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The most recent projections in the growing obesity rates across the nation show an 

increase to 60% by the year 2030.  These growing rates of obesity are paralleled by an 

increased rates of depressive conditions, anxiety, and sleep loss, often with environmental 

factors at the root of the cause.  Stress and the stress response is a dynamic system that 

reflects one’s ability to cope with events, behaviorally or physiologically, as stressors 

occur over a lifetime. While many key players mediate the effects of stress exposure on 

disease outcomes including the sympathetic nervous system, parasympathetic, 

inflammatory cytokines and metabolic hormones, this dissertation focuses on 

glucocorticoids because of the extensive regulatory role they play in mounting the 

adaptative response to stress.  Additionally, glucocorticoids act to regulate feeding and 

energy balance, and when not properly regulated, they can lead to increased weight gain, 

particularly the development of abdominal visceral fat. Independent from their role in the 

stress response, glucocorticoids are also secreted in a diurnal fashion as regulated by the 

master circadian (daily) clock in the suprachiasmatic nuclei (SCN).  Signaling in this 

regard is at least partially responsible for entraining circadian clocks outside of the SCN.  

Just as shifts in glucocorticoid exposure are associated with metabolic disturbances, 

disruption of circadian rhythms has also been linked to the development of obesity.  

However, it remains unclear how the two systems independently and/or collectively 

regulate energy balance.   



 

 

     The first aim of this dissertation was to determine how disruptions in the 

environmental photoperiod impacts clock gene expression and if this environmental 

exposure affects circulating glucocorticoid levels.  The second aim was to determine if 

increased exposure to a rhythmic corticosterone (CORT) disrupted circadian rhythms.  

Given that CORT imbalances result in circadian disruption and weight gain in both 

models, the third aim was to determine a mediator in the two systems that regulates 

CORT synthesis and affects metabolism.  Recent studies have demonstrated that 

glucocorticoids possess the ability to increase the production and release of 

endocannabinoid molecules. Additionally, endocannabinoids are potent regulators of 

appetite, energy balance and metabolic processes through both central and peripheral 

regulation of feeding and metabolism, making the system an ideal candidate.  

     Mice lacking the cannabinoid CB1 receptor were protected against all of these 

changes in metabolic function in both mouse models, indicating that endocannabinoid 

signaling is required for circadian disruption to promote obesity and metabolic syndrome 

through glucocorticoid regulation. These alterations are prevented by blocking the CB1 

receptor, not only globally, but also through targeted peripheral inhibition, suggesting 

that the endocannabinoid system mediates glucocorticoid induced metabolic syndrome 

through a predominantly peripheral mechanism. These data build upon previous findings 

that indicate the endocannabinoid system is required for diet-induced obesity. They 

further suggest that this system plays a much broader role in the regulation of metabolic 

processes, as well as acting as a mediator of changes in metabolic function in response to 

an array of stimuli, including environmental exposure, and not just diet composition.    



 

 

     Research presented also aims to highlight the importance of studying different stress-

like exposures in mouse models in order to fully characterize the human condition.  

Chronic environmental stressors, as in chronic disruption of the-light-dark-cycle, provide 

one such mean to study the impact of stress on a population.  The environmental 

experience has been identified as a potential pathway linking neighborhood disadvantage 

and poor health, through the dysregulation of stress-related biological pathways. 
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Chapter 1: Introduction 

     Obesity is one of the most profound health problems in the United States with more than 

two-thirds of adults and more than 9 million children aged 6-16 years considered 

overweight.1 Although much has been learned about the regulation of body weight and 

adiposity, the prevalence of obesity continues to rise.  Obesity is of particular concern, as not 

only a disease in and of itself, but also a major risk factor in the metabolic syndrome, which 

is generally described as a series of physiological markers that put an individual at greater 

risk of negative cardiovascular outcomes associated with obesity, including diabetes.2,3 

Current explanations of such diseases based on nutritional over consumption, poor diet, 

and/or lack of physical activity, are inadequate to explain their sudden rise and increased 

prevalence.   Furthermore, most current treatments for the metabolic syndrome have proved 

unsuccessful, and while some weight can be lost with moderate diet and exercise, the altered 

hormonal levels after weight gain make it more difficult for weight loss and maintenance of 

weight once lost.4 Thus prevention of obesity or diabetes is an essential component of any 

successful weight loss program. 

         Obesity is a growing health concern throughout the world, and those with a lower 

socioeconomic status (SES) are more likely to experience chronic diseases like obesity and 

high blood pressure, weakened immune system, mental illness and decline of physical 

strength.5 When the impact of SES on the development of cardiovascular and metabolic 

disease is considered, it is crucial to study the social-biological interface, and understand 

exactly how SES affects the biological factors involved in disease etiology.  Lower SES is 

associated with a range of biological risk factors, including adverse lipoprotein profiles, 

increased central obesity, impaired glucose tolerance, insulin resistance, raised levels of 
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fibrogen, abnormalities of cardiac rhythm, and procoagulant blood clotting profiles.6 

Unfortunately, the pathways through which lower SES causes these changes are still not well 

understood. While lifestyle and health behaviors such as smoking, lack of physical activity, 

and alcohol consumption contribute to health outcomes, biological risk persists after social 

gradient is taken into account.  It has, therefore, been argued that low SES may activate 

psychobiological processes, or neuroendocrine, autonomic and immune responses that in turn 

promote the development of high-risk profiles.7 

         The role of stress, particularly chronic everyday stressors compared to traumatic but 

rare events, in the development of negative health outcomes, is often overlooked by health 

professionals when considering the cause of a disease.8 This, despite a growing body of 

research which suggest that it is the inundation of these everyday burdens that strongly affect 

well-being.  These chronic stressors even at a low level may cause an individual to be 

anxious or depressed, to lose sleep at night, to increase the intake of comfort foods, to smoke 

and/or drink, and to become more susceptible to infection.  

        One major issue preventing health professionals from considering a patient’s everyday 

experiences and environment on their health outcome, apart from discrimination and 

stereotypes (large issues plaguing low SES communities but covered extensively by 

Williams et al., 2010) is the discrepancy in both human and animal literature describing the 

effects and possible mechanisms that would link chronic stress and health 

outcomes.9 Further, both social and biological scientists think in a specific mindset and see 

stress to only mean a particular set of effectors.  In this introduction, I aim to outline the 

etiology of the stress response and how many systems of the body including metabolic, 

cardiovascular, and immune, are directed to mediate this response.  In particular, I highlight 
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the endocannabinoid system, which has gained attention over the last decade for its 

regulatory role in multiple processes, ranging from feeding to cognition to pain to emotional 

behavior in response to stressful environments.  I further discuss how environmental 

experiences, sleep and circadian disruption and an individual’s behavioral and physiological 

response whether health-promoting or health-damaging, aid in adaptation but which also can, 

when overused and out of balance, lead to pathophysiology.  Herein I discuss how 

nontraditional animal models of stress, such as those of sleep and circadian disruption, have 

attempted to answer these questions, including my own recent studies. 

 

Stress, cortisol and HPA dysfunction 

     Stress, defined as a state of threatened homeostasis following exposure to extrinsic or 

intrinsic adverse forces, mobilizes a vast number of physiologic and behavioral responses 

that constitute the adaptive stress response that aim to restore disturbed equilibrium.10 Apart 

from the key systems hypothesized to mediate the effects of stress exposure on disease 

outcomes: the sympathetic nervous system (SNS), which stimulates release of epinephrine 

(more commonly known as adrenaline) from the adrenal gland, and the hypothalamic 

pituitary adrenal (HPA) axis, which produces glucocorticoids (GCs) and several other 

mediators, including the parasympathetic nervous system, and pro- and anti-inflammatory 

cytokines, and metabolic hormones, have been described in a dynamic nonlinear network of 

allostasis.11,12   

     Allostasis refers to the active process by which the body responds to daily events as they 

vary across the day in response to external and internal demands.13  Biomediators (HPA, 

autonomic, metabolic, and immune) act to down- and up-regulate each other depending on 
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the body’s internal concentrations, location, and sequential temporal patterning.  Allostasis, 

unlike homeostasis, which acts to keep physiological parameters in a narrow range, is a 

dynamic and adaptive process necessitating the need for adjustments of the mentioned 

biological systems.  This adaptative ability comes at a cost termed allostatic load or overload, 

which refers to the wear and tear that results from either too much stress or from inefficient 

management of allostasis.12 Allostatic load can have detrimental effects on health and can 

manifest in a number of ways, as in repeated hits from multiple stressors, not turning off the 

stress response when it is no longer needed, not turning on an adequate response at onset, or 

not habituating to the recurrence of the same stressor, and thus dampening the allostatic 

response.12  

        The stress hormones, primarily the glucocorticoids (GCs ;cortisol in primates, 

corticosterone in rodents), are of particular interest because of the extensive regulatory role 

they play in the central nervous system, the metabolic system and the immune system.14 GCs 

are the final mediators of the HPA-axis, and play a crucial role in mounting the adaptive 

response to stress.   The central components of the stress system are located in the 

hypothalamus and the brain stem, and primarily include the parvocellular corticotropin-

releasing hormone (CRH) and arginine-vasopressin (AVP) neurons of the paraventricular 

nuclei of the hypothalamus, and the locus coeruleus-norepinephrine system.15 The 

hypothalamus in turn regulates the secretion of adrenocorticotropin hormone (ACTH) from 

the anterior pituitary via CRH and AVP both of which are secreted in a synchronized mode, 

which can be disrupted by imposed stressors.16  Upon ACTH stimulation the adrenal cortex 

secretes GCs, which act via their widespread receptors to respectively activate or repress 

numerous genes, many of which are directly related to metabolic pathways.17  The primary 
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means of HPA-axis regulation occurs through a well-characterized negative feedback loop 

where GCs suppress ongoing HPA activity at the hypothalamic and pituitary levels. Despite 

the clear importance of GCs in feedback regulation, it is important to note that the HPA-axis 

is also susceptible to GC-independent inhibition as evident from adrenalectomized rats with 

corticosterone replacement in the form of a pellet, thus maintaining a constant circulating 

level of corticosterone, but inability to execute a stress response.18 Nonetheless, these rats 

maintained the ability to inhibit ACTH responses, arguing for the existence of neuronal 

inhibitory pathways working in parallel with steroid feedback. Additionally, forebrain and 

hindbrain regions, which communicate with the PVN, have shown to regulate the HPA-axis 

under both basal and stress conditions.19, 20   

       GCs have several important functions, such as increasing access to energy stores, 

increasing protein and fat mobilization, as well as regulating the magnitude and duration of 

inflammatory responses.21 Thus, without sensitivity to this feedback system or when the 

activity of the system becomes dysregulated, excessive or unchecked, secretion of GCs can 

have deleterious consequences on one’s health.  The alterations of GC release are a key 

component of the vital systems that lead to allostatic load, in conjunction with sympathetic 

activity, proinflammatory cytokines, and a compensatory response in parasympathetic 

activity.  This state leads to increased susceptibility of an organism to an array of disease 

states, ranging from mood disorders to Type 2 diabetes and cardiovascular disease. 

 

Measurement of Glucocorticoids 

     Increases in plasma or salivary cortisol levels are used as biochemical markers of stress; 

however, apart from the observed diurnal pattern (discussed in detail below), GC secretion is 
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also subject to considerable variation across individuals as well as within individuals across 

different days.22 This variation makes measurement of active free GCs difficult.  As a result, 

a number of different approaches to modeling cortisol in humans have been examined, 

including: slope from highest to lowest point (diurnal slope), size of the cortisol awakening 

response (CAR), morning or evening levels, and total cortisol concentration over the day 

measured as area under the curve (AUC) of the diurnal pattern.23 Waking levels of cortisol 

and the slope of decline across the day are generally correlated with the CAR and likely 

capture related features of the diurnal pattern.  A flatter or ‘blunted’ cortisol pattern is 

thought to indicate HPA-axis dysfunction with a steeper decline believed to indicate a normal 

rhythm.24, 25 

        To make the story more complicated, cortisol levels can vary depending on the selected 

assay.  Cortisol can be assayed from saliva, plasma, urine, feces and hair.  Salivary cortisol is 

most frequently used at present given the ease of collection over the day.  Further, it 

represents free cortisol that has passively diffused into the salivary glands.  Free cortisol 

represents the fraction of cortisol not bound to binding proteins, including corticosteroid-

binding globulin (CBG).  While cortisol in the saliva is not bound to CBG, 30-50% has been 

converted to cortisone (the inactive form of cortisol) by the enzyme 11beta-hydroxysteroid 

dehydrogenase (11 beta-HSD) type 2, leading to overall lower levels of cortisol in saliva.26 

Urine collections of 12 or 24 h are still often used to provide an integrated measure of HPA 

activity over a longer period of time.  However, it is important to note that urinary free 

cortisol is a measure of not only cortisol production, but also cortisol metabolism by the liver 

and clearance by the kidneys.  Hair analysis is increasingly more common as they reflect 

cortisol changes that can occur over weeks and months. 26  While each of these 
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measurements has advantages and limitations, hair analysis, avoids the requirement of 

multiple samples taken a specific times of day, making it suitable for population analysis.  

 

Hypercortisolism   

     The association between stress and increased cortisol has been well documented over the 

past few decades to the point where stress and increased GC secretion have become 

synonyms in the literature.27 Obesity has indeed been associated with increased cortisol 

excretion that correlated with BMI.28-30 Anecdotally this comes to no surprise to many who 

note increased stress is accompanied by increased food intake and weight gain.   Further, 

endocrinologists have noted the striking resemblance between Cushing’s syndrome and the 

metabolic syndrome, thus suggesting a common underlying mechanism.31 However, while 

both are characterized by insulin resistance, hypertension, visceral obesity, hyperlipidaemia, 

and glucose intolerance, circulating GC concentrations are commonly not increased in 

obesity or Type 2 diabetes, stressing the need to look beyond high circulating GCs.   

       In addition to global action, GCs also have tissue-specific affects.  Visceral adipocytes 

are particularly responsive to GCs.  They not only express higher numbers of GC receptors 

but are also a key site for the local interconversion of inactive GC precursors into active GCs, 

a reaction catalyzed by 11β-hydroxysteroid dehydrogenase Type 1 (11βHSD1), which 

converts cortisone to cortisol.32 

       The role of binding proteins to regulate the availability of free GCs levels is also often 

overlooked.  During the diurnal nadir, only about 5% of GCs circulate unbound in an active 

thermodynamically “free” form, where they are able to bind to receptors, whereas most are 

bound to corticosteroid-biding globulin (CBG) or albumin in blood plasma.33 CBG proteins 
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are saturated by high-physiological concentrations.  For this reason they are subject to large 

variations of plasma concentrations of free plasma cortisol that occur during diurnal changes. 

 The inactive GCs do not have a pronounced diurnal variation and are rarely protein-bound, 

which results in a higher inactive GC storage pool in circulating plasma.34   This inactive 

storage pool is constantly available to 11β-HSD1 reductase to maintain local active GC 

concentrations even in periods of low plasma cortisol concentrations, such as during the 

diurnal nadir.   In this way, by expressing 11βHSD1, the target tissue, such as white adipose 

tissue, is equipped to regulate its own GC concentration and subsequently its GC 

responsiveness on the receptor level by adjusting the rate of local GC activation.35 

       Use of genetically altered mice further solidified the role of 11β-HSD1 reductase in 

promoting obesity.  11β-HSD1 knockout mice, show impaired induction of hepatic 

gluconeogenic enzymes during fasting and a mitigated glycaemic response to stress or 

induction of obesity.36 Additionally, they show improved glucose tolerance, increased 

hepatic insulin sensitivity, and an exaggerated hepatic induction of genes for lipogenic 

enzymes.37  In humans, dysregulation of tissue-specific 11β-HSD1 activity also seems to 

play a role in the development of obesity in that activity in adipose tissue is increased.38  To 

this extent, mice over expressing 11β-HSD1 in fat tissue show an increase in enzyme activity 

to a similar degree to that seen in obese humans, accompanied by visceral obesity with 

insulin resistance and dyslipidemia;39 overexpression in hepatic cells of mice produces 

symptoms of the metabolic syndrome without obesity.40 

        Hypercortisolism has also been linked to depression and it was subsequently proposed 

that chronic stress causes depression and successive poor health habits that can lead to the 

metabolic syndrome and ensuing coronary heart disease.41  Studies examining mood states, 
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depressive symptoms, and stress levels found that trait anxiety and depression, but not 

perceived stress, were associated with small but statistically significant cortisol elevation. 

 However, stressful daily events were associated with increased cortisol secretion, the 

magnitude of the effect depending on whether the event was still ongoing and on how 

frequently a similar kind of event had occurred previously.42 Similarly, Pruessner et al. found 

higher levels of depressive symptomatology were associated with a greater cortisol response 

after awakening. In that study, cortisol levels and depressive symptomatology were 

significantly positively correlated with measures of chronic and acute stress perception.43 

Biologically, this has been attributed to dysregulation of the HPA axis, particularly 

hyperactivity.44 Consistent with this hypothesis, a study looking at 45 postmenopausal 

women found that hypercortisolemic depression, compared to normocortisolemic depression, 

was associated with increased visceral fat, suggesting that associations with metabolic 

abnormalities may be especially powerful for hypercortisolemic depression.45 A study in an 

older population confirmed these findings suggesting again that when both depression and 

high cortisol levels are present, the odds of the metabolic syndrome is increased.46  Despite 

convincing evidence that would suggest increased circulation of cortisol leads to weight gain 

in depressed patients, the mechanism linking the two remains elusive.   

       In order to obtain a better understanding on how disruption of the HPA-axis function 

may increase the incidence of the metabolic syndrome, our group recently developed a 

noninvasive approach to deliver a high dose of corticosterone in the drinking water of mice. 

 In this way, the adrenal glands remain intact and animals are able to retain some integrity in 

the diurnal rhythm present in normal animals.  This approach has allowed us to avoid 

confounding variables such as daily injections and surgery for implantation of corticosterone 
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pellets which could provide additional stress.   We are also able to minimize handling with 

only one weekly cage change and simultaneous weight measurement, procedures that have 

also been described elsewhere to alter the stress response.47, 48 A 4-wk exposure to 

corticosterone (100 µg/ml) in the drinking water resulted in rapid and dramatic increases in 

weight gain, increased adiposity, elevated plasma leptin, insulin, and triglyceride levels, 

hyperphagia, glucose intolerance, and decreased home-cage locomotion.  A lower dose of 

corticosterone in the drinking water (25 µg/ml) resulted in an intermediate phenotype in 

some of these measures with no effect in others.  Interestingly, when challenged with a high-

fat diet (HFD), mice receiving a high dose of corticosterone gained less weight compared to 

high dose mice on standard chow (SC), and no significant difference from mice on HFD 

alone.  Whereas low treatment of corticosterone with HFD resulted in significant weight gain 

compared to both mice on corticosterone or HFD alone.  When looking at insulin, leptin, and 

triglyceride levels the effects of corticosterone in both low and high dose groups are additive, 

while low corticosterone does not impair glucose tolerance (unpublished).  These findings 

are similar to those from Shpilberg et al. who looked at the impact of a corticosterone pellet 

implanted in male Sprague-dawley rats and simultaneously placed on a HFD for 16 days.  

Again animals receiving corticosterone and HFD had a lower body weight, but increased 

epididymal mass compared to rats given a wax pellet on and placed on a standard diet.  These 

rats also displayed serve fasting hyperglycemia, hyperinsulinemia, insulin resistance, and 

impaired β-cell response to oral glucose load when compared to control rats.49 Both models 

provide suitable means to study the metabolic syndrome and type 2 diabetes and the role that 

GCs play in mediating these diseases both independently and in conjunction with HFD. 
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Hypocortisolism 

     Hypocortisolism, characterized by a hyporesponsiveness on different levels of the HPA-

axis, is a phenomenon that occurs in 20-25% of patients suffering from stress-related 

diseases.50 Although reports of hypocortisolism in healthy individuals who lived under 

conditions of ongoing stress go back to the 1960s and 1970s, they were not taken seriously 

until similar results were seen in sufferers of post-traumatic stress disorder (PTSD).51-54 More 

recently, hypocortisolism has also been reported for patients suffering from disorders such as 

burnout, chronic fatigue syndrome, fibromyalgia, chronic pelvic pain and asthma.50 Studies 

over the last few years act as a further indicator that hypocortisolism does not seem to be an 

exclusive correlate of stress-related pathology, but is also present in healthy subjects living 

under ongoing stress such as those highlighted by Juster et al.  In this study, it was 

demonstrated that increased allostatic load, the process by which chronic stress causes stress 

hormones to strain many biological systems, is associated with lower morning and stress 

reactive cortisol levels in comparison to individuals in the “Low” allostatic load group.55  In 

an effort to determine cross-sectional and longitudinal associations between body 

composition and serum cortisol concentrations in a group of community-dwelling men, a 

negative association between cortisol concentrations and all body composition parameters 

was revealed.56  The impact of neighborhood-level stressors and lack of social support also 

resulted in an overall decrease in cortisol levels in higher stress, lower support 

neighborhoods, with a flatter rate of cortisol decline throughout the day.57, 58  While the 

presence and specific cause of hypocortisolism is still up for debate, it has been suggested to 

be a result of a) reduced adrenocortical secretion, at least temporarily during the circadian 

cycle; b) reduced adrenocortical reactivity; or c) enhanced negative feedback inhibition of the 
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HPA axis.27 

       Although there is some controversy in clinical studies about the presence and impact of 

hypocortisolism, research from animal studies provides mechanistic evidence to support its 

presence under chronic stress. Fries et al. make note of a reported rodent model of 

hypocortisolism in which rats exposed to 3 wks of restraint stress exhibit a hyperactive HPA-

axis with significantly elevated corticosterone levels.  However, 2 wks post termination of 

the stressor the animals show a blunted corticosterone response/hypocortisolism compared to 

non-stressed control rats.50 In an alternative model, using morphine withdrawal as a stressor, 

prolonged elevated levels of ACTH and corticosterone were followed by a continuous drop 

of corticosterone levels.59-61 In monkeys, the use of maternal separation as a stressor to mimic 

early life adversity has been shown to significantly lower basal hair cortisol levels in peer-

reared monkeys compared to the mother-reared monkeys 1.5 and 3 years after early 

separation. Plasma cortisol assessed in the monkeys after 1.5 years of normal social life also 

indicated that the peak in the peer-reared cortisol response to acute stressors was 

substantially delayed.62 

       In recent years there have been a growing number of studies looking at the relationship 

between the impact of obesity and food intake and hypocortisolism.  In rodent models this 

has been studied through the chronic stress response network model, in which rats exposed to 

repeated chronic restraint stress are then given lard or sucrose and subsequently demonstrate 

an attenuated stress response compared to those given chow.63 Similarly, a palatable cafeteria 

high-fat diet normalized the effects of prolonged maternal separation in rats, reversing 

increases in anxiety and depressive behaviors, increased corticosterone, increased 

hypothalamic CRH, and increased hippocampal GC receptor expression.64 Chronically 



 13 

stressed rats, over time, develop greater mesenteric fat, which has been shown to inversely 

correlate with CRH mRNA expression in the paraventricular nucleus.65  This response is one 

hypothesized mechanism explaining how, over time, chronically stressed humans appear to 

have hypocortisolism.   

     This effect seems to be preserved across species as evident by the chronic stress response 

network in rhesus monkeys, in which subordinate females consumed more calories, gained 

more weight, and subsequently showed lower diurnal cortisol responses and dampened 

cortisol responses to an acute social separation stressor.66  Findings were analogous in a 

human study looking at the relation between “comfort food” and HPA-axis response in a 

group of “highly stressed” women.  As with the animal models, it was shown that highly 

stressed women reported greater emotional eating, greater abdominal fat, and showed blunted 

output in response to acute stress, as well as signs of a heightened sensitivity to cortisol 

including lower diurnal cortisol, and an enhanced negative feedback loop as indicated by a 

dexamethasone response.67   The biological determinates of decreased circulating GCs, and 

the link between circulating levels to weight gain, whether dependently through food intake 

or through an independent mechanism remain to be determined.   

 

Circadian rhythm of glucocorticoids 

     In addition to being a vital product of the stress response and feedback regulation, GCs 

follow a normal diurnal rhythm necessary for proper functioning. The vital role of GCs here 

was highlighted by Mary Dallman’s group, which showed that a diurnal exposure to 

corticosterone in the drinking water of rats was sufficient to normalize ACTH levels in 

adrenalectomized rats, perhaps priming neural mechanism subserving a shut-off of the HPA-
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axis.18  This, in contrast to constant but flat GCs in circulation, blunt the turn-on and shut-off 

of the HPA ACTH response to an acute stressor in ADX rats.68 Normal cortisol levels have 

been shown to have a maximum level in the morning, characterized by an acute increase 

during the first hour after awakening.69,70 Levels typically drop rapidly for the next couple of 

hours and then continue to decline slowly throughout the day and night reaching a low point 

around midnight (rodents as nocturnal animals show the reverse effect with circulating 

corticosterone).71  

 

The direct glucocorticoid contribution to obesity 

     Persistent exposure to stress, and the concomitant increase in circulating GCs, is accepted 

as one of the mediators of the ever-growing epidemic of obesity and metabolic syndrome.72-74 

However, until recently, few models were able to recapitulate the weight gain that 

accompanies stress exposure in many humans. More common, models of chronic stress 

including certain models of chronic subordination and chronic restraint stress, have 

repeatedly been associated with a reduction in body weight and a generalized catabolic 

state.75-77 While these models are well suited for studying anhedonia and depression that 

some stressed individuals display, they shed no light on the other side of the coin.   

      More recently models of chronic psychosocial stress such as social hierarchy disruption 

and intruder aggression have shown increases in body mass and adiposity in subordinate 

mice with a negative energy balance in dominant mice79-81 and increased vulnerability to diet 

induced obesity.81,83,47  Although increased food intake is accompanied by stress in many of 

these studies, weight gain is more often attributable to decreased energy expenditure. 

 Interestingly, increased weight gain and circulating corticosterone in this model is not 
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accompanied by increased fat pad, the hallmark of GC-induced obesity.  Bartolomucci et al. 

argue that this effect could be attributed to upregulation of the HPA-axis in subordinate mice  

compared to dominate mice.84  

       In order to model the effects of early life chronic stressors and their potential to 

dysregulate metabolism, Loizzo et al. developed a paradigm combining psychological and 

nociceptive manipulations in neonatal life.  Neonatal manipulations (10 min of maternal 

separation plus s.c. sham injection, daily for the first 21 d of life) resulted in increased 

weight-gain after onset of maturity, showing increased fat tissue and hypertrophic epididymal 

adipocytes along with increased levels of leptin, triglycerides, and plasma corticosterone. 

 Overweight mice do not present consistent variations in daily spontaneous locomotor 

activity and show a slight increase in food intake, but only in adulthood.  Total life food 

intake is considered, it accounts for only 20% of the total body weight increase over 

controls.85 The above studies all support the concept that stressors early in life can cause 

obesity in a way that does not involve major increases in food intake.  

        The effect of chronic GC exposure on obesity is seen predominantly in the visceral area 

as briefly discussed earlier in this review.86,87   Additionally, GC exposure leads to increased 

intake of sweet, fattening, nutrient dense foods87-89 and when an acute stress is juxtaposed 

with a chronic stressor, stress eating is increased,91,92 all of which adds to increased weight 

gain and obesity.  However, as described above, decreases in circulating GCs, whether due to 

an under-active HPA axis or adjustments in alternative pathways acting to regulate the 

system and maintain allostasis, can also result in weight gain and the precise role of GCs here 

needs to be explored.  The compensatory role of increased food intake, particularly that of 

high-calorie, nutrient-sparse foods is clearly a health-damaging behavior, which in the long-
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term can lead to allostatic load and, thus not the best coping device for an extended measure 

of time.  Recent work from James Jackson suggests that in certain populations the 

engagement of such health-damaging behaviors while decreasing life span is able to prevent 

depression.93 The latter example provides a great display of the complexity of the stress 

response and how individuals adapt to and cope with a challenge while also contributing to 

allostatic load.  

      In terms of appetite, GCs are noted to have an anorexigenic affect by suppressing hunger 

centrally through a CRH-mediated mechanism, likely through an acute post-stress inhibition 

of neuropeptide Y (NPY)-stimulated food intake.94-96 Long-term GC release acts to stimulate 

feeding, perhaps as an adaptative response to replenish energy sources lost during the 

stressful event or to stockpile in the event of a future stressor.97-99 In the modern world where 

food, particularly high-energy foods are in abundance and stress can come from more of a 

psychosocial versus physical form, this adaptation can be particularly harmful. 

        As stated above, stress and GCs tend to stimulate appetite, particularly for nutrient 

dense foods, with insulin having a key role in this regard.63 The preference for calorically 

dense foods in stressed animals seems to have a beneficial role by dampening HPA-axis 

response to further stress.64 The rewarding nature of this cycle led to the research on the role 

of dopaminergic, opioid and glutamatergic transmission within the nucleus accumbens, given 

their role in mediating responses to drugs of addiction.100-102 This reward circuitry has long 

been known to be activated by eating, and has been shown to be involved with the propensity 

to ingest highly palatable food.103 

         Beyond appetite, GCs are known to play a vital role in lipid homeostasis, from adipose 

tissue mobilization to fat deposition and storage. Much evidence here comes from 
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accumulating visceral fat seen in humans and primates as described above; however, the 

precise mechanism underlying this relationship is not fully understood. From in vivo studies, 

the general story suggests that infusion of GCs enhances lipolysis by stimulating the release 

of nonesterified fatty acids from adipocytes through the activation of hormone-sensitive 

lipase (HSL), an enzyme responsible for enhancing fatty acid mobilization.104,105 It has been 

argued that this increase in circulating free fatty acids restricts glucose utilization and 

encourages insulin resistance.106  Further it appears that GCs enhance fat storage by 

increasing LPL activity and in this way affect lipid metabolism by increasing both turnover 

and uptake of fatty acids in adipose tissue.107-108      

       GCs are also important for the differentiation of preadipocytes into mature 

adipocytes.109-110 The role here, in conjunction with their ability to upregulate the NPY Y2 

receptor in abdominal fat, subsequently leading to stimulation of proliferation and 

differentiation of adipocytes, further accentuate the accumulation of fat.111, 83  Further, GCs 

seem to play a role in fatty liver through dysregulation of SREBP1c, a transcription factor 

that regulates lipid-related processes.112  While it is clear that GCs promote adiposity, a 

distinct mechanism remains unclear particularly in the case where hypocortisolism may be to 

blame.  

  

Nonclassical mediators between glucocorticoids and obesity: The Endocannabinoid 

System 

     The Endocannabinoid  (eCB) System has a well established role in mediating the stress 

response; inversely, GCs have the ability to increase the production and release of eCB 

molecules.113-115 The eCB system was originally characterized as the neuronal system to 
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which the psychoactive constituent of cannabis ∆-9-tetrahydrocannabinol (THC) interacted 

to exert its effects on physiology and behavior. The endocannabinoids, N-

arachidonylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) are lipid 

mediators derived from membrane phospholipids or triglycerides. The endocannabinoids are 

not stored or released vesicularly, but are synthesized and/or released in response to altered 

activity.   The syntheses of AEA and 2-AG occur via separate enzymatic cascades and are 

evoked by cellular stress, tissue damage, or metabolic challenges.116,117 2-AG is degraded by 

monoacylglycerol lipase (MAGL) and diacylglycerol lipase (DAGL).  In contrast, AEA is 

degraded by an intracellular serine hydrolase, fatty acid amide hydrolase (FAAH).118  The 

system is comprised of the cannabinoid CB type 1 and type 2 (CB1 and CB2) receptors.  The 

CB1 receptor is expressed in the central nervous system as well as metabolically active 

organs including the liver, adipose tissue, pancreas, and intestine.  The CB2 receptor is 

predominately expressed in tissue of the immune system.119    

 Accumulating evidence has demonstrated that the eCB system is responsive to 

modulation by both stress and GCs within the hypothalamus and limbic structures. In vitro 

work demonstrates that glucocorticoids within the PVN can evoke a rapid induction of eCB 

synthesis, which in turn acts to suppress incoming excitatory neurotransmission to CRH 

neurosecretory cells.114  In vivo work demonstrated that a single administration of CORT  

increased AEA content within the amygdala, hippocampus and hypothalamus at only 10 min-

following administration.120 2-AG was also found to be elevated 10 min post injection, but 

only in the hypothalamus.  These effects subsided at 1 hour following administration of 

corticosterone.113  Functional studies have shown that mice lacking the CB1 receptor exhibit 

potentiated secretion of both ACTH and corticosterone following exposure to an array of 
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psychological stressors.  Such data suggest that eCB signaling is engaged by stress to 

constrain activation of the HPA-axis, when disrupted an exaggerated response occurs.115  

Overall, studies to date suggest that eCB signaling appears to regulate both the activation and 

termination of the HPA axis in response to stress through a reduction in AEA and an increase 

in 2-AG, respectively.113         

 Additionally, eCBs are potent regulators of appetite, energy balance and metabolic 

processes through both central and peripheral regulation of feeding and metabolism.121-125 

Research over the last decade showed genetic deletion of the CB1 receptor in mice results in 

decreased body weight and reduced fat mass.  This reduction in weight loss led to the 

development of a drug for the treatment of obesity: rimonabant (SR141716), a selective CB1 

receptor antagonist.122             

 Given the unique regulatory role of eCBs in stress and energy metabolism, we sought 

to examine the role of eCB regulation in our hypercortisolism model of metabolic 

dysregulation.   Endocannabinoid mediation also suggested by data presented by Valenzuela, 

who showed that an overactive liver and epididymal fat CB1R due to early life stress may be 

involved in metabolic alterations in adulthood, which were attenuated by chronic treatment 

with the CB1R antagonist SR141716A.119 

  

Circadian control 

     Daily rhythms in gene expression, physiology, and behavior persist under constant 

conditions in-spite of seasonal changes of light and dark and, therefore, must be driven by 

self-sustained biological oscillators called circadian clocks.126 These clocks are adjusted daily 
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by the light-dark-cycle in order to be in harmony with the outside environment.  In mammals, 

light signals from the outside world are transmitted directly to the suprachiasmatic nuclei 

(SCN) of the ventral hypothalamus via the retino-hypothalamic tract.127 Given its ability to 

synchronize all overt rhythms, the SCN is referred to as the “master clock.”128 In order to 

synchronize physiology with external time, the SCN clock emits timed signals through 

hormonal and neuronal pathways to a series of peripheral circadian clocks found in most 

organs.129, 130 Peripheral clocks translate clock time into physiologically meaningful signals 

through rhythmic activation of clock-controlled genes.131,132   The clock mechanism in the 

brain and peripheral tissues consists of two interlocking, regulatory feedback loops.  In the 

first loop, CLOCK and BMAL1 heterodimerize and bind to E-box sequences to mediate 

transcription of a large number of genes, including Periods (Per1-3) and Cryptochromes 

(Crys).  Pers and Crys constitute part of the negative feedback loop and inhibit 

CLOCK:BMAL1-mediated transcription.133 In a second loop, BMAL1 transcription is 

regulated by reverse erythroblastosis virus a (REV-ERBa), retinoic acid receptor-related 

orphan receptor a (RORa), and peroxisome proliferator-activated receptor a (PPARa), all of 

which regulate lipogenesis and lipid metabolism.  Subsequently, the CLOCK:BMAL1 

heterodimer regulates the expression of Rev-erba, Rora, and PPara.133-136 Protein expression 

of the clock genes has been shown to be important for regulation of metabolism as evident by 

alterations in rhythmic expression in models of high fat feeding and diabetes.136,137 

Additionally, clock gene mutation or knockout has led to not only circadian dysregulation but 

also metabolic disturbances of lipid and glucose homeostasis.138-142 Understanding the 

precise mechanism by which the SCN is able to reset peripheral clocks and how such 

regulation is able to affect downstream pathways, such as glucose and lipid metabolism, has 
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been a major focus over the last decade.   

       GCs have been a particularly attractive candidate in peripheral regulation, because they 

are secreted in daily cycles and the GC receptor is expressed in most peripheral cell types, 

but not in the neurons of the SCN.143,144 In this way, GCs could act as entraining signals as 

suggested by Balsalobra who demonstrated that adrenal GCs have the ability to reset the 

clock of subordinated oscillators in the periphery.145   The adrenal circadian clock was further 

shown to regulate the rhythmic release of GCs into the blood, which likely controls 

metabolic rhythms in many other organs, including liver, kidney, and brain.146-149   

       GCs are also interesting as a regulatory signal because of their role in the feeding 

response. Again, work by Mary Dallman and others has given light to the role of GCs in 

feeding driven behavior, particularly in regards to weight gain and the desire to eat “comfort 

foods”, such as sweet and high-fat foods.  Studies looking at the relationships between acute 

and chronic stressors, the brain and the HPA axis show that stress and GCs, in the presence 

of insulin, increase the relative intake of “comfort foods” and reduce HPA activity.  Further, 

apart from the direct role in the brain to both excite and inhibit CRH and ACTH secretion, 

GCs act in the periphery to provide an indirect secondary inhibitory feedback signal that 

limits the degree of chronic stress perceived by an organism.87   

        In the case of circadian rhythms, recent studies have shown that a high-fat diet leads to 

rapid alterations in both the period of locomotor activity in constant darkness and to 

increased food intake during the normal rest period under light-dark conditions.151  These 

behavioral changes to rhythmicity are accompanied by disrupted circadian gene expression 

within hypothalamus, liver, and adipose tissue and with altered cycling of hormones and 

nuclear hormone receptors involved in fuel utilization, such as leptin, thyroid-stimulating 
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hormone, and testosterone in mice, rats, and humans.152-155  Similarly a decrease in calorie 

intake through daytime restricted feeding, results in an uncoupling of circadian clocks in 

peripheral tissues, such as liver, kidney, heart, and pancreas from the central pacemaker in 

the SCN.156,157  Long-term daytime restricted feeding (18 wk) is sufficient to increase the 

amplitude of clock gene expression and catabolic factors and in this way reduce levels of 

disease markers.158-160  When determining the impact of restricted feeding on the harmful 

effects of high fat feeding, studies found that compared to mice fed an ad lib high-fat diet, 

restricted mice on a high-fat diet were able to restore the expression phase of the clock genes 

and a reduction in weight and improved insulin sensitivity despite equivalent food 

consumption.161 Further, mice on a restricted high-fat diet had decreased circulating 

corticosterone compared to the restricted low fat chow group.162 Work here hints to the 

complex regulatory role of GCs with increases from restricted feeding having beneficial 

metabolic effects even in the face of inhibition through high-fat feeding, suggesting the role 

of an alternative upstream mediator. 

       Work showing that rhythmicity of GCs influences photic entrainment of locomotor 

activity, led to the elegant studies by Kiessling, who demonstrated that genetic ablation of the 

adrenal clock accelerated the rate of re-entrainment.164,165  Further, timed application of 

metyrapone, an inhibitor of adrenal GC synthesis, elicited a shift in GC rhythmicity, either 

prolonging or shortening jet lag, depending on the time of administration.  Jet lag, is best 

described in this review as a set of physiological and psychological perturbations experienced 

when internal circadian rhythms and external times are out of synchrony.  This work suggests 

that the adrenal clock coordinates circadian entrainment during jet lag by gradually adjusting 

GC rhythm.165 Studies originally looking at the impact of jet lag, on salivary cortisol found 
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higher levels in cabin crew versus ground crew across the working day.  This increase in 

cortisol was higher for international transmeridian flying and observed across four different 

career cohorts suggesting that employees are unable to adapt to the effect of transmeridian 

flight.165 

Thesis Rationale and objectives 

Rationale 

   Incidence of the metabolic syndrome, the presence of a range of metabolic dysregularities 

that lead to type 2 diabetes or cardiovascular disease, is increasing not only in the United 

States, but also around the world.   Several recent studies suggest that metabolic 

abnormalities are associated with the settings of the circadian clock system,147,148 and, 

moreover, that alterations in these settings are among the possible causes of metabolic 

syndrome.  Organisms have developed behavioral and physiological adaptations to not only 

strong diurnal cues, but also to unforeseen, random stress stimuli such as predator attack or 

serve weather changes.   Moreover, these responses communicate with one another at 

different signaling levels, resulting in interrelated regulatory networks, and dysregulation of 

either system can lead to the development of metabolic disorders.149,150 Indeed, 

glucocorticoids, which are well known to affect metabolic conditions, entrain the circadian 

rhythm by phase-shifting the expressions of several core clock genes in peripheral organs, 

including the liver, kidneys, and heart.146  Recently, two mouse models were developed in the 

lab that would allow further investigation into the interaction between glucocorticoid 

signaling and the core clock and how both may lead to the development of obesity through a 

common pathway-one a chronic disruption in normal light cues,166 the other an exogenous 

administration of corticosterone (CORT) in the drinking water.47  In addition, the 
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endocannabinoid system emerged as a possible variable here given its recent and thorough 

characterization as a moderator of the adaptive stress response113,114,124,151 as well as its role 

in regulating energy homeostasis.121  Therefore, the central goal of the studies presented in 

this dissertation is to elucidate a novel pathway that can integrate altered glucocorticoid 

signals and metabolic functions.  

 

Hypothesis 

Both increases and decreases in GCs in circulation lead to alterations in clock gene 

expression and subsequent disturbances in metabolic pathways.  These alterations are 

prevented by blocking the CB1 receptor not only globally but also through targeted peripheral 

inhibition suggesting that the endocannabinoid system mediates GC induced metabolic 

syndrome through a predominantly peripheral mechanism.  

 

Objectives 

1. To determine whether exposure to alterations in external light cues result in changed 

clock gene expression in the white adipose tissue, liver, and hippocampus of wild-

type male mice, and if so determine the role glucocorticoid signaling may have on 

adjusted patterns of expression and subsequent weight gain (Chapter 3). 

2. To demonstrate whether chronically increased circulating levels of glucocorticoids 

result in impaired circadian (daily) rhythms and altered clock and metabolic gene 

expression in the white adipose tissue and liver of wild-type male mice (Chapter 4). 

3. To establish the endocannabinoid system as a mediator in glucocorticoid mediated 

metabolic abnormalities with the use of CB1 receptor knockout mice (Chapter 5). 
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4. To determine the primary source of endocannabinoid and glucocorticoid interaction 

through characterization of system parameters (Chapter 6) and by specifically 

targeting the peripheral signaling pathway using pharmacological and genetic 

approaches (Chapter 7).  
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Chapter 2: Materials and Methods  

Animals and protocols 

General procedure for corticosterone treated mice        

All animal procedures were undertaken with approval of The Rockefeller University IACUC.  

Adult male mice (C57/BL6; 19–21 g at receiving) from Charles River Laboratories 

(Kingston, NY) were group housed (n=5/cage) in standard cages (28.5 x 17 x 13 cm), on a 

12-h light, 12-h dark cycle (lights off at 1800 h). A 2 lux red light allowed for animal 

maintenance in the dark phase. Temperature in the room was maintained at 21 ± 2 C. Mice 

were allowed to acclimate to the facility for 7 days prior to the beginning of all 

experimentation.   After the acclimation phase, water was replaced with a solution containing 

25 or 100 µg/ml free corticosterone (CORT; Sigma, St. Louis, MO) or 1% EtOH vehicle 

alone as described previously.47 Animals were weighed once a week during cage change, at 

which time solutions were replaced, and otherwise left undisturbed.   

 

General procedure for shifted mice 

Male C57BL/6 mice (Charles River, Inc.) were group housed (n = 5 per cage) and allowed 1 

week to acclimate to the facility.  Food and water were available ad libitum for the duration 

of the experiment.  For circadian manipulation, one group of animals was maintained in a 20-

h LD cycle, with 10 h of light and 10 h of dark.  The control group remained in a 12:12 LD 

cycle.  Animals were weighed weekly during cage change and otherwise left undisturbed for 

8 weeks.  For the time course shift study mice were euthanized at ZT 0, 6, 12, 18 (n=8-

10/group).   
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CORT time course study 

This study was conducted at Washington State University’s College of Veterinary Medicine 

in Pullman, WA.  All procedures with animals were undertaken with the approval of the 

WSU Institutional Animal Care and Use Committee.  In this study one cohort of animals was 

group housed (n=4/cage) and placed on either vehicle, 25 or 100 µg/mL as described above.   

After 4 weeks of treatment animals were euthanized at ZT 6, 12, or 18 (n=4-6/group).   Mice 

from the second cohort were individually housed.  Body temperature and activity was 

continuously recorded using temperature data-loggers implanted into the peritoneal cavity 

(SubCue, Inc.), programmed to record body temperature every 30 min, with a resolution of 

0.0625 °C. Following implant, animals were allowed 1 week to recover. Body temperature 

and activity levels were collected using MiniMitter battery-less telemeter system 

(Respironics, Inc).  Data were collected using VitalView software (Respironics), and 

analyzed in ClockLab for MatLab or ActogramJ for Image J.  Following recovery mice were 

placed on vehicle, 25 or 100 µg/mL CORT.  Three days before mice were euthanized, the 

animals were placed in constant darkness to measure free running circadian rhythmicity.  

Mice were then euthanized at CT 12 or 18, CT time for each animal based on their individual 

actogram and thus kill times were staggered.  

 

Mouse shift with exogenous CORT replacement 

     In this experiment mice were placed in circadian disruption chambers of LD10:10 or 

control chambers of LD12:12 as described above; however, mice were simultaneously placed 

on either 25 µg/mL of CORT or vehicle solution as described above.  After 8 weeks of 
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circadian disruption and CORT treatment, mice were euthanized at ZT 6, 12, or 18 (n=4-

5/group).  

Genetic manipulations 

     The CB1R–/– global and liver specific mice used in this study were originally generated 

and backcrossed to a C57/Bl6J background167 and were provided by the National Institute of 

Mental Health. CB1R–/– mice and their wild-type littermates were bred from heterozygote 

mother and CB1R–/– father and wild type breeding pairs, respectively.  LCB1–/– mice were 

generated by crossing mice homozygous for the CB1-floxed allele (CB1
f/f), which were on a 

predominantly C57BL/6N background (7-8 crossings), with mice expressing the bacterial 

Cre recombinase driven by the mouse albumin promoter (TG[Alb-cre]21 Mgn) that had been 

backcrossed 7 times to a C57BL/6J background, from Jackson Laboratory,168  to obtain 

CB1
f/fx CB1

f/fAlbCre breeding pairs.  The littermates obtained were on a mixed C57BL/6JxN 

background.  In each experimental paradigm, littermates were used as controls.  In each 

studying knockout mice were euthanized at ZT 4-6, unless otherwise stated.  Genotyping of 

CB1-/- mice was carried out using Transnetyx, Inc. LCB1-/- mice were genotyped by PCR 

for the Cre transgene, Cre3- 5’  cactcatggaaaatagcgatc 3’, Cre4- 5’ atctccggtattgaaactccagcgc 

3’. Briefly, genomic DNA was obtained from ear punches using Viagen DirectPCR® DNA 

Extraction System (Los Angeles, CA).  1-2 µL of genomic DNA was run with .2µM of Cre3 

and Cre4, .2µM dNTPs, 1.5 mM MgCl2, 1xPCR buffer, 2u Taq DNA polymerase, and water 

to a volume of 25µL. PCR cycle was as follows 95°C 2 minutes, 34 cycles of 95°C for 45 

seconds, 60°C for 1 minute, 72°C for 1 minute, and a final stage of 72° for 7 minutes.  
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Tissue Collection 

     After treatment animals were euthanized by rapid decapitation. Trunk blood was collected 

in BD Vacutainer K3 EDTA coated glass tubes (VWR, West Chester, PA), placed on ice, 

and centrifuged at 1500 rpm for 15 min at 4 C.  Plasma was removed and stored at -80 C 

until used for analyses. Spleen, adrenals, liver, and gonadal fat pads from each animal were 

collected and weighed.  A portion of the liver and fat pad along with the entire brain were 

flash frozen for further analysis. Remaining fat pad, liver, and pancreas were fixed with 4% 

PFA/PBS overnight for histology. 

 

Pharmacological Manipulations 

AM251 

     Adult male mice (C57/BL6)) were group housed (n=5/cage) and placed on a solution 

containing 100µg/ml free CORT (Sigma, St. Louis, MO) dissolved in 100% ethanol, and 

then diluted in regular tap water to a final EtOH concentration of 1%.  Control mice received 

a 1% EtOH solution alone.  Mice were given free access to drinking water and fed ad 

libitum, for 4 weeks, at the end of which markers of obesity and metabolic markers were 

examined (see below).  Chronic treatment with AM251 (Tocris) commenced concurrently 

with CORT in drinking water.  AM251 was dissolved in 2% DMSO and >1% Tween 80. 1 h 

prior to lights off, mice were injected intraperitoneally with vehicle (2% DMSO and >1% 

Tween 80) or AM251 at 2 mg/kg body.  All mice were allowed chow ad libitum.  Animals 

and chow were weighed daily, at the time of injection.  Animals were otherwise left 

undisturbed. Tissues were collected and processed as described below.  
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AM6545 

     CORT and animal treatment followed as above.  In tandem with CORT mice received 

chronic intraperitoneal injections of vehicle or AM6545, a generous gift from Dr. Alex 

Makriyannis’ group at Northeastern, (2% DMSO and >1% Tween 80 with gentle heating) at 

10mg/kg 1 h prior to lights off. 

 

Histology  

Oil Red O 

     Frozen sections of the liver (10 μm) were stained with Oil Red O and counterstained with 

hematoxylin for histology.  Staining was done on five samples per experimental group. 

 

H&E 

     Paraffin embedded samples were sectioned at 8 μm thickness with a microtome 

(Microtom). Sections were floated in a water bath at 42 °C, placed on poly-L-lysine-coated 

Polysine microscope slides (Erie Scientific Company) and allowed to air dry. For 

hematoxylin and eosin (H&E) staining, sections were dewaxed in xylenes and rehydrated in 

ethanol baths. Nuclei were stained with Gill no. 2 hematoxylin stain for 8 min and eosin for 

10 dips. Sections were then covered with permount and cover slipped. H&E staining was 

done on five samples per experimental group.  Adipocyte length was determined from 

images at a 10X magnification. 20 randomly selected droplets were measured using Nis-

Elements AR software, and averaged per animal. 
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Immunohistochemistry of F4/80 in WAT 

     Paraffin embedded samples, cut at 8µM and dried on slides, rehydrated through changes 

of xylenes and dilutions of ethanol.  Slides were pretreated with a citrate buffer for antigen 

retrieval (10 mM Citric Acid, 0.05% Tween 20, pH 6.0).   Sections were incubated in 

blocking solution (2% BSA, 50mM glycine, 0.1% Triton X-100, 10% normal goat serum) for 

1 h at room temperature and then incubated in a rat antibody solution (1:100; abcam, 

Cambridge, MA) overnight at 4C.  F4/80-immunopositive macrophage cells were detected 

by biotinylated goat antirat secondary antibody (1:300; Vector Laboratories, Burlingmae, 

CA) and avidin-biotin-peroxidase (ABC, 1:300; Vector), followed by diaminobenzidine 

staining.  Digital images were captured using a bright-field light microscope and camera 

(Nikon) and analyzed using Nis-Elements AR software. 

 

Immunohistochemistry of CBG in the liver 

     Fresh frozen liver samples, cut at 14µM in the cryostat were fixed in 10% formide for 10 

minutes. Slides were then dried and rinses in 2 changes of PBS (5 minutes each). Slides were 

incubated in 0.3% H2O2 solution in PBS at room temperature for 10 minutes, followed by 2 

additional PBS rinses. Sections were incubated in blocking solution (2% BSA, 50mM 

glycine, 0.1% Triton X-100, 10% normal goat serum) for 1 h at room temperature and then 

incubated in a rabbit antihuman CBG primary antibody solution (1:300; Affiland) for 72h at 

4C.  CBG-immunopostivite liver cells were detected by biotinylated goat antirabbit 

secondary antibody (1:300; Vector Laboratories, Burlingmae, CA) and avidin-biotin-

peroxidase (ABC, 1:300; Vector), followed by diaminobenzidine staining.  Digital images  
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were captured using a bright-field light microscope and camera (Nikon) and analyzed using 

Nis-Elements AR software. 

 

Measurements of blood hormones  

     Plasma leptin, adiponectin and insulin levels were assayed using ELISAs (Millipore, 

Billerica, MA), as was plasma CBG (USCN Life Science, Houston, TX) and plasma glucose 

and triglyceride levels were assayed using colormetric assays (Cayman Chemicals, Ann 

Arbor, MI), all using manufacturer's instructions. (Plasma CORT concentrations were 

measured using a commercially available radioimmunoassay  (MP Biomedicals, Inc., Solon, 

OH). Samples were analyzed in duplicate and results are reported as ng/ml. The assay 

provided an intra-assay coefficient of variation of 8%, with a lower limit of detectability of 

15.9 ng/ml.  

 

Pair Feeding 

The amount of food eaten and body weight were recorded daily.  For pair feeding, mice 

receiving CORT were fed the same amount of regular chow as age matched vehicle group. 

 

Quantitative reverse transcription (RT)-PCR 

     In initial studies, looking gene transcription large PCR arrays were used to look at 

numerous genes known to affect the pathways of obesity and insulin resistance.  For these 

initial studies, mRNA from WAT and brain punches was isolated using the Rneasy Lipid 

Tissue Mini Kit (Qiagen) and the RT2 First Strand Kit (SABiosciences) was used to create 

cDNA.  Resultant cDNA was used to perform qPCR on RT2Obesity Pathway and insulin 
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resistant PCR Arrays (SABiosciences).  Plates were read on the Roche LightCycler 480 with 

1 cycle of 10 min at   95°C followed by 45 cycles of 15s at 95°C and 1 min at 60°C. SYBER 

Green fluorescence was monitored at the annealing step of each cycle and analyzed with 

LightCycler Software. 

     In subsequent studies looking at gene expression, mRNA from liver was extracted using 

Qiagen’s RNeasy Mini kit, and mRNA from WAT and brain punches (in Chapter 4) or 

dissected hippocampus and amygdala brain regions (from vehicle and CORT treated mice in 

Chapter 6) were separately homogenized in 1 mL of QIAzol (Qiagen). For the latter, total 

RNA was extracted using a RNAeasy Mini Kit (Qiagen,Valencia, CA, USA) according to 

manufacturer’s recommendations.  For all samples, DNAse digestion, to remove 

contaminating genomic DNA, was also completed using the kit and manufacturer’s protocol.  

Following extraction and digestion, the purity and concentration of RNA were determined by 

NanoDrop 260/280 ratios (NanoDrop Technologies, Wilmington, DE).  All samples tested 

had a purity of 1.7-2.0.  Two micrograms of total RNA, as evaluated by NanoDrop, was 

reverse transcribed using High Capacity cDNA Reverse Transcription Kits (Applied 

Biosystems, Foster City, CA) using the manufacturer’s recommendations.  Target gene 

expression was quantified with gene-specific primers and Power SYBR Green master mix 

(ABI) using Applied Biosystems 7900HT Sequence Detection System at 95°C for 10 min, 

followed by 35 cycles of 95°C for 15 sec, 60°C for 15 sec, and 72°C for 30 sec. Each sample 

was done in triplicate, and each reaction was repeated at least once to ensure reproducibility. 

Raw threshold-cycle (Ct) values were obtained from the Sequence Detection Systems 2.0 

software (Applied Biosystems).  An average cycle threshold value (Ct) was calculated from 

triplicate results for each gene.  Threshold values were normalized to the housekeeping gene 
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GAPDH or β-actin, to provide ∆Ct values.  Fold change for each gene was then calculated 

using the formula 2-∆Ct.  Forward and reverse primers were as described in Table 1. 

 

In Situ 

     To determine CRH mRNA containing cells, fresh frozen brains were cut at 20µM in the  

cryostat.   We constructed a CRH riboprobe, a pBluescript SK vector containing a 1.2-kb 

fragment of the rat CRH cDNA was linerized with XhoI and SacI to make antisense and 

sense cRNA probes, respectively.  Labeled RNA probes were synthesized by in vitro 

transcription of lineraized, gel-purified DNA templates using the appropriate T3 and T7 

polymerases with S35-labeled UTP.  Full-length probes were separated from labeling 

reactions via size-exclusion columns before being mixed with hybridization buffer and 

measured for specific activity. 

     Only a random subset of animals (n = 4-5 per group) were processed for in situ 

hybridization histochemistry; remaining brains were punched for qRT-PCR.   In brief, slide-

mounted sections were thawed and fixed in 3.8% formaldehyde for 10 min. Sections were 

then processed with proteinase K [1 mg/ml, 0.1 m Tris buffer (pH 8.0); 50 mm EDTA; 10 

min] at 37 C and 0.25% acetic anhydride in 0.1 m triethanolamine for 10 min. Before 

hybridization, slides were rapidly dehydrated in a graded series of ethanols (70, 95, and 

100%). Sections were incubated in hybridization buffer [60% formamide; 10% dextran 

sulfate; 10 mm Tris-HCl (pH 8.0); 1 mm EDTA (pH 8.0); 0.6 m NaCl; 0.2% N-

laurylsarcosine, 500 mg/ml; 200 mg/ml tRNA; 1× Denhardt’s; 0.25% sodium dodecyl sulfate 

(SDS); and 10 mm dithiothreitol] containing DIG-labeled CRH antisense cRNA probes for 

16 h at 60 C. After a high-stringency posthybridization wash, sections were treated with 
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RNase A and were then further processed for immunodetection with a nucleic acid detection 

kit (Roche Molecular Biochemicals, Indianapolis, IN). Sections were incubated in 1.0% 

blocking reagent in buffer 1 [100 mm Tris-HCl buffer, 150 mm NaCl (pH 7.5)] for 1 h at 

room temperature and then incubated at 4C in an alkaline phosphatase-conjugated DIG 

antibody (Roche Applied Science, Indianapolis, IN) diluted 1:3500 in buffer 1 for 3 d. On the 

following day, sections were washed in buffer 1 twice (5 min each) and incubated in buffer 3 

[100 mm Tris-HCl buffer (pH 9.5), containing 100 mm NaCl and 50 mm MgCl2] for 5 min. 

They were then incubated in a solution containing nitroblue tetrazolium salt (0.34 mg/ml) 

and 5-bromo-4-chrolo-3-indolyl phosphate toluidinium salt (0.18 mg/ml; Roche Applied 

Science) for 8 h. The colorimetric reaction was halted by immersing the sections in buffer 4 

[10 mm Tris-HCl containing 1 mm EDTA (pH 8.0)]. Tissue hybridized with the sense probe 

resulted in no specific labeling.  

 

Metabolic Phenotyping of CB1-/- mice on chronic CORT 

     Body composition was determined using NMR technology (EchoMRI, Waco, TX), which 

reports fat, lean tissue, and water content of the animal. To determine energy expenditure, 

mice were adapted to individual metabolic chambers.  Metabolic measurements (oxygen 

consumption, carbon dioxide production, food intake, and locomotor activity) were obtained 

continuously using a CLAMS (Columbus Instruments) open-circuit indirect calorimetry 

system for 5 consecutive days.  RQ was calculated as CO2 (VCO2) production/O2(VO2) 

consumption, with the values of 1 or 0.7 indicating 100% CHO or 100% fat oxidation (FO), 

respectively.  FO and CHO were calculated as FO=1.69*VO2-1.69*VO2 and 

CHO=4.57*VCO2-3.23*VO2 and expresses as ml/kg/hr. 169 
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     Insulin sensitivity was assessed using a .75 U intraperitoneal insulin challenge after a 6 h 

dark (feeding period) fast with tail blood sampling before and after injection.  Blood glucose 

was analyzed using the OneTouch Ultra Blood Glucose Monitoring System (LifeScan, Inc, 

Milpitas, CA). Circulating leptin, insulin, triglycerides, and adiponectin were measured as 

described above.  Additional blood parameters including cholesterol and ALT levels were 

measured and carried out by the Tri-Institutional core facility. 

 

Measurement of hepatic lipids and VLDL secretion  

     In both wild type and CB1-/- mice on chronic CORT, total liver lipids were extracted with 

Folch extractions. Briefly, snap-frozen liver tissues (∼100 mg) were homogenized and 

extracted twice with chloroform/methanol (v/v = 2:1) solution. The organic layer was dried 

under nitrogen gas and resolubilized in chloroform containing 2% Triton X-100. This extract 

was dried again and resuspended in water and then assayed for triglyceride concentration 

using commercial kits as described above. 

     VLDL-TG secretion rates were determined in mice fasted for 4h and intraperitoneally 

injected with 400µl of Pluronic-407 (1mg/g body weight) resuspended in PBS. Blood was 

collected in silastic tubes pretreated with heparin prior to injection and at indicated 

timepoints (1h, 2h, 4h after injection). Plasma triglyceride levels were measured 

enzymatically, as described above. The TG production rate (µmol/kg/h) was calculated from 

the difference in plasma TG levels over a given interval following detergent injection. TG 

production rates were then expressed as relative changes compared to respective controls.  
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Characterization of Endocannabinoid System in CORT treated mice 

Membrane Preparation  

     Brains were removed and the hippocampus, amygdala, and hypothalamus were dissected 

over dry ice and stored at − 80 °C until analysis. Liver samples were also collected in this 

manner.  Membranes were collected from isolated brain regions and liver samples by 

homogenization of frozen tissue in 10 volumes of TME buffer (50 mM Tris HCl, pH 7.4; 1 

mM EDTA and 3 mM MgCl2).  Homogenates were centrifuged at 18,000 x g for 20 min and 

the resulting pellet, which contains a crude membrane fraction, was re-suspended in 10 

volumes of TME buffer.  Protein concentrations were determined by the Bradford method 

(Bio-Rad, Hercules, CA, USA). 

 

CB1 Receptor Radioligand Binding Assay  

CB1 receptor agonist binding parameters were determined through radioligand 

binding using a Multiscreen Filtration System with Durapore 1.2-µM filters (Millipore, 

Bedford, MA).  Incubations (total volume = 0.2 mL) were carried out using TME buffer 

containing 1 mg/mL bovine serum albumin (TME/BSA).  Membranes (10 µg protein per 

incubate) were added to the wells containing 0.1, 0.25, 0.5, 1.0, 1.5 or 2.5 nM [3H]CP 

55,940, a cannabinoid CB1 receptor agonist.  Ten µM ∆9-tetrahydrocannabinol was used to 

determine non-specific binding. KD and Bmax values were determined by nonlinear curve 

fitting of specific binding data to the single site binding equation using GraphPad Prism (San 

Diego, CA, USA). 
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Fatty Acid Amide Hydrolase (FAAH) Activity Assay 

 FAAH activity was measured as the conversion of AEA labeled with [3H] in the 

ethanolamine portion of the molecule ([3H]AEA)7 to [3H]ethanolamine as reported 

previously.170  Membranes were incubated in a final volume of 0.5 ml of TME buffer (50 

mM Tris-HCl, 3.0 mM MgCl2, and 1.0 mM EDTA, pH 7.4) containing 1.0 mg/ml fatty acid-

free bovine serum albumin and 0.2 nM [3H]AEA. Isotherms were constructed using eight 

concentrations of AEA between 10 nM and 10 µM. Incubations were carried out at 37°C and 

were stopped with the addition of 2 ml of chloroform/methanol (1:2). After standing at 

ambient temperature for 30 min, 0.67 ml of chloroform and 0.6 ml of water were added. 

Aqueous and organic phases were separated by centrifugation at 1,000 rpm for 10 min. The 

amount of [3H] in 1 ml of the aqueous phase was determined by liquid scintillation counting 

and the conversion of [3H]AEA to [3H]ethanolamine was calculated.  The binding affinity of 

AEA for FAAH (Km) and maximal hydrolytic activity of FAAH (Vmax) values for this 

conversion were determined by fitting the data to the Michaelis-Menton equation using 

Prism.  

 

Endocannabinoid Extraction and Analysis 

 Brain regions and liver samples were subjected to a lipid extraction process as 

described previously.171 Briefly, tissue samples were weighed and placed into borosilicate 

glass culture tubes containing two ml of acetonitrile with 84 pmol of [2H8]anandamide and 

186 pmol of [2H8]2-AG. Tissue was homogenized with a glass rod and sonicated for 30 min. 

Samples were incubated overnight at -20°C to precipitate proteins, then centrifuged at 1,500 x 

g to remove particulates. The supernatants were removed to a new glass tube and evaporated 
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to dryness under N2 gas. The samples were resuspended in 300 µl of methanol to recapture 

any lipids adhering to the glass tube, and dried again under N2 gas. Final lipid extracts were 

suspended in 20 µl of methanol, and stored at –80oC until analysis. The contents of the two 

primary endocannabinoids, AEA and 2-AG within lipid extracts in methanol from brain 

tissue, were determined using isotope-dilution, liquid chromatography-mass spectrometry as 

described previously.173 

 

Endocannabinoid analysis in blood 

     All extractions were performed using Bond Elut C18 solid-phase extraction columns (1 

mL; Varian Inc, Lake Forest, CA).  Serum samples (0.5mL each) were thawed and made up 

to 15% ethanol, to which the internal standards (Cayman Chemicals, Ann Arbor, MI) were 

added.  Samples were then vortexed and centrifuged at 1000xg for 4 min. The supernatant 

was loaded on C18 columbs which had been conditioned with 1 mL redistilled ethanol and 

3mL of double distilled water (ddH2O).  The remaining pellet was washed with 100 µL of 

15% ethanol and centrifuged again for 3 minutes.  The resulting supernatant was also loaded 

onto the C18 column.  Columns were washed with 5mL ddH2O and eluted with 1mL of ethyl 

acetate.  The ethy acetate layer in the resulting elute was removed and dried under N2.  Lipids 

in the residual ddH2O phase were extracted by mixing with an additional 1 mL of ethyl 

acetate, which was added to the original ethyl acetate solution.  Once dried, samples were 

resuspended in 20 µL of methanol and stored at -80°C.  Endocannabinoids were quantified 

using isotope-dilution, atmospheric pressure, chemical ionization liquid 

chromatography/mass spectrometry (LC-APCI-MS) as described elsewhere.172 
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Endocannabinoid analysis of adipose tissue 

     Extensive method development was needed at Northeastern University to accomplish this 

task, as a fatty oil results from the liquid-liquid phase extraction of fat.  Solid phase 

extraction created usable samples that did not completely dirty the mass spectrometer.  After 

performing reproducibility studies, the samples sent from Rockefeller University have finally 

been analyzed. 

     Mixtures of the dried endocannabinoids and their deuterated analogs that had been stored 

at -80°C were reconstituted in ethanol for further dilution in a 20 mg/mL solution of fatty 

acid free bovine serum albumin (BSA) to simulate analyte-free tissue and in ethanol to make 

the calibration standards, and quality control (QC) samples, as previously described.174  The 

calibration curves were constructed from the ratios of the peak areas of the analytes versus 

the internal standard.   

     The extraction procedure for the calibration standards, and quality control started with 

protein precipitation with ice cold PBS, pH 7.4, acetonitrile and the internal standard mixture 

followed by centrifugation at 14,000 g for 5 minutes at 4°C.  Tissue samples were weighed 

and homogenized in the same solvents prior to centrifugation.  The resulting supernatants 

were diluted in 5% phosphoric acid in water, followed by solid phase extraction.  OASIS 

HLB cartridges (30 mg, 1 mL cartridges) were rinsed with methanol and water prior to 

loading the diluted samples.  The loaded samples were washed with 40% methanol in water, 

eluted with acetonitrile and evaporated to dryness under nitrogen.  Samples were 

reconstituted in ethanol, vortexed and sonicated briefly and centrifuged prior to immediate 

analysis for the endocannabinoids.   
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     Chromatographic separation was achieved using an Agilent Zorbax SB-CN column 

(2.1x50 mm, 5 mm) on a Finnigan TSQ Quantum Ultra triple quad mass spectrometer 

(Thermo Electron, San Jose CA) with an Agilent 1100 HPLC on the front end (Agilent 

Technologies, Wilmington DE) as previously described9. The mobile phase consisted of 10 

mM ammonium acetate, pH 7.3 (A) and methanol (B) in a flow rate of 0.5 ml/min; the 

autosampler was kept at 4°C to prevent analyte degradation.  Eluted peaks were ionized via 

atmospheric pressure chemical ionization (APCI) in MRM mode. Deuterated internal 

standards were used for each analyte’s standard curves and their levels per gram tissue were 

determined.   

 

Statistical analysis  

Data analyses were accomplished using Prism 5 (GraphPad Software, Inc.). T-test, One-way 

or Two-way analysis of variance or repeated-measures (RM) ANOVAs were undertaken 

where appropriate. Our a priori hypothesis is that the CB1R–/– mice will be resistant to the 

effects of CD and glucocorticoid administration, so regardless of significance of the 

interactions, Bonferroni posttests were used to examine differences in all variables among 

treatment conditions. In all cases, results were considered significant at P < 0.05.  One-way 

ANOVAs and two-tailed t-tests were conducted to identify significant daily rhythms as 

indicated with significant levels at P <0.05.   
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Table 2.1 Forward and reverse primers for qRT-PCR. 

βActin Forward TGTTCCCTTCCACAGGGTGT 

βActin Reverse TCCCAGTTGGTAACAATGCCA 

GAPDH Forward ATGACATCAAGAAGGTGGTG 

GAPDH Reverse CATACCAGGAAATGAGCTTG 

CB1R Forward GGTTCTGATCCTGGTGGTGTTGAT 

CB1R Reverse CCGATGAGACAACAGACTTCT 

FAAH Forward TGTGTGGTGGTGCAGGTACT 

FAAH Reverse CTGCACTGCTGTCTGTCCAT 

MAGL Forward CCTGTGTGGCGTGCCGATGAC 

MAGL Reverse GCTGGAGTCAATGCGCCCCAA 

DAGL Forward TGGAAACCCCCGCCCATTGC 

DAGL Reverse CTGCTTGCCTGCACACCCCA 

NAPE-PLD Forward GCTGGGACATGCGACGCTGA 

NAPE-PLD Reverse GCGAAACCGCTTCGGACCCA 

SREBP1c Forward GGAGCCATGGATTGCACATT 

SREBP1c Reverse GGCCCGGGAAGTCACTGT 

FAS Forward CATGACCTCGTGATGAACGTGT 

FAS Reverse TCGGGTGAGGACGTTTACAAA 

ACC-1 Forward GCGGGAGGAGTTCCTAATTC 

ACC-1 Reverse GGTTGGCATTGTGGATTTTC 

PPARα Forward GGCTCGGAGGGCTCTGTCATC 

PPARα Reverse ACATGCACTGGCAGCAGTGGA 

PPARγ Forward CGGGCTGAGAAGTCACGTT 

PPARγ Reverse TGCGAGTGGTCTTCCATCAC 

HNF4α Forward CCGGTTGACTCTTGATGGCT 

HNF4α Reverse GCTTGTACTTGGTCCCGTCA 

G6P Forward CCTCCTCAGCCTATGTCTGC 

G6P Reverse GAGAGCTCTTGGATGGCTTG 
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Table 2.1 Continued 
PCG1α Forward GGAGCC GTGACCACTGACA 

PCG1α Reverse TGGTTTGCTGCATGGTTCTG 

TFAM Forward GCTTCCAGGAGGCTAAGGAT 

TFAM Reverse CCCAATCCCAATGACAACTC 

NRF-1 Forward GGTGCCTAGTGAGAGTGAGTCCCCC 

NRF-1 Reverse TCGGGGCTGAAGAGGGAGAAGTC 

Per1 Forward CAAGTGGCAATGAGTCCAACG 

Per1 Reverse CGAAGTTTGAGCTCCCGAAGT 

Per2 Forward CAGACTCATGATGACAGAGG 

Per2 Reverse GAGATGTACAGGATCTTCCC 

Per3 Forward GTGTACACAGTGTGCAAGCAAACA 

Per3 Reverse ACGGCCGCGAAGGTATCT 

Cry1 Forward CCTCTGTCTGATGACCATGATGA 

Cry1 Reverse CCCAGGCCTTTCTTTCCAA 

Cry2 Forward AGGGCTGCCAAGTGCATCAT 

Cry2 Reverse AGGAAGGGACAGATGCCAATAG 

11βHSD1 Forward AAGGAGCCGCACTTATCTGAAGCCT 

11βHSD1 Reverse GCCCATGAGCTTTCCCGCCTT 

11βHSD2 Forward GGCCTCCTGCCACTCTTGCG 

11βHSD2 Reverse GTGCCGTAGGCTGCCAAGCA 
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Chapter 3: Chronic circadian disruption alters body weight, signal regulation, and 

glucocorticoid signaling  

 
Abstract 
 
     Environmental stressors have consistently been linked to increased rates of morbidity and 

mortality, but the specific mechanisms by which such stressors get “under the skin” remain 

elusive.  Here we look at the impact of disrupted lighting cues as a potential environmental 

stressor and means to disrupt circadian rhythms.  Similar effects can be caused when 

wakefulness occurs at inappropriate biological times due to environmental pressures (i.e., 

early school start times, long work hours that include work at night, shift work, jet lag) or the 

occurrence of circadian rhythm sleep disorders.  Previous work from the lab demonstrated 

that disruption of the light-dark cycle in mice resulted in altered body temperature rhythms 

(suggesting a disruption in circadian rhythms), changes in neural function, as well as an 

obese phenotype.  Here we looked to extend these findings and determine the consequences 

of chronic circadian disruption on core clock gene expression, altered hypothalamic-

pituitary-adrenal (HPA) axis activity as measured through glucocorticoid, particularly 

corticosteroid (CORT) signaling, and how the two systems act to induce obesity in this 

mouse model on the level of white adipose tissue (WAT) and liver metabolism.   We report 

here that male C57BL/6 mice exposed to a 10 h light: 10 h dark circadian cycle (LD10) 

compared to a normal 12 h light: 12 h dark cycle (LD12) have decreased and blunted diurnal 

expression of clock genes in WAT and liver tissue associated with a similar pattern in CORT 

secretion.  Decreased signaling acted to increase liver lipid content in the absence of 

increased food intake, while also decreasing the expression levels and rhythmicity of hepatic 

gluconeogenic regulatory genes.  Adiposity and adipocyte size are increased in LD10 mice, 
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but we were unable to determine direct clock regulation based on measured end points.  

Findings in this study provide not only a link between metabolic disorders and environmental 

light-dark cycles in non-genetically altered animals, but also suggest altered exogenous light, 

as a chronic stressor.  Furthermore,  it adds to the growing evidence of hypocortisolism as an 

outcome of chronic stress and suggests that at least in the case of environment stress 

hypocortisolism, rather than hypercorisolism as a potential mechanism linking stress to poor 

health. 

 
Rationale 
 
     Disruption of normal circadian cycles is a growing problem in modern society, with shift 

work and artificial lighting at night being a major contributor.175 The relationship between 

circadian disruption (CD) and metabolic dysregulation is becoming appreciated as studies 

show that shift work, sleep deprivation and circadian misalignment in humans alter insulin 

sensitivity, increase weight gain and promote obesity.176-178 Genetic manipulation in mouse 

models has also demonstrated the vital regulatory role clock genes play in energy 

balance.166,179-181 As these factors may be significant contributors to the rise in obesity, 

understanding the mechanisms’ driving changes in metabolic function caused by CD are of 

immediate concern.   

     Glucocorticoids (GC) especially the corticosteroids (CORT), which are well known to 

affect metabolic conditions, entrain circadian rhythms by phase-shifting the expressions of 

several core clock genes in peripheral organs, including the liver, kidneys, and heart.145 

Therefore, we hypothesized that chronic alterations of the light-dark cycle results in altered 

circadian rhythms and CORT levels followed by alterations in metabolic function.   
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Experimental Design 
 
     For long-term effects of circadian disruption, a total of 80 animals were used (40 exposed 

to a 24-h day-12 h light, 12 h dark (LD12); 40 exposed to shortened 20-h day-10 h light, 10 h 

dark (LD10)). After 8 weeks in designated light cycle, mice were euthanized at Zeitgeber 

time (ZT, ZT12=lights OFF) 0, 6, 12, or 18.  Blood, brain, gonadal fat pad (white adipose 

tissue (WAT), and liver were collected and processed from each animal. 

 
Results 
 
      In order to determine if disruptions of environmental light cues affected the rhythm of 

circadian clocks in peripheral tissues, we investigated clock gene expression in WAT and 

liver at 4 time points across the circadian cycle.  Clock genes showed rhythmic expression in 

WAT and liver in LD 12 mice; however, the rhythmic expression of clock genes was 

abolished or extremely blunted in WAT and liver from LD 10 mice, indicating disruption of 

clock function (Fig 3.1).  In WAT of LD12 mice, the rhythmic expression, as determined by 

one way ANOVA, of Per1 (F(4,38)=5.106);p=0.003;Fig 3.1A), Per2 (F(4,38)=28.22; 

p<0.0001; Fig 3.1B), and Per3 (F(4,38)=27.13;p<0.0001; Fig 3.1C) all showed peak 

expression at ZT12 (p<0.05) with a nadir of ZT0 in Per1 and Per3, a nadir of ZT6 in Per2.  

Cry1 (F(4,37)=5.85;p=0.001; Fig 3.1D) and Cry2 (F(4,36)=5.394;p=0.002; Fig 3.1E) in 

WAT showed peaks at ZT18 (p<0.05) with a nadir of ZT6 in Cry1 and ZT0 in Cry2.  In 

LD12 mice, Per1 (F(4,37)=15.23; p<0.0001; Fig 3.1F) and Per3(F(4,38)=18.77; p<.0001; Fig 

3.1H) in the liver showed peaks at ZT12(p<0.05) with nadirs at ZT0.  Per2 in the liver in 

LD12 mice was rhythmic (F(4,35)=12.15; p<0.0001;Fig 3.1G) with an extended peak from 

ZT12-ZT18(ZT0 vs. ZT12/18, p<0.05) and nadir at ZT0.  Cry1 in the liver 
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(F(4,39)=4.8;p=0.003; Fig 3.1J) showed a peak at ZT18 (p<0.05) and a nadir at ZT6.   Clock 

gene expression measured in the dorsal hippocampus revealed no effect of CD (Fig 3.2). 

      To better understand the underlying mechanisms of circadian clock disruption in WAT, 

which may account for weight gain, shown to be significantly higher in LD 10 mice 

compared to LD 12 mice as early as week 2 as previously shown,166 we analyzed circadian 

variations in mRNAs of genes involved in WAT lipid metabolism.  PPARγ was selected 

from literature describing its direct relation to Per2, and for its central role in the control of 

adipocyte gene expression and differentiation.  PPARα is less adipogenic but is able to 

induce significant differentiation in response to strong PPARα activators (Fig 3.3). 182,183 

Although somewhat decreased at ZT12, there was no statistical difference in expression of 

PPARα between groups; similarly there was no difference in PPARγ, although there appears 

to be a slight phase advance in LD10 mice.  Despite no differences here, there was an 

increase in adipocyte size in LD10 compared to LD12 mice (t test, P=0.0309; Fig 3.4A-C). 

     To study the effects of shorter light cycles and subsequent decreased clock gene 

expression on liver tissue, we measured the expression of genes involved in glucose 

homeostasis.  Hepatocyte nuclear factor 4α (HNF4α) and PParα were selected from 

literature which suggest them to be regulated by Per2;182 they further act as transcriptional 

factors that regulate glucose-6-phosphatase (G6P), a rate-limiting enzyme in 

gluconeogenesis. mRNA expression was blunted in LD10 mice with no rhythmicity in 

HNF4α, PPARα, or G6P as determined by one way ANOVA, compared to LD12 mice in 

which HNF4α was rhythmic (F(4,19)=4.24;p=.017) with peak levels at ZT18 (p<.05) and a 

nadir at ZT0 (Fig 3.5A).  
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Figure 3.2 Clock gene expression in dorsal hippocampus of control and circadian disrupted 

mice. A shortened light cycle of 10h light: 10 h dark, compared to the regular 12h light: 12 h 

dark paradigm showed no significant difference between groups in either (A)Per1 or (B) 

Cry1 mRNA expression in the dorsal hippocampus as determined by qRT-PCR, n=4/group 

and time point.  The ZT0 group is re-blotted as ZT24 for continuity.  Fold changes of gene 

expression (±SEM) ,values represent the level of normalized gene expression relative to the 

mean, overall normalized gene expression to ZT6.   

 

 

 

Figure 3.3 Transcripts involved in lipid metabolism in white adipose tissue (WAT) of 

circadian disrupted (LD 10) and control (LD12) mice.  Expressions of mRNAs encoding (A) 

PParα  and (B) PParγ. N=4/group for each observed time point. Values represent the level of 

normalized gene expression relative to the mean, overall normalized gene expression to ZT6.  

Results are expressed as means ± SEM. Two-way ANOVA was used to determine variance 

with respect to time and groups, followed by Bonferroni's post hoc test. 
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Figure 3.4 Histology of white adipose tissue (WAT) and liver sections in circadian disrupted 

(LD 10) and control (LD12) mice.  WAT samples embedded in paraffin were sectioned at 8 

µm and stained with H&E.  Representative samples from (B) LD12 and (C) LD10 mice 

shown here at 10x. (A) 5 samples from LD 10 and LD 12 mice euthanized at ZT 6 were 

analyzed for adipocyte length, 20 random droplets were measured per mouse.  Fresh frozen 

liver samples were sections at 14 µm and stained with Oil Red O.  (E) LD10 mice have an 

increased presence of lipid droplets compared to (D) LD12 mice. Representative samples 

from LD10 and LD12 mice shown here at 10x. 

 

 

Figure 3.5 Transcripts involved in lipid and glucose metabolism in the livers of circadian 

disrupted (LD 10) and control (LD12) mice.  (A) HNF4α showed blunted and decreased 

expression in LD 10 mice.  (B) PParα  and (C) G6P have a slightly decreased rhythm in 

LD10 mice but these values did not reach significance. N=4/group for each observed time 

point. Values represent the level of normalized gene expression relative to the mean, overall 

normalized gene expression to ZT6.  Results are expressed as means ± SEM. Two-way 

ANOVA was used to determine variance with respect to time and groups, followed by 

Bonferroni's post hoc test. 
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Figure 3.6 Chronic circadian disruption results in changes in the diurnal pattern of plasma 

CORT levels.  (A) Graph depicts total plasma CORT levels taken at 4 time intervals (n=9-

10/group/time point).  (B) Depicts circulating levels of CBG protein in plasma (n=3-

5/group/timepoint).  In each graph ZT0 is blotted again as ZT24 for continuity.  While 

circulating levels of CBG are great in LD10 mice, (D) Immunohistochemistry stain for CBG 

protein and (C) cluster count from stain indicate a decreased presence in the liver, also 

suggesting increased levels in circulation. *P<0.05, ***P<0.001 mark significant in LD12 vs. 

LD10.  
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There was also a significant decrease in HNF4α expression between LD10 and LD12 at 

ZT18 (p<.001).  G6P also showed a rhythmic pattern (F(3,14)=3.778; p=.044) with a peak at 

ZT18 (p<.05) and a nadir at ZT6 (Fig 3.5C).  While LD10 levels were blunted, there was no 

significant difference from LD12 in either G6P nor PPARα mRNA expression (Fig 3.5B).  

      In determining the effects of chronic circadian disruption on HPA-axis activity across the 

day, levels of plasma CORT were measured at 4 time intervals.  As expected LD12 mice 

followed the diurnal pattern of total CORT plasma levels (F(4,47)=10.77;p<0.0001)) with 

highest levels at ZT12, corresponding to lights out (p<0.05, Fig 3.6A ).  LD10 resulted in a 

blunted rhythm with no clear peak and significantly lower levels at ZT12 (p<0.01) 

Circulating CBG protein levels also followed a daily pattern (F(2,24)=3.006; p=0.043) in 

LD12 mice with a nadir at ZT12 (ZT0 vs. ZT12 t test, p=0.0316; Fig 3.6B).  This level was 

significantly higher in LD10 mice at ZT12 (t test p=0.0252).  CBG levels, measured by 

immunohistochemistry in livers of LD10 and LD12 mice, revealed a much greater level in 

control mice (t test p<0.0001, Fig 3.6 C-D), suggestive of increased levels in circulation in 

LD10 mice. 

     In order to determine the availability of free CORT at the tissue level, we also measured 

the diurnal mRNA expression of the enzymes 11βHSD1/2 in the WAT and liver, as well as 

the protein expression of these enzymes at ZT6 (Fig 3.7).  In WAT there was no difference in 

the expression of 11βHSD1 between LD10 and LD12, but 11βHSD2 showed a rhythmic 

expression in LD12 mice (F(4,18)=6.04; p=0.005) with a peak at ZT12 (p<0.05) and was 

significantly greater than LD10 at ZT12 (p<0.01; Fig 3.7B).    In the liver mRNA expression 

of 11βHSD1 showed no rhythmicity in either group but two-way ANOVA pulled out a slight 
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interaction between LD10 and L12 mice (F(4,65)=2.59;p=0.047, Fig 3.7C).  In the liver there 

was a slight rhythmic expression of 11βHSD2 in LD12 mice, but levels did not reach 

significance (F(4,34)=2.465;p=0.065); however, peak expression in LD12 mice at ZT 6 was 

greater (p=0.05) than in the LD10 condition (Fig 3.7D).  LD10 mice showed a peak of 

11βHSD2 mRNA (p<0.05).    

     To determine the extent of HPA-axis dysregulation, we measured CRH in the PVN and 

amygdala. Analysis of in situ hybridization in the PVN revealed a main effect of light cycle 

but no effect in rhythmicity.  LD12 mice showed an increased mRNA expression of CRH 

(F(1,74)=7.896;p=0.006) at ZT6 as revealed by posttests analysis (p<0.05; Fig 3.8A and C).  

Analysis in the amygdala found a small interaction between groups 

(F(4,34)=3.314;p=0.0214) and a main effect of time of day (F(4,34)=2.851;p=0.039; Fig 

3.8B and D), as noted by increased expression at ZT18 in LD12 mice (p<0.05).  
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Figure 3.7 Diurnal mRNA expression of 11β-hydroxysteroid dehydrogenase type 1 and 2 in 

white adipose tissue (WAT) and liver. A shortened light cycle of 10h light: 10 h dark (LD10), 

compared to the regular 12h light: 12 h dark (LD12) had no effect on (A) 11βHDS1 mRNA 

expression in WAT or (C) liver, but the paradigm resulted in blunted circadian rhythms of 

11βHDS2 in (B) WAT and a shift in the (D). (n=4-6/group and time point). The ZT0 group is 

re-blotted as ZT24 for continuity.  Fold changes of gene expression (±SEM) were determined 

by qRT-PCR.  Values represent the level of normalized gene expression relative to the mean, 

overall normalized gene expression to ZT6.  Significant peak levels of expression in LD12 to 

LD10 * p<0.05 and**p<0.01by two way ANOVA and Bonferroni posttest.  
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Figure 3.8 mRNA expression of CRH levels in the PVN and amygdala from circadian 

disrupted mice.  In situ hybridization of CRH revealed a decreased and shifted expression in 

the (A) PVN  and (B) amygdala of LD10 mice. n=6-9/group/time point, as determined by 

densitometry and plotted as optical density.   Representative expression in (C) PVN from 

ZT6 and (D) amygdala from ZT18. * denotes P<0.05, **P<0.01. 
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   Discussion  

    In the current study we utilized the LD10 model of circadian disruption and showed that 

beyond increased adiposity and circulating insulin and leptin levels, LD10 mice display 

increased lipid content in their livers, suggesting the development of fatty liver, and 

increased size of adipocytes. To reveal the impact of the circadian timing system on this 

metabolic phenotype, we first looked at clock gene expression in the WAT, liver, and 

hippocampus. While we showed diurnal variations in WAT and liver, there was no 

significant effect of circadian disruption in the hippocampus.   Data here is consistent with 

findings in rats where adrenalectomy abolished the Per2 expression in the central nucleus of 

the amygdala, but had no effect on rhythms in the basolateral amygdala and dentate gyrus.184  

Changes in expression of peripheral genes as revealed here come as no surprise given the 

observed metabolic abnormalities in CLOCK mutant mice,179 in a paramount study which 

linked metabolic function to the molecular clock.  In the current study, we went a step further 

and demonstrated that environmental change can have a similar impact, a concept easily 

translated into human life.  More recent studies have shown the importance of clock 

alignment in the periphery, particularly in adipose tissue.180,181 

     Given that we saw no difference in the hippocampus but strong effects in the periphery, 

we turned to see if corticosterone (CORT), the primary corticosteroid in mice were playing a 

role here.  CORT has previously been shown to act as an entrainer for peripheral organs 

because it is secreted in daily cycles, and its receptor is expressed in most cell types with the 

exception of neurons in the SCN.143-144 Corticotropin-releasing hormone (CRH) is also 

released in a pulsatile manner, and along with arginine vasopressin (AVP) in the 

hypothalamus, drives the pulsatile release of CORT from the adrenal cortex.  Increased 
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CORT secretion at the circadian peak depends on increased HPA-axis activity and on 

increased sensitivity of the adrenal cortex to adrenocorticotropic hormone (ACTH).185  

Decreased or shifted CRH data presented here suggest, in conjunction with decreased 

circulating CORT in LD10 mice, that the CD model represents some level of HPA-axis 

dysregulation.  

     Beyond an arrhythmic and overall decreased level of CORT in disrupted mice, we also 

noted an increase in corticosteroid-binding globulin (CBG), which is produced in the liver 

and circulates in the plasma binding CORT with high affinity.186  CORT bound to CBG is 

biologically inactive187,188 and, therefore, is important to measure to get an idea of the free 

circulating CORT that is able to bind to receptors. Thus, in addition to decreased circulation 

in total CORT, disrupted mice have significantly reduced free CORT.   

     CBG levels are known to be affected by season, stress, and time of day189-195  The time of 

day finding in CBG was dependent on the diurnal nature of CORT.195  In this study it may be 

the case that disruption not only leads to dysregulation of the HPA-axis as exhibited by 

decreased CORT circulation, and decreased or delayed expression of CRH in the PVN, but 

an overall misalignment in CORT regulation.   

   This hypothesis was strengthened by investigation of 11β-hydroxysteroid dehydrogenase 

(11βHSD) type 1 and 2, the enzymes responsible for reducing cortisone to the active 

hormone corticosterone and conversely inactivating corticosterone to cortisone, respectively. 

These enzymes work at the tissue level to activate or deactivate CORT depending on the 

tissue’s needs or in the case of the kidney tubules, where 11βHSD2 is highly expressed, to 

enable aldosterone to reach the mineralocorticoid receptor by deactivating CORT. In our 

study presented here, we showed no significant differences in 11βHSD1 in either the WAT 
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or the liver, while there was a nice rhythmic expression of 11βHSD2 in LD12 mice, with a 

peak in WAT that corresponded with an increase in circulating CORT levels suggesting that 

11βHSD2 was working to decrease CORT availability in WAT at ZT12.  This expression 

was blunted in LD10 mice and while it is possible that we missed a peak in these mice due to 

our sample times, overall 11βHSD2 levels were decreased.  In the liver, 11βHSD2 was 

shifted in the LD10 mice, while again this could be in relation to a peak that we missed in our 

times of data collection, it speaks more to our hypothesis that the system of CORT regulation 

is not in synchrony.  

     Increased circulating CORT is known to increase adiposity especially in the visceral area 

through increased lipogenesis,86,87,104
 but the role of blunted CORT on metabolism is less 

clear.  Given that arrhythmic CORT in LD10 mice led to arrhythmic expression of clock 

genes, we examined Per2 interactions with nuclear receptor PPARα and PPARγ and nuclear 

receptor target genes, including Hnf4α, and G6P, were altered in disrupted mice.182,196 In 

WAT there was no significant difference in either PPARα or PPARγ although mRNA levels 

showed a flatter rhythm.  The same was the case in the liver where Hnf4α, G6Pc, and PPARγ 

(the expression of these factors are greater in the liver than WAT)197  displayed a 

significantly flatter rhythm in Hnf4α mRNA levels suggesting impairment of 

gluconeogenesis in LD10 mice.  

     It remains to be determined how alterations in gene expression and CORT regulation, 

which appear to have negative metabolic effects, align with feeding behavior.  While we 

have shown no difference in overall food intake, several studies have demonstrated the 

importance of daily feeding time,198,199 which has shown to alter the liver metabolome, as 

well as nutrient utilization and energy expenditure. 200,201 In CD mice misalignment in 
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feeding behavior, energy metabolism, and substrate utilization could become worse overtime, 

as the mice are unable to adjust to the light-cycle.  Change in feeding behavior independent 

of enzyme and receptor regulation could further modify rhythms, as again food availability 

and food intake alone are sufficient to change rhythms.  In this way, weight gain may be a 

consequence of the body’s means to maintain allostasis.  

      How these findings translate to humans is an important area of research because such 

effects could put chronically disrupted individuals at risk for developing metabolic and 

cardiovascular problems. More recently the phenomenon of blunted and decreased daily 

CORT release, referred here as hypocortisolism, has also been reported for patients suffering 

from PTSD.51  More extensive research has also shown the presence of hypocortisolism in 

body disorders such as burnout, chronic fatigue syndrome, fibromyalgia, chronic pelvic pain 

and asthma, as well as in healthy individuals living under conditions of ongoing stress.50, 55  

If circadian disruption is able to have a similar effect on CORT circulation, then the 

phenomena of hypocortisolism may be more common place than once thought, given the 

number of individuals who operate in conditions where circadian disruption is present (e.g., 

scientist running circadian experiments, doctors, nurses, and pilots to name a few).  As with 

individuals and animals with chronic stress, chronic circadian disruption could thereby have 

a markedly altered regulation of the circadian and ultradian rhythms.  The circadian rhythm 

is flattened or lost leading to metabolic abnormalities as we see here, cognitive deficits,166 

impaired inflammatory response as we noted in decreased Il-6 circulation after an LPS 

challenge (unpublished data), suggesting an overall altered response to acute stressors. 

      The degree to which the noted metabolic disturbances reflect dysregulation of the clock, 

dysregulation of CORT, or an interaction between these two systems also remains to be 
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determined.  Studies looking at the effects of chronic mild stress in both BALB/c mice and 

C57BL/6 mice showed marked differences in terms of end point measurements in terms of 

corticosterone levels, clock gene expression, and subsequent metabolic parameters.  Future 

work looking into these two mouse strains, which have been shown to have differential 

responses to HPA-axis perturbations, could shed light on the extent CORT is having an effect 

in this model of CD.202,203 

     In summary, chronic alterations in environmental lighting cues results in a loss of 

rhythmicity and dysregulation of CORT secretion.  The pattern of CORT activity is 

associated with the loss of rhythmic clock gene expression in WAT and liver.  In WAT the 

direct relationship to circadian control and lipogenesis remains unclear, but CD appears to 

alter glucose metabolism in the liver through decreased expression of Hnf4α and G6P. 
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Chapter 4: Chronic glucocorticoid exposure alters metabolism and circadian rhythms 
 
Abstract 
 
     Chronic glucocorticoid (GC) exposure, as often occurs under conditions of pervasive 

stress, is accepted as one of the mediators of the obesity and metabolic syndrome epidemic 

plaguing our nation; however, the molecular mechanisms connecting increased GCs to 

metabolic dysregulation remains unclear. GC hormones, particularly corticosteroids (CORT) 

also play a role in the regulation of circadian (daily) rhythms, particularly in some peripheral 

tissues, as well as in the bed nucleus of the stria terminalis and central nucleus of the 

amygdala in the brain. CORT effects on rhythms seem to be mediated through direct effects 

on “clock genes” that regulate intrinsic timing at the cellular level. Given the effect of CORT 

secretion and signaling on clock gene expression, an imbalance or disruption in CORT 

signals could affect nutrient metabolism, storage, and feeding related hormone responses.  

We have recently developed a non-invasive model of CORT administration that delivers 

CORT through the drinking water of mice. This results in rapid and dramatic increases in 

weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, and 

hyperphagia.  In this study, we aimed to determine how chronic high levels of CORT impact 

circadian rhythms, clock gene expression, and related changes in metabolism.  Prolonged 

treatment with CORT resulted in alteration of circadian rhythms as noted by body 

temperature, activity levels, and decreased clock gene expression in both white adipose tissue 

(WAT) and liver.  Constant darkness also revealed the ability of increased circulating CORT 

to decouple clock gene expression in WAT.  Additional metabolic analysis in WAT and liver 

revealed disruptions to lipid and glucose metabolism related pathways.  As CORT mice 

continue to gain weight in the absence of hyperphagia, these effects are likely independent of 
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food intake. Thus, increased exposure to CORT can interfere with the circadian expression of 

both core clock genes and metabolism-related genes, offering a mechanism that could 

contribute to metabolic disorders in our modern 24/7, stressful society.      

 

Rationale  

Glucocorticoid (GC) hormones are thought to play a role in the regulation of clock genes 

involved in the generation of circadian rhythms in peripheral tissues, as well as the bed 

nucleus of the stria terminalis and central nucleus of the amygdala in the brain.184,145 Recent 

studies have also shown circadian rhythmicity in glucocorticoid-related gene expression in 

human adipose tissue, suggesting that intra-depot cortisol action can be modified in a 

circadian fashion at the tissue level.204  Given that increased weight gain and decreased 

circulation of CORT were associated with decreased expression of clock genes in the 

periphery (as shown in Chapter 3), we wanted to explore how chronic administration of 

CORT in the drinking water would affect circadian rhythms as measured through activity, 

body temperature, clock gene expression and metabolism related genes.  

 

Experimental design 

The experiment was carried out with 2 cohorts of mice.  In the first group, 48 mice were 

obtained and placed on vehicle, 25 µg/mL or 100 µg/mL CORT.  After 4 weeks of treatment, 

mice were euthanized at Zeitgeber time (ZT, ZT12=lights OFF) 6, 12, or 18 (n=4-6/group, 2 

cages were lost during experiment as the result of aggressive fighting). In the second cohort, 

24 mice (n=4/group/time point) were surgically implanted with temperature and activity 

telemeters.  Their daily activity during the light dark cycle was monitored for the duration of 
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the 4 week CORT treatment, with the last 72 hours in constant darkness (DD).  Mice in this 

cohort were euthanized at circadian time (CT, CT12 = start of daily activity) 12 or CT18 

based on their free running period.  Blood and tissue were collected at the end of the 

experiment for processing. 

 

Results 

Mice chronically treated with CORT in the drinking water displayed biphasic activity as 

suggested by actograms (Fig 4.1A-C) and tempograms (Supplemental Fig 4.1 A-C), where 

there was a noticeable gap in the middle of the active cycle compared to control mice. 

Overall activity levels were clearly decreased in CORT treated mice.  One way ANOVA and 

Tukey posthoc revealed decreased daytime activity in 100 µg/mL CORT treated mice 

(F(2,26)=4.103, p=0.0293), and decreased nighttime activity in both 25 and 100 µg/mL 

CORT treated mice (F(2,26)=105.3, p<0.0001; Fig 4.1F).  A decreased or flattened 

amplitude in circadian rhythm in CORT treated mice was also made evident by comparing 

the magnitude of the change between daytime and nighttime activity levels 

(F(1,40)=25.28;p<0.0001; Fig 4.1E).  Bonferroni posthoc showed increased effect from days 

1-8, to days 9-6 in CORT treated mice only (p<0.05).  Although there were no change in 

body temperature amplitudes from week-to-week, actual body temperature was decreased in 

CORT treated mice (F(2,13)=18.78, p<0.0001; Supplemental Fig 4.1E), again suggesting a 

flatter rhythm in CORT mice .  Mice were placed in DD (constant darkness) for the final 

three days of the experiment to determine affects on free running circadian rhythm.  DD in 

the actogram (Fig 4.1A-C) is noted by a decrease in Qp, an indicator of circadian robustness.  



64 
 

 

Figure 4.1 Activity patterns of vehicle and CORT treated mice. Activity levels were recorded 

in the light-dark cycle through the duration of the 4 week experiment with the use of 

surgically implanted MiniMitters.  (A) Vehicle mice showed normal activity patters in the 

light-day cycle while both (B) 25 µg/mL and (C) 100µg/mL doses of CORT treatment 

resulted in biphasic activity patterns.  (E) Altered patterns in activity resulted in a decreased 

“day-night” locomotor activity in CORT treated mice, indicating a flatter circadian rhythm,  

as well as an (F) overall decrease in locomotor activity. There was no difference in (D) 

activity period between groups as determined by free running behavior in constant darkness 

during the last 3 days of the experiment. Bars with the same letter are non-statistically 

different from one another as determined by two-way ANOVA and plotted ±SEM. 
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There was no significant difference in circadian period between groups as measured through 

activity and body temperature (Fig 4.1D and Supplemental 4.1D respectively).      

     Changes in activity levels and free running behavior suggested a change in circadian 

behavior that was confirmed by analysis of clock gene expression in the WAT and liver (Fig 

4.2).  Specifically, in the WAT rhythmic expression of Per1 was detected (F(2,8)=10.12; 

p=.0064) in vehicle treated mice with a gradual increase from ZT 6 to ZT 12 and a significant 

decrease in expression at ZT 18 (p<.05; Fig 4.2A).  Rhythmicity was blunted in 25µg/mL 

CORT treated mice and severely flattened in the 100 µg/mL group.  Posthoc tests revealed a 

significant decrease in Per1 gene expression between vehicle and 100µg/mL CORT groups at 

ZT 12 (p<.01). Vehicle treated mice showed a stronger circadian pattern of Per2 mRNA 

expression (F (2,8)=24.43; p=.0004), with  posthoc tests revealing a significant increase of 

expression at ZT 12 (p<.05; Fig 4.2B).  Again the 100 µg/mL CORT circadian rhythm was 

completely blunted and significantly lower at ZT 12 (p<.01) compared to vehicle treated 

mice.  Plasma CORT levels were also measured and the typical diurnal pattern was noted in 

the vehicle treated mice, with a peak at waking (ZT12 F(2,9)=54.05; p<.0001) and decline 

through the day.  In CORT treated mice, this rhythm was no longer determined by 

endogenous secretion, as adrenal glads in these mice have completely atrophied.  As such, 

the endogenous rhythm in drinking drove plasma CORT levels.47 In both treated groups, 

there was a gradual increase from ZT6 to ZT12 (25 µg/mL p=.014; 100 µg/mL p=.057); 

however, unlike vehicle treated mice, CORT plasma levels continued to rise in CORT treated 

mice through their active period as they drank water (Figure 4.2C).  The increase from ZT12 

to ZT18 is modest in the 25 µg/mL group (p=.044), and insignificant in the 100 µg/mL group 

(p=.137).  The overall levels of plasma CORT were increased in the 100 µg/mL group from 
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ZT6 to ZT18 (F (2,11)=6.754; p=.012).  At ZT18 these levels were significantly higher in 

100 µg/mL mice compared to vehicle treated animals (p<.001). 

     Under DD conditions, increased mRNA expression of Per1 in WAT of 100 µg/mL CORT 

animals suggested a possible decoupling from the endogenous rhythm as a result of increased 

CORT intake (Fig 4.3).  Analysis of WAT Per1 revealed a main effect of treatment 

(F(2,16)=13.21; p<.001) and subsequent posthoc test showed a significant increase in 100 

µg/mL treated mice compared to vehicle at CT18 (p<.001).  Analysis of CORT drinking 

behavior showed an effect of treatment (F(2, 17)=8.906; p=.002) and time of day 

(F(1,17)=6.709; p=.019), and an interaction (F(2,17)=3.801;p=.0432).  Bonferroni posttests 

showed an increase of CORT in vehicle vs. high CORT mice at CT18 (p<.001).  These levels 

were lower in DD than under LD conditions, with a peak of 411 ng/mL in constant darkness 

compared to 600 ng/mL in LD for the 100 µg/mL CORT mice.  Similarly, peak levels were 

around 160 ng/mL vs. 250 ng/mL for  25 µg/mL CORT treated mice, and 72 ng/mL vs. 151 

ng/mL in VEH mice in DD vs. LD, respectively.  Per2 expression showed a main effect of 

time a day (F(1, 18)=19.15; p<.001), as expression increased from CT12 to CT18 in all 

animals. 

     In the liver, under LD conditions we again observed rhythmic expression of Per1 mRNA 

in vehicle treated mice (F(2,11)=5.827; p=.024), as well as a rhythm in Per2 mRNA 

(F(2,10)=11.85; p=.004), with daytime difference between ZT6 and ZT12 (P<.05) in both 

clock genes (Fig 4.4A and 4.4B).  Expression was blunted in both CORT treated groups with 

a decrease in expression of Per1 at ZT 12 (VEH vs. 25 µg/mL p<.05, VEH vs. 100 µg/mL 

p<.001) and Per2 at ZT 12 (VEH vs. 25 µg/mL p<.001, VEH vs. 100 µg/mL p<.001) and ZT 

18 (VEH vs. 100 µg/mL p<.05).  In DD there was no difference between groups in Per1 
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expression.  Per2 showed a main effect of time of day (F(1,17)=25.48; p<.0001), and a slight 

effect of treatment (F(2,17)=4.44; p=.028). 

     In order to determine how CORT treatment and altered circadian rhythms impact WAT 

metabolism, we analyzed several genes known to play active rolls in the development of 

obesity and insulin resistance in control and the 100 µg/mL CORT treated mice, by using 

applied biosciences PCR pathway arrays, results described in Table 4.1 and 4.2.  As an active 

metabolic organ with constant feedback to appetite and food intake regulation to the brain, 

we also used an array to study the impact in the hypothalamus (Table 4.3). Given a decrease 

in expression, when comparing to the LD cycle, in all groups with no significant differences 

between groups. *indicates P<0.05, ***P<0.001.  

 

 

 

Figure 4.2 Exogenous glucocorticoid (CORT) exposure result in decreased expression in 

clock genes under the light-dark cycle.  White adipose tissue (WAT) from mice after 4 weeks 

of VEH, 25 µg/mL or 100 µg/mL CORT treatment was collected at 3 times periods across 

the light dark cycle and are shown here in zeitgeber time (ZT).  Increasing doses of CORT 

resulted in greater reductions in the mRNA expression of (A) Per1 and (B) Per2.  Results 

presented as fold changes and normalized to VEH ZT6. (C) Plasma CORT levels showed the 

typical diurnal rhythm with VEH and increased through the active dark period with both 

doses of CORT as they are exposed to the hormone through the day. ** indicates P<0.01, 

*** P<0.001. 
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Figure 4.3 Exogenous glucocorticoid (CORT) exposure result in differential expression in 

clock genes under constant darkness.  White adipose tissue (WAT) from mice after 4 weeks 

of VEH, 25 µg/mL or 100 µg/mL CORT treatment were collected at the beginning or middle 

of their active period and are shown here in circadian time (CT). The 100 µg/mL dose of 

CORT resulted in an increased expression of (A) Per1 through the active period while 

expression decreased in the 25 µg/mL group and remained flat in VEH mice.  (B) Per2 

showed increased expression through the active period with little difference between groups.  

CORT results are presented as fold changes and normalized to VEH CT12. (C) While plasma 

CORT levels were increased in CORT treated mice due to exposure in the drinking water, 

levels in all groups were lower than under a light dark cycle. *** indicates P<0.001. 
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 Figure 4.4 Exogenous corticosterone (CORT) exposure result in decreased expression of 

clock genes in both the light-dark cycle and under constant darkness.  Liver samples were 

collected following 4 weeks of VEH, 25 µg/mL or 100 µg/mL CORT treatment.  For light-

dark analysis, livers were collected at 3 time periods across the cycle and are shown here in 

zeitgeber time (ZT).  For constant dark analysis samples were collected at the beginning or 

middle of their active period and are shown here in circadian time (CT).  Under normal light 

conditions, increasing doses of CORT led to decreased and less rhythmic (A) Per1 and (B) 

Per2 expression. Under constant darkness levels of (C) Per1 and (D) Per2 showed a decrease  
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Table 4.1 Insulin signaling pathway-related gene expression in gonadal fat pads (white 

adipose tissue-WAT). Values represent fold change (±SEM; n=4/group) in corticosterone 

treated mice compared to vehicle treated mice. Upregulation is noted in red, downregulation 

noted by blue. *P<0.05. 

Description Gene Symbol Fold Change 
vs. Control 

(Vehicle WT) 
CORT WT 

Thymoma viral proto-oncogene 1 Akt1 -2.7435* 
Thymoma viral proto-oncogene 2 Akt2 -2.6454* 
Thymoma viral proto-oncogene 3 Akt3 -1.5594 
FK506 binding protein 12-rapamycin associated 
protein 1 Mtor -3.2344* 
Glucose-6-phosphatase, catalytic G6pc -1.4525 
Glucose-6-phosphatase, catalytic, 2 G6pc2 -1.6976 
Growth factor receptor bound protein 2-
associated protein 1 Gab1 -2.5865* 
Glucokinase Gck -1.0112 
Glycerol-3-phosphate dehydrogenase 1 
(soluble) Gpd1 -1.0147 
Growth factor receptor bound protein 2 Grb2 -2.2245* 
Glycogen synthase kinase 3 beta Gsk3b -1.9467 
Hexokinase 2 Hk2 -2.4259* 
Harvey rat sarcoma virus oncogene 1 Hras1 -1.6888* 
Insulin-like growth factor I receptor Igf1r -5.5828 
Insulin-like growth factor 2 Igf2 -4.1655 
Insulin-like growth factor binding protein 1 Igfbp1 -1.2363 
Insulin I Ins1 -11.8433 
Insulin-like 3 Insl3 -2.6272 
Insulin receptor substrate 1 Irs1 -2.7721* 
Insulin receptor substrate 2 Irs2 -3.6452 
Jun oncogene Jun -2.5553 
V-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog Kras -1.8006* 
Low density lipoprotein receptor Ldlr -1.1696 
Leptin Lep 1.6234 
Mitogen-activated protein kinase kinase 1 Map2k1 2.7302 
Mitogen-activated protein kinase 1 Mapk1 -1.6398 
Nitric oxide synthase 2, inducible Nos2 -2.4811 
Neuropeptide Y Npy 2.3522 
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Table 4.1 Continued 
Phosphoenolpyruvate carboxykinase 2 
(mitochondrial) Pck2 -1.3319 
3-phosphoinositide dependent protein kinase-1 Pdpk1 -2.145 
Phosphatidylinositol 3-kinase, catalytic, alpha 
polypeptide Pik3ca -2.3925* 
Phosphatidylinositol 3-kinase, catalytic, beta 
polypeptide Pik3cb -3.4366* 
Phosphatidylinositol 3-kinase, regulatory 
subunit, polypeptide 1 (p85 alpha) Pik3r1 -2.047 
Phosphatidylinositol 3-kinase, regulatory 
subunit, polypeptide 2 (p85 beta) Pik3r2 -2.5201* 
Peroxisome proliferator activated receptor 
gamma Pparg -2.0049 
Protein phosphatase 1, catalytic subunit, alpha 
isoform Ppp1ca -1.9979 
Protein kinase C, gamma Prkcc -2.0118 
Protein kinase C, iota Prkci -2.7625* 
Protein kinase C, zeta Prkcz -3.3427* 
Prolactin Prl -1.6976 
Protein tyrosine phosphatase, non-receptor type 
1 Ptpn1 -2.4683 
Protein tyrosine phosphatase, receptor type, F Ptprf -3.4967 
V-raf-leukemia viral oncogene 1 Raf1 -2.0223 
Resistin Retn -2.0118 
Ribosomal protein S6 kinase polypeptide 1 Rps6ka1 -1.4201 
Harvey rat sarcoma oncogene, subgroup R Rras -1.7183 
Src homology 2 domain-containing 
transforming protein C1 Shc1 -2.4133* 
Solute carrier family 27 (fatty acid transporter), 
member 4 Slc27a4 -2.0973 
Solute carrier family 2 (facilitated glucose 
transporter), member 1 Slc2a1 -2.2673* 
Sorbin and SH3 domain containing 1 Sorbs1 -1.4959 
Son of sevenless homolog 1 (Drosophila) Sos1 -1.7124* 
Sterol regulatory element binding transcription 
factor 1 Srebf1 -3.3601* 

 
Values represent average fold change (±SEM; n=4/group) in response to corticosterone 

treatment (100 µg/mL) mice compared to vehicle (1% ethanol) treated mice. Upregulation 

with a fold change greater than 2 is noted in red, downregulation with a fold change less than 

.5 noted by blue. All animals were euthanized at ZT6.  *P<0.05. 
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Table 4.2 Obesity-related gene expression in gonadal fat pads (white adipose tissue-WAT).  
Description Gene Symbol Fold 

Change vs 
Control-

Vehicle WT 
CORT WT 

Adenylate cyclase activating 
polypeptide 1 Adcyap1 0.6276 
Adenylate cyclase activating 
polypeptide 1 receptor 1 Adcyap1r1 8.1004* 
Adiponectin, C1Q and collagen domain 
containing Adipoq 0.3271* 
Adiponectin receptor 1 Adipor1 0.8959 
Adiponectin receptor 2 Adipor2 0.3547* 
Adrenergic receptor, alpha 2b Adra2b 0.5205 
Adrenergic receptor, beta 1 Adrb1 0.5502* 
Agouti related protein Agrp 0.4065* 
Apolipoprotein A-IV Apoa4 3.7877 
Attractin Atrn 0.698* 
Brain derived neurotrophic factor Bdnf 2.3316 
Bombesin-like receptor 3 Brs3 0.8149 
Complement component 3 C3 0.5657 
Calcitonin/calcitonin-related 
polypeptide, alpha Calca 0.7638 
Calcitonin receptor Calcr 0.6276 
CART prepropeptide Cartpt 0.6276 
Cholecystokinin Cck 1.3299 
Cholecystokinin A receptor Cckar 0.0891 
Colipase, pancreatic Clps 0.6276 
Cannabinoid receptor 1 (brain) Cnr1 0.4724* 
Ciliary neurotrophic factor receptor Cntfr 0.2591* 
Carboxypeptidase D Cpd 0.8244 
Carboxypeptidase E Cpe 0.5696 
Corticotropin releasing hormone 
receptor 1 Crhr1 0.6276 
Dopamine receptor D1A Drd1a 0.3348 
Dopamine receptor 2 Drd2 0.6276 
Galanin Gal 0.5979 
Galanin receptor 1 Galr1 0.6276 
Glucagon Gcg 0.1014 
Glucagon receptor Gcgr 1.1132 
Growth hormone Gh 0.6276 
Growth hormone receptor Ghr 0.813 
Ghrelin Ghrl 0.6063* 
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Table 4.2 Continued 
Growth hormone secretagogue receptor Ghsr 0.6932 
Glucagon-like peptide 1 receptor Glp1r 0.6276 
Melanin-concentrating hormone 
receptor 1 Mchr1 1.3896 
Gastrin releasing peptide Grp 0.6276 
Gastrin releasing peptide receptor Grpr 0.6276 
Hypocretin Hcrt 0.8301 
Hypocretin (orexin) receptor 1 Hcrtr1 0.7327 
Histamine receptor H1 Hrh1 0.8282 
5-hydroxytryptamine (serotonin) 
receptor 2C Htr2c 0.6276 
Islet amyloid polypeptide Iapp 0.6276 
Interleukin 1 alpha Il1a 0.6379 
Interleukin 1 beta Il1b 0.4868 
Interleukin 1 receptor, type I Il1r1 0.8594 
Interleukin 6 Il6 0.4542 
Interleukin 6 receptor, alpha Il6ra 0.7603 
Insulin I Ins1 0.6276 
Insulin II Ins2 0.6996 
Insulin receptor Insr 0.5193* 
Leptin Lep 2.6172 
Leptin receptor Lepr 0.3197* 
Melanocortin 3 receptor Mc3r 0.6276 
Neuromedin B Nmb 0.3758* 
Neuromedin B receptor Nmbr 0.8093 
Neuromedin U Nmu 0.6483 
Neuromedin U receptor 1 Nmur1 0.4959 
Neuropeptide Y Npy 1.6717 
Neuropeptide Y receptor Y1 Npy1r 145.479 
Nuclear receptor subfamily 3, group C, 
member 1 Nr3c1 0.4199* 
Neurotrophic tyrosine kinase, receptor, 
type 2 Ntrk2 0.563* 
Neurotensin Nts 0.9189 
Neurotensin receptor 1 Ntsr1 0.6276 
Opioid receptor, kappa 1 Oprk1 0.6233 
Opioid receptor, mu 1 Oprm1 0.3332* 
Sigma non-opioid intracellular receptor 
1 Sigmar1 1.2209 
Pro-opiomelanocortin-alpha Pomc 0.6948* 
Peroxisome proliferator activated 
receptor alpha Ppara 0.3131* 
Peroxisome proliferator activated 
receptor gamma Pparg 0.5592 
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Peroxisome proliferative activated 
receptor, gamma, coactivator 1 alpha Ppargc1a 0.3572* 
Prolactin releasing hormone receptor Prlhr 0.6276 
Protein tyrosine phosphatase, non-
receptor type 1 Ptpn1 0.7709 
Peptide YY Pyy 0.6276 
Receptor (calcitonin) activity modifying 
protein 3 Ramp3 1.022 
Sortilin 1 Sort1 0.6604 
Somatostatin Sst 0.6276 
Somatostatin receptor 2 Sstr2 0.7029 
Thyroid hormone receptor beta Thrb 0.5169* 
Tumor necrosis factor Tnf 0.4627 
Thyrotropin releasing hormone Trh 0.7429 
Urocortin Ucn 0.6276 
Uncoupling protein 1 (mitochondrial, 
proton carrier) Ucp1 0.6276 
Zinc finger protein 91 Zfp91 0.6742 

 

Values represent average fold change (±SEM; n=4/group) in response to corticosterone 

treatment (100 µg/mL) mice compared to vehicle (1% ethanol) treated mice. Upregulation 

with a fold change greater than 2 is noted in red, downregulation with a fold change less than 

.5 noted by blue. All animals were euthanized at ZT6. *P<0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2 Continued 
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Table 4.3 Obesity related gene expression in in the hypothalamus of corticosterone (CORT) 
and vehicle treated mice.  
 

Description Gene 
Symbol 

Fold 
Change vs 

1% WT 
100 WT 

Adenylate cyclase activating polypeptide 1 Adcyap1 1.1856 
Adenylate cyclase activating polypeptide 1 
receptor 1 Adcyap1r1 1.4132 
Adiponectin receptor 1 Adipor1 -1.0938 
Adiponectin receptor 2 Adipor2 1.4035 
Adrenergic receptor, alpha 2b Adra2b 2.8992 
Adrenergic receptor, beta 1 Adrb1 -1.1014 
Agouti related protein Agrp 13.823 
Apolipoprotein A-IV Apoa4 4.5757 
Brain derived neurotrophic factor 
 Bdnf 1.5881 
Complement component 3 C3 1.4231 
Calcitonin/calcitonin-related polypeptide, 
alpha Calca 1.8886 
CART prepropeptide Cartpt 1.9084 
Cholecystokinin Cck 2.4044 
Cholecystokinin A receptor Cckar -1.5397 
Cannabinoid receptor 1 (brain) 
 Cnr1 -1.1629 
Carboxypeptidase D 
 Cpd -1.19 
Galanin receptor 1 
 Galr1 -1.2666 
Glucagon Gcg 1.9894 
Glucagon receptor Gcgr 1.9894 
Growth hormone Gh 1.0393 
Growth hormone receptor Ghr 1.6215 
Growth hormone secretagogue receptor 
 Ghsr 2.6494 
Hypocretin Hcrt -1.3159 
Hypocretin (orexin) receptor 1 Hcrtr1 1.1612 
5-hydroxytryptamine (serotonin) receptor 2C 

 Htr2c -1.4993** 
Islet amyloid polypeptide 
 Iapp -1.4006 
Interleukin 1 beta Il1b 4.0065 
Interleukin 1 receptor, type I Il1r1 2.1347* 



 76 

Table 4.3 Continued 
Insulin I Ins1 1.9894 
Insulin II Ins2 1.9894 
Leptin receptor Lepr 2.3064* 
Melanocortin 3 receptor Mc3r 1.8777 
Neuromedin B Nmb 2.1845 
Neuropeptide Y Npy 2.3631 
Neuropeptide Y receptor Y1 Npy1r 1.5699 
Neurotrophic tyrosine kinase, receptor, type 2 Ntrk2 1.3494 
Neurotensin Nts -2.0223* 
Opioid receptor, mu 1 
 Oprm1 2.0739 
Pro-opiomelanocortin-alpha Pomc 7.5371 
Peroxisome proliferator activated receptor 
alpha Ppara 1.2275 
Peroxisome proliferator activated receptor 
gamma Pparg 2.0739 
Peptide YY Pyy 7.6954 
Peroxisome proliferative activated receptor, 
gamma, coactivator 1 alpha 
 

Ppargc1a 
 

-1.4499* 
 

Receptor (calcitonin) activity modifying 
protein 3 Ramp3 1.6309 
Somatostatin Sst 1.2475 
Somatostatin receptor 2 Sstr2 1.1308 
Thyrotropin releasing hormone Trh -1.4685 
Urocortin Ucn 1.9462 
Uncoupling protein 1 (mitochondrial, proton 
carrier) Ucp1 1.9894 

 
Whole hypothalamus was collected by tissue punch from whole fresh frozen brain.  Values 

represent average fold change (±SEM; n=4/group) in response to corticosterone treatment 

(100 µg/mL) mice compared to vehicle (1% ethanol) treated mice. Upregulation with a fold 

change greater than 2 is noted in red, downregulation with a fold change less than .5 noted by 

blue. All animals were euthanized at ZT6. *P<0.05 and **P<0.01. 

 

 

 

 



 77 

 

     In order to determine how CORT treatment impact WAT metabolism, and if there was a 

circadian component, we analyzed several genes known to play active rolls in the 

development of obesity and insulin resistance in control and the 100 µg/mL CORT treated 

mice, using SABiosciences RT2PCR pathway arrays, results described in Table 4.1 and 4.2.  

As an active metabolic organ with constant feedback to appetite and food intake regulation to 

the brain, we also used an array to study the impact in the hypothalamus (Table 4.3). Given a 

decrease in PParα in the array (Table 2) and its known intersection with Per2, we analyzed 

PParα to great detail across the light-dark cycle. As with Per2, CORT treatment resulted in 

decreased expression of PParα most notably at ZT12 (F(2,16)=10.09, p=0.0015; Fig 4.5C), 

which coincided with the peak of Per2 expression in VEH mice.  HNF4α in the liver was 

also analyzed given its interaction with Per2.  In CORT treated mice, there was also 

decreased expression at ZT18 (F(2, 12)=6.274, p0.0136; Fig 4.5F), which coincided with a 

significant decrease of Per2 expression in100 µg/mL CORT treated mice. 

     Although circulating levels of CORT are increased in treated mice, it is possible through 

actions of regulatory enzyme levels that the active level reaching receptors is not greatly 

varied.   In WAT, 11βHSD1 is increased at ZT6 (p<0.001) but decreased at ZT12 (p<0.01), 

and ZT18 (not to significance) as determined by 2 way ANOVAs and Bonferroni posttest 

(time of day (F(2, 16)=67.95, p<0.0001; Fig 4.5A).  There is a slight decrease of 11βHSD2 

in WAT at ZT12 but not to significance (Fig 4.5B).  In the liver, CORT treated mice show an 

increased in 11βHSD1 expression at the beginning of the dark cycle with decrease at ZT18, 

but not significantly greater than controls (Fig 4.5D). 11βHSD2 expression in the liver of 

VEH and control mice do not vary greatly at ZT6 or ZT12, but levels escalate greatly in VEH 
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mice at ZT18 (p<0.01; Fig 4.5E) as determined by Bonferroni after a main effect in treatment 

(F(1, 17)=7.447; p0.0143).   

     Given that all studies were conducted in whole adipose tissue we stained WAT sections 

for F4/80, a membrane protein present in mature macrophages in mice.  Staining revealed a 

large population of macrophages in 100 µg/mL CORT treated mice (Supplemental Fig 4.2) 

compared to VEH mice. 

      In CORT treated mice, increased circulating leptin and increased mRNA expression (t 

test, p=0.016) of the leptin receptor in the hypothalamus in conjunction with abnormal 

activity would suggest irregular feeding patters and food intake amounts that could account 

for their metabolic abnormalities.  However, when CORT treated mice were pair fed (food 

intake was limited to that of control mice), they continued to gain a comparable amount of 

weight to CORT treated mice fed ad lib, both reaching a significantly greater weight change 

at week 4 compared to VEH ad lib fed mice (F(2,11)=6.678; p=0.0167; Fig 4.6), suggesting 

that the obese phenotype was independent of food intake. 
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Figure 4.5 Diurnal mRNA expression in white adipose tissue (WAT) and liver of control and 

100µg/mL CORT treated mice. 4 weeks of chronic high doses of CORT treatment alters the 

pattern and degree of expression of (A) 11βHSD type 1 and (B) type 2 in the WAT, as well 

as in the liver (D-E, respectively).  (C)PParα expression in WAT is decreased at ZT6 and 

significantly so at ZT12 while HNF4α decreased through the day to significance at ZT18 

(n=3-4/group and time point). Fold changes of gene expression (±SEM) were determined by 

qRT-PCR.  Values represent the level of normalized gene expression relative to the mean, 

overall normalized gene expression to ZT6.  Significant peak levels of expression in VEH to 

100µg/mL CORT * P<0.05 and**P<0.01, **P<0.001, by two way ANOVA and Bonferroni 

posttest.  
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Figure 4.6 Clamped food intake in CORT treated mice does not prevent weight gain.  CORT 

treated mice were pair fed for the duration of treatment.  Despite equivalent food intake to 

VEH mice (n=4/group) pair fed CORT mice (restricted feeding) continued to gain weight 

with comparable levels as CORT ad lib mice. * P<0.05. 
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Supplemental Figure 4.1 Body temperature rhythms of vehicle and CORT treated mice. 

Body temperature was recorded in the light-dark cycle through the duration of the 4 week 

experiment with the use of surgically implanted MiniMitters.  (A) Vehicle mice showed 

normal temperature rhythms in the light-day cycle while both (B) 25 µg/mL and (C) 

100µg/mL doses of CORT treatment resulted in slight biphasic rhythms.  (E) “Day minus 

light” revealed a decreased body temperature amplitude in CORT treated mice emphasizing a 

flatter rhythm in 25µg/mL and 100 µg/mL CORT mice. There was no difference in (D) body 

temperature period between groups as determined by free running behavior in constant 

darkness during the last 3 days of the experiment. Bars with the same letter are non 

statistically different from one another as determined by two-way ANOVA and plotted 

±SEM. 
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Supplemental Figure 4.2 Chronic CORT treatment results in macrophage infiltration. 

F4/80 stain of WAT reveals an inflammatory response and macrophage penetration after 4 

weeks of chronic CORT treatment.   Representative photos shown here from n=5 mice/group 

killed at ZT6.  Top photos show at 10x, bottom photos at 40x. 
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Discussion 

     In this set of studies we showed that chronic CORT treatment resulted in an altered 

pattern in daily activity with an increasingly biphasic pattern with one bout of activity at 

lights off, a bout of rest, and a final bout of activity before lights on.  This separation in 

activity is clear in the 25 µg/mL group, but more pronounced in 100 µg/mL CORT treated 

mice.  In addition, there was an obvious decrease in the amplitude of circadian rhythmicity in 

CORT treated animals, as measured by a smaller difference in day vs. night activity. When 

mice were placed in DD, they retained a free-running circadian activity rhythm similar to that 

of VEH mice. These changes in activity levels were accompanied by decreased clock gene 

expression in both white adipose tissue (WAT) and liver.  This effect of expression was 

larger in 100 µg/mL CORT treated mice compared to the 25 µg/mL group.  Constant 

darkness revealed a possible decoupling effect of CORT in that we observed an increase in 

Per1 mRNA expression in WAT despite the presence of light; this increase was not present 

in VEH mice.  Per2 mRNA expression did not vary greatly between groups in WAT, but 

comparing expression levels with those in the light-dark cycle, we observed increased 

expression in CORT animals.  Again, this pattern of results suggests that, in the absence of 

light cues, high circulating CORT can entrain clock gene rhythms in the WAT.  Interestingly, 

this effect of CORT was not present in the liver, and indeed expression of both Per1 and Per2 

mRNA were decreased in all groups.  CORT levels, even in CORT treated mice that received 

CORT in their drinking water, showed decreased plasma CORT compared to the same time 

points under the light-dark cycle. This decrease in expression in untreated mice is to be 

expected given the decrease in rhythmic secretion from adrenals noted in constant dark 

conditions4, but it is unclear how the drinking rhythm may be altered in DD in treated mice.    
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      Molecular studies have shown that occupied GC receptors bind to the glucocorticoid-

responsive element (GRE) in the regulatory regions of many genes, thereby regulating target 

gene transcription.205 A GRE is located in the promoter region of Per1 and is reportedly 

involved in Per1 expression, which allows GCs to directly interact with Per1 as highlighted 

in an in vivo study showing Per1 mRNA expression to be induced as the result of acute 

stress.206 Therefore, upregulation of GCs induced by overactivation of the HPA axis might 

directly affect the circadian expressions of core clock genes in the periphery.   Increases in 

circulating corticosterone levels and subsequent shifts in gene expression in mouse models of 

chronic mild stress203 not only affirm the ability of GCs to entrain peripheral organs, but also 

in the case of the later story, also link these changes to metabolic irregularities.  

     Increased circulation of GCs in the way of persistent stimulation of the HPA axis by 

various stressors can cause metabolic disorders, such as insulin resistance, hypertension, and 

dyslipidemia.47,149,207 These metabolic disturbances are also induced by dysregulation of the 

clock system as noted in Chapter 3, and by others.146,208  It remains to be determined whether 

modulation of the HPA axis leads to metabolic problems through the disruption of the clock 

system, or if these systems influence the same metabolic pathways independently.  Numerous 

molecules, such as the PParα and PParγ, PGC-1α, and G6P, play crucial roles as mediating 

metabolism and respond to modulations of both the core clock and GCs.146   

     Most studies exploring the interaction between the clock system and GC entrainment 

focus on metabolism on the level of the liver. Given the suggested decoupling effect of 

CORT during constant darkness as reported here, we explored in depth the mRNA 

expression of various genes known to be affected in pathways of obesity and insulin 

resistance, with attention given to PParα as it has been shown to control proadipogenic 
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activity in WAT and modulated by Per2; we also made note of HNF-4α in the liver as it is 

also modulated by Per2 and showed to be markedly affected by circadian disruption as 

observed in Chapter 3.182,209  Analysis of PParα across the light-dark system in CORT treated 

mice revealed a decrease consistent with decreased expression of Per2.  This pattern was also 

the case for HNF-4α expression in the liver, suggesting that altered expression of Per2 is 

required for CORT induced perturbations of metabolism-related gene expression to some 

degree in both the WAT and liver.  In this way we show increased CORT acts together with 

the clock system, to perturb the WAT and liver leading to the onset of metabolic 

disturbances. 

     Since CORT levels can be varied on the tissue level through enzymatic regulation, we 

examined levels of 11βHSD type1 and type2 in the liver and WAT.  Previously it was noted 

that CORT treatment resulted in increased protein expression of 11βHSD1 in the WAT but a 

decrease in liver, but that was only measured at ZT4-5.  In the current study we looked at 3 

different time points and saw changes in expression in both the liver and WAT across the day 

in both CORT and VEH treated mice. In WAT 11βHSD expression regulates CORT in a 

manner consistent with WAT Per clock gene expression.  In CORT treated mice, 11βHSD1 

increased expression at ZT6, and subsequently further increased presence of active CORT, 

resulted in the nadir of both Per1 and Per2 mRNA expression.  Conversely, increased 

expression of 11βHSD2 in VEH mice at ZT12 corresponds to the peak of Per2 mRNA 

expression in WAT.  Taken together 11βHSD and Per clock gene expression further suggest 

a CORT induced suppression of clock genes in this model.  In that regard, GR expression 

needs to be measured to determine if levels in CORT treated mice are overall downregulated 

at this point of treatment and the subsequent downregulation could possibly result in the 
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decreased clock gene expression, which could be the case as suggested by a glucocorticoid 

receptor resistance (GCR) model.210 

     Several recent studies have emphasized that rhythmic abnormalities affect energy 

homeostasis, as well as glucose and lipid metabolism,179,211,212 and in turn excess energy in 

the way of increased food intake through a high fat diet can also lead to rhythmic 

abnormalities16, perhaps also through increases in CORT.136,199 While few studies have 

looked at GC induced shifts in clock gene expression in WAT, recent studies have shown 

that adipocyte-specific deletion of the core molecular clock component Arntl (also known as 

Bmal1) results in obesity in mice, with a shift in the diurnal rhythm of food intake, a result 

not seen in gene disruption in hepatocytes alone. 196,121  Additionally, it has been shown that 

circadian modulation of lipolysis rates regulate the availability of lipid-derived energy during 

the day, suggesting a role for WAT clocks in the regulation of energy homeostasis.181 Taking 

these previous reports and our present results together, increased circulation of GCs through 

HPA axis activation under chronic stress4 or in states of excess nutrition214 may contribute to 

alterations in circadian clock gene expressions in the liver and WAT.   

     Beyond changes in clock genes and lipogenic factors, PCR array analysis in WAT also 

revealed marked decreases in many genes involved in the insulin-signaling pathway, a 

finding not surprising, given the increases in weight gain, adiposity, and increased levels of 

insulin, leptin and triglycerides in circulation.47  Given that all analysis of WAT came from 

full tissue, rather than adipocyte culture, and the ability of macrophages to infiltrate adipose 

tissue and produce proinflammatory cytokines that alter organ function,215 their presence 

should be kept in mind for future studies. 
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     As an active metabolic organ, WAT plays a large role in the fast-fed cycle and is able to 

activate and deactivate anorectic and orexigenic neurons.  For this reason we also ran a PCR 

array in hypothalamic tissue.  However, apart from neurotensin, a peptide that targets 

anorexigenic neuropeptides, MSH and CART, we saw no significant changes in gene 

expression.216,217   For this reason we ran a pair feeding study in order to clamp the food 

intake of CORT treated mice.  After 4 weeks of equivalent food intake to VEH mice, CORT 

pair fed mice gained weight at a comparable level to CORT ad lib mice.  This finding 

suggest that calories are not the final determinate in weight gain in CORT treated mice and 

could instead be the result of asynchrony of metabolic mediators.   

     In summary, to our knowledge, this is the first report to show chronic GCs exposure can 

alter clock gene expression in both the WAT and liver. Thus overactivation of the HPA-axis 

is likely to play an important role in the underlying mechanism of circadian induced obesity. 

The dysregulation of clock gene expression and subsequent loss of rhythmicity in genes 

regulating metabolism might trigger metabolic disturbances in states of increased GC 

exposure such as chronic stress.  
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Chapter 5: Cannabinoid CB1 Receptor deficient mice are resistant to metabolic 
dysregulation following both circadian disruption and chronic glucocorticoid 
administration 
 
Abstract 
 
In mammals, including humans, disruptions in circadian (daily) rhythms are related to 

metabolic dysregulation, such as obesity and type II diabetes. The mechanisms by which 

circadian disruption modulates metabolic dysregulation are not well characterized; however, 

recent studies by our group suggest that consequences of glucocorticoid (GC) secretion and 

regulation may be involved. In the current set of studies we demonstrate that male mice 

exposed to a 10 h light: 10 h dark (LD10) circadian cycle or a constant high dose of 

corticosterone (CORT) in the drinking water, both of which create profound dysregulation of 

endogenous circadian processes including glucocorticoid regulation, and develop symptoms 

of metabolic syndrome, as evidenced by increased body weight gain, elevated triglyceride 

levels, hyperleptinemia and hyperinsulinemia. Interestingly, mice lacking the cannabinoid 

CB1 receptor were protected against all of these changes in metabolic function, indicating 

that endocannabinoid signaling is required for circadian disruption to promote obesity and 

metabolic syndrome possibly through glucocorticoid regulation. These data build upon 

previous findings that indicate the endocannabinoid system is required for diet-induced 

obesity, but further suggest that this system plays a much broader role in the regulation of 

metabolic processes, as well as acting as a mediator of changes in metabolic function in 

response to an array of stimuli, and not just diet composition. 
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Rationale 
 

In mammals, circadian (daily) rhythms in physiology and behavior are driven by a 

brain clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and 

synchronized to the environmental light/dark (LD) cycle.218  It is important to note that the 

central clock regulates myriad “peripheral” oscillators in the rest of the brain, and periphery, 

including organs such as the heart, lungs, and liver, through glucocorticoids, among potential 

other entrainers as highlighted in Chapter 3 and 4. As such, it is thought the circadian clock 

regulates physiology and behavior both by the central clock, and through diffusible 

entraining signals that regulate local clocks in the periphery.  

Our lab has modeled the metabolic effects associated with disruptions of the circadian 

system in a noninvasive manner as described in Chapter 3, by chronically housing male mice 

in 20-h light/dark (LD) cycles, incongruous with their endogenous ~24 hour circadian period.  

In terms of metabolic effects, it was demonstrated that chronic circadian disruption (CD) 

results in altered body temperature rhythms, increased weight gain, and elevated levels of 

plasma insulin and leptin.166 These data are consistent with the increased rates of obesity and 

metabolic syndrome in individuals with disrupted circadian cycles.176 Further in Chapters 3 

and 4, disruption and subsequent metabolic dysfunction were found to occur in conjunction 

with blunted rhythms of clock genes in the liver and WAT and circulating levels of CORT.  

When CORT levels were increased, and plasma CORT rhythms altered, as shown in Chapter 

4, mice continued to gain weight and showed clear changes in their circadian rhythms.  In 

both cases, the mechanisms by which this shift in metabolic function that occurred following 

CD by light and chronic CORT, are not understood.  



 90 

Recent work has led us to hypothesize that the endocannabinoid (eCB) system may 

play a role in CD and CORT induced metabolic dysregulation. The eCB system is a lipid 

signaling system primarily composed of the endocannabinoids, anandamide (AEA) and 2-

arachidonylglycerol (2-AG), which exert their effects through activation of CB1 and CB2 

cannabinoid receptors.219 Activation of the CB1 receptor results in increased appetite, insulin 

resistance, and increased hepatic lipogenesis, suggesting involvement of the 

endocannabinoid/CB1 receptor system in obesity and its metabolic consequences.121,167 These 

findings are consistent with the distribution of CB1 receptors throughout neural feeding 

centers, and in peripheral tissues such as the liver, pancreas and adipose.121,167 CB1 receptor-

deficient mice, or mice receiving treatment with CB1 receptor antagonists, are resistant to 

diet-induced obesity and display improved metabolic measurements when subjected to high-

fat feeding.121  Similar findings have been reported in humans with the CB1 receptor 

antagonist Rimonabant.150 Although the role of the eCB system is established in models of 

diet-induced obesity, its role in other models of metabolic dysregulation has not been 

explored. Apart from its role in energy homeostasis, the eCB system was a promising choice 

since it has been shown to regulate the adaptive stress response, and eCBs are released upon 

glucocorticoid release.150,113  Given that the eCB system within the periphery222 and limbic 

and feeding centers in the brain223 exhibits circadian fluctuations, the objective of the present 

study was to explore the role of eCB signaling in contributing to the metabolic profile of 

mice exposed to CD in the way of disruption of light cues, as well as through chronic 

exogenous CORT.   
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Experiment design 

Experiment 1 

     This portion of the study involved several cohorts of animals.  For the CD through 

shortened circadian day, 20 mice were initially studied, 5 CB1 receptor knockout (CB1R-/-) 

mice placed under LD12 or LD10; and 5 WT mice places under LD12 or LD10 conditions 

(n=5/group).  After 8 weeks of shift a few mice died leaving n=3-5/group.   

 

Experiment 2 

     The majority of studies in this chapter were run in the CORT drinking water model given 

its shorter duration, which resulted in the loss of few CB1R-/- mice through the duration of a 

protocol.  In total 4 cohorts of mice (each ranging from 3-6/group and treatment) were run to 

explore the interaction between the endocannabinoid system and circulating levels of CORT 

on metabolism.   

 
Results 

Experiment 1 
 

     There was a significant interaction between circadian cycle and genotype on body weight 

[F (21, 91) = 2.91, p < 0.0005; Fig. 5.1]. Post hoc analysis revealed wild-type mice exposed 

to CD exhibited significant increases in body weight relative to both wild-type mice and 

CB1R–/– mice on a 12:12 cycle at every week measured (p < 0.05 for every week). CB1R–/– 

mice exposed to CD did not exhibit any increased weight gain, relative to 12:12 wild-type 

mice (p > 0.05 for every week, except week 3). However, body weight of CB1R–/– mice 
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exposed to CD was also not significantly different than wild-type mice exposed to CD, 

indicating that a loss of CB1 receptors only attenuated, but did not block, the effects of CD on 

weight gain. There was also no significant difference in body weight at any time point 

between wild-type and CB1R–/– mice on a 12:12 cycle. 

 

Figure 5.1. Circadian disruption causes an increase in body weight gain that is attenuated in 

CB1 receptor deficient mice. Disruption of circadian cycles, through housing wild-type (WT) 

mice in a 10h:10h light/dark cycle (10:10) results in a progressive increase in weight gain, 

relative to WT mice housed in a standard 12h:12h light/dark cycle (12:12). CB1 receptor 

knockout mice (KO) exhibit an attenuation in the weight gain induced by circadian 

disruption in a 10:10 light/dark cycle relative to WT mice undergoing circadian disruption. * 

denotes a significant difference (p < 0.05) in 10:10 WT mice relative to 12:12 WT and KO 

mice. 10:10 KO mice represented an intermediate phenotype as they were not significantly 

different from either the 10:10 WT mice or the 12:12 WT or KO mice at any time point 

(except at week 3 in which the 10:10 KO mice had significantly increased body weight 

relative to the 12:12 WT mice). Data are displayed as mean +/- SEM; n = 4-5 / condition. 
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Figure 5.2. Circadian disruption causes metabolic dysregulation, as evidenced by an 

increase in circulating triglycerides, insulin and leptin, which is blocked in CB1 receptor 

deficient mice.   Disruption of circadian cycles, through housing wild-type (WT) mice in a 

10h:10h light/dark cycle (10:10) results in an increase in circulating levels of triglycerides 

(A), insulin (B) and leptin (C), but not glucose (D). CB1 receptor knockout mice (KO) 

housed in a 10:10 cycle did not exhibit any changes in metabolic markers in the circulation, 

indicating an integral role of the CB1 receptor in mediating metabolic dysregulation 

following circadian disruption. * denotes significant differences between WT mice housed in 

a 10:10 cycle relative to both WT and KO mice housed in 12h:12h light/dark cycle (12:12) 

conditions and KO mice housed in 10:10 conditions. Data are displayed as mean +/- SEM; n 

= 4-5 / condition. 
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     Analysis of metabolic markers in the blood, revealed a significant interaction between 

genotype and circadian cycle on triglycerides [F (1, 19) = 8.32, p < 0.01; Fig. 5.2A] and 

insulin [F (1, 19) = 4.53, p < 0.05; Fig. 5.2B] and a near significant interaction for these 

variables on leptin [F (1, 19) = 3.08, p = 0.09; Fig. 5.2C]. A post-hoc Bonferroni analysis 

revealed that all of these markers were elevated in CD exposed wild-type mice relative to all 

other experimental conditions, including CB1R–/– mice exposed to CD (p < 0.05 for all 

variables), indicating that  CB1R-/-  are resistant to CD induced changes in plasma metabolic 

markers. There was no effect of any experimental manipulation on basal glucose levels [F (1, 

13) = 1.42, p > 0.05; Fig. 5.2D].  

 

Experiment 2 

     There was a significant interaction between treatment and genotype on body weight [F (1, 

16) = 14.08, p = 0.0017; Fig. 5.3]. Post-hoc Bonferroni analysis revealed that weight was 

increased in CORT treated WT mice relative to all other experimental conditions, including 

CB1R–/– mice exposed to CORT.  Body fat (F(1,16)=7.052;p=0.0173; Fig 5.3B)  showed a 

similar interaction and liver weight showed a main effect of CORT (F(1,10)=6.363;p=0.03; 

Fig 5.3C) in WT mice (F(1,10)=8.05; p=0.018).  

      WT CORT mice were found to eat more each week.  Specifically, analysis revealed a 

main effect of CORT (F(3,12)=15.20;p=0.0002) with a significant difference at week 4 

(p<0.05, Fig 5.4A).  Similarly WT CORT mice drank increasingly more each week 

(F(3,9)=9.014; p<0.0045) with a significant difference at week 4 (p<0.05; Fig 5.4B).   This 

increase in feeding in WT CORT mice was accompanied by a decrease in activity across the 

day (Fig 5.5).  This pattern of activity was also noted in circadian rhythm studies of VEH and 
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CORT treated WT mice where the activity was split between the start and the end of the 

active period.  Focusing at activity across the plane and Z-axis (up and down movements; Fig 

5.5A), this again seems to be the case.  Total counts across the XY plane shows no difference 

during the light (inactive) period but an interaction (F(1,11)=5.092, p=0.454) and main effect 

of treatment (F(1,11)=13.05, p=0.0041) during the dark (active period; Fig 5.5B).  

Combining activity through the day magnifies the interaction (F(1,11)=7.290, p=0.0207) and 

effect of CORT (F(1,11)=10.39,p=0.0081).  The interaction between CB1R global knockout 

and CORT treatment is more clearly seen in Figure 5.5C where activity level was increased 

in CORT treated knockout mice compared to WT (t(6)=2.785, p=0.0318).  This effect was 

maintained on the Z-Axis (t(6)=2.571, p=0.05).  Given that VEH CB1R-/- mice exhibit less 

activity compared to WT mice, and with a minimal increase in activity in the former on 

CORT, activity likely plays a very small role in the overall weight change in mice.   

      In addition to weight gain and increased adiposity, a key component of the metabolic 

syndrome is insulin resistance, which manifested here in the form of hyperinsulinemia (Fig 

5.6 B; main effect of CORT (F(1,16)=151.9; p <0.0001)) and hyperglycemia (Fig 5.7 A; 

interaction (F(1,10)=7.876; p=0.0186; posthoc analysis showed WT CORT exclusively to 

have increased basal glucose (P<0.001). In addition, we observed hyperleptinemia (Fig 5.6 

A; main effect of CORT (F(1,16)=307; p <0.0001), an indication of leptin resistance, 

whereas the plasma level of adiponectin, an adipokine that promotes fatty acid oxidation, was 

reduced as noted by 2 way ANOVA (Fig 5.6 C; main effect of CORT (F(1,11)=11.25; 

p=0.0064).  Insulin and leptin parameters were significantly reduced in CB1R-/- (main effect 

of genotype (F(1,16)=39.47; p<0.0001, and (F(1,16)-32.95; p<0.0001), insulin and leptin, 

respectively).  While adiponectin levels were increased in CB1R-/- VEH treated mice as 
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revealed by Bonferroni posttests, there was no significant difference in CORT treated CB1R-

/- mice.  To investigate changes in the WAT, we measured adipocyte length using H&E stain 

in WAT. We found increased adipocyte length in WT CORT mice (Fig 5.6E-H), reflects the 

trend in plasma hormone levels. Analysis of adipocyte length (Fig 5.6D) reveals an 

interaction (F(1,145)=41.42; p<0.0001), a main effect of treatment (1,145)=282.2; 

p<0.0001), and a main effect of genotype (F(1,145)=34.72; P<0.0001).  While these studies 

were conducted in males, females showed a similar trend (Supplementary Fig 5.1). 

 

 

 

 

Figure 5.3 CB1-/- mice are resistant to CORT induced weight gain. CB1 receptor global 

knockout prevents significant (A) weight gain, (B) increase in adiposity, and (C) increase in 

liver weight. N=4-5/group except liver weight N=3-5/group. Bars with the same letter do not 

significantly vary from one another. *P<0.05, ***P<0.001. 
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Figure 5.4 CORT treated CB1R-/- mice do not exhibit increased food and water intake.   

CORT treated WT mice display hyperphagia (A) and increased water intake (B) not present 

in CORT treated CB1R-/- mice (n=5/group). *P<0.05. 

 

 

Figure 5.5 Spontaneous activity across the day. Ambulatory movement was measured on the 

X and Z-Axis (movements up and down) for 4 days and averaged into 12 minute bins. (A) 

Shows this activity across the day (dark box indicates the inactive-light period) without SEM 

to make visualization easier. (B) Activity of X axis only split into light, dark and total. There 

is no difference in activity in the light phase but decreased activity noted during the dark in 

all groups compared to WT VEH. (C) Total activity of the X axis in groups treated with 

CORT is decreased in WT mice. N=4/group; *p<0.5; bars with the same letter do not differ 

from one another.   
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     Interestingly, there was no difference between groups in fasting glucose levels (Fig 5.7 B) 

and when insulin resistance and insulin sensitivity were measured through an insulin 

challenge, CB1R-/- mice were not able to prevent the decrease in insulin sensitivity induced 

by CORT treatment (Fig 5.7 C and Fig 5.7 D, main effect of CORT (F(1,12)=15.54; 

P=0.002)). However, looking at the islet cells (Supplementary Fig 5.3A), we see largely 

intact cells in the case of the CB1R-/- animals and the breakdown of the cells in the case of  

CORT WT mice.  The anatomy here in conjunction with high circulating levels of insulin 

and fasting glucose levels suggest an insulin resistance and the repository role of the islet 

cells to hypersecrete insulin.  However, looking at the condition of the cells, it is reasonable 

to conjecture that the overnutrtion state is “slowly” damaging cells and most likely, in future, 

they will unlikely be able to keep up with the demand, leading to impaired glucose tolerance 

with mild increase in postprandial glucose concentrations and then to diabetes with overt 

hyperglycemia. 

      CB1R-/- also markedly lowered circulating TG levels in CORT treated mice as noted by 2 

way ANOVA, which revealed an interaction between groups (F(1,16)=15.41; p=0.0012), a 

main effect of CORT (F(1,16)=73.65; p<0.0001), and a main effect of genotype 

(F(1,16)=18.32; p=0.0006; Fig 5.8A).  Liver TG content was also lowered in CB1R -/- CORT 

mice in a similar fashion with an interaction between groups (F(1,12)=4.983; p=0.045) 

despite a main effect of CORT (F(1,12)=65.74; p<0.001, Fig 5.11A).  The decrease in liver 

TG in CB1R-/- CORT mice (Fig 5.7E) compared to WT CORT mice (Fig 5.8D) can also be 

noted by decreased presence of lipids by oil red o stain in liver tissue.  
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Figure 5.6 Metabolic effects of CB1R-/- in CORT treated mice. Global knockout of the CB1 

receptor counteract CORT induced increases in plasma (A) leptin, (B) insulin, and to a lesser 

extent (C) adiponectin (n=3-5/group). (D) Adipocyte length as quantified by random 

selection of adipocytes (n=4-5/group). Representative H&E stain images of epididymal WAT 

tissue isolated from (E) WT VEH, (F) WT CORT, (G) CB1R-/- VEH, and (H) CB1R-/- 

CORT, images taken at 10x. Bars sharing the same letter are not statistically different from 

each other.  **P<0.01. 
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Figure 5.7 Glucose levels and insulin sensitivity in CORT treated mice. While (A) basal 

glucose levels are reduced in CB1R-/- CORT treated mice, there is no difference in (B) 

fasting levels.  (C) Glucose levels measured pre and post injection of an insulin bolus showed 

no effect of KO in CORT treated mice as measured over 120 minutes. (D) Area under the 

curve (AUC) again shows no difference in insulin sensitivity in WT and CB1R-/- CORT 

treated mice. N=3-5/group; **P<0.01,***P<0.001  
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     CB1R-/- also reduced hepatocellular damage in CORT mice, as signified by a large 

reduction of plasma levels of alanine aminotransferase (ALT). There was a significant 

interaction between CORT treatment and genotype (F(1,11)=10.69; p=0.0075; Fig 5.9A) in 

circulating levels of ALT. Bonferroni posttests revealed an increase in this parameter in WT 

CORT mice compared to all other experimental conditions(P<0.001). Measurements of 

alkaline phosphatase (ALP), also a determinant of liver health or disease as a means of bile 

duct function, was found to have a main effect of genotype (F(1,11)=8.851;p=0.0126, Fig 

5.9B).  The extent of liver damage in CORT treated mice is further noted in H&E stained 

liver sections where full-blown steatosis is apparent (Supplementary Fig 5.3B).   

     Given the increased amounts of water the CORT mice were drinking, we also looked at 

parameters of kidney function as indicated by levels in blood plasma.  Analysis showed no 

difference between groups in total protein in plasma (Fig 5.9C), but did show a decreased 

presence of phosphorus, in WT CORT mice compared to all other experimental groups as 

indicated by an interaction (F(1,11)=7.947; p=0.0167; Fig 5.9D) and subsequent Bonferroni 

posttests (p<0.001).  TCO2 also showed an interaction (F(1,12)=5.838; p=0.0325; Fig 5.9 E) 

with an increase in WT CORT mice compared to other experimental conditions (p<0.05). 

      Global knockout of CB1 receptor decreased circulating cholesterol levels as noted by an 

interaction   (F(1,10)=8.529; p=0.0153, Fig 5.9 F) and subsequent posttests showing an 

increase in WT CORT mice compared to the other experimental conditions (p<0.01).  WT 

CORT mice have a slightly greater production and release of TG-rich VLDL, as measured by 

Pluronic-407 injections (hour 4 WT VEH vs. WT CORT p=0.089; Fig 5.10B). 

     The effect of CB1R-/- on substrate utilization was analyzed by indirect calorimetry.  After 

3 weeks of treatment, mice were moved into individually monitored metabolic chambers 
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where they were allowed to acclimate over the weekend and were then monitored for 4-5 

days.  CB1R-/- mice on CORT showed a reduction in respiratory quotient (RQ, Fig 5.11 B), 

resulting from an increase in fat oxidation (Fig 5.11 D) and decrease in carbohydrate 

oxidation (Fig 5.11F).  Thus, the decrease in body weight and reduced adiposity was likely 

due to increased lipid oxidation.   

 

 

 

Figure 5.8 Plasma triglycerides and liver lipid content are greatly reduced in CORT treated 

CB1R-/- mice. (A) Triglycerides measured in plasma isolated from mice showed a significant 

decrease in CB1R-/- mice, but not completely restored to the levels of VEH WT mice.  Oil 

red O staining revealed the development of non-alcoholic fatty liver (NAFLD) in (D) CORT 

WT mice compared to the healthy livers of (B) VEH WT and (C) VEH KO.  NAFLD was 

prevented in (E) CORT CB1R mice.  Representative liver stains shown at 10x.  N=5/group. 

Bars with the same letter do no statistically differ from one another.  
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Figure 5.9 Blood chemistry profile. (A) ALT and (B) ALP circulating levels, indicators of 

liver damage, are reduced in CORT treated CB1R-/- compared to other experimental 

conditions.  Global knockout also prevents changes in (C) total protein, (D) phosphorus, and 

(E) TCO2 indicators of kidney damage, and CB1R-/- significantly reduced CORT induced 

circulating cholesterol levels. N=4-5/group. *P<0.05, **P<0.01, ***P<0.0001. 

 

 

 

Figure 5.10  Effect of CB1 R-/- hepatic triglycerides and VLDL production. (A) Hepatic 

triglyceride content as determined by Folch (n=3-5/group), bars with the same letter are not 

significantly different from each other. (B) VLDL-TG production was determined over 4 

hours after Pluronic-407 injection. Values are expressed as relative changes compared with 

respective controls. (n=3-4/group).  
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Table 5.1 Obesity related gene expression in gonadal fat pads (WAT). 

Description Gene 
Symbol 

Fold Change vs. Control-
Vehicle WT 

vs. 
CORT 

WT 

vs. 
Vehicle 
CBKO 

CORT 
WT 

Vehicle 
CB KO 
 

CORT 
CB KO 
 

CORT 
CB KO 
 

CORT 
CB KO 

Adenylate cyclase 
activating polypeptide 1 Adcyap1 0.6276 1.1109 0.4325* 0.689 0.3893* 
Adenylate cyclase 
activating polypeptide 1 
receptor 1 Adcyap1r1 8.1004* 1.6161* 24.4879* 3.023 15.1527* 
Adiponectin, C1Q and 
collagen domain 
containing Adipoq 0.3271* 0.8207 0.2058* 0.6289 0.2507* 
Adiponectin receptor 1 Adipor1 0.8959 2.558* 0.8302 0.9267 0.3245* 
Adiponectin receptor 2 Adipor2 0.3547* 1.318 0.2769* 0.7806 0.2101* 
Adrenergic receptor, 
alpha 2b Adra2b 0.5205 3.3987* 0.672 1.291 0.1977* 
Adrenergic receptor, beta 
1 Adrb1 0.5502* 1.9308 0.6255 1.1369 0.324* 
Agouti related protein Agrp 0.4065* 4.4588 0.5816 1.4308 0.1304* 
Apolipoprotein A-IV Apoa4 3.7877 1.6663 0.5215 0.1377 0.3129 
Attractin Atrn 0.698* 1.3747 0.6498 0.931 0.4727* 
Brain derived 
neurotrophic factor Bdnf 2.3316 4.0116* 3.0592* 1.3121 0.7626 
Bombesin-like receptor 3 Brs3 0.8149 1.2961 0.4325* 0.5307 0.3337* 
Complement component 
3 C3 0.5657 1.923 0.67 1.1845 0.3484* 
Calcitonin/calcitonin-
related polypeptide, alpha Calca 0.7638 1.0625 0.5281* 0.6914 0.4971* 
Calcitonin receptor Calcr 0.6276 1.1109 0.4325* 0.689* 0.3893* 
CART prepropeptide Cartpt 0.6276 1.1109 0.4325* 0.689 0.3893* 
Cholecystokinin Cck 1.3299 1.1961 0.7194 0.5409 0.6014 
Cholecystokinin A 
receptor Cckar 0.0891 0.1577 0.0614 0.689 0.3893* 
Colipase, pancreatic Clps 0.6276 2.6651 1.2001 1.9121 0.4503 
Cannabinoid receptor 1 
(brain) Cnr1 0.4724* 0.004* 

0.0018* 
0.0038* 0.3893* 

Ciliary neurotrophic 
factor receptor Cntfr 0.2591* 1.5157 0.3257* 1.2572 0.2149* 
Carboxypeptidase D Cpd 0.8244 1.8478 0.9427 1.1435 0.5102 
Carboxypeptidase E Cpe 0.5696 2.5024 0.4263 0.7484 0.1703* 
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Table 5.1 Continued 
Corticotropin releasing 
hormone receptor 1 Crhr1 0.6276 2.1202 0.4325* 0.689 0.204 
Dopamine receptor D1A Drd1a 0.3348 1.1708 0.6259 1.8695* 0.5346 
Dopamine receptor 2 Drd2 0.6276 2.2294 0.4325* 0.689 0.194 
Galanin Gal 0.5979 5.11 0.4948 0.8275 0.0968 
Galanin receptor 1 Galr1 0.6276 1.1109 0.4325* 0.689 0.3893* 
Glucagon Gcg 0.1014 0.1588 0.1554 1.5326 0.9787 
Glucagon receptor Gcgr 1.1132 2.5713 1.0841 0.9739 0.4216* 
Growth hormone Gh 0.6276 1.9747 0.4325* 0.689 0.219 
Growth hormone 
receptor Ghr 0.813 1.3503 0.801 0.9852 0.5932 
Ghrelin Ghrl 0.6063* 5.5693 0.7679 1.2666 0.1379 
Growth hormone 
secretagogue receptor Ghsr 0.6932 1.1109 0.4857* 0.7007 0.4372* 
Glucagon-like peptide 1 
receptor Glp1r 0.6276 1.6896 0.4362* 0.695 0.2582 
Melanin-concentrating 
hormone receptor 1 Mchr1 1.3896 2.9862 7.0976 5.1077 2.3768 
Gastrin releasing peptide Grp 0.6276 1.1109 0.7608 1.2122 0.6849 
Gastrin releasing peptide 
receptor Grpr 0.6276 1.1947 0.4325* 0.689 0.362* 
Hypocretin Hcrt 0.8301 1.3051 0.4325* 0.521 0.3314* 
Hypocretin (orexin) 
receptor 1 Hcrtr1 0.7327 1.6974 1.0791 1.4727 0.6357 
Histamine receptor H1 Hrh1 0.8282 1.514* 0.3203* 0.3867 0.2115* 
5-hydroxytryptamine 
(serotonin) receptor 2C Htr2c 0.6276 5.0252 0.4325* 0.689* 0.0861 
Islet amyloid polypeptide Iapp 0.6276 2.1055 2.5152 4.0074 1.1946 
Interleukin 1 alpha Il1a 0.6379 4.446 0.8061 1.2637 0.1813 
Interleukin 1 beta Il1b 0.4868 1.2205 0.1767 0.3629 0.1447 
Interleukin 1 receptor, 
type I Il1r1 0.8594 1.2585 0.8197 0.9538 0.6513 
Interleukin 6 Il6 0.4542 1.3771 0.7161 1.5766 0.52 
Interleukin 6 receptor, 
alpha Il6ra 0.7603 1.5052 0.9855 1.2962 0.6547 
Insulin I Ins1 0.6276 1.1109 0.4325* 0.689 0.3893* 
Insulin II Ins2 0.6996 1.9611 3.988 5.7002 2.0335 
Insulin receptor Insr 0.5193* 1.4109 0.6786 1.3068 0.481 
Leptin Lep 2.6172 0.9582 3.4878* 1.3327 3.6402* 
Leptin receptor Lepr 0.3197* 1.561* 0.4187* 1.3098 0.2682* 
Melanocortin 3 receptor Mc3r 0.6276 1.1109 0.4325* 0.689 0.3893* 
Neuromedin B Nmb 0.3758* 1.6472* 0.5994 1.5949 0.3639* 
Neuromedin B receptor Nmbr 0.8093 10.226 1.0816 1.3365 0.1058 
Neuromedin U Nmu 0.6483 1.6692 0.5736 0.8848 0.3436 
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Neuromedin U receptor 1 Nmur1 0.4959 8.2582 0.2478* 0.4998 0.03 
Neuropeptide Y Npy 1.6717 6.7466 4.8255 2.8865 0.7152 
Neuropeptide Y receptor 
Y1 Npy1r 145.479 1.5351 0.4697 0.0032 0.306* 
Nuclear receptor 
subfamily 3, group C, 
member 1 Nr3c1 0.4199* 0.9532 0.2693* 0.6414 0.2825* 
Neurotrophic tyrosine 
kinase, receptor, type 2 Ntrk2 0.563* 1.078 0.4352* 0.773 0.4037* 
Neurotensin Nts 0.9189 5.9759* 0.681 0.7411 0.114* 
Neurotensin receptor 1 Ntsr1 0.6276 3.4145 0.4325* 0.689 0.1267 
Opioid receptor, kappa 1 Oprk1 0.6233 1.1032 0.4295* 0.689 0.3893* 
Opioid receptor, mu 1 Oprm1 0.3332* 3.6448 0.2069* 0.621 0.0568 
Sigma non-opioid 
intracellular receptor 1 Sigmar1 1.2209 1.0087 1.3722* 1.1239 1.3604 
Pro-opiomelanocortin-
alpha Pomc 0.6948* 1.8414 0.677 0.9745 0.3677 
Peroxisome proliferator 
activated receptor alpha Ppara 0.3131* 1.265 0.4555* 1.455* 0.3601 
Peroxisome proliferator 
activated receptor gamma Pparg 0.5592 1.1454 0.5424 0.97 0.4735* 
Peroxisome proliferative 
activated receptor, 
gamma, coactivator 1 
alpha Ppargc1a 0.3572* 1.5837* 0.488* 1.3662 0.3081* 
Prolactin releasing 
hormone receptor Prlhr 0.6276 1.1421 0.4377* 0.6975 0.3833* 
Protein tyrosine 
phosphatase, non-
receptor type 1 Ptpn1 0.7709 1.9634* 0.5966 0.7739 0.3039* 
Peptide YY Pyy 0.6276 1.7311 4.0718 6.4875 2.3522 
Receptor (calcitonin) 
activity modifying 
protein 3 Ramp3 1.022 19.3599 4.3969 4.3025 0.2271 
Sortilin 1 Sort1 0.6604 1.5157* 0.6897 1.0444 0.455* 
Somatostatin Sst 0.6276 1.2782 0.5836 0.9299 0.4566* 
Somatostatin receptor 2 Sstr2 0.7029 2.8812 0.4774 0.6792 0.1657* 
Thyroid hormone 
receptor beta Thrb 0.5169* 1.4109 0.618* 1.1955 0.438* 
Tumor necrosis factor Tnf 0.4627 1.8628* 0.5411* 1.1696 0.2905* 
Thyrotropin releasing 
hormone Trh 0.7429 2.6193 0.4555* 0.6132 0.1739 

Table 5.1 Continued
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Urocortin Ucn 0.6276 1.8489 0.4684* 0.7462 0.2533 
Uncoupling protein 1 
(mitochondrial, proton 
carrier) Ucp1 0.6276 1.9108 0.4325* 0.689 0.2263 
Zinc finger protein 91 Zfp91 0.6742 1.9782* 0.6137* 0.9102 0.3102* 

Values represent average fold change (±SEM; n=4/group) in response to corticosterone 

treatment (100 µg/mL) mice compared to vehicle (1% ethanol) treated WT or CB1R-/- mice. 

Upregulation with a fold change greater than 2 is noted in red, downregulation with a fold 

change less than .5 noted by blue. *P<0.05.  
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 Table 5.2 Insulin pathway related gene expression in gonadal fat pads (WAT). 

Description Gene 
Symbol 

Fold Regulation vs. Control 
(Vehicle WT) 

vs. 
CORT 

WT 

vs. 
Vehicle 
CBKO 

CORT 
WT 

Vehicle 
CB KO 
 

CORT 
CB KO 
 

CORT 
CB KO 
 

CORT 
CB KO 

Thymoma viral proto-
oncogene 1 Akt1 

-
2.7435* 1.5828* -1.4236 1.9272 -2.2532* 

Thymoma viral proto-
oncogene 2 Akt2 

-
2.6454* 1.0425 -2.2299* 1.1863 -2.3246* 

Thymoma viral proto-
oncogene 3 Akt3 -1.5594 2.5359* -1.0677 1.4605 -2.7076* 
CAP, adenylate 
cyclase-associated 
protein 1 (yeast) Cap1 -1.4325 2.0634* -1.064 1.3463 -2.1954* 
FK506 binding protein 
12-rapamycin 
associated protein 1 Mtor 

-
3.2344* 1.5052* -1.1247 2.8759* -1.6929* 

Glucose-6-
phosphatase, catalytic G6pc -1.4525 1.359 -5.9566* -4.1011 -8.0948* 
Glucose-6-
phosphatase, catalytic, 
2 G6pc2 -1.6976 -1.0534 -1.4738 1.1519 -1.3991 
Growth factor receptor 
bound protein 2-
associated protein 1 Gab1 

-
2.5865* 1.6702 -1.4866 1.7399 -2.4829* 

Glucokinase Gck -1.0112 2.3335 11.0847 11.2083 4.7502 
Glycerol-3-phosphate 
dehydrogenase 1 
(soluble) Gpd1 -1.0147 1.633 2.2863 2.3198 1.4001 
Growth factor receptor 
bound protein 2 Grb2 

-
2.2245* -1.0335 -2.0914* 1.0636 -2.0237* 

Growth factor receptor 
bound protein 10 Grb10 1.1499 1.4768 1.1412 -1.0077 -1.2941 
Glycogen synthase 
kinase 3 beta Gsk3b -1.9467 1.0371 -1.7165 1.1341 -1.7802 

Hexokinase 2 Hk2 
-

2.4259* 1.0389 -1.3585 1.7857* -1.4113* 
Harvey rat sarcoma 
virus oncogene 1 Hras1 

-
1.6888* -1.2058 -1.2222 1.3818 -1.0136 

Insulin-like growth 
factor I receptor Igf1r -5.5828 1.5157 -2.4024 2.3238 -3.6414 
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Table 5.2 Continued 
Insulin-like growth 
factor 2 Igf2 -4.1655 3.649* -1.3305 3.1307 -4.8551* 
Insulin-like growth 
factor binding protein 
1 Igfbp1 -1.2363 2.2307 1.1531 1.4255 -1.9346 

Insulin I Ins1 
-

11.8433 -2.5624 -17.7777 -1.5011 -6.9379 
Insulin-like 3 Insl3 -2.6272 23.0229 -1.6071 1.6347 -37.0012 
Insulin receptor 
substrate 1 Irs1 

-
2.7721* 1.3241 -1.9786 1.401 -2.6199* 

Insulin receptor 
substrate 2 Irs2 -3.6452 1.9119 -2.2377 1.629 -4.2782* 
Jun oncogene Jun -2.5553 1.5289 -1.2286 2.0799 -1.8784* 
V-Ki-ras2 Kirsten rat 
sarcoma viral 
oncogene homolog Kras 

-
1.8006* 1.1668 -1.6988* 1.06 -1.9821* 

Low density 
lipoprotein receptor Ldlr -1.1696 -1.1038 -1.1603 1.008 -1.0512 
Leptin Lep 1.6234 1.3566 5.3629* 3.3035* 3.9531* 
Mitogen-activated 
protein kinase kinase 1 Map2k1 2.7302 5.8058 4.3334 1.5872 -1.3398 
Mitogen-activated 
protein kinase 1 Mapk1 -1.6398 1.268 -1.4285 1.1479 -1.8113* 
Non-catalytic region 
of tyrosine kinase 
adaptor protein 1 Nck1 -1.403* 1.2016 -1.6812* -1.1983 -2.0202* 
Nitric oxide synthase 
2, inducible Nos2 -2.4811 3.0209 -1.2785 1.9406 -3.8624 
Neuropeptide Y Npy 2.3522 3.5925 4.3334 1.8423 1.2062 
Phosphoenolpyruvate 
carboxykinase 2 
(mitochondrial) Pck2 -1.3319 1.9725* 1.1392 1.5173 -1.7315* 
3-phosphoinositide 
dependent protein 
kinase-1 Pdpk1 -2.145 1.3827 -1.1888 1.8044* -1.6438* 
Phosphatidylinositol 
3-kinase, catalytic, 
alpha polypeptide Pik3ca 

-
2.3925* 1.5395 -1.6016 1.4938* -2.4657* 

 
Phosphatidylinositol 
3-kinase, catalytic, 
beta polypeptide 

 
 
 
Pik3cb 

- 
 
 

3.4366* 

 
 
 

1.1708 

 
 
 

-2.3694* 

 
 
 
 

1.4504 

 
 
 
 

-2.7741* 
Phosphatidylinositol 
3-kinase, regulatory Pik3r1 -2.047 2.0279 1.697 3.4738* -1.195 
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subunit, polypeptide 1 
(p85 alpha) 
Phosphatidylinositol 
3-kinase, regulatory 
subunit, polypeptide 2 
(p85 beta) Pik3r2 

-
2.5201* 1.7291* -1.1826 2.131 -2.0449* 

Pyruvate kinase liver 
and red blood cell Pklr 1.1301 2.8979 -1.3751 -1.554 -3.9848 
Peroxisome 
proliferator activated 
receptor gamma Pparg -2.0049 1.3013 -1.113 1.8013 -1.4484 
Protein phosphatase 1, 
catalytic subunit, alpha 
isoform Ppp1ca -1.9979 1.4093 -1.0977 1.8201* -1.547 
Protein kinase C, 
gamma Prkcc -2.0118 5.0543* 1.0338 2.0799 -4.8889* 

Protein kinase C, iota Prkci 
-

2.7625* 1.2924 -1.5205 1.8169 -1.965* 

Protein kinase C, zeta Prkcz 
-

3.3427* 1.7839 -1.6268 2.0548 -2.9019 
Prolactin Prl -1.6976 -1.1607 -2.5482* -1.5011 -2.1954 
Protein tyrosine 
phosphatase, non-
receptor type 1 Ptpn1 -2.4683 2.3054* 1.0446 2.5784 -2.2069* 
Protein tyrosine 
phosphatase, receptor 
type, F Ptprf -3.4967 -1.1587 -4.4444 -1.271 -3.8357 
V-raf-leukemia viral 
oncogene 1 Raf1 -2.0223 1.1447 -1.3054 1.5492 -1.4943* 
Resistin Retn -2.0118 2.4158 2.0677 4.1598* -1.1684 
Ribosomal protein S6 
kinase polypeptide 1 Rps6ka1 -1.4201 2.662 -1.8334 -1.291 -4.8804* 
Harvey rat sarcoma 
oncogene, subgroup R Rras -1.7183 -1.2311 -1.7465 -1.0164 -1.4186 
Related RAS viral (r-
ras) oncogene 
homolog 2 Rras2 -1.0651 -1.1607 -1.1623 -1.0913 -1.0014 
Serine (or cysteine) 
peptidase inhibitor, 
clade E, member 1 Serpine1 -1.4006 1.4923 1.0038 1.4059 -1.4866 
Src homology 2 
domain-containing 
transforming protein 
C1 Shc1 

-
2.4133* 1.4794 -1.6958 1.4231 -2.5088* 

Solute carrier family 
27 (fatty acid Slc27a4 -2.0973 1.2924 -1.1034 1.9007* -1.426 

Table 5.2 Continued 
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transporter), member 4 
Solute carrier family 2 
(facilitated glucose 
transporter), member 1 Slc2a1 

-
2.2673* 1.3851 -1.2012 1.8875 -1.6638 

Sorbin and SH3 
domain containing 1 Sorbs1 -1.4959 -1.0534 -2.2611* -1.5115 -2.1465* 
Son of sevenless 
homolog 1 
(Drosophila) Sos1 

-
1.7124* 1.3851 -1.5205 1.1262 -2.106* 

Sterol regulatory 
element binding 
transcription factor 1 Srebf1 

-
3.3601* 1.1871 -2.2493* 1.4938 -2.6703* 

Values represent average fold change (±SEM; n=4/group) in response to corticosterone 

treatment (100 µg/mL) mice compared to vehicle (1% ethanol) treated WT or CB1R-/- mice. 

Upregulation with a fold change greater than 2 is noted in red, downregulation with a fold 

change less than .5 noted by blue. *P<0.05.  
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     Analysis of mRNA expression in the liver and WAT further indicate a role of the CB1R in 

regulating lipid oxidation and gluconeogenesis.  Analysis of numerous genes in WAT 

through the use of PCR arrays showed several subtle interactions between CORT treatment 

and genotype with the most prominent related to leptin and the leptin receptor, hexokinase 2 

and likely GLUT4, although it was not included in this array mTOR, Slc27a4, among others 

regulating the insulin pathway (Table 5.1 and 5.2). 

     Analysis of Sterol regulatory element binding protein (SREBP)1c mRNA expression, a 

transcription faction  involved in fatty acid metabolism and de novo lipogenesis, and mRNAs 

of lipogenic enzymes that are targets of SREBP-1c, fatty acid synthase (FAS) and acetyl-

CoA carboxlyase (ACC), show a similar pattern of interaction with a main effect of CORT 

(SREBP-1c F(1,14)=9.367; p=0.0085; Fig 5.12A), (FAS F(1,4)=8.272; p=0.045; Fig5.12B) 

and a main effect of treatment in ACC1 F(1,11)=6.679; p=0.0254; Fig 5.12C).  Posttests of 

the former two genes showed decreased expression significant in WT mice but not CB1R-/- 

mice (p<0.05).  

      Other models which exhibit significant weight gain, such as diet induced obesity, show 

how increased expression of SREBP-1c and subsequent target genes.  However, a decrease in 

SREBP-1c in WAT in WT CORT mice as noted in Table 5.1, suggest a shift in the 

deposition of triglycerides toward liver and muscle.242 The shift in lipogenic burden from fat 

to liver coincides with a decrease in adipose tissue expression of SREBP-1c and an increase 

in liver expression.  A similar trend was noted in a time course analysis of SREBP-1c where 

an increased expression of SREBP-1c is noted in WAT after 1 week of CORT treatment in 

WT mice, though this level did not reach significance (Supplementary Fig 5.2D).  However, 

after 4 weeks of treatment, WT mice had significantly lower levels of SREBP-1c compared  
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Figure 5.12 Effect of global CB1R knockout on liver mRNA expression of genes involved in 

lipid metabolism.  CORT treatment results in decreased expression of (A) SREBP-1C, (B) 

FAS, and to a less degree ACC1.  This reduction is not present in CB1R-/- CORT treated 

mice. N=3-5/group, *P<0.05. 

 

 

 

 

Figure 5.13 Expression of genes responsible for energy homeostasis and respiration in the 

liver. Global knockout of the CB1R decreases the expression of  (A) PGC1α, (B) NRF-1, and 

(C) TFAM (n=4-5/group), ** P<0.01). 
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to 1 week treated mice (p<0.05) and controls (p<0.01).  While the time point of increase of 

SREBP-1c was not noted in the liver (all time points of CORT treatment were significantly 

lower than in VEH mice, p<0.01), lower levels are noted after 2 and 4 weeks of treatment 

(Supplementary Fig 5.2A).  A similar trend is noted in FAS expression in the liver 

(Supplementary Fig 5.2B).  In a separate cohort of animals, an intermediate group of CORT 

treatment, 25 µg/mL, mice showed increased expression of SREBP-1c after 4 weeks of 

treatment although the level did not reach significance compared to controls.  Again, the 100 

µg/mL group showed decreased expression compared to both controls and the 25 µg/mL 

groups (p<0.05; Supplementary Fig 5.2D). 

  Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a 

transcriptional coactivator that regulates genes involved in energy metabolism and 

mitochondrial biogenesis, such as Nuclear respiratory factor 1, NRF-1, another transcription 

factor that activates the expression of metabolic genes that regulate cellular growth, as well 

as genes required for mitochondrial respiration.  Both PGC-1α and NRF-1 showed 

interactions (F(1,14)=5.093; p=0.0405; Fig 5.13A; and F((1,14)=7.46; p=0.0162; Fig 5.13 B 

respectively).  Bonferroni posttests revealed WT CORT treated mice to have increased levels 

compared to all other experimental conditions (p<0.01).  Finally we looked at TFAM as 

another measure of mitochondrial function and number as an indication of respiration. 

TFAM showed a comparable pattern of expression in all groups but none significantly 

different from one another (Fig 5.13C). 
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Supplementary Figure 5.1 Global knockout of the CB1R prevents the development of 

metabolic syndrome in CORT treated mice. Female WT and CB1R-/- mice were placed on 

VEH or CORT for 4 weeks.  CB1R-/- prevented the large (A) weight change, (B) increased 

adiposity, and elevated levels of (C) insulin, (E) leptin, and (F) triglycerides induced by 

CORT treatment.  (D) Spleen weights are decreased in both groups of CORT treated mice 

showing a similar exposure to CORT.  N=4-5/group, **P<0.01, ***P<0.001, bars that share 

the same letter are not significantly different from one another.  
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Supplementary Figure 5.2 

Supplementary Figure 5.2 Time and dose course of SREBP1c expression. Quantitative RT-

PCR analysis of SREBP1c in (A) liver from 1-4 week 100 µg/mL CORT treated mice, (C) 

liver from 25 and 100 µg/mL CORT treated mice, and (D)WAT from 1-4 week 100 µg/mL 

CORT treated mice. (B) FAS expression in liver from 1-4 week 100 µg/mL CORT treated 

mice.  All expressed as fold change (±SEM) in relation to control group. Bars with the same 

letters are not scientifically different from one another. ** notes P<0.01 as determined by one 

way ANOVA.   
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Supplementary Figure 5.3 CB1R-/- prevents CORT induced damage to the pancreas and 

liver. H&E staining reveals damage to the (A) islet cells in the pancreases of CORT WT 

mice, an effect not present in CORT CB1R-/- mice. Similarly CORT treated mice show signs 

of (B) liver steatosis while CORT CB1R-/- mice are spared damage. Pancreas images taken at 

40x, liver at 10x, representative samples from n=5/group. 
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Discussion 

      Both increased and decreased CORT signaling, as demonstrated in our models of altered 

light-dark cycle and CORT in the drinking water led to a disruption of circadian rhythms as 

noted by decreased mRNA expression of molecular clock genes and altered activity level as 

noted by tempograms and actograms, as noted in Chapter 4 and in previous publications.166  

Here we looked to find a common mechanism of CORT regulation that may lead to the obese 

phenotype in both mouse models. 

    The data generated herein provide insight into the potential mechanisms of CD-and 

CORT-induced metabolic dysregulation, revealing that mice lacking cannabinoid CB1 

receptors exhibited a blunted increase in body weight and a dramatic reduction of the 

elevations in circulating insulin and leptin, and triglycerides following 8 weeks of CD. These 

data are consistent with diet-based models of obesity and metabolic dysregulation, which 

show that disruption of CB1 receptor signaling provides a significant degree of resistance to 

metabolic change.167,224      

       The mechanisms by which CD engage the eCB system to modulate metabolic processes, 

are still unknown. Endocannabinoid ligand content within feeding nuclei223, as well as the 

circulation,222 are known to exhibit circadian fluctuations; however, the relationship of this 

regulation to the control of metabolic processes is not known. In humans, sleep deprivation 

results in an elevation in circulating levels of AEA,22 and in rodents, sleep deprivation 

elevates central content of 2-AG.225 While sleep deprivation and CD are different forms of 

circadian misalignment, these data provide evidence that disruption of normative circadian 

cycles can cause a resultant elevation in eCB signaling. Sustained CD may result in a similar 

tonic elevation in eCB signaling; however, this requires detailed analysis of normal circadian 
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rhythms of eCB content and how it is altered by CD. Furthermore, both central and 

peripheral CB1 receptor signaling can modulate metabolic function,121 thus determining if the 

current effects that are mediated by central or peripheral mechanisms are of great importance, 

particularly since peripherally restricted CB1 receptor antagonists are being developed to 

treat and regulate obesity.226 

 In addition to these effects, a role for eCB signaling in the clock cannot be 

disregarded. For instance, it is known that SCN neurons are sensitive to the effects of 

eCBs.227 As such, sustained CD may alter eCB signaling within the SCN, having broad 

ramifications for circadian regulation of many functions, including metabolic processes. 

Given that the effects of CD are wide ranging and not exclusive to metabolic processes,166 it 

is essential to determine if modulation of CB1 receptor function can alter all of the effects of 

CD, or if its role is specific to metabolic dysregulation.  

      In experiment 2, looking at chronic high levels of CORT, given the ability of 

glucocorticoids to rapidly mobilize eCB signaling, the eCB system seemed to be a plausible 

target to mediate these glucocorticoid effects. The data produced in these groups of 

experiments provide a detailed role of CB1 receptor modulation of CORT-induced metabolic 

syndrome. In these studies, we revealed that mice lacking cannabinoid CB1 receptors were 

resistant to CORT induced weight gain and gonadal fad pad and liver weights comparable to 

control mice, at least when grossly measured. mRNA expression of leptin in the WAT of 

treated mice showed an increase in CORT CB1R-/- mice compared to all other groups 

suggesting that the hormone is functioning properly in these and leads to decreased food 

intake compared to VEH CORT mice.  Expression of several genes in the insulin pathway 
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also showed upregulation in CB1R-/- compared to VEH CORT mice and thus possibly 

improved insulin signaling. 

       Adiponectin levels were slightly increased in VEH WT mice and greatly increased in 

VEH CB1R-/- mice, knockout of the receptor did little to improve levels in CORT treated 

mice. mRNA expression of adiponectin again showed a decrease in both WT and CB1R-/- 

CORT treated mice. AdipoR1 and AdipoR2 serve as receptors for the adiponectin, and their 

reduction seems to be correlated with reduced adiponectin sensitivity; while AdipoR1 

showed no change between control and CORT treated mice, with an elevation in VEH CB1R-

/-.  AdipoR2 followed the trend of its hormone with a decrease in both CORT treated groups 

compared to VEH mice.  Differential expression here follows trends as seen by other groups 

where AdipoR1 regulates AMP-activated protein kinase (AMPK) activation and AdipoR2 

activates peroxisome proliferator-activated receptor (PPAR)-α signaling pathways. 

Subsequently, we also observed decreased expression of the former in CORT treated mice.228  

This leads us to propose that CB1R activity here does not seem to involve adiponectin 

signaling.    

    Expression of resistin, like adiponectin, an adipose derived hormone, has been suggested 

to link adiposity to insulin resistance.229 In this study mRNA expression of resistin in WAT 

was decreased in WT CORT treated mice while increased in CORT CB1R-/- mice.  Resistin 

expression in WAT has been shown to be decreased in several mouse models of obesity 

while levels in circulation are higher in the obese phenotype and increases in circulation have 

been shown to play a vital role in the formation of insulin resistin,231,238 suggesting that the 

increased expression of resistin in the WAT of CORT CB1R-/- should improve insulin 

sensitivity. However, an insulin challenge revealed decreased insulin sensitivity in both 
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CORT treated groups.  To firmly evaluate the role of resistin in CORT mice, circulating 

levels of the hormone need to be taken into account. 

     In the present study, we also demonstrated that global CB1R-/- improves dyslipidemia, 

reverses hepatic damage and decreases cholesterol levels all induced by CORT treatments.  

These effects are in part driven by increased food intake, but as demonstrated in Chapter 4, 

an absence of increased caloric intake in CORT mice still resulted in weight gain comparable 

to weight gain in adlib CORT treated mice.  CB1R-/- here was shown to increase activity 

levels in the otherwise inactive CORT mice, but in contrast to VEH treated mice these levels 

are still significantly decreased.  Results here would suggest that global CB1R-/- is the 

combined result of centrally mediated decreases in caloric intake and a peripherally mediated 

increase in energy expenditure as hypothesized by others in cases of diet induced 

obesity.240,241  Indeed the respiratory quotient was decreased in CB1R-/- CORT mice as the 

result of increased fatty acid oxidation and a decrease in carbohydrate oxidation.    

     In addition to eating more, WT CORT mice were also found to consume more water 

(polydipsia) and have increased urination (polyuria), both signs of overt diabetes.  A concern 

here is that WT CORT mice might be exposed to more CORT over time, as it is in the 

drinking water, and thus the polydipsia provides a positive feed forward loop leading to 

larger effects not seen in CB1-/- mice since they were not drinking the same amounts of 

water.  However, both groups of mice showed excess levels of circulating CORT and splenic 

atrophy, indicating that their exposure to CORT was very high, and likely equivalent. 

     Looking beyond adipocytes that appear to show an intermediate phenotype in CORT 

CB1R-/- mice, a likely target of CORT in regard to metabolic action is the liver. CB1R-/- 

reversed the CORT suppression of Srebp-1c and its target genes while simultaneously 
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reducing expression of PGC-1α and its target genes.   Results here point to a breakdown in 

the fasting-refeeding cycle as seen in Srebp-1c deleted mice,242 where there is no longer an 

appropriate regulated expression of critical lipogeneic genes such as FAS as shown in this 

study.235,236  Here we see that increases in circulating levels are not sufficient to suppress 

gluconeogenesis as evident by increases in PGC-1α and NRF-1,237 suggesting that the liver is 

insulin resistant.  When the liver becomes insulin resistant, it is still able to stimulate 

lipogenesis, creating a vicious cycle that aggravates insulin resistance and ultimately 

contributes to the onset of overt diabetes, as is the case in the CORT treated mice. The co-

existence of hepatic insulin resistance (elevated gluconeogenesis) and sensitivity (elevated 

lipogenesis) at gene expression level has been observed in rodent diabetic models.27 

However, the mechanism of this co-existence of insulin sensitivity and resistance has not 

been revealed until now.239   

     In CORT treated mice, elevated levels of PGC-1α indicate insulin resistance in the 

gluconeogenic pathways.  In the initial week of CORT treatment, Srebp-1c remains insulin 

sensitive and thus fatty acid synthesis is accelerated and triglycerides accumulate in the liver.  

The excess in triglycerides is secreted in VLDL, raising plasma triglyceride levels.  However, 

by week 4, we observed decreased expression of Srepb-1c, indicating a loss of insulin 

resistance in this pathway as well, and further noted by extensive non-alcoholic 

steatohepatitis (NASH).  This decrease would suggest less fat accumulation, which we see if 

treatment of CORT goes beyond 5 weeks when mice actually begin to lose weight and often 

die.  This decrease in Srepb-1c has recently been reported in the human condition of 

NASH.248   
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     CB1R-/- mice remain insulin sensitive in both gluconeogenic and fatty synthesis pathways 

in the liver, despite a decrease in sensitivity in adipose tissue and in circulation.   Looking at 

the level of the islet cell in the pancreas, the CB1R-/- prevents CORT induced damage or 

decrease in cell volume.  Protection here was noted despite predominant expression of CB2 

receptor expression in the insulin secreting β cells.  Both type 1 and type 2 receptors have 

been described in glucagon secreting α cells.241  Inhibition of α cell signing in CB1R-/- mice 

may aid in the maintained fast-fed cycles in CORT treated mice by stabilizing glucagon 

levels. 

      Collectively, these data compellingly suggest that the eCB system may be involved in the 

development of obesity from multiple etiologies, including diet, circadian dysregulation, and 

hormonal imbalance.   Taken together, these data provide the first evidence that the eCB 

system is a contributor to metabolic dysregulation induced by disruption of circadian cycles 

and hormonal regulation, and suggest that future research should continue to investigate the 

wide-spanning role the eCB system may play in the genesis of multiple forms of metabolic 

disorders.   However, it should be noted that the synthesis and production of CORT as 

induced by stress or in response to the rise and fall of the sun are independently controlled.18 

While the eCB system has been thoroughly characterized in the regulation of CORT under 

acute and chronic stress and acute and chronic glucocorticoid exposure,150 its role in the 

diurnal release is unknown, making the results in that regard more difficult to interpret.  
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Chapter 6:  Characterization of endocannabinoid system signaling in glucocorticoid 
treated mice 
 
Abstract 
 
     Limbic and hypothalamic endocannabinoid (eCB) signaling is understood rather well in 

rodents under conditions of chronic stress; however, studies investigating the impact of 

prolonged exposure to glucocorticoid (GC) hormones have been limited by the concurrent 

exposure to the stress of daily injections. The present study was designed to examine the 

effects of a noninvasive approach to alter plasma corticosterone (CORT) on the eCB system 

not only, centrally in the amygdala, hippocampus, and hypothalamus, but also in the 

periphery in blood, liver, and white adipose tissue (WAT).  More precisely, we explored the 

effects of a chronic, ie, 4-week exposure to CORT dissolved in the drinking water of mice 

(100 μg/ml) and measured cannabinoid CB1 receptor binding, eCB content, activity of the 

eCB degrading enzyme fatty acid amide hydrolase (FAAH), and mRNA expression of both 

the CB1 receptor and FAAH in both the hippocampus and amygdala. In the remaining tissue, 

we looked only at eCB content, and mRNA expression of CB1 receptor, FAAH, N-acyl 

phosphatidylethanolamine phospholipase D (NAPE-PLD), monoacylglycerol lipase 

(MAGL), and diacylglycerol lipase, (DAGL).   Our data demonstrate that protracted 

exposure to GCs reduce CB1 receptor density and augmented anandamide (AEA) metabolism 

within limbic structures.  Signaling in the limbic brain region could contribute to shifts in 

emotional behavior, especially increases in anxiety and depression-like behaviors, which 

occur following sustained CORT exposure.  Results from the hypothalamus and periphery 

would suggest that the CORT induced metabolic drive is the result of increased synthesis and 

decreased degradation of AEA in the liver, which likely spills over to blood circulation.  In 

conjunction with prior work, these findings suggest that increased AEA in the liver, and 
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possibly other sites through circulation, drives a shift in metabolic function that accelerates 

carbohydrate metabolism and compromises fatty acid metabolism, resulting in the 

development of fatty liver and fat stores in the adipose tissue. 

 
Rationale 

Glucocorticoids (GC) are the final mediators of the hypothalamic pituitary adrenal 

(HPA) axis and play a crucial role in mounting the adaptive response to stress. Accumulating 

evidence has demonstrated that GCs induce endocannabinoid (eCB) signaling and, in turn, 

endocannabinoids regulate glucocorticoid secretion through both local and distal regulation 

of HPA-axis activity.113-115 As described in the last chapter, the eCB system was originally 

characterized as the neuronal system to which the psychoactive constituent of cannabis ∆9-

tetrahydrocannabinol (THC) interacted to exert its effects on physiology and behavior.  The 

system comprises of two subtypes: the cannabinoid type 1 (CB1) and type 2 (CB2) signaling 

receptors.244,245 The system also comprises the endogenous ligands of both receptors, 

anandamide (AEA) and 2-arachidonoylgycerol (2-AG), as well as the enzymes for ligand 

biosynthesis and degradation, such as the fatty acid amide hydrolase (FAAH).116,117,248  

Interestingly, following conditions of chronic stress eCB signaling appears to 

breakdown, as chronic stress has been found to reduce both eCB content and receptor density 

(reviewed in Gorzalka et al., 2008).249 However, the extent to which GCs contribute to the 

effects of chronic stress centrally, in limbic system and hypothalamic eCB signaling, and 

moreover in the periphery, is unclear.  As such, the aim of the current study was to 

characterize the effects of our non-invasive corticosterone (CORT) drinking water model on 

the ability to modulate eCBs centrally in the hippocampus, amygdala, and hypothalamus and 

peripherally in the blood, WAT and liver.  
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Experimental design  
 
This study was carried out using 2 cohorts of vehicle (VEH) and CORT treated animals.  In 

the first cohort n=7-8/group were euthanized and tissues were removed and processed for 

eCB parameters.  In the second cohort n=4-5 were euthanized and tissue was removed and 

processed for mRNA expression. 

 
Results 

     Once again, chronic exposure to CORT in the drinking water in the present study, resulted 

in a significant increase in the concentration of plasma corticosterone measured in blood 

obtained following four weeks of sustained CORT exposure [t (8) = 6.705, P <0.01; 

Supplementary Fig 6.1)]. These data were consistent with our previous report that 

demonstrates elevations in circulating CORT at all points of the circadian cycle with this 

dosage.15 Additionally, mice which were exposed to CORT exhibited an increase in body 

weight relative to control animals [t (6) = 4.50,  P < 0.01; Supplementary Fig. 6.1B), 

replicating our previous report that protracted exposure to CORT in the drinking water 

produces an obese phenotype.47   

In the amygdala, chronic CORT treatment resulted in a decrease in the binding site 

density (Bmax) [t (4) = 2.812, P < .05; Fig. 6.1A], but no significant difference in the 

dissociation constant (KD) [t (4) =0.84, P > .05; Fig. 6.1B] for [3H]-CP 55,940 compared to 

those exposed to vehicle alone. Chronic exposure to CORT significantly decreased 

amygdalar content of the eCB AEA [t (7) = 3.641, P < .01; Fig 6.1C]; however, there was no 

change in concentration of 2-AG in mice treated with CORT compared to those receiving 

vehicle [t (7) =0.3967, P >.05; Fig. 6.1D].  The fatty acid ethanolamides PEA [t (7) = 2.191, 

P <.05; Fig 6.1F] and OEA [t (7) = 2.198, P<.05; Fig 6.1E] were also decreased in the 
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amygdala of mice exposed to chronic CORT compared to vehicle.  The Vmax for AEA 

hydrolysis by membranes isolated from the amygdala of mice exposed to chronic CORT was 

significantly increased compared to membranes from vehicle exposed mice [t (4) =2.858, 

P<.05; Fig. 6.1G].  There was no significant difference in Km for AEA hydrolysis between 

the two groups [t (4) =0.6917, P>.05; Fig. 6.1H]. 

      In the hippocampus, membranes isolated from mice treated with chronic CORT exhibited 

a significant decrease in  [3H]-CP 55,940 binding site density [Bmax t (5) = 2.336, P <.05; Fig. 

6.2A], without a significant change in the KD 
 [t (5) =2.031, P>.05; Fig. 6.2B] compared to 

the vehicle treated mice. Chronic CORT treatment resulted in a significant reduction in AEA 

content [t (10)=3.534, P <.05; Fig. 6.2C], while there was a large increase in 2-AG content 

[t(10)=4.979, P<.0001; Fig. 6.2D] in the hippocampus. As with AEA, PEA [t(10)=3.264, 

P<.05; 6.2F] and OEA [t(10)=6.611, P<.0001; 6.2E] also show significant decrease in the 

hippocampus as a result of chronic CORT treatment.  Consistent with reductions in NAEs in 

the hippocampus, there was an increase in the Vmax for AEA hydrolysis in hippocampal 

membranes from CORT treated mice [t(4)=3.902, P<.05; Fig. 6.2H] and no change in Km 

[t(4)= 1.905, P>.05; Fig. 6.2G] compared to vehicle treated mice. 

      To quantify FAAH and CB1 receptor expression under conditions of chronic CORT, we 

used quantitative real time RT-PCR and mRNA extracted from the hippocampal and 

amygdalar brain regions from CORT and vehicle treated mice. Treatment with CORT 

resulted in no significant change compared to vehicle treated in mRNA for FAAH 

(hippocampus t(6)=1.28, p>0.05; amygdala t(5)= 0.278, p >0.05) or the CB1 receptor 

(hippocampus t(6)=0.783, p>0.05; amygdala t(7)= 0.286, p >0.05) (see Table 6.1).   
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Figure 6.1 Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoid 

parameters in the amygdala. (A) The binding site density (Bmax) of the CB1 receptor was 

reduced by CORT treatment; (B) however there was no effect on the binding affinity (Kd) of 

the CB1 receptor. (C) CORT treatment reduced the tissue content of endocannabinoid 

anadamide (AEA), but (D) had no effect on the endocannabinoid 2-AG. (G) Consistent with 

the reduction in AEA content, CORT treatment increased the maximal hydrolytic activity (-

Vmax) of the enzyme for AEA degradation fatty acid amide hydrolase (FAAH); (H) but had 

no effect on the binding affinity of AEA for FAAH.  *Significantly different from control 

(P<.05), **(P=.0024 and P=.008), ***(P=.0001) (n=7-8/group for endocannabinoid 

quantification; n=4 for CB1 receptor binding parameters and enzyme activity. 
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Figure 6.2. Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoid 

parameters in the hippocampus. (A) The binding site density (Bmax) of the CB1 receptor was 

reduced by CORT treatment; (B) however there was no effect on the binding affinity (Kd) of 

the CB1 receptor. (C) CORT treatment reduced the tissue content of endocannabinoid 

anadamide (AEA), but (D) increased the content of the other endocannabinoid 2-AG. (G) 

Consistent with the reduction in AEA content, CORT treatment increased the maximal 

hydrolytic activity (Vmax) of the enzyme for AEA degradation fatty acid amide hydrolase 

(FAAH); (H) but had no effect on the binding affinity of AEA for FAAH.  *Significantly 

different from control (P<.05), ** (P=.003); (n=9-10/group for endocannabinoid 

quantification, n=4 for CB1 receptor binding parameters and enzyme activity. 
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Table 6.1 The effects of chronic corticosterone administration on gene expression of the 

cannabinoid receptor and fatty acid amide hydrolase.   

 Vehicle Treated CORT 

Amygdala 

     CB1 receptor 1.08±0.35 1.25±0.53 

     FAAH 1.10±0.18 1.19±0.25 

Hippocampus 

 

     CB1 receptor 1.21±0.33 1.58±0.25 

     FAAH 1.22±0.19 1.86±0.59 

   
 

Twenty-eight day administration of corticosterone (CORT) in the drinking water had no 

effect on the expression of mRNA for either the cannabinoid CB1 receptor or fatty acid 

amide hydrolase (FAAH) within either the hippocampus or amygdala.  Values denote means 

±SEM and are expressed as fold changes of mRNA expression. 
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Figure 6.3 Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoids in the 

hypothalamus. Chronic 4 week treatment of CORT compared to VEH mice, had no effect on 

(A) AEA or (D) PEA but decreased (B) 2-AG and (C) OEA. * Notes significance of P<0.05, 

**P<0.01, n=4-6/group. 

 

 

Figure 6.4 Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoids in 

blood circulation. Chronic 4 week treatment of CORT compared to VEH mice, increased 

circulating levels of (A) AEA, (B) 2-AG, (C) OEA, and (D) PEA. * Notes significance of 

P<0.05; n=8-10/gro 
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Figure 6.5 Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoids in the 

liver. Chronic 4 week treatment of CORT compared to VEH treated mice, increased (A) 

AEA and (D) PEA content, but decreased content of (B) 2-AG, and (C) OEA.  *Notes 

significance of P<0.05, **P<0.01, ***P<0.001; n=8-10/group. 

 

 

Figure 6.6 Effect of chronic corticosterone (CORT) on mRNA expression of 

endocannabinoid parameters  in liver. mRNA isolated from liver of VEH and CORT treated 

mice showed increased expression of (A) CB1R, (C) MAGL, and (E) NAPE-PLD with 

decreases in (B)FAAHand  (D) DAGL.  * Signifies P<0.05, **P<0.01, ***P<0.001, n=3-

5/group. 
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     In the hypothalamus we measured eCB levels.  There was no significant difference 

between groups in AEA (t(6)=0.9194, p=0.3933) or PEA (t(6)=0.3870, p=0.7121) content.  

However, significant decreases were noted in 2-AG(t(7)=2.457, p=0.0437) and OEA levels 

(t(6)=2.796, p=0.0313). 

     Blood plasma isolated from mice treated with chronic CORT exhibited an increase in all 

parameters measured with significance in AEA content [t (15)=2.294 P <0.05; Fig. 6.4A], 

OEA [t(15)=2.159, P<0.05; 6.4C] and PEA [t(15)=2.458, P<0.05; 6.4D], 2-AG showed no 

significant difference [t(15)=0.4822, P=0.6367; Fig 6.4B].  

Liver samples from CORT treated mice demonstrated an increase in AEA content 

[t(15)=3.267,P<0.01; Fig 6.5A] and PEA content [t(15)=2.422, P<0.05; Fig 6.5D].  These 

increases were accompanied by increased expression of the CB1 receptor [t(5)=3.05, 

P=0.0284; Fig 6.6A] and decreased mRNA expression of the AEA degrading enzyme, 

FAAH [t(6)=3.756, P<0.01; Fig 6.6B] and a substantial increase in the biosynthetic AEA 

enzyme, NAPE-PLD [t(8)=5.711, P<0.001; Fig 6.6E].  Decreases were noted in 2-AG 

content [t(15)=7.019, P<0.001; Fig 6.5B] and OEA [t(15)=3.557, P<0.01; Fig 6.5C].  There 

were no significant changes in either MAGL or DAGL mRNA expression, the enzymes 

responsible for the degradation of 2-AG [t(5)=1.106, P=.3192; Fig 6.6C and t(6)=0.3895, 

P=0.7103; Fig 6.6D respectively]. 

     WAT exhibited decreases in all eCB measures with significance in AEA content 

[t(16)=3.588, P<0.01; Fig 6.7A)]  The reductions in eCBs were met with decreased mRNA 

expression of the CB1 receptor [t(5)=3.899, P<0.05; Fig 6.8A] and mRNA expression of 

FAAH [t(6)=2.523, p<0.05; Fig 6.8B].  Decreases were also noted in NAPE-PLD, MAGL, 

and DAGL, but none reached significance. 
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Figure 6.7 Effect of chronic corticosterone (CORT; 100 µg/mL ) on endocannabinoids in 

white adipose tissue (WAT). Chronic 4 week treatment of CORT compared to VEH treated 

mice, decreased WAT content of (A) AEA, (B) 2-AG, (C) OEA and (D) PEA. **Notes 

significance of P<0.01; n=8-1-/group. 

 

 

Figure 6.8 Effect of chronic corticosterone (CORT; 100 µg/mL  on mRNA expression of 

endocannabinoid parameters  in white adipose tissue (WAT). mRNA isolated from WAT of 

VEH and CORT treated mice showed decreased expression of (A) CB1R, (B)FAAH, (C) 

MAGL, (D) DAGL, and (E) NAPE-PLD.  * Signifies P<0.05, n=3-5/group. 
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Supplementary Figure 6.1  Basal levels in treated mice. Chronic CORT treatment (100 

µg/mL) results in (A) 10 fold elevation of plasma CORT (blood samples during light phase) 

and (B) a significant increase in weight gain across the 28 days of CORT exposure. ** 

Signifies P < .005. 
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Discussion 

In this study we demonstrated that chronic CORT delivered via the drinking water 

resulted in a significant decrease of CB1 receptor binding in the hippocampus and amygdala, 

as well as a reduction of AEA within both of these limbic structures. The reduction of AEA 

was met by an increase in FAAH activity, suggesting that glucocorticoids likely reduce AEA 

through an increase in metabolic degradation as opposed to reductions in synthesis (although 

this wasn’t directly tested and thus still remains a possibility). Additionally, chronic CORT 

increased 2-AG in the hippocampus, but not the amygdala.   

Similar to the effects of chronic stress,250-252 chronic CORT decreased CB1 receptor 

density in the hippocampus. Chronic stress has not been found to affect CB1 receptor binding 

in the amygdala of rats;253 however it was reduced in the present study, suggesting that CB1 

receptor density in the amygdala is downregulated by CORT similarly to the effect in the 

hippocampus. It is possible that CB1 receptor expression in the hippocampus is much more 

sensitive to CORT and as a result is downregulated by the increase in CORT secretion 

induced by chronic stress. This hypothesis is consistent with the fact that the hippocampus 

exhibits a higher level of glucocorticoid receptors than the amygdala.254  

The increase in circulating CORT produced by the current regimen is equivalent to 

levels seen during exposure to stress (see (Karatsoreos et al., 2010)47 for temporal and diurnal 

effects of this model on circulating levels of CORT); however, during exposure to stress the 

increased levels of CORT are pulsatile and transient, and not sustained at a high level as they 

are with the current CORT regimen. As a result, the described treatment unveiled a negative 

regulation of CB1 receptor in the amygdala that was not seen following stress. This suggests 

that CB1 receptor binding is negatively regulated in the amygdala, as well as the 
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hippocampus, but it would appear that CB1
 receptors within the hippocampus are more 

sensitive to CORT exposure than those in the amygdala. 

It has been shown that the reduction in CB1 receptor binding in the hippocampus 

following chronic stress or CORT treatment was met by a reduction in CB1 receptor 

protein,251,253 which is consistent with previous reports demonstrating that removal of CORT 

through ADX increases CB1 mRNA in the striatum.256  In the current study however, CORT 

did not downregulate CB1 receptor mRNA suggesting that the reduction in CB1 receptor 

binding may not be due to a downregulation of gene transcription of the CB1 receptor by 

glucocorticoids. It is possible that the downregulation of CB1 receptor mRNA may have 

happened at an earlier phase following glucocorticoid exposure and that by 4 weeks this 

effect has normalized as a compensatory response to the reductions in active receptor binding 

sites, but this hypothesis requires temporal studies to track CB1 receptor mRNA across 

phases of CORT exposure.  

Chronic CORT dramatically reduced AEA content within both the hippocampus and 

amygdala with an increase in AEA-mediated hydrolysis by FAAH, suggesting that CORT 

increases FAAH activity, which results in a reduction in AEA content. In support of this 

finding, two other fatty acid ethanolamides, which are substrates for FAAH, PEA and OEA, 

are also both reduced by chronic CORT. This reduction in AEA and increase in FAAH 

following chronic CORT directly mirrors the effects of chronic stress in both rats and mice, 

257-259 suggesting that increases in CORT following chronic stress are likely the mediator of 

changes in FAAH activity and AEA content. Similar to the changes in the CB1 receptor, this 

change in FAAH activity does not appear to be due to an upregulation of FAAH mRNA 

following CORT. This effect is not surprising given that glucocorticoids have been found to 
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exert negative regulation over FAAH transcription through activation of a glucocorticoid 

response element in the FAAH promoter, suggesting that glucocorticoid receptor activation 

would downregulate FAAH expression.261 As such, a more parsimonious answer to this issue 

would be that chronic CORT modulates post-translational modification of FAAH in a 

manner that increases its hydrolytic activity. Ongoing research will seek to determine the 

mechanisms underlying the regulation of FAAH activity by glucocorticoids. 

Chronic CORT was found to increase 2-AG in the hippocampus, but not amygdala. 

This finding is surprising as it is in direct contrast to the effects of CORT injections in the rat, 

where chronic CORT (by injection) had no effect on 2-AG in the hippocampus but increased 

it in the amygdala.253,261 Moreover, chronic restraint stress in mice has reliably been found to 

increase 2-AG in both the amygdala and hippocampus where it has been hypothesized that 2-

AG synthesis is increased upon repeated restraint application and that this change contributes 

to habituated HPA-axis response to repeated restraint stress.258,270  In the rat chronic stress 

has been found to increase or have no effect on 2-AG in the amygdala (depending on the 

nature of the stress, e.g. chronic restraint vs. chronic unpredictable stress), and either reduce 

or have no effect on 2-AG in the hippocampus.250,251,257 Thus, unlike AEA, FAAH or CB1, 

the regulation of 2-AG by glucocorticoids within limbic structures appears to be very 

complex, and likely is dependent upon the time of tissue collection following stress or 

glucocorticoid exposure as well as the fact that the bulk 2-AG measurements may not 

represent what is occurring at the synapse. As such, this aspect requires further investigation. 

However, given that 2-AG levels within the amygdala are reliably elevated by repeated 

exposure to a homotypic stressor,257-259,270 it is likely that the difference in these effects from 

those seen following CORT injections261 are due to the interactive nature of the injection 
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stress and the CORT levels.  

These data demonstrate that chronic CORT suppresses limbic CB1 receptor binding 

and AEA signaling, while having variable effects on 2-AG. Given the role of limbic eCB 

signaling in the regulation of emotional behavior,114,263 these data would suggest that 

glucocorticoid-induced changes in limbic eCB signaling could contribute to shifts in 

emotional behavior, especially increases in anxiety and depression like behaviors which 

occur following sustained glucocorticoid exposure.264,265  More interestingly in conjunction 

with our obese phenotype in these mice, alterations in limbic eCB signaling suggest possible 

changes in emotional behavior that are related to hormonally mediated obesity phenotypes. 

This could be particularly relevant for the growing rise of co-morbidity of mood and anxiety 

disorders with the increasing obesity epidemic.266-268  

In the hypothalamus we note no significant changes in either mRNA expression of 

the CB1 receptor nor in AEA levels; however, there was a decrease in 2-AG.  Generally, 

feeding lowers, and fasting raises, hypothalamic, but not cerebellar, levels of 2-AG; however, 

it should be noted that these results are from rats.269  Although measurements from the 

current study are taken at a basal state we see reduction in hypothalamic 2-AG, which occurs 

in response to satiation and is likely a homeostatic mechanism to prevent increases in food 

intake. In the CORT animals, this is probably on overdrive, that is the energy balance 

dysregulation is originating in the periphery and the observed changes in the hypothalamus 

are a compensatory response that is at least trying to keep feeding at bay to prevent 

unnecessary eating and facilitate the positive energy balance; however, as noted in previous 

chapters, regulation is not sufficient to cap food intake in CORT treated mice. 

Turning to the periphery, we found differential effects in the blood, liver, and WAT.  
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In the liver we saw significant increases in AEA and PEA with decreases in 2-AG and OEA.  

Changes in CORT induced eCB levels in the liver were met by increases in mRNA 

expression of the CB1 receptor and NAPE-PLD but decreases in FAAH.  There were no 

changes in MAGL or DAGL.  Results here would suggest an overabundance of AEA in the 

liver as a result of increased NAPE-PLD.270  FAAH transcription is not at a sufficient level 

for AEA degradation.  Furthermore, FAAH is not only necessary for the breakdown of AEA, 

but PEA and OEA as well, of which OEA levels are decreased in CORT treated mice 

perhaps due to its substrate competition for FAAH (although this needs to be directly tested). 

272,281 Spill over from the liver is likely to result in increased presence in the blood of AEA, 

PEA, and OEA with no significant changes in 2-AG.   Endocannabinoid parameters in WAT 

reveal a decrease in AEA, but no changes in PEA, OEA, or 2-AG.  mRNA expression of 

FAAH was decreased as the expression of the CB1 receptor, but again there were no changes 

in either MAGL or DAGL gene expression. 

     Endocannabinoid levels of WAT presented in this study from CORT treated mice vary 

from mouse diet induced studies and from visceral fat from obese patients, both of which 

show increases of 2-AG with no changes in AEA.281   However, while the eCB system is 

rather well preserved evolutionarily,274 there seems to be no clear pattern of activity in 

looking from mouse models or even among individuals.  Circulating levels in obese females 

with type 2 diabetes showed increases in both AEA and 2-AG in the blood while mRNA 

expression in adipose tissue showed a reduction for both CB1 receptor and FAAH,275 but 

studies in men looking to link circulating eCBs and cardiometabolic risk in male obese 

subjects found a correlation between BMI and 2-AG, but not AEA276 suggesting that several 

factors including hormonal cues can affect eCB dysregulation as noted by sex differences in 
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eCBs in the amygdala.277  Perhaps these findings should come as no surprise given that sex 

and even racial differences can affect both fat distribution and eCB levels.278,279   Findings in 

the current study showing decreases in AEA, and decreased expressions of FAAH and CB1 

receptor could shed light on cases of obesity induced by factors apart from food intake.  A 

growing number of social science studies and even animal models of social stress are 

showing increases in weight gain as a result of a physiological stress.79-81  Interactions 

between hormones and eCBs could offer insight into the obese phenotype in these models, 

which are easily translated into the human condition. 

     Endocannabinoid measurements in the liver have been more consistent across studies.  

Similar to CORT treated mice, liver of high-fat fed mice indicate that a high-fat diet 

increases hepatic anandamide owing to a major reduction in its degradation by FAAH; 

however, anandamide synthesis appears to be unchanged.287 Because the membrane levels of 

the FAAH protein are not significantly altered, a high-fat diet may inhibit the activity rather 

than the expression of FAAH or as suggested in the CORT model; increase of AEA might 

also be accompanied by OEA resulting in a competition for FAAH deactivation as suggested 

in the CORT model.  The upregulation of hepatic CB1 receptor observed in mice on the high-

fat diet is similar to the reported upregulation of CB1 expression in CORT treated mice and 

could involve similar underlying mechanisms. Clinically, increased eCB tone has also been 

linked with the development of NAFLD.289 

     Induction of AEA is reported to decrease rather than increase fatty acid synthesis in rat 

hepatocytes through a noncannabinoid mechanism mediated by arachidonic acid, as indicated 

by the ability of the nonspecific FAAH inhibitor PMSF to block this effect.283  Thus, four 

weeks of CORT treatment leads to increases in AEA, decreased mRNA expression of Srepb-
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1c, and the development of NASH as noted in Chapter 5, suggesting that increased AEA 

decreases fatty acid synthesis in the liver.  To confirm this hypothesis it would be ideal to 

look at AEA levels after a week of CORT treatment when fact acid synthesis is more active. 

The lipogenic response to CB1 receptor activation in isolated hepatocytes also argues 

strongly for a direct hepatic effect under in vivo conditions, although it does not rule out an 

additional, centrally mediated effect through neuronal or hormonal pathways. Inhibition of 

this lipogenic response in CB1
–/– mice both here and in case of high-fat diet, further confirm 

the lipogenic role of hepatic CB1 receptor.287 The overall story here suggests that increased 

CORT leads to increased NAPE-PLD in the liver, which then increases AEA synthesis.  This 

mechanism likely contributes to the development of not only CORT induced obesity and 

subsequent increases in various metabolic parameters, but also fatty liver in control mice, as 

indicated by the absence of both changes in CB1
–/– mice on CORT. 

In summary, we showed that chronic CORT treatment had differential effects on eCB 

parameters both centrally and peripherally. Results presented here differ from those 

presented by groups studying eCB regulation in cases of both chronic stress and from those 

studying regulation under a high fat diet, suggesting a unique and fined tuned role of the eCB 

system in regulating GC induced metabolic disturbances and the operation of multiple 

regulatory factors on the eCB system.  Inferences of eCB regulation of GC action come most 

clearly from CB1R-/- mice as described in chapter 5 where the CORT induced metabolic 

syndrome phenotype was prevented by global knockout of CB1 receptor; CB1R-/- mice also 

indicate that a lack of CB1 receptor produces HPA-axis dysregulation.284 However, analysis 

of regional concentrations of the eCB parameters sheds light into the central verses 

peripheral mediation of the eCB in GC mediated metabolic syndrome.  In the next chapter we 
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make use of specific CB1 receptor inhibitors and liver specific knockout of the CB1 receptor 

in order to further elucidate central verses peripheral effects. eCB levels in mice with a 

normalized food  
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Chapter 7: Determination of central versus peripheral endocannabinoid regulation 

Abstract 

     We previously reported through the use of cannabinoid CB1 receptor deficient mice, the 

role of endocannabinoid (eCB) signaling as a mediator in glucocorticoid (GC) mediated 

metabolic syndrome.  We have also shown that the detrimental metabolic effects of increased 

exposure to corticosterone (CORT) occur independently from food intake.  It has recently 

been demonstrated that peripherally restricted CB1 receptor antagonist, AM6545, is sufficient 

for weight-independent improvements in glucose homeostasis, fatty liver and plasma lipid 

profile in mice with genetic or diet-induced obesity.  The aim of the current study was two-

fold: first to replicate findings using pharmacological tools in the way of AM251, a global 

CB1 receptor antagonist, and secondly to determine the role of eCB signaling in GC-

mediated obesity and mouse model of the metabolic syndrome independent of central feeding 

effects by selectively targeting peripheral CB1 receptors. With the exception of circulating 

triglyercide levels which were increased, AM251 treatment was able to prevent the negative 

metabolic actions of CORT.  Subsequent CORT induced increase in total body weight, the 

weight of the abdominal/gonadal fat pads, and hyperphagia were substantially attenuated 

with the peripheral antagonist AM6545, indicating that peripheral CB1 receptor activation 

contributes to hormonal and metabolic abnormalities and continues to regulate appetitive 

signals. In conjunction with prior studies, this data suggest that GC exposure produces an 

elevation of tonic eCB signaling which promotes the development of metabolic syndrome, 

through changes in feeding behavior in conjunction with peripheral metabolic processes.   
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Rationale 

     In the previous chapters we have established a role for endocannabinoid (eCB) system 

signaling in alternative models of metabolic syndrome.   In mouse models where circadian 

rhythms of clock genes and glucocorticoid (GC) signaling is blunted (Chapter 3) or in the 

case of increased corticosterone (CORT) exposure with blunted clock gene expression 

(Chapter 4), both were resistant to metabolic dysregulation by global knockout of the CB1 

receptor.  Both models also led to variations in eCB signaling (Chapter5 and Chapter 6).  In 

conjunction with eCB system measurements, it appears that at least in the CORT water 

model, CORT increases NAPE-PLD in the liver resulting in increased AEA synthesis, which 

spills into the circulation. This increased AEA in the liver, and possibly other sites reached 

by the circulation, drives a shift in metabolic function that accelerates carbohydrate oxidation 

and compromises fat metabolism, resulting in the development of fatty liver and fat stores in 

the adipose tissue.  These observations along with subtle changes in activity level in CORT 

CB1R-/- mice (Chapter 5) and the maintained weight gain in pair-fed CORT mice (Chapter 

4), suggest that eCBs and CB1 receptor regulate peripheral energy metabolism.  While we are 

aware that the weight effect is in part due to central changes as noted by decreased food 

intake (Chapter 5) and CORT induced changes in eCB parameters in the limbic region 

(Chapter 6), the aim here was to parse central and peripheral endocannabinoid regulation to 

find the main site of interaction between GCs and the eCB system.  In this way we first made 

use of the global CB1 receptor antagonist, AM251 to replicate the effects of the global 

knockout and identify any side effects of daily injection.  We next made use of the newly 

available and characterized peripheral specific CB1 receptor antagonist, AM6545.251  

     Given the success of the peripheral antagonist, we moved to look at the effects in a 
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hepatocyte specific CB1R-/- mouse (LCB1R-/-).  While the CORT induced phenotype is 

blocked at every level in the CB1R global knockout, the role of adipose tissue is minor 

compared with that of the liver.   

 

Experiment design 
 
     Three different cohorts of animals were used to carry the following studies.  In the first 

group 26 mice were used in total, with 5 in both vehicle and CORT treated groups receiving 

saline injections and 8 in both vehicle and CORT treated groups receiving the global 

antagonist AM251.  The second group receiving the peripheral antagonist AM6545 was run 

as the AM251 study.   In the final study making use of LCB1R-/- mice, 28 mice in total were 

used, 6 WT on vehicle, 6 LCB1R-/-  on vehicle, 8 WT on CORT, and 8 LCB1R-/-  on CORT. 

 

Results 

      There was a significant interaction between CORT and treatment of both AM251 

(F(1,15)=5.102, p=0.0392) and AM6545 (F(1,20)=4.745, p=0.0416; Fig 7.1A) on weight 

gain. Bonferroni posthoc revealed that the effect of CORT was only present in saline injected 

mice (p<0.05).  This weight loss can only partially be contributed to reduced adiposity as 

gross measures in WAT, while decreased (Fig 7.1 E, 7.2B-E, 7.3B-E), are not completely 

absent in mice treated with AM251 or AM6545.   However, oil red o staining demonstrates 

decreased presence of lipids in the livers of CORT treated mice with injections of either 

AM251 (Fig 7.2 F-I) and AM6545 (Fig 7.3 F-I), suggesting that liver weights are also 

decreased as with CB1R-/- CORT treated mice in Chapter 5.  
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.  

Figure 7.1 Metabolic effects of chronic treatment with AM251 and AM6545 in CORT treated 

mice concurrently for 4 weeks.  Both drugs delivered at 10/mg/kg/d, i.p, were able to reduce 

(A) weight change, (E) adiposity, and (B) plasma leptin.  AM251 was able to reduce (C) 

plasma insulin while there was no change in mice treated with AM6545.  Conversely, 

AM6545 was able to reduce circulating (D) triglyceride levels while levels seemed to be 

increased in AM251 treated mice.  (F) Food intake was also decreased with both drugs but to 

a larger extent with AM6545.  Bars with the same letter are not statistically different from 

one another.  **indicates P<0.01 as determined by two-way ANOVA and Bonferroni 

posthoc. 
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Figure 7.2 Histology of liver and WAT in AM251 treated mice. (A) Adipocyte length as 

quantified by random selection of adipocytes (n=5-8/group). Representative images of H&E 

stain of WAT isolated from (B) Saline injected VEH, (C) AM251 injected VEH, (D) Saline 

CORT and (E) AM251 CORT, images taken at 10x. Oil red O staining demonstrated the 

ability of (I) AM251 to prevent the development of NAFLD as present in (H) saline injected 

CORT  treated mice and resembled healthy livers of (F) saline VEH and (C) AM251 VEH 

mice. Representative liver stains shown at 10x.  N=5-8/group. Bars with the same letter do 

not statistically differ from one another.  
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       Patterns of circulating hormones exhibited intermediate effects in leptin and insulin in 

CORT treated mice with AM251 treatment compared to control mice.  Interestingly, AM251 

CORT mice showed increased levels of circulating triglycerides (F(1,15)=78.13, p<0.001), 

whereas this level was decreased with AM6545 injections (F(1,60)=8.170, p=0.0114). As 

with AM251, AM645 also showed intermediate levels of insulin and leptin.  

    Specific knockout of the CB1 receptor in the liver (LCB1R-/-) was unable to either prevent 

weight gain in CORT treated mice, or improve overall adipose levels, and circulating leptin 

levels (Fig 7.4 A, B, and E respectively).  Insulin levels in LCB1R-/- CORT treated mice 

were statistically greater than in WT CORT mice  (interaction F(1, 21)=4.717;p=0.0415, Fig 

7.4F). Interestingly, despite no significant decrease in gross WAT weight, adipocyte size was 

decreased in these mice (Fig 7.5 A-E). LCB1R-/- mice also showed an overall decrease in 

liver weight, though not to the levels of control mice (interaction F(1,19)=4.755, p=0.042, 

genotype F(1,19)=10.54, p=0.0042; Fig 7.4C).  This data is consistent with the decreased 

lipid content in LCB1R-/- CORT treated mice as noted by oil red o stain (Fig 7.5 G-J), and 

decreased circulation of triglycerides (interaction F(1,23)=19.04; p=0.0002; genotype 

F(1,23)=10.65, p=0.0034; Fig 7.4D). Decreased ALT levels, an indicator of decreased liver 

damage in LCB1R-/- mice further validated the large effect of eCB signaling in the liver.  

ALT levels were noted by an interaction between groups (F(1,22)=13.23; p=0.0015) with 

posttest revealing that increased levels were present in WT CORT mice alone (p<0.01, Fig 

7.5F) 
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Figure 7.3 Histology of liver and WAT in AM6545 CORT treated mice. (A) Adipocyte length 

as quantified by random selection of adipocytes (n=5-8/group). Representative images of 

H&E staining of WAT isolated from (B) Saline injected VEH, (C) AM6545 injected VEH, 

(D) Saline CORT and (E) AM6545 CORT, images taken at 10x. Oil red O staining 

demonstrated the ability of (I) AM6545 to prevent the development of NAFLD as present in 

(H) saline injected CORT  treated mice and resembled healthy livers of (F) saline VEH and 

(C) AM6545 VEH mice. Representative liver stains shown at 10x.  N=5-8/group. Bars with 

the same letter do not statistically differ from one another.  
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Figure 7.4 Metabolic effects of chronic CORT treatment in LCB1R-/- mice.  Specific 

knockout of the CB1 receptor in hepatic cells did not prevent CORT induced increases in (A) 

weight change, (B) adiposity, or (E) circulating leptin, and resulted in a slight increase of 

circulating (F) insulin.  However, hepatic cell knockout in CORT treated mice was able to 

decrease overall (C) liver weight and circulating (D) triglycerides, n=6-8/group. Bars with 

the same letter are not statistically different from one another as determined by two-way 

ANOVA (±SEM). *P<0.05, ***P<0.001. 
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Figure 7.5 Histology of liver and WAT in LCB1R knockout CORT treated mice. (A) 

Adipocyte length as quantified by random selection of adipocytes (n=5-8/group), was 

decreased in liver specific (LCB1KO) mice. Representative images of H&E staining of WAT 

isolated from (B) WT VEH, (C) LCB1KO VEH, (D) WT CORT and (E) LCB1KO CORT, 

images taken at 10x. Oil red O staining demonstrated the ability of (J) LCB1KO to prevent 

the development of NAFLD as present in (I) saline injected CORT treated mice and 

resembled healthy livers of (G) WT VEH and (H) LCB1KO VEH mice. Representative liver 

stains shown at 10x.  N=5-8/group. Bars with the same letter do no statistically differ from 

one another. (F) ALT, an indicator of liver damage is also reduced in LCB1R KO mice. 
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Discussion: 
 
     In this chapter, we confirmed findings in Chapter 5 that a global inhibition of eCB 

signaling through the CB1 receptor prevents CORT induced metabolic anomalies with the 

global CB1 receptor antagonist AM251 on all levels including weight gain, adiposity, 

circulating levels of leptin and insulin, as well as prevent the development of NAFLD.  

Additionally, AM251 resulted in an increase in circulating levels of triglycerides.  It has been 

suggested by others that increases in circulating triglycerides are the result of an increase in 

clearance rate;286 however, we would need to measure VLDL particle and TG transport rates 

to confidently say this was the case.  Interestingly, concurrent treatment of AM251 and 

CORT did not result in decreased food intake until the final week of treatment, unlike the 

decreased intake that was noted in global knockout mice.  It is also possible that food intake 

was impaired in the first few days of treatment but regained to levels of untreated animals as 

noted in studies of high fat diets, though the anorectic affect varies across studies.287,288  

     The primary aim of this paper was to separate the central and peripheral affects of CB1R 

blockade.  As such, and having seen no clear negative side effects of daily chronic injections, 

we made use of the peripheral specific CB1 receptor antagonist AM6545.  Concurrent 

treatment with AM6545 and CORT resulted in an absence of weight gain and a decrease in 

adiposity, and circulating levels of leptin, insulin, and triglycerides, although the latter were 

not to the extent of levels in VEH mice.  AM6545 also prevented the development of 

NAFLD.  Despite lack of AM6545 penetration into the brain,251 mice on the drug still 

showed decreased food intake possibly through responses to fast-fed hormonal cues coming 

from adipose tissue among other possible communication axes.289  Studies have suggested 

that the orexigenic action of intestinal eCBs occurs via stimulation of CB1 receptor located in 
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vagal afferent neurons, in particular, that CB1 receptors on afferent vagal neurons may be 

involved in the transmission and processing of gut food-stimulated signals important in the 

control of food intake and meal size.290,291  However, a more recent study has demonstrated 

that neither vagal gut afferents, nor gut afferents traveling via the sympathetic nervous 

system, are required for Rimonabant to inhibit food intake.292 If this is indeed the case, it will 

be important to determine the exact location of the eCB control of residual feeding.  

     In conjunction with results from previous chapters, the ability of AM6545 to prevent 

weight gain further suggested a strong role in liver eCB signaling as a large contributor to 

metabolic abnormalities noted in WT CORT mice.  To confirm this hypothesis, we made use 

of hepatocyte specific knockout of the CB1R (LCB1R-/-).  CORT treatment in LCB1R-/- mice 

revealed a unique role of liver endocannabinoid signaling, whereby liver knockout was not 

sufficient to prevent weight gain, adiposity or circulating leptin levels (results consistent with 

the remaining adipose levels); however, knockout here did result in decreased levels of 

circulating triglycerides and prevented the development of NAFLD.  Unfortunately, we were 

unable to monitor food intake in these mice as they were a gift from collaborators at the NIH 

and had to remain in quarantine during the duration of the study.   

     In summary, using a peripherally-only active CB1 antagonist, we showed that the 

endocannabinoid system is a mediator of CORT induced metabolic syndrome primarily 

through peripheral mechanisms. Although findings strongly implicate hepatic CB1 receptors 

in the development of hormonal induced obesity and related metabolic changes, they do not 

exclude the possibility that endocannabinoids acting on CB1 receptors in the gut, adipose 

tissue, or vagus nerve, or communication between these organs, which may occur through 

neural pathways, may also exist.  Further, residual weight and lipid clearance in the LCB1R-
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/- mice could also be the result of CB1R in the stellate cells of the liver which have been 

shown to activate hepatic lipogenesis via paracrine system in mice chronically exposed to 

ethanol as may be the case here as CORT is dissolved in 1% ethanol.293 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 157 

Chapter 8: Future Directions and Concluding Remarks 
 
Future Directions 
 
     Studies presented in the previous chapters revealed that a disruption in external light cues 

on circadian (daily) rhythms resulted in altered hypothalamic pituitary adrenal (HPA) axis 

activity and a concurrent decrease in clock gene expression.  Alternatively, an increase in 

circulating corticosterones (CORT) also resulted in altered clock gene expression. Both 

phenotypes altered metabolic regulation, resulting in increased weight gain, adiposity, 

developed NAFLD, and showed imbalances in hormones secretion.  While clock gene 

expression likely plays a role in both mouse models through fluctuations of CORT, it is 

difficult to see where the pathways interact, rather than work independently.  However, the 

endocannabinoid (eCB) system, which is well documented in the adaptive stress response 

and is itself regulated by glucorticoid fluctuations and is further present in most peripheral 

organs where it regulates energy homeostatis, proved to be vital in the pathologies noted in 

our mouse models.  Although analyzed in greater detail in the high CORT model, we 

observed the ability of endocannabinoid inhibition through the CB1 receptor to prevent 

weight gain and high hormonal levels in both circadian shifted (low CORT) and exogenously 

delivered (high) CORT models.   

      In order to move forward with the circadian disrupted model, it would be ideal to 

determine the precise mechanism of action regarding the decreased GC circulation noted in 

the LD10 mice.  Future experiments will seek to determine (1) if the noted down-regulation 

was proceeded by an upregulation at an earlier time point as noted in other models of 

hypocortisolism,50,59  (2) the down-regulation of specific receptors on different levels of the 

axis (hypothalamus, pituitary, adrenals, target cells), (3) reduced biosynthesis or depletion at 
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the various levels of the HPA axis yet to be measured (ACTH, adrenal corticosterone levels) 

and/or (4) increased negative feedback sensitivity to GCs.  Given that low levels of GCs can 

lead to autoimmunity and inflammation as a result of compensatory hyperactivity of other 

mediators, it would also be interesting to fully study the impact of an immune challenge in 

this model of circadian disruption. 

     Additionally, we plan to look at the functional role of CORT in circadian shifted mice 

through CORT replacement.  We hypothesize here that restoration in CORT levels will 

subsequently increase clock gene expression to the levels of control mice.  As a preliminary 

study, we decided to continue with our CORT drinking model and from week one gave mice 

either water, VEH or CORT to drink while exposed to either a 24 hour day (12 hour light:12 

hour dark) or a 20 hour day (10 hour light:10 hour dark).   

     Weekly measurements revealed a significant increase in weight change in CORT LD10 

mice compared to VEH LD12 and water LD12 mice starting at week 3 as noted by two-way 

ANOVA and subsequent posthoc test (p<0.05; Fig 8.1A).  Percentage of body fat showed a 

main effect of CORT treatment (F(1,50)=42.03, p<0.0001; Fig 8.1B).   Unfortunately, VEH 

treatment seemed to have a negative effect on weight gain and prevented LD10 mice from 

gaining weight.  

     Metabolic parameters showed a similar additive effect when CORT treatment was paired 

with a LD10 cyle.  Analysis of treatments across the day showed an increase in insulin levels 

at ZT12 in CORT LD12 mice compared to VEH LD12 and VEH LD10 mice (p<0.01; Fig 

8.2A).  CORT LD10 mice had greater levels at all measured time points.  Leptin levels 

exhibited increased levels in CORT LD12 and CORT LD10 mice compared to both VEH  
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Figure 8.1 Simultaneous CORT treatment and altered light cycle have an additive effect on 

weight gain and adiposity.  Mice were given water, VEH (vehicle treatment of 1% ethanol in 

water), or 25 µg/mL CORT (corticosterone dissolved in 1% ethanol) and placed on either a 

12 hour light:12 hour dark or a 10 hour light: 10 hour dark light system.  (A) Shifting alone 

on a water solution significantly increased weight compared to LD12 mice given water 

compared to VEH LD12 mice at every time point starting at week 3.  (B) Overall adiposity 

was increased in CORT treated mice in both lighting conditions.  *P<0.05, **P<0.01, 

***P<0.001; n=13-15/group. 

 

 
Figure 8.2 Metabolic effect of simultaneous CORT treatment and altered light cycle. (A) 

Plasma insulin was significantly increased in CORT treated mice at all time points in CORT 

LD10 mice and at ZT 12 in CORT LD12 mice. (B) Plasma leptin was also increased in both 

CORT treatments at ZT 6 and at ZT12 and 18 in CORT LD10 mice compared to VEH mice. 

(C) Plasma triglycerdies in CORT LD10 mice are at comparable levels of VEH mice at all 

time points but ZT 18 where they are significantly higher. *P<0.05, **P<0.01, ***P<0.001, 

n=4-5/group and time point. 
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groups at ZT6 and at ZT18 CORT LD10 mice had greater levels than all other experimental 

groups (p<0.001; Fig 8.2B). Interestingly, CORT LD10 mice had levels of triglycerides 

comparable to both VEH groups, and lower than CORT LD12 mice, at ZT 6 and ZT 12; but 

had significantly higher levels than all other experimental groups at ZT 18 (p<0.001; Fig 

8.2C). 

     While CORT treatment was unable to reverse the physiological effects of a disrupted light 

cycle, treatment did appear to reestablish rhymicity in clock gene expression.  This trend was 

most clearly seen in Per1 (Fig 8.3B) and Per2 (Fig 8.3C) gene expression in WAT.  Per1 

expression of both VEH LD12 mice (F(2,12)=5.291;p=0.0271) and CORT LD10 

(F(2,12)=5.181; p=0.0286) exhibited rhythmicty while expression in VEH LD10 and CORT 

LD12 mice remained flat.  This blunted expression in VEH LD10 and CORT LD12 resulted 

in decreased expression at ZT12 compared to both VEH LD12 and CORT LD10 (p<0.01).  A 

similar trend was seen for Per2 gene expression with rhythmicity in VEH LD12 

(F(2,12)=22.36; p<0.001; Fig 8.3C) and CORT LD10 (F(2.12)=5.35, p=0.0365).  Rather than 

a flat expression, VEH LD10 mice and CORT LD12 mice exhibited a rhythmic pattern of 

Per2 gene expression (F(2,12)=13.51; p=0.0014) and F(2,13)=54.67; p<0.0001 respectively), 

but instead of increased expression at ZT12 VEH LD10 had their nadir while CORT LD12 

mice had an intermediate expression as increased expression is not noted until ZT18.  This 

differential expression between groups resulted in a difference in expression between VEH 

LD12 and VEH LD10 at ZT 6 (p,0.05).  At ZT12 VEH LD10 and CORT LD12 had 

significantly lower expression (p<0.001) and higher expression at ZT18 (p<0.05) compared 

to VEH LD12 and CORT LD10.  CORT LD10 mice showed an intermediate expression in 

mRNA expression of Per1 in the liver showing no significant difference from either VEH 
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LD12 or VEH LD10.  VEH LD12 was, however, greater at all time points and significantly 

so at ZT12 (p<0.05) compared to VEH LD10 mice.  Expression patterns of Per2 mRNA in 

the liver are a bit more complicated and does not seem to follow the trends noted in WAT.  

Both VEH LD12 (F(2,10)=37.08, p<0.0001)and VEH LD10 (F(2,12)=4.58, p=0.0387) 

showed a rhythmic expression pf Per2 gene expression (Fig 8.3E) but seemed to be in the 

reverse of one another with increased expression in VEH LD12 at ZT18 and nadir at ZT6 

while VEH LD10 had increased expression at ZT6 and a nadir at ZT12 with little increase at 

ZT18.   

       This CORT replacement study needs to be repeated using a means of CORT 

administration that does not require ethanol, but, preliminary results are promising with 

elevations in CORT in the shifting mice corresponding to increased clock gene expression to 

levels compariable to VEH non disrupted mice.  How elavations in clock gene expression 

translate to possible metabolic, cognitive decline, or behaviour,166 are yet to be fully 

determined, but Chapter 3 and 4 would suggest that a misalignment in the expression of 

enzyme and receptor systems could be to blaim.  Development of a means to keep these 

systems in sync could be vital in treating the metabolic syndrome. 

     Future studies also aim to characterize the possible unique role that the eCB system plays 

in the circadian disrupted mice.  It could be the case here that chronic disruption acts like a 

chronic stressor.  Prior studies have shown repeated activation of the HPA-axis by restraint 

stress also demonstrates habituation as measured by a progressive decrease in plamsa 

corticosterone with increasing numbers of restraint episodes.150  The eCB systems aid in this 

response through increases of 2-AG in the hypothalamus.150  Given that we see no difference 

in food intake in disrupted mice, activation of the system on this level does not seem to affect 
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food intake, thus it remains to be determined how cross talk between the brain and the 

periphery leads to metabolic changes in these mice.  

 

 
Figure 8.3 Simultaneous CORT treatment and altered light cycle show a unique interaction 

in circulating CORT levels and clock gene expression.  (A) Plasma CORT is decreased in 

VEH LD10 mice compared to VEH LD12 mice at all times points where as it is increased in 

CORT LD 12 mice.  CORT LD10 mice have significantly greater levels at ZT 6 and ZT 18.  

In white adipose tissue (WAT), clock gene expression of (B) Per1 and (C) Per2  is decreased 

in VEH LD10 mice and CORT LD12 mice but CORT LD10 mice exhibit similar expression 

as VEH LD12 mice.  A similar pattern of expression is noted in (D) Per1 mRNA in the liver 

with CORT LD10 demonstrating an intermediate expression.  All groups had reduced (E) 

Per2 mRNA in the liver compared to VEH LD12 mice. 
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Concluding Remarks 

Environmental experience  

     Since stressful experiences do not exist in a vacuum, it is important to study their 

existence in all environments and forms, as highlighted in this work though novel means to 

alter HPA-axis activity.  Disturbances in environmental lighting cues and exogenous CORT 

in the drinking water disturbed endogenous CORT circulating levels and rhythm and led to 

the dysregulation of circadian rhythms and eCB signaling.  This effect was especially noted 

in the periphery leading to impaired energy metabolism.  CORT treatment did lead to 

decreases of CB1R binding site density in both the hippocampus and amygdala and also 

reduced AEA content and increased FAAH activity within both structures, suggesting that 

emotional state can also play a role in the CORT induced phenotype and as increased GC 

have been well linked to depression.8  Since the social environment impacts the body in large 

part through the brain,  future research should explore brain body crosstalk and how 

emotional state can affect the periphery, including metabolism.  One possibility, as touched 

upon in previous sections, is the desynchronization between regulatory systems as the result 

of circadian dysruption.  Given the tightly and finely tuned regulation of the endocannabinoid 

system on stress and the stress response, circadian rhythm disruption could result in eCB 

signaling that acts to regulate CORT levels and prepare the system for mediating a response 

to an acute stressor, while simultaneously producing a maladaptive response elsewhere. For 

this reason, moving forward it is necessary to determine the precise mechanism of action 

regarding the decreased GC circulation in circadian disrupted mice and the level of eCB 

interaction. 
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     With this mindset, researchers and policy makers are beginning to pay more attention to 

the “ecology of stress” because this concept is able to integrate both environmental and 

biological mechanisms to explain health disparities. Residential chronic stress is of particular 

interest because it is difficult or impossible to avoid; moreover, it is present on a regular 

basis, as the residential environment is part of daily living.  Again, it is these everyday 

stressors- e.g. crowding, noise pollution, violence-that have been shown to have a greater 

effect on long-term well being than the less frequent, but major class of stressors generally 

referred to as life events.8  Neighborhood stress is also interesting because it goes beyond the 

individual and can lead to the deterioration of the capacity of the population within a 

neighborhood to resist the pathological effects of ambient stress.  Social structures, such as 

those found at the neighborhood level, determine at least in part, the exposure of individuals 

to stressors, as well as stress-buffering resources.  Stressors presented in such an environment 

can include reduced or lack of access to opportunity or to the necessary means to achieve 

ends, as well as structural reduction in available alternatives or choices.294 

           Hypercortisolism has been linked to cognitive decline, immunosuppression, obesity 

and insulin resistance making it, theoretically, a key biological mechanism, linking 

disadvantage to poor health.21  However, the experimental evidence linking chronic stress to 

elevated cortisol has been mixed.14 Cortisol increases in response to acute stressors in 

laboratory settings have been well reported, but there is inconsistent evidence concerning the 

effects of long-term exposure to chronically stressful environments.  Studies looking at 

individuals at varying degrees of employment and the impact of job-demand and job-control 

work stress on cortisol response on waking and throughout the day, found varying outcomes 

for males and females depending on job demands versus job control and depending, as well, 
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on levels of SES.295  Mainly, low job control was associated with elevated cortisol 

throughout the day in men while job demands influenced cortisol over the day only in 

women.  The greatest cortisol output was recorded from lower SES women who experienced 

high job demands.  Low job control was more common in lower than higher SES men. 

 Cortisol responses to waking were affected by job demands but not job control. The impact 

of high job demands varied with SES, leading to greater waking responses only in lower SES 

participants.9  In contrast to these studies showing elevation in GC responses to stress, there 

is growing literature documenting decreased GC output (hypocortisolism).  This occurrence 

was recently identified in the interaction between neighborhood social and physical 

characteristics and patterns of diurnal cortisol secretion.57  In particular residents in 

neighborhoods with high levels of perceived and observed stressors or low levels of social 

support experience a flatter rate of cortisol decline throughout the day.  Moreover, mean 

cortisol levels were found to be lower in higher stress, lower support neighborhoods.57  This 

study adds to the growing evidence of hypocortisolism among chronically stressed adult 

populations and, further, challenges the current hypothesis that increased cortisol levels are 

the sole mechanism linking social disadvantage to poor health.21, 251,296,297  The differences in 

study results between hypercortisolism and hypocortisolism, highlight the need for proper 

analyses of psychobiological pathways which must take into account variations in exposure 

to chronic stressors, as well as differences in responses to stressors. 

         Similar to the neighborhood environment, the workplace is an interesting setting to 

study chronic and repeated stressors.  As with those in stress-producing neighborhoods, 

lower SES individuals who have less mobility and control in their jobs have less ability to 

avoid stressors; they also face continuing demands or health threats that can exacerbate the 
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effects of stess.298 To date there has been a strong association between shift-work with an 

increased risk of hypertension, metabolic syndrome, dyslipidaemia, diabetes mellitus and 

vascular events.299-302 These effects remain strong when adjusted for SES; however, shift 

workers, in general, are more likely to have worse SES than day workers.  Alternatively 

stated those from lower SES are more likely to work jobs with unstable shift assignments.  In 

this form of work, even a single overnight shift, is sufficient to alter health independent of 

health behaviors.303-309  

        One possible link to shift work and poor health could be the well reported findings on 

disruptions to circadian rhythms and impaired sleep and sleep quality as touched upon earlier 

in this review.310 In order to study the impacts of sleep fragmentation on metabolic variables 

Baud et al. developed a 14-day model of instrumental sleep fragmentation in mice, and 

showed an impact on both brain-specific and general metabolism.   Of particular interest the 

group demonstrated an increase of food intake without change in body weight, development 

of glucose intolerance, and perhaps most interesting an increase in the circadian peak of GCs 

which may account for the observed metabolic effects.311 Such studies highlight the 

usefulness of proper animal models to explore and map out mechanisms of the human 

condition. 

 

Final Summary 

     Research on social stress has grown in recent years with both social and bench scientists 

considering its physiological and biochemical role in health outcomes.  However, as the 

literature has grown, the story has become more complex with many arguing that decreased 

GC circulation in the case of chronic stress could be to blame rather than the widely held 
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dogma of hypercortisolism.  In order to fully understand the role of GC mediated health 

issues, researchers must first clearly understand that there are varying levels of stress; and 

moreover, that the system does not act in isolation.   Thinking in terms of allostasis and 

allostatic load, researchers can paint a broader picture that details a dynamic network of 

biomarkers, themselves influenced by an individuals genetic make-up, developmental 

history, and behavioral and psychological states.12 

       As detailed in the introduction chapter and work presented in this dissertation, advances 

in translational animal and human research has led to several advancements in the world of 

stress physiology and its role in the development of obesity and the metabolic syndrome.  It 

is clear that human studies cannot fully control for all social environments encountered, 

especially those using retrospective analysis to measure risk factors over a lifetime.  In 

addition, many risk factors are correlated, such as social class, material resources, 

neighborhood environment, and personal health behaviors and the potential for confounding, 

both measured and unmeasured variables, is quite high.  When attempting to separate the 

effects of early life environment and later social status in human studies, researchers face the 

challenge of including study participants in all combinations of exposure categories and risk.8 

Using animal models in combination with human studies provides a novel opportunity to 

understand how social experiences become biologically embedded across the life course.  

Animal models provide a means to explore the questions raised by the epidemiologic work in 

humans and further allow manipulation of selected experimental variables for the 

investigation of psychosocial factors affecting vulnerability to stress exposure and HPA axis 

response.58,312-314 
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       Prior animal and human studies on the role of endocannabinoid signaling on HPA axis 

activity laid the foundation for my studies.  My work in rodents would suggest that GC-

induced changes in limbic endocannabinoid signaling, in the presence of chronic GC 

exposure, could contribute to shifts in emotional behaviors, especially increases in anxiety 

and depression-like behaviors.   Further work looking at the role of endocannabinoid 

signaling and the development of obesity and a metabolic syndrome phenotype, found the 

predominant mechanistic response for metabolic dysregulation was peripheral.  Nevertheless, 

with the rise in co-morbidity of mood and anxiety disorders with the surge in the obesity, 

changes in limbic endocannabinoid signaling could impact behavior and hormonal shifts that 

result in an obese phenotype in an independent but meaningful way.124 Additional work 

highlighted the role of endocannabinoid signaling in a mouse model of circadian disruption, a 

model developed based on the human experience of shifted or shortened days based on work 

shifts or inconsistent exposure to external light.  While the precise mechanism of action is yet 

to be determined, preliminary experiments, and work presented here, would suggest it 

provides a compensatory response to moderate the blunted GC response in disrupted animals.  

It would be of interest to see how endocannabinoid signaling maps out in the human body for 

those experiencing circadian disruption as in shift workers or even those who have 

fragmented sleep. Data presented here was the first evidence that the endocannabinoid 

system may also be involved in the development of obesity from environmental 

manipulations.  In addition to this novel evidence, these studies are also the first to provide a 

putative candidate system mediating the effects of circadian disruption on metabolic 

function.  As peripherally restricted CB1 receptor antagonists are gaining steam as a novel 
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anti-obesity drug, these data suggest they may bear utility in treating metabolic syndrome and 

obesity from multiple causes. 

       A better understanding of the interplay between the environmental experience and an 

individual’s stress behavioral and physiological response provides the tools to study stress on 

the level of the population, in the case of this review the role of the neighborhood and work 

environments.  Stress and adversity among low SES neighborhoods come in many forms and 

varieties, including exposure to neighborhood violence, disorganized and dysfunctional 

schools, signs of deteriorations (e.g. vacant lots, litter, graffiti), gangs, inadequate services, 

discrimination, job insecurity, and lack of job control.315 Future work in this regard will be 

focused upon unpacking these barriers, each of which can independently have numerous 

effectors, on not only GC secretion but its regulatory components as well. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 170 

References: 

1. Brock DW, Thomas O, Cowan CD, Allison DB, Gaesser GA, Hunter GR. (2009) 
Association between insufficiently physically active and the prevalence of obesity in the 
United States. J Phys Act Health 6(1): 1-5. 

2. Rosenzweig JL, Ferrannini E, Grundy SM, Haffner SM, Heine RJ, Horton ES, 
Kawamori R (2008) Primary prevention of cardiovascular disease and type 2 diabetes in 
patients at metabolic risk: an endocrine society clinical practice guideline. J Clin 
Endocrinol Metab 93:3671-3689. 

3. Grundy SM, Brewer HB, Jr., Cleeman JI, Smith SC, Jr., Lenfant C (2004)  Definition 
of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American 
Heart Association conference on scientific issues related to definition. Circulation 09:433-
438. 

4. Wilding JPH (2006) Treatment strategies for Obesity.  Obesity Reviews 8:137-144. 

5. Adler, N., Stewart, J., Cohen, S., Cullen, M., Roux, A.D., Dow, D., Evans, G., 
Kawachi, I., Marmot, M., Matthews, K., McEwen, B., Schwart, J., Seeman, T., Williams,   
(2007)  Reaching for a Healthier Life:  Facts on Socioeconomic Status and Health in the 
U.S.  Chicago, IL:  The John D. and Catherine T. MacArthur Foundation Research 
Network on Socioeconomic Status and Health. 

6. Williams DR and Mohammed SA (2009) Discrimination and racial disparities in 
health: evidence and needed research J Behav Med. 32:20-47. 

7. Seeman TE, Crimmins E, Huang MH, Singer B, Bucur A, Gruenewald T, et al. (2004) 
Cumulative biological risk and socio-economic differences in mortality: MacArthur studies 
of successful aging. Social Science & Medicine 58(10):1985–1997. 

8. Matheson FI, Moineddin R, Dunn JR, et al. (2006) Urban neighborhoods, chronic 
stress, gender and depression.  Social Sci & Med 63, 2604-2616. 

9. Williams DR, Mohammed SA, Leavell J, et al. (2010) Race, socioeconomic status, 
and health: complexities, ongoing challenges, and research opportunities Annals of the 
New York Acc of Sci 1186:69-101. 

10. McEwen BS. (2007) Physiology and Neurobiology of Stress and Adaptation: Central 
Role of the Brain Physiol Rev 87:873-904. 

11. Fremont AM and Bird CE. (1999) Integrating sociological and biological models  J 
Health Soc Behav 40(2):126-9. 

12. McEwen BS.  2008.  Dialogues Clin Neurosci. 8. 

13. Sterling P and Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. 



 171 

In: Fisher S, Reason J, eds. Handbook of Life Stress, Cognition and Health. 629-649. 

14. Miller GE, Chen E, and Zhou ES (2007)  If it goes up, must it come down? Chronic 
stress and the hypothalamic-pituitary-adrenocrotical axis in humans.  Psychological 
Bulletine 133:25-45. 

15. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. 
 Overview of physical and behavioral homeostasis.  JAMA 267:1244-1252. 

16. Chrousos GP (1998) Ultradian, circadian, and stress-related hypothalamic-pituitary-
adrenal axis activity-a dynamic digital-to-analog modulation.  Endocrinology 139:437-440. 

17. Wang M (2005) The role of glucocorticoid action in the pathophysiology of the 
Metabolic Syndrome.  Nutr Metab 2:3. 

18. Jacobson L, Akana SF, Cascio CS, Shinsako J, Dallman MF (1988) Circadian 
variations in plasma corticosterone permit normal termination of adrenocorticotropin 
responses to stress. Endocrinology 122:1343–1348. 

19. Herman JP, Ostrander MM, Mueller NK et al. (2005) Limbic system mechanisms of 
stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol 
Bio Psychiatry 29:1201-1213. 

20. Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, 
Houshyar H, Gomez F, Akana SF, Bhargava A. (2006) From Malthus to motive: how the 
HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 79:247–340. 

21. Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science 
308(5722):648-652. 

22. Hruschka DJ, Kohrt BA & Worthman CM (2005).  Estimating between- and within-
individual variation in cortisol levels using multilevel models. Psychoneuroendocrinology  
30, 698-714. 

23. Dowd, JB, Simanek, AM, and Aiello, AE (2009).  Socio-economic status, cortisol and 
allostatic load: a review of the iterature.  International Journal of Epidemiology, 38, 1297-
1409. 

24. Smyth JM, Ockenfels MC, Gorin AA et al. (1997) Individual differences in the diurnal 
cycle of cortisol. Psychoneuroendocrinology 22:89–105. 

25. Stone AA, Schwartz JE, Smyth J et al. (2001) Individual differences in the diurnal 
cycle of salivary free cortisol: a replication of flattened cycles for some individuals. 
Psychoneuroendocrinology. 26(3):295-306. 

26. Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. (2007) Measuring 
cortisol in human psychobiological studies.  Physiol Behav 90:43–53. 



 172 

27. Hellhammer DH, Ehlert U, Christine H. (2000) The potential role of hypocortisolism 
in the pathophysiology of stress-related bodily disorders.  Psychoneuroendocrinology 25:1-
35. 

28. Dunkelman SS, Fairhurst B, Plager J, Waterhouse C. (1964) Cortisol metabolism in 
obesity. J Clin Endocrinol 24: 832–841 

29. Fraser R, Ingram MC, Anderson NH, Morrison C, Davies E, Connell JM. (1999) 
Cortisol effects on body mass, blood pressure, and cholesterol in the general population. 
Hypertension 33:1364–1368 

30. Berset M, Semmer NK, Elfering A, Jacobshagen N, Meier LL. (2011) Does stress at 
work make you gain weight?  A two-year longitudinal study.  Environment & Health 
37(1): 45-53. 

31. Bujalska IJ, Kumar S, Stewart PM. (1997) Does central obesity reflect “Cushing’s 
disease of the omentum”? Lancet 349:1210–1213 

32. Stulnig TM and Waldhausl W. 11beta-Hydroxysteroid dehydrogenase Type 1 in 
obesity and Type 2 diabetes. (2004) Diabetologia 47(1)1-11. 

33. Stewart PM, Krozowski ZS. (1999) 11 beta-Hydroxysteroid dehydrogenase. Vitam 
Horm 57:249–324 

34. Walker BR, Campbell JC, Fraser R, Stewart PM, Edwards CR. (1992) 
Mineralocorticoid excess and inhibition of 11 beta-hydroxysteroid dehydrogenase in 
patients with ectopic ACTH syndrome. Clin Endocrinol (Oxf) 37:483–492 Biol Chem 
275:30232-30239. 

35. Sandeep TC, Walker BR. (2001) Pathophysiology of modulation of local 
glucocorticoid levels by 11beta-hydroxysteroid dehydrogenases. Trends Endocrinol Metab 
12:446–453. 

36. Kotelevtsev Y, Holmes MC, Burchell A et al. (1997) 11beta-Hydroxysteroid 
dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses 
and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci USA 94:14924–14929. 

37. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. (1999b) Cortisol 
metabolism in human obesity: impaired cortisone→cortisol conversion in subjects with 
central adiposity. J Clin Endocrinol Metab 84:1022–1027 

38. Morton NM, Holmes MC, Fievet C et al. (2001) Improved lipid and lipoprotein 
profile, hepatic insulin sensitivity and glucose tolerance in 11{beta}-hydroxysteroid 
dehydrogenase type 1 null mice. J Biol Chem 276:41293–41300 

39. Masuzaki H, Paterson J, Shinyama H, et al. (2001) A transgenic model of visceral 
obesity and the metabolic syndrome.  Science 294:2166-70. 



 173 

40. Paterson JM, Morton NM, Fievet C, et al. (2004) Metabolic syndrome without obesity: 
Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice.  
Proc Natl Acad Sci U S A 101:7088-93. 

41. Vitaliano PP, Scanlan JM, Zhang J, Savage MV, Hirsch IB, Siegler IC. (2002) A path 
model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom 
Med. 64:418–435. 

42. van Eck M, Berkhof H, Nicolson N, Sulon J. (1996) The effects of perceived stress, 
traits, mood states, and stressful daily events on salivary cortisol. Psychosom Med 58:447–
458. 

43. Pruessner M , Hellhammer DH , Pruessner JC , Lupien SJ. (2003) Self-reported 
depressive symptoms and stress levels in healthy young men: associations with the cortisol 
response to awakening. Psychosom Med 65:92–99. 

44. Holsboer F. (2001) Stress, hypercortisolism and corticosteroid receptors in depression: 
implications for therapy. J Affect Disord. 62:77–91. 

45. Weber-Hamann B, Hentschel F, Kniest A, Deuschle M, Colla M, Lederbogen F, 
Heuser I. (2002) Hypercortisolemic depression is associated with increased intra-
abdominal fat. Psychosom Med. 64:274–277. 

46. Vogelzangs N, Suthers K, Ferrucci L, Simonsick EM, Ble A, Schrager M, Bandinelli 
S, Lauretani F, Giannelli SV, Penninx BW. (2007) Hypercortisolemic depression is 
associated with the metabolic syndrome in late-life. Psychoneuroendocrinology 32:151–
159 

47. Karatsoreos IN, Bhagat SM, Bowles NP, Weil ZM, Pfaff DW, McEwen BS. (2010) 
Endocrine and physiological changes in response to chronic corticosterone: a potential 
model of the metabolic syndrome in mouse. Endocrinology 151:2117-2127. 

48. Nonogaki K, Nozue K, Oka Y. (2007) Social isolation affects the development of 
obesity and type 2 diabetes in mice. Endocrinology 148: 4658–66. 

49. Shpilberg Y, Beaudry JL, D’Souza A, Campbell JE, Peckett A, Riddell MC. 
(2012)Arodent model of rapid-onset diabetes induced by glucocorticoids and hig-fat 
feeding.  Dis Model Mech. 5(5):671-80. 

50. Fries E, Hesse J, Hellhammer J, Hellhammer D.H. (2005) A new view on 
hypocortisolism. Psychoneuroendocrinol. 30,1010-1016. 

51. Friedman SB, Mason JW, Hanburg DA (1963) Urinary 17-hydroxycorticosteroid 
levels in parents of children with neoplastic disease: a study of chronic psychological 
stress. Psychosom. Med. 25:364 – 376. 

52. Bourne PG, Rose RM, Mason JW. (1967) Urinary 17 OHCS levels. Data on seven 



 174 

helicopter ambulance medics in combat. Arch. Gen. Psychiatry 17:104 – 110. 

53. Bourne PG, Rose RM, Mason JW. (1968) 17-OHCS levels in combat Special forces 
“A” team under threat of attachk. Arch. Gen. Psychiatry 17:104-110. 

54. Mason JW, Brady JV, Tolliver GA. (1968) Plasma and urinary 17-
hydroxycorticosteroid responses to 72-hr. avoidance sessions in the monkey. Psychosom. 
Med. 30:608 – 630. 

55. Juster RP, Sindi S, Marin MF, Perna A, Hashemi A, Pruessner JC, Lupien SJ. (2011) 
A clinical allostatic load index is associated with burnout symptoms and hypocortisolemic 
profiles in healhty workers. Pschoneuroendo 36:7977-805. 

56. Travison TG, O'Donnell AB, Araujo AB, Matsumoto AM, McKinlay JB. (2007) 
Cortisol levels and measures of body composition in middle. Clin Endocrinol 67(1):71-77. 

57. Karb RA, Elliott MR, Dowd JB, and Morenoff J. (2012) Neighborhood-level stressors, 
social support, and diurnal patterns of cortisol: The Chicago Community Adult Health 
Study. Social Science and Medicine 1-10. 

58. Bartolomucci A (2005) Resource loss and stress-related disease: is there a link? Med 
Sci Monit 11: RA147–154. 

59. Houshyar H, Cooper ZD, Woods JH. (2001) Paradoxical effects of chronic morphine 
treatment on the temperature and pituitary-adrenal responses to acute restratin stress” a 
chronic stress paradigm.  J. Neuroendocrinol. 13:862-874. 

60. Houshyar H, Galigniana MD, Pratt WB, Woods JH. (2001) Differential responsivity of 
the hypothalamic-pituitary-adrenal axis to glucocorticoid negative-feedback and 
corticotropin releasing hormone in rats undergoing morphine withdrawal: possible 
mechanisms involved in facilitated and attenuated stress responses. J Neuroendocrinol 
13:875–886 

61. Houshyar H, Manalo S, Dallman MF. (2004) Time-dependent alterations in mRNA 
expression of brain neuropeptides regulating energy balance and hypothalamo-pituitary-
adrenal activity after withdrawal from intermittent Morphine Treatment. Journ Neurosci 
24(42):9414-9424. 

62. Feng X, WangL , Yang S, Qin D et al. (2011) Maternal separation produced lasting 
changes in cortisol and behavior in rhesus monkeys. PNAS 108 (34):144312-14317. 

63. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF. (2004) Chronic stress 
promotes palatable feeding, which reduces signs of stress: feedforward and feedback 
effects of chronic stress. Endocrinology 145(8):3754-62. 

64. Maniam J, Morris MJ. (2010) Palatable cafeteria diet ameliorates anxiety and 
depression-like symptoms following an adverse early environment. 



 175 

Psychoneuroendocrinology 35 (5):717—728. 

65. Laugero KD, Bell ME, Bhatnagar S, Soriano L, Dallman MF. (2001) Sucrose 
ingestion normalizes central expression of corticotropin-releasing-factor messenger 
ribonucleic acid and energy balance in adrenalectomized rats: a glucocorticoid—
metabolic—brain axis? Endocrinology 142 (7):2796—2804. 

66. Arce M, Michopoulos V, Shepard KN, Ha QC, Wilson ME. (2009) Diet choice, 
cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol. 
Behav. 101 (4),:446—455. 

67. Tomiyama AJ, Dallman MF, Epel ES. (2011) Comfort food is comforting to those 
most stressed: evidence of the chronic stress response network in high stress women. 
Psychoneuroendocrinology. 36(10):1513-9. 

68. Akana SF, Jacobson L, Cascio CS, Shinsako J, Dallman MF. (1988) Constant 
Corticosterone Replacement Normalizes Basal Adrenocorticotropin (ACTH) but Permits 
Sustained ACTH Hypersecretion After Stress in Adrenalectomized Rats. Endocrinology 
122:1337-1342. 

69. Van Cauter E, Leproult R, Kupfer DJ. (1996) Effects of gender and age on the levels 
and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81:2468 –2473. 

70. Lupien SJ, Gaudreau S, Tchiteya BM, Maheu F, Sharma S, Nair N PV Hauger RL, 
McEwen BS, Meaney MJ. (1997) Stress-induced declarative memory impairment healthy 
elderly subjects: relationship to cortisol reactivity. J Clin Endocrinol Metab 82:2070 –2075. 

71. Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006) Day-to-day 
dynamics of experience-cortisol associations in a population-based sample of older adults. 
Proceedings of the National Academy of Sciences, 103:17058-17063. 

72. Dallman MF (2010) Stress-induced obesity and the emotional nervous system. Trends 
Endocrinol. Metab. 21 (3):159—165. 

73. McEwen BS (2008) Central effects of stress hormones in health and disease: 
understanding the protective and damaging effects of stress and stress mediators. Eur. J. 
Pharmacol. 583 (2—3):174—185. 

74. Wardle J, Chida Y, Gibson EL, Whitaker KL, Steptoe A. (2010) Stress and adiposity: 
a meta-analysis of longitudinal studies. Obesity 19(4): 771-8. 

75. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P. (2004) Stress-Induced 
Anhedonia in Mice is Associated with Deficits in Forced Swimming and Exploration. 
Neuropsychopharmacology 29:2007 – 2017. 

76. Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, et al. (2005) Anhedonia and 
motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162: 127–34. 



 176 

77. Meerlo P, Overkamp GJ, Daan S, Van Den Hoofdakker RH, Koolhaas JM (1996) 
Changes in behaviour and body weight following a single or double social defeat in rats. 
Stress 1: 21–32. 

78. Tamashiro KL, Hegeman MA, Nguyen MM, Melhorn SJ, Ma LY, et al. (2007) 
Dynamic body weight and body composition changes in response to subordination stress. 
Physiol Behav 91: 440–8. 

79. Bartolomucci A, Pederzani T, Sacerdote P, Panerai AE, Parmigiani S, et al. (2004) 
Behavioral and physiological characterization of male mice under chronic psychosocial 
stress. Psychoneuroendocrinology 29: 899–910. 

80. Foster MT, Solomon MB, Huhman KL, Bartness TJ (2006) Social defeat increases 
food intake, body mass, and adiposity in Syrian hamsters. Am J Physiol Regul Integr Comp 
Physiol 290: R1284–93. 

81. Moles A, Bartolomucci A, Garbugino L, Conti R, Caprioli A, et al. (2006) 
Psychosocial stress affects energy balance in mice: modulation by social status. 
Psychoneuroendocrinology 31: 623–33. 

82. Solomon MB, Foster MT, Bartness TJ, Huhman KL (2007) Social defeat and 
footshock increase body mass and adiposity in male Syrian hamsters. Am J Physiol Regul 
Integr Comp Physiol 292: R283–90. 

83. Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, 
Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. (2007) Neuropeptide Yacts directly in 
the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. 
Nat Med 13:803–811. 

84. Bartolomucci, A., Cabassi, A., Govoni, P., Ceresini, G., Cero, C., Berra, D., Dadomo, 
H., Franceschini, P., Dell’Omo, G., Parmigiani, S. et al (2009a) Metabolic consequences 
and vulnerability to diet-induced obesity in male mice under chronic social stress. PLoS 
One 4 (1) e4331. 

85. Loizzo A, Loizzo S, Galietta G et al (2006) Overweight and metabolic and hormonal 
parameter disruption are induced in adult male mice by manipulations during lactation 
period. Pediatr Res 59:111–115. 

86. Bjorntorp P, Rosmond R (2000) Neuroendocrine abnormalities in visceral obesity. Int. 
J. Obes. Relat. Metab. Disord. 24 (Suppl. 2):S80—85. 

87. Dallman MF, Pecoraro NC, La Fleur SE (2005) Chronic stress and comfort foods: 
Self-medication and abdominal obesity.  Brain, Behavior, and Immunity 19:275-280. 

88. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol. Behav. 91 
(4):449—458. f 

89. Torres SJ, Nowson CA (2007) Relationship between stress, eating behavior, and 



 177 

obesity. Nutrition 23 (11—12):887—894. 

90. Warne JP (2009) Shaping the stress response: interplay of palatable food choices, 
glucocorticoids, insulin and abdominal obesity. Mol. Cell. Endocrinol. 300 (1—2):137—
146. 

91. Epel E, Lapidus R, McEwn B, Brownell K.  (2001) Stress may add bite to appetite in 
women: a laboratory study of stress-induced cortisol and eating behavior.   
Psychoneuroendocrinology 26: 37-49. 

92. Gibson, LE (2006) Emotional influences on food choice: sensory, physiological and 
psychological pathways. Physiol. Behav. 89(1):53-61. 

93. Mezuk B, Rafferty JA, Kershaw KN, Hudson D, Abdou CM, Lee H, Eaton WW, 
Jackson JS (2010) Reconsidering the role of social disadvantage in physical and mental 
health: stressful life events, health behaviors, race, and depression. Am J Epidemiol; 
172(11):1238-49. 

94. Heinrichs SC, Richard D. (1999) The role of corticotropin-releasing factor and 
urocortin in the modulation of ingestive behavior. Neuropeptides 33:350–359. 

95. Heinrichs SC, Menzaghi F, Pich EM, Hauger RL, Koob GF. (1993) Corticotropin-
releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide 
Y. Brain Res 611:18–24. 

96. Currie PJ. (2003) Integration of hypothalamic feeding and metabolic signals: Focus on 
neuropeptide Y. Appetite 41:335–337. 

97. Dallman MF, la Fleur SE, Pecoraro NC, Gomez F, Houshyar H, Akana SF.(2004) 
Minireview: Glucocorticoids–food intake, abdominal obesity, and wealthy nations in 2004. 
Endocrinology145:2633–2638. 

98. Santana P, Akana SF, Hanson ES, Strack AM, Sebastian RJ, Dallman MF (1995) 
Aldosterone and dexamethasone both stimulate energy acquisition whereas only the 
glucocorticoid alters energy storage. Endocrinology 136:2214– 2222. 

99. De Vriendt T, Moreno LA, De Henauw S (2009) Chronic stress and obesity in 
adolescents: Scientific evidence and methodological issues for epidemiological research. 
Nutr Metab Cardiovasc Dis 19:511–519. 

100. Di Chiara G, Imperato A. (1988) Drugs abused by humans preferentially increase 
synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc 
Natl Acad SciUSA 85:5274– 5278. 

101. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. 
Neuropsychopharmacology 24:97–129. 

102. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking 



 178 

behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397. 

103. Gosnell BA. (2000) Sucrose intake predicts rate of acquisition of cocaine self-
administration. Psychopharmacology Berl 149: 286 –292. 

104. Divertie GD, Jensen MD, Miles JM. (1991) Stimulation of lipolysis in humans by 
physiological hypercortisolemia. Diabetes 40: 1228–1232. 

105. Slavin BG, Ong JM, Kern PA (1994) Hormonal regulation of hormone-sensitive lipase 
activity and mRNA levels in isolated rat adipocytes. J Lipid Res. 35(9):1535-41. 

106. Arner P (2002) Insulin resistance in type 2 diabetes: Role of fatty acids. Diabetes 
Metab Res Rev 18(Suppl 2):S5–S9. 

107. Bjorntorp P (1996) The regulation of adipose tissue distribution in humans. Int J Obes 
Relat Metab Disord 20:291– 302. 

108. Bjorntorp P (2001) Do stress reactions cause abdominal obesity and comorbidities? 
Obes Rev 2:73–86. 

109. Hauner H, Schmid P, Pfeiffer EF (1987) Glucocorticoids and insulin promote the 
differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 
64:832–835. 

110. Tomlinson JW, Stewart PM (2002) The functional consequences of 11beta-
hydroxysteroid dehydrogenase expression in adipose tissue. Horm Metab Res 34:746–751. 

111. Kuo LE, Czarnecka M, Kitlinska JB, Tilan JU, Kvetnansky R, Zukowska Z. (2008) 
Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling 
toward neuropeptide Y and leads to obesity and the metabolic syndrome. Ann N Y Acad 
Sci 1148:232–237. 

112. Erhuma A, McMullen S, Langley-Evnas SC, Bennett AJ (2009) Feeding pregnant rats 
a low-protein diet alters the hepatic expression of SREBP-1c in their offspring via a 
glucocorticoid-related mechanism. Endocrine 36: 333-338. 

113. Hill MN, McEwen BS (2010) Involvement of the endocannabinoid system in the 
neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol 
Psychiatry 34:791-797. 

114. Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010) Functional 
interactions between stress and the endocannabinoid system: from synaptic signaling to 
behavioral output. J Neurosci 30:14980-14986. 

115. Steiner MA, Wotjak CT (2008) Role of the endocannabinoid system in regulation of 
the hypothalamic-pituitary-adrenocortical axis. Prog Brain Res 170:397-432. 

116. Devan WA, Hanus L, Breuer A, Pertwee RC, Stevenson LA, Griffin G, et al.  Isolation 



 179 

and structure of a brain constituent that binds to the cannabinoid receptor.  Science 1992; 
258:1946-9. 

117. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku 
K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in 
brain. Biochem Biophys Res Commun 215:89-97. 

118. Deutsch DG, Ueda N, Yamamoto S.  The fatty acid amide hydrolase (FAAH).  
Prostaglandins Leukot Essent Fatty Acids 2002; 66:201-10.  

119. Howlett AC. (2002) The cannabinoid receptors.  Prostaglandins Other Lipid Mediat 
68-69:619-31. 

120. Hill MN, McEwen B. (2010)  Involvement of the endocannabinoid system in the 
neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol 
Psychiatry. 34(5):791-797 

121. Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U (2011). Energy balance regulation 
by endocannabinoids at central and peripheral levels. Trends Mol Med 17:518–26. 

122. Valenzuela C, Castillo V, Aguirre C, Ronco AM, Llanos M (2011)  The CB1 receptor 
antagonist SR141716A reverses adult male mice overweight and metabolic alterations 
induced by early stress. Obesity 19:29–35. 

123. Davidson T, Kanoski SE, Schier LA, Clegg DJ, Benoit SC (2007)  A potential role for 
the hippocampus in energy intake and body weight regulation. Current Opinion in 
Pharmacology 7:613–616. 

124. Bowles N, Hill MN, Bhagat SM, Karatsoreos IN, Hillard CJ, McEwen BS (2011) 
Chronic, noninvasive glucocorticoid administration suppresses limbic endocannabinoid 
signaling in mice Neuroscience 204:83-89. 

125. Harmer SL, Panda S, and Kay SA (2001). Molecular bases of circadianrhythms. Annu. 
Rev. Cell Dev. Biol. 17, 215–253. 

126. Hastings MH (1997) Circadian rhythms. Curr. Biol. 7:670. 

127. Rusak B and Zucker I (1979) Neural regulation of circadian rhtyms. Physiol. Rev. 
59:449. 

128. Schibler U, Ripperger J, and Brown SA. (2003) Peripheral circadian oscillators in 
mammals: time and food. J. Biol. Rhythms 18: 250–260. 

129. Perreau-Lenz, Pevet P, Buijs RM, Kalsbeek A (2004) The biological clock: the 
bodyguard of temporal homeostasis. Chronobiol Int. 21(1):1-25. 

130. Storch KF (2002) Extensive and divergent circadian gene expression in liver and heart. 



 180 

Nature 417(6884):78-83. 

131. Panda S (2002). Coordinated transcription of key pathways in the mouse by the 
circadian clock. Cell 109(3):307-320. 

132. Reppert SM, Weaver DR. (2002) Coordination of circadian timing in mammals. 
Nature 418:935-941. 

133. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler 
U. (2002) The orphan nuclear receptor REV-ERBa controls circadian transcription within 
the positive limb of the mammalian circadian oscillator. Cell 110: 251-260. 

134. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik, KA 
FitzGerald, GA, Kay SA, Hogenesch, JB (2004) A functional genomics strategy reveals 
Rora as a component of the mammalian circadian clock. Neuron 43:527–537 

135. Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay 
F, Wahli W, and Laudet V. (2006) Reciprocal regulation of brain and muscle Arnt-like 
protein 1 and peroxisome proliferator-activated receptor a defines a novel positive feedback 
loop in the rodent liver circadian clock. Mol. Endocrinol. 20:1715–1727. 

136. Kohsaka, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, 
Bass J (2007)  High-fat diet disrupts behavioral and molecular circadian rhythms in mice. 
 Cell Metab. 6:414–421 

137. Hsieh MC, Yang SC, Tseng HL, Hwang LL, Chen CT, Shieh KR (2010) Abnormal 
expressions of circadian-clock and circadian clock-controlled genes in the livers and 
kidneys of long-term, high-fat-diet-treated mice. Int J Obes 34:227–239. 

138. Turek FW, Joshu C, Kohsak A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-
Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, and Bass J. (2005) Obesity and 
metabolic syndrome in circadian Clock mutant mice. Science 308, 1043-1045. 

139. P. McNamara, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) 
 BMAL1 and CLOCK, two essential components of the circadian clock, are involved in 
glucose homeostasis.  PLoS Biol. 2: e377 

140. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura 
C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, 
Wang X, Takahashi JS, and Bass J (2010) Disruption of the clock components CLOCK and 
BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466: 627–631. 

141. Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, Cain BD, 
Wingo CS, Gumz ML (2012) The Circadian Protein Period 1 Contributes to Blood 
Pressure Control and Coordinately Regulates Renal Sodium Transport Genes Hypertension 
59: 1151-1156  

142. Dallmann, R., and Weaver, D. R. (2010) Altered body mass regulation in male 



 181 

mPeriod mutant mice on high-fat diet. Chronobiol. Int. 27, 1317–1328. 

143. Tronche, F., Kellendonk, C., Reichardt, H.M., and Schütz, G. (1998) Genetic 
dissection of glucocorticoid receptor function in mice. Current Opinion in Genetics and 
Development 8, 532-538. 

144. Rosenfeld P, Van Eekelen JAM, Levine S, De Kloet ER. (1988) Ontogeny of the Type 
2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. 
Developmental Brain Res. 42: 119-127. 

145. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, 
Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by 
glucocorticoid signaling. Science 289(5488):2344–2347. 

146. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. 
Science 330: 1349–1354. 

147. Kaneko K, Yamada T, Tsukita S, Takahashi K, Ishigaki Y, Oka Y, Katagiri H (2009) 
Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res 
1263: 58–68. 

148. Chung S, Son GH, Kim K (2011) Circadian rhythm of adrenal glucocorticoid: its 
regulation and clinical implications. Biochim Biophys Acta 1812: 581–591. 

149. Nader N, Chrousos GP, Kino T (2010). Interactions of the circadian CLOCK system 
and the HPA axis. Trends Endocrinol Metab 21: 277–286. 

150. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) 
Endocannabinoid signaling negatively modulates stress-induced activation of the 
hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431–5438. 

151. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann 
MW, Eichele G (2006) The circadian rhythm of glucocorticoids is regulated by a gating 
mechanism residing in the adrenal cortical clock. Cell Metab. 4(2):163–173. 

152. Oishi K, Amagai N, Shirai H, Kadota K, Ohkura N, and Ishida N (2005) Genome-
wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse 
liver. DNA Res. 12:191–202. 

153. Nicholson WE, Levine JH, Orth DN (1976) Hormonal regulation of renal ornithine 
decarboxylase activity in the rat. Endocrinology 98, 123–128. 

154. Casanueva FF, Dieguez C (1999) Neuroendocrine regulation and actions of leptin. 
Front. Neuroendocrinol. 20:317–363. 

155. Barnea M, Madar Z, Froy O (2009) High-fat diet delays and fasting advances the 
circadian expression of adiponectin signaling components in mouse liver. Endocrinology 



 182 

150:161–168 37. 

156. Barnea M, Madar Z, and Froy O. (2010) High-fat diet followed by fasting disrupts 
circadian expression of adiponectin signaling pathway in muscle and adipose tissue. 
Obesity (Silver Spring) 18:230 –238. 

157. Cano P, Cardinali DP, Rios-Lugo MJ, Fernandez-Mateos MP, Reyes Toso CF, and 
Esquifino AI (2009) Effect of a high-fat diet on 24-hour pattern of circulating 
adipocytokines in rats. Obesity 17: 1866 –1871 

158. Cha MC, Chou CJ and Boozer CN(2000) High-fat diet feeding reduces the diurnal 
variation of plasma leptin concentration in rats. Metabolism 49:503–507 

159. Havel PJ, Townsend R, Chaump L, and Teff K. (1999) High-fat meals reduce 24-h 
circulating leptin concentrations in women. Diabetes 48: 334 –341. 

160. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, and Schibler U. 
(2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the 
central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950 –2961 

161. Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J, le Coutre J, and 
Froy O. (2011) Long-term restricted feeding alters circadian expression and reduces the 
level of inflammatory and disease markers. J. Cell. Mol. Med. 15, 2745–2759 metabolism. 
Cell 134:728 –742 

162. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, and Froy O (2012). Timed 
high-fat diet resets circadian metabolism and prevents obesity. The FASEB Journal 8:3493-
502 

163. Sage D, Ganem J, Guillaumond F, Laforge-Anglade G, Francois-Bellan AM, Bosler 
O, Becquet D (2004) Influence of the corticosterone rhythm on photic entrainment of 
locomotor activity in rats. J Biol Rhythms. 19(2):144–156. 

164. Kiessling S, Eichele G, Oster H (2010) Adrenal glucocorticoids have a key role in 
circadian resynchronization in a mouse model of jet lag.  JCI. 120 (7):2600-2609. 

165. Cho K, Ennaceur A, Cole JC, Suh CK (2011) Chronic jet lag produces cognitive 
deficits. J Neurosci. 20:1–5. 

166. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011). Disruption of 
circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci 
USA108:1657–62. 

167. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong W-il, et al 
(2008) Hepatic CB1 receptor is required for development of diet-induced steatosis, 
dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 118:3160–9. 

168. Postic C, Shiota M, Niswender KD, Jetton TL, et al (1999) Dual roles for glucokinase 



 183 

in gluose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-
outs using Cre recombinase J Biol Chem 274(1):305-15. 

169. Moverare-Skrtic S, et al (2006) Dihydrotestosterone treatment results in obesity and 
altered lipid metabolism in orchidectomized mice. Obesity 14(4):662-672. 

170. Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB (1995) Characterization of 
the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat 
brain. Biochim Biophys Acta 1257:249-256. 

171. Patel S, Carrier EJ, Ho WS, Rademacher DJ, Cunningham S, Reddy DS, Falck JR, 
Cravatt BF, Hillard CJ (2005) The postmortal accumulation of brain N-
arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase 
activity. J Lipid Res 46:342-349. 

172. Omeir RL, Chin S, Hong Y, Ahern DG, Deutsch DG (1995) Arachidonoyl 
ethanolamide-[1,2-14C] as a substrate for anandamide amidase. Life Sci 56:1999-2005. 

173. Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS. (2010) Rapid elevations in limbic 
endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology 
35: 1333-1338. 

174. Williams J, Wood J, Pandarinathan L, Karanian DA, Bahr BA, Vouros P, Makriyannis 
A (2007). Anal. Chem. 79:5582-5593. 

175. Karatsoreos IN (2012) Effects of circadian disruption on mental and physical health. 
Curr Neurol Neurosci Rep. 12:218–25. 

176. Suwazono Y, Dochi M, Sakata K, Okubo Y, Oishi M, Tanaka K, et al. (2008) A 
longitudinal study on the effect of shift work on weight gain in male Japanese workers. 
Obesity 16:1887–93. 

177. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. (2009) Adverse metabolic and 
cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 
106:4453–8 

178. Niedhammer I, Lert F, Marne MJ. (1996) Prevalence of overweight and weight gain in 
relation to night work in a nurses’ cohort. Int J Obesity 20:625–33. 

179. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-
Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and 
metabolic syndrome in circadian Clock mutant mice. Science 308: 1043–1045. 

180. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, Bradfield CA, 
Vaughan CH, Eiden M, Masoodi M, Griffin JL, Wang F, Lawson JA, FitzGerald GA.  
(2012). Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nature 
Medicine 18(12) 1768-1779. 



 184 

181. Shostak A, Meyer-Kovac J, Oster H (2013). Circadian regulation of lipid mobilization 
in white adipose tissues.  Diabetes in press 

182. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, 
Piomelli D, Leff T, Sassone-Corsi P (2010).  Per2 Controls Lipid Metabolism by Direct 
Regulation of PPARg. Cell Metabolism 12(4):509-520. 

183. Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, Spiegelman BM 
(1996) Differential activation of adipogenesis by multiple PPRA isoforms.  Genes and 
Development 10:974-984. 

184. Waddington Lamont E, Robinson B, Stewart J, Amir S (2005) The central and 
basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the 
clock protein Period2.  Nroc Natl Acad Sci USA 102:4180-4184. 

185. Kwak SP, Young EA, Morano I, Watson SJ, Akil H (1992)  Diurnal corticotropin-
releasing hormone mRNA variation in the hypothalamus exhibits a rhythm distinct from 
that of plasma corticosterone. Neuroendocrinology. 55(1):74-83. 

186. Hammond GL (1995) Potential functions of plasma steroid-binding proteins.  TEM 6: 
298-304. 

187. Mendel CM (1989) The free hormone hypthesis a physiologically based mathematical 
model.  Endocrne Reviews 10: 232-274 

188. Breuner CW, Orchinik M (2002) Beyond carrier proteins plasma binding proteins as 
mediators of corticosteroid action in vertebrates. J Endocrinology 175:99-112. 

189. Tinnikov AA, Oskina IN (1994) Seasonal variations in corticosterone and 
corticosterone-binding globulin levels in white laboratory and Norway rats. Hormone and 
Metabolic Research 26:559–560.  

190. Tinnikov AA (1999) Responses of serum corticosterone and corticoste roid-binding 
globulin to acute and prolonged stress in the rat. Endocrine 11:145–150.  

191. Spencer, RL, Miller AH, Moday H, McEwen BS, Blanchard, RJ, Blanchard DC, Sakai 
RR, (1996) Chronic social stress produces reductions in available splenic type II 
corticosteroid receptor binding and plasma corticosteroid binding globulin levels. 
Psychoneuroendo crinology 21, 95–109.  

192. Fleshner M, Deak T, Spencer RL, Laudenslager ML, Watkins LR, Maier SF (1995) A 
long term increase in basal levels of corticosterone and a decrease in corticosteroid-binding 
globulin after acute stressor exposure. Endocrinology 136, 5336–5342. 

193. Deak T, Nguyen KT, Cotter CS, Fleshner M, Watkins L, Maier SF, Spencer RL 
(1999) Long-term changes in mineralocorticoid and glucocorticoid receptor occupancy 
following exposure to an acute stressor. Brain Research 847, 211–220. 



 185 

194. Frairia R, Agrimonti F, Fortunati N, Fazzari A, Gennari P, Berta L (1988) Infulience 
of naturally occurring and synthetic glucocortoids on corticosteroid-binding globulin-
steriod interaction in human peripheral plasma.  Ann N Y Acad Sci. 538:287-303.   

195. Hsu BR and Kuhn RW (1988)  The role of the adrenal in generating the diurnal 
variation in circulating levels of corticosteroid-binding globulin in the rat.  Endocrinology 
122(2):421-6. 

196. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, and Albrecht U (2010)  The 
mamailian clock component PERIOD2 coordinates circadian output by interaction with 
nuclear receptors. Genes and Dev. 24:345-357. 

197. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W(1996) Differential expression of 
peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -
beta, and -gamma in the adult rat. Endocrinology 137:354–366. 

198. Hatori M, Vollmers, C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, 
Chaix A, Joens M, Fitzpatrick J, Ellisman MH, and Panda S (2012) Time-Restricted 
Fedding without Reducing Caloric Intake Prevents Metabollic Diseases in Mice Fed a 
High-Fat Diet. Cell Metabolism 15:848-860. 

199. Sherman H, Genzer Y, Cohen R, Chapnik N, Mada Z, Froy O (2012). Timed high-fat 
diet resets circadian metabolims and prevents obesity. FASEB J 26(8):3493-502. 

200. Eckel-Mahan-Eckel KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P 
(2012)  Coordination of the transcriptome and metabolome by the circadian clock.  PNAS 
109, 14:5541-5546  

201. Oishi K, Itoh N (2013). Disrupted daily light-cycle induces the expression of hepatic 
gluconeogenic regulatory genes and hyperglycemia with glucose intolerance in mice. 
Biochemical and Biophysical Research communication. In press 

202. Palumbo ML, Canzobre MC, Pascuan CG, Rios H, Wald M, Genaro AM (2010) Stress 
induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: 
correlation with Th1/Th2 balance after stress exposure. J Neuroimmunol 218: 12–20. 

203. Takahashi K, Yamada T, Tsukita S, Kaneko K, Shirai Y, Munakata Y, Ishigaki Y, 
Imai J, Uno K, Hasegawa Y, Sawada S, Oka Y, Katagiri H (2013). Chronic mild stress 
alters circadian expressions of molecular clock genes in the liver Am J Physiol Endocrinol 
Metab 304:E301-E309. 

204. Hernandez-Morante JJ, Gomez-Santos C, Milagro F, Campion J, Martinez JA, Zamora 
S, Garaulet M (2009) Expression of cortisol metabolism-related genes shows circadian 
rhythmic patterns in human adipose tissue. Int J Obes 33(4):473-80. 

205. So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ (2009) Glucocorticoid 
regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci USA 



 186 

106: 17582–17587. 

206. Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K,Yasuda A, 
Mamine T, Takumi T (2005) Acute physical stress elevates mouse period1 mRNA 
expression in mouse peripheral tissues via a glucocorticoid-responsive element. Journal of 
Biological Chemistry 280: 42036–42043. 

207. Cagampang FR, Poore KR, Hanson MA (2011). Developmental origins of the 
metabolic syndrome: body clocks and stress responses. Brain Behav Immun 25: 214–220. 

208. Froy O (2010) Metabolism and circadian rhythms–implications for obesity. Endocr 
Rev 31: 1–24. 

209. Kalsbeek A, Merrow M, Roenneberg T and Foster RG (2012)  Progress in Brain 
Research, Vol. 199:233-245 

210. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB 
(2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk 
PNAS 109(16):5995-5999. 

211. Prasai MJ, George JT, Scott EM (2008) Molecular clocks, type 2 diabetes and 
cardiovascular disease. Diab Vasc Dis Res 5: 89–95. 

212. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald 
GA (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are 
involved in glucose homeostasis. PLoS Biol 2: e377. 

213. Alberts P, Ronquist-Nii Y,Larsson C, Klingstrom G, Engblom L, Edling N, Lidell V, 
Berg I, Edlund PO, Ashkzari M, Sahaf N, Norling S, Berggren V, Bergdahl K, Forsgren M, 
Abrahmsen L (2005). Effect of high-fat diet on KKAy and ob/ob mouse liver and adipose 
tissue corticosterone and 11-dehydrocorticosterone concentrations. Horm Metab Res 37: 
402–407. 

214. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, 
Meaney MJ (1997) High-fat feeding alters both basal and stress-induced hypothalamic-
pituitary-adrenal activity in the rat. Am J Physiol Endocrinol Metab 273: E1168–E117. 

215. Pitt, H. (2007) Hepato-pancreato-biliary fat: the good, the bad and the ugly. HPB 
9(2):92-97. 

216. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, Elmquist JK (2001) 
Characterization of CART nurons in the rat human hypothalamus. Jour of Comp Neuro 432 
(1):1-19. 

217. Tritos NA, Vicent D, Gillette J, Ludwig DS, Flier ES and Maratos-Flier E (1998).  
Functional interactions between melanin-concentrating hormone, neuropeptides Y, and 
anorectic neuropeptides in the rat hypothalamus. Diabtetes 47(11):1687-1682. 



 187 

218. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in 
brain and periphery, in health and disease. Nat Rev Neurosci 4: 649–61. 

219. Freund TF, Katona I, Piomelli D (2003). Role of endogenous cannabinoids in synaptic 
signaling. Physiol Rev 83:1017–66. 

220. Silvestri C, Ligresti A, Di Marzo V (2011) Peripheral effects of the endocannabinoid 
system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev Endocrine 
Metab Dis 12:153–62.  

221. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S (2005). Effects of the 
cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk 
factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 
365:1389–97.  

222. Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ (2010). 
Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 160:530–43.  

223. Valenti M, Viganò D, Casico MG, Rubino T, Steardo L, Parolaro D, et al (2004) 
Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat 
brain. Cell Mol Life Sci 61:945–50.  

224. Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrié P (2004) CB1 
cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity 
and enhanced leptin sensitivity. Int J Obesity 28:640–8.  

225. Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection 
(2005) Prostaglandins Other Lipid Mediat 77:65–76.  

226. Kunos G, Tam J. The case for peripheral CB₁ receptor blockade in the treatment of 
visceral obesity and its cardiometabolic complications (2011) Br J Pharmacol 163:1423–
31.  

227. Acuna-Goycolea C, Obrietan K, van den Pol AN (2010). Cannabinoids excite 
circadian clock neurons. J Neurosci 30:10061–6.  

228. Yamauchi T, Nio Y, Maki T, Kobayasgi M, Takazawa T, Iwabu M, et al (2007) 
Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding 
and metabolic actions. Nat Med. 13:332–9. 

229. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, 
Ahima RS, Lazar MA (2001). The hormone resistin links obesity to diabetes. Nature 
409:307-12. 

230. Way, J.M., Gorgun, C.Z., Tong, Q., Uysal, K.T., Brown, K.K., Harring ton, W.W., 
Oliver, W.R., Jr., Willson, T.M., Kliewer, S.A., and Hotamis ligil, G.S. (2001). Adipose 
tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome 



 188 

proliferator activated receptor gamma agonists. J. Biol. Chem. 276: 25651– 25653.  

231. McTerman, PG,  McTernan CL, Chetty R, Jenner K, Fisher M, Lauer MN, Crocker J, 
Barnett AH, Kumar S (2002).  Increased resistin gene and protein expression in human 
abdominal adipose tissue. J. Clin. Endocrinol. Metab 87:2407-2413. 

232. Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ, Lu K, Yuan J, 
Sanabria-Bohorquez, et al (2008) The acyclic cb1 r inverse agonist taranabant mediates 
weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab 
7(1):68-78. 

233. Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Peleraux G, Soubrie P, Le 
Fur G, Galieggue S, Casellas P (2005) The CB1 receptor antagonist rimonabant reverses 
the diet-induced obesity phenotype the regulation of lipolysis and energy balance. FASEB 
J. 19(11):1567-1569. 

234. Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, et al. (2002) Diminished 
Hepatic Response to Fasting/Refeeding and Liver X Receptor Agonists in Mice with 
Selective Deficiency of Sterol Regulatory Element-binding Protein-1c. J Biol Chem 277: 
9520–9528. 

235. Flowers MT, Ntambi JM (2009) Stearoyl-CoA desaturase and its relation to high-
carbohydrate diets and obesity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell 
Biology of Lipids 1791: 85–91.  

236. Horton JD (2008) PHYSIOLOGY: Unfolding Lipid Metabolism. Science 320: 1433–
1434. 

237. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, 
Lowell BB, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial 
biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124 

238. Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, et al. (2000) 
Decreased IRS-2 and Increased SREBP-1c Lead to Mixed Insulin Resistance and 
Sensitivity in Livers of Lipodystrophic and ob/ob Mice. Molecular Cell 6: 77–86. 

239. Brown MS, Goldstein JL (2008) Selective versus Total Insulin Resistance: A 
Pathogenic Paradox. Cell Metabolism 7: 95–96. 

240. Nagaya T, Tanaka N, Suzuki T, San K, Horiuchi A, Komatsu M, Nakajima T, 
Nishizawa T, Joshita S, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Nakayama J, 
Tanaka E, Aoyama T. (2010) Down-regulaiton of SREBP-1c is associated with the 
development of burned-out NASH.Journal of Hepatology  53:724-731. 

241. Starowicz KM, Cristino L, Matias I, Capasso R, Racioppi A, Izzo AA, Di Marzo V 
(2008) Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with 
a high-fat diet. Obesity (Silver Spring) 16: 553–565.  



 189 

242. Nadler ST, Attie AD (2001) Please pass the chips: genomic insights into obesity and 
diabetes. J Nut 131(8): 2078-2081. 

243. Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010c) Functional 
interactions between stress and the endocannabinoid system: from synaptic signaling to 
behavioral output. J Neurosci 30:14980-14986. 

244. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a 
cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561-564. 

245. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral 
receptor for cannabinoids. Nature 365:61-65. 

246. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, 
Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain 
constituent that binds to the cannabinoid receptor. Science 258:1946-1949. 

247. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku 
K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in 
brain. Biochem Biophys Res Commun 215:89-97. 

248. Deutsch DG, Ueda N, Yamamoto S (2002) The fatty acid amide hydrolase (FAAH). 
Prostaglandins Leukot Essent Fatty Acids 66:201-210. 

249. Gorzalka BB, Hill MN, Hillard CJ (2008) Regulation of endocannabinoid signaling by 
stress: implications for stress-related affective disorders. Neurosci Biobehav Rev 32:1152-
1160. 

250. Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, Gorzalka BB 
(2005b) Downregulation of endocannabinoid signaling in the hippocampus following 
chronic unpredictable stress. Neuropsychopharmacology 30:508-515. 

251. Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ, Gorzalka BB 
(2008b) Regional alterations in the endocannabinoid system in an animal model of 
depression: effects of concurrent antidepressant treatment. J Neurochem 106:2322-2336. 

252. Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic 
unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain 
Res 203:264-269. 

253. Hill MN, Carrier EJ, Ho WS, Shi L, Patel S, Gorzalka BB, Hillard CJ (2008a) 
Prolonged glucocorticoid treatment decreases cannabinoid CB1 receptor density in the 
hippocampus. Hippocampus 18:221-226. 

254. Ahima RS, Harlan RE  (1990) Charting of type II glucocorticoid receptor-like 
immunoreactivity in the rat central nervous system. Neuroscience 39:579-604. 

255. Karatsoreos IN, Bhagat SM, Bowles NP, Weil ZM, Pfaff DW, McEwen BS (2010) 



 190 

Endocrine and physiological changes in response to chronic corticosterone: a potential 
model of the metabolic syndrome in mouse. Endocrinology 151:2117-2127. 

256. Mailleux P, Vanderhaeghen JJ (1993) Glucocorticoid regulation of cannabinoid 
receptor messenger RNA levels in the rat caudate-putamen. An in situ hybridization study. 
Neurosci Lett 156:51-53. 

257. Hill MN, McLaughlin RJ, Bingham B, Shrestha L, Lee TT, Gray JM, Hillard CJ, 
Gorzalka BB, Viau V (2010b) Endogenous cannabinoid signaling is essential for stress 
adaptation. Proc Natl Acad Sci U S A 107:9406-9411. 

258. Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005b) Inhibition of restraint stress-
induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J 
Neurosci 21:1057-1069. 

259. Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ (2008) Effects of 
acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral 
striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108-116. 

260. Waleh NS, Cravatt BF, Apte-Deshpande A, Terao A, Kilduff TS (2002) 
Transcriptional regulation of the mouse fatty acid amide hydrolase gene. Gene 291:203-
210. 

261. Hill MN, Ho WS, Meier SE, Gorzalka BB, Hillard CJ (2005a) Chronic corticosterone 
treatment increases the endocannabinoid 2-arachidonylglycerol in the rat amygdala. Eur J 
Pharmacol 528:99-102. 

262. Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG (2009) Repeated homotypic 
stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid 
signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 
34:2699-2709. 

263. Lutz B (2009) Endocannabinoid signals in the control of emotion. Curr Opin 
Pharmacol 9:46-52. 

264. Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of 
prolonged glucocorticoid exposure in rats: relevance to depression. Prog 
Neuropsychopharmacol Biol Psychiatry 34:777-790. 

265. Schulkin J (2006) Angst and the amygdala. Dialogues Clin Neurosci 8:407-416. 

266. Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, Laatikainen T, Kilkkinen A, 
Bunker SJ, Best JD, Vartiainen E, Kai Lo S, Janus ED (2008) Depression: an important 
comorbidity with metabolic syndrome in a general population. Diabetes Care 31:2368-
2373. 

267. Chrousos GP, Kino T (2009) Glucocorticoid signaling in the cell. Expanding clinical 
implications to complex human behavioral and somatic disorders. Ann N Y Acad Sci 



 191 

1179:153-166. 

268. Takeuchi T, Nakao M, Nomura K, Yano E (2009) Association of metabolic syndrome 
with depression and anxiety in Japanese men. Diabetes Metab 35:32-36. 

269. Kirkham TC, Williams CM, Fezza Filomena, DiMarzo V. (2002) Endocannabinoid 
levels in rat limbic forebrain and hypothalaus in relation to fasting, feeding, and 
satiation:stimulaiton of eating by 2-arachidonoyl glycerol.  Br J Pharmacol.  June; 136(4): 
550–557. 

270. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular 
characterization of a phospholipase D generating anandamide and its congeners. J Biol 
Chem 279:5298–5305. 

271. Maurelli S, Bisogno T, DePetrocellis L, Di Luccia A, Marino G, Di Marzo V. (1995) 
Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 
‘anandamide amidohydrolase. FEBS Lett. 377:82–86. 

272. Jonsson KO, Vandevoorde S, Lambert DM, Tiger G, Fowler CJ. (2001) Effects of 
homologues and analogues of palmitoylethanolamide upon the inactivation of the 
endocannabinoid anandamide. Br J Pharmacol. 133:1263–1275. 

273. Matias I, Gonthier M-P, Orlando P, Martiadis V, De Petrocellis L, Cervino C, 
Petrosino S, Hoareau L, Festy F, Pasquali R, et al. (2006) Regulation, function and 
dysregulation of endocannabionoids in obesity and hyperglycemis. J Clin Endocr Metab 91 
(8) 3171-3180. 

274. McPartland JM, Matias I, Di Marzo V, Glass M. (2006) Evoluntionary orgins of the 
endoccannabinoid system. Gene 370:64-74. 

275. Engeli S, Janke J, Gorzelniak K, Bohnke J, Ghose N, Lindschau C, Luft FC, Sharma 
AM (2005) Activation of the peripheral endocannabinoid system in human obesity. 
Diabetes 54:2838–2843 

276. Cote M, Matias I, Lemieux I, Petrosino S, Almeras N, Despres JP, Di M V (2007) 
Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk 
factors in obese men. Int J Obes (Lond) 31: 692–699.  

277. Krebs-Kraft D. L., Hill M. N., Hillard C. J., McCarthy M. M. (2010). Sex difference in 
cell proliferation in developing rat amygdala mediated by endocannabinoids has 
implications for social behavior. Proc. Natl. Acad. Sci. U.S.A. 107, 20535–20540. 

278. He Q, Horlick M, Thronton J, Wang J, Pierson RN, Heshka S, Galagher D. (2002) Sex 
and Race Differences in Fat Distribution among Asian, African-American, and Caucasian 
Prepubertal Children.  The Journal of Clinical Endocrinology & Metabolism 87:2164-70. 

279. Jumpertz R, Guijarro A, Pratley RE, Piomelli D, Krakoff J. (2010) Central and 
Peripheral Endocannabinoids and Cognate Acylethanolamides in Humans: Association 



 192 

with Race, Adiposity, and Energy Expenditure. J of Clin Endo & Meta 96 (3):787-791. 

280. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey-White 
J, Mackie K, Offertaler L, Wang L, Kunos G (2005) Endocannabinoid activation at hepatic 
CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin 
Invest 115:1298–1305 

281. Bensaid, M, et al. (2003) The cannabinoid CB1 receptor antagonist SR141716 
increases Acrp30 mrNA expression in adipose tissue of obese fa/fa rats and in cultured 
adipocyte cells. Mol. Pharmacol. 63:908-914. 

282. Hezode C, Zafrani ES, Roudot-Thoraval F, Costentin C, Hessami A, Bouvier-Alias M, 
Medkour F, Pawlotsky JM, Lotersztajn S, Mallat A. (2008) Daily cannabis use, a novel 
risk factor of steatosis severity in patients with chronic hepatitis C. Gastroenterology 
134(2):432-9. 

283. Guzman, M, Fernandez-Ruiz, JJ, Sanchez, C, Velasco, G, Ramos, JA. (1999) Effects 
of anandamide on hepatic fatty acid metabolism. Biochem. Pharmacol. 50:885-888. 

284. Zoppi S, Nievas BG, Madrigal JL, Manzanares J, Leza JC, Garcia-Bueno B. (2001) 
Regulatory role of cannabinoid receptor 1 in stress-induced excitotoxicity and 
neuroinflmmation. Neuropsychophharmacology 36(4):805-18. 

285. Tam J, Vemuri VK, Liu J, Batkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman 
DO, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G (2010)  Peripheral CB1 
cannabinoids receptor blockade improves cardiometabolic risk in mouse models of obesity 
J Clin Invest 120(8):2953-2966.A285 

286. Parks EJ, Krauss RM, Christiansen MP, Neese RA, and Hellerstein MK (1999)  
Effects of a low-fat, high carbohydrate diet on VLDL-triglyceride assembly, production 
and clearance. J Clin Invest. 104(8):1087-1096. 

287. Hildebrant AL, Kelly-Sullivan DM, Black SC (2003) Antiobesity effects of chronic 
cannabinoid CB1 receptor antagonist treatment in diet-induce obese mice.  Eur J 
Pharmacol 462:125-32. 

288. Chambers AP, Sharkey KA, Koopmans HS (2004) Cannabinoid (CB)1 receptor 
antagonist, AM251, casues a sustained reduction of daily food intake in the rat. Physiology 
& Behavior 82:863-869. 

289. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012)  Gut Microbiota Composition 
and Activity in Relation to Host Metabolic Phenotype and Disease Risk.  Cell Metabolism 
16:559-564. 

290. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004)  
Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by 
cholecystokinin. J. Neurosci. 24:2708–2715 



 193 

291. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, 
Piomelli D, Rodriguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid 
receptor-dependent modulation of feeding.  J. Neurosci., 22:9612–9617 

292. Madsen AN, Jelsing J, van de Wall E, Vranga N, Larsen PJ, Schwartz GJ (2009)  
Rimonabant induced anorexia in rodents is not mediated by vagal or sympathetic gut 
afferents.  Neuroscience letters 449 (1):20-23. 

293. Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, Serriere-
Lanneau V, Ledent C, Mallat A, Lotersztajn S (2006) CB1 cannabinoid receptor 
antagonism: a new strategy for the treatment of liver fibrosis. Nat Med 12: 671–676. 

294. Wheaton, B. (1999). The nature of stressors. A handbook for the study of mental 
health: Social contexts, theories, and systems 176–197. 

295. Kunz-Ebrecht SR, Kirschbaum C, Steptoe A (2004) Work stress, socioeconomic status 
and neuroendocrine activation over the working day.  Social Science & Media 58:1523-
1530. 

296. Dowd JB, Ranjil N, Do D, Young EA, House JS, and Kaplan GA (2011).  Education 
and levels of salivary cortisol over the day in US adults.  Annals of Behavrioral Medicine, 
41 (1):13-20. 

297. Gunnar MR, and Vazquez DM. (2001). Low cortisol and flattening of expercted 
daytime rhythm:potential indices of risk in human development.  Development and 
Psychopathology, 13: 515-538. 

298. Dohrenwend BP (2006) Inventorying stressful life events as risk factors for 
psychopathology: Toward resolution of the problem of intracategory variability.  Psychol 
Bull. 132(3):477-95. 

299. Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of 
type 2 diabetes: two prospective cohort studies in women. PLoS Med 8:e1001141. 

300. Lieu SJ, Curhan GC, Schernhammer ES, Forman JP (2012) Rotating night shift work 
and disparate hypertension risk in African-Americans. J Hypertens 30:61-6. 

301. Uetani M, Sakata K, Oishi M, Tanaka K, Nakada S, Nogawa K, et al. (2011) The 
influence of being overweight on the relationship between shift work and increased total 
cholesterol level. Ann Epidemiol 21:327-35. 

302. Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, Janszky I, 
Mrkobrada M, Parraga G, Hackam DG (2012) Shift work and vascular events: systematic 
review and meta-analysis. BMJ 345 

303. Lo SH, Lin LY, Hwang JS, Chang YY, Liau CS, Wang JD (2010) Working the night 
shift causes increased vascular stress and delayed recovery in young women. Chronobiol 



 194 

Int 27:1454-68. 

304. Brown DL, Feskanich D, Sánchez BN, Rexrode KM, Schernhammer ES, Lisabeth LD 
(2009) Cardiovascular symptoms in an effort to forestall or avert the rotating night shift 
work and the risk of ischemic stroke. Am J Epidemiol 169:1370-7. 

305. Fujino Y, Iso H, Tamakoshi A, Inaba Y, Koizumi A, Kubo T, et al (2006). A 
prospective cohort study of shift work and risk of ischemic heart disease in Japanese male 
workers. Am J Epidemiol 164:128-35. 

306. Haupt CM, Alte D, Dörr M, Robinson DM, Felix SB, John U, et al (2008) The relation 
of exposure to shift work with atherosclerosis and myocardial infarction in a general 
population.Atherosclerosis 201:205-11. 

307. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, et al 
(2011)  Prospective study of shift work and risk of coronary heart disease in women. 
Circulation 92:3178-82. 

308. Laugsand LE, Vatten LJ, Platou C, Janszky I (2011) Insomnia and the risk of acute 
myocardial infarction. Circulation 124:2073-81. 

309. Tuchsen F, Hannerz H, Burr H (2006) A 12 year prospective study of circulatory 
disease among Danish shift workers. Occup Environ Med 63:451-5. 

310. Fynn P.  The Effects of Shift Work on the Lives of Employees. In Monthly Labor 
Review 104(10)31-35. 

311. Baud MO, Magistretti PJ, Petit JM (2013) Sustained sleep fragmentation affects brain 
termperature, food intake and glucose tolerance in mice. J Sleep Res. 22(1):3-12. 

312. Coccurello R, D’Amato FR, Moles A (2008) Chronic social stress, hedonism and 
vulnerability to obesity: Lessons from Rodents.2009 Neurosci Biobehav 33(4):537-550. 

313. Huhman KL (2006) Social conflict models: can they inform us about human 
psychopathology? Horm Behav 50: 640–6. 

314. Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, et al (2005) Social 
factors and individual vulnerability to chronic stress exposure Neurosci & Biobehav 
Reviews 29(1):67-81. 

315. Israel BA, Schulz AJ, Estrada-Martinez L, Zenk SN, Viruell-Fuentes E, Villarruel 
AM, et al (2006) Engaging urban residents in assessing neighborhood environments and 
their implications for health. Journal of Urban Health, 83(3), 523-539. 

 
 


	Rockefeller University
	Digital Commons @ RU
	2013

	Cannabinoid CB1R Receptor Mediates Metabolic Syndrome in Models of Circadian and Glucocorticoid Dysregulation
	Nicole Bowles
	Recommended Citation


	tmp.1453324613.pdf.VyKzu

