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Aedes aegypti mosquitoes are the principal vectors for several human diseases 

including Dengue Fever, which causes ~400 million cases and ~24,000 deaths per 

year (Bhatt et al., 2013; WHO, 2002). Novel strategies to combat mosquito-borne 

diseases are needed for A. aegypti and other mosquitoes such as the malaria 

vector Anopheles gambiae. Our goal was to discover new ways to interfere with 

the ability of a mosquito to locate a human host for a blood meal. Currently, the 

mechanistic basis of host-seeking and its regulation remain incompletely 

understood. Although it is known that mosquitoes require human odor cues to 

locate a human host, the critical odor components and associated olfactory 

receptors have not been identified (Klowden, 1995; Takken and Knols, 1999). 

Previous work showed that mosquito host-seeking behavior is inhibited by a 

hemolymph-borne humoral factor for three days following a blood meal. 

Subsequent studies identified Head Peptide-I as a candidate neuropeptide 

modulating this suppression in host-seeking behavior. This conclusion was 

strengthened by the observation that Head Peptide-I injection into non-blood-fed 

females triggered the inhibition of host-seeking. The mechanism by which this 

important peptide alters mosquito behavior and the receptor through which it 

signals are unknown (Brown et al., 1994).  

We used a cell-based calcium-imaging screen to identify the G-protein 

coupled receptor NPY-Like Receptor-1 (NPYLR1) as a candidate Head Peptide-I 



receptor. We found that multiple NPYLR1 agonists, including the feeding-related 

Short-Neuropeptide-3 (sNPF3), are capable of inhibiting host-seeking behavior 

when injected into non-blood-fed females. To investigate whether NPYLR1 is 

required for Head Peptide-I inhibition, we pioneered targeted mutagenesis with 

zinc-finger nucleases to create multiple NPYLR1 null-mutant mosquito lines. We 

predicted that these mutants would no longer show inhibition of host-seeking 

behavior after a blood meal. While we can say with certainty that NPYLR1 is a 

receptor for Head Peptide-I, we found no behavioral effects for NPYLR1 mutants 

in locomotion, egg-laying, sugar feeding, blood feeding, or host-seeking behavior. 

Our results suggest that NPYLR1 is not required in vivo for Head Peptide-I action 

and that a redundant signaling mechanism for behavioral inhibition exists. 

Future work will determine the necessity of Head Peptide-I during host-seeking 

inhibition and attempt to identify additional Head Peptide-I and sNPF receptors. 

This research will clarify the mechanism of Head Peptide-I inhibition and could 

form the basis for novel strategies to control mosquito host-seeking behavior. 
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1 Introduction 

1.1 Arthropods are Major Vectors for Human Disease 

Blood-sucking arthropods, such as mosquitoes and ticks, are major vectors of 

human disease. Aedes aegypti is a vector for Dengue Fever, a viral disease that is 

spread to human hosts during blood-feeding of female mosquitoes, which is 

estimated to infect 400 million worldwide and cause ~24,000 deaths per year 

(Bhatt et al., 2013; WHO 2002). The malaria mosquito vector, Anopheles gambiae, is 

described as “the world’s deadliest animal,” causing nearly 1 million deaths per 

year and placing an estimated 2.57 billion people at risk of the protozoan parasite 

Plasmodium falciparum (Gething et al., 2011). In North America and Europe, Lyme 

disease - caused by transmission of the bacteria Borrelia burgdorferi through the 

bites of Ixodes scapularis ticks - is the most prevalent vector-borne disease and one 

of the fastest-growing infectious diseases in the United States (Barbour and Fish, 

1993; Levi et al., 2012; CDC 2011).  

Although antibiotics are available for treating Lyme disease, no effective 

treatment or vaccine exists for dengue fever.  Despite many decades of research, 

there is also no highly effective vaccine for malaria (Bejon et al., 2008) and the 

parasites have developed rapid resistance to anti-malarial drugs (Dondorp et al., 

2009; Sá et al., 2011; Vathsala et al., 2004). Once contracted, mosquito-borne 

diseases lead not only to severe effects on human health but also to socio-

economic disruption (Gallup and Sachs, 2001). Because we lack effective 

treatments, efforts to prevent transmission of vector-borne diseases concentrate 

on vector control using a combination of chemical and biological targeting and 

management of breeding sites.  

 



 2 

1.2 Strategies to Reduce the Transmission of Vector-Borne Diseases 

Current methods to reduce disease transmission from mosquitoes include 

the use of physical barriers such as insecticide-treated bed nets, interior residual 

spraying of insecticides, anti-malarial drugs, prophylactic drugs for travelers, 

vector population control, and chemical insect repellents. Bed nets impregnated 

with insecticides have been extremely effective when used appropriately 

(Mutuku et al., 2011). However, distribution problems, maintenance, incorrect 

usage, and increasing resistance to insecticides are a continual challenge and 

therefore complementary strategies are needed. Anti-malarial drugs, such as 

chloroquine and artemisinin derivatives, are broadly used today, although the 

emergence of parasite resistance to one or both class of drugs is common (Castelli 

et al., 2012; Vathsala et al., 2004). Administration of prophylactic drugs to 

prevent malaria infection, such as mefloquine (Lariam), are also commonly 

prescribed to travelers despite reports of severe mental side-effects (AlKadi, 

2007). Population control through the introduction of sterile insects generated by 

either irradiation or genetic engineering is a promising new strategy, but 

complicated population genetics of A. gambiae mosquito populations in Africa 

may make their application problematic (Harris et al., 2012; Hoffmann et al., 

2011; Wilke and Marrelli, 2012). Lastly, in the developed world the most effective 

chemical repellent for a broad range of arthropods is DEET (N,N-diethyl-meta-

toluamide), but this is not widely used in disease endemic areas because of the 

need to reapply topically to all areas of exposed skin at frequent intervals.  

Unfortunately, these current efforts are failing to stem the increasing incidence of 

vector-borne diseases and are creating a high demand for novel prevention 

strategies (Gething et al., 2011; Gubler, 1998) (CDC, 2011). 



 3 

1.3 Novel Prevention Strategies Exploit Genetic Approaches 

In response to the shortcomings of current prevention strategies, researchers 

are beginning to move beyond primitive tactics of physical barriers and drug 

treatments to more sophisticated approaches based on molecular genetics. With 

the recent publication of several mosquito genomes including A. gambiae (Holt et 

al., 2002), A. aegypti (Nene et al., 2007), and the West Nile vector Culex 

quinquefasciatus (Arensburger et al., 2010), along with successful generation of 

transgenic mosquitoes, researchers are developing genetically based methods for 

population disruption (Jasinskiene et al., 1998; Nimmo et al., 2006). 

One genetic strategy employs the expression of naturally selfish homing 

endonuclease genes (HEG), whose nuclease activity triggers DNA repair systems 

to replicate the HEG between chromosomes and ultimately cause the rapid 

spread of itself through naïve mosquito populations (Windbichler et al., 2012). 

Using this strategy, researchers believe they can engineer HEGs for targeted 

disruption of important genes for vector capacity or to introduce novel genes 

that impair vector competence. Recent reports indicate that HEGs introduced 

into A. gambiae by transgenesis are effective at spreading through laboratory 

populations (Windbichler et al., 2012). However, progress has not been reported 

for engineering HEGs to recognize DNA sequences of interest, which is a major 

obstacle to further development. 

A second strategy aims to use genetics to improve the generation of 

mosquitoes that are infertile or unable to mate for use in Sterile Insect 

Techniques (SIT). Historically, SIT programs have been effective at population 

disruption by introducing large numbers of sterile insects produced by 

irradiation that compete with wild-type individuals for breeding opportunities. 
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Researchers are modernizing the approach for mosquito application by replacing 

irradiation with transgenic male mosquitoes carrying lethal genes that prevent 

the development of offspring (Wise de Valdez et al., 2011). A complementary 

strategy was recently reported that created female-specific flightless transgenic 

mosquitoes to remove logistical delays from manually separating males prior to 

release (Fu et al., 2010).   

A last strategy of note, though note technically genetic, is the introduction of 

the life-shortening bacterial symbiont, Wolbachia, into A. aegypti to reduce 

opportunities for disease transmission (Mcmeniman et al., 2009). Interestingly, 

Wolbachia possesses an inherent drive to spread through populations using 

cytoplasmic incompatibility, a type of embryonic lethality that prevents 

development of offspring that do not carry the bacteria. Recent reports describe 

field trials where Wolbachia successfully invaded two natural populations of A. 

aegypti in Australia within a few months (Hoffmann et al., 2011).  Larger field 

trials are currently being administered in South East Asian countries. 

Despite promising results, we were surprised to find that none of these 

approaches applied genetics to understand the mechanisms by which female 

mosquitoes locate a human host for blood-feeding. Further understanding of the 

molecular basis of mosquito host-seeking behavior could uncover new 

approaches for interfering with host location to prevent disease transmission. 

 

1.4 The Importance of Olfaction in Host-Seeking Behavior 

Host-seeking behavior can more broadly be understood as a set of behaviors 

that an organism undertakes to locate food. For blood-feeding arthropods, the 

food is blood, which is contained within a living host. For other organisms such 
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as the fly (Drosophila melanogaster) the food source is yeast growing on rotting 

fruit and plant materials (Dethier, 1976). Typically, food-search and host-seeking 

behaviors in arthropods utilize long-distance odor cues for guidance to a food 

source (Vosshall and Stocker, 2007). A. aegypti and A. gambiae are anthropophilic - 

specialists that feed nearly exclusively on humans (Pates et al., 2007; Ponlawat 

and Harrington, 2005; Scott and Takken, 2012) - whereas other mosquitoes feed 

on other mammals, birds, and even reptiles (Besansky et al., 2004; Loaiza et al., 

2012; Takken and Knols, 1999). Therefore, mosquitoes also use their sense of 

smell to identify a compatible host within a complex and often dangerous 

environment. When successful, additional senses including taste, vision, and 

heat are incorporated at shorter distances to evaluate the quality of the host for 

feeding. Notably, the dependency on olfaction for host location presents an 

opportunistic target for disrupting the ability of mosquitoes to spread disease, as 

exemplified by the long-distance effectiveness of DEET (Paluch et al., 2010). 

In the laboratory, A. aegypti host-seeking behavior can be modeled as an 

olfactory-dependent process that orients mosquitoes to human odor cues and 

guides them to the proximity of host stimuli. Using a uniport olfactometer, based 

on a design by Dr. Marc J. Klowden (Klowden and Lea, 1979a), we have 

confirmed the attraction of female mosquitoes to various stimuli (Figure 1.1A). In 

the absence of any human odor cues, mosquitoes display very low levels of 

attraction to ambient air (Figure 1.1B). In contrast, when a human hand or 

forearm is supplied as an odor source, mosquitoes express robust attraction. 

There is a synergistic increase in attraction when human hand odor is combined 

with carbon dioxide (CO2) at comparable levels to human breath (4%) (Smith et 

al., 2009). The uniport olfactometer provides a functional behavioral assay to 
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Figure 1.1 Host-seeking Behavior is Olfactory-Dependent and Inhibited by 
Blood-Feeding. (A) Diagram of the uniport olfactometer. (B) Percent attraction of 
female mosquitoes to various stimuli (n=5-6; ~20 mosquitoes per trial). (C) 
Percent attraction of females to human hand odor before and after a blood meal 
(n=3-5; ~20 mosquitoes per trial). Access to egg laying locations was permitted 
after 72h and observed at 96h. In B-C, data are plotted as mean ± SEM. ANOVA 
with Dunnett’s Correction for Multiple Comparison; * = p<0.05, *** = p<0.001, ns 
= not significant. 
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address questions related to the molecular basis of olfactory-dependent host-

seeking behavior in A. aegypti. 

 

1.5 Internal Regulation of Mosquito Host-Seeking Behavior 

Early behavioral studies of A. aegypti identified a quiescent period after 

blood-feeding where female mosquitoes are no longer attracted to host odor cues 

(Figure 1.1C). Recovery to host stimuli occurs following egg-laying, starting a 

new cycle of host-seeking behavior, quiescence, and egg-laying, referred to 

collectively as the gonotrophic cycle. Pioneering researchers of mosquito 

behavior including Dr. Marc J. Klowden, Dr. Marc R. Brown, and Dr. Arden O. 

Lea realized that naturally evolved mechanisms for regulating host-seeking 

behavior were hidden within the gonotrophic cycle, and if understood, may lead 

to the discovery of a universal strategy to stop the spread of disease (Klowden, 

1995). 

 

1.5.1 The Gonotrophic Cycle – Hidden Mechanisms for Regulation 

Approximately 3 to 4 days after adult emergence, female A. aegypti 

mosquitoes achieve a fully developed olfactory system as indicated by 

reproducible sensitivity to the host odor lactic acid (Davis, 1984). To obtain a 

protein-rich blood meal for egg development, robust host-seeking behavior 

occurs until the act of blood-feeding is initiated on a human host. The female will 

then continue to feed until either physically startled or the anterior midgut 

senses maximal distension of approximately 3-5 µl (Klowden and Lea, 1978).  

Once fully engorged, abdominal distension inhibits attraction to hosts by an 

unknown mechanism, permitting females to retreat to safer resting locations to 
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begin digestion of the blood meal (Klowden and Lea, 1979b). ~24 hours after 

blood-feeding, abdominal distension is relieved and mosquitoes evaluate the 

volume and quality of the meal to determine if egg development is permissible 

(Klowden and Lea, 1978). Inadequate amounts of blood trigger an immediate 

return to host-seeking behavior to obtain a supplementary meal from the same or 

a different host. Adequate blood meals proceed into egg development where 

inhibition of host-seeking behavior continues from approximately 24 to 72 hours 

due to a putative humoral factor that circulates in the hemolymph of the 

mosquito (Klowden and Lea, 1979a). This hypothesis was developed from the 

observation that when hemolymph from a female A. aegypti mosquito, 48 hours 

after a blood meal, was injected into non-blood-fed females, a behavioral switch 

to host-seeking inhibition was induced in the recipients (Klowden and Lea, 

1979a). Further examination identified that release of the humoral factor was 

dependent on an unknown signal originating in the ovaries roughly 6-10 hours 

post-blood meal (Klowden, 1981). 

Egg maturation completes ~72-96 hours after blood-feeding, which coincides 

with gravid females exhibiting attraction to odor cues from egg laying sites, such 

as 0.2% methyl propionate, rather than human odors (Klowden and Blackmer, 

1987). Once eggs are laid, female mosquitoes quickly recover host-seeking 

behavior and the gonotrophic cycle begins again, leading to a second blood meal 

(Klowden, 1981). Female A. aegypti mosquitoes will complete several gonotrophic 

cycles throughout their life, providing efficient means for transmitting diseases 

to human hosts.  

In all, these observations suggested that a humoral factor is released into the 

hemolymph of females somewhere between 6-72 hours after a blood meal that 
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triggers host-seeking inhibition. Using techniques available at the time, those 

working in the field attempted to isolate this candidate humoral factor. The 

overall goal of this work was to determine, at the molecular level, how 

mosquitoes internally regulate their attraction to human hosts. 

 

1.5.2 Identification of Head Peptide-I 

A biochemical screen by Matsumoto et al. (1989) led to the purification of several 

A. aegypti hemolymph-borne FMRFamide-like neuropeptides, which provided 

candidates for the humoral regulator of host-seeking behavior. The 

neuropeptides were tested in a functional assay for the ability to inhibit host-

seeking behavior when injected into non-blood-fed females. A single candidate 

neuropeptide, Head Peptide-I (HP-I, pERPhPSLKTRFa, pE = pyroglutamic acid, 

hP = hydroxyproline, a = c-terminal amidation) was found to be capable of 

inhibiting behavior (Brown et al., 1994). Control experiments showed that a 

synthetic peptide containing a single mutation of the terminal amino acid (HP-I 

[Cys10], pERPhPSLKTRC) was inactive in modulating host-seeking behavior. 

Subsequent radioimmunoassays determined that Head Peptide-I titers in female 

A. aegypti hemolymph increased and sustained at 5-fold regular levels between 

24-36h, correlating well with behavioral inhibition (Figure 1.2A and B). This 

sustained increase in Head Peptide-I may be necessary for long-term suppression 

of host-seeking, because after a single injection of synthetic Head Peptide-I, 

behavior was recovered within an hour (Brown et al., 1994). 

Interestingly, mosquitoes exhibiting inhibition of host-seeking behavior 

from Head Peptide-I injections were still observed to blood-feed when placed  
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Figure 1.2 Head Peptide-I Inhibits Host-Seeking Behavior. Figures and text 

reproduced from Brown et al. 1994 with slight graphical modifications for clarity. (A) 
Mosquito host-seeking behavior at intervals after a replete blood meal [black 
circles (data from Klowden, 1990)] compared to the hemolymph titer of Head 
Peptide-I (blue circles) determined by a radioimmunoassay. (B) Mosquito host-
seeking behavior at intervals after a ~1µl enema of blood [black circles (data from 
Klowden and Lea, 1979a)] compared to the hemolymph titer of Head Peptide-I 
(blue circles) from similarly treated females as determined by 
radioimmunoassay. (C) Effect of injections of synthetic Head Peptide-I on 
mosquito host-seeking behavior. Host-seeking behavior was measured in an 
olfactometer within 1h of peptide injection. In A-C, vertical lines represent 
standard errors. 
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directly on a human arm (Brown et al., 1994). This finding highlights that Head 

Peptide-I appears to regulate specific sensory modalities critical to host-seeking 

behavior, namely olfaction, rather than those needed for feeding such as taste, 

vision, and heat (Allan et al., 1987; Takken and Knols, 1999).  

Eight years after this initial work on Head Peptide-I function, the Head 

Peptide-I gene was cloned using RT-PCR with degenerate primers guided by the 

protein sequence of the peptide (Stracker et al., 2002). The gene has an open 

reading frame encoding a prepropeptide of 128 amino acids, consisting of a 22-

residue signal peptide followed by three tandem repeats of the propeptide 

QRPPSLKTRFG. After post-translational modifications, the propeptide is 

processed into mature Head Peptide-I protein (pERPhPSLKTRFa)(Stracker et al., 

2002). The role of Head Peptide-I post-translational modification is unknown, but 

may be a point of regulation in Head Peptide-I production or confer protein 

stability when released into the hemolymph. 

With the gene identified, Stracker et al. (2002) performed a combination RT-

PCR/DNA blotting technique on RNA isolated from dissected tissue and found 

expression of Head Peptide-I in the brains of larva, males, females, and in the 

midgut and terminal ganglion of adult mosquitoes. Further RNA in situ 

hybridization localized expression of Head Peptide-I in adult females to 

endocrine cells of the posterior midgut as well as neurosecretory cells in the 

brain and the terminal ganglion, which is housed within the last two abdominal 

sections of adults. It follows that these tissues, already known to release various 

neuropeptides, could comprise major sources of Head Peptide-I production and 

secretion (Nässel and Homberg, 2006; Veenstra et al., 2008). 
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Over the past 30 years, this body of work has made a substantial case for 

Head Peptide-I playing an important role in the regulation of A. aegypti host-

seeking behavior. Further work to determine the mechanism of action for the 

neuropeptide, and potential involvement in modulating olfactory perception, has 

been impossible because of a lack of molecular genetic techniques. Only recently 

has there been genetic access to A. aegypti, as well as several other arthropod 

disease vectors, that permitted our analysis of a potentially conserved role for 

Head Peptide-I (DeGennaro et al., 2013). 

 

1.5.3 A Conserved Role for Head Peptide-I in Other Organisms 

Regulation of host-seeking behavior is not unique to A. aegypti. It has also 

been observed in other blood-feeding arthropods including A. gambiae and I. 

scapluaris (Takken et al., 2001; Sonenshine 1991 and 1993). A shared mechanism 

of regulation by Head Peptide-I in A. gambiae would draw particular interest due 

to the higher health burden of malaria, but current evidence supports only weak 

behavioral similarity in feeding modulation between A. aegypti and A. gambiae.  

Although evidence is lacking for a conserved Head Peptide-I mechanism in 

A. gambiae, observable inhibition following a blood meal preserves a glimmer of 

hope (Klowden and Briegel, 1994; Takken et al., 2001). Female anopheline 

mosquitoes display ~40 hours of host-seeking inhibition following a blood meal, 

in contrast to ~72h in A. aegypti, and subsequently exhibit attraction to specific 

odor cues for egg-laying (Rinker et al., 2013; Takken et al., 2001). Closer 

examination suggested that whereas A. aegypti require egg-laying to recover 

host-seeking behavior, A. gambiae may only require egg maturation (Takken et al., 

2001). Although the details differ between the two vectors, a direct test of Head 
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Peptide-I was still warranted but unsuccessful. Injection of Head Peptide-I was 

not effective in altering host-seeking behavior in anopheline mosquitoes 

(Klowden, 1995). The final blow came when analysis of the A. gambiae genome 

showed that this vector lacks the Head Peptide-I gene, thus deterring any further 

studies.  

Researchers have always assumed that A. aegypti and A. gambiae would be 

very similar, so that preventative strategies could also be similar. However, this 

may not be the case due to differences in selective pressure (Klowden, 1995). For 

instance, the difference in behavioral regulation has been attributed to A. gambiae 

being a nocturnal feeder, whereas A. aegypti is a day feeder (Klowden, 1995). 

When feeding during the day, human hosts are awake and alert, making them 

more adept at executing defensive responses to biting. Feeding at night has the 

benefit of a sleeping, defenseless human host who likely permits successful 

feeding more easily. Perhaps the selective pressure never existed for A. gambiae 

to evolve or maintain a Head Peptide-I mechanism of host-seeking regulation. 

Regardless, some inhibition does occur in the malaria vector and understanding 

Head Peptide-I action in A. aegypti may indicate new avenues of research for 

studying how A. gambiae regulate host-seeking behavior. 

During the lengthy development of the Lyme disease vector I. scapularis, 

similarities to A. aegypti behavioral regulation have been observed (Figure 1.3A 

and B). Ticks mature through four developmental stages: egg, larva, nymph, and 

adult. All stages require a blood meal and each stage exhibits attraction to a 

different and progressively larger mammalian host. Molting between each life 

stage can take anywhere from 1-3 weeks where mechanisms for the inhibition of 

host-seeking are active. Though inhibition occurs for a longer time in the tick, 
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Figure 1.3 Identification of a Head Peptide-I Homologue in the tick, Ixodes 

scapularis (A) Image of an I. scapularis tick reaching for a host (Source: Cornell 
Entomology). (B) Illustration of 4-stage tick development with overlaid images of 
hosts (Source: Cornell Entomology). (C) Protein alignment of a putative A. 

aegypti (A. aeg, red) Head Peptide-I homologue found in trace reads of I. 
scapularis (I. sca, blue). Conserved prepropeptide processing sites are boxed. 
Below, comparison of propeptide sequences for A. aegypti HP-I, I. scapularis HP-I, 
and A. aegypti sNPFs noting the conservation of a Lysine (K) at position -4. 
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cyclical feeding indicates an opportunity for neuropeptide regulation. One 

notable difference is that unlike gravid female mosquitoes, blood-fed adult ticks 

do not recover host-seeking after laying eggs, but simply die. (Anderson and 

Harrington) 

We identified a putative Head Peptide-I homologue in trace reads of the I. 

scapularis genome (Figure 1.3C). This is the first identification of a Head Peptide-I 

homologue in another organism. Although the mechanism for developmental 

inhibition in the tick is unknown, the evidence of a Head Peptide-I gene suggests 

a conserved role over 400-600 million years of arthropod evolution (Grimaldi and 

Engel, 2005). The existence of Head Peptide-I in I. scapularis leads us to propose 

that the neuropeptide may play an ancient conserved role in behavioral 

regulation. 

 

1.6 Modulation of Olfactory-Dependent Behaviors by Neuropeptides 

Modulation of behavior based on physiological need is essential for animal 

survival. Physiological needs are often communicated internally by the use of 

neuropeptides that modulate the activity of neurons and neural networks 

(Destexhe and Marder, 2004). In particular, neuromodulation of olfactory 

networks has been shown to produce profound alterations in several feeding 

related behaviors whose mechanisms may inform the action of Head Peptide-I. 

Neuropeptide signaling is typically redundant in that multiple neuropeptides 

often activate the same receptor (Kim et al., 2010; Wang et al., 2013; Valassi et al., 

2008). To observe mutant phenotypes it is preferable to mutate a peptide receptor 

rather than the individual, and potentially redundant, neuropeptide gene. 
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1.6.1 NPF Modulates Foraging and Ingestion of Noxious Food 

Neuropeptide-F was isolated in D. melanogaster by sequence conservation 

with Neuropeptide-Y (NPY), a pivotal regulator of food intake and other 

physiological processes in mammals (Brown et al., 1999; Gerald et al., 1996; Hu et 

al., 1996). The fly was proposed as a simpler model system to accelerate the study 

of NPY-Like peptides in behaviors such as olfactory-dependent food search 

(Brown et al., 1999; Larsson et al., 2004). Ablation of neuronal activity in both 

NPF- and NPF receptor (NPFR)-expressing cells had pronounced effects on food 

search behavior of D. melanogaster (Garczynski et al., 2002; Wu et al., 2003). 

Without NPF signaling, young larvae would wander away from food in a 

manner similar to older larva whose feeding is reduced in preparation for 

pupation (Wu et al., 2003). Complementary experiments showed that over-

expression of NPF in older larva would prolong feeding (Wu et al., 2003). 

Follow-up studies found that over-expression of NPFR increased hunger, as 

observed by consumption of noxious food that is normally only performed by 

starved larva (Wu et al., 2005). The mechanism for NPF modulation of foraging 

and noxious food intake has yet to be fully elaborated, but recent studies have 

implicated a previously uncharacterized role for the neuropeptide in gating food 

odor excitation in the lateral horn of the central nervous system (Wang et al., 

2013). 

 

1.6.2 sNPF Modulates Odor Driven Food-Search in Adult Fruit Flies 

Another member of the NPY-Like family of neuropeptides, Short-

Neuropeptide-F (sNPF), was found by sequence similarity to NPF and has been 

implicated in odor-driven food search (Vanden Broeck, 2001). Initially, sNPF was 



 17 

connected to food intake because overexpression of the neuropeptide or its 

receptor increased the percentage of fed D. melanogaster adults and larvae 

causing a noticeable increase in adult body-size (Lee et al., 2008; 2004). More 

recently, starvation-dependent food search of D. melanogaster was ablated by 

reduction of both sNPF neuropeptide and receptor independently (Root et al., 

2011). Electrophysiological experiments observed that reduced sNPF expression 

weakens starvation-induced sensitivity of olfactory sensory neurons (OSNs) in 

response to the complex food odor, apple cider vinegar (Root et al., 2011). 

Interestingly, starvation increased OSN sensitivity by up-regulation of the sNPF 

receptor, not the neuropeptide. The mechanism for sNPF action is of particular 

interest to this thesis work because Head Peptide-I shows remarkable sequence 

similarity to sNPFs, which will be discussed in-depth later. 

 

1.6.3 Behavioral Modulation in C. elegans by NPR-1 and NLP-1 

The NPY-like receptor NPR-1 affects social behavior and food responses in 

the worm Caenorhabditis elegans (de Bono and Bargmann, 1998). Naturally 

occurring mutant variants of NPR-1 were observed to cause a solitary strain to 

take on social behavior, as indicated by increased clumping and bordering in 

food. Further work revealed that NPR-1 represses the activity of oxygen-sensing 

neurons thus enhancing food sensitivity (Chang et al., 2006). In another example, 

mutations of C. elegans neuropeptide NLP-1 increase certain behaviors by 

removing a feedback mechanism that initiates olfactory adaptation in response to 

starvation (Chalasani et al., 2010; Colbert and Bargmann, 1997). These discoveries 

highlight how neuropeptide activity in neuronal feedback and network 

integration can alter olfactory perception of food odors. 
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1.6.4 Tachykinins Modulate Fly Olfactory Preference 

Outside of NPY-Like family neuropeptides, tachykinins have been linked to 

modulation of D. melanogaster olfactory perception. Tachykinins are structurally 

related to the mammalian neuropeptides substance P and neurokinin A and B. 

Expression of the neuropeptide was localized to olfactory neuropil (and the 

midgut) suggesting a role in olfactory perception (Winther et al., 2006). 

Reduction of tachykinin expression in adults and larva using RNA-interference 

caused behavioral indifference during olfactory choice tests to specific odors 

suggesting a role for the neuropeptide in modulating olfactory sensitivity 

(Winther et al., 2006). 

 

1.7 How Does Head Peptide-I Regulate Host-Seeking Behavior? 

Evidence suggests that Head Peptide-I is an important inhibitor of host-

seeking behavior in A. aegypti and possibly I. scapularis. However, the receptor 

for this neuropeptide and how it regulates host-seeking behavior are unknown. 

In this dissertation, we developed A. aegypti into a genetically tractable model 

system to study Head Peptide-I regulation of mosquito host-seeking behavior. 

 

1.7.1 What is the mechanism of Head Peptide-I Modulation? 

Host-seeking behavior is an olfactory-dependent process and, therefore, 

Head Peptide-I may act by altering olfactory perception. Numerous examples, 

such as those described for NPF, sNPF, NPR-1, NLP-1, and Tachykinins, provide 

mechanisms for neuropeptides to regulate food search behaviors through 

modulation of olfactory perception. Furthermore, our hypothesis would agree 

with observations that mosquitoes injected with Head Peptide-I do not respond 
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to host odor cues, but can still blood-feed using vision, taste, and heat cues 

(Brown et al., 1994). 

 

1.7.2 What are the cellular targets of Head Peptide-I? 

To begin understanding the mechanism of Head Peptide-I inhibition, we 

decided that the cellular targets for the neuropeptide must be identified. 

Localization of these targets would suggest which sensory modalities, as well as 

neural circuits, are modulated by Head Peptide-I activity. Furthermore, we could 

then employ modern genetic techniques to synthetically manipulate their 

neuronal activity to further examine the impact on neural networks, behavior 

and physiology. To locate the cellular targets, we decided to identify the 

unknown Head Peptide-I receptor. 

 

1.7.3 What is the Head Peptide-I receptor? 

In chapter two of this dissertation, we use the recently published A. aegypti 

genome to bioinformatically predict candidate receptors and screen them for 

responses to Head Peptide-I in an HEK cell-based assay. In chapter three, we 

molecularly characterize a single candidate receptor named NPYLR1 and 

confirm that receptor agonists, Head Peptide-I and sNPF3, both functionally 

inhibit host-seeking behavior. Chapter four describes how we pioneer targeted 

mutagenesis of NPYLR1 using zinc-finger nucleases to isolate two types of null 

mutants. Finally, in chapter five we behaviorally characterize NPYLR1 mutants 

for general defects, changes in feeding, and behavioral modifications to the 

gonotrophic cycle. 
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1.8 Summary of Results 

While we can say with certainty that NPYLR1 is a receptor for Head-Peptide-I, 

we found no behavioral effects for NPYLR1 mutants in locomotion, egg-laying, 

sugar feeding, blood-feeding, or host-seeking behavior throughout the 

gonotrophic cycle. This suggests that NPYLR1 is not required in vivo for Head 

Peptide-I action and that a redundant signaling mechanism for behavioral 

inhibition exists. Future work will determine the necessity of Head Peptide-I 

during host-seeking inhibition and attempt to identify additional Head Peptide-I 

and sNPF receptors causally related in host-seeking inhibition after a blood meal. 
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2 NPYLR1 Identified as a Candidate Head Peptide-I Receptor 

2.1 Introduction and Summary of Results 

To identify the neurons mediating Head Peptide-I behavioral modulation, we 

sought to identify the previously unknown Head Peptide-I receptor.  Head 

Peptide-I sequence similarity to short-neuropeptide-F (sNPF), a class of insect 

neuropeptides implicated in insect feeding behavior, are known to signal 

through a highly conserved family of Neuropeptide-Y Like G-protein Coupled 

Receptors.  We postulated that Head Peptide-I might signal through the same 

receptor class.  We use bioinformatic analysis of the recently published Aedes 

aegypti genome to identify and clone nine putative NPY-like receptors (NPYLRs). 

These candidates were screened in a cell-based assay for sensitivity to select 

feeding-related neuropeptides.  Four of the nine NPYLRs were sensitive to one or 

more neuropeptide, including NPYLR1, which responded to sNPFs and was the 

only receptor sensitive to Head Peptide-I.   These experiments support the 

hypothesis that NPYLR1 is a candidate Head Peptide-I receptor and suggest that 

sNPF is a novel inhibitor of mosquito feeding behavior. 

 

2.2 Head Peptide-I similarity to sNPFs suggests activation of NPYLRs 

We noticed that Head Peptide-I (pERPhPSLKTRFa, pE = pyroglutamic acid, 

hP = hydroxyproline, a = c-terminal amidation) shares striking similarity to 

insect Short-Neuropeptide-Fs (sNPFs) that signal through a highly-conserved 

family of seven-transmembrane Neuropeptide-Y Like G-protein Coupled 

Receptors (NPYLRs) (Table 2.1; (Garczynski et al., 2006; 2007; Mertens et al., 

2002)). Interestingly, sNPFs are implicated in olfactory modulation of D. 

melanogaster food-search behavior, suggesting that Head Peptide-I may 
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perform a similar function in A. aegypti (Lee et al., 2004; 2008). However, in the 

fly, sNPF activity increases olfactory sensitivity to food odors, whereas Head 

Peptide-I is hypothesized to reduce mosquito attraction to host odor (Root et al., 

2011). It is possible that Head Peptide-I could reduce attraction through 

increasing olfactory sensitivity as is seen by the repulsive qualities of prolonged 

stimulation with CO2 (Turner et al., 2011). If further parallels are found between 

sNPF and Head Peptide-I, the potential opposing effects on attraction is a 

noteworthy observation for future experiments. With both sequence and 

behavioral similarity to sNPFs, we postulated that Head Peptide-I likely signals 

through the same NPYLR class in mosquitoes. 

 

2.3 Identification and Cloning of Nine Mosquito NPYLRs 

NPYLRs are members of the Class A: Rhodopsin-Like Peptide G-Protein 

Coupled Receptor (GPCR) family of proteins of which 30 are predicted in D. 

melanogaster, 25 in A. gambiae, and 33 in A. aegypti (Nene et al., 2007). The most-

studied family of NPYLRs exists in D. melanogaster, where six have been 

predicted and three are functionally characterized (Brown et al., 1999; Li et al., 

1992; Mertens et al., 2002). Using the 2007 A. aegypti genome publication and 

BLAST, Genewise, and HMMER bioinformatics tools, we identified nine putative 

NPYLRs from A. aegypti mosquitoes as candidate Head Peptide-I receptors 

(Figure 2.1). Strong sequence conservation and Rapid Amplification of cDNA 

Ends (RACE) techniques permitted cloning of full-length transcripts for all nine 

predicted NPYLRs from purified mRNA isolates of female mosquito heads 

(NPYLR1, 2, 3, 4, 5, 6, 8) and bodies (NPYLR7A, 7B). Sequence similarity reveals  
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Figure 2.1 Phylogeny of Mosquito NPYLRs and their Similarity to Other 
Species 
Nine A. aegypti NPY-Like Receptors (NPYLR1-8, red) are compared using 
ClustalW protein-alignments to receptors from A. gambiae (blue), I. scapularis 
(green), and D. melanogaster (orange). Receptor phylogeny and identified ligands 
from cell-based assays (second column) described in this dissertation suggest 
two conserved families (right in grey): one that responds to Head Peptide-I (HP-
I) and Short-Neuropeptide-Fs (sNPF) and another that responds to 
Neuropeptide-F (NPF).  
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that the candidates include orthologues of the three functionally characterized D. 

melanogaster receptors: Short-Neuropeptide-F Receptor (NPYLR1 to sNPFR76f: 

42% identity), Neuropeptide-F Receptor (NPYLR8 to NPFR: 48% identity), and 

Neuropeptide-Y Receptor (NPYLR5 to NepYr: 53% identity), all of which are 

linked to the regulation of feeding behaviors (Gehlert, 2004; Lee et al., 2004; 2008; 

Wu et al., 2005). Other NPYLRs share similarity to uncharacterized D. 

melanogaster NPY receptors except for NPYLR4, which shares 56% identity to 

putative Allatotropin receptors in the moth, Bombyx Mori. 

 

2.4 Cell-based calcium-imaging screen of A. aegypti NPYLRs 

Heterologous expression of GPCRs in an HEK cell-based assay is an 

established technique for discovering ligand-receptor interactions (Table 2.1). 

GPCRs have been intensively studied and couple to G-protein subunits for signal 

transduction. There are a number of different G-alpha subunits that then couple 

to distinct signal transduction cascades: G!s stimulates cAMP production, G!i/o 

inhibits cAMP production, G!q/11 activates Phospholipase-C-" and calcium 

release, and G!12/13 causes Rho activation (Wettschureck and Offermanns, 2005). 

To circumvent NPYLR requirements for different G-protein subunits in our cell-

based assay, we expressed the promiscuous murine Gα-15 protein, which can 

interact with a wide range of GPCRs (Offermanns and Simon, 1995). In addition, 

Gα-15 preferentially activates Phospholipase-C-", leading to calcium release from 

intracellular stores that can be monitored with the calcium-sensitive dye Fura-2 

following bath application of synthesized feeding-related neuropeptides (Table 

2.1). We tested Head Peptide-I and III, the behaviorally inactive control peptide 
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Head Peptide-I [Cys10], four sNPF variants produced from the single sNPF gene, 

the predicted A. aegypti NPF, and the human NPY and PYY (Brown et al., 1994; 

Li et al., 1992; Predel et al., 2010; Stanek et al., 2002). The human neuropeptides 

were originally used to define the NPY-like receptor class in D. melanogaster and 

are useful for confirming receptor function in the cell-based assay (Li et al., 1992). 

Our receptor screen found that only NPYLR1 responds to Head Peptide-I, 

with a half maximal effective concentration (EC50) value of 823 nM (Figure 2.2). 

In our assay, receptor agonists with EC50 values around or below 1 µM are 

considered to be medium to strong activators and suggest physiological 

relevance. Further testing revealed that NPYLR1 is also sensitive to sNPFs 

(EC50s range from 35-75 nM) - an anticipated result due to strong homology to D. 

melanogaster sNPF receptor sNPFR76f - and the low abundance neuropeptide 

Head Peptide-III (pERPPSLKTRFa, EC50 = 954 nM). It is not uncommon for 

peptide receptors to be sensitive to multiple neuropeptides, especially in this case 

where the neuropeptides have striking similarity (Garczynski et al., 2006; Kim et 

al., 2010). The dual sensitivity of NPYLR1 to both Head Peptide-I and sNPFs 

suggests that sNPFs may be novel inhibitory neuropeptides for mosquito host-

seeking behavior. 

Other responses of note include NPYLR8 sensitivity to the predicted A. 

aegypti NPF (EC50 = 989 nm), providing further support that it is an NPF 

receptor orthologue. The putative NPY receptor orthologue, NPYLR5, is 

activated weakly by NPF (EC50 = 7 µM), but not by human NPY. Lastly, 

NPYLR7B exhibits moderate sensitivity to sNPF1 (EC50 = 634 nM) and Human 

PYY (EC50 = 791 nM), and weak sensitivity to sNPF3 (EC50 = 6 µM). Because 

NPYLR5, 7B and 8 were active in the cell-based assay but displayed no response 
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Figure 2.2 NPYLR1 Responds to Head Peptide-I and sNPFs 
(A) Top: Representative images of NPYLR1 transiently transfected HEK293 cells 
illustrating the calcium flux after application of peptides. Bottom: Individual 
cellular traces of fluorescent ratios representing Ca+2 flux for the same HEK293 
cells following application of the indicated peptides. (B) Summary of results for 
the cell-based calcium-imaging assay of A. aegypti NPYLRs against A. aegypti and 
Human peptides. (Red = EC50<100nM, Orange = 1µM>EC50>100nM, Yellow = 
EC50>1µM. HP = Head Peptide, sNPF = Short Neuropeptide-F, NPF = 
Neuropeptide-F, NPY = Neuropeptide-Y, PYY = Peptide-YY). NPYLR2, 3, 4, 6, 
7A were tested but did not respond to any peptides. 
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to Head Peptide-I they are unlikely candidates for a Head Peptide-I receptor. 

However, these three receptors likely play a conserved role in mosquito feeding 

behavior as indicated by their similarity to D. melanogaster receptors. 

NPYLR2, 3, 4, 6, and 7A did not display any activity in the cell-based assay. 

The receptors may simply not be sensitive to any of the tested peptides, not 

expressed or trafficked to the cell surface to function properly, or unable to 

interact with the promiscuous Gα-15. Encouragingly, four of nine candidate 

receptors were sensitive to at least one of the tested feeding-related 

neuropeptides and all known agonists of NPY-Like receptors in D. melanogaster. 

Most remarkably, NPYLR1 was the only receptor sensitive to Head Peptide-I, 

warranting additional study as a strong candidate Head Peptide-I receptor. 
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3 Molecular Characterization of NPYLR1 and Specific Homologues 

3.1 Introduction and Summary of Results 

Building from NPYLR1 responses obtained in the cell-based assay, we 

carried out peptide injections into unfed A. aegypti females to confirm the activity 

of both Head Peptide-I and sNPF3 as inhibitors of host-seeking behavior.  With 

behavioral validation of NPYLR1 ligands, we looked for conserved responses of 

NPYLR1 homologues in other blood-feeding disease vectors such as the malaria 

vector, A. gambiae, and the tick, I. scapularis.  All NPYLR1 homologs were 

sensitive to Head Peptide-I, indicating that the receptor may be part of a 

conserved mechanism for behavioral regulation in several species.  In 

preparation for targeted mutagenesis of the receptor, we fully characterize the 

NPYLR1 genetic locus, clone and functionally test NPYLR1 cDNA variants, and 

determine that NPYLR1 expression is regulated by blood-feeding.  These 

experiments support a conserved role for NPYLR1 in the modulation of 

arthropod behavior in response to Head Peptide-I and sNPFs. 

 

3.2 sNPF3 is a Novel Inhibitor of A. aegypti Host-Seeking Behavior 

To confirm the reported activity of Head Peptide-I, we injected the 

neuropeptide into non-fed female mosquitoes and monitored their attraction to 

human odor cues in the uniport olfactometer (Figure 3.1) (Brown et al., 1994). 

Based on NPYLR1 pharmacology from our cell-based assay we also injected 

sNPF3 (APSQRLRWa), as a representative of the sNPF family, to see if it could 

inhibit behavior as well. Our results confirm that both Head Peptide-I and sNPF3 

significantly inhibit host-seeking behavior when injected at a dosage of 10 mM 

(Figure 3.1B). In contrast, injection of the C-terminal modified control  
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Figure 3.1 Injection of Head Peptide-I or sNPF3 Inhibits Host-Seeking 
Behavior. (A) Intra-thoracic injection of a female A. aegypti mosquito (photo 
courtesy of Dr. Marc Klowden, University of Idaho). (B) Percent attraction of 
non-blood-fed female mosquitoes to human hand odor cues after injection of 
buffer (black) or 4 and 10 mM of the indicated neuropeptide. (n=6; ~20 
mosquitoes per trial, ANOVA with Bonferroni Correction for Multiple 
Comparison; ** = p < 0.01). 
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Head Peptide-I [Cys10] (pERPhPSLKTRCa) did not cause inhibition confirming 

previously reports (Brown et al., 1994). One could predict that since NPYLR1 

exhibits greater sensitivity to sNPFs in the cell-based assay, there should also be 

a stronger inhibition of host-seeking behavior when injected. However, several 

factors could influence the in vivo activity of these peptides such as protein 

stability in the hemolymph or unidentified protein chaperones. Nevertheless, our 

results support sNPFs are a novel class of behavioral inhibitors in A. aegypti that 

may act redundantly with Head Peptide-I through NPYLR1. 

 

3.3 NPYLR1 Homologues in the Tick and Malaria Mosquito 

Using similar bioinformatics approaches employed for NPYLRs in A. aegypti, 

we identified and cloned candidate NPYLR1 homologues in A. gambiae and I. 

scapularis (Figure 2.1) (Garczynski et al., 2007). Interestingly, our analysis 

confirmed a gene duplication of the I. scapularis NPYLR1 homologue referred to 

here as I.sca-923R and I.sca-924R (37% and 33% identity respectively to NPYLR, 

48% identity to each-other). In the cell-based assay, the sensitivity of the A. 

gambiae receptor homologue was weak (EC50 = 3.7 µM) which may be indicative 

of the loss of Head Peptide-I inhibition in this species (Figure 3.2). Previous 

publications report that the NPYLR1 homologue in A. gambiae is sensitive to 

sNPFs (3-653 nM) and therefore were not duplicated here (Garczynski et al., 

2007). Both I. scapularis homologues are also responsive to Head Peptide-I 

(Figure 3.2, I.sca-923R EC50 = 427 nM and I.sca-924R EC50 = 10 µM), though 

I.sca-923R is more sensitive, even compared to A. aegypti NPYLR1. As the most 

studied homologue of NPYLR1, we confirmed that the D. melanogaster sNPFR76f 

is also sensitive to Head Peptide-I  (EC50 = 1 µM), even though no  
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Figure 3.2 NPYLR1 Homologues are sensitive to Head Peptide-I 
Head Peptide-I dose-response curves for NPYLR1 and receptor homologues in I. 
scapularis (I.sca-923R and -924R), A. gambiae (A.gam-sNPFR), and D. melanogaster 
(D.mel-NPFR76f) as determined in the cell-based assay. 
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Head Peptide-I gene has been found in the D. melanogaster genome. These 

experiments support that NPYLR1 homologues possess conserved sensitivity to 

Head Peptide-I in other important disease vectors. 

 

3.4 Characterization of the NPYLR1 Genetic Locus 

The genome of A. aegypti is nearly ten times larger than D. melanogaster 

because of an expansion of repeat-rich transposable elements (Nene et al., 2007). 

As a result, genomic sequencing and assembly proved quite difficult and led to 

an overabundance of predicted gene duplications (Lobo et al., 2007). Our 

analysis of the A. aegypti genome as well as cloning experiments suggest that a 

duplication of the NPYLR1 locus might exist. To create a NPYLR1 null mutant 

mosquito to confirm a role in host-seeking behavior modulation, we first needed 

to determine how many genetic loci to target. 

Using southern blot techniques, we confirmed that there were two distinct 

NPYLR1 loci in the A. aegypti Orlando strain (Figure 3.3A and B, referred to as 

NPYLR1-1 and NPYLR1-2). However, we were unable to clarify whether the two 

loci represented a gene duplication event or simply two alleles of one NPYLR1 

genetic locus. To resolve this discrepancy, we identified a small 10 bp insertion 

directly upstream of the NPYLR1 coding region that is unique to the NPYLR1-1 

allele. We used the microsatellite marker to prove predictable Mendelian 

segregation of the two loci, confirming that they were in fact two alleles of one 

gene (Figure 3.4). 

To determine the transcripts produced in our polymorphic strain of wild-

type A. aegypti Orlando mosquitoes, we carried out extensive cloning of NPYLR1 

cDNAs and identified four slightly different variant transcripts 
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Figure 3.3 Southern Blot Confirmation of two NPYLR1 Alleles 
(A) Restriction map of the NPYLR1-1 and NPYLR1-2 loci with the probe (yellow) 
used for Southern hybridization. (B) SphI and HpaI restriction enzymes were 
used to digest A. aegypti Orlando genomic DNA into predictable fragments of 
NPYLR1-1 (green) and NPYLR1-2 (red) that were identified by southern blot. 
Bands produced with the NcoI digest could not be interpreted given the current 
genome annotation. 
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Figure 3.4 Mendelian Inheritance of a Microsatellite Confirms One NPYLR1 
Gene 
(A) DNA sequence alignment of NPYLR1-1 and NPYLR1-2 with the 10 bp 
microsatellite indicated in orange that is PCR amplified using the highlighted 
primers (yellow). (B) PCR products are separated using small capillary size-
based gel electrophoresis to reveal the genotype of individual mosquitoes for 
NPYLR1-1 (277 bp) and NPYLR1-2 (267 bp). (C) Observed results from a genetic 
cross between an NPYLR1-1 homozygous male and NPYLR1-2 homozygous 
female confirms predicted Mendelian segregation of NPYLR1-1 and NPYLR1-2 
as two alleles of one gene. 
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(Figure 3.5A). Using the cell-based assay, we confirmed that all cDNA variants 

had equal sensitivity to both Head Peptide-I and sNPF3 (Figure 3.5). 

 

3.5 NPYLR1 Expression is Regulated by Blood Feeding 

sNPF modulation of olfactory perception in D. melanogaster is controlled by 

increased expression of the receptor, not the neuropeptide, during starvation 

(Root et al., 2011). Due to the similar function of Head Peptide-I and sNPF in our 

experiments, we were interested to know if a similar change in NPYLR1 

expression occurs after female mosquitoes blood-feed. Reverse transcriptase-

polymerase chain reactions (RT-PCR) from various tissues suggest that NPYLR1 

might indeed be up-regulated in heads and bodies of female mosquitoes 

following a blood meal (Figure 3.6). Quantitative PCR (qPCR) of female whole 

body tissue confirmed that NPYLR1 expression dramatically increases to roughly 

fifteen times baseline levels at 48 hours post-blood meal then drops at 72 hours, 

coinciding well with the transition from egg maturation to egg-laying site 

location (Figure 3.7). Interestingly, levels are only moderately increased at 24 

hours post-blood meal when females are known to exhibit behavioral inhibition 

from abdominal distension and not Head Peptide-I (Klowden and Lea, 1979b). 

These changes, which were not evident in non-fed controls, also occur in blood-

fed virgins who are behaviorally inhibited for numerous days after a blood meal 

despite an inability to fertilize their eggs or seek out egg-laying sites (Figure 3.7 

and data not shown). Intriguingly, NPYLR1 displays a temporally appropriate 

expression pattern for increased sensitivity to neuropeptides during host-seeking 

inhibition drawing parallels to sNPF mechanisms of olfactory modulation.  
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Figure 3.5 Variant NPYLR1 cDNAs are Sensitive to Head Peptide-I and sNPF3 
(A) Snake plot of predicted NPYLR1B membrane topology indicating the 
polymorphisms contained in other receptor alleles (NPYLR1 413∆T, NPYLR1A 
E225D and T487N, and NPYLR1C L495F). Also highlighted in blue is the protein 
region targeted by the NPYLR1 ZFN. (B and C) Dose-response curves indicate 
that the four variant cDNAs of NPYLR1 are all similarly sensitive to Head 
Peptide-I (B) and short Neuropeptide-F3 (C) in the cell-based assay. NPYLR1 
(red) was the cDNA used in the original Head Peptide-I receptor screen. 
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Figure 3.6 NPYLR1 Expression and Suggested Regulation by Blood-feeding 
(A, B, and C) RT-PCR of NPYLR1 transcripts in various life-stages including 
larvae, pupae, and dissected antenna (A), head without antenna or maxillary 
palp sensory organs (H), and body without head (B) derived from sugar-fed 
males or females dissected 24 or 72 hours after a blood meal. (A) NPYLR1 
expression. (B) Control cDNA synthesis reactions without Reverse Transcriptase. 
(C) Positive control reactions with RpL8, a ubiquitous ribosomal sub-unit (~1 kb 
genomic, 200 bp cDNA). 
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Figure 3.7 NPYLR1 Expression in Females Increases After a Blood Meal 
(A) Control reactions for qPCR comparing the Pfaffl Fold Expression of two 
house-keeping genes RpL8 and RpS17 (ribosomal subunits) for non-bloodfed 
(blue) and bloodfed (red) female whole bodies. No relative change in expression 
was observed for the control genes at any point from before to 24, 48, 72, 96 and 
120 hours after a blood meal. (B) Pfaffl Fold Expression of NPYLR1 compared to 
the reference RpL8 gene for female whole body tissue from groups of Mated + 
No Blood Meal (blue), Mated + Blood Meal (red), and Virgin + Blood Meal 
(orange) at times before and 24, 48, and 72 hours after a blood meal. Levels of 
NPYLR1 transcript significantly increase for both Mated and Virgin mosquitoes 
following a blood meal with a peak at 48 hours (n=3, ANOVA-Tukey’s Multiple 
Comparison of ∆Ct values, not Pfaffl Expression which is displayed here). 
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4 Pioneering Targeted Mutagenesis of NPYLR1 

4.1 Introduction and Summary of Results 

We have shown that NPYLR1 responds to Head Peptide-I in cell-based assays 

and injection of ligands for the receptor inhibit attraction to human hosts. 

However, these results do not exclude the possibility that the neuropeptides also 

signal through another receptor not represented in our screen.  To test the role of 

NPYLR1 in mosquito behavior, we pioneered targeted mutagenesis strategies to 

create NPYLR1 null mutants.  Zinc-finger nuclease technology was employed to 

isolate two types of genetic lesions at the NPYLR1 locus.  Our prediction is that 

by removing NPYLR1, mosquitoes will no longer display inhibition of host-

seeking behavior after a blood meal. 

 

4.2 Zinc-Finger Nucleases and NPYLR1 Mutagenesis Strategies 

To be a viable model system for genetic research, an organism must have a 

published and assembled genome, be amendable to transgenesis, and accessible 

to techniques for generating mutants. A. aegypti already has a published genome 

(nearing complete assembly) and successful techniques for transgenesis 

(Jasinskiene et al., 1998; Nene et al., 2007; Nimmo et al., 2006). As a goal of this 

thesis, we worked to establish targeted mutagenesis techniques for generating 

mutants for the first time in A. aegypti mosquitoes. 

Zinc-finger nuclease (ZFN) technology is a targeted mutagenesis strategy 

successfully applied to several model organisms including D. melanogaster and 

the zebrafish, Danio rerio (Carroll et al., 2010; Ekker, 2008). Zinc-finger nucleases 

are proteins that contain a DNA binding domain fused to an obligate 

heterodimer fok-1 DNA nuclease domain (Figure 4.1A) (Durai et al., 2005). 
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Working in pairs, ZFNs recognize unique DNA sequences within a genome 

spanning ~40bp. Upon binding, the two nucleases dimerize to create a functional 

nuclease that makes double-stranded breaks in the chromosome between the 

DNA binding sites. Damaged DNA triggers host repair mechanisms such as 

error-prone Non-Homologous End-Joining (NHEJ) that creates small insertions 

and deletions, or Homologous Recombination (HR) which repairs using an 

exogenous DNA template with homology to the damaged region (Durai et al., 

2005). Null mutants can then be isolated by screening NHEJ events for frame-

shift mutations or by visual selection of HR events that incorporate a visible 

marker. 

NPYLR1 ZFNs were designed in collaboration with Sigma-Aldrich to target 

a 40bp sequence located 100 bp downstream of the NPYLR1 start codon (Figure 

4.1A). Frame-shift mutations at this location that generate premature stop codons 

would prevent translation of ~90% of NPYLR1 coding sequence. Over 3,000 

mosquito eggs were injected with mRNA for each custom NPYLR1 ZFN together 

with a DNA vector containing ~2.7kb of sequence homology to the target 

location and a dominant marker expressing a fluorescent protein under a 

ubiquitously expressed promoter. Following translation by host machinery to 

produce ZFN protein, nuclease activity occurs in all accessible cells including the 

reproductively competent primordial germ cells. If there is neither a critical 

developmental role for NPYLR1 nor excessive damage to the egg during 

injection, we expect that eggs will develop into adults where they are mated to 

propagate mutant germ cells to future offspring. A portion of the offspring will 

be heterozygous for NHEJ or HR mutagenesis events at the NPYLR1 locus, 

which can be isolated by appropriate screening protocols. 
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Figure 4.1 Targeted Mutagenesis of NPYLR1 with Zinc-Finger Nucleases 
(A) Illustration of the NPYLR1 ZFN target sequence and alignment to mutations 
generated in NHEJ events NPYLR1∆8 and NPYLR1∆4 as well as HR events that 
integrated a Poly-Ubiquitin Promoter>ECFP marker into NPYLR1-HR2. (B) 
Representative images of female and male NPYLR1-HR2 mutants showing the 
broad expression of the ECFP fluorescent marker that clearly distinguishes 
mutants from wild-type (+/+). 
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4.3 Isolation of NPYLR1 Mutants: Homologous Recombination 

Three independent homologous recombination lines named NPYLR-HR1, -

HR2 and -HR3, were isolated by insertion of a marker into the NPYLR1 locus 

containing a broadly expressed A. aegypti Poly-Ubiquitin promoter driving 

fluorescent ECFP (Figure 4.1B) (Anderson et al., 2010). Successful targeted 

mutagenesis by HR occurred at an approximate rate of 0.09% (51 

fluorescent/~55,000 total F1 larva screened). Recombination of the HR vector 

introduced novel restriction sites into the NPYLR1 locus allowing for the 

identification of targeted versus non-targeted events by predictable changes in 

DNA length (Figure 4.2A). To confirm single insertion events, Southern blots 

were carried out with an ECFP probe that identified the predicted single DNA 

fragment for an event at the NPYLR1 locus (Figure 4.2A). HR mutants were 

homozygosed by an observable increase in fluorescence due to the presence of 

two ECFP copies. For further confirmation, PCR genotyping over the integration 

site produced a 2.4 kb shift in amplicon size that could be easily differentiated 

from the smaller wild-type allele (Figure 4.2B). To confirm disruption of 

NPYLR1 protein production, amplification of transcripts in the mutant revealed 

three major splice products, all of which contain a premature stop codons ~100 

bp into the sequence as expected by integration of the HR vector at the target 

locus (data not shown).  

 

4.4 Isolation of NPYLR1 Mutants: NHEJ Deletion Mutants 

Two independent NHEJ deletion lines were isolated with 4 and 8 bp 

deletions predicted to cause disruptive frame-shift mutations (Figure 4.1A,   
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Figure 4.2 Molecular Validation of NPYLR1 Homologous Recombination 
Alleles 
(A) Left: Southern blot using a NPYLR1 probe indicates a predicted shift in 
genomic DNA digested from wild-type (black star, +/+, 9 kb) to a successful 
targeted insertion (red star, 6 kb). Right: Southern blot using an ECFP probe 
confirms a single insertion event of predicted size to the NPYLR1 locus (red star, 
6 kb). (B) Example of PCR products used for genotyping HR alleles to establish 
homozygous lines. Absence of the wild-type allele (~800 bp) and the presence of 
the insertion allele (~3.5 kb) confirm homozygosity of hetero-allelic lines. 
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named NPYLR1∆4 and NPYLR1∆8). The rate of NHEJ mutagenesis was 28%, 

significantly higher than the HR rate. However, working with the deletion 

mutants is much more laborious because they lack any visible marker for 

genotyping. We genotyped these deletion strains using small capillary size-based 

gel electrophoresis of amplicons near the deletion site obtained from individual 

mosquitoes to identify those carrying mutations (Figure 4.3). As expected, 

NPYLR1∆4 and NPYLR∆8 produced transcripts with frame-shift mutations that 

yielded 22 and 9 premature stop codons respectively. 

 

4.5 Predicted NPYLR1 Mutant Protein Structures 

Both HR and NHEJ mutants create significant disruption of NPYLR1 protein 

sequence producing no more than 47/529 wild-type amino acids and therefore 

eliminating 91% of the protein (Figure 4.4, compare with wild-type NPYLR1 in 

Figure 3.5A). Unfortunately, two attempts to produce custom antibodies to 

corroborate the absence of NPYLR1 protein in mosquito tissue failed in control 

experiments to exhibit binding specificity (data not shown). Regardless, we are 

confident that both HR and NHEJ genetic lesions remove all NPYLR1 protein 

function in each of the mutant lines. 
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Figure 4.3 NPYLR1 NHEJ Mutant Genotyping 
Screen shots of plots illustrating fluorescent PCR products separated by small 
capillary size-based gel electrophoresis, comparing fluorescent intensity (y-axis) 
and amplicon size (x-axis) that clearly identify peaks distinguishing mutant 
NHEJ alleles NPYLR1∆4 and NPYLR1∆8 from wild-type (+/+).  

 
 
 
 
 
 

 
 

Figure 4.4 Truncated Protein Products Predicted for NPYLR1 Mutants 
Snake plots illustrating predicted protein truncations for NPYLR1 mutant alleles 
that produce 36/529 (4%) amino acids in HR mutants, while 47/529 (8%) and 
40/529 (7.5%) are produced for NPYLR1∆4 and NPYLR1∆8 respectively. Blue 
circles indicate the protein region targeted by the NPYLR1 ZFN and the purple 
circles indicate missense mutations from inserted sequence or frame-shifts 
(compare to Figure 3.5A). 
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5 Behavioral Analysis of NPYLR1 Mutants 

5.1 Introduction and Summary of Results 

Based on evidence from our cell-based assay and behavioral validation of 

NPYLR1 ligands, we have compelling evidence for NPYLR1 playing an 

important role in behavior modulation. Therefore, we predicted that NPYLR1 

mutant mosquitoes would be insensitive to the inhibitory neuropeptides Head 

Peptide-I and sNPF, thus preventing the inhibition of host-seeking behavior after 

a blood meal. NPYLR1 null mutant mosquitoes were tested for general defects in 

locomotion and egg laying, changes to feeding related behaviors such as sugar 

and blood consumption, as well as aspects of the gonotrophic cycle: host-seeking 

behavior, inhibition of host-seeking behavior, and recovery of host-seeking 

behavior after egg-laying. Despite the evidence arguing for an important 

NPYLR1 role, no changes in mutant behaviors were observed, suggesting 

redundant mechanisms for behavioral control. 

 

5.2 Genotypes Used for Behavioral Experiments 

Behavioral tests can be extremely sensitive to changes in background 

mutations so we took several precautionary steps before analyzing NPYLR1 

mutants. First, multiple mutant lines for both HR and NHEJ mutagenesis were 

isolated for parallel testing to corroborate any behavioral phenotypes. Second, 

HR lines were outcrossed for five generations to the wild-type A. aegypti Orlando 

strain to recombine away potential background genetic differences. NHEJ 

mutants were outcrossed for two generations due to the laboriousness of 

genotyping. Third, independent mutant lines were combined in hetero-allelic 

combinations to heterozygous any remaining background events. For example, 
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HR lines NPYLR1-HR2 and NPYLR1-HR3 were combined into an NPYLR1-

HR2/NPYLR1-HR3 (HR2/HR3) and NPYLR1∆4 and NPYLR1∆8 were combined 

into NPYLR1∆8/∆4 (∆8/∆4) for behavioral analysis. Lastly, heterozygous control 

lines were created for each mutant allele, by crossing to the wild-type A. aegypti 

Orlando strain, to reveal any dominant effects. 

 

5.3 Investigation of Possible General Defects of NPYLR1 Mutants 

As a likely receptor for neuromodulation, NPYLR1 may be involved in a 

broader physiological role than we anticipated, such as motor coordination or 

egg development (Nässel et al., 2008). Therefore, we first tested NPYLR1 mutants 

for general defects of locomotion and fecundity. Small changes in both general 

behaviors were observed in various mutant lines, but none were consistently 

different from all controls lines leading us to conclude that NPYLR1 mutants do 

not possess general defects. 

 

5.3.1 No Apparent Locomotion Defects of NPYLR1 Mutants 

To test general locomotion, individual female mosquitoes were placed in 

glass vials, large enough for limited flight, which were electronically monitored 

for movement for three standard day-night cycles. ∆8/∆4 were indistinguishable 

from control lines whereas HR2/HR3 displayed a 50% decrease in average daily 

activity counts in comparison to wild-type controls only (Figure 5.1A, HR2/HR3: 

105.4±20.58 and +/+: 249.1±45.14, p < 0.05). HR2/HR3 and wild-type lines were 

not significantly different from either HR2/+ or HR3/+ controls (189.3±33.64 and 

190.7±34.36 respectively). Since there was no defect observed for ∆8/∆4 mutants,  
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Figure 5.1 Normal Locomotor Behavior and Egg-Laying in NPYLR1 Mutants 
(A) Average daily activity counts for individual female HR mutants (left, n = 14) 
and NHEJ mutants (right, n = 7). Only HR2/HR3 is significantly different from 
wild-type controls, but not from HR2/+ or HR3/+ controls. (B) Eggs laid per 
individual female HR mutants (left, n = 18-20) and NHEJ mutants (right, n = 9-
28). ∆8/∆4 is significantly different from wild-type controls, but not from ∆8/+ 
or ∆4/+ controls. In A-B, data are plotted as mean ± SEM. 1-Way ANOVA with 
Bonferroni correction for multiple comparisons. * = p<0.05; ** = p<0.01, ns = not 
significant. 
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and HR2/HR3 is not consistently different from all controls, we believe that 

NPYLR1 mutants have normal locomotor behavior. 

 

5.3.2 No Apparent Egg Laying Defects of NPYLR1 Mutants 

Eggs were manually counted from individual females blood-fed to 

completion on a human arm. No differences in eggs laid were observed for 

HR2/HR3 (Figure 5.1B). A slight decrease was observed for ∆8/∆4 compared to 

wild-type (82.54±4.59 and 106.7±5.26 respectively, p < 0.01), but not in ∆8/+ or 

∆4/+ controls (92.76±5.36, and 105.4±3.48). We conclude that egg-laying behavior 

is normal in NPYLR1 mutants. 

 

5.4  Studying Mosquito Feeding Behaviors 

Our hypothesized role for Head Peptide-I as a modulator of host-seeking 

behavior might be a consequence of the neuropeptide communicating a “fed” 

internal state. Studies in D. melanogaster support the existence of feeding states in 

insects. For example, sNPF has been shown to regulate olfactory sensitivity in 

response to starvation, indicating that fruit flies have fed and starved internal 

states (Root et al., 2011). Interestingly, D. melanogaster do not feed on blood but 

rather eat yeast growing on rotting fruit; and in lab environments, a combination 

of sugar and protein (in the form of yeast paste), whose hunger drives are 

differentially regulated (Ribeiro and Dickson, 2010). In contrast, wild A. aegypti 

mosquitoes feed on floral nectar and humans; and in the lab are maintained on a 

sugar solution and obtain protein from blood meals. It is not known whether A. 

aegypti mosquitoes, like D. melanogaster, separately regulate the drive for sugar 

and protein. As a consequence of NPYLR1 sensitivity to ligands implicated in 
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blood and non-blood-feeding behaviors, we decided to quantify consumption of 

both sugar and blood to learn if either was modulated by the receptor. 

 

5.4.1 Normal Sugar Consumption in NPYLR1 Mutants 

To measure sugar consumption of NPYLR1 mutants we designed two 

feeding assays called the CAFE and BUFFET. The CAFE (Capillary Feeder Assay; 

Adapted from (Ja et al., 2007)) houses a group of five female mosquitoes in a vial 

with access for 2 hours to a glass capillary filled with 10% sucrose (Figure 5.2A). 

During the experiment, females are capable of locating and feeding from the 

open-end of the glass capillary whose change in volume can be measured by the 

change in the meniscus. Preliminary experiments in the CAFE revealed that non-

fasted mosquitoes were not motivated to feed on sugar under experimental 

conditions. We therefore tested groups of wild-type mosquitoes after 0, 12, 24, 48, 

and 72 hours of fasting to optimize feeding conditions. Results indicate that on 

average less than 1.5 µl of total sucrose was withdrawn after fasting for 0, 12, and 

24 hours (Figure 5.2B). At 48h, a significant increase to 2.48±0.50 µl of sucrose 

was consumed per group. Continuing the trend at 72h, increased consumption to 

3.70±0.30 µl was observed, though numerous mosquitoes also died from 

desiccation. We therefore decided that 48h was an appropriate fasting time to 

motivate mosquitoes to sugar feed without imparting fatal stress. To test whether 

NPYLR1 mutants modulate feeding state, we studied mosquitoes in the CAFE 

after 0 and 48 hours of fasting and found that they modulate their consumption 

of sugar at similar levels to controls (Figure 5.2C). 

Due to limitations with the throughput and accuracy of the CAFE assay, we 

designed the BUFFET to remove competition for the single capillary food 
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Figure 5.2 Sugar Consumption Is Not Modulated in NPYLR1 Mutants 
(A) Diagram of the CAFE assay. (B) Female mosquitoes were fasted for 0, 12, 24, 
48, and 72 hours, and tested in the CAFE assay for feeding modulation (n = 8-16, 
except 72h, n = 2; 5 mosquitoes per trial. Mean ± SEM. 1-way ANOVA compared 
to 0h with Dunnett’s Multiple Comparison Test. * = p<0.05, *** = p <0.001, ns = 
not significant). (C) After 48h of fasting, HR mutants are able to modulate food 
consumption in the CAFE at similar levels to controls (n = 16; 5 mosquitoes per 
trial. Mean ± SEM, 2-way ANOVA with Bonferroni correction for multiple 
comparisons). (D) Diagram of the BUFFET assay. (E) After 48h of fasting, 
individual NHEJ mutants on average consume similar levels of sugar to controls. 
The yellow region indicates individuals that did not feed and whose numbers are 
also not significantly different from controls (n = 64; 50 mosquitoes per trial. 
Mean ± SEM. 1-way ANOVA with Bonferroni correction for multiple 
comparisons). 
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source, implement a larger more free-flying test enclosure, reduce potentially 

traumatic handling prior to testing, and greatly improve the precision of 

measurements by examining individual mosquitoes. After 48h of fasting, a group 

of fifty female mosquitoes was allowed access to an open-faced 96-well micro-

titer plate containing 10% sucrose + 0.02% Fluorescein Dye in each well (Figure 

5.2D). After 2 hours of feeding, mosquitoes were individually homogenized and 

the amount of fluorescein dye released from their gut was quantified in a 

fluorescent plate reader. Results from the BUFFET assay indicated that 

individual ∆8/∆4 mutants, fasted for 48h, ate on average 0.75±0.08 µl of sugar 

solution which is not significantly different from wild-type controls (0.66±0.09 

µl), ∆8/+ (0.74±0.07 µl) or ∆4/+ (0.92±0.06 µl) (Figure 5.2E). Experiments were 

not performed on HR mutants because no phenotype was observed in the NHEJ 

deletion mutants. These data suggest that NPYLR1 does not play a significant 

role in regulating sugar ingestion during fasting in A. aegypti. 

 

5.4.2 Normal Blood Consumption of NPYLR1 Mutants 

To measure blood consumption, we designed an artificial feeding assay 

called the MEMBRANE FEEDER. Similar to the BUFFET, sheep’s blood was 

mixed with 0.02% Fluorescein Dye and loaded into a heated glass device with 

one accessible surface covered with Parafilm that female mosquitoes could 

puncture to withdraw blood (Figure 5.3A). To encourage feeding, the apparatus 

was placed within an enclosed container that provided 5% CO2 to synergize with 

the heated blood and trigger blood-feeding. After a 15-minute assay, 

approximately 40% of both control and NPYLR1 mutant mosquitoes had 

successfully consumed blood (Figure 5.3B). Individual mosquitoes were 
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Figure 5.3 Blood Consumption is Not Modulated by NPYLR1 
(A) Diagram of the artificial membrane feeder (top) containing Sheep’s Blood + 
0.02% Fluorescein Dye within a jacket compartment of 37oC water and feeding 
access through 2x layer of Parafilm. Bottom: Image of six artificial membrane 
feeders placed on top of cups containing 15 female mosquitoes within the 
enclosure perfused with 5% CO2. (B) Percent of mosquitoes that blood-fed in the 
MEMBRANE FEEDER for HR mutants (left) and NHEJ mutants (right). (C) 
Average blood-meal size of NHEJ (left) and HR (right) mutants, for only those 
confirmed to have blood-fed within each cup of 15 female mosquitoes as 
measured on a plate reader. (n = 6, 1-12 mosquitoes confirmed as fed per trial. 
Mean ± SEM. 1-way ANOVA with Bonferroni correction for multiple 
comparisons) 
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homogenized to release the fluorescein dye and measured using a fluorescent 

plate reader to determine the volume of blood consumed. Excluding those that 

did not feed, we found no significant difference in blood volume consumed for 

HR2/HR3 (4.08±0.10 µl) and wild-type controls (4.59±0.06 µl) or HR2/+ 

(4.47±0.26 µl) (Figure 5.3C, left). In agreement, there was no difference observed 

between ∆8/∆4 (2.93±0.11 µl) compared to wild-type controls (3.00±0.23 µl) or 

∆8/+ (3.52±0.09 µl) (Figure 5.3C, right). In general, the average volumes were 

slightly higher in the HR experiment likely due to different aliquots of Sheep’s 

blood and do not indicate any behavioral difference between NPYLR1 mutants. 

Overall, these results do not support a role for NPYLR1 in modulating blood 

consumption. 

 

5.5 The Gonotrophic Cycle 

The gonotrophic cycle is a complex set of behaviors where unfed female 

mosquitoes find a host for a blood meal, inhibit host-seeking behavior while eggs 

develop, locate and deposit eggs, and recover attraction to hosts for a subsequent 

blood meal. Head Peptide-I is known to inhibit host-seeking behavior and 

therefore we predicted that an NPYLR1 mutant would be insensitive to the 

behavioral inhibition of the neuropeptide. However, since inhibition is part of a 

cyclical process, removing Head Peptide-I signaling may interfere with 

progression through several aspects of the gonotrophic cycle. We studied each 

aspect carefully but determined that NPYLR1 does not play an observable role in 

modulating any gonotrophic behaviors. 
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5.5.1 Normal Host-Seeking Behavior in NPYLR1 Mutants 

Host-seeking behavior was tested in the uniport olfactometer by measuring 

the percent of female mosquitoes that flew approximately one meter upwind 

towards human host odor (Figure 1.1A). Prior to a blood meal, host-seeking 

behavior of HR2/HR3 (85.96%±5.57) was not significantly different than wild-

type mosquitoes (95.41%±1.17), HR2/+ (92.55%±2.90), or HR3/+ (87.67%±2.76) 

(Figure 5.4A, “before”). Similarly, ∆8/∆4 (74.56%±6.64) was comparable to wild-

type mosquitoes (82.04%±6.34), ∆8/+ (87.04%±3.08), and ∆4/+ (86.20%±4.76) 

(Figure 5.4B, “before”). All NPYLR1 mutants and control lines displayed robust 

host-seeking behavior indicating no baseline defect in the ability to find a host. 

 

5.5.2 Normal Inhibition of Host-Seeking Behavior in NPYLR1 Mutants 

Based on previous results, we predicted that if NPYLR1 were the Head 

Peptide-I receptor, then a NPYLR1 null mutant would show reduced inhibition 

of host-seeking behavior after abdominal distension is relieved at 24h. Following 

a blood meal, inhibition is observed in all tested lines at 24h as expected (Figure 

5.4A and B, 24h). As the most direct test for NPYLR1 inhibition, at 48 and 72 

hours after a blood meal HR2/HR3 and ∆8/∆4 mutants still display strong 

inhibition of host-seeking behavior (Figure 5.4, 48 and 72h). This result indicates 

that NPYLR1 is not required for the inhibition of host-seeking behavior and that 

behavioral modulation must be controlled by a different or a redundant 

mechanism. 

Closer scrutiny of the behavioral timeline following a blood meal led us to 

question whether Head Peptide-I and NPYLR1 inhibition may be limited to the 
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Figure 5.4 Normal Host-Seeking Behavior of NPYLR1 Mutants during the 
Gonotrophic Cycle 
Host-seeking behavior of HR (A) and NHEJ (B) NPYLR1 mutants before and at 
24, 48, 72, and 120 hours after a blood meal as observed in the uniport 
olfactometer. “Before” is a measure of baseline host-seeking behavior of mature 
non-blood-fed female mosquitoes. 24h after a blood meal has been shown to be 
inhibition by abdominal distension. Head Peptide-I inhibition is predicted for 48 
and 72h.  Egg-laying was observed after 72h and completed by 120h. Recovery of 
host-seeking behavior was tested at 120h (indicated by yellow shading). (n = 6-
12; ~20 mosquitoes per trial. Mean ± SEM. 1-way ANOVA with Bonferroni 
correction for multiple comparisons within each time point). 
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time between abdominal distension and early stages of egg development, rather 

than throughout egg development. To test this idea, we decided to increase the 

temporal resolution following relief of abdominal distension at 24h. Again, 

∆8/∆4 displayed robust inhibition of host-seeking behavior at 32 and 40 hours 

after a blood meal (Figure 5.5). These results further supported that NPYLR1 is 

not required for the inhibition of host-seeking behavior. 

 

5.5.3 Normal Recovery of Host-Seeking Behavior in NPYLR1 Mutants 

Egg-laying was observed in all mosquito lines between 72-120 hours after a 

blood meal. Like wild-type mosquitoes, we found that both HR2/HR3 and 

∆8/∆4 recovered host-seeking behavior when tested at 120h following the 

completion of egg-laying (Figure 5.4A and B, 120h). Therefore, NPYLR1 also 

does not affect the recovery of host-seeking behavior following egg deposition. 
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Figure 5.5 NPYLR1 Mutants Show Normal Host-Seeking Inhibition at 32 and 
40h After a Blood Meal 
NHEJ mutants were tested in the uniport olfactometer for attraction to human 
host odor at 32 and 40h after a blood meal. No significant differences were 
observed (n = 3, with ~20 mosquitoes per trial. Mean ± SEM. 1-way ANOVA 
with Bonferroni correction for multiple comparisons within each time point).  
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6 Discussion 

The work presented in this dissertation explains the development of A. 

aegypti as a modern genetic model system to pursue novel strategies for reducing 

the spread of vector-borne diseases. We used modern techniques to advance the 

study of the important neuropeptide regulator, Head Peptide-I, by identifying 

the candidate receptor NPYLR1, pioneering targeted mutagenesis with zinc-

finger nucleases, and testing the loss of NPYLR1 function on several important 

mosquito behaviors. In addition, we functionally identified several ligand-

receptor interactions within the NPY-Like Receptor family that likely play 

pivotal roles in the regulation of mosquito feeding behaviors. The techniques and 

results presented here will be valuable for future work addressing important 

aspects of A. aegypti biology and developing innovative disease prevention 

strategies. 

 

6.1 The Role of NPY-Like Receptors in A. aegypti 

In pursuit of a Head Peptide-I candidate receptor, we used bioinformatics 

and molecular cloning to characterize the A. aegypti NPY-Like Receptor family. 

Difficulties with accurate gene prediction due to a large amount of repetitive 

DNA elements in the genome were clarified to confirm accurate gene models of 

at least nine NPYLRs. The possibility still exists for additional NPYLRs to be 

discovered which are currently inaccessible to bioinformatics techniques because 

of poor sequencing and assembly. Efforts are currently underway within the 

Vosshall Lab to use modern RNA sequencing technology to profile the entire set 

of expressed genes in A. aegypti mosquitoes for several tissues and during several 

points during their life cycle. 
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Of the nine confirmed NPYLRs, we linked four receptors with peptide 

ligands in a heterologous HEK cell-based assay. Most interestingly, NPYLR1 had 

medium to strong sensitivity to both sNPFs and Head Peptide-I. No other 

receptor in our screen was sensitive to Head Peptide-I. These results vaulted 

NPYLR1 into the top candidate position as the Head Peptide-I receptor.  

NPYLR8 was predicted as a NPF receptor orthologue and later confirmed to 

possess moderate sensitivity to a predicted A. aegypti NPF. Studies from D. 

melanogaster suggest that as a NPF orthologue, NPYLR8 may perform critical 

developmental functions in larval food-search behavior and food quality 

assessments (Wu et al., 2003; 2005). Molecular analysis of the receptor could help 

to understand larval olfactory preferences as well as motivational circuits for 

foraging.  

The function of NPYLR5 in mosquito biology has yet to be determined. 

NPYLR5 displays weak sensitivity to NPF and therefore may be involved in 

NPYLR8/NPFR associated feeding behaviors. To test this idea, localization of 

NPYLR5 during larval development would be an appropriate first step to 

uncovering parallels to NPFR expression in CNS and midgut (Garczynski et al., 

2002). However, weak NPF activation suggests that other ligands may exist that 

can now be identified using the functional NPYLR5 clone in future cell-based 

assays. Sequence similarity initially suggested that NPYLR5 might be the 

orthologue to D. melanogaster NepYR, which is related to mammalian 

Neuropeptide-YY receptor (PYY) and involved in gastrointestinal regulation 

(Gehlert, 2004). No evidence was found in our cell-based assay for NPYLR5 

sensitivity to PYY.  
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Lastly, NPYLR7B is the most mysterious receptor confirmed for activity in 

our cell-based assay. Homologues to NPYLR7B have no known function and 

broad sensitivity to sNPF1, sNPF3, and PYY confound any clear relationship to 

other NPY-Like Family members. However, every NPY-Like receptor has been 

implicated in some aspect of feeding behavior, so the chances are likely that 

studies of NPYLR7B would lead to a similar role. 

 

6.2 Targeted Mutagenesis Establishes A. aegypti as a Model System 

Targeted mutagenesis is a vital technique needed to advance A. aegypti as a 

modern model disease-vector system to compliment an already published 

genome and transgenesis (Jasinskiene et al., 1998; Nene et al., 2007; Nimmo et al., 

2006). Beyond zinc-finger nucleases, modern genomic editing techniques, such as 

TALENs and CRISPR-Cas, are developing quickly to accelerate the time by 

which targeted mutagenesis can be accomplished (Gaj et al., 2013). It is not 

unreasonable to assume that within the next 5-10 years the adoption of these new 

genomic editing techniques could produce mutant lines for all NPYLRs 

identified in this dissertation. 

As the most understood genomic editing system available, zinc-finger 

nucleases were a promising technique for us to apply to A. aegypti. The dual 

opportunity for generating Non-Homologous End Joining (NHEJ) and 

Homologous Recombination (HR) mutants described here are valuable successes 

that can be implemented in future genomic editing techniques. In addition, 

screening methods have been optimized so that isolation of mutants can occur 

within a week or two from injection and be ready for behavioral testing within a 

few months. Likely, the techniques developed for A. aegypti could also be easily 



 63 

amended for converting A. gambiae to a genetic model system, although other 

obstacles, such as producing robust host-seeking behavior in laboratory 

environments, will still need to be overcome. 

As additional mutants are generated, reliable behavioral assays are needed 

for testing host-seeking and feeding related behaviors. The CAFE, BUFFET, 

MEMBRANE FEEDER, and uniport olfactometer are fundamental and reliable 

experiments that will be valuable for describing future mosquito behavior 

relevant for preventing disease transmission. 

 

6.3 NPYLR1 is Not Required for Behavioral Inhibition 

Previous work and our cell-based assay suggest a critical role for NPYLR1 in 

Head Peptide-I-mediated inhibition. However, NPYLR1 null mutants showed no 

mutant phenotype in sugar or blood consumption or any aspect of the 

gonotrophic cycle. Our interpretation is that there is a redundant signaling 

mechanism that functions even after removal of NPYLR1 activity. 

Early experiments validated multiple agonists, sNPFs and Head Peptide-I, 

for NPYLR1. Our initial concern was that this result, in combination with 

previous difficulties describing neuropeptide mutant phenotypes, strongly 

argued that a Head Peptide-I null mutant would not be effective due to sNPF 

redundancy ((Kim et al., 2010; Wang et al., 2013, Valassi et al., 2008). Targeting 

NPYLR1 appeared as the safer option to eliminate activity of both neuropeptides 

and had the added benefit of known mutant feeding behaviors established for 

the D. melanogaster homologue, sNPFR76f.  

The most pessimistic response to the lack of a mutant phenotype would be to 

argue that NPYLR1 is not a physiologically relevant Head Peptide-I receptor. 
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However, we firmly believe that the injection experiments argue against this 

position. In the cell-based assay, NPYLR1 was not only sensitive to Head 

Peptide-I, but also to sNPFs that were not previously connected to behavioral 

inhibition. Our discovery that sNPF is a novel inhibitor, as shown when injected 

into non-bloodfed females, corroborates that NPYLR1 sensitivity mimics the 

profile of validated behavioral inhibitors. The only conceivable argument against 

a role for NPYLR1 is that its expression limits access to neuropeptides in the 

hemolymph and therefore is not involved in inhibitory signaling. Unfortunately, 

this is a difficult hypothesis to test because we currently lack tissue localization 

data for this receptor and would still be challenged to prove that hemolymph 

neuropeptides could not be accessed. This then presents several difficult 

situations where redundancy may be occurring that would confound further 

analysis of A. aegypti behavioral inhibition.  

The first possibility is that the neuropeptides signal through an additional 

receptor that is not currently known. It is conceivable that the NPY-Like Receptor 

family members not yet linked to a ligand (NPYLR2, 3, 4, 6, and 7A) may also be 

sensitive to Head Peptide-I and sNPFs. Additional control experiments would 

need to be performed to confirm proper expression and function of these 

receptors in a cell-based assay. Furthermore, there are numerous receptors 

outside of the NPYLRs with no known ligands that could also be sensitive to 

Head Peptide-I and sNPF. Pursuit of this possibility is more difficult, though I 

would suggest considering members of the more inclusive Class A: Rhodopsin-

Like GPCRs, of which NPYLR1 is a member. Ultimately, any molecular 

characterization of a subsequent candidate receptor will likely have to be 
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genetically recombined with the NPYLR1 mutant to remove all redundant 

signaling pathways. 

The second possibility is that although Head Peptide-I and sNPFs are 

sufficient to inhibit behavior, additional neuropeptides are also competent 

inhibitors of behavior. In this scenario, an additional unknown neuropeptide and 

cognate receptor would need to be identified to further study inhibition of host-

seeking behavior. Evidence already exists that an ovarian factor is released into 

the hemolymph between 6-10 hours to trigger release of a longer lasting 

inhibition presumably including Head Peptide-I (Klowden, 1981). Both this 

unknown ovarian peptide and additional candidate inhibitors could be identified 

by proteomic analysis of hemolymph at various stages of the gonotrophic cycle. 

It may also be possible to reduce the number of candidates by injection of 

biochemically separated hemolymph fractions. This project is currently being 

pursued by other members of the Vosshall laboratory. 

 

6.4 NPYLR1 as the sNPF Receptor in A. aegypti 

Beyond a role for NPYLR1 in the inhibition of host-seeking, possibilities exist 

for behavioral changes related to sNPF signaling that were not fully pursued in 

the work described here. Evidence from D. melanogaster implicates sNPF 

signaling as a regulator of olfactory sensitivity during starvation (Root et al., 

2011). This finding was the basis for our expansion of NPYLR1 mutant 

characterization with the CAFE and BUFFET sugar feeding assays. However, 

removal of sNPF signaling in D. melanogaster only exhibited weak behavioral 

phenotypes in food search behavior to a complex odor, Apple Cider Vinegar 

(Root et al., 2011). No equivalent complex odor has been established in A. aegypti 
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mosquitoes as a proxy for attraction to non-host sources of sugar such as flower 

nectar. The closest experiment established within the Vosshall lab was the 

attraction of male and female A. aegypti to un-processed honey odor. However, 

these experiments were dependent on long periods of fasting and still were 

difficult to reproduce reliably. We therefore decided not to pursue these 

experiments because at best, they would recapitulate an already known 

behavior. Manipulation of sNPF signaling also was described to have effects on 

D. melanogaster body size, though no superficial change was observed in 

NPYLR1 mutants. 

More interesting would be to pursue characterization of potential changes in 

olfactory sensitivity in NPYLR1 mutants to various host and plant odors. The 

best technique to perform this experiment would be to adapt calcium imaging of 

the olfactory bulb using the molecular calcium indicator GCaMP (Root et al., 

2011). This technique provides a global view of responses within the entire 

olfactory system and would not only be useful for NPYLR1 characterization but 

also for analyzing responses to host odors during different stages of the 

gonotrophic cycle. This would be a wonderful technique to test whether 

modulation of olfactory perception is a potential mechanism by which host-

seeking inhibition occurs. This project is also being pursued by a team of 

Vosshall lab members. 

Localization experiments for sNPF in D. melanogaster also argue for a wide-

spread role for the neuropeptide in several neural circuits. Particularly, extensive 

expression has been described in intrinsic interneurons of the mushroom body, 

the central nervous system, OSNs, and circadian pacemaker neurons (Nässel et 

al., 2008). Other behaviors controlled by these neural circuits that may be 
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influenced by an NPYLR1 null mutant are circadian rhythm, memory, and 

coordinated muscle contraction. These reports were the basis for our concern that 

deletion of NPYLR1 function may prove fatal during development or lead to 

generic defects in locomotion and egg-laying. However, NPYLR1 mutants were 

clearly viable and did not possess gross defects. But inclusion of NPYLR1 

mutants in behavioral experiments outside of host-seeking and food behaviors 

would be advisable. 

Overall, though NPYLR1 was a strong candidate for Head Peptide-I 

inhibition of host-seeking behavior, it is almost more astounding that such a 

highly conserved receptor of sNPF signaling could have little noticeable effect on 

behavior. This is an important lesson about the adaptability of living organisms 

to adjust to genetic changes whose loss could be extremely damaging to survival. 

 

6.5 Genetic Manipulation of Head Peptide-I 

Targeted mutagenesis of NPYLR1 was a strategy we pursued to avoid 

neuropeptide redundancy, though the lack of a mutant phenotype redirected our 

efforts to creating a Head Peptide-I mutant. Our first consideration was to test 

for a redundant signal through behavioral characterization of NPYLR1 mutants 

injected with Head Peptide-I or sNPF3. However, in our hands, behavioral 

analysis following peptide injections was difficult and only produced modest 

levels of inhibition. For comparison, previous publications reported complete 

inhibition of host-seeking behavior at comparable doses to our experiments that 

yielded only ~30% inhibition (Figure 3.1A) (Brown et al., 1994). Differences in the 

injections could be attributed to technique or possibly the stability of the custom 

synthesized peptides. Regardless, we decided that testing the redundancy 
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hypothesis through injections would be a difficult experiment that would only 

confirm what we already knew about the inadequacy of NPYLR1 mutants. We 

preferred to pursue a more impactful and independently useful project, namely, 

creating a Head Peptide-I null mutant. 

Our data already suggests that a Head Peptide-I null mutant would not be 

sufficient to reduce inhibition of host-seeking behavior due to sNPF redundancy. 

But we propose that combining a Head Peptide-I null mutant with the NPYLR1 

mutant would remove all Head Peptide-I activity and sNPF activity through 

NPYLR1. Combined, a double mutant may disrupt inhibitory signals enough to 

show a behavioral phenotype. Furthermore, it would validate Head Peptide-I as 

a bona fide inhibitor critical for A. aegypti host–seeking inhibition - an 

achievement that is currently weakened due to our results that a validated Head 

Peptide-I receptor is not required for inhibition. My waning hours as a graduate 

fellow have been devoted to this project in collaboration with Dr. Laura Duvall, a 

post-doc in the Vosshall lab who will carry the Head Peptide-I torch when I ride 

off into the proverbial sunset. 

An additional project idea concerning genetic manipulation of Head 

Peptide-I is to create a transgenic line that over-expresses the neuropeptide. We 

initially considered this project at the beginning of my graduate career but 

decided to go for the higher impact NPYLR1 null mutant. The idea is that over-

expression could lead to continual release of Head Peptide-I which would 

maintain an inhibitory state. Propagation of such a mutant line could occur due 

to observations that females inhibited by Head Peptide-I injections still feed 

when placed directly on human arms (Brown et al., 1994). Our concern was that 

Head Peptide-I undergoes post-translational modifications, which only occurs in 
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limited endocrine cells, that are likely critical to function and stability (Park et al., 

2008).  

Over-expression may not produce the desired increase in mature Head 

Peptide-I. Furthermore, release of Head Peptide-I, as measured in a 

radioimmunoassay, is temporally controlled. So we could not assume that 

overexpression would lead to Head Peptide-I release. Contrary to our 

trepidations, overexpression of neuropeptides has been successful in other cases 

(Lee et al., 2004; 2008). If over-expression does work, then the hypothesis that 

Head Peptide-I modulates olfactory perception of relevant host-odors would be 

more easily testable because the mutants would permanently exhibit the desired 

olfactory state. To be more cautious with this approach, over-expression could be 

triggered by an inducible promoter, which has already been validated in A. 

aegypti (Carpenetti et al., 2012; Wise de Valdez et al., 2011). 

 

6.6 Implications For Other Research Areas 

Results presented here may have implications in A. gambiae research as well 

as recent findings that describe Head Peptide-I transfer in seminal fluid from A. 

aegypti males to females. 

We propose that the unknown mechanism of A. gambiae inhibition for 

approximately 40 hours after a blood meal may involve sNPF signaling. 

Sensitivity of NPYLR1 to Head Peptide-I and sNPF motivated us to confirm 

sNPF as a novel inhibitor of host-seeking behavior in A. aegypti. Previous 

injection experiments in anopheline mosquitoes only found Head Peptide-I to be 

ineffective (Klowden, 1995), but never tested sNPF. There is chance that injection 

of sNPF into A. gambiae may prove effective for inhibiting host-seeking behavior 
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in the malaria vector. A positive result would open a new avenue for dissecting 

the internal regulation of host-seeking behavior in A. gambiae. These experiments 

could also provide additional support for NPYLR1 and its homologues in the 

regulation of host-seeking behavior. 

Previously, researchers found that male accessory gland (MAG) substances 

significantly reduce host-seeking behavior when injected into gravid unmated A. 

aegypti females (Fernandez and Klowden, 1995). Typically, if female A. aegypti do 

not fertilize their developed eggs, they will slowly recover host-seeking behavior 

to locate males that hover in host proximity (Klowden, 1999). The hemolymph of 

mated versus unmated gravid females was analyzed by radioimmunoassay to 

determine if Head Peptide-I levels may indicate a role for the neuropeptide, but 

no significant difference was found (Fernandez and Klowden, 1995). 

Surprisingly, the molecules responsible have not been pursued until only 

recently, where researchers found that Head Peptide-I is produced in male 

accessory glands and transferred during mating (Naccarati et al., 2012). This led 

the same group to test whether Head Peptide-I activated the conserved Sex 

Peptide-Receptor (SPR), which has been implicated in altering female behavior 

after mating in D. melanogaster (Yapici et al., 2008). Unfortunately, no activity was 

found therefore stalling progress understanding a mechanism for mating 

inhibition due to Head Peptide-I transfer. 

We propose that NPYLR1 could be involved in MAG-associated inhibition of 

host-seeking behavior. We did not pursue any experiments to test this hypothesis 

because it was outside of our project aims. To do so would require either 

injection of MAG isolates or mating gravid unmated NPYLR1 mutant females to 
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male mosquitoes and testing for inhibition of host-seeking behavior. Presumably, 

if NPYLR1 were involved then no inhibition would occur with either approach. 

 

6.7 Conclusion 

The importance of developing novel strategies to combat vector-borne 

diseases cannot be overstated. Head Peptide-I has been implicated as a natural 

inhibitor of host-seeking behavior in A. aegypti and may also act to control I. 

scapularis behavior. This dissertation has provided valuable advancements to A. 

aegypti as a model system to continue pursuing the mechanism of Head Peptide-I 

action in hopes that it will provide innovative opportunities to interfere with 

host location. Even though NPYLR1 is not required to inhibit host-seeking 

behavior, elimination of the receptor as the sole candidate for Head Peptide-I 

activity is a noteworthy and informative result to guide future work in mosquito 

biology. 
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7 Materials and Methods 

7.1 Mosquito Maintenance 

A. aegypti Orlando mosquitoes were maintained at 25-28oC with 70-80% relative 

humidity under a 14h light: 10h dark cycle (lights on 8am). Eggs were hatched in 

de-oxygenated, deionized water containing powdered Tetramin tropical fish 

food (Tetra, Melle, Germany). Larva were cultured in deionized water and fed 

Tetramin tablets as needed. Adults were given unlimited access to 10% sucrose 

solution. Adult females were fed on mice for stock maintenance and on human 

arm for isolation of mutants, egg-laying and host-seeking behavior experiments. 

All blood-feeding procedures with mice and humans were approved and 

monitored by The Rockefeller University Institutional Animal Care and Use 

Committee (IACUC) and Institutional Review Board (IRB), respectively. All 

human subjects gave their informed consent to participate in these experiments. 

 

7.2 Bioinformatics and Protein Alignment 

In the A. aegypti genome publication, 33 predicted Class A: Rhodopsin-like 

GPCRs in the “Peptide” and “Orphan” categories were analyzed for similarity to 

D. melanogaster and A. gambiae NPY-Like Receptors. From this group, eight 

NPYLRs were supported but further analysis revealed that two were fragments 

of another predicted GPCR and therefore there were actually six candidate 

receptors. BLAST, Genewise, and HMMER bioinformatics tools were used to 

identify two additional candidates from published raw genomic sequence reads, 

returning the total candidate list to eight. NPYLR7A and 7B were identified 

through cloning. 
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Vectorbase - A. aegypti genome  

https://www.vectorbase.org/  

BLAST – Basic Local Alignment Search Tool 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=Blast

Docs&DOC_TYPE=Download 

Genewise - Wise2 compares a protein sequence to a genomic DNA 

sequence, allowing for introns and frame-shifting errors. 

http://www.ebi.ac.uk/Tools/psa/genewise/help/  

HMMER – biosequence analysis using profile hidden Markov Models. 

http://hmmer.janelia.org/ 

All protein alignments and phylogentic analyses were performed using default 

ClustalW and Neighbor Joining Tree Building methods in MacVector 

(www.macvector.com). Snake plots of predicted receptor topology were created 

using toppred:Mobyle@pasteur (http://mobyle.pasteur.fr/). 

 

7.3 Molecular Biology 

RNA isolation was accomplished using RNeasy Mini Kits (Qiagen, Valencia, CA, 

USA) from various tissues as noted. DNA isolation from whole mosquitoes was 

completed using Qiagen’s DNAeasy Blood & Tissue Kit, homogenized with 

2mm glass beads (Sigma Aldrich Cat#Z273627-1EA, St. Louis, MO, USA) using a 

Qiagen TissueLyzer II at 1800 rpm for 1 min. Unless otherwise noted, Synthesis 

of cDNA was performed using SuperScript® III Reverse Transcriptase 

(Invitrogen, Grand Island, NY, USA) and PCR reactions were performed using 

EMD Millipore KOD polymerase (Billerica, MA, USA). All DNA sequencing 

reactions were performed by Genewiz (South Plainfield, NJ, USA). 
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7.4 Receptor Cloning 

Homology to known NPYLRs from other species permitted cloning of full-length 

cDNA from purified A. aegypti female head and body RNA for NPYLR2, 5, 6, and 

8. Full length sequences for NPYLR1, 1A, 1B, 1C, 3, 4, 7A, and 7B were verified 

using Clontech’s Rapid Amplification of cDNA Ends (RACE) and Advantage 2 

PCR polymerase (Clontech/Takara Bio, Mountain View, CA, USA). A. gambiae 

sNPFR was amplified based on published sequences by Garczynski et al. (2007). 

D. melanogaster sNPFR76f clone GH23382 was obtained from the Drosophila 

Genomics Resource Center (DGRC, https://dgrc.cgb.indiana.edu/). I. scapularis 

receptors were identified using bioinformatics and cloned by homology from 

tissue provided by Rick Ostfeld (Cary Institute – Millbrook, NY). All primers 

used for cloning can be found in section 7.5. 

All receptors were cloned into Invitrogen’s TOPO-TA Cloning system for 

propagation in TOP10 or DH5alpha cells. For the cell-based assay, all receptors 

were cloned into the XhoI-NotI sites of the mammalian expression vector 

pME18S, except for A.gam sNPFR and D.mel sNPFR76f, which were cloned into 

EcoRI-NotI.   

Genbank accession numbers: NPYLR1  KC439528, NPYLR1A KC439529, 

NPYLR1B KC439530, NPYLR1C KC439531, NPYLR2  KC439532, NPYLR3  

KC439533, NPYLR4  KC439534, NPYLR5  KC439535, NPYLR6  KC439536, 

NPYLR7A KC439537, NPYLR7B KC439538, NPYLR8  KC439539, IX923R  

KC439540, IX924R  KC439541. 
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7.5 Primers 

All primers were synthesized by Integrated DNA Technologies (Coralville, IA, 

USA) 

# Experiment Species Gene Target Primer FOR (top) / REV (bottom) 
1 Receptor Cloning A.aeg NPYLR1 ATGGCCATAACGATGTCATCACG 

    
TTACAGTATCTCCGGCAGCTTGG 

2 Receptor Cloning A.aeg NPYLR2 ATGCTGGCAAGTACCGCTAAGAC 

    
TTACAAACGTGTAATGTCTTCTTGGAAGC 

3 Receptor Cloning A.aeg NPYLR3 ATGAAGTCCAAGGAGACCGCGTCGGATGC 

    
CTCGCCCGTAATCTTTGGCACCGC 

4 Receptor Cloning A.aeg NPYLR4 CGTTGTCAGCTTCGACGATGAGTGT 

    
CGCCAGGAAACGTGCAGCTTCG 

5 Receptor Cloning A.aeg NPYLR5 ATGAGCGGCGCGCCATTCACGGTC 

    
TCACCGTAGCAGGGACGTTTCCGT 

6 Receptor Cloning A.aeg NPYLR6 CACGCCACAATGGATTACCC 

    
CATCACTTGAACAGGATCCGC 

7 Receptor Cloning A.aeg NPYLR7A GCGATGAACTTCACTGCCGAGTT 

    
CTACAACCCCTTCCGGCACCACT 

8 Receptor Cloning A.aeg NPYLR7B GCGATGAACTTCACTGCCGAGTT 

    
CTACAACCCCTTCCGGCACCACT 

9 Receptor Cloning A.aeg NPYLR8 ATGGACGTGGTCCTGTCCAGGCTG 

    
TCACGGCATGAGCTCGGTAAGC 

10 Receptor Cloning A.gam sNPFR TTATAGAATAGCGGGCACTTTCGAGTC 

    
GACGCCTCGGAATGCTGACG 

11 Receptor Cloning I.sca IX-923R AACCCAAGCTTGTTCAATCC 

    
ATGCTGACATCTGGGGGTAG 

12 Receptor Cloning I.sca IX-924R TTCTTGCAGATGTCGGATCA 

    
TTTCTCCATGTTGCAGTGCT 

13 Receptor Cloning D.mel sNPFR76f ATGGCCAACTTAAGCTGGCTGAG 

    
CCTATCTCAGTTGATTCGCCTC 

14 Receptor Cloning A.aeg NPYLR1A ATGGCCATAACGATGTCATCACG 

    
TTACAGTATCTCCGGCAGCTTGG 

15 Receptor Cloning A.aeg NPYLR1B ATGGCCATAACGATGTCATCACG 

    
TTACAGTATCTCCGGCAGCTTGG 

16 Receptor Cloning A.aeg NPYLR1C ATGGCCATAACGATGTCATCACG 

    
TTACAGTATCTCCGGCAGCTTGG 

17 Southern Blot A.aeg NPYLR1 CCACCCTCGAATGAAACTATCAAC 

    
TAGTACTTGGGAGGATGGGATGAG 

18 Southern Blot - - ECFP ATGGTGAGCAAGGGCGAGGAGCTGTTC 

    
CTTGTACAGCTCGTCCATGCCGAGAGTG 

19 
Mendelian 
Inheritance A.aeg 

NPYLR1 
5'UTR CGCTGCGGAGGCGGAAGCTGAAGC 

    
CGCCTCACTGACGCCACCGCTGTC 

20 qPCR A.aeg NPYLR1 GCTATCTGCTACATCTGTGTGTCAA 
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GTCCGAGTAGAAGTCGTTGCTCAT 

21 qPCR A.aeg RpL8 TCACTGCCCACACCAAGAAGCG 

    
CGGCAATGAACAACTGCTTGCG 

22 qPCR A.aeg RpS17 CACTCCCAGGTCCGTGGTAT 

    
GGACACTTCCGGCACGTAGT 

23 HR Construct A.aeg Left Arm TGCTGGCGTTACGGCAAACTGATTC 

    
GAACGTCACATTAACAGCGTCGCTG 

24 HR Construct A.aeg Right Arm GGTCAAGCCTTGATGCAGGACAATAC 

    
AGTATCTCCGGCAGCTTGGTGTCG 

25 NHEJ Genotyping A.aeg NPYLR1 CGGAACTTACGAAGCATTCAGCGAC 

    
GAACACTACGTAGCATACCAACACG 

26 HR Genotyping A.aeg NPYLR1 TAATCGTGTGGACTAGAAGAGGG 

    
AGCTCTTCGCAGTAGAATGTACG 

 

7.6 HEK293 Cell-Based Calcium-Imaging Assay 

HEK293 cells were cultured using standard protocols in a Thermo Scientific 

FORMA Series II – Water Jacketed CO2 incubator (Waltham, MA, USA). 

Invitrogen’s Lipofectamine 2000 was used for transfection of 1 µg 

pME18S>Candidate Receptor and 1µg pME18S> Gα-15. Transfected cells were 

loaded with the calcium sensitive dye Fura-2 (Invitrogen) according to product 

instructions. Cells were imaged on a Nikon Eclipse TE-2000-U (Melville, NY, 

USA) using fluorescent excitement from a Lambda DG-4 (Sutter Instruments Co., 

Novato, CA, USA). Bath application of ~300 µl solutions containing 

neuropeptides diluted in PBS was accomplished using a diaphragm pump 

(Gilson Minipuls3, Middleton, WI, USA) with live recording and analysis in 

Metafluor software (Molecular Devices, Sunnyvale, CA, USA).  Normalization 

was accomplished by setting the highest response to 100%. 

 

7.7 Host-Seeking Behavior in the Uniport Olfactometer 

The uniport olfactometer was custom built by Vadim Sherman in the Rockefeller 

Instrument Shop. Approximately 15-25 female mosquitoes aged 5-14 days were 
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placed within loaders (small plastic cylinder with mesh covering both openings 

and a sliding door on one end obtained from the World Health Organization 

(WHO), Vector Control Research Unit, Penang, Malaysia) and attached to one 

end of a 1 m. long plastic tube (19 cm diameter) that led to another “goal” trap 

(14 cm long, 5 cm diameter), followed by a sealed chamber containing a 

volunteer’s arm or forearm (see image in Figure 1A). Humidified room air was 

carbon-filtered (Donaldson Ultrac-A, Bloomington, MN), combined with 10% 

CO2 using flowmeters (Cole Parmer, Cat#023-92-ST, Vernon Hills, IL) and 

passed over the volunteer’s arm into the olfactometer at 3.8 L/min. Mosquito 

loaders were attached to the olfactometer and given 5 minutes to acclimatize to 

air-flow prior to a 5 minute host-seeking test. Mosquitoes are described as host-

seeking if they flew upwind through the 1 meter tube and into the “goal” trap 

within the allotted time. 

 

7.8 Custom Neuropeptides Synthesis 

Head Peptide-I (pERPhPSLKTRFa), Head Peptide-III (pERPPSLKTRFa), and 

Head Peptide-III (pERPhPSLKTRC) were synthesized by the Rockefeller 

University Proteomics Resource Center. sNPF-1 (KAVRSPSLRLRFa), sNPF-1(4-

11) (SPSLRLRFa), sNPF-2+4 (APQLRLRFa), and sNPF-3 (APSQRLRWa), sNPF-2 

(SIRAPQLRLRFa), sNPF-4 (TIRAPQLRLRFa), NPF 

(SFTCARPQDDPTSVAEAIRLLQELETKHAQHARPRFa), human NPY 

(YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRYa), and human PYY 

(IKPEAPGEDASPEELNRYYASLRHYLNLVTRQRYa) were synthesized by 

Bachem Bioscience Inc. (King of Prussia, PA, USA).  
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7.9 Neuropeptide Injections 

Solutions of Head Peptide-I, sNPF3 and Head Peptide-I [Cys10] were made at a 

concentration of 4 and 10 mM in saline solution (0.1M NaCl, 4mM KCl, 2mM 

CaCl2) for injection. ~30 female mosquitoes aged 5-14 days were anesthetized on 

ice for 3 min, moved individually onto a chill-plate (BioQuip Cat#1429, Rancho 

Dominguez, CA, USA), and injected with 200 nl of desired solution using a 

Drummond Nanoject II (Drummond Cat# 3-000-204, Broomall, PA, USA) 

attached to 3.5” needles (Drummond, Cat#3-000-203-G/X) shaped on a needle 

puller (Sutter Instruments Co., Model P-97). The injection occurred into the 

hemolymph by piercing under the second abdominal tergite from the ovipositor. 

Injected mosquitoes were placed in plastic loaders and allowed one hour to 

recover from injection before being tested for host-seeking behavior in the 

uniport olfactometer. 

 

7.10 Locomotion Assay 

Locomotor activity was monitored using LAM25 Locomotor Activity Monitors 

(Trikinetics Inc., Waltham, MA, USA). 5 to 14 day-old sugar-fed females 

mosquitoes were individually placed in glass tubes (25 mm diameter, 125 mm 

long). A 10% sucrose-soaked cotton plug sealed one end of the glass tube to serve 

as a food source for the mosquito during the experiment. The vials were inserted 

into the monitor and housed within a Digitherm incubator (Tritech Research Inc., 

Los Angeles, CA, USA) set to 25oC and 70-80% relative humidity under a 14 hr 

light: 10 hr dark cycle (lights on at 8am). Infrared beam breaks triggered by the 

mosquito’s movement were recorded continuously and tabulated into 1 min 
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bins. Bins with 60 or more beam breaks per minute (>1/sec) and trials with 2000 

or more beam breaks per day were excluded from the analysis. 

 

7.11 Egg-laying 

5-14 day old female mosquitoes were blood-fed on a human arm or leg for 15 

minutes. 72-96 hours after feeding, individual mosquitoes were placed in plastic 

fly vials (25 mm diameter, 95 mm long) containing 5 ml water and a Whatman 

filter paper (55 mm diameter, GE Healthcare, Buckinghamshire, UK) folded into 

a cone. The filter paper would become moist from the water and act as a 

substrate for females to lay eggs. At 144h post-blood meal, egg papers were 

removed and eggs were counted by eye using a Nikon SMZ1500 microscope. 

 

7.12 CAFE Assay 

Female mosquitoes aged 5-14 days were starved from sugar for the indicated 

amount of time. Afterwards, five mosquitoes were transferred into plastic fly 

vials (25 mm diameter, 95 mm long) containing a cotton plug pierced through by 

a 5 µl calibrated pipet (VWR International, Cat#53432-706) filled with a known 

volume of 10% sucrose. After 2 hours, the pipets were removed and the change 

in sucrose volume was measured by ruler. A control vial was set up to measure 

the loss of volume due to evaporation which was applied to all test vial. 

Approximately 50 female mosquitoes were starved for 48 hours in a mosquito 

bucket cage. 96-well plates (Biorad, Cat#HSP-9661) filled with 200 µl 10% sucrose 

+ 0.02% fluorescein dye (Sigma Aldrich, Cat#16377) were placed inside the cage 

and mosquitoes were allowed to feed for 2 hours. Afterwards, mosquitoes were 

frozen at -20C and prepared for fluorescent measurement (see section 8.15). 
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7.13 MEMBRANE FEEDER Assay 

Glass feeders (20 mm Glass Jacketed Membrane Feeder, Chemglass Life Sciences, 

Vineland, NJ, USA) were filled with 400 µl Defibrinated Sheep’s Blood 

(Hemostat Laboratories, Dixon, CA, USA) + 0.02% fluorescein dye. The larger 

opening of the feeder was covered with two layers of Parafilm stretched as much 

as possible to make puncturing easier. The other end was also sealed with 

Parafilm to prevent spillage. Fifteen mosquitoes aged 5-14 days were placed into 

6 separate small cups (16 oz SOLO paper cups, www.webstaurantstore.com) 

sealed on top by white mesh and loaded into a sealable plastic container. One 

blood-filled feeder was placed on top of each cup and connected by hosing to a 

37oC water bath. The container was cleaned with 70% ethanol to remove 

residuals, sealed, and left for 5 minutes so that mosquitoes could acclimatize. To 

begin the experiment, water pumps began circulation of 37oC water through the 

membrane feeder hosing and 5% CO2 was pumped into the container to initiate 

feeding. After 15 minutes, the small cups were frozen at -20oC and prepared for 

fluorescent measurement (see section 8.15). 

 

7.14 Fluorescence Measurements 

Frozen mosquitoes were loaded individually into wells of a 96-well plate 

(Biorad, Cat#HSP-9661) containing 100 µl PBS plus one 2 mm glass bead (Sigma 

Aldrich, Cat#Z273627-1EA) and covered with PCR Sealers (BioRad, 

Cat#MSB1001, Hercules, CA, USA). Control wells containing 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 15, 20, 25 µl of 0.02% fluorescein dye were combined with unfed control 

female mosquitoes to create a reference dilution curve. Plates were homogenized 

using a Qiagen TissueLyzer II at 1800 rpm for 1 min. Homogenized plates were 
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taken to the Rockefeller University High Through-Put Screening Resource 

Center, where 15 µl of homogenized solution from each well was transferred to a 

384 well plate (Greiner Bio One, Cat#784201, Monroe, NC, USA) alongside 15 µl 

of a 1:10 dilution in PBS dispensed using a Thermo Multi-Drop Combi and 

Perkin Elmer JANUS Mini (Waltham, MA, USA). Samples were vortexed briefly 

and fluorescent intensity for each well was measured using a Biotek Synergy 

NEO plate reader (Winooski, VT, USA). Using the reference dilution curve, 

fluorescent measurements were converted back to volume (µl) of solution 

ingested. 

 

7.15 Gonotrophic Cycle 

Large groups of ~300 female mosquitoes/genotype were fed simultaneously on 

human volunteer arms and legs (typically at 1pm) then separated under cold 

anesthesia to isolate individuals who successfully fed. Approximately 15-25 fed 

mosquitoes were transferred to loaders 4 hours before testing at 0 (before blood), 

24, 48, 72, 96, and 120 hours post-blood-meal in the uniport olfactometer. Access 

to egg laying substrate was provided after 72h and egg laying typically finished 

by ~110 hours. Mosquitoes were only tested for one time point and then 

discarded. 

 

7.16 Southern Blot 

Southern blots were performed using DIG-High Prime DNA Labeling and 

Detection Starter Kit I (Roche, Switzerland) with Protran BA83 Nitrocellulose 

membranes (Whatman) from 10 µg mixed mosquito genomic DNA digested 

individually with XhoI, SphI, NcoI, and HpaI (Figure 3.3, New England BioLabs, 



 82 

Ipswich, MA, USA) or XhoI and XmaI (Figure 4.2). NPYLR1 and ECFP probes 

were synthesized by PCR amplification (see section 7.5 for primers) following 

Roche DIG-labeling protocols. 

 

7.17 Qualitative PCR (qPCR) 

RNA was purified from whole bodies of female mosquitoes before and 24, 48, 

and 72 hours after blood-feeding. Purified RNA was converted to cDNA and 

aliquoted at 250 ng/µl RNA equivalents for each qPCR reaction. Reactions were 

prepared as instructed by BioRad iQ SYBR Green SuperMix (Cat#170-8882) in 

BioRad iQ 96-well Plates (Cat#223-9441) covered with BioRad Microseal “B” 

Adhesive Seals (Cat#MSB-1001) to be run on a iQ5 iCylcer (BioRad). Primers 

were designed to meet the following criteria: 90-110% efficiency and an R^2 

above 0.98 in control reactions and are listed in section 7.5. Each reaction was 

performed in triplicate with a total n=3. 

 

7.18 Targeted Mutagenesis with Zinc-Finger Nucleases 

Zinc-finger nucleases were synthesized in collaboration with Sigma-Aldrich Life 

Science. Genetic Services Inc. (Cambridge, MA, USA) injected purified NPYLR1 

ZFN mRNA into ~3000 A. aegypti Orlando embryos (batches of 1000, 800, and 

1200) at a concentration of 200 ng/µl plus a Homologous Recombination vector 

at 850 ng/µl using embryo preparation methods described previously 

(Jasinskiene et al., 2007)The homologous recombination vector contained 1319 

and 1451 bp of homology to the left and right flanking sequence of the intended 

cut site (see primers in section 7.5). The marker contained 1391 bp of the A. 
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aegypti Poly-Ubiquitin promoter driving expression of ECFP, and in total was 

2419 bp (Anderson et al., 2010). 

 

36% of injected embryos hatched and were sexed as male and female prior to 

eclosion. 94% of the hatched individuals developed into adults and each injection 

batch were in-crossed after reaching sexual maturity (~2 days). Each of the three 

in-crossed groups were considered to contain independent ZFN events. Isolation 

occurred by aliquoting 3-day old F1 larva into 96-well plates (VWR International, 

Cat#29444-018) and screening for ECFP fluorescence on a Nikon SMZ1500 + 

Intensilight C-HGFI. 27, 6, and 18 larva were positive for fluorescence in each 

respective batch of an estimated 55,000 total screened.  

NHEJ events were isolated a few months later from the same batch of HR 

injected mosquitoes. At that time, only eight F1 larva hatched (due to prolonged 

storage) and were outcrossed to wild-type A. aegypti Orlando. Genomic DNA 

was prepped for each of the eight individuals and NPYLR1 PCR amplicons were 

sequenced to confirm ZFN activity in two individuals. Individual PCR clones for 
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the two positive individuals were Sanger sequenced by Genewiz to confirm 4 

and 8 bp deletions in each line. 

 

7.19 Genotyping and Mendelian Inheritance Test 

Genotyping of individual NHEJ mutants occurred in collaboration with 

Genewiz using a capillary gel electrophoresis DNA analyzer (ABI3730xl, Applied 

Biosystems, Carlsbad, CA, USA) of PCR amplicons from 6-FAM fluorescently 

labeled primers spanning over the NPYLR1 ZFN cut site. Data was analyzed 

using Peak Scanner software (Applied Biosystems). HR genotyping of 

individuals occurred by gel electrophoresis of PCR amplicons spanning over the 

inserted DNA. Mendelian inheritance experiments were also accomplished in 

collaboration with Genewiz using the capillary gel electrophoresis DNA 

analyzer. Refer to primer list in Section 7.5. 

 

7.20 Statistics 

Statistics were performed as indicated in each figure legend using Graph Pad 

PRISM (La Jolla, CA, USA) except for statistical analysis of qPCR results, which 

also used BioRad iQ5 software. 
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