified by mass spec, and when 

recombinantly expressed, only one of them bound to the beads: CRBN, which exhibits 

ubiquitin ligase activity. Using a zebrafish model, they demonstrated that adding zCRBN 

mRNA could rescue the developmental defects observed with thalidomide treatment. 

A major drawback to the affinity chromatography method is that attaching a small 

molecule to a bulky affinity matrix can be synthetically challenging and potentially 

render the molecule inactive. There can also be high background from non-specific 

interactions with the matrix. Apart from losing activity due to the small molecule 

modification, potentially the biggest drawback is that the molecule binds proteins in an 

unnatural environment. Proteins can lose their activity or specific interactions after lysis, 

and solubility is a concern, especially for membrane proteins. 

Because T3S is a dynamic process occurring inside cells, we would like to use 

live cells in their natural environment for our targeting approach as opposed to cell lysate. 
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The T3SS is a large protein complex that spans the bacterial membranes [30], so 

maintaining its integrity when looking at inhibitors of the process it performs could be 

essential for discovering the inhibitors’ target(s). Given that we can not use the classic 

genetic approach, chemical methods are more suitable, but there are major disadvantages 

to the standard affinity chromatography. The criteria for our strategy are as follows: 

• We use a small chemical modification that allows the molecule to retain its activity. 

• We use live cells because we are looking at inhibitors of a dynamic process. 

• We have the ability to pull down membrane proteins. 

Given these criteria, our focus is to create a cell-permeable molecule that retains its 

inhibitory activity in cells and allows for retrieval of proteins following cell lysis, 

including membrane proteins. 

A bioorthogonal labeling strategy is ideally suited for this type of problem (Fig. 

1.6). A bioorthogonal reaction is one that can occur exclusively between two groups 

within a cellular environment. The two groups must be selective for each other and inert 

to all other chemical reactions occurring in a cell. An example of a bioorthogonal 

reaction is the Huisgen [3+2] Cu(I)-catalyzed azide-alkyne cycloaddition (CuACC), 

which has been termed a “click chemistry” reaction [110]. The general strategy is that a 

small molecule can be modified with an azide or an alkyne, which is a relatively small 

modification, and incubated with cells. During the incubation, the small molecule reacts 

with its targets or is incorporated onto its substrates as it would normally. After cell lysis, 

a tag containing the corresponding reactive group can be selectively reacted with the 

small molecule probe to detect its reactivity with proteins (Fig. 1.6A). The detection tag 

can be a fluorophore for visualization or a biotin tag for selective retrieval and proteomic 
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identification (Fig. 1.6B) [111,112]. This approach has been extensively used by our 

laboratory and others, and there are several examples in the literature of azide- and 

alkyne-functionalized chemical probes that allow for labeling of proteins in their native 

cellular environments [113-118]. Major advantages of this technique are its orthogonality 

to biological systems, relatively small chemical handle, efficiency, and ability to be used 

in live cells [118]. These characteristics make it a valuable technique that is central to our 

target identification strategy. 
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Figure 1.6 Bioorthogonal labeling strategy. A) An alkyne chemical probe can be 

incubated with cells and incorporated onto proteins. After lysis, the probe can be reacted 

with an azide via the copper(I)-catalyzed azide-alkyne [3+2] cycloaddition with a 

fluorescent tag for imaging and in-gel fluorescence or a biotin tag for retrieval and 

subsequent proteomic identification. B) Structures of the azido-Rhodamine dye (az-Rho) 

for imaging and the cleavable azido-biotin affinity tag for retrieval. 
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New strategies for antibacterial development are necessary to combat the 

emerging resistance among bacterial pathogens. Targeting bacterial virulence to treat 

infection provides an opportunity to circumvent resistance mechanisms while leaving the 

beneficial microbiota intact. There are several classes of small molecule inhibitors that 

target various steps necessary for many bacterial pathogens to establish infection. The 

SAHs are an interesting class of compounds that show significant promise as inhibitors of 

T3SSs and bacterial virulence, but no clear mechanism of action hampers their 

development. A bioorthogonal labeling strategy is a fitting approach for answering an 

important question in the development of new antibacterials and validating an anti-

virulence approach.  
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CHAPTER 2 – Efforts Towards Target Identification of the Salicylidene 

Acylhydrazides 

 

Abstract 

The salicylidene acylhydrazides are a class of anti-virulence compounds that 

block secretion of bacterial effector proteins through the T3SS and attenuate infection in 

various species of Gram-negative bacteria; however, the molecular target(s) of these 

compounds remains unknown, and the potency of these compounds is not optimal. To 

discover the molecular targets of SAHs and their mechanism of action, I synthesized 

alkynyl analogs and employed bioorthogonal labeling techniques for proteomic analysis 

of their protein-binding partners. Through SAR analysis of alkynyl analogs, I discovered 

important features for inhibitory activity of the SAHs and observed that they covalently 

modify many proteins; however, the functional protein targets responsible for SAH 

activity remain to be determined. 
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Introduction 

 
Type III secretion is an essential process for many bacterial pathogens to establish 

infection [30]. It involves secreting effector proteins from the bacterial cytosol through a 

molecular syringe called the type III secretion system (T3SS) into the host cell, 

whereupon these effectors alter host cell signaling to establish and propagate infection 

[30,99]. Due to the increasing rate of emerging antibiotic resistant bacteria, targeting type 

III secretion has recently become an alternative “anti-virulence” approach for combating 

infection [1,2]. 

  A large-scale screen for inhibitors of type III secretion in Yersinia discovered a 

class of compounds called the salicylidene acylhydrazides (SAHs) that were then found 

to block type III secretion in various pathogens [48] (Table 1.1); however, the precise 

target and mechanism of action of these compounds remains unknown. There are reports 

characterizing their activity in Chlamydia [65-69], E. coli [62,63], Salmonella [50,70-72], 

Shigella [73], and Yersinia [61], with studies suggesting the mechanism is through 

transcriptional effects [62,66,68,72], iron restriction [68,72], or disrupting the needle 

complex assembly [73]. Negative controls are lacking in some of these studies and 

species to species variation renders the mechanism unclear. To find the direct target of 

the SAHs, one study linked a compound to a solid support to pull down the non-covalent 

protein-binding partners in E. coli [63]. No single target could explain the observed 

phenotype for this class of compounds, and the authors concluded that the mechanism 

was likely a polypharmacological effect disrupting the normal metabolism of the bacteria, 

thus affecting their virulence. Since there is no clear consensus as to the mechanism of 
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action for the SAH’s, we have taken a bioorthogonal approach to identify their protein 

targets and elucidate their mechanism of action. 

 

Results 

2.1 Synthesis and biological activity of photocrosslinking alkynyl SAH 

The initial parent compound (INP-0007) discovered from the screen in Yersinia 

[48] contains a dibromophenol motif on one end of the molecule, which is important for 

its inhibitory activity. Based on preliminary SAR analysis, the other end of the molecule, 

however, appeared to be more tolerant to modification. We envisioned creating a 

trifunctional probe that could be used to identify the protein targets of these compounds 

[119]. By modifying the more tolerant side of the molecule with a photocrosslinker and 

an alkyne, we could covalently bind the small molecule to its protein targets with UV 

irradiation [120] and use the alkyne as a chemical handle to pull out the protein-binding 

partners (Fig. 2.1). The alkyne can be selectively reacted with an azide via the copper(I)-

catalyzed azide-alkyne cycloaddition (CuAAC), or “click chemistry”, for visualization of 

protein-binding partners using an azido-fluorophore or selective retrieval with an azido-

biotin tag for proteomic identification [111,112] (Fig. 1.6). 
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Figure 2.1 Structure of a type III secretion inhibitor and a bioorthogonal 

photocrosslinking analog. INP-0007 (2.1) can be modified to yield PC-alk-INP (2.2), an 

analog containing a photocrosslinker and a chemical handle for target identification 

studies. 
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Figure 2.2 Synthesis of T3SS inhibitor INP-0007 (A) and photocrosslinking alkynyl INP 

probe PC-alk-INP (B).  
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INP-0007 was synthesized in two facile steps as previously reported [121], and 

PC-alk-INP (2.2) was synthesized by coupling the dibromophenol fragment with the 

alkynyl photocrosslinking component as depicted in Figure 2.2. The alkynyl 

photocrosslinking carboxylic acid (2.14) was synthesized according to published 

procedure [122], and the dibromophenol fragment (2.15) was synthesized by reacting 

hydrazine with 3,5-dibromosalicylaldehyde. 

I first evaluated the activity of INP-0007 using a type III secretion assay in 

Salmonella typhimurium. Bacteria were incubated in the presence of compound or control 

for 4 hours. At the end of the incubation, the bacteria are spun down, and the proteins 

secreted into the culture supernatant are precipitated, separated by SDS-PAGE, and 

stained with Coomassie blue [71]. The majority of the secreted proteins are SPI-1 

effectors, whose identities were confirmed by proteomic analysis of the Coomassie-

stained gels from wild type and a SPI-1 T3SS-deficient strain (∆invA) of S. typhimurium 

(Fig. 2.3 and Table 2.1).  
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WT 
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37 
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SipA (71%) 
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FlgL (79%) 

ΔinvA 

CB  

Figure 2.3 Proteomic analysis of secreted SPI-1 effectors. Secreted proteins were 

separated by SDS-PAGE and stained with Coomassie blue (CB). Bands were excised 

from the gel, trypsinized, and analyzed by LC-MS/MS. Percent coverage is shown in 

parentheses. 

 

Table 2.1 Proteomic identification of secreted Salmonella proteins. A minimum of 2 

unique tryptic peptides were used to assign protein bands. Accession numbers are from 

the UniProtKB database. 

WT Protein Name Gene Name Accession Number 
Molecular Weight 

(kDa) % Coverage 
Peptide Spectral 

Counts 
Cell invasion protein sipA sipA Q56027 74 71 716 
Cell invasion protein sipB sipB Q56019 62 65 382 

Inositol phosphate phosphatase sopB sopB O30916 62 73 217 
Flagellar hook-associated protein 1 flgK P0A1J5 59 71 214 

Secreted effector protein sptP sptP P74873 60 54 55 
Phase 2 flagellin fljB P52616 53 56 23 

Flagellin fliC P06179 52 75 322 
Flagellar hook-associated protein 2 fliD P16328 50 80 366 

Cell invasion protein sipC sipC Q56020 43 90 605 
Cell invasion protein sipD sipD Q56026 37 75 118 

Surface presentation of antigens protein spaN spaN P40613 36 63 110 
Flagellar hook-associated protein 3 flgL P16326 34 79 136 

ΔinvA Phase 2 flagellin fljB P52616 53 65 95 
Flagellin fliC P06179 52 73 404  
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After confirming the activity of INP-0007 in this secretion assay, PC-alk-INP 

(2.2) was tested. Unfortunately, PC-alk-INP was inactive likely due to the structural 

modifications introduced (Fig. 2.4A). When the bacteria treated with PC-alk-INP were 

lysed and reacted with azido-Rhodamine to evaluate the labeling profile, I observed an 

unexpected result; even without UV irradiation of the photocrosslinker, this compound 

covalently reacted with many proteins, suggesting something inherent in the structure of 

PC-alk-INP was capable of forming covalent bonds without photo-activation (Fig. 2.4B). 
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Figure 2.4 Secretion profile and protein labeling of T3SS inhibitor and PC-alk-INP 

probe. A) INP-0007 (1) and PC-alk-INP (PC) were incubated with Salmonella for 4 

hours at a concentration of 50 µM before the secreted proteins were precipitated, 

separated by SDS-PAGE, and stained with Coomassie blue (CB). B) The bacterial pellet 

was lysed, reacted with az-Rho, separated by SDS-PAGE, and analyzed by in-gel 

fluorescence imaging. 
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2.2 Synthesis and biological activity of alkynyl SAHs 

Although the alkynyl photocrosslinking moiety rendered PC-alk-INP inactive, it 

appeared that a photocrosslinker was unnecessary to label proteins covalently. This led 

me to synthesize simpler alkynyl derivatives that did not contain the photocrosslinking 

group. With just a small structural modification, perhaps the compound could still be 

active and covalently bind its targets with a chemical handle intact. The larger alkynyl 

photocrosslinking fragment could be replaced with one containing just a small alkynyl 

group. As a negative control, the dibromophenol motif could be removed, and the 

corresponding alkynyl negative control could be synthesized to rule out nonspecific 

binding (Fig. 2.5).  
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Figure 2.5 Structures of T3SS inhibitor INP-0007, a negative control (SAH-1), and their 

corresponding alkynyl analogs for protein labeling studies. 
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Initially, I synthesized three analogs of INP-0007 (Fig. 2.6): one without the 

dibromophenol motif (2.16), which was shown to be the ‘business end’ of the molecule, 

and an alkynyl analog for these two molecules (2.17 and 2.18). By precipitating the 

proteins secreted into the supernatant of cultures incubated with compound, I confirmed 

that the dibromophenol motif was essential for inhibiting type III secretion in S. 

typhimurium and that appending an alkyne did not significantly affect activity (Fig. 2.7); 

however, upon lysing the bacteria and performing the CuACC with azido-Rhodamine and 

separating the proteins by SDS-PAGE, in-gel fluorescence analysis showed that the 

active alkynyl analog 2.17 covalently modifies a large number of proteins while the 

inactive analog 2.18 does not (Fig. 2.7D).  
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Figure 2.6 Synthesis of alkynyl salicylidene acylhydrazide analogs. 
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Figure 2.7 Activity of SAHs in S. typhimurium. A) Scheme of alkynyl SAH 2.17 

blocking type III secretion in Salmonella typhimurium. B) Structures of INP-0007 (2.1), a 

negative control (2.16), and its corresponding alkynyl analog (2.18). SDS-PAGE gel of 

precipitated proteins secreted into the supernatant from cultures incubated with 

compound (C), and the corresponding labeled proteins analyzed by in-gel fluorescence 

after lysis (D). CB, Coomassie blue; az-Rho, azido-Rhodamine. 
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2.3 SAR analysis of alkynyl SAHs for inhibitory activity and covalent labeling 

To determine the relevance of the covalent modification by the SAHs, I 

synthesized a panel of alkynyl analogs (2.23-2.28, Fig. 2.8) to systematically address the 

SAR of these compounds and correlate the covalent modification of proteins with 

inhibition of secretion. The analogs were synthesized in the same manner as alk-INP, 

using a different aldehyde in the final coupling step (Fig. 2.6). The panel of analogs 

displayed a range of both inhibitory activity (Fig. 2.9) and covalent modification of 

proteins (Fig. 2.10), but no correlation between the two was observed (Fig. 2.11). It is 

interesting to note that having just a single bromine atom on the phenolic ring at either 

the 3’ or 4’ position retains activity, while having no bromine at all decreases potency to 

some extent, but one at the 5’ position completely abolishes activity. The phenol and the 

hydrazone are both crucial to activity since capping the phenol with a methyl group or 

reducing the hydrazone results in a loss of activity; however, the effects on inhibitory 

activity do not correlate with the extent of covalent modification.  
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Figure 2.9 Effect of T3SS inhibitors and probes on SPI-1 effector secretion. Secreted 

proteins in the culture supernatant of bacteria incubated with compound were precipitated 

and separated by SDS-PAGE before staining with Coomassie blue (CB). 
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Figure 2.10 In-gel fluorescence analysis of proteins labeled by alkynyl SAHs. 

Bacteria were incubated with small molecule for 4 hours before the lysate was reacted 

with azido-Rhodamine (az-Rho) and separated by SDS-PAGE. CB, Coomassie blue. 
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Figure 2.11 Plot comparing relative total lysate labeling fluorescence intensity vs T3SS 

inhibitory activity for alkynyl SAH analogs.  

 

The formation of a covalent adduct with a protein proceeds by at least two steps 

and can be modeled using Michaelis-Menten kinetics. The general reaction scheme is 

shown in Fig. 2.12, where the first step is a reversible noncovalent binding step that 

forms an intermediate complex that allows for the subsequent covalent modification. The 

initial rate of product formation V0, can be described as 

 
                                              (Eq. 2.1) 

 
 

This is analogous to the Michaelis-Menten equation where using a steady-state 

assumption, Vmax is the maximum rate of EI formation, [I] is the inhibitor concentration, 

and Km equals (k2+k-1)/k1. Km is the concentration of inhibitor when V0 is one half Vmax 
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and can be described as a lumped rate constant that relates product formation (k2) and 

dissociation (k-1) of the intermediate EI* to its formation (k1). 

 

 
E + I EI* EI 

k1 

k-1 

k2 

 
 

Figure 2.12 Reaction scheme for small molecule binding to proteins. An enzyme or 

protein, E, and an inhibitor, I, form an intermediate, EI*, that can then go on to form the 

covalent adduct, EI. 

 

 Given that we do not observe a significant difference in the profile of proteins 

labeled by the alkynyl SAHs but only in the extent of modification (Fig. 2.10), there are a 

few parameters that could explain these differences [123]. The relationship between the 

rate constants k1, k-1, and k2 controls the level of covalent labeling observed for the small 

molecule inhibitors. Only when the noncovalent complex EI* forms for a sufficient 

amount of time can the chemical covalent modification occur. The noncovalent affinity 

of an inhibitor for its target proteins is controlled by k1 and k-1, and it must be high 

enough to allow for the k2-dependent covalent modification step to occur. Compounds 

with high fluorescence labeling must have some combination of a high affinity for the 

target proteins with a k2 large enough to permit covalent labeling during the residence 

time of the noncovalent complex. Compounds with low labeling may have minimal 

affinity for the target proteins, are less reactive, or a combination of the two. It is the 

interplay between affinity and reactivity that dictates the extent of covalent modification. 

It is also possible that the formation of the covalent adduct EI is reversible, and this 

would also play a role in the observed labeling intensity. 
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2.4 Effect of SAHs on Salmonella transcription 

Since the SAHs react with many proteins, and there were previous reports of the 

SAHs affecting transcription [62,66,68] in Salmonella [72], we performed transcriptional 

profiling of virulence-related genes in cultures incubated with active (INP-0007 (2.1), 

alk-INP (2.17), and alk-3’Br (2.26)) or inactive compounds (alk-SAH (2.18) and alk-5’Br 

(2.24)). Genes involved in redox chemistry, iron homeostasis, SPI-1, and SPI-2 were 

analyzed, but no correlation between activity and transcriptional responses was observed 

(Fig. 2.13A). Using an effector-enzyme fusion protein assay developed in our laboratory 

[50], an enzymatic readout can be used to determine the amount of fusion protein present. 

While the parent compound 2.1 inhibits secretion of this fusion protein into the 

supernatant, it does not affect its levels in the lysate (Fig. 2.13B). These results 

demonstrate that transcriptional effects on virulence on a more global level and on a 

single effector level are not correlated with inhibition of secretion. 
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Figure 2.13 Effects of SAHs on expression of Salmonella virulence-related genes. A) 

RT-PCR analysis from cultures incubated with active or inactive compounds (performed 

by Angelica Ferguson). B) Percent CPG activity from SopE2-CPG2-HA effector-fusion 

protein secretion and expression after incubation with INP-0007 as compared to DMSO-

treated control.  

 

2.5 Proteomic identification of SAH protein-binding partners 

Since the SAHs contain an inherent covalent reactivity, we wanted to identify the 

protein target(s) that are responsible for the observed phenotype. Although there was no 
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correlation between overall levels of protein labeling and inhibitory activity, it is 

possible, however, that it is not the overall extent of covalent modification that is 

important for inhibitory activity, but instead modification of specific proteins. In order to 

identify which proteins the small molecules modify, I performed a labeling and 

enrichment assay followed by mass spectrometry for proteomic identification of the 

alkynyl SAH targets (Fig. 1.6). Bacteria were incubated with compound before click 

chemistry was performed on the lysate with an azido-azo-biotin tag [111,112]. 

Streptavidin resin was used to capture the biotinylated proteins, and the azobenzene 

linker was cleaved using sodium dithionite to elute only the tagged proteins, leaving 

behind any nonspecifically bound proteins. The eluted proteins were separated by SDS-

PAGE before trypsinization and analysis by liquid chromatography coupled with tandem 

mass spectrometry. 

We chose to identify alk-3’Br’s (2.26) protein targets because it showed the 

highest inhibitory activity compared to its covalent reactivity, thus potentially simplifying 

the results. In addition to a DMSO control, two inactive analogs that were at the extremes 

of covalent labeling, alk-SAH and alk-5’Br (compounds 2.18 and 2.24), were also chosen 

to rule out irrelevant hits (Fig. 2.11). The identification of the high-confidence hits (10x 

DMSO sample and at least 10 spectral counts) for each sample is displayed in Table 2.2. 

The majority of the protein hits were metabolic proteins that had no obvious link to the 

observed phenotype. There were also no major differences in the protein-binding partners 

for the active (alk-3’Br, 2.26) and inactive (alk-5’Br, 2.24) compounds, suggesting the 

most abundant subset of covalently modified proteins is not responsible for inhibitory 

activity. 
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Table 2.2 High-confidence proteins pulled down by small molecule probes. Proteins 

were identified with at least two unique peptide spectra, 10 spectral counts, and 10 times 

the background.  

Number of assigned spectra!
Identified Proteins Accession # MW DMSO alk-5'Br alk-3'Br alk-SAH alk-5'Br alk-3'Br alk-SAH

30S ribosomal protein S2 P66541|RS2_SALTY 27 kDa 6 36 60 45 X

Cell invasion protein sipA Q56027|SIPA_SALTY 74 kDa 0 16 27 23 X X X

3-oxoacyl-[acyl-carrier-protein] synthase I Q7CQ97|Q7CQ97_SALTY 38 kDa 0 20 21 15 X X X

Glutathionine S-transferase Q8ZPM7|Q8ZPM7_SALTY 22 kDa 2 14 24 10 X

Transcription elongation factor greA P64281|GREA_SALTY 18 kDa 0 10 15 11 X X X

Protein csiD Q9FA43|CSID_SALTY 37 kDa 0 14 18 8 X X

Dihydrodipicolinate synthase Q8ZN71|DAPA_SALTY 31 kDa 0 15 13 9 X X

2-dehydro-3-deoxyphosphooctonate aldolase P65215|KDSA_SALTY 31 kDa 0 14 17 6 X X

Glyoxylate/hydroxypyruvate reductase A Q8ZQ30|GHRA_SALTY 35 kDa 0 13 8 10 X X

Glutamate/aspartate transporter Q7CQY9|Q7CQY9_SALTY 27 kDa 0 10 9 8 X

Response regulator Q7CP63|Q7CP63_SALTY 27 kDa 0 8 11 11 X X

2,3-bisphosphoglycerate-dependent phosphoglyce Q8ZQS2|GPMA_SALTY 28 kDa 0 10 11 7 X X

Probable thiol peroxidase Q8ZP65|TPX_SALTY 18 kDa 0 8 8 11 X

Inositol phosphate phosphatase sopB O30916|SOPB_SALTY 62 kDa 0 6 15 6 X

Putative oxoacyl-(Acyl carrier protein) reduct Q7CQG2|Q7CQG2_SALTY 28 kDa 0 7 9 13 X

Ribose-phosphate pyrophosphokinase P0A1V6|KPRS_SALTY 34 kDa 0 11 12 5 X X

D-ribulose-5-phosphate 3-epimerase Q8ZLK4|Q8ZLK4_SALTY 24 kDa 0 13 15 0 X X

Putative alcohol dehydrogenase Q8ZM07|Q8ZM07_SALTY 42 kDa 0 8 12 0 X

S-ribosylhomocysteine lyase Q9L4T0|LUXS_SALTY 19 kDa 0 7 10 8 X

Cell division inhibitor Q8ZP10|Q8ZP10_SALTY 30 kDa 0 4 11 10 X X

Putative intracellular proteinase Q7CPQ5|Q7CPQ5_SALTY 19 kDa 0 6 10 11 X X

Phosphoserine aminotransferase P55900|SERC_SALTY 40 kDa 0 12 9 3 X

Flagellin P06179|FLIC_SALTY 52 kDa 0 5 10 6 X

Sigma cross-reacting protein 27A Q8ZLR6|Q8ZLR6_SALTY 23 kDa 0 10 12 0 X X

Putative oxidoreductase Q8ZKX9|Q8ZKX9_SALTY 21 kDa 0 10 8 4 X

L-threonine 3-dehydrogenase Q8ZL52|TDH_SALTY 37 kDa 0 8 11 0 X

30S ribosomal protein S5 P0A7W4|RS5_SALTY 18 kDa 0 4 10 6 X

Oxygen-insensitive NADPH nitroreductase Q9Z5Z2|NFSA_SALTY 27 kDa 0 7 11 6 X

Peptidyl-prolyl cis-trans isomerase Q8ZLL4|Q8ZLL4_SALTY 21 kDa 0 9 11 0 X

ATP synthase subunit delta Q7CPE5|ATPD_SALTY 19 kDa 0 7 10 5 X

ATP synthase subunit b Q7CPE4|ATPF_SALTY 17 kDa 0 4 10 4 X

Amidophosphoribosyltransferase Q8ZNC2|Q8ZNC2_SALTY 57 kDa 0 12 6 0 X

Putative periplasmic protein Q7CQV7|Q7CQV7_SALTY 33 kDa 0 12 9 0 X

UDP-glucose 4-epimerase P22715|GALE_SALTY 37 kDa 0 6 11 2 X

1,4-alpha-glucan-branching enzyme Q8ZLG5|GLGB_SALTY 84 kDa 0 7 11 0 X

Protein hfq P0A1R0|HFQ_SALTY 11 kDa 0 4 4 10 X

Universal stress protein E Q8ZP84|USPE_SALTY 36 kDa 0 3 10 0 X

Putative diadenosine tetraphosphate Q8ZM04|Q8ZM04_SALTY 17 kDa 0 6 10 0 X

Cell invasion protein sipD Q56026|SIPD_SALTY 37 kDa 0 0 9 3  

 

2.6 SAH inhibition of Salmonella invasion of HeLa cells 

While the functional targets of the SAHs remains to be determined, I tested 

whether the inhibitory activity of these compounds against protein secretion correlated 

with preventing Salmonella invasion of host cells. HeLa cells were infected for 30 

minutes at a multiplicity of infection (MOI) of 10 with Salmonella grown in the presence 

of compound or DMSO, and the extent of invasion was determined using flow cytometry. 
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The inhibition of effector secretion into the culture supernatant correlates well with 

preventing Salmonella from invading HeLa cells, and by systematically investigating the 

SAR of these compounds, I discovered an analog (alk-3’Br, compound 2.26) with greater 

potency in an infection setting than the parent compound (Fig. 2.14). 
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Fig 2.14 Effects of SAHs on Salmonella invasion of HeLa cells. Bacteria grown in the 

presence of 50 µM compound or DMSO were used to infect HeLa cells for 30 min at an 

MOI of 10. The percentage of infected HeLa cells was determined by staining with an 

anti-Salmonella antibody followed by analysis with flow cytometry. The statistical values 

from a two-sided Student’s t-test are as follows: *, P < 0.001; **, P< 0.0001. 

 

Discussion 

The salicylidene acylhydrazides are a well-studied class of anti-virulence 

compounds that inhibit type III secretion in several bacterial pathogens; however, their 

precise mechanism of action is unknown. By synthesizing a panel of SAH analogs 
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displaying a range of inhibitory activity (Fig. 2.9), I identified key chemical features 

important for activity. The analysis of these compounds in Salmonella suggests their 

effects on transcription are not linked to their inhibition of type III secretion (Fig. 2.13). 

The SAHs also covalently label Salmonella proteins, but the functional consequences of 

these findings on their mechanism of action are still unclear (Fig. 2.10 and Table 2.2). 

Nonetheless, my studies of the SAHs have stressed the importance of negative controls 

and revealed a more potent compound at preventing Salmonella invasion of HeLa cells 

(Fig. 2.14). 

 

 



 61 

CHAPTER 3 – The Repurposed Kinase Inhibitor H-89 Targets Bacterial Virulence 

Pathways to Limit Infection 

 

Abstract 

The emergence of antibiotic-resistant bacterial pathogens has motivated new 

approaches for antibacterial drug discovery that target virulence pathways or host 

enzymes important for infection [1,2]. The isoquinolinesulfonamide H-89 was discovered 

in a screen for host kinase inhibitors that blocked Salmonella replication in macrophages 

[124]. The authors claimed that H-89 prevented bacterial replication through inhibition of 

Akt, a host kinase activated during infection. H-89 did not affect the growth of the 

bacteria in culture, and inhibition of Akt did not fully explain H-89’s effects, so we 

hypothesized it could be acting as an anti-virulence compound. We discovered that H-89 

inhibits the expression of S. typhimurium genes associated with bacterial virulence 

including both SPI-1 and SPI-2 T3SSs. Since H-89 had a much larger effect on bacterial 

replication than a potent and specific Akt inhibitor, my results suggest the effect of H-89 

on bacterial virulence is the more relevant mechanism of action.  
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Introduction  

 While several groups have specifically screened for compounds that inhibit type 

III secretion system activity in liquid culture (Tables 1.1-1.3), screens for inhibitors in an 

infection setting may reveal new lead compounds. Although this requires a more complex 

screen, it bypasses several follow-up experiments that are necessary from evaluating 

strictly bacterial systems. Hits from this type of screen are already known to be effective 

in at least a cell culture system and not to be toxic to mammalian cells. In addition, since 

many bacterial proteins are known to interact with host proteins, screening compounds in 

an infection setting allows for discovering compounds that disrupt these important 

pathogenic protein-protein interactions that would otherwise not be present in a screen 

with only bacteria. Compounds that disrupt the host pathways hijacked by the bacteria 

could also be effective for treating infection.  

With more knowledge of host-pathogen interactions and the increasing need for 

new antibacterial compounds, specifically targeting host pathways required for 

pathogenesis is an alternative strategy. Chemical libraries previously developed for 

mammalian targets are beginning to be repurposed for anti-infectives [125-127]. Notably, 

Kuijl et al. conducted a whole-cell screen to identify host kinase inhibitors that could 

block replication of Salmonella typhiumurium in macrophages [124]. This study showed 

that the isoquinolinesulfonamide H-89 could effectively inhibit Salmonella replication 

during infection without affecting bacterial growth in culture. A parallel siRNA screen 

against host kinases on bacterial replication suggested the Akt1 network was crucial for 

intracellular growth of Salmonella and Mycobacteria [124]. From these observations, the 

antibacterial activity of H-89 was attributed to inhibition of Akt [124], a host kinase that 
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is activated during Salmonella infection. However, a more potent and specific Akt 

inhibitor failed to recapitulate the inhibition of bacterial replication in the same study 

[124], suggesting an alternative mechanism of action for H-89 on intracellular bacterial 

replication (Fig. 3.1).  
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Figure 3.1 Structures and activity of isoquinolinesulfonamides on Salmonella and 

Akt. A) Structures of inactive isoquinolinesulfonamide H-88 and active compound H-89. 

B) Authors claimed isoquinolinesulfonamides prevented bacterial replication through 

inhibition of host kinase Akt. Taken from [124]. 

 

Since H-89 did not affect the growth of Salmonella, and inhibition of Akt could 

not fully explain its effect on bacterial replication, we hypothesized that it could be 

inhibiting the virulence functions of the bacteria and represent a new scaffold for anti-
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virulence compounds. I therefore investigated its effects on bacterial virulence and type 

III secretion function. 

 

Results 

3.1 H-89 inhibits bacterial replication through Akt-independent mechanism 

To begin investigating the mechanism of action for H-89 on Salmonella 

replication in mammalian cells, I compared the activity of H-89 and a more potent Akt 

inhibitor on S. typhimurium replication in murine RAW264.7 macrophages. Following 

entry into host cells, Salmonella replicates in a Salmonella-containing vacuole (SCV) 

[99] and the extent of replication can be monitored by a standard gentamicin protection 

assay. Briefly, RAW264.7 macrophages were infected with S. typhimurium for one hour, 

at which point gentamicin was added to kill any remaining extracellular bacteria. H-89 or 

other compounds were then added to infected macrophages and colony forming units 

(CFUs) were determined 16 hours post-infection (pi) to determine the number of viable 

intracellular bacteria. H-89, but not H-88, an analog that differs by one bromine atom 

(Fig. 3.2A), significantly decreased the number of bacterial CFUs at 20 µM (Fig.3.2B), 

which is consistent with published data [124]. However, a more potent and specific Akt-

inhibitor (Akti1/2) [128] displayed minimal inhibitory activity against Salmonella 

replication compared to H-89 (Fig. 3.2B) even though the majority of active Akt in these 

infected macrophages was depleted, as judged by Akt phosphorylation at Ser473 (Fig. 

3.2C). Phosphorylation at this site is required for full activation of Akt and its 

downstream signaling events [128]. These results demonstrate that pharmacological 

inhibition of Akt is not sufficient for preventing bacterial replication. In addition, as 



 65 

reported by Kuijl et al., H-89 did not have any major effect on Salmonella growth in 

liquid culture (Fig. 3.2D) [124], demonstrating this compound does not kill the bacteria 

directly. These experiments suggest an alternative mechanism of action for H-89 on 

Salmonella replication in host cells that is independent of Akt inhibition. 
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Figure 3.2 H-89 inhibits bacterial replication through Akt-independent mechanism. 

A) Structures of isoquinolinesulfonamides H-88 and H-89 and Akt inhibitor Akti1/2. B) 

CFU numbers of intracellular Salmonella 16 hours pi. Compounds were added at 20 µM 

after 1 hour of infection at an MOI of 5. The statistical value from a two-sided Student’s 

t-test is as follows: **, P<0.001. C) Western blots of phospho-Akt (Ser473) and total Akt 

levels 8 hours pi in infected macrophages with 20 µM compound treatment. NI, not 

infected; WB, Western blot. D) Growth curves of Salmonella grown in the presence of 

compound. Bacteria were incubated with H-89 (20 µM) or DMSO and OD600 readings 

were taken every 30 minutes. 
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3.2 H-89 inhibits expression of Salmonella virulence genes required for bacterial 

infection 

Since genetic and biochemical studies have shown that T3SSs are essential for 

infection but do not affect bacterial viability in culture [30,99], we performed targeted 

transcriptional profiling of S. typhimurium virulence factors to identify the potential mode 

of action for H-89. For genes involved in redox chemistry or iron transport/acquisition, 

no significant effect was observed for either H-88 or H-89 (Fig. 3.3A). In contrast, H-89 

selectively decreased the expression of key S. typhimurium virulence factors required for 

bacterial replication in macrophages. SPI-2 effector genes: sifA, sseJ, and sseC were 

down-regulated along with SPI-1 T3SS components: regulator hilA, effector protein sipA, 

and needle complex components invA, invG, and prgI (Fig. 3.3A). To determine if the 

decreased levels of SPI-2 effector genes indeed affected protein levels, we evaluated the 

expression of an HA-tagged SPI-2 effector (SseJ-HA) under the control of its native 

promoter. Consistent with the transcriptional profiling data, SseJ-HA levels by Western 

blot analysis were decreased when incubated with H-89 compared to the inactive H-88 

control and DMSO (Fig. 3.3B). These results suggest that H-89 selectively down-

regulates several virulence genes involved in S. typhimurium T3SS-dependent invasion 

and replication. 
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Figure 3.3 Compound effects on gene expression. A) RT-PCR analysis of bacterial 

cultures treated with 20 µM of compound (performed by Angelica Ferguson). B) Western 

blot of SseJ-HA in the lysate of compound-treated cultures. WB, Western blot; CB, 

Coomassie blue.  

 

3.3 H-89 decreases the levels of bacterial effectors secreted during S. typhimurium 

replication in host cells  

Given the inhibition of bacterial replication and down-regulation of SPI-2 

virulence genes in vitro, I investigated the effect of H-89 on intracellular levels of SseJ, a 

SPI-2 effector that is secreted during Salmonella replication in macrophages. SseJ is a 

key SPI-2 effector that exhibits phospholipase A and acyltransferase activity and opposes 

the function of SifA, another SPI-2 effector responsible for establishing and maintaining 
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the SCV in host cells [129,130]. To monitor the amount of SseJ secreted into the host 

cytosol during infection, I used an S. typhimurium strain expressing SseJ-HA. By 

immunofluorescence confocal microscopy, SseJ-HA was not observable in the host 

cytosol until about 4-5 hours pi and became robustly seen 7 hours pi. I therefore 

administered the compounds at 5 hours pi, and after a 2-hour incubation with compounds, 

S. typhimurium-infected macrophages were permeabilized, fixed, and stained to examine 

the amount of intracellular S. typhimurium and SseJ-HA. The H-89-treated samples 

showed a marked reduction in the amount of SseJ-HA staining, while no apparent effect 

on SseJ-HA expression or distribution was observed with 20 µM of the H-88 control 

(Fig. 3.4). These results demonstrate that H-89 inhibition of SPI-2-associated virulence 

factor expression also results in reduced levels of SPI-2 protein effectors such as SseJ 

during S. typhimurium infection of host cells. 
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Figure 3.4 Imaging of SseJ-HA during Salmonella infection. RAW264.7 macrophages 

were infected for one hour (MOI = 1), and compound was added 5 hours pi. At 7 hours 

pi, cells were fixed and stained with TO-PRO (blue), anti-Salmonella (green), and anti-

HA (red). Shown are representative images from three independent experiments. 

 

3.4 H-89 also antagonizes the SPI-1 T3SS and inhibits Salmonella invasion of 

epithelial cells 

As the transcriptional profiling data suggests H-89 also inhibits expression of S. 

typhimurium genes associated with the SPI-1-dependent invasion of host cells (Fig. 

3.3A), I tested whether H-89 also impairs SPI-1 T3SS-associated functions. To validate 
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our SPI-1 gene expression data, I employed an effector-enzyme fusion reporter system, 

SopE2-CPG2-HA, for sensitive detection of type III protein expression and secretion in 

S. typhimurium previously developed by our laboratory [50]. For this effector reporter 

system, carboxypeptidase G2 (CPG2) is translationally fused to the S. typhimurium 

effector SopE2 under control of its native promoter. By monitoring the enzymatic activity 

of CPG2 with a fluorogenic substrate, this assay provides a visible and quantitative 

method for determining effector protein expression and secretion [50]. Using this assay, 

H-89 decreased the levels of SopE2-CPG2-HA in S. typhimurium cell lysates and in the 

supernatant in a dose-dependent manner (Fig. 3.5A). The decreased level of secretion 

correlates with the inhibition of protein expression observed in the cell lysate. The 

inhibitory activity of H-89 can also be readily observed visually with the SopE2-CPG2-

HA system (Fig. 3.5B). 
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Figure 3.5 H-89’s decrease of secreted effectors correlates with inhibition of 

expression. A) SopE2-CPG2-HA secretion and expression were monitored using a 

fluorescent readout from the supernatant and lysate, respectively. Samples incubated with 

H-89 were compared to a DMSO control. B) Visual color change in the supernatant and 

lysate samples from bacteria incubated with H-89.  

 

I then evaluated the effect of H-89 on endogenously expressed SPI-1 effectors 

that are secreted in S. typhimurium growth media. Coomassie staining of S. typhimurium 

effector proteins secreted into the culture supernatant demonstrated that H-89 reduced the 

amount of secreted SPI-1 effector proteins while the inactive analog H-88 had no effect 
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(Fig. 3.6A). Other Akt-selective inhibitors (MK2206 and Akti1/2) [128,131,132] and 

another compound reported to prevent bacterial replication and inhibit Akt (AR-12) [133] 

had no activity towards inhibiting SPI-1 effector protein secretion (Fig. 3.6A). Additional 

broad-spectrum host kinase inhibitors (rottlerin and Sutent) [132,134] likewise did not 

affect secretion of SPI-1 effector proteins (Fig. 3.6B). The inhibitory activity of H-89 was 

dose-dependent up to a concentration that had no effect on bacterial growth and was more 

potent than the previously reported T3SS inhibitor INP-0007 [48,71] (Fig. 3.7). 
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Figure 3.6 Levels of secreted SPI-1 effectors in bacterial culture supernatants. A, B) 

Bacteria were incubated with compound for 4 hours before secreted proteins were 

precipitated, separated by SDS-PAGE, and analyzed by Coomassie blue (CB) staining.  
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Figure 3.7 Dose-dependent decrease of secreted SPI-1 effectors. Bacteria were grown 

for four hours in the presence of compound before proteins precipitated from the culture 

supernatant were separated by SDS-PAGE and analyzed by Coomassie blue (CB) 

staining. H-89’s potency was compared to the previously reported T3SS inhibitor INP-

0007. 

 

To determine whether this pharmacological reduction of secreted SPI-1 effectors 

could attenuate infection, I evaluated the effect of H-89 on S. typhimurium invasion of an 

epithelial cell line. Flow cytometry with anti-Salmonella antibody staining was used to 

quantify the number of S. typhimurium-infected cells (Fig. 3.8). Consistent with the 

reduction of SPI-1 effector data (Fig. 3.3A and 3.6A), incubation of S. typhimurium with 

H-89 also inhibited S. typhimurium invasion of HeLa cells, whereas H-88 had no 
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significant effect (Fig. 3.8). These results demonstrate that H-89 can also inhibit SPI-1 

T3SS function and attenuate S. typhimurium entry into epithelial cell lines.  
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Figure 3.8 H-89 blocks S. typhimurium invasion of HeLa cells. HeLa cells were 

infected at an MOI of 10 for 30 minutes with Salmonella that was grown in the presence 

of compound. Experiments were done in triplicate and the number of infected cells was 

measured using flow cytometry. NI, not infected. The statistical values from a two-sided 

Student’s t-test are as follows: *, P < 0.01; **, P< 0.0001. 

 

Discussion 

Bacterial pathogens continue to be a global health problem, which necessitates 

new strategies and antibacterials to combat infections. With the emergence of more 

antibiotic-resistant bacterial strains, targeting host pathways and bacterial virulence 
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mechanisms have become attractive strategies for counteracting and limiting drug 

resistance [1,2]. As host kinases are often hijacked for bacterial infection, the repurposing 

of kinase inhibitors may be an effective starting point for identifying new antibacterials 

[135,136]. Indeed, a chemical and siRNA screen against host kinases by Kuijl et al. has 

suggested the Akt kinase network may provide viable targets for limiting bacterial 

replication in host cells and even demonstrated that H-89, a reported PKA-inhibitor can 

block Salmonella and Mycobacteria replication in macrophages [124,137]. However, this 

study also reported that a more potent and specific Akt-inhibitor had less of an effect on 

bacterial replication [124]. Additionally, other H-89 analogs significantly inhibited 

Salmonella replication with only a small effect on Akt activity [124], suggesting Akt is 

not the primary target of H-89 to inhibit bacterial replication. Consistent with these 

observations, I found that H-89 is about 30-40 times more effective than an Akt-specific 

inhibitor (Akti1/2) at preventing Salmonella replication in macrophages (Fig. 3.2B) even 

though Akti1/2 completely depletes the active population of Akt (Fig. 3.2C). This 

demonstrates that pharmacological inhibition of Akt does not account for H-89’s activity 

on bacterial replication. Taken together, these data suggest an alternative mechanism of 

action for H-89 on inhibition of bacterial replication. 

As bacterial pathogens like Salmonella turn on specific virulence pathways for 

infection that are not required for growth in vitro, we evaluated whether H-89 impairs 

Salmonella virulence mechanisms. We initially focused on T3SSs since these protein 

secretion systems are essential for establishing and propagating Salmonella infection 

[99]. Our targeted transcriptional profiling data demonstrated that H-89 decreased the 

expression of genes associated with Salmonella virulence, including T3SS factors 
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responsible for bacterial invasion and replication, while genes involved in redox or iron 

homeostasis were not significantly affected (Fig. 3.3A). I further validated the impact of 

H-89 on S. typhimurium virulence factors by demonstrating this brominated 

isoquinolinesulfonamide impairs the expression (Fig. 3.3B) and consequently the 

secretion of a SPI-2 effector (SseJ) during bacterial infection of macrophages (Fig. 3.4). 

In addition to SPI-2 components responsible for Salmonella replication in host 

cells, H-89 reduced the expression of SPI-1 T3SS components associated with bacterial 

invasion (Fig. 3.3A). Notably, H-89 also diminished the secreted levels of SPI-1 effectors 

into the bacterial culture media, whereas the inactive analog H-88, Akt-specific 

inhibitors, and other promiscuous kinase inhibitors had no effect (Fig. 3.6A and 3.6B). H-

89 was also slightly more potent than the previously described T3SS inhibitor INP-0007 

(Fig. 3.7) and effectively blocked S. typhimurium invasion of epithelial cells (Fig. 3.8). 

Taken together, our results demonstrate that while H-89 does not affect bacterial growth, 

it inhibits key virulence pathways in Salmonella. By inhibiting the expression of 

virulence factors involved in both the initial and later stages of infection, H-89 can 

prevent the T3SS-dependent invasion and replication of S. typhimurium. Disrupting 

bacterial virulence rather than inhibiting Akt more likely explains the activity of H-89 on 

bacterial replication. 
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CHAPTER 4 – Discussion and Future Outlook 

 
Developing anti-virulence compounds as an alternative to traditional antibiotics is 

an attractive and promising strategy to combat the emerging antibiotic resistance we are 

experiencing today [1,2]. The rate at which new antibiotic resistance is observed is 

alarming compared to development of new antibiotics. If we were to continue on this 

path, we would be at risk of reverting to a pre-antibiotic era, which would be devastating 

to human health. Therefore, it is necessary to develop alternative approaches to 

circumvent this pressing issue. An anti-virulence strategy that specifically targets 

pathogenic bacteria falls into this category and also has the added benefit of leaving the 

normal commensal microbiota largely intact. As we learn more about the relationship 

between commensal bacteria and humans, we are realizing their importance in preventing 

infection and stimulating the immune response [5,7]. It is also hypothesized that anti-

virulence compounds would apply less selective pressure for developing resistance, so 

this could be a longer-term solution for battling bacterial pathogens. Support for this 

claim comes from the fact that resistance is often transferred from commensals to 

pathogens via horizontal gene transfer [3]. Resistance mechanisms develop due to 

random mutations that yield a competitive advantage and are thus selected for, but since 

the commensals would be generally unaffected by virulence inhibitors, they would be 

less likely to aid the pathogenic bacteria in evolving resistance. The current state of 

antibiotics emphasizes the need for alternative approaches to keep bacterial pathogens at 

bay, and the advantages of targeting virulence mechanisms make it a promising strategy 

moving forward. 
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The discovery of T3SSs as essential mechanisms of bacterial virulence has 

provided important and exciting targets for antibacterial development to address the 

shrinking arsenal of antibiotics. Consequently, many new classes of small molecules have 

been reported with inhibitory activity against T3SSs (Tables 1.1-1.3). Despite the 

attractiveness of these potential anti-virulence compounds, none of the currently reported 

T3SS inhibitors have advanced into the clinic. Major challenges still need to be addressed 

before these compounds can be effective therapeutics. Notably, nearly all of the T3SS 

inhibitors discovered from HTS cell-based assays have limited potency and lack clear 

targets and mechanisms of action. For example, the preliminary studies of previously 

described salicylidene acylhydrazides and thiazolidinones yielded structural features for 

blocking the activity of T3SSs, but none of ~120 new analogs yielded more potent 

inhibitors. Even though tethered thiazolidinone derivatives [78] and peptide-

functionalized analogs [77] have yielded improved inhibitory activity towards T3SS-

mediated invasion in vitro, the activity of more potent second generation thiazolidinones 

(~56) in cell culture or animal models of bacterial infection have not been reported.  

Anti-virulence compounds present a unique problem for identifying the targets of 

these antibacterial compounds. Since they do not kill bacteria directly, the standard 

antibiotic resistance selection strategy does not apply; bacterial viability needs to be 

dependent on resistance. A potential alternative for target identification of anti-virulence 

compounds is an infection-based selection strategy. Mutagenizing the bacteria and 

infecting cells in the presence of compound could be a way to tie bacterial viability to 

some level of resistance. If the compound is used at a high enough concentration where 

only a small percent of bacteria survive, those bacteria can be plated and used to re-infect 
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another batch of cells. Over several rounds of serial infections, any competitive 

advantage that exists will be selected for, and a decrease in the compound’s efficacy 

would be observed. Repeating the infections and increasing the compound’s 

concentration will apply more pressure to develop resistance, and should resistant 

colonies arise, they could be sequenced to uncover the mutation(s) that confer resistance. 

This strategy is unlikely to work with compounds that have multiple targets, so 

compounds exhibiting polypharmacological effects might not be suitable for such an 

approach.  

 The salicylidene acylhydrazides were the first class of compounds discovered to 

inhibit type III secretion [48]. Being active against several Gram-negative pathogens 

made them an appealing class of anti-virulence compounds, and though several groups 

have studied them, no clear mechanism exists for how they exert their inhibition. We 

took a bioorthogonal approach to identify their target(s) and mechanism of action. By 

inserting an alkyne onto the part of the molecule tolerant to modification, we made a 

panel of bioorthogonal derivatives that taught us about the SAR of this class and provided 

us with several negative controls for follow-up assays. Similar to the study by Wang et al. 

[63], we pulled down many metabolic enzymes (Table 2.2) using our labeling and 

enrichment strategy, which could suggest that the mechanism is due to a 

polypharmacological effect that disrupts metabolism and dis-regulates virulence without 

affecting growth. We learned that the SAHs have an inherent covalent reactivity, but 

subsequent experiments cast doubt on the relevance of the covalent-binding partners’ role 

in inhibiting type III secretion. This is important to keep in mind when thinking about 

their potential clinical application and possible side effects. 
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In general, I believe bioorthogonal labeling is a powerful method and can be an 

effective strategy for target ID, but there are several things to keep in mind when using 

this approach (Fig. 1.6). First, it is very useful for identifying the covalent-binding 

partners of a small molecule – non-covalent interactions require a different workflow. 

Ideally, the compound of interest would have a small number of protein-binding partners 

to simplify the analysis and limit the number of potential targets. Another important 

aspect is the necessity for negative controls. Though this is not exclusive to bioorthogonal 

labeling strategies, they are essential for ruling out non-specific interactions and were a 

key component of my studies with the SAHs. 

Another issue that arises for inhibitors of T3SSs is that they need to be effective at 

several stages of infection and be able to reach the relevant compartments. For example, 

Salmonella typhimurium has two stages of infection, the initial invasion stage and the 

subsequent replication stage, and both require a T3SS [99]. Once the bacteria 

successfully invade host cells, they reside in the SCV while replicating and spreading. It 

is quite possible that compounds can antagonize T3S activity in culture but are unable to 

reach the bacteria during infection or only inhibit the initial stage of infection. Many of 

the compounds discovered thus far are from HTSs that specifically look for inhibitors of 

this first stage of T3S. While setting up a HTS of this nature is easier, in a clinical setting, 

this would not be the relevant phase to be targeting. For example, the SAHs inhibit only 

the initial stage of infection and for the most part require pre-incubation to see an 

inhibitory effect, so from a clinical perspective, they might not be as useful. While T3SS 

inhibitors present promising leads for antibacterial development, significant 

improvements in their potency are needed for clinical studies.  
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Beyond in vitro screening of T3SS inhibitors, the analysis of small molecules that 

inhibit bacterial virulence in more complex cell culture systems or animals could reveal 

new classes of compounds and also begin to address their activity on host cells. For 

enteric pathogens, it will be interesting to assay compounds targeting the bacterial 

replication cycles in mammalian cells. These compounds may serve as better drug 

candidates to treat systemic infection rather than anti-virulence compounds that may only 

be used to prevent infection. Alternatively, analysis of compounds in small animal 

models such as worms [138-140] and zebrafish [141] are already beginning to reveal 

potential anti-virulence inhibitors as well as potential mechanisms of drug tolerance. 

While this approach may yield compounds that activate host immunity [142], this 

strategy may already select for compounds that can access the appropriate sites and 

tissues relevant for bacterial infection in vivo and provide promising leads for clinical 

development in humans. 

 The isoquinolinesulfonamide H-89 is an example of a compound that was 

discovered in a screen using an infection setting [124]. The goal of the study was to find 

compounds that block Salmonella replication during infection. The authors attributed the 

activity of H-89 on bacterial replication to inhibition of the host kinase Akt. In agreement 

with our findings, they also reported that a more potent and specific Akt inhibitor did not 

have the same inhibitory effect as H-89, but they believed it was because H-89 targeted 

other host kinases. Since they had only shown H-89 does not affect the growth of the 

bacteria in culture, we examined whether H-89 affects the virulence properties of the 

bacteria. Our data show that H-89 down-regulates genes involved in bacterial virulence 

and impairs the T3SS-dependent invasion and subsequent replication stages of infection. 
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We believe this is responsible for the increased potency of H-89 compared to Akt-

specific inhibitors and is the relevant mechanism for its antibacterial effects. In 

conclusion, the isoquinolinesulfonamide H-89 primarily acts on bacterial virulence 

pathways rather than host kinases to inhibit infection and represents a new chemical 

scaffold for the development of anti-virulence compounds. 

 Future avenues for H-89 are to synthesize analogs that have limited Akt inhibition 

while retaining their antibacterial effects, find its targets in Salmonella, and investigate its 

effects on bacterial transcription. Since Akt is part of a major host kinase network, it 

would be desirable to find effective analogs that do not affect host cell signaling. Based 

on structural and SAR studies, it was shown that the nitrogen in the isoquinoline ring is 

essential for kinase binding and inhibition of Akt [143,144]. Analogs with modifications 

here should display decreased Akt inhibition while perhaps maintaining antibacterial 

activity. The obvious potential pitfall is that H-89’s activity in the bacteria could be due 

to kinase inhibition, so modifying the isoquinoline ring could render the compound 

inactive. Discovering the bacterial targets of H-89 by non-covalent pull-downs would 

shed light on its mechanism and potentially uncover a kinase or kinase network involved 

in virulence regulation. My studies have laid the groundwork for using H-89 as a tool 

compound for studying bacterial virulence mechanisms in Salmonella. By impairing the 

T3SS-dependent stages of infection without affecting growth, H-89 represents a new 

chemical scaffold for the development of more potent and selective anti-infectives. 

Gaining a better understanding of what H-89 targets, how it affects bacterial 

transcription, and the broader effects it has on gene expression could provide an 

additional point of intervention for inhibiting bacterial virulence.  
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Classically, antimicrobials are small molecules that act as antibiotics to kill 

bacteria directly. Due to the increased frequency of antibiotic-resistant strains and with 

more knowledge of bacterial pathogenesis, targeting virulence pathways required for 

bacterial infection has become an alternative strategy for antimicrobial development. 

Two potential benefits are that targeting bacterial pathogenesis as opposed to viability 

could make it more difficult for bacteria to develop resistance while preserving the 

normal host microbiota. Key virulence mechanisms of many bacterial pathogens like 

T3SSs have now been uncovered and are prime targets for chemical intervention. Potent 

and specific T3SS inhibitors with validated mechanisms of action are still needed to 

establish whether this conserved virulence pathway is indeed a druggable target and 

viable approach towards disarming clinically relevant bacterial pathogens. Many of the 

virulence factors are essential for causing human diseases but are dispensable for the 

growth of pathogens, complicating efforts towards identifying the targets of virulence 

inhibitors. It remains to be determined whether the use of anti-virulence compounds 

would exert less selective pressure on bacterial pathogens to develop drug resistance as 

well as preserve beneficial microbiota in vivo; however, given the current state of 

antibacterials, the potential benefits are worth the effort. It is possible that inhibitors of 

bacterial virulence could slow the spread of infection and be used in conjunction with 

traditional antibiotics [145]. A focused effort on inhibitors of bacterial virulence could 

address these major challenges in antibacterial drug discovery and help combat microbial 

infections that impact human health.   
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CHAPTER 5 – Materials and Methods 

 

Compounds 

Most commercially available compounds were purchased from Sigma Aldrich, Fisher 

Scientific, Alfa Aesar, or Fluka. All final compounds were stored in 20 mM stock 

solutions in DMSO. Reactions were monitored by thin layer chromatography (TLC). 

Products were purified by flash column chromatography (FCC). Nuclear magnetic 

resonance (NMR) spectra were recorded on either a 400 or 600 MHz Bruker 

spectrometer. Chemical shifts are reported in ppm from tetramethylsilane. Coupling 

constants are reported as J values in Hertz (Hz). Mass spectra were obtained on a 

MALDI-TOF spectrometer or by LC-MS, performed by The Rockefeller University 

Proteomics Resource Center. Akti1/2 and MK2206 were gifts from N. Rosen (Memorial 

Sloan-Kettering Cancer Center). 

 

 

5.1 Synthesis of T3SS inhibitor INP-0007 (2.1) 

INP-0007 was synthesized according to published procedure [121]. 

 

4-nitrobenzohydrazide (2.3) 

To 15 mL of EtOH was added p-nitrobenzoate (2 g, 10.2 mmol) and hydrazine 

monohydrate (2.5 mL, 41 mmol). The mixture was refluxed at 80 ˚C overnight. The 
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precipitate was collected and washed with water to yield 2.3 as a yellowish solid (1.5 g, 

80%). 

1H NMR (600 MHz, CDCl3): δ = 4.18 (s, 2H), 7.40 (s, 1H), 7.94 (d, 2H, J = 8.7 Hz), 8.34 

(d, 2H, J = 8.7 Hz). 

 

N'-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide (INP-0007) (2.1) 

To a 1:2 mixutre of EtOH and water (2 mL) was added 2.3 (50 mg, 0.28 mmol). In 2 mL 

of EtOH was dissolved 3,5-dibromosalicylaldehyde (85 mg, 0.30 mmol). This mixture 

was added to 2.3 and stirred at room temperature until the reaction was complete. The 

product was filtered and washed with water, EtOH, and ether before recrystallization in 

either to give INP-0007 as a yellow solid (100 mg, 82%). 

1H NMR (600 MHz, DMSO-d6): δ = 7.86 (s, 2H), 8.19 (d, 2H, J = 8.6 Hz), 8.40 (d, 2H, J 

= 8.6 Hz), 8.57 (s, 1H). MALDI-TOF calcd for C14H10Br2N3O4 [M+H]+ 441.90, found 

441.92. 

 

 

5.2 Synthesis of photocrosslinking-alkynyl-INP (PC-alk-INP) (2.2) 

The synthetic route up to the final coupling step was performed as previously described 

[122]. 

 

2-(prop-2-yn-1-yloxy)ethan-1-ol (2.4) 

1H NMR (600 MHz, CDCl3): δ = 2.49 (t, 1H, J = 2.3 Hz), 3.68-3.69 (m, 2H), 3.79-3.80 

(m, 2H), 4.24 (d, 2H, J = 2.3 Hz). 
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2-(prop-2-yn-1-yloxy)ethyl 4-methylbenzenesulfonate (2.5) 

1H NMR (600 MHz, CDCl3): δ = 2.45 (t, 1H, J = 2.3 Hz), 2.47 (s, 3H), 3.75 (d, 2H, J = 

4.7 Hz), 4.14 (d, 2H, J = 2.3 Hz), 4.21 (d, 2H, J = 4.7 Hz), 7.36 (d, 2H J = 8.2 Hz), 7.82 

(d, 2H, J = 8.2 Hz). 

 

2,2,2-trifluoro-1-(3-methoxyphenyl)ethan-1-one (2.6) 

1H NMR (600 MHz, CDCl3): δ = 3.90 (s, 3H), 7.28 (m, 1H), 7.48 (t, 1H, J = 8.0 Hz), 

7.68 (s, 1H), 7.69 (d, 1H, J = 7.8 Hz). 

 

2,2,2-trifluoro-1-(3-methoxyphenyl)ethan-1-one oxime (2.7) 

1H NMR (600 MHz, CDCl3): δ = 3.85 (s, 3H), 7.04-7.11 (m, 3H), 7.40 (t, 1H, J = 7.5 

Hz), 8.85 (s, 1H). 

 

2,2,2-trifluoro-1-(3-methoxyphenyl)ethan-1-one O-tosyl oxime (2.8) 

1H NMR (600 MHz, CDCl3): δ = 2.48 (s, 3H), 3.83 (s, 3H), 6.94-7.07 (m, 3H), 7.34-7.40 

(m, 3H), 7.89-7.93 (m, 2H). 

 

3-(3-methoxyphenyl)-3-(trifluoromethyl)diaziridine (2.9) 

1H NMR (600 MHz, CDCl3): δ = 2.25 (d, 1H, J = 8.4 Hz), 2.80 (d, 1H, J = 8.4 Hz), 3.85 

(s, 3H), 6.99 (d, 1H, J = 8.3 Hz), 7.17 (s, 1H), 7.22 (d, 1H, J = 7.6 Hz), 7.36 (t, 1H, J = 

8.0 Hz). 
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3-(3-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine (2.10) 

1H NMR (600 MHz, CDCl3): δ = 3.83 (s, 3H), 6.71 (s, 1H), 6.79 (d, 1H, J = 7.7 Hz), 6.96 

(d, 1H, J = 8.3 Hz), 7.33 (t, 1H, J = 8.0 Hz). 

 

2-methoxy-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzaldehyde (2.11) 

1H NMR (600 MHz, CDCl3): δ = 3.94 (s, 3H), 6.70 (s, 1H), 6.84 (d, 1H, J = 8.2 Hz), 7.83 

(d, 1H, J = 8.2 Hz), 10.4 (s, 1H). 

 

2-hydroxy-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzaldehyde (2.12) 

1H NMR (600 MHz, CDCl3): δ = 6.80-6.82 (m, 2H), 7.62 (d, 1H, J = 8.1 Hz), 9.95 (s, 

1H), 11.08 (s, 1H). 

 

2-(2-(prop-2-yn-1-yloxy)ethoxy)-4-(3-(trifluoromethyl)-3H-diazirin-3-

yl)benzaldehyde (2.13) 

1H NMR (600 MHz, CDCl3): δ = 2.49 (t, 1H, J = 2.3 Hz), 3.97-3.99 (m, 2H), 4.26-4.29 

(m, 4H), 6.77 (s, 1H), 6.86 (d, 1H, J = 12.3 Hz), 7.86 (d, 1H, J = 12.3 Hz), 10.51 (s, 1H). 

 

2-(2-(prop-2-yn-1-yloxy)ethoxy)-4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoic acid 

(2.14) 

1H NMR (600 MHz, CDCl3): δ = 2.52 (t, 1H, J = 2.3 Hz), 4.01 (t, 2H, J = 4.4 Hz), 4.29 

(d, 2H, J = 2.3 Hz), 4.43 (t, 2H, J = 4.4 Hz), 6.82 (s, 1H), 6.97 (d, 1H, J = 8.2 Hz), 8.22 

(d, 1H, J = 8.2 Hz), 10.6 (br. s, 1H). 
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2,4-dibromo-6-(hydrazonomethyl)phenol (2.15) 

To a mixture of 3,5-dibromosalicylaldehyde (2 g, 7.15 mmol) cooled to 0˚C in 7.5 mL 

EtOH was added hydrazine monohydrate (1.8 mL, 28.6 mmol). The mixture was stirred 

for 1.5 hours as it was allowed to warm to room temperature. The solid was filtered, 

washed with EtOH, water, and ether and dried to yield crude 2.15 in quantitative yield. 

1H NMR (600 MHz, CDCl3): δ = 5.64 (s, 2H), 7.20 (s, 1H), 7.60 (s, 1H), 7.76 (s, 1H). 

 

N'-(3,5-dibromo-2-hydroxybenzylidene)-2-(2-(prop-2-yn-1-yloxy)ethoxy)-4-(3-

(trifluoromethyl)-3H-diazirin-3-yl)benzohydrazide (PC-alk-INP) (2.2) 

In 1 mL dry DCM was added 2.14 (50 mg, 0.15 mmol), oxalyl chloride (262 µL, 3.0 

mmol), and 1 drop of DMF. This solution was stirred at room temperature for 1 hour 

before being rotovapped. DCM was added and again rotovapped off. This was repeated 2 

more times to remove all excess oxalyl chloride. In 1 mL of DCM was dissolved 2.15 

(67.6, 0.23 mmol), and this was added to the acid chloride. To this mixture was slowly 

added 6 drops of triethylamine. The reaction was stirred at room temperature overnight 

and then washed with 10% HCl and brine before being dried over magnesium sulfate, 

filtered, and concentrated. The crude product was purified by FCC in 1:1 ethyl 

acetate:DCM to yield PC-alk-INP (20 mg, 22%). 

1H NMR (600 MHz, CDCl3): δ = 3.42 (t, 1H, J = 2.5 Hz), 3.85 (t, 2H, J = 4.2 Hz), 4.25 

(d, 2H, J = 2.5 Hz), 4.33 (t, 2H, J = 4.2 Hz), 6.92 (s, 1H), 7.79 (d, 1H, J = 2.4 Hz), 7.83 

(s, 1H), 7.84 (s, 1H), 7.86 (d, 1H, J = 2.4 Hz), 8.38 (s, 1H). 13C NMR (100 MHz, DMSO-

d6): δ = 31.2, 58.1, 78.0, 80.6, 80.8, 110.9, 118.8, 121.3, 124.7, 132.5, 132.7, 133.9, 



 90 

134.1, 138.3, 138.4, 147.6, 154.1, 157.0, 161.6. LC-MS calcd for C21H15Br2F3N4O4 

[M+H]+ 602.94, found 602.97. 

 

 

5.3 Synthesis of inactive SAH analog 

N'-benzylidene-4-nitrobenzohydrazide (SAH-1) (2.16) 

To a solution of 4-nitrobenzoylhydrazide (3) (362 mg, 2 mmol) in 33% ethanol (4 mL) 

was added benzaldehyde (206 µL, 2.04 mmol) dissolved in 0.5 mL ethanol. The mixture 

was stirred for one hour at room temperature before the yellow precipitate was filtered 

and washed with cold water, EtOH, and ether to yield the product as a yellow solid (442 

mg, 82%). 

1H NMR (600 MHz, DMSO-d6): δ = 7.49 (m, 3H), 7.76 (d, 2H, J = 6.7 Hz), 8.16 (d, 2H, 

J = 8.6 Hz), 8.39 (d, 2H, J = 8.6 Hz), 8.48 (s, 1H). 13C NMR (150 MHz, DMSO-d6): δ = 

124.1, 127.7, 129.4, 129.7, 130.8, 134.6, 139.7, 149.4, 149.7, 162.0. MALDI-TOF calcd 

for C14H12N3O3 [M+H]+ 270.08, found 270.40. 

 

 

5.4 Synthesis of alkynyl SAHs 

ethyl 4-(prop-2-yn-1-yloxy)benzoate (2.19) 

To p-Ethyl-hydroxy benzoate (1.5 g, 9 mmol) was added 50 mL of dry DMF. This 

solution was cooled to 0 °C before potassium carbonate (1.9 g, 13.5 mmol) was added. 

This mixture was stirred for 30 minutes before propargyl bromide (3.01 mL, 27 mmol) 
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was added. The solution was warmed to room temperature and stirred for 3 hours. Once 

the reaction was complete, ethyl acetate was added, and the solution was washed with 1 

N HCl and brine before being dried over magnesium sulfate and concentrated. The 

product was purified by flash column chromatography (FCC) in hexanes:ethyl acetate to 

give 2.19 (1.7 g, 95 %) as a yellow oil. 

1H NMR (600 MHz, CDCl3): δ = 1.40 (t, 3H, J = 7.1 Hz), 2.57 (t, 1H, J = 2.4 Hz), 4.37 

(q, 2H, J = 7.1 Hz), 4.77 (d, 2H, J = 2.4 Hz), 7.01 (d, 2H, J = 8.8 Hz), 8.04 (d, 2H, J = 8.8 

Hz). 

 

4-(prop-2-yn-1-yloxy)benzoic acid (2.20) 

2.19 (250 mg, 1.22 mmol) was dissolved in a 1:1 mixture of THF and water (3 mL: 3 

mL). To this was added sodium hydroxide (122 mg, 3.05 mmol), and the solution was 

heated at 60 °C overnight. Upon completion, the THF was evaporated, ethyl acetate was 

added, and the mixture was washed with 10 % HCl. The solution was dried with 

magnesium sulfate and concentrated to give 2.20 (210 mg, 97 %) as a white solid. 

1H NMR (600 MHz, CDCl3): δ = 2.57 (t, 1H, J = 2.4 Hz), 4.78 (d, 2H, J = 2.4 Hz), 7.04 

(d, 2H, J = 13.3 Hz), 8.08 (d, 2H, J = 13.3 Hz).  

 

tert-butyl 2-(4-(prop-2-yn-1-yloxy)benzoyl)hydrazine-1-carboxylate (2.21) 

PyBOP (162 mg, 0.31 mmol), BOC-hydrazine (41 mg, 0.31 mmol), and 2.20 (50 mg, 

0.28 mmol) were dissolved in 3 mL of DMF. To this was added DIEA (98 µL, 0.56 

mmol), and the reaction was stirred overnight at room temperature. Upon completion, 

ethyl acetate was added, and the solution was washed with 10 % HCl, sodium 
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bicarbonate, and brine before being dried over magnesium sulfate and concentrated to 

give the crude product 2.21, which was carried through to the next step. 

1H NMR (600 MHz, CDCl3): δ = 1.48 (s, 9H), 2.52 (t, 1H, J = 2.3 Hz), 4.72 (d, 2H, J = 

2.3 Hz), 6.99 (d, 2H, J = 8.7 Hz), 7.76 (d, 2H, J = 8.7 Hz). 

 

4-(prop-2-yn-1-yloxy)benzohydrazide (2.22) 

Crude 2.21 (1g, ~3.4 mmol) was added to 18 mL of dry DCM. This mixture was cooled 

to 0 °C and to it was added 8 mL of TFA, at which point the reaction bubbled. As the 

solution warmed to room temperature, it turned from yellow to orange. The solvent was 

evaporated, and the product was resuspended in ethyl acetate, washed with sodium 

bicarbonate, dried over magnesium sulfate, and concentrated. The product was purified 

by FCC with hexanes:ethyl acetate to yield 2.22 (430 mg, 79 % over 2 steps). 

1H NMR (600 MHz, CDCl3): δ = 2.52 (t, 1H, J = 2.4 Hz), 4.72 (d, 2H, J = 2.4 Hz), 7.01 

(d, 2H, J = 8.8 Hz), 7.71 (d, 2H, J = 8.8 Hz). 

 

The final coupling step for synthesizing INP-0007 was also used to synthesize the 

alkynyl SAH analogs. In general, 2.22 (25 mg, 0.13 mmol) was dissolved in a 2 mL 

mixture of 33% EtOH in water. The corresponding aldehyde (0.14 mmol) was dissolved 

in 1 mL of EtOH and added to the solution containing 2.22. The solution was stirred at 

room temperature until compound crashed out of solution. The precipitate was collected 

and washed with water, cold EtOH, and ether before being dried and recrystallized from 

EtOH (81-92% yield). 
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N'-(3,5-dibromo-2-hydroxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide 

(alk-INP) (2.17) 

1H NMR (400 MHz, DMSO-d6): δ = 3.63 (t, 1H, J = 2.3 Hz), 4.91 (d, 2H, J = 2.3 Hz), 

7.13 (d, 2H, J = 8.9 Hz), 7.81 (s, 1H), 7.81 (s, 1H), 7.94 (d, 2H, J = 8.9 Hz), 8.51 (s, 1H). 

13C NMR (100 MHz, DMSO-d6): δ = 56.1, 79.1, 79.2, 110.8, 111.6, 115.3, 121.5, 125.4, 

130.1, 132.5, 132.7, 136.0, 147.1, 154.1, 160.8, 162.9. LC-MS: calcd for C17H12Br2N2O3 

[M+H]+ 450.92, found 451.00. 

 

N'-benzylidene-4-(prop-2-yn-1-yloxy)benzohydrazide (alk-SAH) (2.18) 

1H NMR (400 MHz, DMSO-d6): δ = 3.58 (t, 1H, J = 2.3 Hz), 4.87 (d, 2H, J = 2.3 Hz), 

7.07 (d, 2H, J = 8.6 Hz), 7.41 (m, 3H), 7.68 (d, 2H, J = 6.4 Hz), 7.87 (d, 2H, J = 8.6 Hz), 

8.41 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 55.9, 78.6, 79.2, 115.2, 125.9, 127.6, 

127.9, 129.3, 129.9, 130.1, 131.0, 134.3, 148.9, 160.4, 164.1. LC-MS: calcd for 

C17H14N2O2 [M+H]+ 279.11, found 279.17. 

 

N'-(2-hydroxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide (alk-OH) (2.23) 

1H NMR (400 MHz, DMSO-d6): δ = 3.63 (t, 1H, J = 1.3 Hz), 4.91 (d, 2H, J = 2.3 Hz), 

6.93 (m, 2H), 7.12 (d, 2H, J = 8.4 Hz), 7.29 (m, 1H), 7.52 (d, 1H, J = 7.6 Hz), 7.93 (d, 

2H, J = 8.4 Hz), 8.62 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 56.1, 79.1, 79.3, 

115.1, 116.8, 119.2, 119.7, 126.0, 129.9, 130.1, 131.7, 148.3, 157.9, 160.5, 162.7. LC-

MS: calcd for C17H14N2O3 [M+H]+ 295.10, found 295.17. 
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N'-(5-bromo-2-hydroxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide 

(alk-5’Br) (2.24) 

1H NMR (400 MHz, DMSO-d6): δ = 3.62 (t, 1H, J = 2.1 Hz), 4.90 (d, 2H, J = 2.1 Hz), 

6.89 (d, 1H, J = 8.8 Hz), 7.11 (d, 2H, J = 8.7 Hz), 7.43 (d, 1H, J = 8.8 Hz), 7.78 (s, 1H), 

7.93 (d, 2H, J = 8.7 Hz), 8.59 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 56.1, 79.1, 

79.3, 110.9, 115.2, 119.1, 121.8, 125.9, 130.1, 130.9, 131.1, 133.9, 145.8, 156.9, 160.6, 

162.8. LC-MS: calcd for C17H13BrN2O3 [M+H]+ 373.01, found 373.08. 

 

N'-(4-bromo-2-hydroxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide 

(alk-4’Br) (2.25) 

1H NMR (400 MHz, DMSO-d6): δ = 3.62 (t, 1H, J = 2.3 Hz), 4.90 (d, 2H, J = 2.3 Hz), 

7.10-7.14 (m, 4H), 7.52 (d, 1H, J = 8.3 Hz), 7.92 (d, 2H, J = 8.4 Hz), 8.60 (s, 1H). 13C 

NMR (100 MHz, DMSO-d6): δ = 56.1, 79.1, 79.2, 79.3, 115.2, 119.0, 119.5, 119.6, 

122.9, 124.2, 126.0, 129.9, 130.1, 130.9, 131.0 146.6, 158.5, 160.5, 162.7. LC-MS: calcd 

for C17H13BrN2O3 [M+H]+ 373.01, found 373.08. 

 

N'-(3-bromo-2-hydroxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide 

(alk-3’Br) (2.26) 

1H NMR (400 MHz, DMSO-d6): δ = 3.58 (t, 1H, J = 1.3 Hz), 4.87 (d, 2H, J = 1.3 Hz), 

6.87 (m, 1H), 7.11 (d, 2H, J = 8.3 Hz), 7.46 (d, 1H, J = 7.6 Hz), 7.58 (d, 2H, J = 7.9 Hz), 

7.91 (d, 2H, J = 8.3 Hz), 8.52 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 56.1, 79.1, 

79.2, 79.2, 110.4, 115.3, 119.9, 121.0, 125.5, 130.0, 130.2, 130.8, 134.6, 134.8, 148.6, 

154.7, 160.7, 162.8. LC-MS: calcd for C17H13BrN2O3 [M+H]+ 373.01, found 373.08. 
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N'-(3,5-dibromo-2-methoxybenzylidene)-4-(prop-2-yn-1-yloxy)benzohydrazide (alk-

OMe) (2.27) 

1H NMR (400 MHz, DMSO-d6): δ = 3.63 (t, 1H, J = 2.4 Hz), 3.82 (s, 3H), 4.91 (d, 2H, J 

= 2.4 Hz), 7.12 (d, 2H, J = 8.8 Hz), 7.92-7.97 (m, 3H), 8.00 (s, 1H), 8.62 (s, 1H). 13C 

NMR (100 MHz, DMSO-d6): δ = 56.1, 79.2, 79.3, 115.1, 117.8, 119.2, 126.2, 130.0, 

130.2, 131.8, 136.5, 137.3, 140.8, 155.3, 160.6, 163.0. LC-MS: calcd for C18H14Br2N2O3 

[M+H]+ 464.94, found 465.00. 

 

N'-(3,5-dibromo-2-hydroxybenzyl)-4-(prop-2-yn-1-yloxy)benzohydrazide (red-alk-

INP) (2.28) 

To a solution of alk-INP (17) (50 mg, 0.111 mmol) in 3 mL of MeOH:THF (1:2 mL) was 

added sodium cyanoborohydride (21 mg, 0.332 mmol). The solution turned yellow. To 

this mixture was added 10% HCl in MeOH (2 mL). A whitish precipitate crashed out of 

solution. The precipitate was collected and dissolved in EtOAc, washed with water and 

sodium bicarbonate, dried over magnesium sulfate, filtered and concentrated to yield 2.28 

(35 mg, 70%). 

1H NMR (400 MHz, DMSO-d6): δ = 3.60 (t, 1H, J = 2.2 Hz), 4.02 (s, 2H), 4.87 (d, 2H, J 

= 2.2 Hz), 7.05 (d, 2H, J = 8.8 Hz), 7.39 (s, 1H), 7.63 (s, 1H), 7.80 (d, 2H, J = 8.8 Hz). 

13C NMR (100 MHz, DMSO-d6): δ = 52.5, 56.0, 79.1, 79.3, 110.5, 111.7, 115.0, 115.1, 

125.9, 128.1, 129.4, 129.6, 131.7, 131.8, 133.5, 133.8, 153.6, 160.2, 166.3. LC-MS: calcd 

for C17H14Br2N2O3 [M+H]+ 452.94, found 452.92. 
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5.5 Bacterial strains and eukaryotic cell lines for SAH experiments 

Wild-type S. typhimurium strain IR715, which is a nalidixic acid-resistant strain of 

14028, was used for all experiments unless otherwise noted. The SPI-1 T3SS-deficient 

mutant (ΔinvA) was taken from the Salmonella deletion library [36]. The SopE2-CPG2-

HA strain was used as previously described [50]. HeLa cells were grown in DMEM 

supplemented with 10% FBS at 37˚C in a 5% CO2 incubator. 

 

 

5.6 Isolation of secreted SPI-1 effector proteins 

Overnight cultures of S. typhimurium grown in Luria-Bertani broth (LB) in a 37˚C shaker 

were diluted 1:30 and grown for four hours in the presence of compound or DMSO. 

Bacteria were pelleted by centrifugation at 15,000 g for 10 minutes. The supernatant was 

removed and spun down again to remove any remaining bacteria. The secreted proteins in 

1 mL of the remaining supernatant were precipitated overnight at 4˚C with 10% 

trichloroacetic acid (TCA). The proteins were pelleted by centrifugation at 20,000 g for 

30 minutes, and the supernatant was discarded. The pellet was washed with acetone to 

remove remaining TCA and pelleted again. The acetone washes were done a total of 

three times before the pellet was resuspended in 35 µL 4% SDS buffer, 12.5 µL loading 

buffer, and 2.5 µL BME. The samples were vortexed, heated at 95˚C, and run on an SDS-

PAGE gel for 1 hour at 200 volts. The precipitated secreted proteins were visualized by 

staining the gel with Coomassie blue. 
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5.7 Characterization of secreted effector proteins 

Once the secreted proteins were separated by SDS-PAGE, protein bands were visualized 

by Coomassie blue staining and identified by in-gel trypsinization followed by LC-

MS/MS analysis. Briefly, each band in the gel was cut into small slices, which were 

subsequently washed for 15 minutes in 250 mM ammonium bicarbonate (ABC), twice in 

1:1 ABC to acetonitrile (ACN), and once in ACN before drying. Once dry, 2 µg of 

trypsin in 30 µL ABC was added to each slice before overnight incubation at 37°C. The 

liquid was collected, and the gel slices were washed in 1:1 ABC:ACN + 0.1% 

trifluoroacetic acid (TFA) twice, collecting the liquid after each wash [112]. The 

combined supernatants were dried under vacuum before being resuspended in 0.1% TFA 

in water for LC-MS/MS analysis (performed by The Rockefeller University Proteomics 

Resource Center). Sequest and X!Tandem data was imported into Scaffold for Peptide 

Prophet filtering. Peptides with ≥95% likelihood of correct assignment were accepted. 

Proteins matched with 2 or more tryptic peptides were accepted; for those proteins, non-

tryptic peptides were also accepted. 

 

 

5.8 Bacterial lysis 

Overnight cultures were diluted 1:30 and grown for four hours in the presence of 

compound or DMSO. They were pelleted and washed with PBS before lysis. A lysis 

buffer cocktail was made by adding 100 µL of 0.1% SDS buffer (0.1% SDS, 150 mM 

NaCl, 50 mM TEA, pH 7.4), 4 µL PMSF (250 mM in ethanol), 2 µL 250x protease 

inhibitor (Roche), and 0.1 µL benzonase per sample. The cell pellets were resuspended in 
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100 µL of the lysis buffer and sonicated 2x30 seconds before being put on ice for 10 

minutes and sonicated again. Cell debris was removed by spinning at 1,000 g for 5 

minutes and collecting the supernatant. Protein concentration was determined using a 

BCA assay. 

 

 

5.9 Click chemistry protocol and in-gel fluorescence analysis 

A click chemistry cocktail was made by mixing 1 µL of copper sulfate (50 mM), 1 µL of 

TCEP-HCl (50 mM), 2.5 µL TBTA (2mM), and 0.5 µL azido-Rhodamine (10mM) per 

sample [113]. To 50 µg of lysate in 45 µL of 4% SDS buffer was added 5 µL of the click 

chemistry cocktail was added. The samples were vortexed, and the reaction was 

performed for one hour at room temperature in the dark before being precipitated with 

200 µL MeOH, 75 µL chloroform, and 150 µL water. The solution was vortexed then 

centrifuged for 2 minutes at 20,000 g. The top layer was removed, and again 200 µL of 

MeOH was added before the pellet was spun down. This MeOH wash was repeated and 

the samples were left to dry. Once dry, 35 µL of 4% SDS buffer, 12.5 µL loading buffer, 

and 2.5 µL BME were added to each sample. The tubes were heated at 95°C for 5 

minutes and separated by SDS-PAGE. The proteins were visualized by scanning the gel 

with an Amersham Biosciences Typhoon 9400 imager (excitation 532 nm, 580 nm filter, 

30 nm band-pass). 

 

 



 99 

5.10 Transcriptional profiling of S. typhimurium 

Performed by Angelica Ferguson. Overnight cultures were inoculated at 1:30 dilution and 

compound was added to a final concentration of 20 µM. Cultures were grown for four 

hours and then harvested by centrifugation. RNA was extracted using the RNeasy Protect 

Bacteria Mini Kit (Qiagen) according to the manufacturer’s protocol for bacterial cells. 

Equivalent masses of RNA from each sample (1-2.5 µg) were reverse transcribed using 

Affinity Script RT enzyme (Stratagene) and oligo dT (Roche). cDNA was diluted 50-fold 

with water, and PCR reactions were performed in triplicate with specific primers using 

SYBR green (Roche) and Platinum Taq polymerase (Roche). Reactions were run on a 

384-well plate using the Roche Lightcycler. Normalization was performed using rrsH and 

rpoD (rRNA and housekeeping gene, respectively) mRNA levels. Analysis was 

performed using the comparative Ct method and fold inductions of compound-treated 

samples were calculated over DMSO-treated values.  

 

 

5.11 Secretion and expression of SopE2-CPG2-HA 

Performed as previously described [50]. SopE2-CPG2-HA-expressing bacteria were 

grown in the presence of compound or DMSO for four hours. The bacteria were spun 

down to separate them from the supernatant. The pellet was washed once with PBS and 

lysed in 1% Brij buffer (1% Brij-97, 150 mM NaCl, 50 mM TEA, pH 7.4) by sonicating 

twice for 30 s each, separated by 10 min on ice. To 20 µL of the supernatant and 5 µg of 

the lysate in 20 µL Brij buffer was added 80 µL Glu-CyFur buffer (10 µM Glu-CyFur, 50 

mM Tris, 0.1 mM ZnCl2, 0.1% Brij-97, pH 7.4). CyFur fluorescence was monitored on a 



 100 

SpectraMax M2 multi-detection reader (Molecular Devices) for one hour at 610 nm with 

excitation at 563 nm as a readout of SopE2-CPG-HA secretion and expression, 

respectively. 

 

 

5.12 Proteomic identification of modified proteins 

5.12.1 Bacterial lysis 

This protocol is described in [112]. Overnight cultures of bacteria were diluted 1:30 in 

LB and grown in the presence of 50 µM compound or DMSO for four hours before being 

washed with PBS and flash-frozen. Typically 10-20 mL cultures were used to obtain 

larger amounts of protein. The bacteria were lysed by resuspending the pellet in 1 mL of 

0.1% SDS buffer (0.1% SDS, 150 mM NaCl, 50 mM TEA, pH 7.4), 40 µL PMSF (250 

mM in ethanol), 20 µL 250x protease inhibitor (Roche), 1 µL benzonase, and 10 µL of 

lysozyme (from 10 mg/mL solution in water) per sample and put on ice for 10 minutes. 

The solutions were sonicated 2 x 30 seconds and iced again for 10 minutes, at which 

point 500 µL of 12% SDS buffer was added. The solution was sonicated again for 2 x 30 

seconds. If the solution is not clear, more SDS buffer can be added and the sonication 

repeated. Once the solution is mostly clear, the cell debris can be removed by 

centrifuging at 1,000 g for 5 minutes and collecting the supernatant. Protein concentrated 

was estimated by BCA assay. 
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5.12.2 Click chemistry reaction with azido-biotin 

Equal amounts of protein (~5 mg) per sample were brought up to 7 mL in 1% Brij buffer 

with 2 mL of 10% SDS buffer being added to that. A click chemistry cocktail can be 

mixed before being added to each sample. The cocktail contained 100 µL of azido-biotin 

(10 mM) (Fig 1.x), 200 µL copper sulfate (50 mM), 200 µL of TCEP-HCl (50 mM), and 

500 µL TBTA (2mM) per sample. To each sample was added 1 mL of the click 

chemistry cocktail. The samples were vortexed and placed in the dark at room 

temperature for 1.5 hours. In order to precipitate the protein, the samples were split into 

two 5 mL solutions in 50 mL Falcon tubes. To each sample was added 20 mL cold 

MeOH, 7.5 mL chloroform, and 15 mL water. The samples were vortexed and spun at 

5,250 g for 30 minutes. Similar to the click reaction with azido-Rhodamine, the top layer 

was removed, 20 mL of MeOH was added, and the samples were spun at 5,250 g for 30 

minutes again. This MeOH wash was repeated one more time before the samples were 

allowed to dry for several hours. Once dry, the pellets were resuspended in 1 mL of 4% 

SDS buffer containing 20 µL of 0.5 M EDTA solution, and protein concentration was 

estimated by BCA assay. 

 

5.12.3 Binding the protein to streptavidin beads 

Streptavidin beads (100 µL for 5 mg of protein) were washed in PBS, spun down at 4,000 

g for 2 minutes, and resuspended in an equal volume of 1% Brij buffer. The beads were 

pipetted with chopped pipet tips. To 5 mg of protein in 3 mL of Brij buffer in a 15 mL 

Falcon tube was added 100 µL of the pre-washed streptavidin beads. The mixture was 

rocked at room temperature for 1 hour. The beads were then extensively washed to 
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remove any non-specifically-bound proteins, spinning at 3,000 g for 2.5 minutes after 

each wash. They were first washed twice with 10 mL 0.2% SDS in PBS, followed by 3 

washes with 10 mL of PBS, then 2 washes of 10 mL of ABC (250 mM in water). The 

beads were then incubated in 500 µL urea (8 M in ABC), 25 µL TCEP (200 mM in 

water), and 25 µL iodoacetamide (390 mM in water) for 1 hour at room temperature to 

reduce and cap the cysteines. The beads were washed 2 more times with ABC, 

transferred to a dolphin tube, and spun down. 

 

5.12.4 Eluting the protein from the beads and concentrating the sample 

To each sample was added 250 µL of an elution buffer consisting of 50 mL ABC (250 

mM), 50 mg SDS, and 218 mg sodium dithionite (Na2S2O4). The solution was gently 

mixed and incubated at room temperature for one hour. The beads were then spun down 

at 5,000 g for 1 minute, and the eluent was collected. The elution step was repeated with 

200 µL of elution buffer, with the beads being incubated for 30 minutes. The beads were 

again spun down, and the eluents were combined. To concentrate the eluent, centricons 

(10,000 kDa MW cutoff; Millipore) were first washed with water and spun at 14,000 g 

for 15 minutes. The eluent was then added to the centricons and spun at 14,000 g for 15 

minutes. The centricons were inverted and placed into a new tube and spun at 1,000 g for 

3 minutes to collect the concentrated sample. They were rinsed with 50 µL of 1% SDS 

containing 75 mM BME. This solution was collected by spinning the centricon upside 

down at 1,000 g for 3 minutes. This rinsing step was repeated before the concentrated 

sample was dried on a speedvac. 
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5.12.5 Separating the sample by SDS-PAGE and preparing it for mass spec analysis 

The dried powder was resuspended in 25 µL LDS buffer with 5% BME (per 100 µL of 

buffer needed: 25 µL 4x LDS buffer (Invitrogen), 5 µL BME, 70 µL water). The samples 

were vortexed and heated on a 95oC heating block before being loaded on an SDS-PAGE 

gel with blank lanes between each sample. The blank lanes contained 1x LDS buffer with 

14% SDS and 5 % BME. The gel was run for 1 hour at 200 volts before being stained 

with Coomassie blue. Lanes were cut into slices and prepared as in 5.7. Identified 

proteins had 2 unique peptides with 95% confidence. High-confidence hits had 10x the 

spectral counts as the background. 

 

 

5.13 S. typhimurium invasion of HeLa cells 

HeLa cells were grown in 12-well plates containing DMEM with 10% FBS. Bacteria 

grown in the presence of compound or DMSO were added at an MOI of 10 in 

DMEM/10% FBS containing compound or DMSO before being centrifuged at room 

temperature for 5 min at 1000 x g. The plates were placed in a 37˚C incubator for a 30-

minute invasion period. Cells were then washed three times with room temperature PBS 

containing 100 ug/mL gentamicin and then incubated with DMEM/10% FBS containing 

100 ug/mL gentamicin at 37oC for an additional 30 minutes to kill all extracellular 

bacteria. Cells were then washed an additional three times with PBS containing 100 

ug/mL gentamicin to remove any remaining extracellular bacteria. Cells were trypsinized 

then fixed with 3.7% paraformaldehyde in PBS for 10 minutes. They were then 

permeabilized with 0.2% saponin in PBS for 10 min and blocked with 2% FBS in PBS 
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for 10 min. All antibody stainings and washes were performed with ice-cold 0.2% 

saponin in PBS. Cells were stained with anti-Salmonella rabbit serum (Biodesign 

International) for one hour at room temperature before being washed three times. Goat 

anti-rabbit secondary antibody conjugated to AlexaFluor 488 (Invitrogen) was added for 

30 minutes before cells were washed 3 times. Flow cytometry was performed using a 

Becton Dickinson LSRII machine and FlowJo software was used for analysis.  

 

 

5.14 Bacterial strains, plasmids, and eukaryotic cell lines for H-89 experiments 

Wild-type S. typhimurium strain IR715, which is a nalidixic acid-resistant strain of 

14028, was used for all experiments unless otherwise noted. Overnight cultures grown in 

Luria-Bertani broth (LB) at 37˚C were diluted 1:30 and grown for four hours in the 

presence of compound or DMSO. For construction of the SseJ-HA strain (provided by 

Markus Grammel), initially a pWSK29_HA plasmid was generated by annealing two 

primers (TCGAGTTATGCATAATCAGGAACATCATAAGGATAG and 

AATTCTATCCTTATGATGTTCCTGATTATGCATAAC), digesting them with EcoRI 

and XhoI, and ligating them into pWSK29, which was also digested with EcoRI and 

XhoI. SseJ was amplified from S. typhimurium (IR715) by PCR 

(GAATTCTTCAGTGGAATAATGATGAGCTATAAAAC and 

TCTAGAGATAGCAGTCAGATAATATGTACCAGGC). The resulting PCR product 

was digested with EcoRI and XbaI and ligated into pWSK29-HA plasmid, also digested 

with EcoRI and XbaI. The SopE2-CPG2-HA strain was used as before (5.11). HeLa cells 
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and RAW264.7 macrophages were grown in DMEM supplemented with 10% FBS at 

37˚C in a 5% CO2 incubator. 

 

 

5.15 Bacterial replication in macrophages 

Macrophages were grown in 12-well plates containing DMEM with 10% FBS. They 

were infected with Salmonella typhimurium for one hour in a 37˚C incubator at a 

multiplicity of infection (MOI) of 5 before being washed three times with 100 µg/mL 

gentamicin in PBS. DMEM containing 10% FBS and 20 µM of compound or DMSO and 

10 µg/mL gentamicin was added to the cells and incubated for 16 hours before CFU 

plating. From each sample were plated 3 dilutions (10-5-10-7) in triplicate for CFU counts. 

 

 

5.16 Western blotting for Akt during macrophage infection 

For Akt blots, macrophages in 6-well plates were infected in the same manner as for CFU 

plating, but instead they were harvested 8 hours pi, lysed in 30 mM Tris/HCl pH 7.5, 150 

mM NaCl, 1% Triton X-100, Halt Phosphatase Inhibitor Cocktail (Thermo Scientific), 

and EDTA-free protease inhibitor cocktail (Roche). Protein concentration was estimated 

by BCA assay, and equal amounts of protein were separated on an SDS-PAGE gel before 

being transferred to a nitrocellulose membrane. The membrane was probed with 

antibodies (Cell Signaling Technology) for total Akt levels and phospho-Akt (Ser473). 
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5.17 Imaging macrophages and secreted SseJ-HA during infection 

For imaging experiments, macrophages grown on cover slips in 12-well plates were 

infected for one hour at an MOI of 1. At this point, they were washed three times with 

100 µg/mL gentamicin in PBS before being resuspended in DMEM containing 10% FBS 

and 10 µg/mL gentamicin. At 5 hours pi, compound was added, and cells were incubated 

for two more hours before being fixed and stained. All antibody stainings and washes 

were performed with ice-cold 0.2% saponin in PBS. Cells were stained with anti-

Salmonella rabbit serum (Biodesign International) for one hour followed by goat anti-

rabbit secondary antibody conjugated to AlexaFluor 488 (Invitrogen) for 30 minutes. 

Then cells were stained with mouse anti-HA (Sigma) antibody for one hour followed by 

goat anti-mouse secondary antibody conjugated to Rhodamine Red (Invitrogen) for 30 

minutes. DNA was stained with TO-PRO-3 for five minutes before imaging. Cells were 

washed three times between each staining. All microscopy was performed on a Zeiss 

LSM 510 laser scanning confocal microscope. 
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APPENDIX 

1H and 13C NMR spectra 
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