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ABDOMINAL-B NEURONS CONTROL DROSOPHILA 

VIRGIN FEMALE RECEPTIVITY 

 

Jennifer J. Bussell, Ph.D. 

The Rockefeller University 2014 

 

To choose their mates, male and female vinegar flies (Drosophila 

melanogaster) perform a duet of stereotyped, sexually dimorphic courtship 

behaviors, a suite of sensory back-and-forth that offers an excellent model for 

studying the neural circuitry of complex behavior (Dickson, 2008). However, the 

study of Drosophila courtship has focused overwhelmingly on the male, and little 

is known about how the female evaluates male courtship to decide whether to 

mate and how she executes that decision by slowing down and opening vaginal 

plates, a process known as receptivity. 

To expand the mechanistic understanding of Drosophila receptivity, we set 

out to identify neurons directly involved in this behavior. Using a genome-wide 

neuronal RNAi screen, we identified a requirement for Abdominal-B (Abd-B), a 

homeobox transcription factor, in virgin female sexual receptivity. Silencing adult 

Abd-B neurons in the abdominal ganglion and reproductive tract decreased 

female receptivity. Whereas previous work measured copulation, we quantified 

movement using automated tracking and vaginal plate opening using magnified 

video recording. We show that “slowing down” is actually pausing, rather than 

walking more slowly. Silencing Abd-B neurons decreased pausing but did not 



 

affect vaginal plate opening, demonstrating that these two aspects of female 

sexual behavior are functionally separable. Synthetic activation of Abd-B neurons 

increased pausing, but playback of male courtship song alone was not sufficient 

to elicit this behavior. Therefore the female integrates multiple sensory cues from 

the male prior to copulation. We conclude that Abd-B neurons control female 

pausing in response to male courtship and that this is a key aspect of female 

sexual receptivity. 
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CHAPTER 1: INTRODUCTION 

 

Drosophila courtship: a model for studying the neural circuitry of innate 

social behavior  

Animals are born with the capacity for a number of innate, or instinctual, 

behaviors that the nervous system can perform without learning or training. 

Because they require no experience, these behaviors are thought to be “hard-

wired” and controlled by neural circuitry that is developmentally specified within 

the genome. In genetically tractable organisms, such circuitry can be 

manipulated and functionally probed. Thus, the study of innate behavior offers an 

excellent opportunity to understand how the nervous system processes sensory 

input to select and execute a particular behavior. 

Model systems with numerically simple brains allow us to investigate the 

neural control of behavior. The vinegar fly Drosophila melanogaster has orders of 

magnitude fewer neurons that nevertheless function largely the same way as in 

more complex systems like mammals. Drosophila has also served as a genetic 

model organism for nearly a century (Morgan, 1915; Sturtevant, 1915), and the 

early development of fly genetics has facilitated its evolution into a model neural 

system because of tools such as forward genetic screens and genetic mapping. 

Beginning several decades ago and led by the work of Seymour Benzer and 

colleagues, the fly has been used to make important discoveries about genes 

controlling behavior, including circadian rhythms, aggression, addiction, and sex 

(Alekseyenko et al., 2010; Asahina et al., 2013; Kaun et al., 2011; Konopka and 
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Benzer, 1971; Ryner et al., 1996; Wang and Anderson, 2010). In addition, there 

is now a large array of genetic tools available for neural manipulations in the fly, 

from neuronal silencers and activators to dynamic indicators of neuronal activity 

(Chen et al., 2013; Hamada et al., 2008; Kitamoto, 2001). The combination of the 

ease of genetic manipulations and relative complexity of fly behavior has allowed 

for the functional study of even single neurons or several dendrites in behavior 

(Datta et al., 2008; Mann et al., 2013), as well as the mapping of complete 

circuits from sensory input to descending output (Ruta et al., 2010). 

Among the instinctual repertoire of the fly, sexual behavior is particularly 

attractive for neural circuit analysis. Animals of many species (Borgia and 

Coleman, 2000; Huxley, 1914; Neal and Wade, 2007; Wilz, 1970; Wyatt, 2003) 

perform sexually dimorphic courtship behavior prior to mating. Courtship allows 

males and females to evaluate each other as potential mates, a process with 

evolutionary importance as a force of sexual selection as well being critical for 

fitness (Etges and Noor, 2003; Friberg and Arnqvist, 2003; Gould and Gould, 

1996). The sexually dimorphic nature of courtship also raises the question of 

how, and whether, neural circuits are distinctly male and female. Moreover, 

courtship behavior is social. It adds a layer of complexity to the task of the 

nervous system in choosing the most advantageous behavior because the 

behavior of another individual must be accounted for. 

There is a rich history of studying courtship in Drosophila melanogaster, 

which has now become one of the classic paradigms of complex innate behavior. 

However, the focus has almost always been on the male: the behaviors 
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described, sensory cues probed, and neural circuits identified are nearly all male-

specific. Here, we examine the neural circuitry behind female fly sexual behavior. 

 

The courtship duet 

 To choose their mates, male and female Drosophila melanogaster perform 

a duet of sexually dimorphic innate courtship behaviors (Bastock, 1956; Bastock 

and Manning, 1955; Hall, 1994; Spieth, 1974; Sturtevant, 1915). 

 

Figure 1.1: Drosophila melanogaster courtship. (A) Male and female D. melanogaster 

encounter each other at a food source in the wild (Surfside Beach, SC, August 2011). Male and 

female marked by red are engaged in courtship. (B-F) Male courtship motor programs: (B) 

Following the female. (C) Singing. (D) Tapping and licking the female’s abdomen. (E) Attempting 

copulation by curling the abdomen. (F) Copulation initiation. 

In the wild, Drosophila encounter each other and mate at feeding sites, which 

also serve as oviposition substrates (Spieth, 1974) (Figure 1.1A). Male courtship 
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behavior is composed of a series of discrete and stereotyped motor programs: 

following the female (Figure 1.1B), producing courtship song by vibrating a single 

extended wing (Figure 1.1C), tapping and licking her genitals (Figure 1.1D), 

curling his abdomen (Figure 1.1E), and finally copulating (Figure 1.1F) (Dickson, 

2008; O'Dell, 2003). These behaviors may be alternated and repeated many 

times before a copulation attempt is successful (Spieth, 1974; Yamamoto and 

Nakano, 1998), suggesting that they perhaps act as motor program modules 

within a complex male courtship scheme. 

 Female courtship behavior has received considerably less attention than 

the more obvious overtures of the male and is described in terms of receptivity, 

the acceptance of copulation. Prior to copulation, receptivity comprises the 

relative absence of obvious rejection behavior, slowing down to allow the male to 

initiate copulation, and opening cuticular vaginal plates to allow access to the 

genitalia (Hall, 1994). However, most studies of receptivity have measured only 

copulation rate or latency, metrics that provide little insight into the discrete motor 

programs females display in the context of courtship. Consequently, the relative 

timing and frequency of individual female receptivity behaviors are unknown, as 

is whether they are coordinately or independently controlled by female neural 

circuitry. 

 

Sensory input 

Interactions between the male and female during courtship rely on 

sensory cues of nearly every modality. These stimuli provide the sensory input to 
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courtship neural circuitry. As with the behavioral description of courtship, the vast 

majority of study has focused on the male and the regulation of male courtship by 

particular stimuli. 

 

Visual 

 Visual cues help males pursue females they encounter, since males 

without the ability to sense horizontal motion show diminished courtship and 

increased copulation latency (Tompkins et al., 1982). Although D. melanogaster 

courtship can occur in the dark, latency to copulation is increased (Markow, 

1975) and blind males court less than wild-type males (Siegel and Hall, 1979). 

Visual cues from moving objects are necessary and, if combined with activation 

of particular male courtship circuitry, sufficient, to elicit male courtship behavior 

(Pan et al., 2012). 

 

Gustatory and Mechanosensory 

 Pheromones play an important role in both species and sex recognition in 

Drosophila. The fly cuticle is perfumed with non-volatile long-chain hydrocarbons 

that are differentially produced by males and females of different species (Coyne 

et al., 1994; Ferveur, 2005; Jallon and David, 1987). Since closely-related 

Drosophila species have overlapping geographical distributions, inter-species 

discrimination plays an important role in their reproductive isolation (Coyne et al., 

1994). 
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Figure 1.2: Cuticular hydrocarbons in the sister species D. melanogaster and D. simulans. 

The relative amount of the four most abundant compounds in males and females of the two 

species are indicated. Figure adapted from (Ferveur, 1997). 

 

The best studied and most abundant of the cuticular hydrocarbons are the 

dienes, which are produced sex-specifically in D. melanogaster but by both 

sexes in the closely related and geographically overlapping species D. simulans. 

7-tricosene (7-T) marks D. simulans and D. melanogaster males, and 7,11-

heptacosadiene (7,11-HD) and 7,11-nonacosadiene (7,11-ND) are produced by 

D. melanogaster females (Figure 1.2). Recent work has shown that 7,11-HD, as 

a unique marker of D. melanogaster females, regulates courtship among several 

closely related species (Billeter et al., 2009). 
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Figure 1.3: Effect of loss of pheromones on D. melanogaster courtship. Copulation latency 

between wild-type females (A) and males (B) and control or cuticular hydrocarbon-ablated males 

(A) or females (B). Flies lacking cuticular hydrocarbon pheromones were generated by ablation of 

the oenocytes, specialized hydrocarbon-producing cells underneath the cuticle. Figure adapted 

from (Billeter et al., 2009). 

 

Cuticular hydrocarbons are produced by specialized cells just under the 

cuticle called oenocytes, which can be ablated to produce flies lacking these 

pheromonal cues (Billeter et al., 2009). Experiments with such animals have 

shown that, within D. melanogaster, male pheromonal cues signal male 

attractiveness and promote female receptivity, since D. melanogaster males 

lacking cuticular hydrocarbons paired with wild-type females have significantly 

increased copulation latency (Figure 1.3A). At the same time, the female’s own 

pheromones delay her copulation: females lacking hydrocarbons paired with 

wild-type males show decreased copulation latency without a change in male 

courtship index (Figure 1.3B and data not shown). Female-specific hydrocarbons 

have been shown to promote male courtship as well (Ferveur, 2005; Jallon, 
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1984). Thus, the eau de fly of males and females has a strong influence on their 

general propensity to engage in courtship, but these studies did not analyze 

individual courtship motor programs, so it remains unclear at exactly which 

stages of an encounter pheromone sensation affects behavior. 

Because cuticular hydrocarbons are non-volatile, they are most likely 

sensed by gustatory receptors. Recent work has shown that two DEG/ENaC 

channel proteins, ppk23 and ppk29, and the sexually-dimorphic leg gustatory 

neurons in which they are expressed sense cuticular hydrocarbons and function 

to promote male courtship towards females and inhibit it towards other males (Lu 

et al., 2012; Thistle et al., 2012; Toda et al., 2012). Other male courtship-

promoting receptors include ppk25 (Lin et al., 2005), Gr68a (Bray and Amrein, 

2003; Ejima and Griffith, 2008), and Gr39a (Watanabe et al., 2011), all of which 

have been shown to decrease male courtship in loss-of-function studies. In 

addition, Gr32a is expressed in leg sensory neurons where it senses 7-T and is 

required for inhibiting male-male courtship (Miyamoto and Amrein, 2008), as well 

as promoting male-male aggression (Wang et al., 2011). Gr32a has also recently 

been shown to mediate inter-species courtship suppression via detection of 

cuticular hydrocarbons (Fan et al., 2013). Gr33a, which generally senses 

aversive compounds, also inhibits male-male courtship (Moon et al., 2009). 

Specific receptors and sensory pathways for contact pheromones in females 

have not yet been described. 

Contact chemosensation is clearly important in pheromone perception, but 

flies also possess many mechanosensitive bristles and neurons, and it is not 
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clear what role mechanosensation plays during the physical contact from kicking, 

licking, and tapping during courtship. In the absence of visual cues, the sound of 

a female’s movement may play a role and be sensed by Gr28a-positive neurons, 

which include both gustatory and mechanosensory cells (Ejima and Griffith, 

2008). 

 

Olfactory 

 In addition to the non-volatile cuticular hydrocarbons, male D. 

melanogaster produce a volatile pheromone, cis-vaccenyl acetate (cVA) outside 

of the oenocytes. cVA is transferred from males to females in seminal fluid during 

mating (Jallon, 1981), and sensed by Or67d and Or65a, it acts to suppress male 

courtship towards mated females and other males (Benton, 2007; Ejima et al., 

2007; Kurtovic et al., 2007). In females, cVA promotes receptivity via Or67d, 

since females mutant for Or67d via a Gal4 knock-in show decreased receptivity 

(Kurtovic et al., 2007). In addition, also via Or67d, cVA promotes male-male 

aggression(Wang and Anderson, 2010). cVA has been proposed to act as an 

aggregation pheromone, but the mechanism for this effect is lacking (Bartelt et 

al., 1985). Finally, flies do produce other volatile compounds in addition to cVA, 

but it is unknown precisely what role these serve (Farine et al., 2012). 

Male flies that have experienced courtship with an unreceptive mated 

female subsequently display less courtship, even towards a new virgin female 

(Mehren et al., 2004; Siegel and Hall, 1979). This is known as courtship 

conditioning and is mediated by cVA (Keleman et al., 2012). A growing body of 
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work uses this paradigm to study the mechanisms of learning and memory in the 

tractable fly system (Ejima et al., 2005; Ejima et al., 2007; Keleman et al., 2007; 

Waddell, 2005). 

 Given that the goal of courtship is ultimately successful copulation, which 

requires the female to lay eggs, courtship behavior may also be influenced by 

environmental cues indicating the quality of a site as a food source and egg-

laying substrate. Indeed, recent work has discovered that odors emitted by fruit 

and other oviposition substrates are sensed by a receptor from the ionotropic 

glutamate receptor family, Ir84a, and promote male courtship, while mutation of 

Ir84a decreases male courtship (Grosjean et al., 2011). It remains to be seen 

whether, and how, sensory cues from the environment affect female receptivity. 

 

Auditory 

Males produce courtship song by extending and vibrating a single wing 

(Ewing and Bennet-Clark, 1968; Shorey, 1962). Song consists of two types: 

pulse and sine (von Schilcher, 1976a) (Figure 1.4). Pulses are louder bursts of 

sound, while sine is more of a hum. Such songs are produced across many 

Drosophila species, and the interval between pulse segments—the inter-pulse 

interval—is characteristic of each particular species (Bennet-Clark and Ewing, 

1969). 

Although females of other Drosophila species produce a variety of sounds 

during courtship (Alonso-Pimentel and Spangler, 1994; Bixler et al., 1992), only 

Ewing and Bennet-Clark reported female-produced sound in D. melanogaster, 
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which they described as a buzz produced without wing movement in sexually 

immature young females (Ewing and Bennet-Clark, 1968). The extent to which D. 

melanogaster males might perceive auditory signals from females during 

courtship is thus unknown. 

 

 

Figure 1.4: D. melanogaster male courtship song. Recording of playback of wild-type male 

courtship song originally recorded (Arthur et al., 2013) during successful courtship of a Canton-S 

wild-type female by a Canton-S male. Blue indicates song amplitude and yellow and magenta 

highlights represent sine and pulse song, respectively. 

 

Auditory sensory input that females receive from male song seems 

particularly critical to successful courtship behavior, since females are much less 

receptive to males muted by having their wings removed (Ewing, 1964; 

Sturtevant, 1915). This can be rescued by playback of either synthetic or 

recorded natural male song (Bennet-Clark and Ewing, 1967; Kyriacou and Hall, 

1982; Rybak et al., 2002) (Figure 1.5). 
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Figure 1.5: Courtship song is required for female receptivity. Female receptivity in a group 

was decreased with males muted by having their wings removed compared to wild-type males. 

This effect was rescued by playback of artificial courtship song in moving air. Figure created from 

data in (Bennet-Clark and Ewing, 1967). 

 

It is thought that auditory input influences the female process of slowing 

down to facilitate copulation, and several studies have described effects of song 

playback alone on females. Pre-stimulation of groups of females with synthetic 

song increased receptivity (Kyriacou and Hall, 1984; von Schilcher, 1976a), and 

playback of synthetic song decreased the locomotion of grouped females 

(Crossley et al., 1995; von Schilcher, 1976b). However, playback of recorded 

natural song to single females in the absence of a male had no effect on 

locomotion (Kowalski et al., 2004). Thus it remains unclear to what degree 

females integrate sensory input from courtship song with other male courtship 

cues and how song affects their locomotion and receptivity. 
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The neurogenetics of male courtship behavior 

 Neural circuits governing male courtship behavior are mainly specified by 

fruitless (fru), an alternatively spliced transcription factor that comprises a CNS-

specific branch of the Drosophila sex determination transcription factor cascade 

(Demir and Dickson, 2005; Kimura et al., 2005; Manoli et al., 2005; Ryner et al., 

1996; Stockinger et al., 2005) (Figure 1.6). 

 

Figure 1.6: Drosophila sex determination hierarchy. The ratio of X chromosomes to 

autosomes determines sex via alternative splicing by sex lethal (SXL). Only females express 

functional transformer (tra) protein, which splices doublesex (dsx) to produce the feminine DSX
F
 

protein. In the absence of functional tra in males, dsx and fruitless (fru) are spliced into male-

specific isoforms which encode the functional proteins DSX
M
 and FRU

M
. Figure adapted from 

(Robinett et al., 2010). 

In males, fru is spliced to form functional FruM protein (Demir and Dickson, 

2005; Manoli et al., 2005) (Figure 1.6). FruM is both necessary and sufficient for 

normal male courtship behavior: males lacking functional FruM have various 

courtship deficits, including complete lack of the behavior, and court other males 

(Ryner et al., 1996), and neuronal expression of FruM during female development 
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is sufficient to cause females to court other females (Demir and Dickson, 2005; 

Manoli et al., 2005). 

fru marks a group of approximately 2000 neurons that have been 

proposed to form a complete neural circuit for male courtship (Figure 1.7). 

 

Figure 1.7: fru-Gal4 neurons in males and females. Central nervous system projections and 

cell bodies of neurons in males (A, A’, B, B’) and females (C,C’,D,D’) labeled by insertion of Gal4 

following the fru P1 promoter, the transcripts of which are alternately spliced in males and 

females. Figure adapted from (Stockinger et al., 2005). 

Gal4 insertions into the fru locus label peripheral sensory neurons as well as 

interneurons and motor neurons in the central nervous system (Kimura et al., 

2005; Manoli et al., 2005; Stockinger et al., 2005) (Figure 1.7). Although 

functional FruM protein is not produced in females, fru transcripts and neurons 

exist in females, as judged by fru-Gal4 expression. 

Silencing these neurons abolishes male courtship behavior. Activating 

them all in males can stimulate all steps of courtship behavior, while activating 

particular subsets can trigger particular behaviors, notably courtship song, even 

in females (Clyne and Miesenböck, 2008; Kohatsu et al., 2011; Pan et al., 2011; 

Rideout et al., 2007; von Philipsborn et al., 2011). Further dissection of fru 
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neuronal subsets has revealed that the circuit is sexually dimorphic and contains 

many different functional types of neurons (Datta et al., 2008; Kohatsu et al., 

2011; Ruta et al., 2010; Yu et al., 2010). 

In addition to fru, doublesex (dsx) acts to specify the male courtship 

circuit. Neurons labeled by dsx are functionally required for male courtship 

behavior (Rideout et al., 2010), and activation of dsx neurons can trigger male 

courtship behaviors (Pan et al., 2011). It has been proposed that dsx and fru 

coordinate to specify the male courtship circuit (Pan et al., 2011; Rideout et al., 

2010), but the exact mechanism of their co-operative function has yet to be 

determined. 

 

The neurogenetics of female receptivity 

As for male courtship, efforts have been made to identify genes that label 

neurons controlling female receptivity. A classic gynandromorph study identified 

a dorsal anterior region of the brain that must be female for proper female sexual 

behavior (Tompkins and Hall, 1983). Since then, several genetic mutations have 

been isolated that affect female receptivity (Table 1). 

For normal receptivity, spinster (Suzuki et al., 1997) is required in 

projection neurons from the VA1l/m sexually dimorphic olfactory glomerulus as 

well as a small number of neurons in the subesophageal zone, but it is unclear 

how these neurons function in receptivity (Sakurai et al., 2013). chaste virgin 

females show decreased receptivity, but this phenotype has not been mapped to 

specific neurons (Juni and Yamamoto, 2009). Females mutant for icebox show 
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reduced receptivity (Kerr et al., 1997), but this effect was ultimately shown to be 

non-neuronal (Carhan et al., 2005). Additional genes shown to play a role in both 

receptivity and other behaviors include dissatisfaction (Finley et al., 1998), 

inactive (Gong et al., 2004; O'Dell et al., 1989), and retained (Ditch et al., 2005). 

None of these genes has been shown to be responsible for a specific component 

of female receptivity and to act specifically in the function or development of its 

neural substrates. 

 

Table 1: Female receptivity mutants  

Mutant 
Name 

Gene Function Mutant Phenotype 

spinster 
membrane protein in CNS glia and 
ovarian follicles 

unreceptive females 

chaste Muscleblind: CNS development unreceptive females 

icebox neuroglian: L1-type cell adhesion unreceptive females 

inactive TRPV channel subunit involved in hearing 
both males and females 
reduced locomotion, reduced 
octopamine, and deaf 

dissatis-
faction 

nuclear receptor expressed in few 
neurons 

unreceptive females, bisexual 
males 

retained ARID-box transcription factor 
unreceptive females show male-
like courtship 

apterous 
transcription factor, interacts with juvenile 
hormone in vitellogenesis in ovaries 

reduced female receptivity 
correlated with synthesis of 
juvenile hormone 

painless 
TRP channel required for avoidance of 
noxious heat and wasabi 

female receptivity increased 

 

In one case, painless (pain) has been shown to inhibit receptivity (pain 

mutant females had reduced copulation latency compared to wild-type) (Sakai et 

al., 2009). pain is a TRP channel required for avoidance of noxious heat and 
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wasabi. Subsequent work suggests that pain acts in insulin-producing cells, and 

females with pain knockdown in these cells displayed decreased jumping or 

running away from a courting male, kicking, or curling the abdomen to prevent 

copulation (Sakai et al., 2014). 

 

Regulation of female receptivity 

Emergence of receptivity 

Female sexual maturity develops over the first few days after eclosion 

(Manning, 1966), and sexually immature adult females reject male courtship by 

running or jumping away and kicking and fluttering their wings (Connolly and 

Cook, 1973). The maturation process depends on juvenile hormone: removal of 

the corpora allata decreases female mating, which can be rescued by application 

of a juvenile hormone analog, and female apterous mutants with lower levels of 

juvenile hormone show decreased mating rates (Altaratz et al., 1991; Manning, 

1966; Ringo et al., 1991). In the development of female receptivity, juvenile 

hormone acts through its Methoprene tolerant (Met) receptor, and decreased 

juvenile hormone delays the production of female-specific cuticular hydrocarbons 

(Bilen et al., 2013). Maturation has also been shown to require dopamine since 

newly eclosed females fed dopamine synthesis inhibitors are less receptive at 

maturity (Neckameyer, 1998). These data suggest that neural circuitry underlying 

receptivity could express the Met receptor for juvenile hormone and be 

dopamine-sensitive or that other components of these pathways affect the 

receptivity circuit indirectly. 
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Post-mating suppression of receptivity 

Much of the effort to understand female receptivity has focused on its 

post-mating regulation. Like many insects, for a few days after mating female 

Drosophila switch into a unique physiological and behavioral state called the 

post-mating response that includes decreased sexual receptivity and increased 

egg-laying (Gillott, 2003). To reject male courtship and prevent copulation, 

recently mated females periodically extrude their ovipositor (Connolly and Cook, 

1973) (Figure 1.8). 

 

Figure 1.8: Mated female ovipositor extrusion. Mated female 48 h after copulation before (A) 

and during (B) ovipositor extrusion to reject male courtship. (C) Side view of ovipositor extrusion. 

The post-mating response is triggered by Sex Peptide (SP) (Chapman et 

al., 2003; Chen et al., 1988; Liu and Kubli, 2003), which is transferred to the 

female in seminal fluid during copulation. This peptide activates Sex Peptide 

Receptor (SPR) (Yapici et al., 2008) in a subset of female reproductive tract 

sensory neurons labeled by pickpocket (ppk), fruitless (fru), and doublesex (dsx) 

(Häsemeyer et al., 2009; Rezával et al., 2012; Yang et al., 2009) (Figure 1.9A). 

These ppk+ neurons project from the reproductive tract to the abdominal 

ganglion, where they presumably relay information about mating status 

(Häsemeyer et al., 2009; Yang et al., 2009).  
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Figure 1.9: Female post-mating response neurons. (A) Projections (green) and cell bodies 

(red) of ppk neurons in the female reproductive tract. Figure adapted from (Häsemeyer et al., 

2009). (B and C) Projections (green) of the Et
FLP250

 subset of dsx neurons in the female (B) 

central nervous system and (C) reproductive tract. Inset in (C) shows nuclei of ppk neurons. 

Figure adapted from (Rezával et al., 2012). (D) Schematic of dsx/fru/ppk neurons (red) and dsx ∩ 

Et
FLP250

 neurons (blue) in the female nervous system. SP=sex peptide. Abg=abdominal ganglion. 

SOG=subesophageal zone. Figure adapted from (Kubli and Bopp, 2012). 

Recently, a subset of dsx-Gal4 neurons in the abdominal ganglion, 

separate from those labeled by ppk, has been shown to be both necessary and 

sufficient for post-mating behaviors (Rezával et al., 2012), identifying an 

additional component of the post-mating circuit. These neurons, which are the 

intersection of an enhancer-trap insertion of FLP recombinase (EtFLP250) and dsx, 

have both presumptive descending projections to the reproductive tract and 
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ascending projections to the subesophageal zone, the taste center of the brain 

(Figures1.9B and 1.9C). It remains unclear which second-order neurons the SP-

sensing ppk neurons contact and how they and dsx ∩ EtFLP250 influence 

receptivity and egg-laying. 
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CHAPTER 2: AN RNAi SCREEN IDENTIFIES GENES 

REQUIRED IN NEURONS FOR FEMALE REPRODUCTIVE 

BEHAVIORS 

 

 We reasoned that genes and neural circuitry required for virgin female 

receptivity could be identified within hits of a genome-wide RNAi screen 

previously carried out using egg-laying to identify defects in female reproductive 

behaviors. A neuron-specific screen of the Vienna Drosophila RNAi center 

(VDRC) library (Dietzl et al., 2007) was carried out by Nilay Yapici, together with 

Carlos Ribeiro, in Barry Dickson’s lab from 2005-2008. They graciously shared 

their unpublished screen data. This screen led to the identification of SPR, which 

senses SP after mating and triggers the post-mating response (Yapici et al., 

2008). As opposed to a classical forward-genetic screen or synaptic inactivation 

screen of neuronal subsets, this approach had the advantages of being both 

neuron-specific and knocking down genes of interest, which would allow us to 

potentially identify a neuronal subset marked by a gene itself functionally 

important for receptivity. It also potentially circumvents the problem of lethality 

that might arise in a forward genetic screen, in which an essential gene knocked 

out in all cells might be lethal but knocked down only in neurons might be viable. 

 The VDRC RNAi library comprises more the 20,000 fly lines, each 

containing a UAS-RNAi hairpin transgenic insertion bearing homology to one of 

the annotated protein-coding genes in the Drosophila genome (Dietzl et al., 
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2007). Thus, using Gal4 lines to screen this collection can test for the function of 

each gene in particular subsets of neurons. In the Yapici screen, RNAi was 

driven by elav-Gal4, a well-characterized fusion of a pan-neuronal promoter to 

Gal4 (Luo et al., 1994). This resulted in testing the effect of knockdown of each 

gene in whichever neurons it is normally expressed. Males and females with 

elav-driven expression of each RNAi hairpin and Dicer2 (to increase RNAi 

efficacy) were allowed to mate (Figure 2.1A), and egg-laying of female progeny 

was scored semi-quantitatively across three days (Figure 2.1B). RNAi, not wild-

type, males were used to increase the throughput of the screen. 

 

 

Figure 2.1: Schematic of neuronal RNAi screen and egg scoring system. (A) Diagram 

illustrating crossing scheme and assay for the neuron-specific egg-laying screen of the VDRC 

RNAi library. (B) Representative photos of categories of eggs laid in food vials used to score 

female egg-laying behavior. The higher the score, the fewer eggs laid compared to wild-type. 

RNAi lines with scores of 3 or more were considered defective in egg-laying. 
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21,033 RNAi lines targeting 12,199 genes were screened, of which 345 

RNAi lines (1.6%, targeting 336 genes) showed reduced egg-laying (Figure 2.2). 

These lines were re-screened twice to confirm a reduced egg-laying phenotype 

for 53 RNAi lines targeting 52 genes. Generalized posture and locomotion 

defects during handling were found in 25 of these 53 candidate lines, which were 

therefore not further examined (data not shown). 

 

 

Figure 2.2: Three rounds of screening yielded 28 candidate RNAi lines. 345 initial hits from 

the first round of screening of the VDRC RNAi library were re-screened twice to confirm reduced 

egg-laying. 

 

Reduced egg-laying in these strains could have been caused by deficits in 

female receptivity, the female post-mating response, female fertility, or male 

mating success or fertility. To distinguish among these possible phenotypes, 

secondary assays for female receptivity, egg-laying, and remating were carried 

out (Figure 2.3). Male mating success and fertility were not tested in these 

secondary assays. 
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Figure 2.3: Timeline for secondary assays in RNAi screen. 28 RNAi lines were tested in 

secondary assays to characterize their egg-laying defect when driven in neurons by elav-Gal4. 

 

To determine receptivity to mating, single neuronal RNAi virgin females 

were videotaped for one hour with single wild-type males in 1-cm circular plastic 

chambers and scored for copulation (Figure 2.4A). 10 of the 28 candidate lines 

showed a reduction in virgin female receptivity (Figure 2.4B). It was these lines 

that we chose for further study. 

 

Figure 2.4: Secondary assay for virgin female receptivity. (A) Schematic of assay. (B) 

Receptivity of virgin females with pan-neuronal RNAi targeting the indicated gene paired with 

single wild-type males (***p <0.001 compared to control, pairwise chi-square test; mean and 95% 

confidence interval are shown, n = 30-300). Control is elav-Gal4 crossed to VDRC library 

isogenic w base strain. 

For RNAi lines not showing a receptivity phenotype, those females that 

mated were individually transferred to food vials for 48 hours and allowed to lay 

eggs, which were counted to measure egg-laying (Figure 2.5A). 10 of the original 

28 screen hits showed reduced egg-laying in this assay (Figure 2.5B). 
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Figure 2.5: Secondary assay for egg-laying. (A) Schematic of assay. (B) Mean number of eggs 

laid per female during the first 48 h after mating (***p <0.001 compared to control, one-way 

ANOVA with Sidak correction, mean ± SEM, n = 20–274). 

These same females, which had mated in the receptivity assay on day 4 

and been held for 48 h to measure egg-laying, were then scored for remating 

with a wild-type male (Figure 2.6A). Three lines showed increased remating 48 h 

after initial copulation (Figure 2.6B). 

 

Figure 2.6: Secondary assay for remating. (A) Schematic of assay. (B) Percent remating (***p 

<0.001, *p <0.05 compared to control, pairwise chi-square test; mean and 95% confidence 

interval are shown, n = 44-272). 

Thus, of the 28 tested candidates, 10 showed decreased virgin female 

receptivity (Figure 2.4), 10 showed decreased egg-laying without affecting 

receptivity (Figure 2.5), and three were defective in post-mating responses and 

showed both decreased egg-laying and increased remating (Figures 2.5 and 

2.6). Among the latter group was the previously described SPR (Yapici et al., 
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2008). Five candidates did not show a phenotype in the secondary assays 

(CG13243, mad2, sec15, Rack1, and CG12338), perhaps because they affected 

male mating success or fertility, and were not examined further. 

The VDRC screen identified novel functions for 22 genes in three distinct 

female reproductive behaviors: virgin receptivity, egg-laying, and remating. 

[transformer, among the receptivity hits, is known to play a role in sex 

determination and sex-specific behavior (Robinett et al., 2010) (Figure 1.6)] 

Since the screen was limited to neurons, these genes should also label 

candidate neurons for each of these behaviors. Interestingly, both of the two non-

SPR post-mating response hits function in the biogenic amine signaling pathway. 

Tyrosine β-hydroxylase (Tβh) functions in the conversion of tyramine to 

octopamine, while the Vesicular monoamine transporter (Vmat) is required for 

vesicle storage of octopamine, dopamine, and serotonin. Octopaminergic 

neurons as well as the octopamine receptor OAMB are required for ovulation 

(Lee et al., 2009; Lee et al., 2003; Middleton et al., 2006; Monastirioti, 2003; 

Rodríguez-Valentín et al., 2006; Sun et al., 2013). In our assays, neuronal 

knockdown of both Tβh and Vmat decreased egg-laying (Figure 2.5). Neuronal 

knockdown of Tβh and Vmat also increased remating (Figure 2.6), which 

suggests that they normally function to repress female receptivity after mating. 

How egg-laying and reduced receptivity are coordinated within the post-mating 

response remains an open question, and perhaps further investigation of Vmat- 

and Tβh-expressing neurons would prove informative. 
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CHAPTER 3: ABD-B IS REQUIRED IN NEURONS FOR 

VIRGIN FEMALE RECEPTIVITY 

 

The 10 candidate receptivity genes from the VDRC screen described in 

Chapter 2 provided a starting point to identify female receptivity neurons. In the 

experiments described in this Chapter, we reconfirmed their phenotypes and 

chose one of them, the homeobox transcription factor Abdominal-B (Abd-B), for 

further study. The next phase of the thesis project centered on the questions of 

how Abd-B might function in receptivity neurons and how its knockdown caused 

virgin females to decrease their sexual receptivity. 

The 10 candidate receptivity genes belonged to several different functional 

categories (Table 2). Two were of unknown molecular and biological function, 

and four more had annotated functions only inferred from sequence data. All of 

these lacked genetic reagents, limiting further analysis. Five were known or 

predicted to function as transcription factors or mRNA binding proteins. We 

speculate that these may play an important developmental function in 

establishing the identity of receptivity neurons. One of the genes found in the 

screen was transformer (tra), a member of the Drosophila sex determination 

pathway (Figure1.6). Decreased expression of tra in neurons partially 

masculinizes the nervous system, and tra knockdown is known to reduce female 

receptivity (McRobert and Tompkins, 1985). None of the previously described 

receptivity mutants (Ditch et al., 2005; Finley et al., 1998; Juni and Yamamoto, 

2009; Kerr et al., 1997; O'Dell et al., 1989; Sakai et al., 2009; Suzuki et al., 1997) 
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(Table 1) obtained in forward genetic screens was found in the RNAi screen 

(Table 2), possibly because their effects on receptivity are not neuron-specific. 

 

Table 2: Candidate receptivity genes from genome-wide neuronal RNAi screen 

Gene Function 

elav mRNA binding, central nervous system development 

CG32691 Unknown 

Arpc3A Actin binding polymerization
1
 

Abdominal-B Transcription factor, sex-specific pigmentation 

transformer female sex determination 

CG12173 Acireductone synthase, metal ion binding, methionine salvage
1
 

CG6982 cell polarity
1
 

MED9 mediator complex component
1
 

CG3690 Unknown 

found in neurons mRNA binding 
1
 Inferred from sequence homology 

 

 

To permit the female a larger space to interact with and potentially avoid 

the male than the conventional 1-cm diameter plastic chambers used in most 

courtship experiments, we developed an assay where a single female was paired 

in a food vial with two males for one hour. We suspect that this assay is closer to 

the normal situation in the laboratory because it gives females a choice among 

multiple males at a typical site of social encounters and in the presence of food, 

which can serve as an egg-laying substrate (Figure 3.1A). In this assay, seven of 

10 hits from Figure 2.4 showed a reduction in virgin female receptivity (Figure 

3.1B). 
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Figure 3.1: Receptivity of neuronal RNAi virgin females. (A) Schematic of food vial mating 

assay with two males. (B) Receptivity of virgin females with elav-Gal4-driven RNAi against the 

indicated gene [***p <0.0001 or *p <0.005 compared to Control: pairwise Fischer’s exact test with 

Bonferroni correction; mean and 95% confidence interval are shown, n = 30-300.] 

Of these, we chose the Hox transcription factor Abd-B for further analysis 

because it has well-studied functions in specifying cell identity (Estacio-Gómez et 

al., 2013; Miguel-Aliaga and Thor, 2004; Williams et al., 2008), was likely 

expressed in specific neuronal subsets, and for which many genetic and antibody 

reagents were available. 

 

Figure 3.2: Abd-B expression is required in neurons for virgin female receptivity. 

Receptivity of virgin females with elav- or nsyb-Gal4-driven Abd-B RNAi [***p <0.0001 compared 

to parental control: pairwise Fischer’s exact test with Bonferroni correction; mean and 95% 

confidence interval are shown, n = 30-273]. Abd-B RNAi 1 is the original hairpin from the Vienna 

screen and was used in all other experiments. For unknown reasons, RNAi 2 when driven by 

nsyb was lethal, precluding further analysis. 
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To exclude off-target effects of RNAi, we tested a second hairpin targeting 

Abd-B and again found decreased receptivity (Figure 3.2). We also used a 

second pan-neuronal driver, neuronal synaptobrevin (nsyb)-Gal4, to knock down 

Abd-B expression in neurons and found reduced receptivity with the original 

hairpin. Thus, Abd-B expression is required in neurons for virgin female 

receptivity. For reasons that are unclear, driving the second Abd-B RNAi hairpin 

with nsyb was lethal, precluding further analysis (Figure 3.2). 

 

 

Figure 3.3: Abd-B expression in the adult female abdominal ganglion. (A) Schematic of fly 

nervous system (gray) indicating the abdominal ganglion (red). (B,C) Immunofluorescence of 

Abd-B (green) and nuclei (DAPI, magenta) in abdominal ganglia from females of the indicated 

genotype and mating status. Scale bar: 50 µm. 

 

Our pan-neuronal Abd-B RNAi experiments gave no indication in which 

neurons Abd-B plays a role to influence receptivity. We therefore used antibody 

staining for Abd-B in the adult female nervous system to identify Abd-B-

expressing cells. Anti-Abd-B staining (Celniker et al., 1989) in adult females 

revealed many Abd-B-expressing cells within the abdominal ganglion of the 

ventral nerve cord (Figures 3.3A and 3.3B) and a smaller number of neurons 

within the reproductive tract (data not shown). Abd-B RNAi strongly reduced the 
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Abd-B immunofluorescence signal within the abdominal ganglion, in both 

unreceptive virgin females and the small fraction that mated (Figure 3.3C), 

consistent with the notion that functional Abd-B protein is greatly reduced by 

RNAi and that Abd-B RNAi females as a group have a decreased probability of 

mating. 

While receptivity emerges in females over the 48 h after eclosion, the 

adult nervous system is largely wired during development (Manning, 1966; 

Truman et al., 2004). To assess if Abd-B affects the development of the female 

receptivity circuit or is required for neuronal function in the adult, we temporally 

restricted Abd-B RNAi either to pre-adult stages or the adult using Gal80ts, a 

temperature-sensitive repressor of Gal4 (McGuire et al., 2004). In control 

experiments, we monitored the expression of CD8-GFP driven by nsyb-Gal4 to 

ensure that the time course of Gal80 repression worked as expected (Figure 

3.4). 

 

Figure 3.4: Effect of tubGal80
ts

 induction on nsyb>GFP expression in adult ventral nerve 

cord. (A-D) Ventral (A, C, D) or dorsal (B) views of ventral nerve cord from females who 

experienced the following temperature conditions: reared and held at 18°C (A); shifted from 18°C 

to 30°C at eclosion (B); shifted from 30°C to 18°C at eclosion (C); reared and held at 30°C (D). 
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Abd-B RNAi active only during development caused a reduction in receptivity, 

while RNAi active only in the adult showed no effect on receptivity (Figure 3.5). 

We conclude that Abd-B plays a role in forming the female receptivity neural 

circuit at earlier developmental times. 

 

Figure 3.5: Abd-B plays a developmental role in female receptivity. Receptivity of virgin 

females with Abd-B RNAi temporally restricted by shifts from 18°C to 30°C (***p <0.0001, 

pairwise Fischer’s exact test with Bonferroni correction; mean and 95% confidence interval are 

shown, n = 23-32). 

The decreased copulation success of Abd-B RNAi virgin females could be 

because they were unattractive to males or because they switched into the 

unreceptive post-mating state. 

 

Figure 3.6: Abd-B RNAi virgin females are attractive to males. (A) Schematic of courtship 

index quantification. (B) Courtship index of wild-type males during the first 5 min of courtship of a 

female of the indicated genotype and mating status (n.s. = not significant, one-way ANOVA with 

Bonferroni correction, mean ± SEM, n = 8). 
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We examined the detailed behavioral phenotype of Abd-B RNAi females in 1-cm 

plastic chambers with single wild-type males by manually scoring videos. 

Virgin Abd-B RNAi females were as attractive to males as parental 

controls (Figure 3.6). This was quantified by courtship index, defined as the 

fraction of time the male spent orienting towards and following the female (Figure 

3.6A). 

 

 

 

Figure 3.7: The post-mating response is intact in Abd-B RNAi females. (A) Schematic of 

ovipositor extrusion. (B) Female ovipositor extrusion during assays in Figure 3.6 (n.s. = not 

significant, one-way ANOVA with Bonferroni correction, mean ± SEM, n = 8). (C) Schematic of 

egg-laying assay. (D) Egg-laying during the first 48 h after mating (n.s. = not significant; bars 

labeled with different letters are significantly different: p <0.01, one-way ANOVA with Bonferroni 

correction, mean ± SEM, n = 24-32). 
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Males showed the same lower level of courtship of mated Abd-B RNAi females 

as parental controls (Figure 3.6B). 

Mated Abd-B RNAi females extruded their ovipositor to reject males, laid 

eggs, and did not remate, thus showing all aspects of the post-mating response 

(Figure 3.7 and data not shown). In contrast, Abd-B RNAi virgins did not show 

these behaviors (Figure 3.7). 

Abd-B knockdown appears to reduce virgin receptivity in a manner that is 

different from the natural adjustment to receptivity that occurs after mating. We 

conclude that the role of Abd-B in receptivity is independent from the post-mating 

response. 
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CHAPTER 4: ABD-B RECEPTIVITY NEURONS RESIDE IN 

THE ABDOMINAL GANGLION AND REPRODUCTIVE 

TRACT 

 

Having established that Abd-B is required in neurons for receptivity, we 

next characterized the number, position, and projections of Abd-B-expressing 

neurons. For this, we needed to gain genetic access to cells expressing this 

gene. Abd-B is a large, complex locus comprising nearly one-third of the bithorax 

complex and containing multiple boundary domains and widely-spaced 

enhancers (Celniker et al., 1989). It is therefore not amenable to standard Gal4 

promoter fusions. De Navas et al. (2006) previously reported an enhancer trap 

line that inserts Gal4 in Abd-B, allowing us to characterize the neuroanatomy of 

Abd-B-expressing neurons. 

 We accessed Abd-B-expressing neurons genetically with Abd-BLDN, a 

Gal4 insertion in the tethering element of the Abd-B promoter (de Navas et al., 

2006) that confers expression in neuronal and non-neuronal cells in the adult fly.  

 

 

Figure 4.1: Abd-B
LDN

-Gal4 labels Abd-B cells. Co-localization of Abd-B (magenta) and nuclear 

β-gal (green) driven by Abd-B
LDN

-Gal4 in the virgin female abdominal ganglion. Scale bar: 50 µm. 
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Of the 384±4 (mean ± SEM, n = 3) Abd-B+ cells in the adult female abdominal 

ganglion, 283 ± 10 (mean ± SEM, n = 3) were co-labeled by Abd-BLDN-Gal4 

(Figure 4.1). Most of the Abd-B+ cells in the reproductive tract were also co-

labeled (data not shown). Abd-BLDN-Gal4 therefore labels approximately 75% of 

the Abd-B cells we observed in the adult female. 

To determine whether Abd-BLDN-Gal4 labels the neurons in which Abd-B 

knockdown decreased receptivity, we used it to drive Abd-B RNAi. However, 

Abd-BLDN>Abd-B RNAi females had malformed genitalia and were unable to 

copulate (data not shown). We reasoned that Abd-BLDN-Gal4 expression in non-

neuronal cells (de Navas et al., 2006) was causing these genital deformations 

and therefore restricted Abd-BLDN>Abd-B RNAi to neurons using the nsyb 

promoter (Figure 4.2). 

 

 

Figure 4.2: Abd-B
LDN

-driven knockdown of Abd-B in neurons decreases receptivity. 

Receptivity of virgin females with RNAi against Abd-B driven by Abd-B
LDN

-Gal4 and UAS-Dcr2, 

limited to neurons by nsyb-lexA, lexAop-FLP, and tub-FRT-Gal80-FRT-STOP (***p <0.001, 

Fischer’s exact test; mean and 95% confidence interval are shown, n = 16-40). 
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Briefly, we used the lexA-lexAop system (Lai and Lee, 2006) to express FLP 

recombinase in neurons under the control of the nsyb promoter and “flipped-out” 

a ubiquitous Gal80 (Gordon and Scott, 2009) to relieve repression of Gal4 only in 

neurons. Virgin females with Abd-B RNAi in Abd-BLDN-Gal4 neurons showed 

reduced receptivity (Figure 4.2). Thus, Abd-BLDN-Gal4 labels a subset of Abd-B 

neurons important for female receptivity. 

 

 

Figure 4.3: Anatomy of Abd-B
LDN 

neurons. Immunofluorescence of GFP (green) and nc82 or 

rhodamine-phalloidin (magenta) in the indicated tissue in virgin females of the indicated 

genotype. Insets are separate z-stacks at higher magnification of approximate areas indicated. 

Arrowheads in E and F indicate neuronal cell bodies. Scale bars: 50 µm. 
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 To describe the anatomy of the Abd-B receptivity neurons, we examined 

the expression of nuclear (Figures 4.3A-4.3F) and membrane-bound (Figures 

4.3G-4.3L) green fluorescent protein (GFP) driven by Abd-BLDN-Gal4. Anatomical 

sites of expression are named according to the recently published systematic 

nomenclature of the insect brain (Ito et al., 2014). 

Abd-BLDN-Gal4 showed restricted labeling of neurons in the abdominal 

ganglion and a small number of neurons within the reproductive tract and along 

the vaginal plates, as well as non-neuronal cells in the reproductive tract (Figures 

4.3A-4.3F and arrowheads in Figures 4.3E and 4.3F). By co-staining with anti-

elav, there are 280 ± 5 (mean ± SEM, n = 4) Abd-BLDN neurons within the 

abdominal ganglion. We did not observe any Abd-BLDN neuronal cell bodies in 

the brain (Figure 4.3A). 

Abd-BLDN neurons project to several higher brain areas including the 

subesophageal zone, the ventrolateral neuropils, and the superior neuropils 

(Figure 4.3G), with extensive processes both within the abdominal ganglion and 

throughout the ventral nerve cord (Figures 4.3H and 4.3I). Within the female 

reproductive tract and terminalia, Abd-BLDN-Gal4 neuronal processes innervate 

the oviducts, uterus, muscles near the vaginal plates, and the vaginal bristles 

(Figures 4.3J-4.3L). 

We used Abd-BLDN-driven expression of GFP fused to nsyb (Figures 4.3M-

4.3R) and Dscam (Figures 4.3S-4.3X), enriched in axons and dendrites, 

respectively (Estes et al., 2000; Wang et al., 2004), to examine the polarity of 

Abd-BLDN neurons. Extensive nsyb-GFP labeling was found throughout the 
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abdominal ganglion and ventral nerve cord, as well as in the subesophageal 

zone, ventrolateral neuropils, and superior neuropils in the brain (Figures 4.3M-

4.3O) and in the reproductive tract, particularly along muscle fibers, including 

those near the vaginal plates (Figures 4.3P-4.3R). Dscam-GFP labeling was 

absent in the brain but abundant in the abdominal ganglion of the ventral nerve 

cord (Figures 4.3S-4.3U). In the reproductive tract and terminalia, Dscam-GFP 

labeling was sparse but present along uterine and vaginal tissues (Figures 4.3V-

4.3X). 

 

Figure 4.4: Abd-B
LDN

 neurons in immature virgin females. (A-F) Immunofluorescence of 

CD8-GFP (green) and nc82 or rhodamine-phalloidin (magenta) in 1-day-old virgin females of the 

indicated tissues and genotype. Insets in B and D indicate the approximate areas displayed in C, 

E, and F as separate z-stacks at higher magnification. Scale bars: 50 µm. 

 

Our interpretation of these staining patterns is that abdominal ganglion 

Abd-BLDN neurons ascend to terminate in the ventral nerve cord and brain, with 

dendritic labeling enriched within the abdominal ganglion. They may also project 
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axons within the abdominal ganglion itself and descend to innervate targets in 

the reproductive tract. Although Abd-BLDN neuronal cell bodies reside within the 

reproductive tract, it was not possible to establish the polarity of projections of 

these neurons with these methods. 

Because female receptivity develops over the first 48 h after eclosion, we 

wondered if corresponding anatomical changes to Abd-BLDN neurons occur. We 

therefore compared the projections of these neurons between 1-day-old sexually 

immature virgins and the mature virgin females in Figure 4.3. Because 

Drosophila neurogenesis occurs prior to eclosion, we did not look for changes in 

the number of these neurons. We did not observe any differences in the 

projections of Abd-BLDN neurons in the brain, ventral nerve cord, abdominal 

ganglion, or reproductive tract between 1-day-old immature virgin females and 4-

day-old mature virgin females (Figure 4.4). 
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CHAPTER 5: A SUBSET OF ABD-B NEURONS IS 

FUNCTIONALLY REQUIRED FOR VIRGIN FEMALE 

RECEPTIVITY 

 Having established that Abd-B has a role in the development of the 

receptivity neural circuit and that Abd-BLDN-Gal4 labels a subset of neurons in 

which Abd-B is required for receptivity, we investigated whether Abd-BLDN 

neurons themselves are functionally part of the female receptivity neural circuit. 

We used both acute and chronic silencing of these neurons to probe their 

function in receptivity. Because defining the precise function of Abd-BLDN neurons 

in receptivity requires an understanding of their connectivity, we wanted to 

determine the minimal subset of these neurons that was functionally relevant. 

This could potentially guide hypotheses about the function of Abd-BLDN neurons 

as well as narrow the search for their interacting partners and simplify 

characterization of their function. As described below, we found that 

approximately half of the full complement of Abd-BLDN neurons is functionally 

required for receptivity. 

We used UAS-shits, a dominant-negative variant of dynamin that 

transiently blocks membrane recycling, and thus chemical synaptic transmission, 

at temperatures above 29°C (Kitamoto, 2001), to silence Abd-BLDN neurons 

during courtship. This allowed Abd-BLDN neurons to function normally during the 

development of receptivity after eclosion and only manipulated their function in 

mature females during courtship. 
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Figure 5.1: Silencing Abd-B
LDN

 neurons during courtship decreases receptivity. Receptivity 

of mature virgin females at the indicated temperature. **p <0.01 compared to parental controls at 

the same temperature, Fischer’s exact test; mean and 95% confidence interval are shown. n = 

33-40. 

 

At the restrictive temperature, there was a selective decrease in receptivity only 

in animals carrying both Abd-BLDN and shits (Figure 5.1), indicating that Abd-BLDN 

neurons function in receptivity. 

 We wanted to understand whether Abd-BLDN neurons also function in 

receptivity after mating. It is possible that while at least some Abd-BLDN neurons 

promote receptivity in virgin females, they, or at least a subset of them, repress 

receptivity in mated females. In that case, silencing Abd-BLDN neurons in mated 

females should increase their receptivity. This is similar to the functions of the 

~700 dsx neurons: virgin females with silenced dsx neurons are somewhat 

slower to copulate while mated females with silenced dsx neurons show 

increased receptivity (Rideout et al., 2010). Silencing the subset of dsx neurons 
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intersected by EtFLP250 increases remating, suggesting that it is this subset 

responsible for the latter dsx phenotype (Rezával et al., 2012). 

 

Figure 5.2: Silencing Abd-B
LDN

 neurons during courtship of mated females modestly 

increases receptivity. Receptivity of females 48 h after mating at the indicated temperature. *p 

<0.05 compared to parental controls at the same temperature, Fischer’s exact test; mean and 

95% confidence interval are shown. n = 23-35. 

 

We therefore allowed females to mate and, 48 h later, silenced Abd-BLDN 

neurons just prior to courtship. In females mated at the permissive temperature, 

acutely silencing Abd-BLDN neurons modestly increased remating (Figure 5.2), 

but not to the level of receptivity of virgin parental controls at the same 

temperature (p<0.01, Fischer’s exact test) or the ~75% level found in mated SPR 

RNAi females (p<0.0001, Fischer’s exact test) (Figure 2.6), which are deficient in 

the post-mating response (Yapici et al., 2008). 

The Drosophila genetic toolkit contains several different methods of 

abolishing neuronal function, each with different mechanisms and different 

potential pleiotropic consequences. 
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Figure 5.3: Chronic silencing of Abd-B
LDN

 neurons decreases receptivity. Receptivity of 

virgin females. ***p <0.001 compared to parental controls, Fischer’s exact test; mean and 

95% confidence interval are shown. n = 28-59. 

 

We used a second method of neuronal inactivation, UAS-kir2.1 (Baines et al., 

2001), to hyperpolarize Abd-BLDN neurons chronically and again found decreased 

virgin receptivity (Figure 5.3). 

 

 

Figure 5.4: elav-Gal80 suppresses neuronal expression of Abd-B
LDN

-Gal4. 

Immunofluorescence of CD8-GFP (green) and nc82 or rhodamine-phalloidin (magenta) in the 

indicated tissue in virgin females of the indicated genotype. Scale bars: 50 µm. 
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To confirm that Abd-BLDN>kir2.1 acts specifically in neurons to cause the 

receptivity phenotype, we used elav-Gal80 (Yang et al., 2009) to suppress Abd-

BLDN-Gal4 in neurons (Figure 5.4) and rescued receptivity as expected (Figure 

5.3). We conclude that Abd-BLDN neurons are functionally required for virgin 

female receptivity. 

 

 

Figure 5.5: Chronic silencing of Abd-B
LDN

 neurons decreases receptivity in older females. 

Receptivity of 14-day-old virgin females. **p<0.01 compared to parental controls, Fischer’s exact 

test; mean and 95% confidence interval are shown. n = 15-26. 

 

 To ask whether silencing Abd-BLDN neurons might be acting to delay the 

onset of receptivity, we assayed 14-day-old females. As in our experiments with 

4-6-day-old Abd-B>kir females (Figure 5.3), these older females showed 

decreased receptivity (Figure 5.5). Thus, allowing additional time for the 

development of receptivity had no effect. 

 We also asked whether Abd-BLDN neurons play a role in male sexual 

behavior. 
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Figure 5.6: Abd-B
LDN

 neurons in males. (A-J) Immunofluorescence of CD8-GFP or nuclear lacZ 

(green) and elav or rhodamine-phalloidin (magenta) in the indicated tissues and genotypes. 

Arrowheads in A indicate potential sites of sexual dimorphism in the brain. Scale bars: 50 µm. 

 

As in females, Abd-BLDN-Gal4 labels neurons in the male ventral nerve cord that 

project to all of the ventral nerve cord lobes as well as the subesophageal zone, 

ventrolateral neuropils, and superior neuropils in the brain (Figures 5.6A-5.6F). 

Males have approximately the same number of Abd-BLDN ventral nerve cord 

neurons as females (280 ± 2, mean ± SEM, n = 3) (Figure 5.6F). As in females, 

Abd-BLDN-Gal4 labels neurons and projections in the male reproductive tract 

(Figures 5.6G-5.6J). 
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Figure 5.7: Sexual dimorphism in Abd-B
LDN

 brain projections. Immunofluorescence of CD8-

GFP (green) and nc82 (magenta) in the brain of mature virgin female (A) and male (B). 

Arrowheads in indicate potential sites of sexual dimorphism. Scale bars: 50 µm. 

 

However, we did observe differences in the projections of the Abd-BLDN neurons 

between males and females (Figure 5.7). There is increased labeling in the 

flange within the subesophageal zone and the lateral protocerebrum in males 

and increased labeling in the superior medial protocerebrum in females (arrows 

in Figure 5.7). 

 To determine whether Abd-BLDN neurons are part of the neural circuitry for 

male sexual behavior in addition to female receptivity, we silenced them in males 

using kir2.1 (Figure 5.8). 
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Figure 5.8: Silencing Abd-B
LDN

 neurons does not affect male courtship behavior. (A) Male 

copulation success (n.s. = not significant, Fischer’s exact test. Mean and 95% confidence interval 

are shown, n = 32-59). (B) Video still of courtship between an Abd-B>kir2.1 male and wild-type 

mature virgin female. 

 

Silencing Abd-BLDN neurons had no effect on male copulation success with wild-

type females (Figure 5.8A), and Abd-B>kir2.1 males performed all of the 

stereotyped courtship behaviors (Figure 5.8B and data not shown). We therefore 

conclude that Abd-BLDN neurons are not required for male courtship behavior. 

We next carried out a series of experiments to restrict the expression of 

Abd-BLDN-Gal4 to a smaller subset of neurons that still decreased virgin 

receptivity using silencing with kir2.1 in conjunction with several genetically-

defined lines expressing the Gal80 repressor of Gal4 (Figure 5.9). 
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Figure 5.9: Silencing a subset of Abd-B
LDN

 neurons not labeled by tsh, VGlut, or ppk 

decreases receptivity. Receptivity of virgin females. ***p <0.001 compared to parental controls, 

Fischer’s exact test; mean and 95% confidence interval are shown. n = 20-59. First three bars are 

reprinted from Figure 5.3 for comparison. 

teashirt (tsh)-Gal80 is expressed in a large subset of ventral nerve cord 

cells (Clyne and Miesenböck, 2008) and suppressed Gal4 expression in 

approximately half of the Abd-BLDN neurons, leaving 142 ± 2 (mean ± SEM, n = 

4) neurons in the abdominal ganglion as well as those in the reproductive tract 

(Figure 5.10). 

 

Figure 5.10: tsh-Gal80 partially suppresses abdominal ganglion expression of Abd-B
LDN

-

Gal4. Immunofluorescence of CD8-GFP (A) or nuclear lacZ (B) (green) and nc82 or rhodamine-

phalloidin (magenta) in the indicated tissue in virgin females of the indicated genotype. Scale 

bars: 50 µm. 
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Silencing only this subset of Abd-BLDN neurons in the presence of tsh-Gal80 was 

sufficient to reduce virgin female receptivity (Figure 5.9), and a maximum of 142 

of the 280 Abd-BLDN neurons are functionally required for virgin female 

receptivity. 

Projections of Abd-BLDN neurons are found near the ovipositor, uterus, and 

vaginal plates. To ask if Abd-BLDN receptivity defects were due to function in 

descending motorneurons, we created a Gal80 line using the Drosophila 

vesicular glutamate transporter (VGlut) promoter (Daniels et al., 2008) to 

suppress Abd-BLDN-Gal4 expression in motorneurons. We validated our VGlut-

Gal80 by ensuring that it blocked Gal4 expression driven by the well-

characterized motorneuron driver OK371-Gal4, an enhancer trap insertion of 

Gal4 into the VGlut promoter region (Mahr and Aberle, 2006) (Figure 5.11). 

 

 

Figure 5.11: VGlut-Gal80 blocks expression of OK371-Gal4 in motorneurons. 

Immunofluorescence of CD8-GFP (green, A-D) and nc82 (magenta, A-B) or rhodamine-phalloidin 

(magenta, D) in the indicated tissue in virgin females. Scale bars: 50 µm. 
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In conjunction with Abd-BLDN-Gal4, VGlut-Gal80 removed the muscle-innervating 

projections in the female reproductive tract (Figure 5.12), but receptivity 

remained strongly impaired in this strain, suggesting that motorneurons are not 

major contributors to the receptivity phenotype (Figure 5.9). 

 

 

Figure 5.12: VGlut-Gal80 suppresses motorneuron expression of Abd-B
LDN

-Gal4. 

Immunofluorescence of CD8-GFP (A) or nuclear lacZ (B) (green) and nc82 or rhodamine-

phalloidin (magenta) in the indicated tissue in virgin females of the indicated genotype. Scale 

bars: 50 µm. 

 

We next asked if ppk sensory neurons in the reproductive tract involved in 

post-mating female behaviors (Häsemeyer et al., 2009; Yang et al., 2009) 

contributed to our receptivity phenotype. Using ppk-Gal80 (Häsemeyer et al., 

2009; Yang et al., 2009) (Figure 5.13) we found no effect on the reduction in 

virgin female receptivity with Abd-BLDN>kir2.1 (Figure 5.9). 



52 
 

 

Figure 5.13: ppk-Gal80 suppresses ppk expression of Abd-B
LDN

-Gal4. Immunofluorescence 

of CD8-GFP (A) or nuclear lacZ (B) (green) and nc82 or rhodamine-phalloidin (magenta) in the 

indicated tissue in virgin females of the indicated genotype. Scale bars: 50 µm. 

 

Although these data suggest that neither motorneurons nor the ppk-expressing 

sensory neurons are major contributors to the receptivity phenotype, we cannot 

rule out a contribution from non-ppk-positive and non-VGlut-positive neurons in 

the reproductive tract and genitalia. 

 In addition to the ppk neurons, neurons labeled by dsx-Gal4 have been 

shown to play a role in female mating behavior (Rideout et al., 2010). Specifically, 

silencing a subset of dsx-Gal4 neurons in the abdominal ganglion by intersection 

with an enhancer-trap FLP recombinase line (EtFLP250) blocks the post-mating 

response and increases mated female receptivity (Rezával et al., 2012). Since 

this neuronal subset is the intersection of EtFLP250 and dsx-Gal4, if it contributes 

to the Abd-BLDN receptivity phenotype, EtFLP250 should intersect a subset of Abd-

BLDN neurons functionally important for virgin female receptivity.  
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Figure 5.14: Intersection of Abd-B
LDN

-Gal4 and Et
FLP250

. Immunofluorescence of CD8-GFP 

(green) and nc82 or rhodamine-phalloidin (magenta) in the indicated tissue in virgin females of 

the indicated genotype. Insets are separate z-stacks at higher magnification of approximate areas 

indicated. Scale bars: 50 µm. 

 

EtFLP250 does intersect a population of Abd-BLDN neurons (Figure 5.14). We 

therefore carried out intersectional neuronal silencing experiments using UAS-

FRT-STOP-FRT-kir2.1. 

 

 

Figure 5.15: Silencing the subset of Abd-B
LDN

 neurons intersected by Et
FLP250 

does not 

decrease receptivity. Receptivity of virgin females. ***p <0.001 compared to parental controls, 

Fischer’s exact test; mean and 95% confidence interval are shown. n = 29-56. 

 

In control experiments, we showed that intersectional silencing of all Abd-BLDN 

neurons using nsyb-lexA, lexAop-FLP reproduced the decrease in receptivity 
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seen with silencing all Abd-BLDN neurons (Figure 5.15). However, silencing the 

Abd-BLDN-Gal4 ∩ ETFLP250 subset had no effect on virgin female receptivity 

(Figure 5.15). Thus Abd-BLDN receptivity neurons comprise neither of the 

previously described ppk or dsx∩EtFLP250 neuronal subsets contributing to 

female-specific behaviors. 

 Given the central role of fruitless-labeled neurons in Drosophila courtship 

behavior (Demir and Dickson, 2005; Kimura et al., 2008; Manoli et al., 2005; 

Stockinger et al., 2005) and the fact that silencing fru-Gal4-labeled neurons in 

females decreases receptivity (Kvitsiani and Dickson, 2006), we tested whether 

Abd-BLDN-Gal4 expression overlaps with fru. 

 

 

Figure 5.16: Intersection of Abd-B
LDN

-Gal4 and fru-FLP. Immunofluorescence of CD8-GFP 

(green) and nc82 or rhodamine-phalloidin (magenta) in the indicated tissue in virgin females of 

the indicated genotype. Insets are separate z-stacks at higher magnification of approximate areas 

indicated. Scale bars: 50 µm. 

 

We intersected Abd-BLDN-Gal4 with fru neurons using fru-FLP (Yu et al., 2010) to 

identify a fru subset of Abd-BLDN neurons (Figure 5.16) 
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Figure 5.17: Silencing the subset of Abd-B
LDN

 neurons intersected by fru-FLP
 
does not 

decrease receptivity. Receptivity of virgin females. ***p <0.001 compared to parental controls, 

Fischer’s exact test; mean and 95% confidence interval are shown. n = 29-56. First three bars are 

reprinted from Figure 5.15 for comparison. 

 

fru-FLP does intersect a population of Abd-BLDN neurons, but silencing this 

subset does not decrease female receptivity (Figure 5.17), and the fru subset 

does not contribute to the Abd-BLDN receptivity phenotype. 

 We took two separate approaches to identify a smaller, potentially more 

homogenous subset of the Abd-B neurons involved in receptivity. First, we 

conducted a targeted Abd-B RNAi screen of Gal4 lines (Figure 5.18). This 

approach had the advantage of potentially identifying a smaller subset of Abd-

BLDN neurons in which Abd-B protein is itself required. We focused on well-

described Gal4 lines with sparse expression in the fly nervous system, or known 

function in female sexual behavior, or that labeled neuronal subsets marked by 

expression of neurotransmitters (Figure 5.18). 
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Figure 5.18: Abd-B RNAi Gal4 screen. Targeted screen for Gal4 drivers of Abd-B RNAi that 

reduced female receptivity (***p<0.001, **p<0.01, *p<0.05, Fischer’s exact test; mean and 95% 

confidence interval are shown, n=12-112). 

Of these lines, only dsx-Gal4, which is expressed in a large number of non-

neuronal cells, gave a receptivity phenotype approaching the strength of pan-

neuronal Abd-B RNAi (Figure 5.18). dsx>Abd-B RNAi females had malformed 

genitalia and were therefore unable to copulate (data not shown). However, our 

intersectional experiments with EtFLP250 (Figure 5.15), allowed us to circumvent 

the genital abnormalities of dsx>Abd-B RNAi, and with this subset, we found no 

effect of neuronal silencing on female receptivity. 

Several motorneuron drivers (D42, OK371, C164) also reduced receptivity 

when used to knockdown Abd-B. However, further investigation of the role of 

Abd-BLDN motorneurons was not pursued because subtraction of motorneurons 

from Abd-BLDN-Gal4 neuronal silencing using VGlut-Gal80 had no effect on 

female receptivity (Figure 5.9). The other two very weak phenotypes we 

observed were Ilp7-Gal4, whose neurons are required for female egg-laying 

(Yang et al., 2008), and GMR33604, a Gal4 from the HHMI Janelia Farm 

Research Campus collection driven by a part of the Abd-B regulatory region. 

GMR33604 labels even more neurons than Abd-BLDN-Gal4 (data not shown), and 

subtraction of Ilp7-Gal4 neurons from Abd-BLDN-Gal4 neuronal silencing did not 
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rescue the receptivity phenotype (data not shown). Continuing to use Abd-B 

RNAi, we screened an additional 100 sparsely-expressed Gal4 lines from the 

Research Institute of Molecular Pathology (IMP) in Vienna, the Bloomington 

Drosophila stock center at Indiana University, and Janelia Farm using the higher-

throughput egg-laying assay (Figure 2.1) but did not uncover any reproducible 

phenotype (data not shown). 

 Second, we conducted a screen using the FLP-out approach we used with 

the dsx and fru neurons to look for subsets of Abd-BLDN neurons required for 

receptivity. We screened an unpublished collection of several hundred enhancer-

trap FLP (EtFLP) strains created by Yick-Bun Chan in Ed Kravitz’s lab at Harvard, 

which provided genetic access to specific neuronal subsets that could be 

intersected with our Abd-BLDN-Gal4 line. This collection was also screened by 

Stephen Goodwin and colleagues to identify EtFLP250 as a strain that labels a dsx 

neuronal subset (Rezával et al., 2012). The Kravitz lab provided 14 EtFLP lines 

known to be expressed in the abdominal ganglion. 

 

 

Figure 5.19: FLP-out screen of Abd-B
LDN

-Gal4 for female receptivity. Intersectional silencing 

screen for subsets of Abd-B
LDN

 neurons required for receptivity using abdominal ganglion 

enhancer trap FLP strains. (***p<0.001, *p<0.05, Fischer’s exact test; mean and 95% confidence 

interval are shown, n=12-58). 
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We screened these lines using Abd-BLDN-Gal4; UAS-FRT-STOP-FRT-kir to 

silence any intersected neuronal subset (Figure 5.19). A few of these yielded 

receptivity phenotypes, but they were relatively weak compared with 

intersectional silencing of all Abd-BLDN neurons using nsyb-lexA; lexOp-FLP 

(Figure 5.19). 

 

Figure 5.20: Intersection of EtFLP lines with Abd-B
LDN

-Gal4. CD8-GFP staining of the 

intersections of Abd-B
LDN

-GAL4 and Et
FLP317

 (A), Abd-B
LDN

-GAL4 and Et
FLP550

 (B), and Abd-B
LDN

-

GAL4 and Et
FLP531 

(C). 

 

In particular, we characterized the intersection of EtFLP317 and Abd-BLDN-GAL4 

(Figure 5.20A), which when silenced slightly reduced female receptivity. 

Unfortunately, this genetic intersection also included all ~280 Abd-BLDN neurons. 

We were also interested in the neurons labeled by EtFLP550 and Abd-BLDN-GAL4, 

which do not project to the brain or anterior ventral nerve cord (Figure 5.20B), but 

the phenotype of females with silencing of this subset involved both a weak 
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reduction in receptivity and concomitant increase in ovipositor extrusion, 

suggesting that this subset is involved in the post-mating regulation of receptivity 

(data not shown). Finally, we preliminarily investigated the subset of Abd-BLDN 

neurons intersected by EtFLP531, but this subset also seemed to include nearly all 

of the Abd-BLDN-GAL4 projections (Figure 5.20C). 

 The experiments described in this chapter established a role for Abd-BLDN 

neurons in female receptivity. Although these neurons exist in males, they are 

not required for male courtship behavior. We did identify sites of potential sexual 

dimorphism in the brain, and it could be that these differences affect the different 

functional requirements for Abd-BLDN neurons in female vs. male sexual 

behavior. 

 Using several different Gal80 lines, we narrowed the population of Abd-

BLDN neurons required for receptivity to 140 neurons in the abdominal ganglion 

and a few non-motor, non-ppk neurons in the reproductive tract. Our extensive 

efforts to identify an even smaller, more homogenous subset of Abd-BLDN 

neurons were ultimately uninformative. There are relatively few genetic reagents 

characterized within the Drosophila abdominal ganglion and reproductive tract 

compared to the brain, and the Abd-BLDN neurons in the abdominal ganglion are 

contained within a single neuropil, without obvious stereotyped positions, which 

complicates the kind of cluster identification that has been used to characterize 

other subsets of neurons. 

 Other groups have used stochastic approaches such as Mosaic analysis 

with a repressible cell marker (MARCM) to selectively FLP out small numbers of 
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cells and test behavior in mosaic animals. The FLP-out mosaic approach is 

indeed useful in cases where the phenotype can be measured robustly in single 

animals, e.g. for the gain of function of courtship song in females (Kimura et al., 

2008) or proboscis extension in response to taste compounds (Marella et al., 

2012). This approach is not amenable for the study of female receptivity because 

reduced receptivity is a population-level phenotype, meaning that even wild-type 

females are occasionally non-receptive and females with Abd-BLDN neurons 

silenced occasionally mate. Also, since this approach does not lead to heritable 

expression patterns within a strain, conclusions are generally based on the small 

numbers of animals that show a phenotype. 

 Finally, it is worth noting that the 140 Abd-BLDN neurons we have identified 

may function jointly in receptivity, and it may not be possible to observe a strong 

receptivity phenotype by only manipulating some of them. 
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CHAPTER 6: SILENCING ABD-B NEURONS 

DECREASES PAUSING DURING COURTSHIP 

 To determine the specific role of Abd-BLDN neurons in female receptivity, 

we examined the behavior of females with silenced Abd-BLDN neurons during 

courtship. The detailed behavioral analysis described here allowed us to probe 

the role of Abd-BLDN neurons beyond simple acceptance of copulation and begin 

to characterize specific stereotyped behaviors of females during courtship. We 

developed assays to quantify all of the previously described female courtship 

behaviors: (1) vaginal plate opening, (2) ovipositor extrusion, a rejection behavior 

shown by mated females, (3) slowing down in the presence of a courting male, 

and (4) running away, a rejection behavior shown by immature virgin females. 

We compared sexually mature virgin females to immature 1-day-old females, 

which are unreceptive and reported to run away to avoid male courtship 

(Connolly and Cook, 1973). 

We first looked at movements of the female genitalia during courtship. 

While previous studies had scored ovipositor extrusion (Rezával et al., 2012; 

Yapici et al., 2008), we were unaware of existing assays for vaginal plate 

opening. We therefore observed females during courtship in 1-cm diameter 

plastic chambers and used a magnified video recording setup and frame-by-

frame video playback to distinguish and score both vaginal plate opening and 

ovipositor extrusion (Figure 6.1). 



62 
 

 

Figure 6.1 Vaginal plate opening and ovipositor extrusion. (A) Schematic of chamber used to 

observe female genitalia during courtship. (B,C) Video stills of vaginal plate opening (B) and 

ovipositor extrusion 48 h after mating (C) in wild-type female. 

While sexually immature virgin females did not open the vaginal plates, 

mature virgin females periodically opened their vaginal plates during courtship 

(Figure 6.2). The transition to intermittent vaginal plate opening during courtship 

was intact in virgin females with silenced Abd-BLDN neurons, and we conclude 

that Abd-BLDN neurons are not functionally required for vaginal plate opening. 

 

Figure 6.2: Vaginal plate opening during courtship. Vaginal plate openings per minute of 

females of the indicated experience. n.s. = not significant, one-way ANOVA with Bonferroni 

correction, mean ± SEM, n = 10. 

 

We also asked whether Abd-BLDN>kir2.1 females actively reject male 

courtship as mated females do by periodically extruding the ovipositor. Neither 
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immature 1-day-old nor mature 4-day-old Abd-BLDN>kir2.1 females showed 

significant ovipositor extrusion (Figure 6.3). 

 

Figure 6.3: Ovipositor extrusion during courtship. Ovipositor extrusions per minute of females 

of the indicated experience. n.s. = not significant, one-way ANOVA with Bonferroni correction, 

mean ± SEM, n = 10. 

 To quantify slowing down during courtship, we tracked the movement of 

pairs of male and female flies in a large (70 mm) arena using Ctrax software 

(Branson et al., 2009) (Figure 6.4). 

 

Figure 6.4 Movement tracking with Ctrax. Tracking arena with fly positions during the last 60 s 

before copulation between Abd-B
LDN

-Gal4 mature virgin female and wild-type male. 

 

The arena was customized from published designs optimized for computer 

vision-based tracking of walking flies (Simon and Dickinson, 2010). Abd-

BLDN>kir2.1 females showed a strong receptivity defect in this arena (Figure 6.5), 

allowing us to use their tracked behavior to investigate this phenotype. 
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Figure 6.5: Silencing Abd-B
LDN

 neurons decreases receptivity in the tracking arena. 

Receptivity of virgin females with a single wild-type male in the tracking arena (**p <0.01 

compared to parental controls, Fischer’s exact test; mean and 95% confidence interval are shown, 

n = 8-10). 

 

Slowing down to allow opportunities for copulation might involve the female 

decreasing her walking speed or stopping her locomotion entirely. However, 

female walking speed during courtship did not differ with sexual maturity (Figure 

6.6), suggesting that receptive females do not generally slow their movement 

during courtship. 

 

 

Figure 6.6: Female walking speed does not vary with sexual maturity. Mean per-frame 

speed during courtship excluding frames classified as pausing (Student’s t-test, mean ± SEM, n = 

8-10). 
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Mature virgin Abd-BLDN>kir2.1 females walked at the same speed as control 

females during courtship (n.s., not significant, one-way ANOVA with Tukey 

correction) (Figure 6.6). 

 

 

Figure 6.7: Definition of female pausing. Per-frame parameters (legend at right) calculated 

from tracks in Figure 6.4. 

Instead, we identified periods in which the female “paused” during 

courtship (Figure 6.7). Since pausing requires both that the female is not walking 

and that she is not turning or rotating, we set thresholds on velocity (4mm/s) and 

angular acceleration (15 mm/s2), as well as distance from the male (10 mm), to 

ensure that he was oriented towards her and actively engaged in courtship (red 

dashed lines in Figure 6.7). These thresholds allowed us to automate 

identification of periods of female pausing. 
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Figure 6.8: Abd-B
LDN 

neurons are required for pausing during courtship. Pausing during 

courtship (Student’s t-test, mean ± SEM, n = 8-10, ***p <0.001). 

The percent of time spent pausing was nearly doubled in control receptive 

virgin females compared to unreceptive immature virgins (Figure 6.8), suggesting 

that pausing during courtship is a hallmark of receptivity. Mature virgin Abd-

BLDN>kir2.1 females paused very little and were indistinguishable in this response 

from immature virgins (Figure 6.8). Thus, Abd-BLDN neurons are functionally 

required for the pausing component of receptivity. 

 

 

Figure 6.9: Silencing Abd-B
LDN

 neurons does not affect male copulation attempts. (A) 

Schematic of assay in B. (B) Male copulation attempts during courtship in 1-cm plastic chambers 

(Bars labeled with different letters are significantly different, p <0.05; n.s. = not significant, one-

way ANOVA with Tukey correction for multiple comparisons, n = 10-11). 
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To ensure that the receptivity phenotype of silencing Abd-BLDN neurons 

was not due to something other than pausing, we examined male courtship 

behavior towards these females in both arenas. Despite the decreased pausing 

of Abd-BLDN>kir2.1 females, males attempted copulation as much with Abd-

BLDN>kir2.1 females as parental controls (Figure 6.9) and displayed high levels of 

courtship as measured by courtship index (Figure 6.10). 

 

 

Figure 6.10: Male courtship towards Abd-B
LDN

>kir2.1 females is not decreased. (A) 

Schematic of assay in B. (B) Male courtship index (n.s. = not significant, one-way ANOVA with 

Tukey correction for multiple comparisons, n = 9-11). 

 

Additionally, Abd-BLDN>kir2.1 females did not run away from courting males: the 

distance between these females and courting males was the same as parental 

controls (Figure 6.11). 

To understand the function of Abd-BLDN neurons in receptivity, we 

performed several different experiments to refine our description of the 

phenotype of silencing Abd-BLDN neurons in females during courtship. 
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Figure 6.11: Abd-B
LDN

>kir2.1 females do not run away from courting males. (A) Schematic 

of assay in B. (B) Female distance from male (n.s. = not significant, one-way ANOVA with Tukey 

correction for multiple comparisons, n = 9-11). 

We examined all of the described female responses to male courtship, including 

those of normally unreceptive immature virgins and mated females. We also 

quantified male courtship index and copulation attempts. The only difference 

from controls we found with silencing Abd-BLDN neurons was in the pausing of 

mature virgin females. This suggests that the role of Abd-BLDN neurons is to 

promote female pausing during courtship and that the level of pausing seen in 

receptive mature virgin females is intricately linked to their receptivity. 

 Interestingly, there is also a correlation between sexual maturity and male 

copulation attempts (Figure 6.9). It has been suggested that slowing down by the 

female allows males to attempt copulation. However, even young, sexually 

immature females exhibited some pausing (5-9% of courtship time) (Figure 6.8), 

but males very rarely were able to or chose to attempt copulation with them 

(Figure 6.9). These immature females are as attractive to males as mature 

females (Figure 6.10). We did not find a difference in the distribution or length of 

pauses between immature and mature virgin females (data not shown), so it 



69 
 

remains unclear how copulation attempts are coordinated with pausing. One 

possibility is that the difference in vaginal plate opening between immature and 

mature females influences male copulation attempts. One might speculate that 

vaginal plate opening provides a signal, perhaps visual or pheromonal, to the 

male to attempt copulation, but it is clear from our data that vaginal plates are 

opened more than copulation is attempted. It seems that the coordination of 

pausing, vaginal plate opening, and attempted copulation is critical for successful 

Drosophila mating. 
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CHAPTER 7: PAUSING IS A RESPONSE TO MULTIPLE 

MALE COURTSHIP CUES 

 

 Having established that the output function of Abd-BLDN neurons is to 

promote pausing during courtship, we investigated the possible input to this 

circuitry from male sensory cues. We wondered whether pausing might be 

triggered by courtship song, which has such a dramatic effect on female 

receptivity (Figure 1.5). 

 We performed a cross-correlation analysis of female pausing during 

courtship with male touch and wing extension, which served as a proxy for 

courtship song (Figure 7.1). 

 

 

Figure 7.1: Cross-correlation of pausing vs. wing extension and touch. Cross-correlation 

between female pausing and male wing extension or male touch during courtship tracking assays 

with Abd-B
LDN

-Gal4 mature virgin females and wild-type males (n = 5). 

 

Both male behaviors were weakly correlated with female pausing. The 

normalized cross-correlation of wing extension was stronger than that of touch 

and was centered at zero time shift. Touch, in contrast, showed a correlation with 
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pausing that peaked both at the beginning of pauses and a few seconds after 

pause initiation, consistent with female pausing facilitating male tapping and 

licking of the abdomen and attempting copulation, rather than those behaviors 

triggering pausing. These data suggested that courtship song might provide 

sensory input to the neuronal circuit controlling female pausing. 

 To test this, we set up an assay to play recorded courtship song while 

tracking fly movement (Figure 7.2). Our playback setup used natural song 

recorded during a successful courtship from flies of the same strain as our wild-

type (Arthur et al., 2013). It also assayed single pairs of courting flies to avoid 

any effects of non-courtship social interaction on the flies’ movement. 

 

 

Figure 7.2: Schematic of song playback assay. Speakers positioned to either side of a plastic 

wheel play back either recorded wild-type male courtship song or white noise. 

In control experiments, we showed that white noise sound playback did not affect 

female receptivity and that muting males by removing their wings decreased 

female receptivity (Figure 7.3). 
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Figure 7.3: Song playback rescues receptivity with mute males. Receptivity of Abd-B
LDN

-Gal4 

mature virgin females during playback of the indicated sound with wild-type males with and 

without wings as indicated (***p <0.001, Fischer’s exact test; mean and 95% confidence interval 

are shown, n = 23-24). 

As previously reported (Rybak et al., 2002), playback of recorded courtship song 

rescued female receptivity with mute males (Figure 7.3). This indicated that our 

song playback could substitute for the song of intact males, and we could 

therefore test the effect of song on female pausing. 

 We next asked whether pausing was indeed a response to male courtship 

and not a spontaneous behavior. We compared female pausing during courtship 

with the pausing of a female alone in the chamber, both during the playback of 

white noise (Figure 7.4). Pausing was increased by the presence of a courting 

male, consistent with the level of pausing being a response to courtship. 
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Figure 7.4: Pausing is increased by the presence of a courting male. Pausing of mature 

virgin females with playback of white noise during courtship in the presence of a male or alone 

(p<0.05, Student’s t-test, mean± SEM; n = 7-22).  

We analyzed pausing during the experiment in Figure 7.3 to determine whether 

pausing correlated with the effect of courtship song on receptivity. Pausing was 

decreased when mute males were paired with white noise (Figure 7.5). 

 

Figure 7.5: Pausing requires courtship song. Pausing of mature virgin females with wild-type 

males with and without wings as indicated during playback of the indicated sound (*p <0.05, one-

way ANOVA with Bonferroni correction, mean ± SEM; n = 6-7). Left bar reprinted from Figure 7.4. 

Time spent pausing was rescued by playback of song during courtship with a 

mute male (Figure 7.5). Thus, the level of pausing displayed by mature virgin 
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females during wild-type courtship, which is tightly coupled to receptivity, requires 

courtship song. 

We then asked whether song alone is sufficient to increase pausing by 

tracking single females during sound playback. Without a male present, playback 

of recorded courtship song was not sufficient to increase the pausing of females, 

whether or not their Abd-BLDN neurons were silenced (Figure 7.6). 

 

Figure 7.6: Courtship song is not sufficient to induce pausing. Pausing of mature virgin 

females in the absence of a male during playback of the indicated sound n.s. = not significant, 

one-way ANOVA with Bonferroni correction, mean ± SEM; n = 22-23. 

From these data, we conclude that pausing requires the integration of song with 

other male sensory cues during courtship. Although others have observed effects 

of song playback alone on female movement (Crossley et al., 1995; von 

Schilcher, 1976b), those experiments used synthetic courtship song, usually 

consisting of sound pulses, and tested groups of females. Consistent with our 

data, in the other case where natural song was played back to single females, no 

effect on movement was observed (Kowalski et al., 2004).  
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CHAPTER 8: ACTIVATING ABD-B NEURONS 

INCREASES PAUSING 

 

 The above experiments suggested that Abd-BLDN neurons act within the 

neural circuitry of female receptivity to promote pausing in response to multiple 

sensory inputs from males, including courtship song. We therefore asked 

whether activation of Abd-BLDN neurons was sufficient to induce pausing and 

receptivity in the absence of these cues. 

 

 

Figure 8.1: Activating Abd-B
LDN

 neurons was sufficient to induce pausing in isolated 

females. (A) Schematic of assay in B. (B) Temperature-shifted pausing of mature virgin females 

in the absence of a male (n.s. = not significant, **p <0.01, Student’s t-test, mean ± SEM, n = 7-

10). 

We synthetically activated Abd-BLDN neurons by expressing Drosophila 

TrpA1, a heat-activated non-selective cation channel (Hamada et al., 2008). 

Females were first assayed alone in the tracking arena schematized in Figure 

8.1A at control temperatures or at elevated temperatures that activate TrpA1. 

Although the higher temperature decreased pausing in control animals (Figure 

8.1B, p<0.001, Student’s t-test, n=8-10), activation of Abd-BLDN neurons 
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counteracted this effect (Figure 8.1B), consistent with pausing being induced by 

Abd-BLDN neuronal activation. 

However, females with Abd-BLDN>TrpA1 activation did not copulate when 

paired with a male (Figures 8.2A and 8.2B). To investigate the cause of this lack 

of receptivity, we examined their behavior during courtship in 1-cm plastic 

chambers (Figure 8.2C). 

 

Figure 8.2: Activating Abd-B
LDN

 neurons locks vaginal plates in the open position, 

preventing copulation. (A) Schematic of courtship from a wild-type male in tracking arena used 

in B. (B) Female receptivity at the indicated temperature in tracking arena (**p <0.01, n.s. = not 

significant, Fischer’s exact test. Mean and 95% confidence interval are shown, n = 7-11). (C) 

Schematic of assay in D-E. (D-E) Time during courtship with vaginal plates open (D) and vaginal 

plate openings per minute of courtship (E) measured in 1-cm plastic chambers at the indicated 

temperature (*** p<0.001, Student’s t-test, mean ± SEM, n = 5). No ovipositor extrusion was 

observed in these experiments. 

 

Activation of Abd-BLDN neurons caused the vaginal plates to be locked in a 

spread open position and unable to open and close (Figures 8.2D and 8.2E). 

However, no ovipositor extrusion was observed in these conditions. We 
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concluded that although the plates were open, their inability to close to capture 

male genitalia during an attempted copulation may be responsible for the failure 

to copulate. Although Abd-BLDN neurons are not required for vaginal plate 

opening during courtship, there is at least a subset of Abd-BLDN neurons that can 

affect the movement of the vaginal plates. 

 Nevertheless, we examined the movement during courtship of females 

with activated Abd-BLDN neurons. TrpA1 activation had no effect on female 

walking speed during courtship in the tracking arena (Figure 8.3) and did not 

render the animals stationary, suggesting that Abd-BLDN neurons act within a 

receptivity pausing circuit rather than a more general locomotion control pathway. 

 

 

Figure 8.3: Activating Abd-B
LDN

 neurons does not affect walking speed. Temperature-shifted 

female speed excluding frames classified as pausing during courtship (n.s. = not significant, 

Student’s t-test, mean ± SEM, n = 7-11). 

 

TrpA1 activation of Abd-BLDN neurons also increased pausing relative to 

the elevated-temperature control in the context of courtship with a wild-type male 

(Figure 8.4). Thus, activation of Abd-BLDN neurons is sufficient to increase 

pausing in both the presence and absence of male courtship. 
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Figure 8.4: Activating Abd-B
LDN

 neurons is sufficient to increase pausing during courtship. 

(A) Schematic of assay in B. (B) Temperature-shifted pausing of mature virgin females during 

courtship from wild-type males (n.s. = not significant, **p <0.01, Student’s t-test, mean ± SEM, n 

= 7-11). 

 

Given the sufficiency of Abd-BLDN>TrpA1 activation to increase pausing, 

we determined whether activation of Abd-BLDN neurons could compensate for the 

lack of song during courtship with a mute male (Figure 8.5A). Activating Abd-BLDN 

neurons was indeed sufficient to increase pausing during courtship with a mute 

male (Figure 8.5B). 

 

 

Figure 8.5: Activating Abd-B
LDN

 neurons is sufficient to increase pausing during courtship 

with mute males. (A) Schematic of assay in B. (B) Temperature-shifted pausing of virgin females 

during courtship from males without wings (n.s. = not significant, *p <0.05, Student’s t-test, n = 

12-16). 
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Thus, we conclude that Abd-BLDN neurons are both necessary and 

sufficient for the female pausing response to male courtship. 
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CHAPTER 9: DISCUSSION 

 

Female receptivity is a complex behavior comprising multiple motor 

programs and requiring the integration of sensory cues across several 

modalities. Drosophila mating behavior is innate, and receptivity is likely 

controlled by hardwired neural circuits. However, despite decades of close study 

of fly courtship, neural circuits controlling specific female receptivity behaviors 

remain unknown. We therefore took a neurogenetic approach to identifying 

neurons with a specific function in female receptivity. 

A genome-wide neuronal RNAi screen was conducted to identify 

candidate genes for female reproductive behaviors. In addition to candidates for 

involvement in egg-laying and the post-mating response, the screen identified 10 

candidate genes for female receptivity. Seven of those showed a phenotype 

when re-screened in a different assay. Our data suggest a central role for one of 

these, the transcription factor Abd-B, in forming a neural circuit that functions in 

female receptivity. 

 

How does Abd-B affect receptivity neurons? 

Abd-B is required in neurons during development for females to become 

receptive to male courtship. How does Abd-B affect the receptivity circuitry? In 

developing neuroblasts, Abd-B can have different, even opposing, functions, 

promoting either cell death or survival or promoting a particular cell fate or 

repressing it, depending on neuroblast identity and context (Estacio-Gómez et 
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al., 2013; Miguel-Aliaga and Thor, 2004; Williams et al., 2008). It is therefore 

possible that Abd-B is required for either the existence of the Abd-B receptivity 

neurons or their identity. In our RNAi experiments, we did not notice an obvious 

increase or decrease in the number of neurons within the abdominal ganglion or 

obvious differences in the expression of Abd-BLDN-Gal4, but we did not directly 

count these neurons and therefore could not have identified a small change in 

neuron number. Nor would we have been able to detect subtle wiring defects in 

Abd-B RNAi animals. We also have not identified markers of these neurons other 

than Abd-B and therefore could not determine whether further identity changes 

occurred. Thus, we could not distinguish between the possibilities of Abd-B 

knockdown causing the loss of Abd-BLDN neurons, the survival of additional 

neurons, or the loss of their unique identity. 

Abd-B is known to cooperate with and even regulate the expression of dsx 

in conferring identity to sex-specific cells (Miguel-Aliaga et al., 2008; Wang and 

Yoder, 2012). Although we were able to exclude the EtFLP250 subset of dsx 

neurons from involvement in virgin female receptivity, the majority of both dsx 

and Abd-BLDN neurons are in the abdominal ganglion, but we lacked the tools to 

determine whether a non-EtFLP250 dsx subset was functionally relevant. Thus, it 

may be that Abd-B receptivity neurons are also dsx neurons and that Abd-B acts 

through dsx to confer their identity. 

Our Abd-BLDN>Abd-B RNAi experiments showed that Abd-BLDN-Gal4 

labels neurons in which Abd-B is required for receptivity. However, related to the 

role of Abd-B in neuronal survival or death, we note that it is possible that these 
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Abd-BLDN neurons are not the ones we have studied in the adult. Further 

experiments (as detailed below) are necessary to determine whether the adult 

Abd-BLDN neurons are the same as those in which Abd-B function is required 

during development for receptivity. 

 

Components of receptivity 

We have refined the behavioral components of female receptivity beyond 

mere copulation acceptance. We discovered, first, that female vaginal plates 

open and close throughout courtship, not only immediately prior to copulation as 

the literature suggests, and, second, that this behavior emerges with sexual 

maturity. We also attributed slowing down of receptive females to punctuated 

bouts of pausing during courtship rather than decreased walking speed. This 

behavior, too, emerged in sexually mature females. Immature females did not 

“run away” from courting males as the literature describes. Their walking speed is 

the same as mature receptive females, as is their distance from the courting 

male. Sexually immature females pause less and thus seem to keep moving. 

 

How do Abd-B neurons control pausing? 

The level of female pausing depends on male courtship and is tightly 

correlated with receptivity. Abd-BLDN neuronal activity is both necessary for 

pausing behavior and sufficient to induce it, thus establishing the function of 

these neurons within the receptivity circuit. How do these neurons control 

pausing? The Abd-BLDN neurons important for receptivity are not themselves 
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motor neurons, and females with silenced Abd-BLDN neurons are not generally 

deficient in movement or posture. This suggests that Abd-BLDN receptivity 

neurons are upstream from motor output but could potentially be pre-motor 

neurons. 

Pausing requires the integration of multiple sensory inputs from a courting 

male. Thus, Abd-BLDN neurons are downstream from individual sensory inputs. 

Courtship song is one of the sensory cues required to trigger pausing, but the 

other inputs to this behavior are unknown. It seems likely that pheromones, 

perhaps both volatile and non-volatile, as well as visual cues play a role. A recent 

report (Fabre et al., 2012) provided evidence that males quiver their abdomens 

during courtship and that females are more likely to be immobile when this 

behavior occurs. Fabre et al. suggested that male abdomen quivering may be 

sensed by the female via vibration of the substrate. This presents an additional 

sensory modality that potentially contributes to pausing. However, how and 

where the fly nervous system integrates courtship sensory cues is unknown. 

Thus, it is possible that Abd-BLDN receptivity neurons are downstream from the 

integration of sensory cues from a courting male or that they themselves act as 

integrators. Given the location of Abd-BLDN neurons in the abdominal ganglion 

and reproductive tract, it seems most likely that they function downstream of the 

integration of male courtship cues in the pre-motor control of pausing. 

 The abdominal ganglion is emerging as a potential locus coordinating 

female-specific behavior (Monastirioti, 2003; Rezával et al., 2012; Soller et al., 

2006), and Abd-BLDN neurons there are well-positioned to interact with other 
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neurons involved in female behavior. It remains to be seen whether Abd-BLDN 

neurons are regulated by the function of, or directly connected to, neurons 

controlling female receptivity post-mating. Additionally, earlier work has attributed 

the development of receptivity to the action of juvenile hormone (Bilen et al., 

2013) and dopamine (Neckameyer, 1998). Perhaps the activity of Abd-BLDN 

neurons is regulated by these molecules as well.  

 

Modules for coordinated behavior 

Silencing Abd-BLDN neurons affects pausing but not vaginal plate opening, 

which demonstrates that it is possible to uncouple these two aspects of 

receptivity. However, activation of Abd-BLDN neurons affects both pausing and 

the movement of the vaginal plates. It is therefore possible that Abd-BLDN 

neurons, or subsets within them, function in both of these aspects of receptivity. 

There are likely to be additional circuit components involved in plate-opening, 

which may be able to act redundantly in the absence of Abd-BLDN neurons, and 

the involvement of additional circuit components in the control of the vaginal 

plates is consistent with the fact that Abd-BLDN activation does not induce 

periodic vaginal plate opening but rather locks the plates in the open position. 

We observed that vaginal plate opening occurs both while the female is 

moving and while she is stationary. How the receptivity circuitry coordinates 

vaginal plate opening with pausing and male copulation attempts remains 

unknown. Female movement has been shown to provide feedback to the male 

during courtship (Pan et al., 2012; Tompkins et al., 1982; Trott et al., 2012), and 
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it could be that pausing provides an important connection between the sexes 

within the context of the courtship duet. 

Modularity in the control of complex innate behavior has been found 

across a variety of species and systems. In vertebrates, Peromyscus mouse 

burrowing comprises separate behavior modules controlled by several genetic 

loci (Weber et al., 2013), and threespine stickleback schooling includes 

genetically separable behavioral components (Greenwood et al., 2014). The 

concept of modularity extends to the control of sexually dimorphic innate 

behaviors like aggression and mating, in invertebrates and mammals. Both 

Drosophila aggression and mating have been shown to have distinct behavioral 

components that are controlled differently in males and females by genetically 

specified circuitry (Alekseyenko et al., 2010; Asahina et al., 2013; Kimura et al., 

2008; Lin et al., 2011; Wang et al., ; Yu et al., 2010), and in the mouse these 

behaviors are also controlled by eliciting different modules in a sexually 

dimorphic way (Manoli et al., 2013; Xu et al., 2012; Yang et al., 2013). Thus, 

female fly receptivity fits into a larger pattern of sex-specific control of innate 

behavioral components. 

 

Moving Forward 

 Understanding the receptivity neural circuit first requires knowing which 

neurons comprise it and how they are specified. It is therefore essential to 

determine in which neurons Abd-B is required for receptivity, especially since it is 

possible that they are not the ones we have examined in the adult. Narrowing 
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down the developmental window in which Abd-B is required using additional 

conditional knockdown experiments with tub-Gal80ts could help identify these 

neurons. Once a more precise timing window were determined, it would be 

necessary to identify which neurons express Abd-B at that time and then follow 

individual marked clones through development. This could prove informative 

about both whether those cells are labeled by Abd-BLDN-Gal4 in the adult and 

what their developmental fate is. The latter would also help elucidate how Abd-B 

affects receptivity. 

Although we conducted extensive experiments in an attempt to narrow 

down the Abd-BLDN neurons to a smaller, more homogenous subset, we were 

unsuccessful in identifying a subset small enough to be anatomically 

distinguishable for more detailed functional studies. This remains an important 

goal. While it is true that mating is a probabilistic behavior, the link between 

pausing and the neurons controlling it is likely to be less stochastic, and pausing 

could be made a more high-throughput assay for individual females in a relatively 

straightforward way. Thus, although it would require very high numbers of 

animals and only provide correlative data, it would be possible to take a 

stochastic FLP-out approach (i.e. MARCM) to identifying subsets of Abd-B 

receptivity neurons. Although this technique would still be subject to the issue of 

stochastic cell body positions within the abdominal ganglion, if anatomically 

separable Abd-BLDN neuronal projections were identified, they could be reliably 

accessed for manipulations. Another approach would be to take advantage of the 

extensive repository of intersectional Gal4 and lexA lines being created within the 
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Fly-Light project at Janelia Farm. Although these lines are not yet available, 

eventually they could be used in an intersectional silencing screen with Abd-

BLDN-Gal4. 

Importantly, identification of subsets within Abd-BLDN-Gal4 might 

disambiguate the neurons controlling pausing from those involved in the 

movement of the vaginal plates. Not only is it important to understand how these 

behaviors are separately controlled, and given their different dynamics, their 

different connectivity, it would be extremely informative to be able to study how 

they are coordinated. 

Understanding the full complement of male sensory cues that serve as 

input to pausing behavior is a key step towards defining the female receptivity 

circuit. This could be approached behaviorally by subtracting other sensory cues 

from the female’s perception (i.e. courtship in the dark, courtship from an 

oenocyte-less male, courtship without physical contact, the presence of a female 

or non-courting male) and assaying the effect on pausing. Female choice 

experiments would also prove informative towards which sensory cues matter 

most for receptivity. 

Ultimately, in the long term it would be helpful to be able to directly 

measure the activity of these neurons in response to different stimuli. Although 

presentation of visual, olfactory, auditory, and even tactile stimuli to animals 

immobilized for imaging has become relatively routine, the fact that pausing 

requires multiple simultaneous stimuli, likely from a free-moving male, presents a 

challenge. In earlier experiments, we observed successful copulation between 
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tethered, walking females and freely moving males. It might be possible, 

although difficult, to adapt such a setup for functional imaging of the female 

abdominal ganglion. This might allow us to determine which male behaviors or 

combinations of sensory stimuli activate female Abd-BLDN neurons and potentially 

even simultaneously measure pausing. 

Finally, it is not clear how receptivity emerges with sexual maturity or how 

exactly it is down-regulated after mating. One first step would be to determine 

using techniques such as synaptic GRASP (Feinberg et al., 2008), neuronal 

tracing with photoactivatable GFP (Ruta et al., 2010), and electrophysiology 

whether Abd-BLDN neurons are connected to the known post-mating response 

neurons. If we were able to develop a method for directly measuring the 

response of these neurons to courtship stimuli, it would be possible to ask if that 

response is modified after mating or with sexual maturity. Given the role of 

juvenile hormone and dopamine in promoting receptivity as females mature, it 

could also be informative to test whether Abd-BLDN neurons express Met, the JH 

receptor implicated in this process (Bilen et al., 2013), or receptors for dopamine. 

Thus the advances in understanding the mechanisms of female receptivity 

uncovered here form the foundation of a body of future work in this area. 
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EXPERIMENTAL PROCEDURES 

Fly Stocks 

Flies were maintained on conventional cornmeal-agar-molasses medium 

under a 12 h light: 12 h dark cycle (lights on 9am) at 25°C and 60% relative 

humidity, unless otherwise indicated. Canton-S was used as wild-type. Virgin 

females for most crosses were collected using several “virginator” strains, which 

contain a heat shock-inducible hid transgene inserted on the Y chromosome that 

selectively kills males after 1 h heat shock at 37°C during the pupal stage (Starz-

Gaiano et al., 2001) [Bloomington Drosophila Stock Center at Indiana University 

(Bloomington) #24638]. Virginator flies themselves were not used in behavior 

assays. For behavior assays, tested individuals were hemizygous for all 

transgenes. When tested as parental controls, Gal4 and UAS stocks were tested 

as hemizygotes after crossing to the isogenic w1118 strain from the Vienna 

Drosophila RNAi Center (VDRC). All RNAi stocks were obtained from the 

genome-wide transgenic RNAi library (Dietzl et al., 2007) maintained at the 

VDRC. The elav-Gal4 (Luo et al., 1994) stock used in the RNAi screen carried a 

UAS-Dcr-2 insertion on the X chromosome (Dietzl et al., 2007). 

Fly strains and sources are as follows: nsyb-Gal4 and tsh-Gal80 (Julie 

Simpson, HHMI-Janelia Farm Research Campus); Abd-BLDN-Gal4 (Ernesto 

Sanchez-Herrero, Centro de Biología Molecular Severo Ochoa); elav-Gal80 (Yuh 

Nung Jan, UCSF). nsyb-lexA and UAS-shits (Gerry Rubin, HHMI-Janelia Farm 

Research Campus); enhancer-trap FLP lines (EtFLP) (Ed Kravitz, Harvard 

University); lexAop-FLP (Shang et al., 2008) (Marco Gallio, Northwestern 
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University); tub-Gal80ts (Bloomington #7019); tub-FRT-Gal80-FRT-STOP (Bing 

Zhang, University of Missouri); UAS-nuclear lacZ (Bloomington #3956; Vanessa 

Ruta, The Rockefeller University); UAS-stinger nuclear GFP (Bloomington 

#28863; Joel Levine, University of Toronto); UAS-mCD8-GFP (Lee and Luo, 

1999); UAS-nsyb-GFP (Rami Ramaswami, Trinity College Dublin); ppk-Gal80 

and UAS-Dscam-GFP (Wesley Grueber, Columbia University); UAS-eGFP-kir2.1 

(Rebecca Yang, UNC-Chapel Hill); UAS-TrpA1 (Bloomington #26263); OK371-

Gal4 (Bloomington #26160). fru-FLP was described in (Yu et al., 2010). 

Virginator strains used to collect virgin females to set crosses: UAS-

Dcr2(x)/hs-hid(y); +; elav-Gal4 (crossed to males from VDRC RNAi library). UAS-

Dcr2(x)/hs-hid(y); +; + (crossed to males w; +; nsyb-Gal4/TM3, Sb and w; tub-

Gal80ts; nsyb-Gal4/TM3, Sb). UAS-Dcr2(x)/hs-hid(y); +; UAS-Abd-B RNAi VDRC 

line 12024/TM3, Sb (crossed to males w; +; nsyb-Gal4/TM3, Sb and w; tub-

Gal80ts; nsyb-Gal4/TM3, Sb). w (x)/hs-hid(y); +; + (crossed to males w; +; UAS-

kir2.1-eGFP and w; UAS-shits; + and +; +; UAS-TrpA1). w (x)/hs-hid(y); +; Abd-

BLDN-Gal4/TM6b (crossed to males w; +; UAS-eGFP-kir2.1 and w; UAS-shits; + 

and +; +; UAS-TrpA1 and w; +; UAS-nlacZ and w; +; UAS-mCD8-GFP and w; +; 

UAS-stinger) 

 

Detailed genotypes of all strains used are as follows: 

Figure 2.4 
Females 
UAS-Dcr2/w1118; +; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 12024 
UAS-Dcr2/w1118; VDRC RNAi transformant 26549/+; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 2560/+; elav-Gal4/+ 
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UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 37915 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 31674 
UAS-Dcr2/w1118; VDRC RNAi transformant 48891/+; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 9673/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 46408 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 41563 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 28359 
 
Males 
Canton-S wild-type 
 

Figure 2.5 
Females 
UAS-Dcr2/w1118; +; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 51667/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 34767 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 4856 
UAS-Dcr2/w1118; VDRC RNAi transformant 47461/+; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 40100/+; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 35354/+; elav-Gal4/+ 
UAS-Dcr2/w1118; VDRC RNAi transformant 2673/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 24017 
UAS-Dcr2/w1118; VDRC RNAi transformant 39306/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 31388 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 7061 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 35346 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 39936 
 
Males 
Canton-S wild-type 
 

Figure 2.6 
Females 
UAS-Dcr2/w1118; +; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 7061 
UAS-Dcr2/w1118; VDRC RNAi transformant 51667/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 4856 
 
Males 
Canton-S wild-type 

 
Figure 3.1 

Females 
UAS-Dcr2/w1118; +; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 37915 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 46408 
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UAS-Dcr2/w1118; VDRC RNAi transformant 26549/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 12024 
UAS-Dcr2/w1118; VDRC RNAi transformant 2560/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 31674 
UAS-Dcr2/w1118; VDRC RNAi transformant 9673/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 41563 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 28359 
UAS-Dcr2/w1118; VDRC RNAi transformant 48891/+; elav-Gal4/+ 
 
Males 
Canton-S wild-type 
 

Figure 3.2 
Females 
UAS-Dcr2/w1118; +; elav-Gal4/+ 
UAS-Dcr2/w1118; +; nsyb-Gal4/+ 
w1118; +; VDRC RNAi transformant 12024/+ 
w1118; VDRC RNAi transformant 104872/+; + 
UAS-Dcr2/w1118; +; elav-Gal4/VDRC RNAi transformant 12024 
UAS-Dcr2/w1118; VDRC RNAi transformant 104872/+; elav-Gal4/+ 
UAS-Dcr2/w1118; +; nsyb-Gal4/VDRC RNAi transformant 12024 
UAS-Dcr2/w1118; VDRC RNAi transformant 104872/+; nsyb-Gal4/+ 
 
Males 
Canton-S wild-type 
 

Figure 3.3 
 Females 

UAS-Dcr2/w1118; +; nsyb-Gal4/+ 
w1118; +; VDRC RNAi transformant 12024/+ 
UAS-Dcr2/w1118; +; nsyb-Gal4/VDRC RNAi transformant 12024 
 

Figure 3.4 
 Females 
 w1118/+; tub-Gal80ts/+; nsyb-Gal4/UAS-CD8-GFP 
 
Figure 3.5 

Females 
UAS-Dcr2/w1118; tub-Gal80ts/+; nsyb-Gal4/VDRC RNAi transformant 
12024 
Males 
Canton-S wild-type 

 
Figures 3.6 and 3.7 

Females 
UAS-Dcr2/w1118; +; nsyb-Gal4/+ 
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w1118; +; VDRC RNAi transformant 12024/+ 
UAS-Dcr2/w1118; +; nsyb-Gal4/VDRC RNAi transformant 12024 
 
Males 
Canton-S wild-type 
 

Figure 4.1 
 w1118; UAS-nlacZ/+; Abd-BLDN-Gal4/+ 

 
Figure 4.2 

Females 
UAS-Dcr2/tub-FRT-Gal80-FRT-STOP; UAS-CD8-GFP/LexAop-FLP; nsyb-
Gal4/nsyb-lexA 
UAS-Dcr2/tub-FRT-Gal80-FRT-STOP; UAS-CD8-GFP/LexAop-FLP; nsyb-
Gal4/nsyb-lexA, VDRC RNAi transformant 12024 
 
Males 
Canton-S wild-type 
 

Figure 4.3 
Females 
Panels A-F 
w1118; UAS-stinger/+; Abd-BLDN-Gal4/+ 
 
Panels G-L 
w1118; +; Abd-BLDN-Gal4/UAS-mCD8-GFP 
 
Panels M-R 
w1118; +; Abd-BLDN-Gal4/UAS-nsyb-GFP 
 
Panels S-X 
w1118; +; Abd-BLDN-Gal4/UAS-Dscam-GFP 

 
Figure 4.4 
 Females 

w1118; +; Abd-BLDN-Gal4/UAS-CD8-GFP 
 
Figures 5.1 and 5.2 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
 w1118; +; UAS-shits/+ 
 w1118; +; Abd-BLDN-Gal4/UAS- shits 

 
Males 
Canton-S wild-type 
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Figure 5.3 
Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118; +; UAS-eGFP-kir2.1/+ 

 w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
w1118/elav-Gal80; +; Abd-BLDN-Gal4/+ 
w1118/elav-Gal80; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
 
Males 
Canton-S wild-type 

 
Figure 5.4 
 Females 

w1118/elav-Gal80; +; Abd-BLDN-Gal4/UAS-CD8-GFP 
 
Figure 5.5 

Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118; +; UAS-eGFP-kir2.1/+ 

 w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
 
Males 
Canton-S wild-type 

 
Figure 5.6 
 Panels A,B,C,G, and H 
 Males 

w1118; +; Abd-BLDN-Gal4/UAS-CD8-GFP 
 
Panels D,E,F, I, and J 
Males 
w1118; +; Abd-BLDN-Gal4/ UAS-nuclear lacZ 
 

Figure 5.7 
 Panel A 
 Female 

w1118; +; Abd-BLDN-Gal4/UAS-CD8-GFP 
 
Panel B 
Male 
w1118; +; Abd-BLDN-Gal4/UAS-CD8-GFP 

 
Figure 5.8 

Females 
Canton-S wild-type 
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Males 
w1118; +; Abd-BLDN-Gal4/UAS-CD8-GFP 
w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 

 
Figure 5.9 

Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118; +; UAS-eGFP-kir2.1/+ 
w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
w1118; VGlut-Gal80/+; Abd-BLDN-Gal4/+ 
w1118; VGlut-Gal80/+; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
w1118; tsh-Gal80/+; Abd-BLDN-Gal4/+ 
w1118; tsh-Gal80/+; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
w1118; ppk-Gal80/+; Abd-BLDN-Gal4/+ 
w1118; ppk-Gal80/+; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
 
Males 
Canton-S wild-type 
 

Figure 5.10 
 Panel A 

Females 
w1118; tsh-Gal80/+; Abd-BLDN-Gal4/ UAS-CD8-GFP 
 
Panel B 
Females 
w1118; tsh-Gal80/+; Abd-BLDN-Gal4/ UAS-nuclear lacZ 
 

Figure 5.11 
 Females 
 Panels A and C 
 w1118; OK371-Gal4/+; UAS-CD8-GFP/+ 
 

Panels B and D 
 w1118; OK371-Gal4/VGlut-Gal80; UAS-CD8-GFP/+ 
 
Figure 5.12 

Panel A 
Females 
w1118; VGlut-Gal80/+; Abd-BLDN-Gal4/ UAS-CD8-GFP 
 
Panel B 
Females 
w1118; VGlut-Gal80/+; Abd-BLDN-Gal4/ UAS-nuclear lacZ 
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Figure 5.13 
Panel A 
Females 
w1118; ppk-Gal80/+; Abd-BLDN-Gal4/ UAS-CD8-GFP 
 
Panel B 
Females 
w1118; ppk-Gal80/+; Abd-BLDN-Gal4/ UAS-nuclear lacZ 

 
Figure 5.14 
 Females 

w1118; UAS-FRT-STOP-FRT-CD8-GFP / ETFLP250; Abd-BLDN-Gal4 
 
 
Figure 5.15 

Females 
UAS-FRT-STOP-FRT-kir2.1/w1118; +; Abd-BLDN-Gal4/+ 
w1118; LexAop-FLP/+; nsyb-lexA/+ 
UAS-FRT-STOP-FRT-kir2.1/w1118; LexAop-FLP/+; Abd-BLDN-Gal4/ nsyb-
lexA 
w1118; ETFLP250/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; ETFLP250/+; Abd-BLDN-Gal4/+ 
 
Males 
Canton-S wild-type 

 
Figure 5.16 
 Females 

w1118; UAS-FRT-STOP-FRT-CD8-GFP / +; Abd-BLDN-Gal4/ fru-FLP 
 
Figure 5.17 

Females 
UAS-FRT-STOP-FRT-kir2.1/w1118; +; Abd-BLDN-Gal4/+ 
w1118; LexAop-FLP/+; nsyb-lexA/+ 
UAS-FRT-STOP-FRT-kir2.1/w1118; LexAop-FLP/+; Abd-BLDN-Gal4/ nsyb-
lexA 
w1118; UAS-FRT-STOP-FRP-CD8-GFP; fru-FLP 
UAS-FRT-STOP-FRT-kir2.1/w1118; UAS-FRT-STOP-FRP-CD8-GFP /+; 
Abd-BLDN-Gal4/fru-FLP 
 
Males 
Canton-S wild-type 

 
Figure 5.18 
 Females 

w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/+ 
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w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/nsyb-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/dsx-Gal4 
w1118/UAS-Dcr2; D42-Gal4/+; VDRC RNAi transformant 12024/+ 
w1118/UAS-Dcr2; OK371-Gal4/+; VDRC RNAi transformant 12024/+ 
w1118/UAS-Dcr2; C164-Gal4/+; VDRC RNAi transformant 12024/+ 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/ilp7-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/GMR33604-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/GMR34G04-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/bwktqs-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/GMR33H1-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/TH-Gal4 
w1118/UAS-Dcr2; ppk-Gal4/+; VDRC RNAi transformant 12024/+ 
w1118/UAS-Dcr2; Tdc2-Gal4+; VDRC RNAi transformant 12024/+ 
C380-Gal4/UAS-Dcr2; +; VDRC RNAi transformant 12024/+ 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/dMP2-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/Ddc-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/OK348-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/TH-Gal4 
w1118/UAS-Dcr2; +; VDRC RNAi transformant 12024/fru-Gal4 

 
Figure 5.19 

UAS-FRT-STOP-FRT-kir2.1/w1118; +; Abd-BLDN-Gal4/+ 
w1118; LexAop-FLP/+; nsyb-lexA/+ 
UAS-FRT-STOP-FRT-kir2.1/w1118; LexAop-FLP/+; Abd-BLDN-Gal4/ nsyb-
lexA 
w1118; EtFLP531/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP531; Abd-BLDN-Gal4/+ 
w1118; EtFLP550/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP550; Abd-BLDN-Gal4/+ 
w1118; EtFLP232/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP232; Abd-BLDN-Gal4/+ 
w1118; EtFLP317/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP317; Abd-BLDN-Gal4/+ 
w1118; EtFLP282/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP282; Abd-BLDN-Gal4/+ 
w1118; EtFLP250/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP250; Abd-BLDN-Gal4/+ 
w1118; EtFLP546/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP546; Abd-BLDN-Gal4/+ 
w1118; EtFLP528/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP528; Abd-BLDN-Gal4/+ 
w1118; EtFLP417/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP417; Abd-BLDN-Gal4/+ 
w1118; EtFLP518/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP518; Abd-BLDN-Gal4/+ 
w1118; EtFLP393/+; + 
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UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP393; Abd-BLDN-Gal4/+ 
w1118; EtFLP522/+; + 
UAS-FRT-STOP-FRT-kir2.1/w1118; EtFLP522; Abd-BLDN-Gal4/+ 
w1118; +; EtFLP480/+ 
UAS-FRT-STOP-FRT-kir2.1/w1118; +; Abd-BLDN-Gal4/ EtFLP480 
w1118; +; EtFLP447/+ 
UAS-FRT-STOP-FRT-kir2.1/w1118; +; Abd-BLDN-Gal4/ EtFLP447 

 
Figure 5.20 

Panel A 
Females 
w1118; UAS-FRT-STOP-FRT-CD8-GFP / EtFLP317; Abd-BLDN-Gal4/ + 
 
Panel B 
Females 
w1118; UAS-FRT-STOP-FRT-CD8-GFP / EtFLP550; Abd-BLDN-Gal4/ + 
 
Panel A  
Females 
w1118; UAS-FRT-STOP-FRT-CD8-GFP / EtFLP531; Abd-BLDN-Gal4/ + 

 
Figure 6.1 
 Panels B and C 
 Females 
 Canton-S wild-type 
 
Figures 6.2, 6.3, 6.5, 6.6., 6.8, 6.10, 6.10, and 6.11 

Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118; +; UAS-eGFP-kir2.1/+ 

 w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 
  
 Males 
 Canton-S wild-type 
 
Figures 6.4 and 6.7 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
  

Males 
Canton-S wild-type 

 
Figures 7.1, 7.3, 7.4, and 7.5 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
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Males 
Canton-S wild-type 

 
 
Figure 7.6 

Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118; +; Abd-BLDN-Gal4/ UAS-eGFP-kir2.1 

  
Males 
Canton-S wild-type 

 
Figure 8.1 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
w1118/+; UAS-TrpA1/+; Abd-BLDN-Gal4/+ 

 
 Males 

Canton-S wild-type 
 
Figure 8.2 
 Panel B 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
w1118/+; UAS-TrpA1/+; Abd-BLDN-Gal4/+ 

 
 Males 

Canton-S wild-type 
 
 Panels D and E 
 Females 

w1118/+; UAS-TrpA1/+; Abd-BLDN-Gal4/+ 
 
Males 
Canton-S wild-type 
 

Figures 8.3 and 8.4 
 Females 

w1118; +; Abd-BLDN-Gal4/+ 
w1118/+; UAS-TrpA1/+; Abd-BLDN-Gal4/+ 

 
 Males 

Canton-S wild-type 
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Figure 8.5 
Females 
w1118; +; Abd-BLDN-Gal4/+ 
w1118/+; UAS-TrpA1/+; + 
w1118/+; UAS-TrpA1/+; Abd-BLDN-Gal4/+ 
 
Males 
Canton-S wild-type 

 

Transgenic flies 

VGlut-Gal80 was generated by Stephen Zhang, a summer undergraduate 

student in the lab, by PCR amplification of the 5.3 kb dVGlut promoter fragment 

from the pC56-Kan dVGlut5 vector (kind gift of Richard Daniels, University of 

Wisconsin) (Daniels et al., 2008) and cloned via the Gateway system (Life 

Technologies) into the pBPGal80Uw-6 vector (Pfeiffer et al., 2010). Transgenic 

flies were generated using standard methods (Genetic Services Inc.).  

 

RNAi screen  

The genome-wide neuronal RNAi screen was carried out by Nilay Yapici in the 

laboratory of Barry Dickson at the Research Institute of Molecular Pathology 

(IMP) in 2005-2008 using the VDRC RNAi library (Dietzl et al., 2007). 

Screening: 5-6 females homozygous for both UAS-Dcr2 on the X chromosome 

and elav-Gal4 on the 3rd chromosome were crossed to 3-5 males from a line in 

the VDRC RNAi library (Dietzl et al., 2007). Parents were removed from the 

cross after three days, and progeny were allowed to eclose and were left in the 

vial for 3-4 days post-eclosion to permit sibling inter-mating. From these vials, 20-

30 adult females and 3-5 males were transferred to a fresh food vial where 
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females were allowed to lay eggs for 24 h. The adults were then transferred to a 

fresh vial and left for another 24 h. Adults were transferred a final time to a fresh 

vial and females allowed to lay eggs for another 24 h, after which time the adult 

flies were removed. The number of eggs in each of the three vials was estimated 

and scored on a 1-5 scale as follows: 1, ~100 or more eggs; 2, ~50-100 eggs; 3, 

~20-50 eggs; 4, ~5-20 eggs; 5, ~0-5 eggs. A three-day average score of 3 or 

more was regarded as positive for decreased egg-laying. Positive RNAi lines 

were retested twice. If no adults were obtained from a cross, or the majority died 

before the end of the 3rd day, the RNAi line was scored as lethal. 

Phenotype classification: Mating success, egg-laying, and remating success 

were assayed as outlined in Figure 2.3. All assays were performed at ZT time 

6:00–10:00, 25°C, 70% relative humidity, and on at least 3 independent 

occasions. Virgin females were collected at eclosion from crosses of elav-Gal4 

driver line females and RNAi line males. Wild-type males were collected at 

eclosion and aged individually for 5 days; females were aged for 4 days in 

groups of 10–15. To determine mating success, single virgin female progeny and 

wild-type male progeny were paired in 1-cm diameter plastic chambers in a 5 x 5 

chamber array and videotaped for 1 h. Those females that copulated were then 

transferred to single food vials for 48h, and the eggs laid by each female were 

counted manually. The same females were then re-tested in videotaped pairings 

with virgin Canton-S males for remating. The data for the elav-Gal4/+ controls 

are pooled from separate experiments.  
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Immunostaining and microscopy 

Tissue was dissected in 4oC phosphate-buffered saline (PBS) (Ca+2, Mg+2 free; 

Lonza BioWhittaker CAT#17-517Q), fixed in 4% paraformaldehyde in PBS for 20 

min at 23oC, washed 4-6 times over 2 h in PBT (PBS and 0.1% Triton X-100), 

and blocked for 1 h in PBT + 5% goat serum at 23oC before incubation with 

primary antibodies diluted in PBT + 5% goat serum for 48 h at 4°C. Samples 

were washed 4-6 times over 2 h in PBT at 23oC before application of secondary 

antibodies for 48 h at 4°C. Samples were washed again 4-6 times over 2 h in 

PBT and mounted in VectaShield containing DAPI (Vector Labs) on glass slides 

with bridging cover slips. Confocal sections were acquired using a Zeiss LSM510 

confocal microscope. 

 

Antibodies 

Commercial antibodies were rabbit anti-GFP (1:2000; catalogue #TP401, Torrey 

Pines) and chicken anti-β-gal (1:2000; Abcam catalogue#9361). The following 

antibodies were obtained from the Developmental Studies Hybridoma Bank, 

which was developed under the auspices of the NICHD and maintained by The 

University of Iowa, Department of Biology, Iowa City, IA 52242: mouse anti-Abd-

B (1:50); mouse anti-nc82 (1:10); rat anti-elav (1:100). Secondary antibodies 

were Alexa Fluor 488 Goat anti-Rabbit (1:500; Invitrogen catalogue #11008), 

Alexa Fluor 488 Goat anti-Chicken (1:500, Invitrogen catalogue #11039); Cy3 

Goat Anti-Mouse (1:500; Jackson ImmunoResearch catalogue #115-165-166), 

rhodamine-conjugated phalloidin (1:500; Sigma-Aldrich catalogue #P1951). 
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Behavioral assays 

All assays were performed at ZT time 3:00-9:00, and all genotypes and 

conditions were tested on at least 3 different occasions. Mature virgin females 

were collected within 6 h of eclosion, group-housed without males, and tested at 

4-6 days old. Immature virgin females were tested at 24 h post-eclosion. Mated 

females were individually observed copulating with 1 of 2 males in a food vial at 

4-5 days old and tested 48 h later. Wild-type Canton-S males were collected 0-2 

days after eclosion and were group-housed away from females for 3-7 days. 

Temperature-shifted experiments were carried out in incubators (BioCold Insect 

model BC26-IN, BioCold Environmental, Inc.). 

 

Copulation assays 

Single females were gently aspirated into standard fly food vials containing 2 

wild-type males at 23oC. Individual pairs were visually scored for copulation at 5, 

10, 15, 30, 45, and 60 min to determine the percent copulated during 1 h. 

 

Temporally restricted RNAi 

tub-Gal80ts (McGuire et al., 2004) crosses were set at either 18°C or 30°C. Virgin 

females were collected at eclosion and then group-housed away from males for 4 

days at either 18°C or 30°C before being tested for receptivity at 23oC or 

dissected. 
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Male courtship index 

Courtship index was defined as the proportion of time the male followed and 

oriented towards the female within 5 min of courtship initiation, marked by the 

initial orientation towards and following of the female. Male courtship index in 

Figure 3.6 was scored from the same videos as ovipositor extrusion in Figure 

3.7. 

 

Vaginal plate opening and ovipositor extrusion 

Individual females were placed in one of eight 1-cm circular plastic chambers in a 

courtship wheel with a wild-type male and filmed for 15 min. To allow 

visualization of vaginal plate opening, uncompressed image sequences at 1600 x 

1200 pixels and 30 frames per s and less than 10 ms exposure were recorded 

directly to disk with a Grasshopper-2 Firewire camera (Point Grey Research) with 

an Infinimite Alpha lens and 2X magnifier (Infinity Optics) using Streampix 5 

(Norpix, Inc.). Lighting was provided by angled low-flicker fluorescent lights 

(Coherent) and adjustable fiber optic lights from a dissecting microscope. 

Instances of vaginal plate opening and ovipositor extrusion were scored blind to 

genotype and mating status from frame-by-frame playback during the first 5 min 

of courtship or until copulation if it occurred within 5 min, with courtship initiation 

defined as the male orienting towards and beginning to follow the female. Rare 

trials with fewer than 30 s of courtship were discarded. 
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Egg-laying 

Individual virgin females were observed to mate with a wild-type male in a fly 

food vial and then transferred singly into food vials at 25°C, 60% relative 

humidity, 12 h light: 12 h dark and allowed to lay eggs for 24 h. Adults were then 

transferred to a fresh vial and allowed to lay for another 24 h. The number of 

eggs was counted at the end of each 24 h period to determine total eggs laid per 

female in 48 h. 

 

Acute neuronal silencing 

Flies for UAS-shits (Kitamoto, 2001) silencing experiments were raised at 18°C 

and shifted to 18°C or 29°C 30 min prior to assays. Food vials were placed at 

18°C or 29°C for 2 h prior to assays to reach the appropriate temperature.  

 

Male copulation success 

Single males were gently aspirated into standard fly food vials containing 2 wild-

type females at 23oC. Individual pairs were visually scored for copulation at 5, 10, 

15, 30, 45, and 60 minutes to determine the percent copulated during 1 h. 

 

Movement tracking 

Fly movement in two dimensions was tracked during courtship in a custom 70 

mm circular arena with sloping sides and a removable level center modified from 

published designs (Simon and Dickinson, 2010). The arena was made of opaque 

white Delrin plastic (McMaster-Carr) custom-machined to uniform thickness to 
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allow even backlighting from a light board (Smith-Victor Corporation CAT#A-5A) 

and topped with a piece of Plexiglas with a small hole for introducing flies. Plans 

are available upon request. Video was recorded with a consumer camcorder 

(Canon HFS20) mounted above the arena in an incubator at 60% relative 

humidity with the lights on. Movement was tracked using Ctrax open source 

software (Branson et al., 2009).  

For each trial, a single female fly was gently aspirated into the arena and 

allowed to acclimate for 30 s. Then a single male was introduced and recording 

started. Videos were trimmed to either approximately 30 s after the introduction 

of the female or courtship initiation, if courtship began fewer than 30 s into the 

video. Movement was tracked until at least five minutes after courtship initiation 

or until copulation initiation, depending on female genotype and mating status. 

Given that an individual female mating decision may not reflect the general 

receptivity probability of a genotype or mating status, we analyzed trials in which 

copulation did or did not occur within 15 minutes, as per the normal receptivity of 

females of that genotype and mating status. Rare trials with fewer than two 

minutes of courtship were discarded. 

Fly speed—the per-frame speed of the fly’s center of rotation—is the 

velmag parameter calculated by the compute_perframe_stats script 

accompanying Ctrax. Frames in which the female was paused were identified 

using a custom Matlab script. Briefly, after manual input of the starting frame of 

courtship, the script identifies frames where the speed of the female is less than 

4 mm/s and her angular acceleration (smoothd2theta in 
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compute_perframe_stats) is less than 15 rads/s2. These values were adjusted to 

accurately label pauses judged by eye during video playback using the showtrx 

Matlab script accompanying Ctrax. To calculate the fraction of time the female 

paused during courtship, we determined the video frames in which courtship 

occurred after its initiation based on the assumption that courtship requires the 

male following the female. From video playback and manual scoring of courtship 

indices, we determined that this meant that the male was within a fly-body 

distance of the female. We therefore labeled all frames after courtship initiation 

when the center of the male’s body was within 10 mm of the center of the 

female’s body as courtship. The percent time paused during courtship is 

therefore the number of courtship frames when the female paused divided by the 

total number of courtship frames. A small number of trials in which the female 

paused more than 30% of courtship time because she was stuck within the 

sloped side of the chamber were discarded. For females tracked alone, pausing 

was calculated using the speed, angular acceleration, and pause length criteria 

for the entire first five minutes following 30 s of acclimation after introduction to 

the arena. 

 

Male copulation attempts 

Copulation attempts, defined as the male curling his abdomen to contact the 

female, were scored from the same videos used to analyze vaginal plate opening 

and ovipositor extrusion in Figures 6.2 and 6.3. 
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Sound playback 

Recordings were played using Audacity (http://audacity.sourceforge.net/) from a 

laptop computer on AX210 computer speakers (Dell, Inc.). The 2 speakers were 

placed on opposite sides of an 8-chamber clear Plexiglas wheel (12 cm 

diameter) with mesh bottom, 4 cm from the center of the closest chamber and 8 

cm from the center from the farthest. Playback intensity was measured for 30 sec 

of each stimulus in a soundproof chamber using a calibrated microphone (Brüel 

& Kjaer model 4939) placed just below the mesh bottom of the chamber farthest 

from the speakers. The mean intensity of the white noise stimulus was 66.3 dB, 

and the mean intensity of the song stimulus was 70.3 dB, with a mean intensity 

of pulse song peaks of 85.7 dB. The song playback file was composed of 4 

repeats of an approximately 20-min section of a published recording of wild-type 

Canton-S male courtship song (Arthur et al., 2013). White noise with amplitude 

0.8 was generated using Audacity’s noise generation function. Single male and 

female pairs or single females were aspirated into each chamber, and the entire 

wheel was then placed in a humidified incubator (23°C, 60% RH) with 

backlighting provided by a light board as in movement tracking experiments. 

Playback was started and then video recording, followed by movement tracking, 

was performed as above for 30 min. Female receptivity was calculated from 

recorded videos. Pause definition parameters were adapted to the smaller 

chambers: courtship was defined as the center of the male being within 5 mm of 

the center of the female, and velocity and angular acceleration thresholds were 

decreased to 2 mm/s and 13 mm/s2, respectively. 
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Mute males with wings removed 

To generate mute males, 4-5 day old males were lightly anesthetized with carbon 

dioxide and their wings removed as close to the base as possible with dissecting 

scissors. Operated males were allowed to recover as a group for at least 24 h at 

25°C, 60% relative humidity and used within 72 h of wing removal. 

 

Neuronal activation 

Flies for UAS-TrpA1 activation experiments were raised at 22°C. Assays were 

conducted at 22°C or 30°C, with flies introduced to the appropriate temperature 

at the start of assays. The tracking arena was placed at 22°C or 30°C for 2 h 

prior to assays to reach the appropriate temperature.  

 

Temperature-shifted vaginal plate opening and ovipositor extrusion 

Assays were carried out as described in the main text for Figures 6.2 and 6.3, 

except that a 1-cm circular plastic chamber was placed on white paper in a 

heated slide mount attached to a temperature controller (Warner Instruments CL-

10), and the mount was placed on top of a cooling block (BioQuip 1424). A probe 

just underneath the chamber was used to monitor the temperature, and flies 

were introduced after the chamber reached the appropriate temperature. Plate 

opening was scored blind to assay temperature. 
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Statistical Analysis: 

Statistical analysis was performed using GraphPad Prism Software version 6.01 

(GraphPad Software, Inc., La Jolla, CA). 
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